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Abstract—A central issue for parallel applications executed on
heterogeneous distributed platforms (e.g. Grids and Clouds) is
assuring that performance and cost parameters are optimized
throughout the execution. A solution is based on providing
application components with adaptation strategies able to select
at run-time the best component configuration. In this paper we
will introduce a preliminary work concerning the exploitation
of control-theoretic techniques for controlling parallel computa-
tions. In particular we will demonstrate how a predictive control
approach can be used based on first-principle performance
models of structured parallelism schemes. We will also evaluate
the viability of our approach on a first experimental scenario.

Index Terms—Structured Parallel Programs, Reconfigurations,
Autonomic Computing, Model-based Predictive Control.

I. INTRODUCTION

The last years have been characterized by the arising of

highly distributed computing platforms composed of a hetero-

geneity of computing and communication resources including

centralized high-performance computing architectures (e.g.

clusters or large shared-memory machines), as well as multi-

/many-core components also integrated into mobile nodes and

network facilities. The emerging of computational paradigms

such as Cloud Computing, provides potential solutions to

integrate such platforms with data systems, natural phenomena

simulations, knowledge discovery and decision support sys-

tems responding to a dynamic demand of remote computing

and communication resources and services.

One of the main issues for customers that use Cloud

environments is the necessity to optimize the utilization of

the infrastructure layer, through a proper dynamic selection of

resources and services (e.g. optimizing operational costs), and

the application layer, that may require to meet precise Quality
of Service (QoS) constraints (e.g. in terms of performance

at which computing results are provided to users). These

objectives may be in opposition to each other: e.g. optimizing

the application performance often requires a more powerful

(and more expensive) configuration of the Cloud infrastructure.

This is especially true in the case of parallel computations,

where the efficient platform utilization plays a decisive role.

In this context it is of great importance the definition

of adaptation strategies for distributed applications featuring

proper levels of self-adaptation, self-management and self-

optimization. Nowadays research works face with this problem

following different methodologies. A widely used approach

is based on defining policy rules, usually based on logic

languages, that express system adaptation actions in response

to events about current QoS measurements. An example of

this approach for parallel skeletons is explained in [1]. Other

works try to exploit control-theoretic techniques for controlling

computing systems. In these works (as in [2], [3]), the most

challenging problem is the definition of proper mathematical

models of the controlled systems, used for applying classical

control techniques (as PID controllers as in [2]) but also more

advanced predictive approaches (as in [4]).

Nevertheless the research results are far from being mature

and a further research effort is required, especially with the

emerging of Cloud environments in which the problem of

adaptation and optimization is much more stressed. In this

paper we describe our preliminary work for applying control-

theoretic techniques to adapt distributed parallel systems. Our

approach is based on a fundamental basic point: in our

vision high-performance computations are instances of well-

known structured parallelism schemes [5] (e.g. data- and task-

parallelism schemes) for which a formal modeling of their QoS

behavior can be analytically studied. Starting out from this we

discuss the application of formal predictive control techniques

for the run-time adaptation of such kind of applications.

This paper is organized as follows. In Section II we will

provide a brief overview about some existing research works

focusing on run-time adaptation of parallel computations. In

Section III the basic description of our approach will be

presented, discussing the concept of adaptive parallel module

and introducing a predictive control approach that is practical

for our purposes. In Section IV we will show a first real ex-

periment concerning a distributed system for flood emergency

management on which we have evaluated the viability of our

work.

II. RELATED WORKS

Adaptivity for high-performance applications is mainly in-

tended as the dynamic reconfiguration of parallel programs

(e.g. run-time modification of their parallelism degree). Struc-

tured parallel programming [5] has lead to optimized so-

lutions [6] w.r.t. approaches based on general parallel pro-

gramming models (e.g. MPI and OpenMP). Although several
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research works [6], [7] focus on efficient and highly opti-

mized implementation of run-time support for autonomic high-

performance applications (e.g. minimizing the reconfiguration

overhead), they do not pay sufficient attention to the decision

process (adaptation strategy): i.e. how reconfiguration deci-

sions are taken by the control logic of the application itself.

