
Adaptivity in Risk and Emergency Management Applications on Pervasive Grids

Carlo Bertolli, Gabriele Mencagli and Marco Vanneschi
Department of Computer Science, University of Pisa
Largo Bruno Pontecorvo, 3, Pisa, 56125 Pisa, Italy

{bertolli,mencagli,vannesch}@di.unipi.it

Abstract—Pervasive Grid computing platforms are com-
posed of a variety of fixed and mobile nodes, interconnected
through multiple wireless and wired network technologies.
Pervasive Grid Applications must adapt themselves to the
state of their surrounding environment which includes envi-
ronmental data (e.g. collected from sensors) and the state of
the used resources (e.g. network or node states). Adaptation is
especially important if we consider complex High-Performance
Pervasive Grid applications, such as intelligent transportation
and emergency management. In this paper we investigate how
to define adaptivity for complex Pervasive Grid applications
by providing multiple versions of application parallel modules.
The versions are defined by exploiting different sequential
algorithms and parallelization techniques. We introduce per-
formance analysis tools for versions, which allow us to define
specific selection policies of the best version to be executed,
depending on the context. We show how each version is best
suited to be executed on two application scenarios, also by
means of experiments. To synthesize the contributions of this
paper we introduce the ASSISTANT programming model, for
adaptive Pervasive Grid applications.

Keywords-Pervasive Grid; High-Performance; Risk and
Emergency Management; Adaptivity; Programming Models

I. INTRODUCTION

Pervasive Grid computing platforms [1] are composed of
a variety of fixed and mobile nodes, interconnected through
multiple wireless and wired network technologies. In these
platforms the term context represents the state of logical
and physical resources and of the surrounding environ-
ment. Complex Pervasive Grid applications include data-
and compute-intensive processing (e.g. forecasting models)
not only for off-line centralized activities, but also for on-
line, real-time and decentralized ones: these computations
must be able to provide prompt and best-effort information
to mobile users. These requirements can be satisfied if
applications can adapt themselves to the dynamic conditions
of the platform. That is, applications must adapt themselves
to the context in which they are executed. We can express
application adaptivity in two main ways:
• provide applications with a dynamic support (e.g. [2]),

which allows them to modify their run-time support to
face changes in the availability of the used resources;

• provide multiple versions of same application modules,
to enable their mapping onto heterogeneous resources.
Versions can be based on different sequential algo-
rithms and parallelization schemas.

In this paper we mainly focus on the second kind of
adaptivity. In a Pervasive Grid, a parallel computation can be
mapped onto several kinds of computing nodes. For instance
it can be mapped onto: (a) a centralized parallel server;
(b) a wireless network of users’ PDAs; (c) a network of
wireless interface nodes, possibly supported by multicore
architectures. Each platform requires a different version of
the same module, exploiting different sequential algorithms
and parallelization techniques. A specific version can be
optimized for a specific computing support and, in more
general terms, context situation. We show how performance
analysis of structured parallel programming, which is based
on common and well-studied parallelism forms (e.g. divide-
and-conquer and parallel sort), is exploited to select the best
version for each context situation. The dynamic selection is
done to face with catastrophic events affecting the platform
(e.g. a link or service failure), in response to user requests
and to optimize performance aspects.

Our research work in the Italian FIRB In.Sy.Eme. (Inte-
grated Systems For Emergency) Project focuses on Emer-
gency management applications [3]. These represent one
of the most interesting test-case for Pervasive Grids as
they include two main kinds of computations: (i) off-
line computations to support environmental monitoring and
emergency forecasting; (ii) on-line computations (real-time
in some cases), to support the emergency management when
it is act. In this paper we focus on flood management
applications, and we show multiple parallel versions of a
same flood forecasting module. We describe how the version
selection policy can be defined for two main application
scenarios by using proper performance models. Then we
introduce the novel ASSISTANT programming model which
inherits from our experience on the ASSIST [4] structured
parallel programming. ASSISTANT includes full application
adaptivity, w.r.t. the above two points.

