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“I still have a long way to go, but I’m already so far
from where I used to be, and I am proud of that.”

– Node u in graph G





Abstract

Graphs are a highly expressive abstraction for modeling entities and their rela-
tions, such as molecular structures, social networks, and traffic networks. Deep
Graph Networks (DGNs) have recently emerged as a family of deep learning
models that can effectively process and learn such structured information. How-
ever, learning effective information propagation patterns within DGNs remains a
critical challenge that heavily influences the model capabilities, both in the static
domain and in the temporal domain (where features and/or topology evolve).
This thesis investigates the dynamics of information propagation within DGNs
for static and dynamic graphs, focusing on their design as dynamical systems.

With the aim of fostering research in this domain, at first, we review the
principles underlying DGNs and their limitations in information propagation,
followed by a survey of recent advantages in learning both temporal and spatial
information, providing a fair performance comparison among the most popu-
lar proposed approaches. The main challenge addressed in this thesis is the
limited ability of DGNs to propagate and preserve long-term dependencies be-
tween nodes. To tackle this problem, we design principled approaches bridg-
ing non-dissipative dynamical systems with DGNs. We leverage properties of
global and local non-dissipativity in both temporal and static domain, enabling
maintaining a constant information flow rate between nodes. We first exploit
dynamical systems with antisymmetric constraints on both spatial and weight
domains to achieve graph- and node-wise non-dissipativity. Then, we intro-
duce a DGN that exploits port-Hamiltonian dynamics, thus defining a new
message-passing scheme that balances non-dissipative long-range propagation
and non-conservative behaviors. We then tackle the task of learning complex
spatio-temporal patterns from irregular and sparsely sampled data. Through-
out this work, we provide theoretical and empirical evidence to demonstrate the
effectiveness of our proposed architectures. In summary, this thesis provides
a comprehensive exploration of the intersection between graphs, deep learning,
and dynamical systems, providing insights and advancements for the field of
graph representation learning and paving the way for more effective and versa-
tile graph-based learning models.
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Chapter 1

Introduction

Graphs, as mathematical structures, have a rich history dating back to the
18th century when Leonhard Euler laid the foundation with his solution to the
Königsberg bridge problem1 (Euler, 1741; Biggs et al., 1986), giving birth to
graph theory (Bondy, 1976). Graphs are composed of nodes (vertices), edges
(links), and features (attributes). They can be defined in both the static domain
and in the temporal domain (where features and/or topology evolve). In the
temporal case, graphs are referred to as dynamic graphs. Graphs, in general,
serve as a powerful abstraction for representing relationships and interactions
in a wide array of systems. From molecular structures and biological networks
to social networks and infrastructure grids, graphs are invaluable for modeling
complex systems where entities and their connections are of primary interest.

The development of graph theory over the centuries has led to significant
advancements in various fields. In computer science, for example, algorithms for
traversing, searching, and optimizing graphs are fundamental to data structures
and network analysis (Cormen et al., 2009). In sociology, graph theory aids
in understanding social dynamics and influence patterns (Wasserman & Faust,
1994). In biology, it helps in analyzing protein interactions networks (Barabási
& Oltvai, 2004). As data becomes increasingly interconnected, the importance
of graphs in representing and understanding this complexity continues to grow.

Parallel to the development of graph theory, the study of dynamical systems
has been crucial in understanding how processes evolve over time. Dynamical
systems’ theory provides a framework for modeling and analyzing the behavior
of complex systems, which can be deterministic or stochastic, linear or nonlinear.
This theory is pivotal in various scientific disciplines, including physics, biology,
economics, and engineering, offering insights into the stability, chaos, and long-
term behavior of systems (Glendinning, 1994).

In more recent years, the intersection of graph theory, dynamical systems,
and machine learning has gained significant attention. Deep Graph Networks

1The problem consists in devising a walk through the city of Königsberg that would cross
each of the seven bridges in the city once and only once.

1



2 Chapter 1. Introduction

(DGNs) have emerged as a powerful paradigm for learning from graph-structured
data. DGNs leverage the expressiveness of graphs to capture relationships and
dependencies within data, enabling advanced applications in biology, social sci-
ence, human mobility, and more (Gilmer et al., 2017; Zitnik et al., 2018; Gravina
et al., 2022; Bacciu et al., 2024; Monti et al., 2019; Derrow-Pinion et al., 2021).
Similarly, differential-equation based neural architectures have become a pow-
erful paradigm for learning in different fields, proving that neural networks and
differential equations are two sides of the same coin (Haber & Ruthotto, 2017;
Chen et al., 2018; Chang et al., 2019).

This thesis investigates novel dynamics of information propagation in DGNs
for both static and dynamic graphs, with a particular focus on integrating
concepts from dynamical systems into DGNs. By merging the rich histories
and powerful tools of dynamical systems and graphs, this research aims to ad-
vance the state-of-the-art in graph representation learning. Indeed, by framing
DGNs as dynamical systems, we can utilize the mathematical rigor and insights
from this field to enhance information flow and propagation stability within the
graphs, uncovering complex information propagation patterns that are beyond
the reach of current literature methodologies. As an example, a critical challenge
in DGNs lies in the effective propagation of information through the graph. Tra-
ditional models often struggle with long-range dependencies, where information
needs to travel across distant nodes. This is where the principles of dynamical
systems can play a transformative role.

With the aim of advancing the state-of-the-art in graph representation learn-
ing, we propose methodologies not only to enhance the theoretical understanding
of DGNs but also demonstrate practical improvements through empirical stud-
ies. This thesis sets the stage for future innovations in creating more effective
and versatile graph-based learning models, capable of tackling the complexities
of real-world data.

1.1 Objectives

Recent progress in research on DGNs has led to a maturation of the domain of
learning on graphs. As a result, the last few years have witnessed a surge of
works, especially on dynamic graphs, leading to a fragmented and scattered lit-
erature with respect to model formalization, empirical setups and performance
benchmarks. This aspect very much motivated us to look into a systematization
of the literature which does not only look at surveying the existing works, but
also actively promotes the identification of shared benchmarks and empirical
protocols for the fair evaluation of dynamic graph models, with the ultimate
goal of fostering research in the field of graph representation learning.

