
Suffix Trees and their Applications
in String Algorithms∗

Roberto Grossi† Giuseppe F. Italiano‡

Dipartimento di Sistemi e Informatica Dipartimento di Matematica Applicata ed Informatica

Università di Firenze Università “Ca’ Foscari” di Venezia

50134 Firenze, Italy Venezia, Italy

Keywords: Pattern matching, String algorithms, Suffix tree.

Abstract: The suffix tree is a compacted trie that stores all suffixes of a given text string.
This data structure has been intensively employed in pattern matching on strings and trees,
with a wide range of applications, such as molecular biology, data processing, text editing,
term rewriting, interpreter design, information retrieval, abstract data types and many others.

In this paper, we survey some applications of suffix trees and some algorithmic techniques
for their construction. Special emphasis is given to the most recent developments in this area,
such as parallel algorithms for suffix tree construction and generalizations of suffix trees to
higher dimensions, which are important in multidimensional pattern matching.

∗Work partially supported by the ESPRIT BRA ALCOM II under contract no. 7141 and by the
Italian MURST Project “Algoritmi, Modelli di Calcolo e Strutture Informative”.

†Part of this work was done while the author was visiting AT&T Bell Laboratories. Email:
grossi@di.unipi.it

‡Work supported in part by the Commission of the European Communities under ESPRIT LTR
Project no. 20244 (ALCOM–IT), by the Italian MURST Project “Efficienza di Algoritmi e Pro-
getto di Strutture Informative”, and by a Research Grant from University of Venice “Ca’ Foscari”.
Part of this work was done while at University of Salerno. Email: italiano@dsi.unive.it. URL:
http://www.dsi.unive.it/∼italiano.

Contents

1 Introduction 2

2 The Suffix Tree 4

3 Sequential Construction of a Suffix Tree 8
3.1 The algorithm of Chen and Seiferas . 8
3.2 The algorithm of McCreight . 10
3.3 Extension of McCreight’s construction to a set of strings 12

4 Extensions and Generalizations of Suffix Trees 12

5 Conclusions 14

1

1 Introduction

The suffix tree is a powerful and versatile data structure that has applications in many
string algorithms [77, 101]. It is basically a compacted trie storing the suffixes of a given
string, so that all the possible substrings of the string are represented by some (unique)
path descending from the root. The power of a suffix tree lies mainly in its ability
to encode all the suffixes of the given string in linear space. This succinct encoding
enables one to retrieve a large amount of information from the index: for instance, it
can be used as a diagram of state transitions for an automaton that recognizes all the
substrings of the given string.

The importance of the suffix tree is underlined by the fact that it has been redis-
covered many times in the scientific literature, disguised under different names, and
that it has been studied under numerous variations. Just to mention a few appear-
ances of the suffix tree, we cite the compacted bi-tree [101], the prefix tree [24], the
PAT tree [50], the position tree [3, 65, 75], the repetition finder [82], and the subword
tree [8, 24]. The ability of the suffix tree to represent all the substrings in linear space
has inspired several variations. The suffix array [76], cactus suffix array [63], dynamic
suffix array [37], PAT array [50] and SB-tree [38] are examples of arrays or trees con-
taining the suffixes of the given string in the lexicographic order obtained by visiting
the leaves of the corresponding suffix tree. The directed acyclic word graph (DAWG)
and minimal suffix and factor automata [16, 28, 30] are either labeled graphs or au-
tomata recognizing the substrings of the given string (or only its suffixes), whose nodes
can be related to those of the suffix tree built on the reversed string. The complete
inverted file [17] is a compacted DAWG that is augmented with extra information on
the nodes, equivalently obtained from the suffix tree of the given string by merging its
edge-isomorphic subtrees and deleting part of the resulting structure.

In the known literature, an implicit definition of the suffix tree can be already
found in Morrison’s Patricia trees [78]. However, Weiner was the first to introduce
explicitly the suffix tree in [101] (the original name was compacted bi-tree). Following
the pioneering work of Weiner, several linear time and space constructions have been
given later by McCreight [77], Pratt [82], Slisenko [92], and Chen and Seiferas [24] (some
of those algorithms have been reviewed in [24, 47, 74]). The constructions in [24, 101]
have also the advantage of being on-line, under the assumption that the input string
is read one character at a time from right to left. A left-to-right on-line (although not
linear-time) construction has been described by Majster and Reiser [75] and Kempf,
Bayer and Güntzer [65]. An on-line linear-time algorithm has been given by Ukkonen
[99], and a real-time construction has been given by Slisenko [92] and Kosaraju [67].
Most of the above constructions work also for strings drawn from a large alphabet, at
the price of a logarithmic slow-down in time complexity (in the size of the alphabet).
The first parallel algorithm for building the suffix tree has been presented by Landau
and Vishkin [70]. Apostolico et al. [9] have given the first efficient parallel construction
that has optimal work for a large alphabet. Hariharan [57], Sahinalp and Vishkin [86],
and Farach and Muthukrishnan [35] have devised parallel constructions whose work is
optimal also for a small alphabet.

The statistical behavior of suffix trees has been studied under general and mild
probabilistic frameworks by Apostolico and Szpankowski [12], Blumer et al. [18], De-
vroye et al. [32], Grassberger [51], Jacquet and Szpankowski [60], Shields [89], and

2

Szpankowski [94, 95]. One of the main properties of the suffix tree is that its asymp-
totic expected depth is logarithmic in the length of the given string, even though it
may be linear in the worst case. O’Connor and Snider [81] have related a complexity
measure for random strings in cryptology, called maximum order complexity, to the
statistical properties of the suffix trees.

The notion of suffix tree has been extended to square matrices by Gonnet [48, 49],
Giancarlo [43], and Giancarlo and Grossi [46]. This data structure can be efficiently
deployed in pattern matching algorithms in higher dimensions, an area which is gaining
growing interest due to its applications to low-level image processing [85], image com-
pression [93], and visual databases in multimedia systems [62]. The problem of building
a tree data structure representing all submatrices of a given matrix has been shown to
be computationally harder than the problem of building a tree data structure represent-
ing only the square submatrices [44], and it has been considered in [45]. A somewhat
relaxed definition of suffix tree for labeled trees, storing the node-to-root paths of the
given tree as strings in a compacted trie, has been introduced by Kosaraju [66] and
used also by Dubiner et al. [33], for tree pattern matching purposes. Another interesting
generalization of the suffix tree to parameterized strings (or, p-strings) has been intro-
duced by Baker [13] to find program fragments in a software system that are identical
except for a systematic change of parameters.