In [1] a distributed hierarchical control of parallel com-

ponents based on algorithmic skeletons [5] is introduced,

focusing on the possibility to modify the parallelism degree

according to a reactive strategy expressed as event-condition-
action policy rules. Adaptivity for compute-intensive appli-

cations is also targeted in [8], but it is only discussed for

adapting the computational load in large-scale simulations,

and the possibility to express customized strategies is very

limited. We claim that the knowledge of the structure of

parallel computations should be used in a better way in

order to define more powerful adaptation strategies, featuring

several properties as the predictability of adaptation cost, the

optimization of the entire system execution and the stability
degree of a reconfiguration, i.e. selecting an adaptation action

based on a reasonable expectation of how long this choice will

be useful for the execution.

To this end we have investigated control-theoretic tech-

niques for controlling the QoS of structured parallel compu-

tations. The exploitation of Control Theory foundations for

controlling computing systems is rarely used really. In [9] the

problem of managing resource utilization for web servers is

studied, providing queueing models and PID controllers used

to regulate the system response time. In [10] the control of

multiple QoS measurements is presented for the IBM Lotus

Domino Server: both CPU consumption and memory require-

ments are simultaneously controlled by exploiting a statistical

system model and a PID controller. Furthermore a very useful

approach is introduced in [11]. In this work the authors control

the performance and the power consumption of a CPU by

adjusting its clock rate. The proposed approach exploits a well-

known predictive control technique which has also been used

in [4] for optimizing the power consumption of a server farm.

Although the predictive control approach is a valuable starting

point also for our work, in these researches its application

is limited to ad-hoc systems (e.g. queueing models modeling

the CPU behavior). Inheriting from these past experiences, in

this paper we will introduce our formalization for controlling

structured parallel computations.

III. FORMALIZATION AND CONTROL OF A PARALLEL

MODULE

The basic element of our approach is the concept of adap-
tive parallel module, shortly ParMod, an independent and

active unit executing a parallel computation and an adaptation

strategy for responding to changing execution conditions. Par-

Mods, interconnected through data streams1, can be composed

in directed graphs representing distributed applications.

1For stream we intend a sequence, possibly of unlimited length, of typed
elements.

From an abstract standpoint a ParMod can be structured in

two interconnected parts (see Figure 1), following the general

closed-loop (i.e. feedback) interaction scheme:

• Operating Part: this part performs a parallel compu-

tation that instantiates a certain structured parallelism

scheme. The computation can be activated at each task

reception from input data streams (input interfaces), and

the results transmission is exploited onto output data

streams (output interfaces) to other parallel modules.

From a control-theoretic viewpoint the operating part is

the observed plant of the closed-loop architecture;

• Control Part: this part represents the controller, i.e. an

entity able to observe the operating part execution and

modify its behavior exploiting reconfiguration activities.

ParMod

Operating 
Part

Control
Part

input 
streams

output 
streams

observed 
outputs

control 
inputs

Application 
ParMods

Application 
ParMods

Fig. 1: Operating Part and Control Part structuring of a ParMod.

The information exchange between plant and controller in the

two directions is exploited through a pair of:

• observed outputs from operating part to control part, i.e.

all the interesting measurements that describe the com-

putation behavior: e.g. the average throughput in terms

of completed tasks per time unit, the mean computation

latency or the current memory usage;

• control inputs from control part to operating part, i.e.

commands that correspond to run-time reconfiguration

activities of the current operating part configuration.

For structured parallel computations we can classify the set of

adaptation processes in two categories namely non-functional

and functional reconfigurations. Non-functional reconfigura-
tions are activities involving the modification of some imple-

mentation aspects of a parallel computation, such as its current

degree of parallelism, e.g. increasing the number of parallel

activities (e.g. processes or threads) in such a way as to achieve

a better performance level.