Despite the growth of this research field, there are still important challenges
that are yet unsolved. Effective information diffusion within graphs is a criti-
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cal open issue that heavily influences graph representation learning. Therefore,
the main objective of this thesis is to investigate novel dynamics of information
propagation in DGNs in a principled manner by integrating concepts from dy-
namical systems into DGNs. Additionally, we aim to propose general solutions
that offer an inductive bias easily applicable across the complexities of real-world
data, rather than specialized solutions limited to specific scenarios. Inspired by
the premises in the previous section, this dissertation aims to explore the po-
tential of differential-equations inspired DGNs (DE-DGNs), particularly regard-
ing their abilities to learn long-term dependencies between nodes and complex
spatio-temporal patterns from irregular and sparsely sampled data.

We first address the limited ability to facilitate effective information flow
between distant nodes. This calls for principled approaches that control and
regulate the degree of propagation and dissipation of information throughout
the neural flow. Indeed, classical DGNs are typically limited in their ability to
propagate and preserve long-term dependencies between nodes, which reduces
their effectiveness, especially for predictive problems that require capturing in-
teractions at various, potentially large, radii. Afterward, we move to the problem
of effective learning of irregularly sampled dynamic graphs, since modern deep
learning approaches for dynamic graphs generally assume regularly sampled tem-
poral data, which is far from realistic. Real-world complex problems necessitate
novel methods that transcend this common assumption, addressing mutable re-
lational information and dealing with irregularly and severely under-sampled
data.

In conclusion, with these objectives, we aim to propose novel architectural
biases to deepen the theoretical understanding of DGNs, thereby developing
more effective and versatile graph-based learning models.

1.2 Thesis Outline

In the following, we provide a brief outline regarding the content of this thesis.
In the first part of this thesis, we present background concepts to establish

a clear understanding of the thesis’s domain:

• In Chapter 2, we introduce fundamental definitions and concepts pivotal
to this thesis. We review the core principles of graph theory and propose
a unified formalization for dynamic graphs, we explore the world of differ-
ential equations and dynamical systems, and, finally, we provide essential
background on Deep Graph Networks (DGNs) and their challenges.

• In Chapter 3, we survey state-of-the-art approaches in representation learn-
ing for dynamic graphs, building on the unified formalism defined in the
previous chapter. We present a fair performance comparison of popular
DGNs for dynamic graphs using a standardized, reproducible experimental
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setup. Additionally, we offer a curated selection of datasets as benchmarks
for future research in the graph learning community.

In the second part of this thesis, we tackle the problem of non-dissipative
propagation for static graphs:

• In Chapter 4, we address the primary challenge of long-range propagation
in graph representation learning. We draw on the concepts of neural differ-
ential equations to develop differential-equations inspired DGNs capable
of non-dissipative propagation between nodes, through the use of antisym-
metric constraints. Thus, we introduce an antisymmetric weight parame-
terization which allows for node-wise non-dissipative behavior. Then, we
extend such concept to achieve both graph- and node-wise non-dissipative
behaviors thanks to space and weight antisymmetric parameterization,
thus guaranteeing a constant information flow rate. While doing so, we
also introduce new synthetic benchmarks for assessing long-range propa-
gation capabilities.

• In Chapter 5, we design the information flow within a static graph as
a port-Hamiltonian system. Thus, we introduce a new message-passing
scheme capable of balancing non-dissipative long-range propagation and
non-conservative behaviors for improved effectiveness in specific tasks. We
provide theoretical guarantees that ensure information conservation over
time when pure Hamiltonian dynamic is employed.

In the third part of this thesis, we discuss space and time propagation for
dynamic graphs:

• In Chapter 6, we tackle the problem of learning complex the spatio-
temporal patterns of dynamic graphs under the real-world assumption of
irregularly and severely under-sampled data, thus overcoming the common
assumption of dealing with regularly sampled temporal graph snapshots.
Therefore, we introduce a general framework designed through the lens
of neural differential equations for graphs. While doing so, we also intro-
duce new benchmarks of synthetic and real-world scenarios for evaluating
forecasting models on irregularly sampled dynamic graphs.

This contribution has been developed during a visiting period at the Swiss
AI Lab IDSIA (Istituto Dalle Molle di Studi sull’Intelligenza Artificiale)
in Lugano, Switzerland.

• In Chapter 7, we focus on the problem of long-range propagation within
dynamic graphs. To address this, we introduce a novel differential equa-
tion method for scalable long-range propagation. We establish theoretical
conditions for achieving stability and non-dissipation by employing anti-
symmetric weight parameterization, which is the key factor for modeling
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long-range spatio-temporal interactions. We also present novel benchmark
datasets specifically designed to assess the ability of DGNs to propagate
information over long spatio-temporal distances within dynamic graphs.

This contribution has been developed during an internship at Huawei Tech-
nologies, Munich Research Center, in Munich, Germany.

In Chapter 8, we summarize the content of this dissertation and discuss
future research directions.

Finally, in Appendix A, B, C, D, and E we provide additional details such as
datasets description and statistics and the explored hyperparameter spaces. In
Appendix F, we propose a fully probabilistic approach for modeling information
propagation within dynamic graphs, thereby challenging the prevailing notion
that only neural architectures are suitable for this task. This last contribution
has been developed in collaboration with NEC Laboratories Europe, Heidelberg,
Germany.

1.3 Origin of the Chapters
Part of the work presented in this thesis resulted in the following papers, either
published or in the peer review process.

