Implementing an Ordered List¶
In order to implement the ordered list, we must remember that the relative positions of the items are based on some underlying characteristic. The ordered list of integers given above (17, 26, 31, 54, 77, and 93) can be represented by a linked structure as shown in Figure 15. Again, the node and link structure is ideal for representing the relative positioning of the items.
To implement the OrderedList
class, we will use the same technique
as seen previously with unordered lists. Once again, an empty list will
be denoted by a head
reference to None
(see
Listing 8).
Listing 8
class OrderedList:
def __init__(self):
self.head = None
As we consider the operations for the ordered list, we should note that
the isEmpty
and size
methods can be implemented the same as
with unordered lists since they deal only with the number of nodes in
the list without regard to the actual item values. Likewise, the
remove
method will work just fine since we still need to find the
item and then link around the node to remove it. The two remaining
methods, search
and add
, will require some modification.
The search of an unordered linked list required that we traverse the
nodes one at a time until we either find the item we are looking for or
run out of nodes (None
). It turns out that the same approach would
actually work with the ordered list and in fact in the case where we
find the item it is exactly what we need. However, in the case where the
item is not in the list, we can take advantage of the ordering to stop
the search as soon as possible.
For example, Figure 16 shows the ordered linked list as a
search is looking for the value 45. As we traverse, starting at the head
of the list, we first compare against 17. Since 17 is not the item we
are looking for, we move to the next node, in this case 26. Again, this
is not what we want, so we move on to 31 and then on to 54. Now, at this
point, something is different. Since 54 is not the item we are looking
for, our former strategy would be to move forward. However, due to the
fact that this is an ordered list, that will not be necessary. Once the
value in the node becomes greater than the item we are searching for,
the search can stop and return False
. There is no way the item could
exist further out in the linked list.
Listing 9 shows the complete search
method. It is
easy to incorporate the new condition discussed above by adding another
boolean variable, stop
, and initializing it to False
(line 4).
While stop
is False
(not stop
) we can continue to look
forward in the list (line 5). If any node is ever discovered that
contains data greater than the item we are looking for, we will set
stop
to True
(lines 9–10). The remaining lines are identical to
the unordered list search.
Listing 9
def search(self,item):
current = self.head
found = False
stop = False
while current != None and not found and not stop:
if current.getData() == item:
found = True
else:
if current.getData() > item:
stop = True
else:
current = current.getNext()
return found
The most significant method modification will take place in add
.
Recall that for unordered lists, the add
method could simply place a
new node at the head of the list. It was the easiest point of access.
Unfortunately, this will no longer work with ordered lists. It is now
necessary that we discover the specific place where a new item belongs
in the existing ordered list.
Assume we have the ordered list consisting of 17, 26, 54, 77, and 93 and
we want to add the value 31. The add
method must decide that the new
item belongs between 26 and 54. Figure 17 shows the setup
that we need. As we explained earlier, we need to traverse the linked
list looking for the place where the new node will be added. We know we
have found that place when either we run out of nodes (current
becomes None
) or the value of the current node becomes greater than
the item we wish to add. In our example, seeing the value 54 causes us
to stop.
As we saw with unordered lists, it is necessary to have an additional
reference, again called previous
, since current
will not provide
access to the node that must be modified. Listing 10 shows
the complete add
method. Lines 2–3 set up the two external
references and lines 9–10 again allow previous
to follow one node
behind current
every time through the iteration. The condition (line
5) allows the iteration to continue as long as there are more nodes and
the value in the current node is not larger than the item. In either
case, when the iteration fails, we have found the location for the new
node.
The remainder of the method completes the two-step process shown in
Figure 17. Once a new node has been created for the item,
the only remaining question is whether the new node will be added at the
beginning of the linked list or some place in the middle. Again,
previous == None
(line 13) can be used to provide the answer.
Listing 10
def add(self,item):
current = self.head
previous = None
stop = False
while current != None and not stop:
if current.getData() > item:
stop = True
else:
previous = current
current = current.getNext()
temp = Node(item)
if previous == None:
temp.setNext(self.head)
self.head = temp
else:
temp.setNext(current)
previous.setNext(temp)
The OrderedList
class with methods discussed thus far can be found
in ActiveCode 1.
We leave the remaining methods as exercises. You should carefully
consider whether the unordered implementations will work given that the
list is now ordered.
Analysis of Linked Lists¶
To analyze the complexity of the linked list operations, we need to
consider whether they require traversal. Consider a linked list that has
n nodes. The isEmpty
method is \(O(1)\) since it requires
one step to check the head reference for None
. size
, on the
other hand, will always require n steps since there is no way to know
how many nodes are in the linked list without traversing from head to
end. Therefore, length
is \(O(n)\). Adding an item to an
unordered list will always be O(1) since we simply place the new node at
the head of the linked list. However, search
and remove
, as well
as add
for an ordered list, all require the traversal process.
Although on average they may need to traverse only half of the nodes,
these methods are all \(O(n)\) since in the worst case each will
process every node in the list.
You may also have noticed that the performance of this implementation differs from the actual performance given earlier for Python lists. This suggests that linked lists are not the way Python lists are implemented. The actual implementation of a Python list is based on the notion of an array. We discuss this in more detail in Chapter 8.