
1

AIW: Indicizzazione e Ricerca nei Testi
http://www.di.unipi.it/~grossi/AIW

Roberto Grossi

Dipartimento di Informatica
grossi@di.unipi.it

Outline of the Course (in English)

Part I: How to search the Web
Representation of the Web
Search engines

Part II: How to index the Web
(and textual data)

Inverted lists
Suffix arrays
Suffix trees

Part I

WEB SEARCHING

http://www.di.unipi.it/~grossi/index.html

URL = hyperlink to another page

Each page: unique address (URL)

Access
protocol

Internet host name Path name

Page address

http://www.di.unipi.
it/~grossi/index.html

Web as a graph

Web page u = node u in the graph

Hyperlink from page u to page v: directed edge (u,v)

Alternatively: some relation between u and v
(e.g., after loading u, users typically load v)

http://www.
di.unipi.it/~g
rossi/index.h
tml

u
v

vu
(u,v)

Succinct representation of the Web

Represent and encode hyperlinks
(URLs ! short integer numbers)

Use few memory storage

Fast preprocessing

Low query time:
Find URLs arriving in u
Find URLs departing from u

Typical assumption: Zipf’s law
1 / j2.1 pages have indegree j
1 / j2.3 pages have outdegree j

http://www.di.unipi.it/~grossi/AIW
http://www.di.unipi.it/~grossi/index.html
http://www.di.unipi

2

Searching the Web

Web searching is text searching
Textual data for describing audio and video
How to get textual data:

Put together the (con)text around URLs
pointing to a page with audio or video

http://www
.di.unipi.it/
~grossi/ind
ex.html

http://www
.di.unipi.it/
~grossi/ind
ex.html

http://www
.di.unipi.it/
~grossi/ind
ex.html

Which kind of queries?

Boolean: AND, OR, NOT:
“ web and search ”

Proximity searching:
“ web near search ”

Phrase searching:
“ web search ”

Links referring to a page:
input is an URL

Tags searching:
e.g., “ intitle: web search ”

www.google.com/help/operators.html

WORDS (or partial words)

Difference from classical IR

Retrieve high quality pages:
Static documents: text, audio
Dynamic documents: generated by queries on data
bases via the Web (e.g., Amazon books)

Huge collections of data (Google is one of the largest
indexes, but it collects only 10% of the Web pages)

No persistency (data is volatile)

Heterogeneity (type of documents, languages, no
typographical control, etc.)

Duplication (nearly same documents, different URLs)

Removing non relevant info (e.g., banners)

Quality of search results

Human-driven judgment on relevance

Precision = % of returned pages that are relevant

C / A

Recall = % of relevant pages that are returned

C / B

Web: need to rank the quality of pages

A B

C

Web and IR tools to help searching

Hierarchical directories (e.g., Yahoo)

Topic-specialized engines

Search by example (from a set of URLs)

Meta-information (e.g.,compare search
engines)

Clustering (from IR)

Categorization

Summarization

Latent semanting indexing

Search engine structure

1. Spider/crawler: collect the documents

2. Indexer: Process and store data for quick access

3. Search interface: answer queries

http://www.google.com/help/operators.html

3

1. Spider or crawler

Traverse the graph and collects documents
Add pages to the index
Remove duplication (hash q-grams)
Use some suitable traversal order of the Web graph
Load balancing
Filtering heterogeneous sources

2. Indexer

The heart of search engines: full scan is impractical…

...massive collections of texts

Low space occupancy

Fast preprocessing

Fast query answering

… more details later in Part II

3. Search Interface

Human annotation: costly and impractical

Local ranking:
based on the only content of each document
good for filtering pages with offending content
not valid for raking the quality of pages

Global ranking: exploit the Web graph
PageRank (and Salsa): assign rank before any query
Hits: assign rank after each query

Too many reported documents!
Ranking using the Web graph

Search Interface: Ranking via Web

URLs connect related pages

An URL between pages is recommendation

Ideas from ranking scientific papers by citations

Search Interface: PageRank

Quality of u is related (after normalization) to
Indegree of u
Recursive quality of pages pointing to u

Based on a random walk on the Web graph with n nodes

Random surfer on u goes to:
Random page with probability p
One of the “next” pages v with probability 1-p

PR(u) = p / n + (1-p) (v,u) PR(v) / outdegree(v)

The value of PR converges to the stationary distribution
(Markov chain, see also SALSA)

Search Interface: HITS
Graph on a subset of reported pages (with a IR criterion)

Indegree: good authorities (for contents)
Outdegree: good hubs (for links)

Recursive interaction between

HUB(u) = (u,z) AUTH(z)

AUTH(u) = (v,u) HUB(v)

Solve with iterative methods; extensions of HITS

(and normalize)

u
v

z

4

Part II

TEXT INDEXING

What is an index?

Persistent and space-efficient data structure.

Quickly answering lots of input queries.

Accessing a small portion of the (huge) data
collection.

Basic building block of any IR system.

Word-level indexing

1. Split the text into words

2. Collect all distinct words in a dictionary

3. For each word w, store the
(inverted or position) list
of its locations in the text

i1 i2

w i1, i2,

Inverted lists (or files)

Simple implementation: one
pointer per location

Avg. word size ¸ pointer size
) index space ¼ text size

1 ½ floor + 10 floors

Much better implementation:

compress the inverted lists
(e.g., and codes)

Index space reduces to

10%-15% of the text

Full-Text Indexing

Word-level is special case of full-text indexing:

Not only word beginnings,
but each text position
is a potential occurrence

Alphabet , text T of size n (i.e., n d log | | e bits) :

Naive approach: O(n2) space blow-up

Better approach: O(n) space (i.e., O(n log n) bits)
only the n suffixes are stored

Suffix array

• Sorted list of suffixes (a < # < b)

• Better space occupancy: 4n bytes

• Additional n bytes for fast searching

10
floors

40-50
floors

5

Suffix tree / Patricia

Compact trie / Patricia storing the suffixes of bababa#

Space is roughly 16n bytes

10
floors

160
floors Automaton and DAWG

Collapse isomorphic nodes to reduce
their number

Average size is about 1.3 nodes per
character

Nodes are of larger size

Number of bytes does not reduce much

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