• Section 2.1, Section 2.3, and Chapter 3:
Gravina, A. and Bacciu, D. Deep Learning for Dynamic Graphs: Models
and Benchmarks. IEEE Transactions on Neural Networks and Learning
Systems, pp. 1–14, 2024. doi: 10.1109/TNNLS.2024.3379735

• Section 4.1:
Gravina, A., Bacciu, D., and Gallicchio, C. Anti-Symmetric DGN: a stable
architecture for Deep Graph Networks. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openrevi
ew.net/forum?id=J3Y7cgZOOS
Gravina, A., Gallicchio, C., and Bacciu, D. Non-Dissipative Propagation
by Randomized Anti-Symmetric Deep Graph Networks. In International
Workshops of ECML PKDD 2023, Turin, Italy, September 18–22, 2023,
Revised Selected Papers, Part V, 2024b

• Section 4.2:
Gravina, A., Eliasof, M., Gallicchio, C., Bacciu, D., and Schönlieb, C.-
B. Tackling Oversquashing by Global and Local Non-Dissipativity. arXiv
preprint arXiv:2405.01009, 2024a (submitted to peer-review)

• Chapter 5:
Heilig, S., Gravina, A., Trenta, A., Gallicchio, C., and Bacciu, D. Inject-
ing Hamiltonian Architectural Bias into Deep Graph Networks for Long-

https://openreview.net/forum?id=J3Y7cgZOOS
https://openreview.net/forum?id=J3Y7cgZOOS
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Range Propagation. arXiv preprint arXiv:2405.17163, 2024 (submitted
to peer-review)

• Chapter 6:
Gravina, A., Zambon, D., Bacciu, D., and Alippi, C. Temporal graph odes
for irregularly-sampled time series. In Larson, K. (ed.), Proceedings of
the Thirty-Third International Joint Conference on Artificial Intelligence,
IJCAI-24, pp. 4025–4034. International Joint Conferences on Artificial In-
telligence Organization, 8 2024d. doi: 10.24963/ijcai.2024/445. URL
https://doi.org/10.24963/ijcai.2024/445

• Chapter 7:
Gravina, A., Lovisotto, G., Gallicchio, C., Bacciu, D., and Grohnfeldt,
C. Long Range Propagation on Continuous-Time Dynamic Graphs. In
Proceedings of the 41st International Conference on Machine Learning,
volume 235 of Proceedings of Machine Learning Research, pp. 16206–16225.
PMLR, 21–27 Jul 2024c. URL https://proceedings.mlr.press/v235
/gravina24a.html

• Appendix F.1:
Errica, F., Gravina, A., Bacciu, D., and Micheli, A. Hidden Markov Mod-
els for Temporal Graph Representation Learning. In Proceedings of the
31st European Symposium on Artificial Neural Networks, Computational
Intelligence and Machine Learning (ESANN), 2023b

https://doi.org/10.24963/ijcai.2024/445
https://proceedings.mlr.press/v235/gravina24a.html
https://proceedings.mlr.press/v235/gravina24a.html
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Chapter 2

Preliminaries

In this chapter, we delineate basic definitions and techniques that will be used
throughout the rest of the manuscript. In doing so, it is assumed that the reader
is familiar with linear algebra and the fundamental machine learning concepts,
including hyperparameters, multi-layer perceptrons, and activation functions.

We first explore the fundamental principles and definitions of graph theory
as well as we propose a coherent formalization of the dynamic graph domain,
unifying different definitions and formalism gathered from the literature.

Subsequently, we delve into the realm of differential equations and dynami-
cal systems. We explore the concept of initial valued problems and discuss their
link with neural architectures. Furthermore, we define dynamical systems gov-
erned by Hamilton’s equations and provide an overview of various discretization
techniques for solving differential equations.

Lastly, we survey the domain of representation learning for graphs under our
unified formalism, providing the necessary background for understanding deep
graph networksand their plights.

2.1 Graphs

In this section, we introduce fundamental concepts about graphs, taken from
graph theory (Bondy, 1976) and deep learning for dynamic graphs (Gravina &
Bacciu, 2024), which will be used throughout the rest of this thesis.

From a general perspective, a graph is a highly flexible mathematical struc-
ture for representing systems of relationships and interactions among some enti-
ties of interest. Such flexibility allows graphs as the primary choice for modelling
complex systems across various fields. In biological sciences, graphs represent
concepts such as molecules and proteins by using nodes to represent atoms and
edges to represent chemical bonds. In biology, graphs have been used to model
protein-protein interaction networks, thus leading to improved understanding
of functional relationships between proteins and effective therapies. In social

9
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sciences, graphs model social networks, with nodes representing individuals and
edges representing social connections between them, providing insights about
social structure and dynamics. As a last example, graphs have been successfully
applied to model road networks and their traffic.

As demonstrated by the examples provided, graphs can be categorized as ei-
ther static or dynamic. Static graphs remain fixed and unchanged, as is common
for biological sciences. Dynamic graphs, on the other hand, involve the evolution
over time of the entities and their relations, such as the continual activities and
interactions between members of social networks.

2.1.1 Static Graphs

We start by formally defining the concept of a graph.

Definition 1 (Graph). A (static) graph is a tuple G = (V , E ,X,E) defined
by the nonempty set V of nodes (also referred to as vertices), and by the set
E of edges (also called links or arcs). Node features (also known as node
representation) are represented as a matrix X ∈ R|V|×dn, where dn is the number
of available features. The u-th row of X is denoted as xu and represents a
single node features. Similarly, edge features are represented as the matrix
E ∈ R|E|×de, where de is the number of edge features, and euv denotes the feature
vector of the edge that link node u and v.

In general terms, nodes represent interacting entities, whereas edges denote
connections between pairs of nodes. In many practical scenarios, nodes and
edges are often enriched with additional attributes, here identified by X and E.
The topological arrangement of nodes and edges is called network topology (or
topology).

The structural information expressed by E can also be encoded into an ad-
jacency matrix, A, which is a square |V| × |V| matrix where each element
Auv ∈ {0, 1} is 1 if an edge connects the nodes u and v, and it is 0 otherwise.
Depending on the structure of the adjacency matrix (consequently the structure
of E), a graph is directed or undirected.

Definition 2 (Directed/Undirected graph). A graph G = (V , E ,X,E) is di-
rected when node pairs are ordered, i.e., E ⊆ {(u, v) |u, v ∈ V}. Inversely, a
graph is undirected when edges are unordered, i.e., E ⊆ {{u, v} |u, v ∈ V}.