Suffix trees find a wide variety of applications in many different areas related to
string processing, such as: string matching [6, 29, 101]; approximate string match-
ing [23, 42, 71, 72, 79, 98]; finding longest repeated substrings [101]; finding squares [10,
68] and repetitions in a string [10]; computing statistics for the non-overlapping occur-
rences [11]; finding the longest match between all ordered suffix-prefix pairs of a given
set of strings [55]; finding the longest substring that appears in h out of k strings, for any
h ≥ 2 [58]; computing characteristic strings [59]; matching a string as an arbitrary path
of an unrooted labeled tree [4]; performing efficient dictionary matching [6, 5, 7, 21, 43];
data compression schemes [39, 40, 73, 83, 84, 102, 103]; searching for the longest run of
a given motif in molecular sequences [53, 54, 100]; metric distance on strings [34]; com-
plexity measure on random strings for cryptology [81]; inverted indices [22]; analyzing
genetic sequences [25, 23]; finding duplication in programming code [13]; generating
names for programs in assembly tasks [14]; testing unique decipherability for a set of
words [83]; detecting similarities of a polygon in pattern recognition [96]; and so forth.

This paper surveys some applications of suffix trees and some the algorithmic tech-
niques used for the construction of this ubiquitous data structure. Special emphasis
is given to the most recent developments in this area, such as parallel algorithms for
suffix tree construction and generalizations of suffix trees to higher dimensions, which
are important in multidimensional pattern matching. The remainder of this paper is
organized as follows. In Section 2, we define the suffix tree data structure, and de-
scribe some of its applications. Several algorithms for its sequential construction are
described in Section 3. Section 4 contains some applications and extensions of suffix
trees. Finally, Section 5 contains some concluding remarks.

3

2 The Suffix Tree

Let x be a string of n characters, drawn from an ordered alphabet Σ. We denote x as
x[1:n]. Let $ be a special character, matching no character in Σ. The suffix tree T of x$
is a trie (digital search tree) containing all the suffixes of x$. The character $ is a right
endmarker, and its goal is to separate (in T) suffix x[i:n] from suffix x[j:n], for i > j,
whenever the former is a prefix of the latter. This results in the existence of a leaf in T
for each suffix of x$, since any two suffixes of x$ will eventually go their separate ways
in T . Consequently, each leaf of T can be labeled with a distinct integer j such that the
path from the root to the leaf (labeled) j corresponds to the suffix x[j:n]. Furthermore,
the path from the root of T to an internal node u corresponds to a substring of x.

The number of different substrings of x that are encoded in T can be quite large.
Indeed, even strings using only two distinct characters can have as many as Ω(n2)
different substrings. One such example is given by x = an/2bn/2 for a, b ∈ Σ, which
has (n/2 + 1)2 distinct substrings (including the empty substring). However, there are
compact (and equivalent) representations of the suffix tree that have at most 2n nodes,
such as the ones defined by Weiner [101], McCreight [77], Pratt [82] or Slisenko [92]. An
obvious way to compact a suffix tree is to make it a compacted trie by omitting internal
nodes of degree one (also called unary nodes). The size of the obtained representation
is at most 2n + 1, since there are at most n + 1 leaves (one for each suffix of x$),
and in a tree with no internal unary nodes, the number of internal nodes is bounded
by the number of leaves. Note that having O(n) rather than O(n2) nodes is crucial
in many applications: for instance if the string is a piece of a DNA sequence, it can
contain n ≈ 105 characters; without the use of a suffix tree, we would need as many as
n2 ≈ 1010 memory cells to represent all possible substrings!

More formally, the following constraints placed on T will limit its size to O(n).

(T1) An arc of T may store any nonempty substring of x$, which is represented as
a pair of integers to indicate its starting position and its length inside x$.

(T2) Each internal node of T must have at least two outgoing arcs.

(T3) Substrings represented by sibling arcs of T must begin with different characters.

For each suffix tree node, let pathstring be string obtained by concatenating the
sequence of labels encountered along the path from the root to that node. Note that
the above constraints guarantee that a suffix tree node can be named unambiguously
by its pathstring. We say therefore that such a node is the locus of a string y whenever
its pathstring is equal to y. An extension of a string y is any string of which y is a
prefix. The extended locus of y is the locus of the smallest extension of y (inclusive)
having locus defined. If y itself has locus defined, then its locus and extended locus
coincide.

We now illustrate the definition of suffix tree with an example. The suffix tree T
of the string ω = x$ = bbabab$ is represented in Fig. 1. String ω has seven suffixes,
namely bbabab$, babab$, abab$, bab$, ab$, b$, and $, which are numbered from 1 to
7. Using the suffix tree, we can check whether a given string is a substring of ω. For
instance, aba is a substring of ω since it has extended locus in T . Indeed, there exists a
node in the suffix tree such that its pathstring starts with aba, namely leaf 3. Instead,

4

babab$

b

ba

$b
a $

$
ab

$b
a $

$

(2,6)

(4
,1
)

(3
,2
)

(5
,3
) (7,1)

(
7
,
1
)

(3,2)

(5
,3
) (7,1)

(
7
,
1
)

1 1

2

3

4 42

3 5 56 6

7 7

Figure 1. The suffix tree for the string ω = bbabab$, and its compact representation.

the string abaa is not a substring of ω, since the last character a does not match along
the pathstring indicated by aba (i.e., abaa has not extended locus in T). In Fig. 1 it
is shown also a more compact representation of the suffix tree, where each string is
replaced by a pair of integers: the number of starting position and the length of the
substring [77].

It can be easily verified from Fig. 1 that the suffix tree obeys constraints (T1), (T2)
and (T3) above. Furthermore, it is clear that each leaf is locus of exactly one suffix,
which can be obtained as the pathstring associated with that leaf. A consequence
of constraints (T1), (T2) and (T3) on the suffix tree T for x$ is given by the three
following properties:

Node Existence: There is a leaf for each suffix of x$, along with an internal node for
each (possibly empty) substring y of x$ such that both ya and yb
are substrings of x$, where a, b ∈ Σ ∪ {$} and a 6= b.

Completeness: A string y ∈ Σ∗ is substring of x if and only if y has extended locus
in T , since a substring of x is a prefix of some suffix of x.

Common Prefix: If two suffixes of x share a prefix, say y, then they must share the
path in T leading to the extended locus of y.

The above three properties capture the essence of a suffix tree and its algorithmic
implications, as it will be discussed throughout the paper.

The suffix tree has been intensively employed in pattern matching problems on
strings, matrices and trees. A typical pattern matching problem consists of locating all
the occurrences of a given string, matrix or tree, called the pattern, as a substructure
of another string, matrix or tree, called the text. Pattern matching problems have a
wide range of applications, such as molecular biology, data processing, text editing,
term rewriting, interpreter design, information retrieval, abstract data types and many
others.

We now show the suffix tree “at work” by briefly discussing few of its typical uses
on strings. One classical example is string matching , which consists of finding all
the occurrences of a pattern y as substring of a text x [20, 69] (see also the survey of
Aho [1]). Crochemore et al. [29] have used the suffix tree built on the pattern y to speed
up linear-time algorithms for string matching both in practice and on the average. The

5

suffix tree defined on a dynamic set of strings, instead of a single string, has been used
by Amir et al. [6] to obtain a dynamic version of the static Aho-Corasick dictionary
automaton [2]. The Aho-Corasick automaton finds the multiple occurrences of a given
set {y1, . . . , yk} of patterns simultaneously into a text x.

