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Abstract. Nowadays, a central issue for applications executed on het-
erogeneous distributed platforms is represented by assuring that certain
performance and reliability parameters are respected throughout the sys-
tem execution. A typical solution is based on supporting application com-
ponents with adaptation strategies, able to select at run-time the better
component version to execute. It is worth noting that the efficacy of a re-
configuration may depend on the time spent in applying it: in fact, albeit
a reconfiguration may lead to a better steady-state behavior, its applica-
tion could induce a transient violation of a QoS constraint. In this paper
we will show how consistent reconfiguration protocols can be derived for
stream-based ASSISTANT applications, and we will characterize their
costs in terms of proper performance models.

1 Introduction

Today distributed platforms include heterogeneous sets of parallel architectures,
such as clusters (e.g. Roadrunner), large shared-memory platforms (e.g. SGI
Altix) and smaller ones, as off-the-shelf multi-core components also integrated
into mobile devices. Examples of applications that enjoy such heterogeneity are
Emergency and Risk Management, Intelligent Transportation and Environmen-
tal Sustainability. Common features are the presence of computationally de-
manding components (e.g. emergency forecasting models), which are constrained
by the necessity of providing results under a certain Quality of Service (QoS).
To assure that the QoS is respected, applications must be autonomic, in the
sense that their components must apply proper adaptation and fault-tolerance
strategies.

A reconfiguration can dynamically modify some implementation aspects of a
component, such as its parallelism degree. In some cases, when components are
provided in multiple alternative versions, a reconfiguration can also dynamically
select the best version to be executed. Multiple versions can be provided in order
to exploit in the best way as possible different architectures on which the com-
putation may be currently deployed and executed. For this reason programming
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models for autonomic applications include a functional logic, which is in charge
of performing the computation, and a control logic (or manager), aimed at as-
suring the required QoS levels in the face of time-varying execution conditions.
In this paper we do not focus on the policy under which a reconfiguration is
taken. Rather we are interested in how reconfigurations are implemented, and
their impact on the application performance.

The complexity of a reconfiguration protocol depends on the way in which the
application semantics (computation consistency) is preserved during the recon-
figuration itself. Several research works, especially in the Grid computing area,
have studied consistent reconfiguration protocols for general parallel applications
(e.g. MPI computations), by applying coarse-grained protocols [I] involving the
whole set of functional logic processes, and for specific programming models (e.g.
Divide-and-Conquer applications), in which reconfigurations are applied at task
granularity [2] level. In many cases we may experience a strong reconfiguration
overhead, that could avoid the component to respect the required QoS. In other
words, even if a reconfiguration leads to a better situation from a performance
standpoint, the cost of a reconfiguration protocol should be taken into account
if we want to develop effective adaptation models.

In this paper we show how to derive comnsistent reconfiguration protocols,
focusing on the specific case of dynamic version selection. Our approach is char-
acterized by performance models that can be used to dynamically predict the
reconfiguration cost and its impact on the provided QoS. We show our con-
tribution for the ASSISTANT programming model [3], which is our research
framework for studying autonomic high-performance applications.

The paper is organized as follows: Section [ introduces the main points of
the ASSISTANT programming model. In Section Bl we describe a high-level
modeling framework for deriving consistent reconfiguration protocols and we
provide a specific technique based on a rollback approach. In Section [ we assess
the correctness of the reconfiguration model through experiments.

2 The ASSISTANT Programming Model

ASSISTANT is our framework for autonomic applications and it is based on
structured parallel programming [4] to express alternative parallel versions of
a same component. ASSISTANT allows programmers to define parallel appli-
cations as graphs of parallel modules (i.e ParMod), interconnected by means
of streams, i.e. possibly unlimited sequences of typed elements. The ParMod
semantics is characterized by two interacting logics:

— Functional Logic or Operating Part: it encapsulates multiple versions of
the parallel module, each one with a different behavior according to several
parameters (e.g. memory utilization and expected performance). Only one
version at time is allowed to be active;

— Control Logic or Control Part: it implements the adaptation strategy by
analyzing the current platform and application behavior and by issuing re-
configuration commands to the Operating Part.
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We introduce a new construct, called operation, implementing the functional
part of a version and the corresponding adaptation strategy applied when that
version is executed. A ParMod includes multiple operations which totally de-
scribe its functional and control logics. For lack of space in this paper we focus
on the interactions between the control and the functional logic, which follows
the abstract scheme depicted in Figure [l The computation performed by the
functional logic can be reconfigured at implicitly identified reconfiguration points
(e.g. between the reception of two subsequent tasks).
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Fig. 1. Interaction scheme between functional and control logics

