A Cost Model for Autonomic Reconfigurations in
High-Performance Pervasive Applications

Carlo Bertolli
Dept. of Computer Science
University of Pisa
Pisa 56127, Italy
bertolli @di.unipi.it

ABSTRACT

In the last years we have seen the diffusion of platforms
including high- performance nodes (e.g. multicores) and
powerful mobile devices (e.g. smartphones) interconnected
by heterogeneous networks. Relevant examples of applica-
tions targeting these kinds of platforms are Emergency Man-
agement and Homeland Protection which provide comput-
ing/communication activities characterized by user-defined
Quality of Service constraints. In this paper we introduce
the ASSISTANT programming model for adaptive parallel
applications. ASSISTANT components are specified in mul-
tiple versions, each one dynamically selected according to an
adaptation strategy aimed to target the required QoS levels.
For these applications a key-issue is a well-defined adapta-
tion semantics featuring a cost model which describes the
overhead for reconfiguring a component (e.g. when switch-
ing between versions). In this paper we introduce our ap-
proach and we evaluate this cost on a flood management ap-
plication.

Author Keywords
High-Performance Computing, Adaptivity, Autonomic Com-
puting, Application Reconfigurations.

ACM Classification Keywords
D.1.3 Programming Techniques: Concurrent Programming—
Parallel Programming.

General Terms
Design, Experimentation, Performance.

INTRODUCTION

Latest years have been characterized by a significant dif-

fusion of several classes of parallel platforms (e.g. multi-

/many-core) with different features in terms of interconnec-

tion networks, homogeneous or heterogeneous processors,

caching hierarchy organizations and shared memory supports.
According to the current trend in mobile technology, portable

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CASEMANS’10, Sep 26, 2010, Copenhagen, Denmark.

Copyright 2010 ACM 978-1-4503-0213-5...$10.00.

Gabriele Mencagli
Dept. of Computer Science
University of Pisa
Pisa 56127, Italy
mencagli@di.unipi.it

20

Marco Vanneschi
Dept. of Computer Science
University of Pisa
Pisa 56127, Italy
vannesch @di.unipi.it

devices can also be equipped with these parallel chips and
GPUs, thus rendering the embedding of compute- intensive
functions quite feasible at low power consumption.

An increasing number of distributed platforms are charac-
terized by the presence of multiple classes of computing re-
sources, as in Grids [9], characterized by loosely coupled
computing elements, and in next-generation Clouds [8] and
Pervasive Grids [17] featuring the utilization of mobile nodes
and communication networks. Programming distributed ap-
plications for these platforms is a critical issue, both for the
highly dynamic behavior of the execution environment and
for the presence of time-variable user requirements. This is
especially true in many real-world scenarios characterized
by hard and critical Quality of Service (QoS) requirements
(e.g. in terms of quantitative and qualitative metrics as the
computation performance and the user degree of satisfac-
tion). For these reasons the application configuration, that
is the specific identification of application components and
their mapping onto the available computing resources, can
not be statically defined but the application itself must be
able to dynamically take reconfiguration decisions. The pos-
sibility to apply application reconfigurations is referred in
many research works with the term adaptivity or autonomic-
ity [14], and it is an unavoidable feature for many distributed
systems such as risk and emergency management.

Adaptivity has been studied in both mobile and parallel pro-
gramming contexts. For instance in [16] it is presented a
framework for mobile applications which adapts the quality
of visualized data according to the available network band-
width. In [10] the execution platform is able to perceive
the user motion and to automatically start task migrations
between different environments. In [6] a distributed hier-
archical control of parallel components based on algorith-
mic skeletons [5] is introduced, focusing on the possibil-
ity to modify the parallelism degree according to an adap-
tation strategy expressed by reactive policy rules. These ap-
proaches belong to a widespread methodology for adaptivity
which requires a transparent approach to all the autonomic
processes: i.e. application reconfigurations are completely
subsumed by the run-time support which is responsible for
granting the correctness and the consistency of the compu-
tation during the reconfiguration phase. This approach enor-
mously simplifies the application development but requires a
deep knowledge of the logical structure of the computation.

ASSISTANT is our research framework for programming high-
performance adaptive applications. Each ASSISTANT com-
ponent is able to exploit a parallel computation according to
well-known parallelism schemes (i.e. the Structured Parallel
Programming approach [5]). The run-time support provides
multiple classes of reconfigurations including: (i) the run-
time variation of the component performance by modifying
the parallelism degree; (ii) the definition of multiple versions
of the same component, each one featuring a parallelism
scheme, a sequential algorithm and optimizations suitable
for specific classes of computing resources and for different
QoS requirements. In ASSISTANT the run-time support is
responsible for preserving the computation consistency and
correctness during these reconfigurations, whereas the pro-
grammer is mainly involved in defining multiple versions of
the same component and the adaptation strategy which de-
cides when a reconfiguration can bring to a significant gain
in the application execution (e.g. a performance improve-
ment or a better quality of the results).

Reconfiguration activities induce a necessary run-time over-
head to make the new application configuration effective. In
many real-time situations the predictability of this cost and
its influence on the expected performance is of special in-
terest. In this paper our main objective is to present the
ASSISTANT programming model and its definition and to
clearly describe a reconfiguration cost model for quantify-
ing the overhead introduced by the autonomic behavior. We
also present a first study in which we quantify the recon-
figuration overhead of an existing ASSISTANT application
for real-time flood emergency according to an application-
dependent notion of consistency.

In this paper we will introduce the ASSISTANT program-
ming framework describing its main constructs and its adap-
tation cost model. Next, a first implementation of ASSIS-
TANT will be presented discussing specific optimizations
and implementation hints. The proposed programming model
approach will be applied to a real-world scenario, a dis-
tributed system for flood emergency management, introduc-
ing the required real-time constraints and quantifying the re-
configuration overhead according to different execution con-
ditions and implementation strategies.