In other words, a graph is directed when the adjacency matrix is symmetric,
undirected otherwise. We visually exemplify this concept in Figure 2.1. Undi-
rected graphs are useful for representing mutual connections, such as chemical
bonds in molecules and mutual friendships in social networks. Conversely, di-
rected graphs are apt for situations where direction conveys extra information,
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such as indicating the flow of traffic in traffic networks.

Another fundamental concept is that of the neighborhood of a node. We
denote the neighborhood (or adjacency set) of a node u ∈ V as the set of nodes
that have at least an ordered edge with tail u. Formally,

Definition 3 (Neighborhood). Let G = (V , E ,X,E) be a directed graph. The
neighborhood of a node u ∈ V is the set Nu = {v ∈ V | (v, u) ∈ E}.

Therefore, the u-th column of the adjacency matrix indicates the neighbors
of node u, as it contains the set of ordered edges with node u as the destination
(i.e., the incoming edges). Similarly, the u-th row of the adjacency matrix
identifies the nodes to which u appears as a neighbor, as it comprises the set of
ordered edges with u as the starting node (i.e., the outgoing edges). A visual
representation of the neighborhood of a node is shown in Figure 2.1.


0 0 0 0 0
1 0 1 0 0
1 0 0 1 1
0 0 0 0 1
0 0 0 0 0


(a)


0 1 1 0 0
1 0 1 0 0
1 1 0 1 1
0 0 1 0 1
0 0 1 1 0


(b)


0 0 0 0 0
1 0 1 0 0
1 0 0 1 1
0 0 0 0 1
0 0 0 0 0


(c)

Figure 2.1: (a) A directed graph. (b) An undirected graph. (c) The neigh-
borhood of node u. At the bottom, the adjacency matrix of the corresponding
graph. The neighborhood of the node u is depicted with a dotted line.

The number of incoming and outgoing edges of a node u define the in-degree
and out-degree of the node, respectively, i.e.,

Definition 4 (In-degree/Out-degree). Let G = (V , E ,X,E) be a directed graph.
The in-degree of a node u ∈ V is

degin(u) = |{v ∈ V | (v, u) ∈ E}| =
∑
v∈V

Auv.

The out-degree is

degout(u) = |{v ∈ V | (u, v) ∈ E}| =
∑
v∈V

Avu.



12 Chapter 2. Preliminaries

Accordingly, the in-degree of a node u can be computed by summing the
values of the u-th column from the adjacency matrix, and it corresponds to
the dimension of the neighborhood of u. The out-degree can be computed by
summing the u-th row. In undirected graphs, since the u-th row and column
are identical, the in-degree and out-degree are equal. In the following, we will
primarily focus on the in-degree of nodes. For simplicity, we will refer to the
degree as the in-degree, denoted as deg(u). The degree matrix is a diagonal
matrix whose entries are Duu = deg(u).

From the notions of adjacency matrix and degree of a node it is possible to
derive another matrix representation of a graph, which is the one of Laplacian
matrix (or graph Laplacian).

Definition 5 (Graph Laplacian). Let G = (V , E ,X,E) be a graph with adjacency
matrix A and degree matrix D. The graph Laplacian is defined as

L = D−A.

The Laplacian matrix provides insights into the connectivity and behavior
of nodes within the graph. It is particularly valuable in spectral graph the-
ory (Chung, 1997), where eigenvalues and eigenvectors of the Laplacian encode
information about graph topology and connectivity patterns.

A node with a large degree results in a large diagonal entry in the Laplacian
matrix, thus dominating the matrix properties. To mitigate this, normalization
techniques can be applied to balance the influence of such nodes with that of oth-
ers in the graph. We report two normalization strategies, which are symmetric
and random walk normalizations.

Definition 6 (Symmetric normalized graph Laplacian). Let G = (V , E ,X,E)
be a graph with adjacency matrix A and degree matrix D. The symmetric
normalized graph Laplacian is defined as

Lsym = D− 1
2LD− 1

2

= I−D− 1
2AD− 1

2 ,

with I the identity matrix.

Definition 7 (Random-Walk normalized graph Laplacian). Let G = (V , E ,X,E)
be a graph with adjacency matrix A and degree matrix D. The Random-Walk
normalized graph Laplacian is defined as

Lrw = D−1L

= I−D−1A,

with I the identity matrix.
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We observe that by replacing L with A, we can apply such techniques to the
adjacency matrix, with the effect of scaling the matrix eigenvalues.

Now that we have provided the reader with some useful definitions about
graphs, we observe that, depending on the constraints imposed on the set of
edges, it is possible to derive several families of graph structures. In the follow-
ing, we describe six families of graphs.

Definition 8 (Path graph). A graph G = (V , E ,X,E) with n > 1 nodes is called
path graph (or line graph) if its nodes can be arranged in an order u1, u2, ..., un

such that the edges {ui, ui+1} ∈ E, ∀i ∈ [1, n− 1].

Path graphs are often important in their role as subgraphs of other graphs,
in which case they are called paths and identify sequences of distinct edges and
nodes in that graph. One notable application of path graphs is in the context of
the shortest path problem, extensively studied in graph theory and algorithmic
(Dijkstra, 1959; Bellman, 1958). This problem involves determining the most
efficient route between two nodes in a graph, and it finds practical applications
in various real-world scenarios, including navigation. When nodes and/or edges
are not distinct, the path is called walk .

Definition 9 (Ring graph). A graph G = (V , E ,X,E) with n > 2 nodes is
termed a ring graph (or cycle graph) if it is a line graph where the last node is
connected to the first node, forming the closed loop {u1, u2}, {u2, u3}, ..., {un, u1}.

Definition 10 (Crossed-ring graph). Let G = (V , E ,X,E) be a graph with nodes
u1, u2, ..., un, where n = 2k and k ≥ 3. G is called a crossed-ring graph if it
exhibits a ring structure with additional connections between intermediate nodes,
specifically, {ui, un−i+1} ∈ E for i ∈ [2, k) and {un−j, u3+j} ∈ E for j ∈ [0, k−2).

Even in this context, ring graphs remain relevant as subgraphs, known as
cycles , with significance beyond graph theory. In chemistry, cycles represent
closed chains of atoms, serving as the structural foundation for diverse organic
compounds. Particularly prevalent in aromatic compounds, such as benzene,
these cyclic arrangements are essential for delineating the properties and char-
acteristics of the compound.