In many applications, the text (e.g., the Oxford English Dictionary or a DNA se-
quence) is fixed and static, with the above string matching query being repeated on-line
for different patterns many times. Thus it is better to build the suffix tree T on x$
as shown next [101]. Assume that y occurs at least once in x: the Completeness and
Common Prefix properties guarantee that there is a one-to-one correspondence between
all occurrences of y in x, and the leaves of T that are descending from the extended
locus of y. In the example of Fig. 1, the occurrences of y = ba in the text x = bbabab are
represented by the leaves numbered 2 and 4. Otherwise, if the pattern y does not occur
in the text x there is no pathstring spelled by y in T : in Fig. 1, the pattern y = abaa
does not occur in the text x, since the last a does not match the pathstring spelled
by aba. Therefore, in both cases, computing the suffix tree of x$ enables one to find
easily and efficiently all the occurrences of a pattern in the preprocessed text x. With
a similar reasoning, it is possible to find the longest prefix of y occurring in x, in time
proportional only to the length of such a prefix. Furthermore, associating the number
of descending leaves with each node of T , the frequency or number of occurrences of y
in x can be known without accessing all the leaves explicitly. These and other queries
are typical of complete inverted files (e.g., see [17]). In several common situations, such
as text editors and text retrieval systems [97, Sect.5.3], the preprocessed text x may
undergo some changes. A recent line of research studies how to handle this dynamic
case without building the suffix tree T from scratch each time [36, 37, 52].

In many cases, the pattern occurrences in the text may be approximate, that is,
we allow a class of errors or transformations in the pattern (e.g., a word misspelling or
a DNA mutation). In approximate string matching , character mismatches, insertions
and deletions are considered in finding the pattern occurrences. Several researchers in-
dependently discovered the dynamic programming table solving the approximate string
matching problem (see Sankoff and Kruskal’s book [87] and Galil and Giancarlo’s sur-
vey [41] for a list of references to the literature). To the best of our knowledge, it
is an open problem to build a suffix-tree-like data structure that allows approximate
queries to be performed on-line on a preprocessed text, requiring provably good worst
case bounds [101]: so far, some elegant solutions with expected sublinear time queries
have been proposed by Chang and Lawler [23] and Meyers [80], and a very nice ap-
proach that avoids, in many cases, the recomputation of equal portions of the dynamic
programming table via suffix trees has been presented by Ukkonen [98]. Still, suffix
trees turn out to be very useful to speed up the dynamic programming computation
for solving approximate string matching (e.g., see [23, 42, 71, 72, 79, 98]). Among oth-
ers, one basic technique, which is now common for many string algorithms, has been
employed for the first time by Landau and Vishkin [71, 72]. It uses the suffix tree T
to compute in constant time the longest common prefix of any two given suffixes of
x. Indeed, by the Common Prefix Property, the longest common prefix of two suffixes
has locus in the least common ancestor (LCA) of the two corresponding leaves, which
can be computed in constant time after a linear time preprocessing to answer LCA
queries [56, 88]. Another technique, presented by Chang and Lawler [23], uses the suf-

6

fix tree on the pattern y to compute matching statistics for a text x in linear time: for
each position j of x, find the longest prefix of x[j:n] occurring as a substring of y, and
its corresponding extended locus in the suffix tree for y. An alternative solution for
matching statistics is applying the external matching problem for file transmission [101]
by building one suffix tree at time on the strings y@w, where @ is a separator and w
is taken over O(|x|/|y|) overlapping substrings of x of size 2|y|; however, the technique
in [23] is on-line because it can work also on an already built suffix tree for y. In [23],
it is shown how to employ such a matching statistics to obtain expected sublinear time
approximate queries.

Alternative forms of pattern matching, which should be more properly called pattern
matching combinatorics or statistics require to detect substructures of the text that
satisfy certain properties (such as repetitions, palindromes, etc... etc...). The problem
of finding the palindromes of maximal length in a string x can be easily solved in linear
time with suffix trees, for a constant sized alphabet. First build a suffix tree T on the
string ω = x@xR$, where @ is a distinct separator not occurring elsewhere and xR is
the reversed string of x. Preprocess T to answer LCA queries [56, 88] so to apply the
aforementioned technique of [71, 72] for finding the longest common prefix of any two
suffixes of ω. For each position j of x, we want to find the maximal palindrome having
center in j, that is, the maximum k such that either x[j:j + k − 1] = (x[j − k:j − 1])R

or x[j + 1:j + k] = (x[j − k:j − 1])R. The former condition is for palindromes of even
length; the latter for those of odd length. It suffices therefore to find k in constant time
as the length of the longest common prefix between the two suffixes of ω starting either
in positions j and 2|x| + 3 − j or in positions j + 1 and 2|x| + 3 − j, respectively.

Another example is finding the longest repeated substrings in x. A substring is
repeated in x if it appears at least twice in x. With a naive approach, it would require
quadratic time to find the longest repeated substrings. However, by the Node Existence
Property on the suffix tree T , a substring of x is repeated if and only if it has extended

locus in an internal node of T . In particular, the strings having locus in the internal
nodes of T are the candidates for being the longest repeated substrings, and the total
number of those strings is upper bounded by the number of internal nodes of T , i.e. |x|.
It suffices to take the longest ones with a simple visit of T in linear time. In the same
fashion, in coding theory [89], suffix trees can be used to find the shortest prefix of each
suffix of x$ that does not occur elsewhere in x as follows. For each suffix x[j, n]$, take
the pathstring y having locus in the parent of leaf j, and append to y the (j + |y|)–th
character of x$, say a. Thus y is a prefix of x[j, n]$ that occurs at least twice in x, but
ya is a prefix of x[j, n]$ that occurs only once. Problems of this kind are found also in
data compression schemes [39, 73, 83, 84, 102, 103], in compressing assembly code [40],
and in searching for the longest run of a given motif in molecular sequences [53, 54, 100].

Suffix trees help also to design elegant algorithms for finding squares [10, 68] and rep-
etitions in a string [10]; computing statistics for the non-overlapping occurrences [11];
finding the longest match between all ordered suffix-prefix pairs of a given set of
strings [55]; finding the longest substring that appears in h out of k strings, for any
h ≥ 2 [58]; computing characteristic strings [59]; matching a string as an arbitrary path
of an unrooted labeled tree [4]; performing efficient dictionary matching [6, 5, 7, 21, 43].
Other interesting applications are described in the excellent survey of Apostolico [8].

Beside pattern matching, suffix trees have been applied to many other problems,

7

such as metric distance on strings [34], complexity measure on random strings for cryp-
tology [81], inverted indices [22], analyzing genetic sequences [25, 23], finding duplica-
tion in programming code [13], generating names for programs in assembly tasks [14],
and testing unique decipherability for a set of words [83]. We will see some other
extensions and generalizations of suffix trees in Section 4.