THE ASSISTANT PROGRAMMING MODEL

An ASSISTANT application is composed of distributed and
interconnected application modules. By using a proper pro-
gramming construct (i.e. the application construct), the pro-
grammer can express an ASSISTANT application as a di-
rect graph of modules interconnected by means of streams
of data, i.e. sequences possibly of unlimited length of typed
elements. The set of in-going and out-going data streams to
and from a module identifies its input and output interfaces.
In ASSISTANT we distinguish between two classes of mod-
ules (see Figure 1):

o Parallel and Adaptive modules expressed by means of
the ParMod construct. With this construct the program-
mer can express both the functional logic of the module
(e.g. the parallel computation) and its control logic. The

21

Stream

O ParMod

O Context Int.

context
update

context
update

Figure 1. General graph of an ASSISTANT application.

definition of this logic is a crucial issue in order to effi-
ciently deal with a dynamic execution environment and
time-variable QoS requirements;

e Primitive Context interfaces expressed by means of the
primitive_interface construct. These are sequential mod-
ules which periodically exploit application (e.g. to obtain
a module service time) and platform monitoring activities
(e.g. available network bandwidth). We refer to this infor-
mation as the current execution context.

Context interfaces provide ParMods with the information
that they need to select and apply proper adaptation strate-
gies. In some cases raw context values are passed to the Par-
Mod, and they are modeled as key-value pairs, where each
value is related to a specific sensor or probe deployed on the
platform. In other cases some pre-processing is applied by
context interfaces on raw sensor data, possibly synthesizing
a whole data set in a single value. An example of this lat-
ter case is given by a context interface providing the average
temperature of a given area as the average of the values pro-
vided by a set of sensors deployed in the area. This solution
also helps in reducing the complexity of adaptation strategies
given by a possible large number of input context values.

In this paper we focus our attention on adaptation strategies
describing how they can be expressed in a ParMod and how
they can be implemented, and focusing on the main issue re-
lated to the cost of applying them. We will show in future
work the development in ASSISTANT related to context in-
terfaces.

The ASSISTANT ParMod

The ParMod construct is used to express parallel adaptive
computations. From an abstract point of view a ParMod can
be seen as composed of two cooperating entities:

o the Operating Part executes the Functional Logic of the
module. Its execution is activated by the reception of
elements from its input interfaces (i.e. in-coming data
streams), and it produces results on its output interfaces
(i.e. out-going data streams). The elaboration is applied to
each input element and it can be a sequential or a parallel
computation expressed according to any scheme of Struc-
tured Parallel Programming [5] even in complex and com-
pound forms (e.g. stream-parallel schemes such as pipe,
task-farm but also data-parallel schemes such as map and

different classes of communication stencils). For defining
the functional logic of a ParMod we completely inherit the
parallel programming model approach which has been de-
veloped in our past research works [19]. We can express
several parallelism schemes by defining: (1) a proper dis-
tribution strategy for the input tasks (e.g. multicast, on-
demand and scatter); (2) a set of logical units (i.e. virtual
processors) that execute a sequential function on their data
and which are mapped onto a set of implementation pro-
cesses (i.e. worker) responsible for their execution; (3) a
collection strategy for the results produced by virtual pro-
cessors (e.g. gather and FIFO);

o the Control Part of the ParMod executes the Control Logic
of the module. In our approach to adaptivity the run-
time support provides a set of possible and predefined Par-
Mod reconfigurations, whereas, the adaptation strategy,
i.e. when and how the computation has to be reconfig-
ured, must be directly expressed by the programmer by
means of a specific programming construct. From our
point of view this is an effective way to optimize appli-
cation execution w.r.t. the state of the underlying platform
and variable QoS requirements.

In Figure 2 it is depicted the ParMod abstract structure. The
Operating Part is activated either according to a data-flow
scheme (i.e. the module waits for values from all the ingo-
ing streams) or to a non-deterministic behavior (e.g. a CSP-
like semantics based on guarded commands). As hinted,
the Operating Part can perform a sequential or a parallel
computation, hence it can be implemented by means of a
set of interconnected and distributed processes. The Con-

ParMod

Input streams

Output streams

Operating Part

Reconf. Monitoring and
commands reconf. feedback

Control Part

\. J

Figure 2. Abstract overview of an ASSISTANT ParMod.

trol Part is started whenever a monitoring message is re-
ceived: (1) from the set of primitive context interfaces con-
nected to it, as described above; (2) from the Operating Part,
which can periodically send execution monitoring informa-
tion concerning the actual performance of the computation
(e.g. its throughput) and other execution metrics (e.g. mem-
ory occupation). In both cases we refer to this information
as a monitoring update. When a monitoring update is re-
ceived, a set of reconfigurations can be decided according to
a programmer-defined adaptation strategy. Many strategies
can be expressed to deal with several execution conditions
and to configure the ParMod behavior with the goal of guar-
anteeing in time specific QoS objectives (e.g. as introduced
in our previous works [1]). For an ASSISTANT ParMod the
run-time support provides two classes of reconfiguration ac-
tivities:

o Functional Reconfigurations. pervasive environments are

22

characterized by strongly heterogeneous computing and
network resources, featuring a time-variable degree of avail-
ability. The ParMod computation can be mapped onto dif-
ferent classes of resources (e.g. different kinds of high-
performance architectures and mobile devices). Based on
the actual resource state, the control logic can select which
is the best platform onto which mapping the computation.
“Best” in the sense that, according to the actual platform
conditions and QoS requirements, the control logic can
infer the mapping which probably leads to a better ex-
pected performance. The dynamical change of the exe-
cution mapping is a critical reconfiguration activity, not
only for well-studied implementation issues (e.g. task mi-
gration and how to preserve consistency and correctness)
but also for the relevant differences between previous and
new available resources. For instance, a parallel computa-
tion for a cluster architecture could not be efficiently ex-
ecuted on a set of mobile nodes, e.g. due to their limita-
tions in terms of memory and processing capacity. For this
reason we provide the programmer with the possibility
of expressing, for each ParMod, multiple alternative ver-
sions of the same computation each suitable for specific
classes of computing resources. These operating modes
can feature different sequential algorithms (e.g. with dif-
ferent memory occupations) and/or parallelism schemes
(e.g. ensuring better scalability and performance on a spe-
cific class of architectures). Nevertheless, they preserve
the same input and output interfaces of the ParMod in such
a way that the selection of an alternative version does not
modify the definition of the global application graph;

e Non-Functional Reconfigurations are structural changes
which involve the modification of some implementation
aspects (e.g. the parallelism degree of the operating part
computation), without modifying the currently executed
version. As is known, these kinds of reconfigurations are
especially useful when we deal with the resolution of ir-
regular and highly variable parallel algorithms, but also in
many distributed scenarios characterized by dynamic re-
source utilization conditions both for communication net-
works and computational nodes.

The logical interconnections between the Operating and Con-
trol Part (Figure 2) are required to implement the reconfig-
uration protocol. When the control logic has selected the
reconfiguration which must be executed, proper reconfigu-
ration commands are sent to the Operating Part (to all in-
volved processes). When the reconfiguration is completed,
the Operating Part sends a corresponding feedback message
to its Control Part which notifies the completion of the re-
configuration phase. In the rest of this section we describe
the control logic of an ASSISTANT ParMod an the interac-
tion with its functional logic.

ParMod Control Logic

The adaptive behavior of a ParMod has the main objective of
maintaining desired execution properties despite time-varying
execution conditions. These requirements can be expressed
according to different specifications:

e we might require to optimize some execution parameters

(e.g. the number of completed tasks), i..e. the Control Part
is responsible for solving an utility optimization problem;

e we might require to maintain specific execution parame-
ters within a user-defined range (e.g. keep the service time
in a given range). In this case we refer to this approach as
a threshold specification problem;

e we might require to maintain some execution parameters
as closer as possible to a set of desired reference values,
as in a classical set-point regulation problem [12].

Following these specifications, in ASSISTANT we can ex-
press two classes of adaptation strategies:

e Reactive Control: the programmer expresses a proper map-
ping between specific run-time operation conditions and
corresponding module reconfiguration activities (both func-
tional or non-functional);

e Proactive Control: instead of merely react to stimuli, be-
ing proactive means that a ParMod can consciously in-
volve acting in advance of a future situation. This ap-
proach needs a systematic use of predictions (e.f. for time-
varying workloads and resource utilization) and on-line
optimization techniques [4].

Though the second approach is an interesting research is-
sue in the field of autonomic and self-adaptive computing
[14], in this paper our attention is focused on the first ap-
proach and the general structure of our programming model.
Our results, as the adaptation cost model which will be in-
troduced in the next section, are sufficiently general to be
extended with different control strategies such as predictive
approaches which will be studied in future works. In AS-
SISTANT it is possible to express a reactive behavior by
defining how the Operating Part must be reconfigured in re-
sponse to specific events or conditions. The Control Part
periodically receives monitoring updates allowing it to iden-
tify if the actual ParMod configuration behaves as the user
expects. Hence, the periodically receiving of such updates
makes it possible to identify the presence of some QoS viola-
tions: (1) some execution parameters are not equal to certain
desired reference values; (ii) some execution parameters are
not within a required range (e.g. the average service time is
higher than a threshold).

The main essence of such kind of control is to properly re-
act to these QoS violations by automatically modifying the
actual ParMod configuration, in such a way as to reach the
desired execution goals as soon as possible. The mapping
between undesired conditions and reconfiguration activities
is a key-issue. A proper mapping can be defined exploit-
ing a form of model reflecting the computation behavior. As
hinted, the parallel computations of an ASSISTANT ParMod
are well-known parallelism schemes, characterized by spe-
cific interaction patterns between parallel processes and a
clear and well-defined semantics, which make it feasible the
definition of proper performance models. For performance
model we intend an analytical formulation for:

o the expected performance of the computation, for instance

its average service time, in function of the parallelism de-
gree and the current interarrival time. These models are
based on Queuing Theory [15], by considering the set of
messages exchanged between ParMods as a traffic flow
between service nodes. In previous works we have stud-
ied the performance models of ASSISTANT applications
in several schemes and configurations [1];

e the overall memory occupation of a parallelism scheme,
in function of the parallelism degree, the task size and the
memory occupation of the sequential algorithm. In [2]
memory utilization models are dynamically instantiated
to configure a parallel computation executed on a set of
mobile nodes equipped with limited memory capacity.

 Condition 0'
switch (op0, op1)

Condition 5

switch (op2, op3),

Condition 6

Condition 7
reconf (op0)

reconf (op3)

Figure 3. Example of a ParMod control automaton.

In ASSISTANT the reactive control logic is formally ex-
pressed by means of a control automaton, in which:

e cach internal state of the automaton corresponds to a dif-
ferent operation (i.e alternative version);

e input states are logical combinations of QoS-related or
platform-related boolean expressions, e.g. stating the pres-
ence of a certain QoS violation and a certain level of net-
work and computing resource availability;

e output states are reconfiguration actions related to each
transition. They can be: non-functional reconfigurations,
denoted with the reconf(OP;), an example of which is the
use of the parallelism N construct, to modify an opera-
tion parallelism degree; or functional ones, denoted with
switch(OP;, OP;), which identifies a switching between
two different operating modes (i.e. from OF; to OF;).