Moreover in [12], [13] functional reconfigurations have

also been introduced as an effective approach for dealing with

heterogeneous computing environments. In many contexts

(e.g. Emergency Management Systems [12]), it is worth noting

to be able to alternatively deploy the ParMod computation

at run-time onto very different classes of resources, such

as distributed-memory architectures as clusters, or multi-core

components or next-generation mobile nodes. In this case it is

of great importance to provide distinct versions of the ParMod

computation, featuring different sequential algorithms (e.g.

optimized for the efficient exploitation of specific memory
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hierarchy organizations) or different parallelism schemes (e.g.

ensuring a better scalability and performance on a particular

class of architectures). Nevertheless all these versions need to

preserve the same input and output interfaces of the ParMod:

i.e. without modifying the global behavior of the application

graph.

The design and the development of an adaptive ParMod

requires to study two important and correlated aspects. The

first one deals with the efficient implementation of run-time

support mechanisms for applying reconfiguration processes

with minimum overhead. In our past works (see [12]) we

have discussed optimized reconfiguration protocols for struc-

tured parallel computations. The second aspect is instead

an opened an challenging research issue, and concerns how

reconfiguration actions are decided by the control part. In

[13] we have proposed a reactive control approach based on a

control automaton semantics. In this paper, in order to improve

the outcome of and adaptive execution, we will study more

advance techniques starting from a novel modeling of the

operating part behavior.

A. Hybrid modeling of the Operating Part behavior

We need to model the QoS temporal evolution of a parallel

computation. The final aim of a system model is to determine a

mathematical relationship between reconfigurations and their

impact on QoS variables. System models can be expressed

empirically, based on statistical techniques over experimental

data, or by exploiting first-principle relations. Although the

model definition is often the most critical issue to apply

control-theoretic approaches for controlling computing sys-

tems [2], we will show how the adoption of the structured

parallel programming methodology plays a central role for

simplifying such modeling effort. In our vision a ParMod

features a multi-modal behavior:

Definition III.1. (Multi-modal behavior of the Operating

Part). At each point of time the operating part behaves adopt-

ing a certain active configuration Ci, belonging to a finite set

C of alternative operating modes:

C = {C0, C1, . . . , Cν−1}
We have a finite and discrete set of statically known alter-
native configurations, corresponding to a precise choice of:

computational version (i.e. parallelism scheme and parallelized

algorithm), parallelism degree and execution platform.

We can identify two classes of transitions that characterize

the operating part execution:

• continuous transitions: when a configuration has been

fixed, the evolution of continuous-valued QoS parameters

can be predicted applying a specific model corresponding

to the currently used configuration;

• discrete transitions: according to the adopted control law,

the current configuration can be changed passing from a

configuration Ci to a different configuration Cj .

The presence of discrete and continuous transitions suggests to

model the operating part behavior as a special class of hybrid

systems [14], in which these two dynamics are modeled in a

unique and refined mathematical structure.

Although the term hybrid may also be associated to the

time-domain of system evolution, in this paper we refer to

the domain in which model variables take their values and

we fix the time domain to be discrete: i.e. we use a notion of

control step of length τ . The beginning of each step represents

a decision point, that is the plant-controller interaction and the

adaptation strategy evaluation are performed periodically, at

equally spaced time points (we speak about time-driven con-
troller). With this assumption the ParMod model is expressed

through the definition of three classes of variables:

• internal state variables: x(k) is the value of state vari-

ables at the beginning of control step k. They represent

state-ful measurements, e.g. the number of queued tasks

and the number of completed input elements;

• measured disturbance inputs: disturbance inputs d(k)
are uncontrolled exogenous signals that can affect the

relationship between control inputs and state variables.

Examples are platform-dependent parameters (e.g. net-

work behavior, CPU usage) and application-dependent

parameters as the mean computational grain of tasks;

• control inputs: control part decides the actual config-

uration that should be used for the entire duration of

each control step. Thus each configuration is uniquely

identified by a proper control input u(k) taking discrete

values.

Switched Hybrid System

Operating 
Mode

ϕ0(...)

Operating 
Mode

ϕv-1(...)Operating 
Mode

ϕ1(...)
Discrete

Transition

switching
signal

Operating 
Mode

ϕ2(...)

. . .

. . .

Controller

Fig. 2: Switched Hybrid System with controlled switching law.