3 Sequential Construction of a Suffix Tree

In this section we describe efficient algorithms for the construction of the suffix tree of
a string. In the following, we assume that x[1:n] is a string over the alphabet Σ, and $
is the endmarker. We will first describe the simplified version of Weiner’s construction
given by Chen and Seiferas [24], which scans the input string from right to left. Next, we
present the algorithm by McCreight [77], which is based upon a left-to-right scanning.
We also sketch the method of Amir et al. [6] for extending McCreight’s construction to
handle a dynamic set of strings.

3.1 The algorithm of Chen and Seiferas

Chen and Seiferas is basically a simplified version of Weiner’s algorithm, and maintains
the following auxiliary structures. For the sake of presentation, the nodes will be
identified with the substrings they represent. For each node z and for each character
a ∈ Σ, we define three types of links. The first is a link to the node (if any) that is the
locus of the shortest extension of substring za. This is called the a−extension link of
z. The second is a link to the node (if any) that is the locus of the shortest extension
of substring az. This is called the a−shortcut link of z. The third is a link to the prefix
parent of z (if any). This is called the prefix link of z.

As mentioned before, we associate with each node a pair of positions that locates
one occurrence of the corresponding substring into x$. The main goal of the suffix
tree is to construct prefix and extension links, while we build shortcut links only for
efficiency issues during the construction. Note that prefix links are actually just the
reverses of extension links, so we need to specify only how to build one of them.

The algorithm works from right to left. The suffix tree of x$ = $ trivially consists
of two nodes and can be obviously built in constant time. To build the suffix tree of
az$, we assume inductively that we built already the suffix tree of z$, and that we have
pointers to the root and to the leaf z$ of this tree. Now we show how to build the
suffix tree of az$ starting from the suffix tree of z$. Note that the new substrings to
be represented are prefixes of az$. Let y be the longest prefix of az$ that is already a
substring of z$: to build the new tree we have to install az$ as a new extension starting
from y.

The first problem is how to locate y in the suffix tree of z$. Note that y might not
necessarily be a node in the suffix tree of z$, in which case we will have to install it.
We find y starting from the root as follows. If the root does not have an a-extension,
then y is the root itself since in this case y = ε. If the root has an a-extension, we could
find y by tracing az$ along extension links down from the root until az$ departs from
the substrings in the tree. For strings like an$, however, this would accumulate overall

8

O(n2) time to install all suffixes. Fortunately, the following lemma shows how to avoid
this pathological behavior.

Lemma 3.1. Let y be the longest prefix of az$ that is already a substring of z$, and
let v be the second suffix of y (i.e., y = av). Then v must be a node in the suffix tree
of z$.

Proof: To prove the lemma, we use some properties that follow directly from the
definition of y. First, y does not contain the endmarker $ since y is at the same time a
prefix of az$ and a substring of z$. Let b be the character following y in az$: note that
b is always defined. Since yb = avb is a prefix of az$, it follows that vb is a substring of
z$. Second, yb cannot be a substring of z$ (otherwise y would not be the longest prefix
of az$ that is a substring of z$). Since y is a substring of z$ and y does not contain
$, there must be a character c (possibly c = $), such that c 6= b and yc is a substring
of z$. Thus, there exists c 6= b such that vc is a substring of z$. In summary, there
exist b and c with b 6= c, such that vb and vc are both substrings of z$: by the Node
Existence Property, v must be a node in the suffix tree of z$.

Using Lemma 3.1, we can locate y as follows. We trace up along prefix links from
z$, looking for node v: note that it can be easily recognized, since it will be the first
node with an a-shortcut. We follow this shortcut, which leads us either to y = av if
this is already a node, or to its shortest extension avw that is a node. In the latter
case, we have to install y as a new node between avw and its prefix parent, and set
the shortcut links departing from y equal to the ones from avw. The a-shortcut links
arriving to the new node y will be directed from the nodes on the prefix path from v up
to the last node v′ not already having an a-shortcut link to the prefix parent of node
av.

When y has been found or installed, we install the new node az$ as an extension of
y. Shortcut links to az$ will be directed from the nodes on the prefix path from z$ up
to the last node not already having an a-shortcut link (note that the prefix parent of
such a node is node v). Notice that both these and the shortcut links directed to y (in
case y was installed) require a traversal of the path from z$ up to v′. This shows that
the time required to build the suffix tree of az$ from the suffix tree of z$ is proportional
to the number of nodes along the path from z$ to v′. This observation will be crucial
for our time analysis.

Theorem 3.1 (Chen and Seiferas [24]). Let Σ be an ordered alphabet, with con-
stant |Σ| and x be a string of n characters over Σ. The suffix tree of x$ can be computed
in total time O(n).

Proof: We use the previous observation to compute the total time required to build
the suffix tree of the string x$. Namely, we show by an amortization argument that at
each step the length of the path from z$ to v′ can be amortized against the reduction in
depth from z$ to az$. That is, the more we go up on the prefix path from z$, the less
we have to go up from az$ in the next step. Let πz$ be the path from the root to z$,
and let πy be the path from the root to y = av. Note that if av′′ is a node in πy, there
must be a node v′′ in πz$ above v′ (recall that v′ is along the path to v). Indeed, the fact
that av′′ is a node means that av′′b and av′′c occur in az$ for two distinct characters

9

b and c. This implies that also v′′b and v′′c occur in z$. That is, there is a node for
v′′. Therefore the path πy from the root to y is no larger than the path πz$ from the
root to z$. Since az$ is installed as an extension below y, the reduction in depth from
z$ to az$ is enough to compensate for the time spent in the path between z$ and v′,
except for some small additive constant. Since the greatest possible increase in depth
of the tree is constant for each iteration, the total depth reduction, and therefore the
total running time of the algorithm, must be linear.

3.2 The algorithm of McCreight

We now give a high-level description of the suffix tree construction by McCreight [77].
For the sake of presentation, the nodes will be identified with the substrings they
represent (the root represents the empty string). There are still three types of links.
Two of them, the extension and prefix links, are defined as before. The third link is
called the suffix link, and is defined as follows: for each node az other than the root,
with a ∈ Σ and z ∈ Σ∗, the suffix link connects node az to node z. Note that such a
link is basically the reverse of the a-shortcut link from z to az in Chen and Seiferas’
algorithm. As for the root, we can safely assume that its suffix link points to the root
itself. As before, the main goal of the suffix tree is build prefix and extension links,
while suffix links are for efficiency issues.

The algorithm works from left to right, and it has n + 1 steps. In step i, for
1 ≤ i ≤ n + 1, the i-th suffix x[i:n]$ is installed in Ti−1, assuming that Ti−1 is the
compacted trie built on the first i − 1 suffixes of x$. Initially, for i = 1, tree T1 for
x[1:n]$ is trivially composed of two nodes and it can be computed in constant time.
To produce Ti for i > 1 we must locate in Ti−1 the extended locus of the largest prefix
of x[i:n]$. Such a prefix is called headi: it is a node in Ti, but not necessarily in Ti−1.
Leaf x[i:n]$ is installed as a child of headi in Ti.