In Figure 3 it is depicted a general overview of a control
automaton. Its starting state is the operating mode which
the programmer has specified with the keyword initial in the
operation definition. According to the ParMod semantics
only one operating mode can be marked as initial. In our
automaton we can observe that non-functional reconfigura-
tions are self-transitions, whereas transitions between differ-
ent internal states are functional reconfigurations. A control
automaton is syntactically expressed as scattered in each op-
eration definition within a ParMod: each operation defines,
aside of its functional logic, how the module can react to
specific events when that operating mode is currently exe-
cuted. To do so, the programmer makes use of a set of non-
deterministic clauses expressed in a specific programming
construct (i.e. on_event Figure 4). They identify the out-
going possible transitions from the current operating mode.

on_event:
condition O:
do
//Non—functional reconfiguration:
value = cost_model (. . .);
parallelism value;
enddo

condition N—1:
do
// Functional reconfiguration:
operation_Name . start ();
enddo

Figure 4. The on_event construct.

Finally note that reconfiguration commands can only be re-
ceived at certain points of the Operating Part execution in
which computation consistency can be guaranteed by ex-
ploiting specific reconfiguration protocols. A full descrip-
tion of consistency issues for parallel computations is out
of the scope of this paper, but in our model the Operating
Part is able to process reconfiguration commands only when
its parallel computation reaches a so-called reconfiguration
safe-point. In general terms we can identify two classes of
reconfiguration points:

e when one of the input guard, defining the input_section of
the Operating Part, is activated. These points characterize
the beginning of two successive elaborations;

o further finer points can be defined. Programmer-transparent
points are consistency lines obtained by means of coordi-
nation protocols, by using semantics properties of the par-
allel programs (e.g. after a global reduce the state is con-
sistent), or literature protocols from the distributed system
world [7].

Therefore, after a notification of reconfiguration commands
from the Control to the Operating Part, it may be needed
to first reach a consistent state before applying the reconfig-
uration activities. Consistency can be obtained by making
processes implementing the Operating part run proper dis-
tributed algorithms. In ASSISTANT these algorithms can
be implicitly defined by using the parallel structure defini-
tion or explicitly implemented by the programmer. When
performing an operation switching two kinds of implicit so-
lutions can be characterized:

¢ Rollforward techniques, in which the Operating Part pro-
cesses continue going on with the computation until a con-
sistent state is reached. In the experiment section we will
see how this can be simply implemented for task-farm
structures;

e Rollback techniques, in which the Operating Part pro-
cesses periodically perform some check-pointing proto-
cols. When the operation switching is notified, a previous
common recovery line is computed and the new target op-
eration will go on from that point.

ParMod Reconfiguration Cost Model

Regardless of the particular control logic defined by the pro-
grammer, we can formally describe the interaction pattern
(Figure 5) between Control and Operative Part. A ParMod
can be executed by using different alternative configura-
tions. For configuration we mean the used operating mode
(i.e. the current active operation) and its implementation
(e.g. its parallelism degree). Whenever the Control Part re-
ceives a monitoring update, the corresponding control logic
is started and its main objective is to select a new ParMod
configuration which is more suitable for the current execu-
tion condition. To achieve this new configuration, the Con-
trol Part must select a set of reconfiguration activities. The
average execution time for this selection algorithm is a pa-
rameter T ontror Of Our abstract model.

When reconfigurations have been decided, the Control Part
is also responsible for instantiating the new configuration.
We can identify different run-time support activities:

o if the control logic decides to perform a non-functional re-
configuration, it has to interact with the processes imple-
menting the operating part and to possibly instantiate new
ones. For instance, if a parallelism increase is decided, it
has to instantiate a set of workers on available computing
nodes;

e if the control logic decides to switch to a different oper-
ation, the entire Operating Part must be instantiated on a
proper set of computing nodes.

In the model we denote the cost of both cases as the average
time Tpepioyment- This overhead can be heavily influenced
by different factors:

e if we suppose a static knowledge of the underlying dis-
tributed platform (i.e. target nodes are known), all or
a subset of processes implementing the Operating Part
must be dynamically deployed on the selected computing
nodes. The parameter Tpepioyment identifies the average
time needed to transfer the process source codes (or the
corresponding executables) and to instantiate them on the
corresponding processing nodes;

e in many real-world cases, especially for dynamic distributed
systems (as in [17]), the Control Part has not a static knowl-
edge of available nodes. Each operation corresponds to a
general class of execution platforms (e.g. cluster archi-

old ParMod reconfiguration new ParMod

Configuration - Configuration
reconf Tstartup
o) point
il ® ® ® ol ® o]
Reconf.
commands
TContraI Eeuloyment Reconf.
Control I Jteedback [|
Part l I
L Reconf
Monitoring Update T Recont Monitoring Update

Figure 5. Interaction between the Operating and the Control Part.

tectures or multicore nodes). When a reconfiguration de-
cision is made, the Control Part has to discover a set of
compatible nodes on which it can start the selected oper-
ation or a set of workers. This discovery phase is part of
the T'peployment Overhead.