As we have seen input-state relationship is strictly coupled

with the ParMod configuration. We can have multiple models

that describe the internal state evolution according to the

currently active configuration. For each of these a proper set

of difference equations is provided in a state-space form:

x(k + 1) = φi

(
x(k),d(k)

)
i = 0, 1, . . . , ν − 1 (1)

This multi-modal modeling is a peculiar property of a class

of hybrid systems, namely Switched Hybrid Systems [14],

featuring a limited set of alternative operating modes each

one coupled with a corresponding model, and a switching law
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between them. In our case this law is completely controlled by

an external entity, i.e. the ParMod control part (see Figure 2).

The entire system modeling is given by:

x(k + 1) = Φ
(
x(k),d(k),u(k)

)
= if

(
π
(
u(k)

)
= Ci

)
then φi

(
x(k),d(k)

) (2)

where π is a bijective function that maps the discrete set of

control inputs onto the corresponding configuration indices.

Formally speaking the hybrid modeling of the ParMod oper-

ating part can be stated as follows:

Definition III.2 (Operating Part Model). In our approach the

operating part of an adaptive parallel module is modeled as a

switched hybrid system with controlled switching law defined

by the tuple (U,X,D,Φ) where: U is the finite and discrete

set of admissible control inputs corresponding to the possible

operating part configurations, X ⊆ R
s is the continuous-

valued space of the internal states and D ⊆ R
m is the

continuous-valued set of exogenous inputs. The model that

describes the next state expression is provided by the following

function: Φ : U×X×D→ R
n maps a specific discrete-time

model x(k+1) = φi(x(k),d(k)) onto a configuration Ci ∈ C
such that π(u(k)) = Ci.

B. ParMod Optimal Control: Predictive Strategy

In this paper we are interested in describing predictive

adaptation strategies based on control-theoretic foundations.

Predictive approaches are control methods where a controller

tries to estimate future in some way thinking ahead of cor-

rective actions. A typical formulation is based on an optimal

control problem, in which the controller determines the control

and state trajectories (exploiting the system model) in order

to optimize a properly defined objective function. Due to the

static unpredictability of disturbance inputs and the possible

perturbations and unmodeled dynamics of the system model,

instead of applying the optimal reconfiguration trajectory in

an open-loop fashion the optimization process is repeated

iteratively at each sampling interval, based on the current

monitoring data provided by the system.

A practical method, widely used over the last decades for

controlling chemical and industrial plants, is the so-called

Model-based Predictive Control (MPC) [15]. At the beginning

of each control step k the model state x(k) of the operating

part is measured by the controller. Then the controller predicts

the QoS behavior through the system model and solves an op-

timization problem in order to find an optimal reconfiguration

trajectory (i.e. a reconfiguration plane) for a short prediction

horizon of h control steps. A plant objective function needs

to be provided (e.g. an utility function as in (3)):

max U(k) =

k+h−1∑
i=k

L
(
x(i+ 1),u(i)

)
(3)

To determine the optimal plane, the controller also needs to

predict the values of disturbances over the prediction horizon

by applying proper statistical techniques (e.g. autoregressive

models and smoothing filters). After that, instead of applying

the optimal reconfigurations in an open-loop fashion, only the

first decision is applied and afterwards the complete procedure

is repeated at the next control step. Since the prediction

horizon has a fixed length but it is moved towards the future

by one control step each time, this approach is also known as

receding horizon technique.

Despite its large applicability MPC is considered a compute-

intensive approach especially for hybrid systems (as a ParMod)

where the set of control inputs is discrete. In this case the on-

line optimization problem, if not properly addressed with spe-

cific techniques (e.g. branch&bound approaches) or heuristics,

implies an exhaustive search by testing among all the feasible

combinations of reconfigurations, thus potentially limiting its

viability to systems with long sampling intervals. Therefore the

exploitation of this technique for controlling adaptive parallel

computations may require relatively short prediction horizons

and few possible reconfiguration alternatives, unless effective

search space reduction techniques are used.