When a context update is received by the ParMod monitoring, the Con-
trol Part decides the set of reconfigurations by executing a control algorithm
(Toontrot)- After that, a set of reconfiguration commands are sent to the Oper-
ating Part which applies them at the first reconfiguration point. For applying
them, the Operating Part processes cooperatively execute a reconfiguration pro-
tocol, which induces a corresponding overhead (i.e. Tprotocor). We focus on two
general structured parallelism models, namely task-farm and data-parallel. A
task-farm computation is based on the replication of a given functionality F
(e.g. a user-provided function) which is applied to a set of elements scheduled
from an input stream. Each application of F' to an input element gives place to a
result, hence the set of results forms an output stream. From an implementation
level an emitter process receives input elements and schedules them to workers;
the collector receives results and delivers them to the output stream. A perfor-
mance model can be formally derived: let us denote with Ty , Ty and T respec-
tively the service time of the emitter, worker and collector. By considering them
as successive stages of a pipeline system, we can calculate the inter-departure
time of results from the collector as Tfqrm = max{Trg, Tw /N, Tc}, where N is
the parallelism degree (i.e. the number of workers).

A data-parallel computation in ASSISTANT is, like task-farm ones, stream-
based, where each input task gives places to a composite state, which is scattered
amongst a set of workers by a scatter process. The workers apply a same user-
provided function (say G) sequentially on each element of their partition and
for a fixed number of iterations (or steps) or until some convergence condition is
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satisfied. At each step workers may be required to communicate between them-
selves, in this case the data-parallel program is characterized by some form of
stencil. At the end of the computation the resulting composite state is gathered
on a gather process and delivered to the output stream. A simple performance
model for data-parallel programs considers the scatter, workers and gather pro-
cesses as successive stages of a pipeline graph. The results inter-departure time
is Tgp = max{Ts, Tw, T}, where Ts , Ty and T are the service times of the
three functionalities. In particular Ty is the worker execution time: this value
depends on the number of steps performed and it accounts for the calculation
time and the communication time at each step of the data-parallel computation.

Finally, the ParMod implementation also includes a set of manager processes
that implement the Control Logic. Managers may be replicated on different
architectures on which the computation can be executed to assure their reliability
in face of failures. A replicated set of managers along with the related processes
implementing the functional part of a version, can be dynamically deployed and
started during a reconfiguration phase.

3 Consistent Reconfiguration Protocols

We suppose a model which is quite general for a broad class of parallel applica-
tions: tasks are independent (no internal state of the ParMod survives between
different task executions) and idempotent (a task can be repeatedly calculated
without getting the ParMod into an inconsistent state).

If we take a computation snapshot, there are: (i) a set of tasks Ty y which are
still to be received and which are stored in the input streams; a set of tasks Tp
currently in execution on the ParMod; and a set of task results Toyr previously
produced by the ParMod on the output streams. The goal of a consistent recon-
figuration protocol is to properly manage the set Tp of tasks. We can formalize
the concept of consistency according to two notions:

Definition 1 (Weak Consistency). All input tasks should be processed by the
ParMod and their results delivered to the intended consumers.

Note that this definition does not admit to loose any result but it permits their
replication.

Definition 2 (Strong Consistency). All elements produced on the input
stream are processed by the ParMod and their results delivered to the intended
consumers at most one time.

We introduce a formalization methodology which is based on a proper modeling
tool enabling us to define protocols in terms of tasks and results.

3.1 Formalization

Our methodology is inspired by the Incomplete Structure model (shortly I-
Structure), introduced with other purposes in data-flow programming models [5]
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and previously used in [6] to model fault-tolerance protocols. An I-Structure is a
possibly unlimited collection of typed elements, uniquely identified by sequence
identifiers. There are two ways of accessing an I-Structure:

— we can read (get) the element stored at a given position. If it is empty, the
operation blocks the caller until a value is produced on that position;

— we can write (put) a value to a given position. A write semantics assures
the write-once property: i.e. it is not possible to perform a write more than
once on the same position.

In Figure[2lis depicted how the I-Structure tool is used: each task input stream of
a ParMod is mapped to a single I-Structure denoted with IN, and result output
streams are mapped to a further I-Structure denoted with OUT.

i IN OuT k

E\ : i *
IR TR
: | __ :
(=) ' !

Fig. 2. I-Structure model applied to a ParMod
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For a correct understanding of how I-Structures are used, note that there is
not any notion of ordering between the IN and OUT elements: broadly, a task
produced on an input stream has an index that may be different w.r.t the index
of the corresponding result. For each I-Structure we can identify two indexes:
one of the last consumed element (e.g. j and [ in Figure[Z) and the one of the last
produced element (e.g. i and k). By using them we can precisely characterize the
sets Tp , Try and Toyr. For instance Tp is the set of elements with indexes on
the IN I-structure from 0 to j to which we have to subtract all elements whose
results have been produced to the output streams, i.e. results with indexes on
the OUT I-Structure from 0 to k.