Once the reconfigurations have been decided and when all
the necessary deployment actions have been done, the Con-
trol Part notifies specific reconfiguration commands to the
Operating Part. When the Operating Part elaboration reaches
a reconfiguration safe-point, the reconfiguration commands
can be processed and the new configuration can become ef-
fective. At this point, according to the class of reached safe-
points and of reconfigurations which are required, some run-
time activities could be necessary: e.g. in the case of a func-
tional reconfiguration we must switch to a different operat-
ing mode. When reconfiguration commands are received,
the processes implementing the new operation have been al-
ready deployed on the selected nodes. In some cases, we
may need to wait for the completion of the consistency pro-
tocol which is executed. Next, the new operating mode is
activated and connected to the linked application modules.
In general the average time to make a reconfiguration effec-
tive is the overhead T's¢qrtup depicted in Figure 5. In our
adaptation cost model we can identify two important recon-
figuration metrics:

o the total reconfiguration time (i.e. TRecony) is the time
between the reception of a monitoring update and the time
in which the new configuration is being executed;

e the reconfiguration latency is the time needed to recon-
figure the ParMod, that is the time for the deployment ac-
tivities and for starting the new module configuration.

By referring to Figure 5 these two metrics can be described
by the following expressions:

ey
@

¢ is the average time between the reception of reconfigura-
tion commands and the feedback externalization. ¢ depends
on the average time between two subsequent safe-points.

LReconf = TDeployment + o + TStartup

TReconf = Tcontrol + LReconf

The presented adaptation cost model makes it possible a
partial overlapping between the total reconfiguration time
and the “normal” execution of the Operating Part. For in-
stance we can observe from Figure 5 that the Ticp4r0; and
TDeployment Overheads are always overlapped with the Op-
erating Part execution. Therefore the Control Part sends the
reconfiguration commands only when: the new configura-
tion has been decided (i.e. the control logic execution is
completed) and after the completion of all the necessary de-
ployment actions. In our model T'stqrtup is the only over-
head which is not overlapped with the ParMod computation.
It is an unavoidable critical overhead which must be paid to
make the new configuration effective. We can also observe
that, when no reconfigurations are necessary, the Tconirol
delay is completely overlapped with the Operating Part elab-
oration, Tpepioyment = 0 and the T's;qr¢up Overhead is neg-

25

ligible because it only consists in the delay of making an
asynchronous notification of the feedback message from the
Operating Part to the Control Part.

In the next section we will describe a first ASSISTANT im-
plementation. Our focus is on specific implementation de-
tails, different optimizations, reconfiguration protocols, con-
sistency issues and the quantification by experiments of the
T's¢artup Overhead in different scenarios.

ASSISTANT IMPLEMENTATION

This implementation design is related to the case in which
ASSISTANT is mapped onto parallel and distributed plat-
forms (e.g. wired/wireless networks of clusters and multi-
core nodes) in which we support the Operating and Control
Parts in two distinct sets of processes/threads.

Input Streams Output Streams

7

. 4 \ ~L .
4 A
’I" *
Operating \

X Z

CRC] .
>, iControl operation

connection between
operations of the
same ParMod

connection with
other ParMods

operation

connection with
other ParMods

operatior]

Figure 6. Implementation scheme of a ParMod.

Figure 6 shows the chosen implementation design of a Par-
Mod. The figure includes multiple operations belonging to
the same ParMod and we describe in more detail the upper
one. According to the ASSISTANT semantics the operations
must share the same input and output streams. In this figure
these streams are connected to the upper operation which is
the currently active operating mode. Each operation includes
a set of processes belonging both to the Operative Part and
to the Control Part of the ParMod. For the upper operation
the Operating Part processes are:

e]N: this can be a single process, or a replicated set of pro-
cesses, implementing the input_section of the functional
logic of the operation (see the ASSISTANT section);

e W: as described in the previous section, workers are the
parallel activities of the operation. Multiple workers can
operate independently (e.g. as in a task-farm or in a map)
or in cooperation (e.g. as in a data-parallel with stencil).
In the latter case, additional links between workers are
needed to implement cooperations;

e OUT: this can be a single process, or a replicated set of
processes, implementing the output_section of the func-
tional logic of the operation.

In the figure note that arrows between IN, {W}, OUT are
represented in gray color, input/output streams are repre-
sented by dashed arrows, while interactions between Control
Part and Operating Part processes are black arrows.

In this ASSISTANT design each operation includes a set of
processes (called managers, M in short) which are responsi-
ble for locally implementing the ParMod control logic, de-
noted with the control box in each operation. That is, the
Control Part of the ParMod is implemented by a set of lo-
cally replicated processes scattered among each ParMod op-
eration. In the ASSISTANT definition this choice corre-
sponds to the on-event construct (see ASSISTANT section).
For each operation, the implementation of the Control Part
needs to access the relevant context values to implement
the chosen control logic. Therefore, the Control Part of a
ParMod, as well as its context view, is partially partitioned
amongst the operation instances. In the figure we can also
note that the Manager processes implementing the Control
Part have multiple interactions:

e interactions with the Operating Part processes of the same

operation: Managers may notify some reconfiguration com-

mands. Therefore, these notifications implement the ab-
stract interaction pattern between the Control and the Op-
erating Parts described in the previous section. Note that,

unlike the manager processes which are continuously wait-

ing for context events on all its input interfaces, the Oper-
ating Part processes are mainly responsible for perform-
ing the parallel computation of the ParMod. For this rea-
son, we need to implement the so-called reconfiguration
safe-points, in which the Operating Part processes can be
interrupted from the managers;

e manager processes of the same ParMod interact between
themselves for implementing the overall control logic in
a distributed way. Information passed between manager
processes within the same ParMod can be related to con-
text values shared between different operations (e.g. net-
work latencies on input/output streams). Managers of dif-
ferent operations can be issued to implement an operation
switching: suppose that the manager decides to switch to
another operation (e.g. a transition between different in-
ternal states on the control automaton is verified). In this
case the manager may perform some protocol to grace-
fully stop the processes implementing the current oper-
ation (i.e. a rollfoward) before actually performing the
operation switch, and only next it can notify the manager
process of the target operation to start the computation;

e interactions with Control Parts of other ParMods: these
kinds of interactions are both used to share context infor-
mation across different ParMods, and to notify other Par-
Mods that something has changed inside the ParMod (e.g.
an operation switching). For instance, neighbor modules
could need to close old connections to the previous oper-
ation processes and open new ones to the activated opera-
tion. This clearly depends on the kind of support we give
to interactions between ParMods: ideally, from a func-

tional viewpoint, one would prefer to make operation switch-

ing within a ParMod transparent to other ParMods; prac-

tically, we will see that if we select off-the-shelf commu-
nication facilities the most efficient and straightforward
implementation solution is to create an interaction proto-
col between linked ParMods to dynamically modify their
interconnections.