IV. A TEST-BED APPLICATION AND EXPERIMENTS

We will apply our approach to an existing distributed system

for flood risk forecasting. Emergency management systems

(EMS) are developed for addressing the critical demand of

computation and communication during natural or man-made

disasters (e.g. floods or earthquakes). In oder to facilitate the

decision making process of civil protection personnel, an ICT

infrastructure periodically executes computationally intensive

simulations and promptly spreads the results to the user end-

point devices (e.g. PDA and smart-phones).

W

W

.   .   .E C
TE TC

TW

point data
Generator

TW

results

Solver

Client

Control Part

Operating Part

Fig. 3: Task-Farm implementation of the Forecasting Model.

In [12], [13] we have described an EMS for flood emergen-

cies. This application is composed of a Generator module,

that periodically produces sensored data (e.g. water surface

elevation and water speed) for each point of a 2D discretization

of the emergency scenario (e.g. a river basin). Each point

is considered as an independent task by a Solver ParMod,

that numerically solves a system of differential equations

describing the flow behavior (i.e. a hydrodynamical model).

Although the calculation of each point can also be parallelized

through data-parallel techniques (see [13]), in this example we

consider a single parallel version of the computation (a task-
farm parallelization as described in [12]).

Task-farm is a structured parallelism scheme which exploits

the independence among a large sequence of input tasks. For
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this scheme three classes of parallel functionalities are defined

(Figure 3): (i) an emitter (E) is responsible for scheduling each

task (represented as a data-structure of 32 MB in the solver

configuration that we have used) according to a load-balanced

distribution (e.g. tasks are scheduled only to available work-

ers, following an on-demand policy); (ii) the hydrodynamical

model is replicated among a set of parallel workers (W), each

one applying it on different scheduled points; (iii) a collector
(C) collects the results and transmits them to a Client module

performing post-processing and visualization activities.

To provide results in real-time, as required in emergency

contexts, the Solver computation needs to be executed on

sufficiently powerful computational resources. In this sense

Cloud Computing is a promising paradigm, since the provision

of resources as CPUs and storage is remotely provided on-

demand by a service provider (i.e. Infrastructure as a Service).

Moreover we can also consider a fluctuating demand of such

resources, due to changing environmental conditions (e.g.

emergency detection can lead to tighter QoS constraints) or

caused by the dynamic availability of the underlying comput-

ing/communication infrastructures.

A. QoS Modeling of the Solver ParMod

For this experimental application the notion of QoS has a

two-fold nature:

1) Performance: in this application context it is of extreme

importance to complete the forecasting computation for

an interested area of the emergency scenario until a

requested time. In this way forecasting results can be

used by the system users in order to effectively plan

proper response actions in advance to potentially dan-

gerous events. In order to do that, a general constraint
requires to complete the forecasting processing in the
minimum completion time as possible;

2) Operational Cost: we suppose a centralized cloud in-

frastructure that remotely hosts the Solver computation.

Customers do not own this physical infrastructure, but

they pay a cost proportional to the amount of resources

(e.g. CPUs) they use. Additional processing elements

can be allocated by adding new CPUs to existing virtual

machines, and/or by switching on real computing nodes

on-demand. In order to discourage too many resource

re-organizations, we suppose a business model in which

a fixed cost should be paid each time a new resource

request will be submitted to the cloud infrastructure.

In order to address these two requirements, the solver ParMod

is provided with an adaptation logic able to express non-

functional reconfigurations, i.e. modifications of the current

used parallelism degree. Therefore in this example we instan-

tiate our general model in an application context in which

different configurations of the Solver ParMod are uniquely

identified by the parallelism degree parameter (i.e. the parallel

version and the execution platform are fixed throughout the

execution). Parallelism degree modifications are exploited by

the control part in order to adapt the resource utilization in

response to a dynamic workload condition: i.e. we suppose

a time-varying mean arrival rate of tasks from the Generator,

due to a dynamic behavior of the underlying interconnection

network among the application modules.