The paper is organized as follows: in Sect. II we discuss
related works. In Sect. III we briefly introduce the flood
management application and we describe two versions of
a flood forecasting model. In Sect. IV we define two
application scenarios and we characterize their performance
analysis. In Sect. V we describe the main features of the AS-
SISTANT programming model. Sect. VI derives conclusions
and discusses future work.

2009 10th International Symposium on Pervasive Systems, Algorithms, and Networks

978-0-7695-3908-9/09 $26.00 © 2009 IEEE

DOI 10.1109/I-SPAN.2009.92

550

II. RELATED WORK

Our research work is based on previous works on adap-
tivity for parallel and distributed High-Performance applica-
tions. Adaptivity is mainly intended as the dynamic recon-
figuration of the parallel implementation of programs (e.g.
increasing or decreasing the parallelism degree [2]). Struc-
tured parallel programming has lead to optimized solutions
[2], w.r.t. solutions based on general parallel programming
models (e.g. MPI and OpenMP).

In our research work we extend the notion of adaptivity
to include also the possibility of switching between different
versions of the same computation. This idea has been studied
also in the Grid Component Model (GCM): in GCM, com-
ponents can be nested in arbitrary ways and sub-components
can be dynamically replaced also to perform the switching
between different versions (e.g. see [5]). The selection
policy can be programmed in specialized management sub-
components (i.e. the application managers). In GCM adap-
tivity focuses on the following issue: if a single performance-
related Quality of Service (QoS) is specified for a whole
GCM application, how this can be recursively translated in
specific QoS for the sub-components? [6] presents a solution
based on algorithmic skeletons [7]: the recursive translation
can be defined if components are developed according to the
skeleton paradigm, by exploiting their performance models.
This recursive translation is reflected in the hierarchical
design of the network of application managers.

Our research work can be thought as an extension to these
works. Anyway, we avoid to tie our application control logic
to a specific design pattern (e.g. hierarchical). We present our
research framework to define version selection policies of
versions. We demand at the implementation level the actual
development of an optimized network of managers: this will
exploit different structures (e.g. ring or centralized ones),
depending on the application- and platform-specific features.

Adaptivity has been introduced also for mobile and per-
vasive applications, by exploiting the concept of context
[8]. The context includes environmental data such as air
temperature and the network and node states. Smart Space
systems [9] mainly consist in providing context information
to applications, which possibly operate on controllers to
meet user requirements. Some works focus on abstracting
useful information from raw sensor data for adaptivity
purposes, possibly by means of ontologies [10].

Concerning adaptivity, a mobile application can exploit
optimized algorithms, protocols or systems [11]. In this
vision, it is the run-time support (e.g. the used protocol)
which is in charge of adapting its behavior. Adaptivity can
be also defined at the application level [3]. For instance, in
Odyssey [12] adaptivity is expressed in terms of the choice
of the services from which an application is composed.

In [13] High-performance application are introduced in
the context of pervasive computing, for stream-based trans-

formations, fusion and feature extractions. Unlike our work,
these computations are mapped onto centralized servers.

In this paper we propose to attack the complexity of
definition of adaptivity of Pervasive Grid applications by
extending the concepts developed in the high-performance
computing research field.

III. FLOOD MANAGEMENT APPLICATION

We consider a schematic view of an application for
fluvial flood management (see Fig. 1). During the “normal”
situation several parameters are periodically monitored and
acquired through sensors and possibly by other services
(meteo and GIS). For instance sensors can monitor the
current value of flow level and surface height. A forecasting

Geographic

Information System

Flood Forecasting

Model

Meteorological

Prediction Model

Decision

Support System

Sensor

Networks

Precipitation Data

(e.g. satellite images)
Clients

Figure 1. Scheme of the flood management application.

model (e.g. an hydrodynamic model as in[14]) is periodi-
cally applied for specific geographical areas and for widest
combinations of these areas. The main computational cost is
represented by the resolution of partial differential equations
for each river discretization point, corresponding to resolving
a large set of linear tridiagonal systems.