Although a formal description of proofs about reconfiguration protocols can
be expressed through the I-Structure methodology, in this paper we are mainly
interested in defining reconfiguration protocols at the level of implementation,
by using the information derived from the abstract I-Structure model.

3.2 Implementation

At the implementation level interactions between ParMods are exploited by
proper typed communication channels. In order to correctly implement the I-
Structure model, we have to extend the basic ParMod implementation [3]: in
fact the model requires that elements can be recovered at any time during the
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computation, simply passing their unique identifier. In a classical channel imple-
mentation, when a message is received (i.e. extracted) from the channel buffer,
its content can be overwritten by successive messages. To this end we have two
main implementation choices:

— the channel run-time support can be equipped with message logging tech-
niques [7]: i.e. when a message is stored in the channel buffer, it is also copied
into an external memorization support that can not be overwritten;

— message recovery can be faced directly at the application level: i.e. we can
require that application components can re-generate elements on-demand.

Even if the first approach may induce an additional communication overhead,
it is completely transparent from the application viewpoint. Nevertheless in this
paper we suppose to adopt the second approach: i.e. every ParMod is able to
re-generate past tasks/results. Anyway the presented protocols are independent
on the way in which stream elements are recovered.

Therefore we can map the two I-Structures IN and OUT to different com-
munication channels Chyy and Choyr. For the purpose of re-generation, input
tasks are labeled with their input sequence identifiers, whereas the results in-
clude a reference to the sequence identifier of the corresponding input task. In
this way we assure that all ParMods have a common view of task and result
identifiers.

Finally, we define the notion of Vector Clock (VC). A VC models a corre-
spondence between output stream identifiers and input stream identifiers. It is
a set of pairs of the form (1, k1), (2, k2),..., (IV, kn), where the first element of
each pair is an result identifier, and the second one is the corresponding task
identifier. Another important notion for our purpose is the mazimum contiguous
sequence identifier (shortly MC), which is the maximum task identifier on the
input stream such that all its predecessors are included in the vector clock.

3.3 Description of Reconfiguration Protocols

In this section we describe consistent reconfiguration protocols focusing on ver-
sion switching reconfigurations, in which we stop executing a source operation
and we start executing a target one. Two techniques can be identified:

— we can wait for the source operation to perform all tasks in T and then make
the target operation start from the first task which was not consumed by
the source operation. We denote this technique as rollforward protocols;

— when the Control Part notifies an operation switching, the source operation
can simply stop its execution. Then the control is passed immediately to the
target operation that has to re-obtain the tasks in set Tp and re-start their
execution. We denote this kind of approach as rollback protocols.

In this paper we focus on a generic rollback protocol, and we show how to opti-
mize it for data-parallel programs. In the description we assume that the target
operation has been previously deployed and it is ready to start its execution. For
a comprehensive analysis of rollforward protocols, interested readers can read [§].
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In a rollback protocol, the target operation needs to obtain all tasks in Tp
from the related generators. To this end the Control Part should provide to the
target operation some kind of information. Depending on the data passed we
obtain different protocols:

— the information passed is the MC value: in this case the target operation will
request the generators to re-generate elements whose identifier starts from
MC + 1 to the sequence identifier of the message on the top of the Chyy
buffer queue. Note that this techniques may induce a duplication of results:
therefore it implements the weak consistency definition;

— the source operation can pass the whole Vector Clock to the target one, that
drives the re-generation of T» by issuing to generator components only the
missing identifiers. Note that this protocol avoid the re-execution of previ-
ously performed tasks, hence it implements the strong consistency definition.

The choice of applying this kind of protocol depends on the amount of work
which can be lost. We can quantify it depending on the parallelization scheme
adopted by the source operation. If the source operation implements a task-farm
computation, we have to re-execute at most N + 4 tasks (i.e. one task for each
of the N workers; two tasks on the emitter and the collector; two tasks on the
input and the output channels). In addition, in the first version of the protocol,
we have also to sum up all tasks whose results have been delivered in an un-
ordered way to the output stream. On the other hand, if the source operation
implements a data-parallel program, we have to re-execute at most 5 tasks: one
on the scatter process; one currently executed by workers; one corresponding
to the result processed by the gather process; one on the input channel and a
result on the output channel. In this scheme the input and the output streams
are ordered between themselves, therefore, in both the versions of the protocol
there are no further tasks that must be executed.

Optimizations Based on Checkpointing Techniques. Let us suppose a
special case in which source and target operations are data-parallel programs
with the same characteristics (e.g. in terms of the stencil definition). In this
case we can think to transfer the partially transformed state from the source to
the target operation in order to reduce the rollback overhead (time spent in re-
executing tasks belonging to the set Tp). Of course this optimization is applicable
only if it does not compromise the computation consistency, i.e. depending on
the specific properties of the two data-parallel versions.