To this end we will apply the predictive control approach to

the Solver ParMod and we will compare its results with other

notable adaptation strategies. First of all the main requirement

that we need to meet is the performance objective: we will

dynamically select parallelism degree modifications in order

to optimize the number of computed tasks throughout the

execution. Furthermore, among the set of strategies able to

target this requirement, we need to select that which produces

the lower operational cost as possible.

1) System Model and Cost Function: According to our

approach we can model the behavior of the Solver ParMod

in terms of: a discrete control input n(k) that indicates the

parallelism degree currently used at control step k; an internal

state variable T (k) expressing the number of tasks completed

up to the beginning of control step k; a non-controllable

disturbance TA(k) modeling the average inter-arrival time2 of

tasks experienced during the k-th control step of the execution.

The task-farm scheme is a structured parallelism pattern

for which an analytical performance model can be expressed

through basic notions of Queueing Network Theory [16]. Let

us analyze the task-farm in isolation, i.e. supposing that the

external arrival rate of tasks is hypothetically infinite. We

denote the mean service time (calculation time) of the emitter,

worker and collector with TE , TW and TC respectively, that

are assumed to be fixed throughout the execution. The most

meaningful parameter is given by the mean inter-departure3

time from the collector: i.e. its inverse indicates the average

number of tasks that the task-farm will complete in a time-unit.

Since the emitter exploits an on-demand distribution, we

can suppose an uniform distribution of probability that tasks

are transmitted to any worker. Therefore, if N indicates the

current parallelism degree, the inter-arrival time to any worker

is equal to TE ·N and the inter-departure time TpW
from any

worker can be calculated as the maximum between its inter-

arrival time and its service time:

TpW
= max

{
TE ·N, TW

}
The total inter-arrival time TA−c to the collector can be

calculated by summing all the arrival rates from each worker:

TA−c =

(
N∑
i=1

1

TpW

)−1

=
max{TE ·N, TW }

N

We can formally define the mean inter-departure time TpC

from the collector as the maximum between the total average

inter-arrival time from the worker set and the collector service

time. We can express the following relationship assuming a

2For mean inter-arrival time we intend the average time between the
reception of two subsequent input tasks from the Generator.

3For average inter-departure time we intend the average time between two
subsequent result transmissions.
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parallelism degree n(k) for the k-th control step:

Tfarm(k) = TpC
(k) = max

{
TE ,

TW

n(k)
, TC

}
(4)

This analytical description proves an intuitive behavior: i.e. by

increasing the parallelism degree the number of tasks that a

task-farm scheme can compute in a time unit increases until

the emitter or the collector become computation bottleneck.

At this point this performance model can be exploited in

order to predict how the number of computed tasks evolves

during the execution. If we suppose a limited buffer size for

incoming tasks (e.g. one or two buffered elements, which

is a practical situation if we use existing message-passing

parallel programming frameworks as MPI [17]), the number

of completed tasks at the beginning of the next control step

k + 1 can be approximated by:

T (k + 1) = T (k) +

⌊
min

{
1

TA(k)
,

1

Tfarm(k)

}
· τ

⌋
(5)

The increase in the number of tasks can be estimated as the

minimum between the arrival and the service rates multiplied

by the length τ of the control step. In fact, though the service

rate of the task-farm can be greater than the arrival rate from

the Generator, the upper bound of the number of tasks that

will be completed in a control step can be approximated by

the arrival rate from the Generator in the same step.

It is worth noting that this example is a starting case that

treats one of the most straightforward modeling for a ParMod.

In fact in this case alternative ParMod configurations are only

identified by the used degree of parallelism and the system

model can be expressed parametrically w.r.t this parameter.

In most general cases, when multiple parallel versions are

provided for the same parallel module, each different con-

figuration can be coupled with a proper model that can have

a different analytical formulation than the ones of the other

configurations (e.g. as in the case of performance models of

task-parallel and data-parallel schemes).