During the execution the forecasting model may signal
abnormal situations that could lead to a flood. Thus, execu-
tion performance is a critical parameter. In this paper we
describe multiple application scenarios and we characterize
the best parallel structure w.r.t. performance parameters.

We consider two resolution algorithms for solving tridiag-
onal linear systems, based on cyclic reduction method [15].
Each algorithm is best suited for a different parallelization
scheme which is characterized by a different performance
model. We only give a brief description of the two algo-
rithms and their parallelization: the interested reader can
refer to [15] for a full description.

First Algorithm: This algorithm includes two main
parts. The first part (denoted by transformation part) trans-
forms the input system in q − 1 steps (q = log2(N + 1)),
where N is the system size. At each step l we consider all
rows i such as i mod 2(l − 1) = 0, for which we solve a
set of equations (see [15] for the equation definition). This
part features functional dependencies (i.e. stencil) between
equation resolutions: for each considered row i we need the
previously computed values of rows i− 2l−1 and i + 2l−1.
The second part of this algorithm is denoted resolution part
in which we compute in q steps the solutions of the linear
system, according to a fill-in procedure.

This algorithm minimizes (w.r.t. the second one, see
below) the number of operations and communications. Con-

551

sequently, it features fine grain and it is best suited for a
parallelization according to a task farm scheme. This scheme
is applied to a stream of input data (the river points), which
an emitter (E) schedules to a set of replicated workers
(W), according to a load balancing strategy. Each worker,
for each input data, generates and solves four tridiagonal
systems, producing the X and Y components. Results are
sent to a collector (C) which produces a stream of output
results. We show the task farm service time (Tfarm) and
latency (Lfarm). Tfarm represents the average time between
the beginning of the elaboration of two successive input
elements. Lfarm represents the time necessary to complete
the elaboration of a single input element. If we denote
with TE , TW and TC respectively the service times of the
emitter, worker and collector, and with n the parallelism
degree (i.e. number of workers) we can define Tfarm =
max(TE , TW /n, TC) and Lfarm = TE + TW + TC . So the
task-farm scheme is able to reduce the service time, but the
latency is equal or higher than in the sequential case.

Second Algorithm: The second algorithm includes two
parts as the previous one. The first part includes q steps.
Unlike the first algorithm, we solve the same equations of
the first algorithm but for all system rows at each steps. The
second part includes only a single step in which we directly
get all the solutions of the system.

Compared with the previous algorithm, the second one
features coarser grain. Thus, it is best suited for paralleliza-
tion according to a data parallel scheme: each generated
tridiagonal system is scattered (S) onto several replicated
workers (W), each one performing the sequential algorithm
on its assigned partition. Workers cooperate during each step
according to a proper communication stencil. The whole
result is obtained by gathering (G) the partial results of each
worker. Unlike the task farm, this paradigm works both in a
stream processing situation and when only a single system
at time has to be processed. In other words, it reduces the
parallel efficiency also when the stream interarrival time is
greater than the sequential processing time. This is obtained
because it is able to decrease the processing latency of a
single tridiagonal system and the memory size per node.
The disadvantage of this data parallel version is that it
can feature load unbalancing. Also for the data parallel we
consider the service time Tdp and request latency Ldp. We
denote with Tscatter, Tparcomp and Tgather respectively the
service times of the scatter, worker and gather modules.
We can define Tdp = max (Tscatter, Tparcomp, Tgather), and
Ldp = Tscatter + Tparcomp + Tgather. For brevity, we avoid
to show how Tparcomp can be defined.

IV. APPLICATION SCENARIOS

We consider two application scenarios, each characteriz-
ing a run-time configuration scheme of the flood application.
The definition of the scenarios is given independently of
the set of available computing nodes. Consequently, the

IN E C

W

W

U

TSM

data point X,Y components
WSN

. . . S G

W

W W

W

. . .

. . .

. . .

task farm data parallel

Figure 2. Representation of Scenario 1.

introduced performance models characterize each scenario
independently of the mapping between application modules
and available nodes. To concretize our research contribu-
tions, we also perform experiments on actual computing
nodes: a cluster platform and a multicore interface node.