Once again, we could find headi starting from the root, but it would accumulate to
O(n2) overall time to install all suffixes. Instead, the algorithm of McCreight cleverly
computes the location of headi in Ti−1 with the help of headi−1 in Ti−1 and the suffix
links. Indeed, the relation between headi−1 and headi is as follows:

Lemma 3.2 (McCreight [77]). The second suffix of headi−1 is a prefix of headi.

Let w be the second suffix of headi−1 (if headi−1 is the empty string then w also
is the empty string). Notice that by definition of headi−1 there exists a path in Ti−1

corresponding to w (i.e., w has extended locus in Ti−1). We could therefore think of
using the suffix link from headi−1 to reach the node w, and from there to follow the path
to headi (note that w = headi if and only if |headi| = |headi−1| − 1). Unfortunately,
the locus for string w is not guaranteed to exist in Ti−1 (while the extended locus for
w does exist). So the suffix link for headi−1 in Ti−1 is not always defined. However, as
we show next, the suffix links for all other nodes are always defined. Indeed, the suffix
link for the root is always defined and it points to the root itself. If az is a node of
Ti−1, other than the root and headi−1, then there exist two substrings azb and azc such
that they are prefixes of some of the first i− 2 suffixes of x$, for a, b, c ∈ Σ with b 6= c,
and z ∈ Σ∗. Thus zb and zc are also two distinct prefixes of the first i − 1 suffixes of

10

x$, implying that z is a node in Ti−1. By using an inductive argument, it follows that
the suffix link from az to z is always defined.

We now show how to locate the extended locus of w and headi in Ti−1. Then it is
an easy task to create a node for headi (if it is not already in Ti−1) and its leaf x[i:n]$,
and to make the suffix link in headi−1 point to its correct location. This way, the tree
Ti is correctly produced. To locate headi three substeps are carried out:

M1 : If the suffix link for headi−1 is defined, set w as the node that can be reached
from headi−1 through its suffix link, and go to Substep M3 skipping Rescan-
ning.

M2 : (Rescanning) This phase locates the extended locus of string w in Ti−1, in-
stalling a node w if it is not there. Let f be the parent of node headi−1 in
tree Ti−1. Let f ′ the node that can be reached from f through its suffix link.
String w can be found descending from f ′ (including itself). It is reached by
branching recursively in Ti−1 in the following way. Let u be the current node,
initially set to f ′, and a be the character such that ua is a prefix of x[i:n]$.
If there is a branch out of u with initial character equal to a, then follow it
to reach its child u′. If the length of substring u′ is less than |headi−1| − 1
(by Lemma 3.2), then set u := u′ and apply recursively the branching. If the
length of substring u′ is equal to |headi−1| − 1, set w = u′. Otherwise, the
length of substring u′ is greater than |headi−1| − 1: install a node w between
u and u′. In this case, the character following w in x[i:n]$ is different from
the one following w along its unique child u′. So after Substep M3 node w
will not be unary. In all cases, the suffix link of headi−1 can be correctly set
to w, which is surely a node now.

M3 : (Scanning) In this phase, we locate (and possibly install) headi starting from
the node w that is reached in Substep M2. The major difference between
Scanning and Rescanning is that in Rescanning the length of w is known
beforehand because of Lemma 3.2, while in Scanning the length of headi is
not known in advance. Let w′ be the substring such that x[i:n]$ = w w′.
Starting from w, and examining one character of w′ at the time from left to
right, we spell w′ going deeper and deeper in the tree. When we stop, we
install headi if it is not already a node, and install the new suffix as a child
of headi.

It has been shown by McCreight that the overall number of suffix links traversed and
nodes rescanned in Substep M2, and of characters scanned in Substep M3 accumulates
to O(n). This time analysis holds if the alphabet Σ is of constant size, so that we can
follow in O(1) a link labeled with a certain character from a given node. If this is
not the case, and the size |Σ| of the alphabet is not a constant, the adjacency lists
for nodes in T must be organized by means of balanced search trees. This adds an
O(log min(|Σ|, n)) factor to the linear bound.

Theorem 3.2 (McCreight [77], Pratt [82]). Let Σ be an ordered alphabet, and
x a string of n characters over Σ. The suffix tree of x$ can be computed in time
O(n log min(|Σ|, n)).

11

Since building a suffix tree of x implicitly gives an ordering of the characters in x,
no suffix tree construction can be faster than sorting the characters in x.

3.3 Extension of McCreight’s construction to a set of strings

An interesting modification of McCreight’s construction to a dictionary of strings
x1, . . . , xk, which can be updated by adding or removing strings, is given as part of the
algorithms for solving the dynamic dictionary matching [6] and the all pairs suffix-prefix
problem [55]. Briefly, the construction of the suffix tree for the string x1$1 · · · xk$k,
where all $’s are distinct, is simulated without introducing the O(log k) overhead due
to the distinct $’s. Let n be the sum of the lengths of the strings. The main ideas of
Amir et al. [6] can be summarized as follows:

• The suffix tree for x1$1 · · ·xk$k is isomorphic to the compacted trie for all suffixes
of x1$1, all suffixes of x2$2, etc. Moreover, $1, . . . , $k are simulated with a single
character $ that does not match itself. That requires storing the number of
suffixes having locus in the same leaf.

• To add a new string xk+1$k+1 in O(|xk+1| log min(|Σ|, n)) time, simply start from
the root and go to Step M3 of McCreight’s algorithm. Indeed, the second suffix
w of the head of the last inserted suffix ‘$k’ (Lemma 3.2) is the empty string.

• To remove xi$i in O(|xi| log min(|Σ|, n)) time, notice that the two permuted
strings x1$1 · · ·xi−1$i−1xi$ixi+1$i+1 · · ·xk$k and x1$1 · · ·xi−1$i−1xi+1$i+1 · · ·xkkxii

yield two isomorphic suffix trees. We remove the leaves corresponding to the suf-
fixes of xi$i taken in decreasing length. We are guaranteed that, when removing
a unary node v that is parent of one of those leaves, no suffix link is pointing to
v.

A formal description and the proof of correctness can be found in [6].

4 Extensions and Generalizations of Suffix Trees

Suffix trees can be used for detecting similarities of a polygon in pattern recognition
(in [96], a polygon structure graph is used for this purpose). Given a polygon Q with
m edges, let x1y1x2y2 · · ·xmym be the sequence of internal angles xi and edge lengths
yi of Q, read in clockwise order, and let string(Q) = x1y1 · · · xmymx1y1 · · · xm−1ym−1.
Then, two pieces of Q’s contour are similar if they are equal as substrings in string(Q).
This observation leads to efficient algorithms for finding the rotational symmetries
in Q, performing contour matching (called coastline matching in [96]) and similarity
scaling (by deleting the lengths yi’s from string(Q)). With an analogous trick, we
can partition a set of polygons into equivalence classes of similar polygons, or detect
similarity between two polygons (see also [19, 90]).

We now mention the generalization of the suffix tree for parameterized pattern
matching of Baker [13], which gives an important application in software maintenance.
The problem consists of finding duplications of code in large software systems, by
tracking down matches between different sections of code. We are looking not only for

12

exact matches, but also for parameterized matches (in short p-matches). P-matches
occur when sections of code may match except for the renaming of some parameters
(e.g., identifiers and constants). It is important to detect this kind of duplications, as
they are undesirable because of their possible association with bugs.