Consider now the mentioned reconfiguration points of pro-
cesses implementing an operation functional logic. In AS-
SISTANT these are specific points in the computation of the
related processes in which the operation managers can is-
sue some request, or some relevant context information is
notified from the Operating to the Control Part. In more de-
tails, if the Operating Part is executing a stream-based par-
allel program, a straightforward way to define such points
coincides with process activations whose semantics depends
on their role in the Operating Part:

e]N: for each operation these processes implement the in-
put_section guarded command. Activation is hence de-
fined as the selection of one of such guards and interrup-
tions from the managers can be sensed at each subsequent
activation. Depending on the activation frequency (e.g.
low frequencies), it could be needed to check interrup-
tions more frequently. This can be solved by enabling in-
terruptions also while the IN processes are blocked on the
alternative command, waiting for one guard to be fired.
A further issue is given by the time needed to serve each
activation: if this time is large, we may require to enable
interruption sensing also during the serving. Note that,
in this case, interruption handling may not be consistent
with the application semantics: below we show how con-
sistency can be automatically introduced for the parallel
structure used in the experiment. Otherwise, if consis-
tency cannot be automatically guaranteed, the program-
mer can insert proper rollback/rollforward procedures to
guarantee consistency;

e W: the behavior of each worker is to cyclically receive an
input task, to solve it possibly in cooperation with other
workers, and to return a result. Activation of these pro-
cesses is hence defined as the receiving of the input task.
As for the IN case, we can define implicit interruption
sensing points during the resolution of a task for certain
classes of structured parallel programs. Moreover, we
give the programmer the opportunity of inserting specific
interruption points and related rollback/rollforward proce-
dures;

e OUT: similarly to the IN case, interruptions are automati-
cally sensed during the delivering a result to output streams
and during result collection. If needed, the programmer
can also insert specific interruption sensing points and con-
sistency guaranteeing procedures.

Finally, in the figure we avoided to represent a further lower-
level set of processes responsible of transferring and activat-
ing operation processes, which we call deployers.

EXPERIMENTAL SCENARIO AND RESULTS
A relevant experiment in which adaptivity and its reconfigu-
ration costs are a crucial issue is given by time-critical real-

time applications like Emergency Management [19]. The
most important feature of such applications is their dynamic
nature and the presence of real-time requirements. In this
scenario adaptivity is an unavoidable feature to efficiently
deal with variable degree of availability of computing and
network resources and of the surrounding environment (e.g.
resource utilization level and emergency conditions). In this
situation the application configuration must be adapted to
target the application QoS requirements (e.g. the application
performance or the user degree of satisfaction).

In this paper we focus on a river flood emergency applica-
tion, limited to only the disaster prediction. In this applica-
tion the users require the real-time monitoring of the river
area (or different sub-areas) and the execution of forecasting
models, producing flood predictions (e.g. for the flow level
and the corresponding environmental damages). The fore-
casting model is periodically applied to specific geographi-
cal areas. In the first system implementation we have con-
sidered the TUFLOW [18] hydrodynamical model, which is
based on the real-time resolution of mass and momentum
partial differential equations to describe the predicted flow
variation at surface, considering a proper discretization of
the river basin (e.g. a set of bi-dimensional points). Their
numerical resolution (e.g. finite difference methods) yields
to a set of linear systems of equations which involve large
and banded systems (in our case tridiagonal systems). Such
elaborations include data- and compute-intensive processing
not only for off-line centralized activities, but also for on-
line, real-time and decentralized activities: these computa-
tions must be able to provide prompt and best-effort infor-
mation to the users.

Client

)%

[
[}
3
[
ol
Q
=3
3
=4
\

\

\

Figure 7. Experimental application scheme.

In ASSISTANT the flood prediction application can be de-
fined with the scheme of Figure 7. A single generator (G)
ParMod emulates a Wireless Sensor Network (WSN), pro-
viding input data to a forecasting ParMod. Each input data is
related to a point of the space discretization, and it includes
information as the river depth and its speed components.
The flood forecasting ParMod numerically solves, for each
point, the corresponding system of bi-dimensional differen-
tial equations (see above), practically consisting in solving
four tridiagonal linear systems [18]. We employ a flavor of
cyclic reduction algorithm [13] for this task, which is one of
the most efficient sequential algorithm to solve banded sys-
tems. Results are delivered to a further client (C) ParMod,

27

which emulates the visualization tools on a user device. De-
pending on the mapping, the client emulates a central in-
stitutional center, where the overall activities to manage the
flood are controlled, or a user mobile node (e.g. a PDA),
simulating an active operator near the emergency area.