A. Scenario 1: Forecasting a Large River Area

In the first scenario users request for flood forecasting
over a large river area. A Wireless Sensor Network (WSN)
monitors the area and it provides input data for a forecasting
model. As described above, input data reflect the discretiza-
tion of the area in points. We assume that a single module IN
collects all the sensed data from the WSN (see Fig. 2). IN
sends the input data to a forecasting module (Tridiagonal
Solver Module or TSM). TSM sends the forecast results
to the users in real-time or it can perform some buffering.
The performance modeling of this scenario depends on two
quantities: (i) the input data interarrival time to the TSM
(TA); (ii) the parallel performance of the TSM module
(TTSM). Depending on the value of TA we need to minimize
either the TSM service time, or its request latency. Clearly,
both values depends on its parallelization scheme. Notice
that, for simplicity, we consider that communication and
computation cannot be overlapped and TIN includes also
the communication latency of input data.
• Case TA < TTSM : the WSN is not the bottleneck

of the system. The system performance depends on
the service time of the forecasting module TTSM . We
choose the task farm parallel structure as it minimizes
the forecasting module service time;

• Case TA >> TTSM : TA is the bottleneck of the
system and we can only minimize the single system
resolution time. We choose the data parallel solution as
it minimizes the service latency.

In a Pervasive Grid these two situations can be dynamically
verified. For instance, when we start the application the
input generator may not be the bottleneck (on stream case).
Thus, we initially select the task farm version. During the
execution, the input generator can become a bottleneck of
the computation. This can happen when input data from
sensor networks are not available anymore, and they must
be partially simulated. The current TSM interarrival time
becomes higher than the corresponding service time (i.e.

552

TA >> TTSM), also for the lowest parallelism degree of the
TSM parallel structure. To manage this situation in real-time,
we can switch from the task farm version, which reduces
only the average service time, to the data parallel one, which
reduces also the latency for a single request.

We can deduce two features for a high-level programming
model for Pervasive Grid applications. The programming
model should allow programmers to: (i) define a (parallel)
module in multiple versions, and (ii) express the abstract
switching conditions without entering in implementation
details. Point (ii) avoids to mix in a same abstract code the
version switching implementation and the abstract policy.

Experiments: We performed experiments on the task
farm mapped onto a cluster architecture, which models a
centralized server. The cluster features 30 nodes Pentium III
800 MHz with 512 KB of cache, 1 GB of main memory and
interconnected with a 100 Mbit/s Fast Ethernet. We mapped
the data parallel onto an interface node between the WSN
and mobile users, supported by a multicore architecture:
this is motivated by the strong requirements, in terms of
communication efficiency, of this version, which cannot be
supported by an off-the-shelf cluster architectures. The inter-
face node features a Intel E5420 Dual Quad Core multicore
processor, with 8 cores of 2.50 GHz, 12 MB L2 Cache
and 8 GB of main memory. To compare the algorithms we

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 2 4 6 8 10 12 14 16

S
c
a

la
b

ili
ty

Parallelism degree

8MB Farm
16MB Farm
32MB Farm

1MB Data Parallel
2MB Data Parallel
4MB Data Parallel

Figure 3. Scalability of the task farm and data parallel versions.

present their scalability, instead of their service time, to mask
the difference between the single node computing power. In
Fig. 3 we show the results. It can be noticed that the task
farm version supports higher system sizes, w.r.t. the data
parallel one. This is motivated by physical aspects of the
used architectures. Results show that the task farm version
provides better scalability also for large system sizes. In this
scenario we select it, unless we need to minimize the single
system resolution latency (see above).