Definition 11 (Grid graph). A graph G = (V , E ,X,E) with m × n nodes ar-
ranged in a rectangular grid is termed a grid graph. Each node u is connected
to its adjacent nodes in the grid.

A more complex family of graphs is that of random graphs (Bollobás, 2001),
where each pair of nodes is connected with a certain probability p. Depending
on the definition of the probability, p, we obtain graphs with different charac-
teristics. The Erdős–Rényi model is one of the pioneering works on random
graphs.
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Definition 12 (Erdős–Rényi graph). An Erdős–Rényi graph, G, is a random
graph with n nodes where each edge is sampled with probability p such that

P (deg(u) = k) =

(
n− 1

k

)
pk(1− p)n−1−k.

The Erdős–Rényi’s assumption, i.e., edges are sampled with equal probabil-
ity, may be inappropriate for modeling certain real-world phenomena. Such an
assumption has the effect that nodes do not tend to cluster, making it difficult
to model social networks, for example. An alternative to this scenario is that of
Barabasi-Albert model.

Definition 13 (Barabasi-Albert graph). A Barabasi-Albert graph, G, is a
random graph with n nodes defined by a growth process and preferential attach-
ment mechanism. Starting with a small initial graph, nodes are added iteratively.
Each new node u is connected with k other nodes already in the graph with a
preferential attachment mechanism, such that

puv =
deg(v)∑

v≤v′ deg(v
′)
,

where puv is the probability of the edge between nodes u and v to exist.

Barabasi-Albert graphs are characterized by a node degree distribution that
follows the power law, resulting with a few nodes with high degree and many
nodes with low degree, since the probability that a new node u will connect
with a given node v is proportional to the degree of v. Figure 2.2 illustrates an
example for each type of a graph defined before.

2.1.2 Dynamic Graphs

Static graphs may not fully capture the complexity of the entire realm of sys-
tems of relationships. This is because the static property can be limiting when
considering real-world processes, both natural and synthetic. In these scenarios,
the graph topology and features may evolve over time, making them dynamic in
nature. This highlights the necessity for a dynamic representation of a graph.

Definition 14 (Dynamic graph). A dynamic graph (also referred to as tem-
poral graph) is a tuple G(t) = (V(t), E(t),X(t),E(t)), defined for t ≥ 0.

Differently from static graphs, all elements in the tuple are functions of time
t. Thus, V(t) provides the set of nodes which are present in the graph at time t,
and E(t) ⊆ {{u, v} |u, v ∈ V(t)} defines the links between them. Analogously,
X(t) and E(t) define node states and edge attributes at time t. Although, V(t)
can theoretically change over time, in practice it is often considered fixed for
the ease of computation, which means that all the nodes that will appear in the
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(a) Path Graph (b) Ring Graph (c) Crossed-ring Graph

(d) Grid Graph (e) Erdős–Rényi (f) Barabasi-Albert

Figure 2.2: Instances of various graph families: (a) path graph, (b) ring graph,
(c) crossed-ring graph, (d) grid graph, (e) Erdős–Rényi Graph with probability
p = 0.2, and (f) Barabasi-Albert Graph with k = 2. Each graph consists of 10
nodes.

dynamic graph are known in advance. Hence, V(t) = V for t ≥ 0.

The way we observe a system of interacting entities plays a crucial role in
the definition of the corresponding dynamic graph. We can distinguish between
two distinct types: discrete-time dynamic graphs and continuous-time dynamic
graphs.

Before providing such definitions, we define the concept of a graph snapshot.

Definition 15 (Graph snapshot). A graph snapshot is a tuple Gt = (Vt, Et,Xt,
Et) that refers to the (observed) static representation of a dynamic graph at a
time t.

In other words, a graph snapshot is a static graph that provides a picture of
the whole dynamic graph’s state at a particular time. Each snapshot maintains
the notations and definitions outlined for static graphs (see Section 2.1.1).

Definition 16 (Discrete-time dynamic graph). A discrete-time dynamic
graph (D-TDG) is a series of graph snapshots defined in the time interval [t0, tn],

G = {Gt | t ∈ [t0, tn]}.

Therefore, a D-TDG models an evolving system that is fully observed at dif-
ferent timestamps. Commonly, D-TDG are captured at periodic intervals (e.g.,
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hours, days, etc.) Hence, considering ∆t > 0 the interval between observations
and ti the current timestamp, the next observation is captured at ti+1 = ti+∆t.
Since each snapshot at time t provides an updated representation of the graph’s
topology, the temporal neighborhood of a node u corresponds to the static neigh-
borhood definition described in Section 2.1.1. We present in Figure 2.3 a visual
exemplification of a D-TDG.

Figure 2.3: A Discrete-Time Dynamic Graph defined over five timestamps and
a set of five interacting entities.

We note that if the set of nodes and edges are fixed over time (i.e., Gt =
(V , E ,Xt,Et)), then the dynamic graph is often referred to as spatio-temporal
graph.

A continuous-time dynamic graph is a more general formulation of a discrete-
time dynamic graph. It models systems that are not fully observed over time.
In facts, only new events in the system are observed. Therefore,

Definition 17 (Continuous-time dynamic graph). A continuous-time dy-
namic graph (C-TDG) is a stream of events (also referred to as observa-
tions) defined in the time interval [t0, tn]

G = {ot | t ∈ [t0, tn]}.

An event, ot = (t, EventType, u, v, xu, xv, euvt), is a tuple containing infor-
mation regarding the timestamp, the event type, the involved nodes, and their
(observed) states.

Such events have a clear interpretation as graph edits (Gao et al., 2010),
which have also been formulated for dynamic graphs (Paassen et al., 2021). We
consider six edit types: node deletions, node insertions, node replacements (i.e.
features change), edge deletions, edge insertions, and edge replacements (i.e.,
edge features change). Without loss of generality, we can group these events into
three main categories: node-wise events, when a node is created or its features
are updated; interaction events, i.e., a temporal edge is created; deletion events,
i.e., node/edge is deleted.
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Despite the underlying discrete nature of events, the granularity of the ob-
servations is refined to the extent that the dynamic graph is considered as a
continuous flow, allowing for events to happen at any moment (i.e., charac-
terized by irregular timestamps). This is in contrast to discrete-time dynamic
graphs, where changes to the graph are typically aggregated.