In order to apply the predictive control approach, we intro-

duce the following utility function that needs to be maximized

over a prediction horizon of h steps.

max U(k) = w1 T (k + h)− w2

k+h−1∑
i=k

[
Cn n(i) + Cf γ(i)

]
(6)

The coefficients w1 and w2 indicate a trade-off among per-

formance and operational cost. Assuming that w1 >> w2,

we select a plane with the minimal operational cost such that

the number of completed tasks at the end of the prediction

horizon is maximized. Cn and Cf represent the cost for using

a node for a single a control step and the fixed cost for each

parallelism degree variation. γ(i) is a variable equals to 1 iff

the control input selected at the i-th control step is different

from the one decided at the previous step, 0 otherwise.

B. Implementation details and Experimental results

The entire computation graph depicted in Figure 3 has been

implemented by a set of distributed processes. Each ParMod

consists in a separate MPI program executed on the underlying

computing architectures. Communications between Generator,

Solver and Client components have been implemented by

using the standard POSIX socket library exploiting TCP

connections.

The most important implementation issues have been ad-

dressed for developing the Solver ParMod. It is a MPI program

featuring a proper set of processes communicating through

MPI send/receive primitives. The emitter and the collector

processes are responsible for monitoring the task inter-arrival

time and the number of completed tasks, providing at each

sampling period to the control part the average values of these

two measurements. The adaptation strategy is executed by a

dedicated manager process that constitutes the control part.

In order to request the reservation of further computing

nodes, the manager communicates with a process that sim-

ulates the cloud provider and manages the availability of a set

of homogeneous computing nodes. Once allowed, parallelism

degree variations are exploited by the manager through the

MPI library function MPI_COMM_SPAWN, that instantiates a

new set of processes executing the same MPI program (in our

case the worker program).

In order to simulate a dynamic execution workload, we

have represented a situation in which the task inter-arrival time

changes significantly due to variable network availability. In

particular we suppose a non-dedicated interconnection network

among application modules (see Figure 4). The Generator and

Sirio Marte

Pianosa

WAN

Virtual 
Host 1

Virtual 
Host 2

cross 
traffic

C4

NCTUNS 
environment

Fig. 4: Execution platform of the experiment.

the Client modules are executed on two workstations (Sirio and

Marte) whereas the Solver is executed on a cluster (Pianosa) of

15 homogeneous production workstations simulating a cloud

architecture. In order to reproduce a realistic network, the

NCTUNS [18] network emulator/simulator is executed on a

workstation (C4), and the network traffic of generated tasks is

routed to this node. Inside C4 a network topology is simulated,

composed of two routers and a WAN object reproducing clas-

sical WAN delays and packet loss probability. Furthermore,

inside the simulation environment two NCTUNS virtual hosts

generate cross network traffic alternating unloaded periods and

network congestion phases.

In order to perform our simulation, we have generated

many different inter-arrival time traces, each one made up

of ∼ 900 samples during a total execution time of 130
minutes; each trace simulates a variable inter-arrival time due

to realistic cross network traffic generated by using the D-

ITG [19] traffic generator. An example of generated inter-
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arrival time trace is depicted in Figure 5. In Figure 6 inter-
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Fig. 6: Average inter-arrival time prediction.

arrival time measurements have been averaged on a control

step of size 120 sec. The corresponding time-series exhibits

two important classes of non-stationarities: (i) Level shifts, i.e.

sudden changes in the mean of the observed values; (ii) Trends,

i.e. relatively slow long-term movements in the time-series. In

order to predict the mean values of the inter-arrival time over

a limited horizon of few control steps, a filtering technique

based on a Holt-Winters (HW) filter is applied.

Non-seasonal Holt-Winters is a filtering technique based

on a simple EWMA (exponentially-weighted moving average)

model that attempts to capture the trend in the underlying time

series. Two different EWMA filters are used, the first one for

estimating the smooth component s of the predicted value, and

the second one for predicting the trend component t.

T̂A(k) = ŝ(k) + t̂(k)

ŝ(k + 1) = a · TA(k) + (1− a) · T̂A(k)

t̂(k + 1) = b ·
[
ŝ(k)− ŝ(k − 1)

]
+ (1− b) · t̂(k − 1)

For this experiment the static gains a and b have been fixed to

0.9 and 0.2 respectively, that give the best prediction results.