Exact matches can be found by using suffix trees in a plain fashion, as described
before. To find parameterized matches requires to augment the notion of suffix tree
in order to take into account the parameters, as follows. Parameterized strings, or
p-strings in short, are strings that contain both ordinary characters drawn from the
alphabet Σ, and parameter characters drawn from another finite alphabet Π. We
assume that Σ and Π are disjoint, there is an ordering defined in both alphabets, and
any two characters can be compared in constant time. Two p-strings yield a p-match if
one can be transformed into the other by applying a one-to-one function that renames
the parameter characters. For example, if Σ = {a, b} and Π = {x, y, z}, then there
is a p-match between abxyabxyx and abyzabyzy by renaming simultaneously x with y
and y with z in the first p-string. To handle p-matches, Baker defines a parameterized
suffix tree (or p-suffix tree), which generalizes the notion of suffix tree.

The crucial idea behind the p-suffix tree is to chain together occurrences of the same
parameter so that matching parameters correspond to matching chains. These chains
will then be encoded in the p-suffix tree. In particular, we chain together occurrences
of the same parameter by associating non-negative integers to parameters, as follows.
For each parameter, the leftmost occurrence is represented by a 0, and each successive
occurrence is represented by the difference in position with the previous occurrence.
An integer representing the difference in position is called a parameter pointer. For
instance, we represent the chain of parameters of the p-string abxyabxyx as ab00ab442.
We refer to this as prev(abxyabxyx). Note that prev(abxyabxyx) =prev(abyzabyzy).
Indeed, it can be easily shown that any two p-string s and q yield a p-match if and
only if prev(s) =prev(q).

Let s be a p-string of length n, and let s[i] be the i-th character of s: s = s[1:n]. The
i-th p-suffix of s is psuffix (s, i) = prev (s[i:n]). Based upon this definition, a character
of prev(s) corresponds to a different value in psuffix(s, i) if and only if it is a parameter
pointer pointing to a position before i. Note that the following property holds:

P-matching: Let p and s be any two p-strings: p matches at position i of s if and
only if prev(p) is a prefix of psuffix(s, i).

The value of the j-th character of psuffix(s, i) can be easily computed by looking
at j and the corresponding character b = s[j + i − 1] of prev(s). We define this in a
function f : if b is a parameter pointer larger than (j − 1), then f(b, j) = 0; otherwise
f(b, j) = b. We are now ready for the definition of p-suffix tree.

The p-suffix tree of a p-string s is a compacted trie that stores all the p-suffixes of s$.
Analogously to the case of a suffix tree, each arc represents a non-empty substring of a
p-suffix, each internal node has at least two outgoing arcs, and substrings represented
by sibling arcs must begin with different characters. A consequence of the previous
definitions is that the pathstring of each leaf gives a distinct p-suffix of s. Once again,
if a p-string s has length n, its p-suffix tree has O(n) size. By Property P-matching,
the search of all the occurrences of a p-string p into a p-string s can be accomplished
analogously to the case of suffix trees of strings. Indeed, we can follow the path spelled

13

by successive characters of prev(p) going downward from the root in the p-suffix tree
of s. This search requires O(|p|(log(|Σ|+ |Π|))) time, by using balanced search trees to
organize the adjacency lists in the p-suffix tree. As for suffix trees, the p-matches can
be calculated from the descending leaves. To find duplication in code, we can apply
the substring statistics, discussed earlier for ordinary suffix trees, to the p-suffix tree.

In summary, testing whether a p-string p has a p-match with a substring of another
p-string s can be done in time O(|p| log(|Σ|+ |Π|)) and space O(|s|) using p-suffix trees.
All the positions of s at which p has a p-match can be reported in time O(|p| log(|Σ|+
|Π|) + k), where k is the total number of p-matches of p in s.

5 Conclusions

In this paper we have surveyed the suffix tree, an ubiquitous data structure that ap-
pears in different fields related to string processing. We have presented some of its
applications in different areas, and have described the main algorithmic techniques
used for its sequential and parallel construction. We have given a particular emphasis
to the newest developments related to suffix trees, such as parallel algorithms for suffix
tree construction and generalizations of suffix trees to higher dimensions, which are
important in multidimensional pattern matching.

Acknowledgments

We are indebted to Dany Breslauer for many useful comments, to R. Giegerich for
sending us reference [47], to Gaston Gonnet for pointing out reference [48], and to
the referees for their useful comments which greatly improved the presentation of this
paper.

References

[1] Aho, A. V., Algorithms for finding patterns in strings, in Handbook of Theoretical

Computer Science, vol. A, J. van Leeuwen ed., MIT Press, Cambridge, MA, 255–
300, (1990).

[2] Aho, A. V., and Corasick, M. J., Efficient string matching: an aid to bibliographic
search, Comm. ACM, 18 (1975), 333–340.

[3] Aho, A. V., Hopcroft, J. E., and Ullman, J. D., The design and analysis of

computer algorithms, Addison-Wesley, Reading, MA, (1974).

[4] Akutsu, T., A linear time pattern matching algorithm between a string and a
tree, Combinatorial Pattern Matching, 1–10, (1993).

[5] Amir, A., and Farach, M., Two-dimensional dictionary matching, Information

Processing Letters, 44, 233-239, (1992).

[6] Amir, A., Farach, M., Galil, Z., Giancarlo, R., and Park, K., Dynamic dictionary
matching, Journal of Computer and System Science, 49, 208–222, (1994).

[7] Amir, A., Farach, M., and Matias, Y., Efficient randomized dictionary matching
algorithms, Combinatorial Pattern Matching, 262–275, (1992).

14

[8] Apostolico, A., The myriad virtues of subword trees, in Combinatorial algorithms

on words, A. Apostolico and Z. Galil eds., Springer-Verlag, Berlin, 85–95, (1985).

[9] Apostolico, A., Iliopoulos, C., Landau, G. M., Schieber, B., and Vishkin, U.,
Parallel construction of a suffix tree with applications, Algorithmica, 3, 347–365,
(1988).

[10] Apostolico, A., and Preparata, F. P., Optimal off-line detection of repetitions in
a string, Theoret. Comp. Sci. 22, 297–315, (1983).

[11] Apostolico, A., and Preparata, F. P., Structural properties of the string statistics
problem, Journal of Comput. and Syst. Sci., 31, 394–411, (1985).

[12] Apostolico, A., and Szpankowski, W., Self-alignment in words and their applica-
tions, J. Algorithms, 13, 446–467, (1992).

[13] Baker, B.S., A theory of parameterized pattern matching: algorithms and appli-
cations, Proc. 25th Symp. on Theory of Computing, 71–80, (1993).

[14] Bagget, P., Ehrenfeucth, A., and Perry, M., A technique for designing computer
access and selecting good terminology, Proc. Rocky Mountains Conference on

Artificial Intelligence, Breit International Inc., Boulder, Colorado, (1986).