Generally, the temporal neighborhood of a node u at time t, consists of all
the historical neighbors of u, prior to current time t.

Definition 18 (Temporal neighborhood in C-TDG). Let the edge set E(t) ⊆
{{u, v, t−} |u, v ∈ V(t), t− < t} be the set of edges that are present in a C-
TDG at time t. The temporal neighborhood of a node u at time t is the set
N t

u = {(v, t−) | {u, v, t−} ∈ E(t)}.

We observe that at any time point t, we can obtain a snapshot of the C-TDG
by sequentially aggregating the events up to time t. Figure 2.4 shows visually
the temporal evolution of a C-TDG.

Figure 2.4: The evolution of a Continuous-Time Dynamic Graph through the
stream of events until the timestamp t3.

2.2 Introduction to Differential Equations

In this section, we survey the principal concepts about differential equations and
dynamical systems, which will be used throughout the rest of this thesis. We
base this section on classical theory of differential equations (Ross, 1984; Ascher
et al., 1995; Ascher & Petzold, 1998; Evans, 1998; Mattheij & Molenaar, 2002;
Ascher, 2008) and the more recent literature on neural differential equations
(Haber & Ruthotto, 2017; Chen et al., 2018; Chang et al., 2019; Kidger, 2021).
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2.2.1 Differential Equations

Differential equations serve as powerful mathematical tools for modeling and
understanding various phenomena across diverse fields, ranging from physics and
engineering to biology and economics. These equations describe the relationship
between an unknown function and its derivatives, capturing the rate of change
of a quantity with respect to one or more independent variables.

To be more formal, a differential equation is defined as follows.

Definition 19 (Differential equation). A differential equation is any equation
which contains derivatives, either ordinary or partial derivatives.

To provide a practical intuition of the form of a differential equation, let’s
consider the example of an object of mass m that is falling under the influence
of constant gravity g. The differential equation written in terms of the position
x is

m
d2x

dt2
= −mg. (2.1)

Similarly, we can define the one-dimensional wave equation

∂2u

∂t2
= c2

∂2u

∂x2
, (2.2)

which models the vibration of a string in one dimension u = u(x, t), thus u is
the factor representing a displacement from rest situation. The constant c gives
the speed of propagation for the vibration, and ∂2u/∂t2 describe how forcefully
the displacement is being changed.

We observe that the order of the highest ordered derivative involved in the
differential equation is called the order of the differential equation. Therefore,
Equation 2.1 is a second-order differential equation, since the highest involved
derivative is a second derivative.

Depending on the type of derivatives employed in the differential equation we
can distinguish between ordinary differential equations and partial differential
equations.

Definition 20 (Ordinary differential equation). An ordinary differential
equation (ODE) is a differential equation for a function of a single variable.

Definition 21 (Partial differential equation). A partial differential equation
(PDE) is a differential equation for a function of two or more variables.

Therefore, Equation 2.1 provides an example of an ordinary differential equa-
tion because it involves the position variable, x, and its derivatives with respect
to time. In contrast, Equation 2.2 exemplifies a partial differential equation as
it relies on partial derivatives of u with respect to both space and time.

In this thesis, we will focus only on ODEs, since they play a central role in
the differential equation domain due to their simplicity and wide applicability
in the description of dynamical systems.
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Definition 22 (Dynamical system). A dynamical system is a system whose
state is uniquely specified by a set of variables and whose behavior is described
by a predefined differential equation.

A classic example of a dynamical system is the pendulum. A pendulum
is a body suspended from a fixed support that swings freely back and forth
under the influence of gravity. When a pendulum is displaced from its resting
position, it experiences a restoring force due to gravity that accelerates it towards
equilibrium, causing the mass of the pendulum to oscillate about the equilibrium
position. In the case of a simple pendulum (i.e., undampened pendulum with
point mass), the differential equation that defines the behavior of the system is

d2θ

dt2
+

g

l
sin(θ) = 0, (2.3)

where g is the gravitational constant, l is the length of the rod, and θ is the
angle from the vertical to the pendulum, i.e., the rest position. Figure 2.5
visually represents the motion of a pendulum.

Figure 2.5: Motion of a pendulum.

We note that, usually, a given differential equation has an infinite number
of solutions, thus the state of the dynamical system is dependent on additional
conditions associated with the differential equation. Generally, such condition
corresponds to the initial value of the system’s state. Thus, the dynamical
system is described by an initial value problem. Figure 2.6 shows how different
initializations produce various system’s dynamics, i.e., trajectories.

Definition 23 (Initial value problem). An initial value problem (also known
as Cauchy problem) is a differential equation together with a point in the
domain of the function called initial condition

dx(t)

dt
= f(t, x), t ∈ [0, T ]

x(0) = c
(2.4)
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Figure 2.6: Simulation of a simple pendulum, with unitary rod length (l = 1) and
initial angular velocity of 2 rad/s, over a timespan of three seconds (t ∈ [0, 3])
with different initial angular displacement, i.e., 0, π/6, and π/3.

where f(t, x) is a general nonlinear function of t and x, which is often referred
to as vector field; and x(t) represents a point in the space, initialized by some
value c, that describes the state of the system. x(t) is called state vector.

A dynamical system defined by Equation 2.4 is called autonomous when f
does not explicitly depend on t. The dynamical system is called non-autono-
mous otherwise.

There are problems in physics and engineering that are modeled by dissi-
pative dynamical systems. These systems are characterized by the property
of possessing a bounded absorbing set in which all trajectories enter in a finite
time, and thereafter remain inside. This can be seen as a gradual decrease in
energy (i.e., energy dissipation) as the system evolves. We now provide a defini-
tion of a dissipative system based on the one provided in Humphries & Stuart
(1994).