B. Scenario 2: Forecasting Local River Areas

In the second scenario (see Fig. 4) we model the case
of multiple mobile users (or clients), which are near the
emergency area and they do not need a forecasting of the
whole river, but only of their nearest area. Each client
cyclically performs the following program: (1) collects input
data; (2) sends input data to TSM; (3) receives corresponding

results from TSM; (4) visualizes the received results. We
denote with TG the average time needed to perform steps
(1) and (4). Unlike the previous scenario, the number of
clients is now a critical parameter of the performance model.
The performance of this scenario can be modeled as a
Queuing System: a set of clients sends requests that are
logically received by a TSM input queue (i.e. Q). We are
interested in the performance experience of each client w.r.t.
the system: the performance characterization of this scenario
is given by the client service time (TCl). By exploiting the
queuing theory [16], we derive that the TCl depends on the
service latency (LTSM) and the average waiting time in the
TSM queue WQ: this depends on TTSM [16]. Unlike the
first scenario, we are interested in optimizing both values
(TTSM and LTSM) at the same time. As we described
above, the data parallel version minimizes both values,
while the task farm one only optimizes the TTSM value.
We performed experiments to show how, given an actual
computing platform, we can derive the selection policies.

U

U

results

data point
WSN

TSM

E C

W

W

. . . S G

W

W W

W

. . .

. . .

. . .

task farm data parallel

results

data point

Figure 4. Representation of Scenario 2.

Experiments: Fig. 5 shows the version service times
for system size of 4MB and 5 clients. The data parallel
version should be preferred when the TSM interarrival time
is larger (enough!) than its service time (TA >> TTSM).
We can consider to map the task farm onto both the
cluster and the multicore. The multicore can support up
to 6 parallel processes: for client numbers larger than 6
it is not guaranteed which architecture is best suited. In
the experiments we have not reached the sufficient client
number which requires to switch from the task farm on the
multicore to the one on the cluster: we will investigate this
point in future work. For discussion, we define such value
as ∆(=THRESHOLD). The version selection policy can be
defined as following:
• if we are executing the task farm on the cluster and

TA >> TTSM , we switch to the data parallel. We
switch back if the number of clients becomes larger
than ∆;

• if the number of clients becomes lower than ∆ we
switching from the task farm on the cluster to one of
the other two versions: the best version is selected by
checking TA;

• if the TA features a high variance our selection strategy
may switch from the task farm on the multicore to the

553

data parallel one. As service times are comparable, we
avoid the switching costs by permanently selecting the
data parallel version.

 0

 2

 4

 6

 8

 10

 12

 14

 1 2 3 4 5 6 7 8 9

S
e

rv
ic

e
 t

im
e

Parallelism degree

task farm on cluster
data parallel on multicore

task farm on multicore

Figure 5. TSM service times for 5 clients.

V. THE ASSISTANT PROGRAMMING MODEL

ASSISTANT (ASSIST with Adaptivity and Context Aware-
ness) inherits from our previous research experience in struc-
tured parallel programming [7] maturated in the ASSIST
programming model [4]. ASSISTANT allows programmers
to define parallel and adaptive applications as a graph
of interconnected modules, each one defined by using a
specific programming construct (the new parallel module,
or ParMod). The parmod semantic is characterized by two
different logics of the module and their interaction scheme:
• Functional Logic: this part encapsulates multiple ver-

sions of the parallel module, each one with a different
behavior according to several parameters (e.g. memory
utilization, estimated performance and user degree of
satisfaction, e.g. the precision of computed results). In a
certain time only one version can be currently executed
(the version is active);

• Control Logic: this part includes all the adaptivity
strategies and reconfigurations performed to adapt the
module behavior as a response to specified events.
Events can be generated by context interfaces which
provide useful information about the surrounding exe-
cution environment (e.g. network disconnection events).
By using proper performance models, the control logic
can select the best version to execute when a certain
context situation is verified, maximizing or minimizing
specific execution parameters (e.g. the module response
time or its memory occupation).

To express these logics we introduce a new construct, called
operation, which is utilized inside the parmod definition.
An operation is composed by a specific version (i.e. its
functional part) and the corresponding adaptivity strategy
(i.e. its control part) utilized when the version is executed.
A parmod includes multiple operations which describe its
functional and control logics.