For the generator and client ParMod we have decided to
make use of a single process for the operating part, execut-
ing all the functional activities (IN, OUT and Workers) in
sequential. This is due to the fact that we assume that the
generator and client tasks are not a bottleneck for the appli-
cation performance, hence they do not require, in these ex-
periments, a parallel support. The quality of the computation
can be controlled by: selecting a coarser/finer grain of dis-
cretization of the river basin in points; by generating, from
the differential equation system, tri-diagonal systems with
higher/lower size. The former case influences the length of
the stream (i.e. the number of stream elements) for each
forecast over the whole monitored river area. The latter case
influences the time needed to solve a single task, indepen-
dently of the selected parallelism form.

In the experiments the flood forecasting ParMod includes
two operations: one targeting a cluster of workstations, em-
ulating a central server; another one targeting a multicore
processor, emulating an interface node. Both operations are
developed according to a task-farm model, where the task is
defined as the resolution of a whole differential equation sys-
tem for each discretization point. For all ParMods we have
decided to limit the manager replication degree (for each op-
eration) to 1, in such a way that the monitored operation
switching costs are not affected by replica management al-
gorithms, needed to make manager progress in a consistent
way. The introduction of full replication support for man-
ager process will be studied in future work.

All ParMods are developed in C++ using MPI for commu-
nications inside each operation, and a raw socket interface
between different operations and ParMods. The task-farm
on the cluster is supported by the LAM/MPI implementa-
tion [3], while the operation on the multicore is supported
by MPICH for shared memory machines [11]. For the task-
farm scheme we have also defined further interruption points
for the IN and OUT processes (respectively denoted with E,
for Emitter, and C, for Collector). These points are automat-
ically derived from the program parallel structure:

o the IN process checks for interruptions from the manager
before performing a receive from the input streams and the
receive itself can be blocked by an interruption. As task
scheduling is performed on-demand, the process may re-
main blocked while waiting for one of the workers to no-
tify that it is free. It can automatically check interruptions
from its manager also during this wait;

e similarly, OUT process can be interrupted after sending
a result on the output streams, while being blocked in a
send operation (in case the related buffer is full) and when
waiting for a worker to send a result.

In this paper we show the experimental results related to the

cost of operation switching in two notable cases, related to
the situation in which the forecasting ParMod is executing
the cluster version and the control logic decides to switch
to the multicore operation due to context changes. The two
cases are:

e Case 1 the two operations are both active, and the gen-
erator and client are connected to the cluster operation.
When the cluster manager decides to switch to the mul-
ticore operation, it notifies this decision to all IN, {W}
and OUT cluster processes, to the generator and client,
and to the manager process of the multicore. The gener-
ator and the client, when getting notified of the switch-
ing, close their connections to/from the cluster and open
new connections to/from the multicore. The switching is
performed in a consistent' way according to a rollforward
technique: when notified of the operation switching, the
client first waits for the cluster operation to deliver results
of all currently executed tasks (i.e. those assigned before
deciding the operation switching);

e Case 2 the multicore operation is not active and the cluster
operation manager must activate the corresponding pro-
cesses during the operation switching. For this purpose,
we map a proper deployment process onto the multicore,
whose objective is to start the corresponding operation
(i.e. its processes) when requested. In this test case we
make use of the same consistency guarantee protocol of
the second case (i.e. a rollforward technique).

Clearly, the described cases are not the only ones which can
happen in an operation switching scenario. Nevertheless, as
we will see, these cases arise some interesting hints related
to the design and implementation of ASSISTANT, which we
discuss below.

Numerical Results
We have performed tests on an emulated distributed environ-
ment:

e the cluster includes 30 nodes Pentium III 800 MHz with
512 KB of cache, 1 GB of main memory and intercon-
nected with a 100 Mbit/s Fast Ethernet;

o the multicore is an Intel E5420 Dual Quad Core processor,
featuring 8 2.50 GHz cores, 12 MB L2 Cache and 8 GB
of main memory.

All nodes are interconnected through a Fast Ethernet tech-
nology (100 Mbit/sec) which is an optimistic scenario. Note
that, altought the difference between the computing power
of the two architecture is high, the operation switching time
is not specifically affected by this factor. Rather, the switch-
ing overhead is mainly affected by the communication laten-
cies between managers. The choice of this optimal Ethernet-
based configuration is that the goal of these experiments is
to study the behavior of the switching delay in a case in
which it is not affected by underlying overheads. Indeed, we

"We say that the computation is consistent for this application if
all generated input elements are elaborated and the corresponding
results are delivered to the client.

28

will study the switching overhead in future works by using
slower wired/wireless communication technologies featur-
ing dynamic behaviors (in terms of throughput and latency).

50 i RV}
size = IMB —3—
size =2MB ----
45 - size = 4MB --- B
size = 8MB -
@ size = 16MB -
40 - size = 32MB - - T
35 - Bl
m
8 ot e 1
2
L 4
'E B e
s .l
@ 0F e T]
= B T
15 | < g
L ————— a4
10F —
5
s
0
5 28

15
parallelism degree

Figure 8. Overhead (L ¢con) for Case 1 w.r.t. parallelism degree.

Figure 8 refers to experiments for Case 1. Its is straightfor-
ward to note that the rollforward consistency protocol causes
the Lyccony behavior to be dependent on the task granular-
ity. As hinted, in this protocol we have a first phase in which
the cluster operation has to serve all pending requests from
the generator and a second phase in which the termination is
notified in a flooding fashion from the IN process to work-
ers (a broadcast) and finally to the OUT process. We can
note that the time needed to perform the first phase becomes
lower by increasing the parallelism degree, while the time
needed to perform the second phase becomes larger, as we
need to notify the termination to each worker.

50 T T
par=5 —8—
45+ par=15 o P
a0 L par=28 44444 A .]
—~ 35+ P
® 30°f T
A ,»“"‘
10 1
5, 1
0 1 1 1 1
12 4 8 16 32

system size (MB)

Figure 9. Overhead (L.ccon) for Case 2 w.r.t. task granularity.