Definition 24 (Dissipative system). Let define E ⊆ Rd a bounded set that
contains any initial condition xu(0) for the ODE in Equation 4.2. The system
defined by the ODE in Equation 4.2 is dissipative if there is a bounded set B
where, for any E, exists t∗ ≥ 0 such that {x(t) | x(0) ∈ E} ⊆ B for t > t∗.

2.2.2 Hamiltonian Systems

A specific case of dynamical system is that of Hamiltonian systems, which de-
scribe the evolution equations of specific physical systems.
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Definition 25 (Hamiltonian system). An Hamiltonian system is a dynamical
system whose state, x = (p,q)⊤ ∈ R2d, is described by the ODE

dx(t)

dt
= J∇xH(x(t)), (2.5)

where J =

(
0 Id
−Id 0

)
is an antisymmetric matrix 1 with Id the identity matrix

of dimension d, H : R2d → R a twice continuously differentiable function, and
∇xH(x(t)) denoting the gradient of H with respect to x.

We observe that by decoupling x into its main components, i.e., p ∈ Rd and
q ∈ Rd, the Hamiltonian system described by Equation 2.5 can be rewritten as

dp

dt
= −∂H

∂q
(p,q),

dq

dt
= +

∂H

∂p
(p,q). (2.6)

In this setting, p is usually referred to as the momentum, q as the coordinates,
and H is the Hamiltonian which represents the total energy of the system.

To provide an example for Hamiltonian systems, let’s consider again the ex-
ample of the pendulum outlined in Equation 2.3. The pendulum can be defined
as a Hamiltonian system described by the equation

H(p,q) =
1

2l
p2 − gl cos(q) (2.7)

where l is the length of the rod and g the gravitational constant, as before.
Following Equation 2.6 we obtain

dp

dt
= −gl sin(q), dq

dt
=

p

l
. (2.8)

The fundamental property of Hamiltonian systems is their conservative na-
ture. Therefore, they are essential for characterizing systems with constant
energy. If the Hamiltonian does not explicitly depend on time, i.e., we are in
the autonomous case, the Hamiltonian is a statement of the conservation of
energy, therefore no energy can be created nor lost, because the Hamiltonian is
constant over time. Indeed, by considering the derivative of H(x(t)) we obtain

dH(x(t))

dt
=

∂H(x(t))

∂x(t)

dx(t)

dt
=

∂H(x(t))

∂x(t)
J∇xH(x(t)) = 0, (2.9)

where the last equality holds since J is antisymmetric. Therefore, H(x(t)) =
H(x(0)) = const for all t. From a geometrical point of view, this implies that
the Hamiltonian system operates as a symplectic map, i.e., the area of the set of
output trajectories remains constant over time, because the output trajectories
result as a rotation of the set of initial conditions at a constant rate.

1A matrix M is antisymmetric (i.e., skew-symmetric) if M⊤ = −M.
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Definition 26 (Symplectic map). A linear mapping, A : R2d → R2d, is called
symplectic if

A⊤JA = J (2.10)

where J =

(
0 Id
−Id 0

)
.

Therefore, a symplectic map represents a transformation of state space (i.e.,
the space in which all possible states of a dynamical system are represented) that
preserves volume and orientation. In other words, as the system evolves over
time the coordinates and the momentum change, but the total area is conserved.
Figure 2.7 shows the case d = 1, where p and q identify a parallelogram.

Figure 2.7: Symplecticity (i.e., area preservation) of a linear mapping.

2.2.3 Discretization Methods

Finding an analytical solution for a Cauchy problem is often impractical. There-
fore, a common approach is to compute an approximate solution through a
numerical discretization procedure. This section provides an introduction to
common numerical methods for approximating solutions of Cauchy problems.
Without loss of generality to higher-order systems, we restrict ourselves to first-
order differential equations, because a higher-order ODE can be converted into
a larger system of first-order equations by introducing extra variables2.

The fundamental concept behind numerical discretization methods is to di-
vide time into discrete intervals, and then iteratively compute the solution over
a discrete set of time points. Let 0 = t0, . . . , tn = T be the set of time points
in which we approximate the solution x(ti), then the set {x(ti)}ni=0 is called a
discretization of the Cauchy problem in Equation 2.4 .

Numerical methods often can be divided into two main categories: explicit
and implicit methods. Explicit methods calculate the state of a system at
a later time, ti+1, from the state of the system at the current time, ti, while

2We refer an interested reader to Robinson (2004) for more details about the reduction of
order method.
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implicit methods find a solution by solving an equation involving both the
current state of the system x(ti) and the future state x(ti+1).

The forward Euler method is the best known and simplest explicit numer-
ical method for approximation. The idea is that it approximates the solution at
the next time step based on the derivative at the current time step, thus moving
along the tangent line of the approximate function at each point. Formally, the
forward Euler method we approximate the derivative on the left-hand side of
Equation 2.4 by a finite difference, and evaluate the right-hand side at x(ti):

x(ti + ϵ)− x(ti)

ϵ
= f(ti, x(ti)) (2.11)

where ϵ = ti+1−ti is the step size of the method, which defines the approximation
accuracy of the solution. Therefore, the state at the next time step is

x(ti+1) = x(ti) + ϵf(ti, x(ti)). (2.12)

To ensure that a small perturbation in the initial conditions does not cause
the numerical approximation to diverge away from the true solution, i.e., ensur-
ing stability of the method, we need that

|x(ti+1)| ≤ |x(ti)|. (2.13)

Therefore, the forward Euler method is (absolute) stable if

|1 + ϵλ| ≤ 1, (2.14)

where λ is the maximum eigenvalue of the system. In other words, the forward
Euler method is considered stable when (1+ ϵλ) lies within the unit circle in the
complex plane for all eigenvalues of the system (we refer the reader to the left-
side of Figure 2.8 for a visual exemplification of the region). On the contrary,
when the system is unstable, the numerical solution diverges from the exact
solution. We observe that, while the choice of the step size should ideally be
dictated only by approximation accuracy requirements, it also plays a crucial
role in improving the stability of the method, since, for small enough step sizes,
the numerical solution converges to the exact solution.