The control logic of a parmod can be formally described
as an automaton (see the example of Fig. 7), where: internal

states are a mapping of the operation names; output states are
a mapping of reconfiguration actions; input states are a map-
ping of event combinations admitted in each internal state
of the automaton. Input states are defined also on conditions
on internal variables of the parmod state. Self-arrows denote
re-configurations of the same operation (e.g. changing the
parallelism degree). Transitions between different operations
denote operation switchings. The events labeling transitions
are the condition firing the adaptivity actions. Syntactically,
the control part of an operation implements the transitions
outgoing from itself (also self-arrows). It is programmed by
means of the on event construct, which includes a set of
nondeterministic clauses expressed as condition-action rules.

The control logic and the functional logic of a parmod
follow the interaction scheme depicted in Fig. 6. The compu-
tation performed by the parmod can be reconfigurated in spe-
cific safe-points (i.e. reconfiguration points as in [2]) implic-
itly identified by the run-time system or explicitly defined
by the programmer. As example, if the parmod processes a
large sequence of input tasks, a typical reconfiguration point
is defined when a new task is received and before starting the
corresponding elaboration. When the execution reaches a re-

Functional
Logic

Control
Logic

normal execution normal execution
reconf
point (1)

(2)

(3)

reconfiguration time

Figure 6. Interaction scheme between functional and control logics.

configuration point all the information necessary to evaluate
the non-deterministic clauses of control logic are provided
(1). The control logic evaluates the on event construct of
the active operation identifying the reconfigurations which
must be executed (2). The functional logic reacts to the
reconfiguration commands (3) by modifying its parallelism
degree (i.e. new processes are allocated) or changing the
active operation (a different version is executed).

A. Adaptive Flood Forecasting Application in ASSISTANT

We show a control logic part of the TSM parmod
in the second scenario (see Sect. IV), which implements
the described switching policy. Fig. 7 shows the event
operation graph of the TSM parmod in this client-server
scenario. Fig. 8 shows a part of the TSM control logic (i.e.
when the taskFarmMulticore is activated). This on event
section implements the bold lines of the corresponding
event-operation graph of Fig. 7, i.e. the ones outgoing
from the farmMulticore-Operation internal state. The first
nondeterministic clause regards the average interarrival time
of the TSM, measured by a specific context interface of the
module (updating the TA internal state variable). If this value
becomes lower than a predefined threshold (i.e. Ta-THS, case

554

taskFarm
Multicore

clientNumber >= threshold

taskFarm
Cluster

Ta <= Ttsm

dataP
Operation

clientNumber < threshold

&& Ta < Ttsm

clientNumber < threshold

&& Ta >> Ttsm

clientNumber >= threshold

Ta >> Ttsm

Figure 7. Event-operation graph of the TSM parmod in the second
scenario.

parmod TSM (. .) {
o p e r a t i o n f a r m M u l t i c o r e−O p e r a t i o n

/ / F u n c t i o n a l l o g i c : t a s k−farm a l g o r i t h m . .
on event

(Ta > Ta−THS) do
f a r m M u l t i c o r e−O p e r a t i o n . s top () ;
d a t a P a r a l l e l−O p e r a t i o n . s t a r t () ;

enddo
(Ta <= Ta−THS)&&(c l i e n t N u m b e r > THRESHOLD) do

f a r m M u l t i c o r e−O p e r a t i o n . s top () ;
f a r m C l u s t e r−O p e r a t i o n . s t a r t () ;

enddo
}

Figure 8. Control logic of the multicore farm operation of the TSM
parmod.

TA >> TTSM) we can only minimize the single system
resolution time switching to the data parallel operation. The
second nondeterministic clause regards the number of clients
performing requests to the TSM module. If the interarrival
time is lower than a specific value and the number of clients
is higher than a certain threshold we select the task farm
version mapped onto the cluster architecture, exploiting an
higher parallelism degree than the multicore operations.