Also note that the curve with parallelism degree 15 is lower
than the other ones, i.e. with parallelism degree 5 and 28.
The cause of this behavior can be seen in Figure 8, in which
we show the L,¢.on s behavior w.r.t. the parallelism degree.
In the figure all curves present their lower value with paral-
lelism 15: this is given by the fact that 15 best approximates
the optimal parallelism degree, i.e. adding further workers
is useless. For the chosen consistency protocol note that

the use of an increasing number of workers is reflected in
a higher termination overhead: hence, in this case, adding
workers beyond the optimal degree not only is useless in
terms of parallel efficiency, but it also increase the rollfor-
ward overhead resulting in lower L;.¢.on s performances.

Finally, Figure 9 shows the L,ccony behavior wr.t. task
granularity for Case 2. We can note two facts: the very same
behavior is obtained w.r.t. Case 1, hence the main overhead
is given by the consistency protocol; moreover, the dynamic
start-up of the target operation during the switching does not
add a significant impact to Lyccon s in this platform config-
uration. Clearly, as this cost certainly depends on the com-
munication latency between cluster manager and multicore
deployer, we will experience higher overheads when pass-
ing to lower performance communication networks. We can
also note that we do not consider additional overheads for
this case, e.g. we suppose that no other deployment and dis-
covery actions are necessary, both for the computing nodes
(which are clearly identified in this scenario) and for the
source codes or executables (which are already present in
the filesystem of the target architecture).

CONCLUSION

In this paper we have presented the ASSISTANT program-
ming model oriented towards the definition of self-adaptive
high-performance applications. Target platforms are those
in which several classes of strongly heterogeneous comput-
ing nodes are dynamically available, hence giving place to
the need of an efficient reconfiguration support. In this pa-
per we have introduced an adaptation cost model for ASSIS-
TANT reconfigurations and, by focusing on a flood emer-
gency management application, we have experimented re-
configuration overheads on an emulation of a distributed plat-
form. Results show that the adaptation cost model well de-
scribes the expected reconfiguration overheads, and hence
these can be taken into account in the overall application per-
formance evaluation with the goal of guaranteeing dynamic
user’s requests in terms of specific QoS parameters.

REFERENCES
1. C. Bertolli, D. Buono, G. Mencagli, and M. Vanneschi.
Expressing adaptivity and context-awareness in the
assistant programming model. In Proceedings of the
Third International ICST Conference on Autonomic
Computing and Communication Systems, volume 23,
pages 32-47, September 2009.

2. C. Bertolli, G. Mencagli, and M. Vanneschi. Analyzing
memory requirements for pervasive grid applications.
In The 18th Euromicro International Conference on
Parallel, Distributed and Network-Based Computing,
Washington, DC, USA, 2010, to appear. IEEE
Computer Society.

3. G. Burns, R. Daoud, and J. Vaigl. LAM: An Open
Cluster Environment for MPI. In Proceedings of
Supercomputing Symposium, pages 379-386, 1994.

4. E. F. Camacho and C. A. Bordons. Model Predictive
Control in the Process Industry. Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 1997.

29

10.

11.

12.

13.

18.

19.

M. Cole. Bringing skeletons out of the closet: a
pragmatic manifesto for skeletal parallel programming.
Parallel Comput., 30(3):389-406, 2004.

. M. Danelutto and G. Zoppi. Behavioural skeletons

meeting services. In ICCS ’08: Proceedings of the 8th
international conference on Computational Science,
Part I, pages 146—153, Berlin, Heidelberg, 2008.
Springer-Verlag.

. E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B.

Johnson. A survey of rollback-recovery protocols in
message-passing systems. ACM Comput. Surv.,
34(3):375-408, 2002.

. L. Foster. Computing outside the box. In ICS ’09:

Proceedings of the 23rd international conference on
Supercomputing, pages 3-3, New York, NY, USA,
2009. ACM.

. L. Foster and C. Kesselman. The Grid 2: Blueprint for a

New Computing Infrastructure. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2003.

D. Garlan, D. Siewiorek, A. Smailagic, and
P. Steenkiste. Project aura: Toward distraction-free

pervasive computing. IEEE Pervasive Computing,
1(2):22-31, 2002.

W. D. Gropp and E. Lusk. User’s Guide for mpich, a
Portable Implementation of MPI. Mathematics and
Computer Science Division, Argonne National
Laboratory, 1996.

J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury.
Feedback Control of Computing Systems. John Wiley &
Sons, 2004.

R. W. Hockney and C. R. Jesshope. Parallel Computers
Two: Architecture, Programming and Algorithms. IOP
Publishing Ltd., Bristol, UK, UK, 1988.

. M. C. Huebscher and J. A. McCann. A survey of

autonomic computing—degrees, models, and
applications. ACM Comput. Surv., 40(3):1-28, 2008.

. L. Kleinrock. Theory, Volume 1, Queueing Systems.

Wiley-Interscience, 1975.

. B. D. Noble and M. Satyanarayanan. Experience with

adaptive mobile applications in odyssey. Mob. Netw.
Appl., 4(4):245-254, 1999.

. T. Priol and M. Vanneschi. Towards Next Generation

Grids: Proceedings of the CoreGRID Symposium 2007.
Springer Publishing Company, Incorporated, 2007.

B. Syme. Dynamically linked
two-dimensional/one-dimensional hydrodynamic
modelling program for rivers, estuaries and coastal
waters. Technical report, WBM Oceanics Australia,
1991. available at: http://www.tuflow.com/Downloads/.

M. Vanneschi. The programming model of assist, an
environment for parallel and distributed portable
applications. Parallel Comput., 28(12):1709-1732,
2002.