If this approach is viable, a straightforward solution is to take a snapshot of
(all the workers) the computation of the source operation and transfers it to the
target operation. The snapshot includes also all messages currently stored in the
channel buffers, as well as in-transit messages. As it can be noted, this snapshot-
based solution is valid only under the hypothesis that the source and target
operations have the same parallelism degree. Moreover the whole computation
state formed by the local state of each worker may be inconsistent, due to the
fact that workers may be computing at different stencil steps. The reason behind
this is that we consider data-parallel programs not based on a step-synchronous
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logic, but workers are allowed to proceed in their computation depending only on
the availability of their input stencil information (i.e. their data dependencies).

Therefore, the main point consists in how a consistent state is reached by
workers. A solution to this problem is based on checkpointing: workers can per-
form periodic checkpointing activities of their local partitions at the very same
frequency (e.g. every d steps). Note that checkpointing activities can be per-
formed independently by workers, with the consequence that the last checkpoint
from a worker can be different to the ones of others (see [6]). Therefore, to as-
sure that the transferred state is consistent, when workers are issued to perform
an operation switching they have to first identify the last checkpointing step
which all have passed (a.k.a a recovery line), and then transfer the correspond-
ing checkpoints. The selection of the recovery line can be performed by running
a two-phase leader-based protocol as described in [6].

4 Experiments

We have tested the behavior of the rollback protocol on a flood emergency man-
agement application, developed in the context of the Italian In.Sy.Eme. project
(Integrated System for Emergency). This application includes three ParMods: a
Generator of environmental data, providing input tasks describing the current
state of each point of a discretized space of a river basin; a Forecasting ParMod
implementing a flood forecasting model, that for each input point resolves a sys-
tem of differential equations. The numerical resolution of the system gives place
to four tri-diagonal linear systems, which are solved according to an optimized
direct method (see [9] for further details). This ParMod includes two operations,
respectively based on a task-farm and on a stencil data-parallel parallel program:;
the last ParMod implements a Client visualizing the results.

In these tests the task-farm is mapped to a cluster including 30 production
workstations. The data-parallel operation is executable on two multi-core archi-
tectures: (1) a dual-processor Intel Xeon E5420 Quad-Core featuring 8 cores;
(2) a dual-processor Intel Xeon E5520 Quad-Core featuring 8 cores. The opera-
tions have been implemented using the MPI library: on the cluster architecture
we supported the task-farm with the LAM/MPI implementation, while on the
multi-cores we have used the shared-memory version of MPICH.

The generic rollback protocol has been tested on the operation switching from
the task-farm to data-parallel version. The optimized protocol is exploited for
switching between two instances of the data-parallel operation mapped to the
two multi-cores. Figures Bal and [3b] show the behavior of the the reconfiguration
overhead Lyeconys (i.e. total time in seconds for applying the reconfiguration) by
varying the parallelism degree of the source operation and the size of the solved
systems. Consider the case of systems of size 32 M B and parallelism degree
equals to 8. In this case, the mean service time of each worker is 10.25 sec.
and by applying the performance models of parallelism schemes introduced in
SectionPland the reconfiguration cost model introduced in Section B3] we obtain
that Lyccons < (N +4) Ty = 123.023 sec.. This value is a slight overestimation
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and the G grain

than the real experienced one (i.e. 103.6233 sec.), due to the fact that in this
experiment the number of rolled-back elements has been 11 instead of 12.
Figure @] shows the time needed to perform the optimized recovery protocol
on the target operation by varying the checkpointing frequency and the cost of
applying the function G on the local partition of each worker. Clearly, this time
also depends on the instant at which reconfiguration is issued, aside of the check-
pointing frequency: for instance, if we perform checkpointing with low frequency
but the reconfiguration must be applied immediately after a checkpoint, clearly
the recovery cost is small. Nevertheless, the behavior of the recovery cost, in
average, decreases with the checkpointing frequency. As we can see with these
tests, with a grain of T = 5 sec., the selected pattern for issuing reconfiguration
commands makes the recovery time strongly increase when the checkpointing
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frequency decreases. From this, we can see that higher T times should be sup-
ported by more frequent checkpointing operations, if our target is to minimize
the recovery time.

5 Conclusions

In this paper we have introduced two consistent reconfiguration protocols for
ASSISTANT applications, supporting version switching activities. The first pro-
tocol supports the switching between any kind of parallel computations. The
second protocol represents an optimization when the source and target opera-
tions are ”similar” data-parallel programs. It is based on a periodic checkpointing
protocol and on transferring the state of the last recovery line from the source
to the target operation. For the protocols we have introduced performance mod-
els to predict their overhead, and we have assessed the expected results by real
experiments.
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