VI. CONCLUSIONS

In this paper we have described how adaptivity can be
derived for emergency management applications on Per-
vasive Grids, by assuming two application scenarios and
characterizing their performance models. For a specific
application module we have defined two versions, based on
two sequential algorithms and parallelization techniques. We
have shown how to define the version selection: this is given
independently of any actual implementation of adaptivity,
in terms of application manager modules/processes. These
abstract considerations are synthesized in the ASSISTANT
programming model for pervasive adaptive applications,
which is briefly presented in this paper in its main aspects.

REFERENCES

[1] T. Priol and M. Vanneschi, Eds., Procs. of the CoreGRID
Symposium: From Grids To Service and Pervasive Computing,
ser. LNCS. Springer, 2008.

[2] M. Vanneschi and L. Veraldi, “Dynamicity in distributed
applications: issues, problems and the assist approach,” Par.
Comp., vol. 33, no. 12, pp. 822–845, 2007.

[3] C. Bertolli, R. Fantacci, G. Mencagli, D. Tarchi, and M. Van-
neschi, “Next generation grids and wireless communication
networks: towards a novel integrated approach,” Wireless
Comm. and Mobile Computing, 2008.

[4] M. Vanneschi, “The programming model of ASSIST, an en-
vironment for parallel and distributed portable applications,”
Par. Comp., vol. 28, no. 12, pp. 1709–1732, 2002.

[5] R. M. Badia, M. Ejdys, U. Herman-Izycka, N. Lal, T. Kiel-
mann, and E. Tejedor, “Integrating application and system
components with gcm,” in From Grids To Service and Per-
vasive Computing, ser. LNCS. Springer, 2008.

[6] M. Aldinucci, M. Danelutto, and P. Kilpatrick, “Co-design
of distributed systems using skeletons and autonomic man-
agement abstractions,” in Workshops of Euro-Par 2008, ser.
LNCS, vol. 5415. Springer, 2009.

[7] M. Cole, “Bringing skeletons out of the closet: a pragmatic
manifesto for skeletal parallel programming,” Par. Comp.,
vol. 30, no. 3, pp. 389–406, 2004.

[8] M. Baldauf, S. Dustdar, and F. Rosenberg, “A survey on
context-aware systems,” Int. J. Ad Hoc Ubiquitous Comput-
ing, vol. 2, no. 4, pp. 263–277, 2007.

[9] M. Román, C. Hess, R. Cerqueira, A. Ranganathan, R. Camp-
bell, and K. Nahrstedt, “A middleware infrastructure for active
spaces,” IEEE Perv. Comp., vol. 1, no. 4, pp. 74–83, 2002.

[10] T. Chaari, D. Ejigu, F. Laforest, and V.-M. Scuturici, “A
comprehensive approach to model and use context for adapt-
ing applications in pervasive environments,” J. Syst. Softw.,
vol. 80, no. 12, pp. 1973–1992, 2007.

[11] A. Balasubramanian, B. N. Levine, and A. Venkataramani,
“Enhancing interactive web applications in hybrid networks,”
in In Proc. of the ACM Intl. Conf. on Mob. Comp. and Netw.
ACM, 2008, pp. 70–80.

[12] B. Noble and M. Satyanarayanan, “Experience with adaptive
mobile applications in odyssey,” Mob. Netw. Appl., vol. 4,
no. 4, pp. 245–254, 1999.

[13] D. Lillethun, D. Hilley, S. Horrigan, and U. Ramachandran,
“MB++: An integrated architecture for pervasive computing
and high-performance computing,” in In Proc. of the IEEE
Intl. Conf. on Emb. and Real-Time Comp. Syst. and Appl.
IEEE, 2007, pp. 241–248.

[14] B. Syme, “Dynamically linked two-dimensional/one-
dimensional hydrodynamic modelling program for rivers,
estuaries and coastal waters,” WBM Oceanics Australia, Tech.
Rep., 1991, available at: http://www.tuflow.com/Downloads/.

[15] R. Hockney and C. Jesshope, Parallel Computers: Architec-
ture, Programming and Algorithms. Institute of Physics
Publishing, 1981.

[16] L. Kleinrock, Queueing Systems, Volume I: Theory. Wiley
Interscience, 1975.

555