In Figure 6 is depicted the mean inter-arrival time of tasks

(solid line) for each control step of the execution against the

corresponding predicted value (dashed line). Predicted values

are quite accurate for time-series exhibiting trends and level

shifts, providing a relative mean square relative error of about

10% for this experiment.

The predictive control approach has been applied consider-

ing three possible lengths of the prediction horizon (i.e. 1,

2 and 3 control steps). This approach has been compared

with two other reconfiguration strategies: the MAX strategy,

in which we fix the parallelism degree to maximum value

(15) for the entire execution, and a purely reactive strategy in

which the parallelism degree is simply increased or decreased

by one unit if the current utilization factor (i.e. ratio between

the average task-farm service time and the average inter-arrival

time) measured at the beginning of the k-th control step is

greater or less than two pre-defined thresholds.

Adaptation Strategy Completed Tasks
MAX 946

Reactive 874
MPC 1-step ahead 939
MPC 2-step ahead 936
MPC 3-step ahead 938

TABLE I: Number of completed tasks with different adaptation
strategies.

Table I compares the number a completed tasks by ex-

ploiting the different strategies. As we can see the predictive

approach is able to complete more tasks than the reactive

one during the same execution time and with an identical

mean inter-arrival time fluctuation. In this case the number

of completed tasks is similar to the theoretically optimal one

achieved by the MAX strategy, in which the maximum number

of computing resources are continuously used. Moreover, the

predictive approach has also a positive impact on the stability

degree of a configuration: i.e. for every prediction horizon

length, the MPC strategy always features a lower number of

reconfigurations than the reactive approach (see Figure 7).
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Fig. 7: Number of reconfigurations.

In Figure 8 is depicted the evolution of the total operating

cost throughout the execution. The importance of having a run-

time parallelism degree adaptation is clearly highlighted. The

previous results have been exploited assuming a fixed cost per

reconfiguration (Cfix) twice as much the unitary cost for using

a node for each control step (Cnode). W.r.t the MAX strategy,

which is the most expensive one, the other adaptation strategies

reduce the operating cost at least of the 40%. Moreover it

emerges that the predictive strategy is able to produce a further

reduction compared to the reactive adaptation of even ∼ 16%
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with the MPC 3-step ahead, thus demonstrating how taking

reconfigurations in advance to future workload predictions is

an effective adaptation technique. In this example having a

horizon length greater than three steps is not convenient, since

the accuracy of the disturbance prediction degrades with longer

prediction horizons. In fact we have verified that with a 4-step

ahead strategy the operational cost is higher than with 3 steps,

without any additional completed task.
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Fig. 8: Total operating cost.

As a final consideration we discuss the approach feasibility

in terms of computational complexity. As stated in Sec-

tion III-B predictive control for hybrid systems may be difficult

to be applied, especially when the search space is large. The

space can be represented as a complete tree with a depth equals

to the prediction horizon length and an arity that coincides

with the number of ParMod configurations. Nevertheless in

practical scenarios, since the number of configurations is

sufficiently limited and prediction horizons are normally short

due to disturbance prediction errors, this approach can be

exploited without requiring complex search space reduction

techniques. For instance in this example with 15 configurations

and a maximum prediction horizon of 3 steps, the optimization

process requires to explore 3616 states that can be performed

in less than 5 seconds in the cluster nodes, thus introducing a

negligible overhead w.r.t the control step length.

V. CONCLUSION AND FUTURE WORKS

In this paper we have introduced a preliminary work

concerning the utilization of optimal control foundations for

controlling parallel computations. We have shown how per-

formance models of structured parallelism schemes can be

used for applying optimal control techniques as the iterative

model-based predictive control procedure, based on statistical

predictions of the future workload (e.g. time-varying pressure

of the input stream of tasks). In this paper we have introduced

the basic points of our approach providing an experimental

validation of the feasibility of our ideas. In the future we plan

to extend our study in order to control computation graphs of

multiple parallel modules each one exhibiting a proper control

strategy. In this case the distributed control can be stated as a

set of coupled control problems and convergence solutions can

be found according to results of game-theoretic frameworks.
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