[15] Bhatt, P.C., Diks, K., Hagerup, T., Prasad, V.C., Radzik, T., and Saxena, S.,
Improved deterministic parallel integer sorting, Information and Computation,
94, 29–47, (1991).

[16] Blumer, A., Blumer, J., Haussler, D., Ehrenfeucht, A., Chen, M. T., and Seiferas,
J., The smallest automaton recognizing the subwords of a text, Theoret. Comput.

Sci., 40, 31–55, (1985).

[17] Blumer, A., Blumer, J., Haussler, D., McConnell, R., and Ehrenfeucht, A., Com-
plete inverted files for efficient text retrieval and analysis, J. ACM 34, 578–595,
(1987).

[18] Blumer, A., Ehrenfeucht, A., and Haussler, D., Average size of suffix trees and
DAWGs, Discrete Appl. Math. 24, 37–45, (1989).

[19] Booth, K.S., Lexicographically least circular substrings, Information Processing

Letters, 10, 240-242, (1980).

[20] Boyer, R. S., and Moore, J. S., A fast string searching algorithm, Comm. ACM,
20, 762–772, (1977).

[21] Breslauer, D., Dictionary-matching on unbounded alphabets: uniform-length dic-
tionaries, Combinatorial Pattern Matching, 184–197, (1994).

[22] Cardenas, A. F., Analysis and performance of inverted data base structures,
Comm. ACM, 5, 253–263, (1975).

[23] Chang, W. I., and Lawler, E. L., Sublinear approximate string matching and
biological applications, Algorithmica, 12, 327–344, (1994).

[24] Chen, M. T., and Seiferas, J., Efficient and elegant subword tree construction,
in Combinatorial algorithms on words, A. Apostolico and Z. Galil eds., Springer-
Verlag, Berlin, 97–107, (1985).

[25] Clift, B., Haussler, D., McConnell, R., Schneider, T. D., and Stormo, G. D.,
Sequences landscapes, Nucleic Acids Research, 4, 141–158, (1986).

[26] Cole, R., Parallel merge sort, SIAM J. Comput., 17, 770–785, (1988).

15

[27] Cole, R., and Vishkin, U., Deterministic coin tossing with application to parallel
list ranking, Information and Control, 70, 32–53, (1986).

[28] Crochemore, M., Transducers and repetitions, Theoretical Computer Science 45,
63–86, (1986).

[29] Crochemore, M., Czumaj, A., Gasieniec, L., Jarominek, S., Lecroq, T.,
Plandowski, W., and Rytter, W., Speeding up two string-matching algorithms,
Algorithmica, 12, 247–267, (1994).

[30] Crochemore, M., and Rytter, W., Parallel construction of minimal suffix and
factor automata, Inf. Proc. Let. 35, 121–128, (1990).

[31] Crochemore, M., and Rytter, W., Usefulness of the Karp-Miller-Rosenberg al-
gorithm in parallel computations on strings and arrays, Theoretical Computer

Science, 88, 59–82, (1991).

[32] Devroye, L., Szpankowski, W., and Rais, B., A note on the height of suffix trees,
SIAM J. Comput., 21, 48–53, (1993).

[33] Dubiner, M., Galil, Z., and Magen, E., Faster tree pattern matching, J. ACM,
14, 205-213 (1994).

[34] Ehrenfeucht, A., and Haussler, D., A new distance metric on strings computable
in linear time, Disc. Applied Math., 20, 191-203, (1988).

[35] Farach, M., and Muthukrishnan, S., Private Communication, (1994).

[36] Ferragina, P., Incremental text editing: a new data structure, Proc. European

Symposium on Algorithms, 495–507, (1994).

[37] Ferragina, P., and Grossi, R., Fast incremental text editing, Proc. ACM-SIAM

Symposium on Discrete Algorithms, 531–540, (1995).

[38] Ferragina, P., and Grossi, R., A fully-dynamic data structure for external sub-
string search, Proc. ACM Symposium on Theory of Computing (1995).

[39] Fiala, E. R., and Greene, D. H., Data compression with finite windows, Comm.

ACM, 32, 490–505, (1989).

[40] Fraser, C., Wendt, A., and Myers, E. W., Analyzing and compressing assembly
code, Proc. SIGPLAN Symp. on Compiler Construction, 117–121, (1984).

[41] Galil, Z., and Giancarlo, R., Data structures and algorithms for approximate
string matching, J. Complexity, 4, 33–72, (1988).

[42] Galil, Z., and Park, K., An improved algorithm for approximate string matching,
SIAM J. Comput., 19, 989–999, (1990).

[43] Giancarlo, R., The suffix tree of a square matrix, with applications, Proc. 4th

ACM-SIAM Symp. on Discrete Algorithms, 402–411, (1993). To appear in SIAM

J. Comput.

[44] Giancarlo, R., An index data structure for matrices, with applications to fast
two-dimensional pattern matching, Proc. of Workshop on Algorithms and Data

Structures, (1993).

[45] Giancarlo, R., and Grossi, R., Parallel construction and query of suffix trees for
two-dimensional matrices, Proc. ACM Symp. on Parallel Algorithms and Archi-

tectures, (1993).

16

[46] Giancarlo, R., and Grossi, R., On the construction of classes of suffix trees for
square matrices: algorithms and applications, Proc. International Colloquium on

Automata, Languages, and Programming, (1995).

[47] Giegerich, R., and Kurtz, S., From Ukkonen to McCreight and Weiner: A unifying
view of linear-time suffix tree construction, Technical report 94-03, Universität
Bielefeld, Technische Fakultät, Germany, (1994).

[48] Gonnet, G. H., Efficient searching of text and pictures. Technical report OED-
88-02, University of Waterloo, (1988).

[49] Gonnet, G. H., and Baeza-Yates, R., Handbook of Algorithms and Data Struc-

tures. Addison-Wesley, (1991).

[50] Gonnet, G. H., Baeza-Yates, R. A., and Snider, T., New indices for text: PAT
trees and PAT arrays. Information Retrieval: Data Structures and Algorithms,
W.B. Frakes and R.A. Baeza-Yates, Eds., Prentice-Hall, 66–82, (1992).

[51] Grassberger, P., Estimating the information content of symbol sequences and
efficient codes, IEEE Trans. Information Theory 35, 669–675, (1991).

[52] Gu, M., Farach, M., and R. Beigel, An efficient algorithm for dynamic text
indexing, Proc. ACM-SIAM Symposium on Discrete Algorithms, (1994).

[53] Guibas, L., and Odlyzko, A., Periods in strings, J. Combinatorial Theory Ser.A,
30, 19-43, (1981).

[54] Guibas, L., and Odlyzko, A., String overlaps, pattern matching, and nontransitive
games, J. Combinatorial Theory Ser.A, 30, 183-208, (1981).

[55] Gusfield, D., Landau, G. M., and Schieber., B., An efficient algorithm for all
pairs suffix-prefix problem, Information Processing Letters, 41, 181–185, 1992.

