AIW: Indicizzazione e Ricerca nei Testi

Roberto Grossi

Dipartimento di Informatica
rossi@di.unipi.it

Outline of the Course (in English)

«*Part I: How to search the Web
eRepresentation of the Web
eSearch engines

< Part II: How to index the Web
(and textual data)

elnverted lists
oSuffix arrays
oSuffix trees

Part |

WEB SEARCHING

Each page: unique address (URL)

Page address

Access

Internet host name Path name
protocol

URL = hyperlink to another page

KKKKRKKERE

Web as a graph

“ Web page u = node u in the graph
“ Hyperlink from page u to page v: directed edge (u,v)

« Alternatively: some relation between u and v
(e.g., after loading u, users typically load v)

Succinct representation of the Web

“ Represent and encode hyperlinks
(URLs ! short integer numbers)

% Use few memory storage
+“ Fast preprocessing

« Low query time:
oFind URLs arriving in u
oFind URLs departing from u

* Typical assumption: Zipf's law
1/ pages have indegree j
#1/j23 pages have outdegree j

http://www.di.unipi.it/~grossi/AIW
http://www.di.unipi.it/~grossi/index.html
http://www.di.unipi

Searching the Web

“*Web searching is text searching
eTextual data for describing audio and video
eHow to get textual data:

Put together the (con)text around URLs
pointing to a page with audio or video

Which kind of queries?

< Boolean: AND, OR, NOT:
“web and search” Cooghs

Proximity searching:
“web near search”

o

<&

Phrase searching:
“web search”

< Links referring to a page: S I
input is an URL W oo glecomMeTpoperators i}

% Tags searching:

e.g., “ intitle: web search” WORDS (or partial words)

Difference from classical IR

+ Retrieve high quality pages:
« Static documents: text, audio

+ Dynamic documents: generated by queries on data
bases via the Web (e.g., Amazon books)

“ Huge collections of data (Google is one of the largest
indexes, but it collects only 10% of the Web pages)

« No persistency (data is volatile)

« Heterogeneity (type of documents, languages, no
typographical control, etc.)

« Duplication (nearly same documents, different URLS)
« Removing non relevant info (e.g., banners)

Quality of search results

« Human-driven judgment on relevance

* Precision = % of returned pages that are relevant

C/A
< Recall = % of relevant pages that are returned
C/B
C
A B

2%

* Web: need to rank the quality of pages

Web and IR tools to help searching

+« Hierarchical directories (e.g., Yahoo)
« Topic-specialized engines
« Search by example (from a set of URLS)

“ Meta-information (e.g.,compare search
engines)

+ Clustering (from IR)
+ Categorization
« Summarization

+« Latent semanting indexing

Search engine structure

1. Spider/crawler: collect the documents
2. Indexer: Process and store data for quick access

3. Search interface: answer queries

http://www.google.com/help/operators.html

1. Spider or crawler

« Traverse the graph and collects documents
¢ Add pages to the index
+ Remove duplication (hash g-grams)
¢ Use some suitable traversal order of the Web graph
« Load balancing
« Filtering heterogeneous sources

Qm

2. Indexer

« The heart of search engines: full scan is/impractical...

X m aSSIVG collections of texts

% Low space occupancy
% Fast preprocessing

« Fast query answering

... more details later in Part Il

3. Search Interface

Too many reported documents!
Ranking using the Web graph

“ Human annotation: costly and impractical

+ Local ranking:
+ based on the only content of each document
+ good for filtering pages with offending content
< not valid for raking the quality of pages

+ Global ranking: exploit the Web graph
+ PageRank (and Salsa): assign rank before any query
« Hits: assign rank after each query

Search Interface: Ranking via Web

« URLs connect related pages
« An URL between pages is recommendation
« ldeas from ranking scientific papers by citations

Search Interface: PageRank

% Quality of u is related (after normalization) to
o Indegree of u
¢ Recursive quality of pages pointing to u

< Based on arandom walk on the Web graph with n nodes

% Random surfer on u goes to:
¢ Random page with probability p
+ One of the “next” pages v with probability 1-p

PR(U) = p/n + (1-p) X, PR(v) / outdegree(v)

< The value of PR converges to the stationary distribution
(Markov chain, see also SALSA)

Search Interface: HITS

< Graph on a subset of reported pages (with a IR criterion)

« Indegree: good authorities (for ¢
Outdegree: good hubs (for links)

« Recursive interaction between
e HUB(u) =ZXwz2 AUTH(z)
*AUTH(u)=ZwwHuB(v) (and normalize)
« Solve with iterative methods; extensions of HITS

Part Il

TEXT INDEXING

What is an index?

« Persistent and space-efficient data structure.
« Quickly answering lots of input queries.

« Accessing a small portion of the (huge) data
collection.

« Basic building block of any IR system.

Word-level indexing

Inverted lists (or files)

*++ OO00000000000000000000000000O000 -

] | I |

iy i

-

. Split the text into words
2. Collect all distinct words in a dictionary

3. For each word w, store the
(inverted or position) list
of its locations in the text

Simple implementation: one
pointer per location

Avg. word size, pointer size
) index space Yatext size

v Much better implementation:

compress the inverted lists
(e.g., yand & codes)

v Index space reduces to
10%-15% of the text

1%floor + 10floors
O

Full-Text Indexing

Suffix array

« Word-level is special case of full-text indexing:

Not only word beginnings,
but each text position
is a potential occurrence
+++ 00000000000000000000000000000000 =+
trerrerrrrrrrrrrrrrrrrrrrrrereed

« Alphabet Z, text T of size n (i.e., n dlog |Z| ebits) :

Naive approach: O(n?) space blow-up
Better approach: O(n) space (i.e., O(n log n) bits)
only the n suffixes are stored

» Sorted list of suffixes (a<#<b) 40-50

+ Better space occupancy: 4n bytes {loors

» Additional n bytes for fast searching

a8

aba#
ahaba# 10
floors

ba
baba#

SR

Suffix tree / Patricia fioars Automaton and DAWG

= Collapse isomorphic nodes to reduce
their number

= Average size is about/1.3 nodes per
character

= Nodes are of larger size
= Number of bytes does not reduce much

« Compact trie / Patricia storing the suffixes of bababa#

« Space is roughly 16n bytes

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