[56] Harel, H. T., and Tarjan, R. E, Fast algorithms for finding nearest common
ancestors, SIAM Journal on Computing, 13, 338–355, (1984).

[57] Hariharan, R., Optimal parallel suffix tree construction, Proc. 26th Symp. on

Theory of Computing, (1994).

[58] Hui, L.C.K, Color set size problem with applications to string matching, Combi-

natorial Pattern Matching, 230–243, (1992).

[59] Ito, M., Shimizu, K., Nakanishi, M., and Hashimoto, A., Polynomial-time al-
gorithms for computing characteristic strings, Combinatorial Pattern Matching,
274–288, (1994).

[60] Jacquet, P., and Szpankowski, W., Autocorrelation on words and its application:
Analysis of suffix trees by string-ruler approach, J. Combinatorial Theory Ser.A,
66, 237-269, (1994).

[61] JáJá, J., An Introduction to Parallel Algorithms, Addison-Wesley, Reading, MA,
(1992).

[62] Jain, R., Workshop report on visual information systems, Tech. Rep., National
Science Foundations, (1992).

[63] Karkkainen, J., Suffix cactus: a cross between suffix tree and suffix array, Proc.

Combinatorial Pattern Matching, (1995).

[64] Karp, R. M., Miller, R. E., and Rosenberg, A. L., Rapid identification of repeated
patterns in strings, trees and arrays, Proc. 4th Annual ACM Symp. on Theory of

Comput., 125–136, (1972).

17

[65] Kempf, M., Bayer, R., and Güntzer, U., Time optimal left to right construction
of position trees, Acta Informatica, 24, 461–474, (1987).

[66] Kosaraju, S.R., Fast pattern matching in trees, Proc. 30th IEEE Symp. on Found.

of Computer Science, 178-183, (1989).

[67] Kosaraju, S.R., Real-time pattern matching and quasi-real-time construction of
suffix trees, Proc. 26th Symp. on Theory of Computing, (1994).

[68] Kosaraju, S.R., Computation of squares in a string, Combinatorial Pattern

Matching, 146-150 (1994).

[69] D. E. Knuth, J. H. Morris and V. R. Pratt, Fast pattern matching in strings,
SIAM J. Comput., 6 (1977), 63–78.

[70] Landau, G. M., and Vishkin, U., Introducing efficient parallelism into approx-
imate string matching, Proc. 18th Symp. on Theory of Computing, 220–230,
(1986).

[71] Landau, G. M., and Vishkin, U., Fast string matching with k differences, Journal

of Computer and System Science, 37, 63–78, (1988).

[72] Landau, G. M., and Vishkin, U., Fast parallel and serial approximate string
matching, J. Algorithms, 10, 157–169, (1989).

[73] Lempel, A., and Ziv, A., On the complexity of finite sequences, IEEE Trans.

Information Theory, 22, 75–81, (1976).

[74] López-Ortiz, A., Linear pattern matching of repeated substrings, SIGACT News,
25, 114-121, (1994).

[75] Majster, M. E., and Reiser, A., Efficient on-line construction and correction of
position trees, SIAM J. Comput., 9, 785–807, (1980).

[76] Manber, U., and Myers, G., Suffix arrays: a new method for on-line string
searches, Proc. 1st ACM-SIAM Symp. on Discrete Algorithms, 319–327, (1990).

[77] McCreight, E. M., A space-economical suffix tree construction algorithm, J.

ACM, 23, 262–272, (1976).

[78] Morrison, D. R., PATRICIA – Practical algorithm to retrieve information coded
in alphanumeric, J. ACM, 15, 514–534, (1968).

[79] Myers, E., An O(ND) difference algorithm and its variations, Algorithmica, 1,
251-266, (1986).

[80] Myers, E., A sublinear algorithm for approximate keyword searching, Algorith-

mica, 12, (1994).

[81] O’Connor, and Snider, Suffix trees and string complexity, Advances in Cryptology:

Proc. of EUROCRYPT, LNCS 658, (1992).

[82] Pratt, V., Improvements and applications for the Weiner repetition finder, Un-
published manuscript, (1975).

[83] Rodeh, M., A fast test for unique decipherability based on suffix trees, IEEE

Trans. Information Theory, 28, 648-651, (1982).

[84] Rodeh, M., Pratt, V., and Even, S., Linear algorithm for data compression via
string matching, J. ACM, 28, 16–24, (1991).

[85] Rosenfeld, A., and Kak, A. C., Digital Picture Processing, Academic Press,
(1982).

18

[86] Sahinalp, S.c., and Vishkin, U., Symmetry breaking for suffix tree construction
Proc. 26th Symp. on Theory of Computing, (1994).

[87] Sankoff, D., and Kruskal, J. B., eds., Time Warps, String Edits, and Macro-

molecules: The Theory and Practice of Sequence Comparison, Addison-Wesley,
Reading, MA, (1983).

[88] Schieber, B., and Vishkin, U., On finding lowest common ancestor: simplification
and parallelization, SIAM J. Comp., 17, 1253-1262, (1988).

[89] Shields, P., Entropy and prefixes, Annals of Probability, 20, 403-409, (1992).

[90] Shiloach, Y., Fast canonization of circular strings, J. of Algorithms 2 (1981) 107-
121.

[91] Sleator, D. D., and Tarjan, R. E., A data structure for dynamic trees, Journal of

Computer and System Science, 24, 362–381, (1983).

[92] Slisenko, O., Detection of periodicities and string-matching in real time, Journal

of Soviet Mathematics, 22, 1316–1387, (1983).

[93] Storer, J.A., Private communication, (1995).

[94] Szpankowski, W., A generalized suffix tree and its (un)expected asymptotic be-
haviors, SIAM J. Comp., 22, 1176-1198, (1993).

[95] Szpankowski, W., Asymptotic properties of data compression and suffix trees,
IEEE Trans. Information Theory, 33, (1993).

[96] Tanimoto, S. L., A method for detecting structure in polygons, Pattern Recogni-

tion, 13, 389–394 (1981).

[97] Teskey, F.N., Principles of text processing, J. Wiley & Sons, 1983.

[98] Ukkonen, E., Approximate string-matching over suffix trees, Combinatorial Pat-

tern Matching, 228-242, (1993).

[99] Ukkonen, E., On-line construction of suffix trees, Tech. Report A-1993-1, De-
partment of Computer Science, University of Helsinki, Finland, (1993).

[100] Waterman, M., ed., Mathematical methods for DNA sequences, CRC Press Inc.,
Boca Raton, FL, (1991).

[101] Weiner, P., Linear pattern matching algorithm, Proc. 14th IEEE Symp. on

Switching and Automata Theory, 1–11, (1973).

[102] Wyner, A., and Ziv, J., Some asymptotic properties of the entropy of a sta-
tionary ergodic data source with applications to data compression, IEEE Trans.

Information Theory 35, 1250–1258, (1989).

[103] Ziv, J., and Lempel, A., A universal algorithm for sequential data compression,
IEEE Trans. Information Theory 23, 337–343, (1977).

19