To avoid the situation in which the stability demands a much smaller step
size than what is needed to satisfy the approximation requirements, we can
employ methods with less stringent stability constraints, such as the backward
Euler method. The backward Euler method (or implicit Euler method) is
an implicit method that centers its computation at ti+1, rather than ti like the
explicit version of the method. Therefore, Equation 2.12 is reformulated as the
following

x(ti+1) = x(ti) + ϵf(ti+1, x(ti+1)). (2.15)

Utilizing the same intuition as with the forward Euler method, here we em-
ploy the tangent at the future point (ti+1, x(ti+1)) instead of the current point,
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thereby enhancing stability. Applying the condition in Equation 2.13 to the
backward euler method, we obtain that

1

|1− ϵλ|
≤ 1 (2.16)

which is always satisfied for all ϵ > 0 and Re(λ) ≤ 0. Specifically, the stability
region of the backward Euler method lies in the area in the complex plane outside
the unit circle centered at (1, 0). The right-side of Figure 2.8 shows the stability
region of the backward Euler method. As a result, we can choose the step size
arbitrarily large, without compromising the stability of the method.

Since x(ti+1) appears on both left and right sides of Equation 2.15, for implicit
methods like backward Euler, a nonlinear system of equations must be solved in
each time step. Therefore, each backward Euler step may be more expensive in
terms of computing time than forward Euler. For backward Euler, the nonlinear
system is

g(x(ti+1)) = x(ti+1)− x(ti)− ϵf(ti+1, x(ti+1)) = 0, (2.17)

which can be solved via a root-finding algorithm, such as Netwton’s method (As-
cher & Petzold, 1998).

Another family of numerical methods is that of Runge-Kutta methods,
which include both explicit and implicit approaches. The explicit Runge-Kutta
computes the next state of the system as

x(ti+1) = x(ti) + ϵ
s∑

j=0

βjkj (2.18)

where

k1 = f(ti, x(ti)) (2.19)
k2 = f(ti + µ2ϵ, x(ti) + γ21k1ϵ) (2.20)
...

ks = f
(
ti + µsϵ, x(ti) + (γs1k1 + γs2k2 + · · ·+ γs,s−1ks−1)ϵ

)
. (2.21)

Therefore, the next system state is computed as the sum of the current state
and the weighted average of s increments, where each increment is the product
of the step size and an estimated slope specified by the function f in various
midpoints.

Providing specific values for the order of the method s, and the coefficients
γnm (for 1 ≤ m < n ≤ s), βj (for j = 1, . . . , s) and µn (for n = 2, . . . , s), we can
derive different implementation of the method. The most widely known method
in this family is the fourth order Runga-Kutta (RK4), thus s = 4 and γnm, βj,
µn are:
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We note that when s = 1 then the explicit Runga-Kutta is equivalent to the
forward Euler method, and that the stability of Runge-Kutta methods is strictly
dependent on the order s. Larger values of s correspond to a greater stability
region. Figure 2.8 shows the stability regions for s = 1, 2, 4.

(a) RK stability (b) B-E stability

Figure 2.8: The stability regions, colored in green, of (a) various explicit Runge-
Kutta methods and (b) the backward Euler method.

Since numerical methods compute approximate solutions, it’s essential to
assess the discrepancy between these approximations and the true solutions of
differential equations, which are quantified by the concept of local and global
truncation errors. In the first case, the error is computed over a single step
of the method, under the assumptions that we start the step with the exact
solution and that there is no round off error. On the other hand, the global
truncation error is the accumulation of the local truncation error over all the
iterations.

Generally, higher-order methods produce more accurate solutions, since the
errors are proportional to a power of the step size (i.e., ϵs, where s is the order of
the discretization method). This is visually exemplified in Figure 2.9, where the
forward Euler method underperforms in approximating the function exp(x2/2)
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Figure 2.9: The numerical integration for the equation exp(x2/2) leveraging
forward Euler method with step size 0.5 (i.e., F-E, ϵ = 0.5) and second order
Runge-Kutta with step size 0.5 (i.e., RK2, ϵ = 0.5).

with respect the second order Runge-Kutta method. We report in Table 2.1 the
local and global truncation errors of various discretization methods (Ascher &
Petzold, 1998; Dormand, 1996).

While it is true that higher-order methods offer superior accuracy in generat-
ing solutions, their implementation requires an increased number of evaluations,
which slows down the computational process. This results in a trade-off between
discretization accuracy and speed.

Table 2.1: The local truncation error and global truncation error of various
discretization schemes.

Method Local error Global error

Forward Euler O(ϵ2) O(ϵ)
Backward Euler O(ϵ2) O(ϵ)
Runge-Kutta 2nd order O(ϵ3) O(ϵ2)
Runge-Kutta 3rd order O(ϵ4) O(ϵ3)
Runge-Kutta 4th order O(ϵ5) O(ϵ4)
Runge-Kutta 5th order O(ϵ6) O(ϵ5)

Although the presented numerical methods effectively compute approximate
solutions of Cauchy problems, they are not suitable for approximating Hamil-
tonian systems. These methods introduce numerical artifacts over time, i.e.,
energy drift, that deviate from pure Hamiltonian dynamics. Symplectic in-
tegrators are numerical methods designed to overcome this limitation, thus
solving Hamiltonian systems while preserving their symplectic structure. In-
deed, the key property of these integrators is that they reproduce the invariance
of a symplectic map (see Definition 26). In other words, these integrators ensure
that the energy of the system is preserved over long integration periods, mak-
ing them suitable for accurately modeling physical systems. The symplectic
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Euler method is a symplectic integrator that adapts the Euler’s method for
solving Hamiltonian’s equations. It computes the state at the next time step as
a combination of forward and backward Euler, i.e.,

p(ti+1) = p(ti)− ϵ
∂H

∂q
(p(ti),q(ti)) (2.23)

q(ti+1) = p(ti) + ϵ
∂H

∂p
(p(ti+1),q(ti)). (2.24)

In other words, p is computed by approximating the solution at the next time
step based on the derivative at the current time step, while q leverages the state
computed at the future point ti+1.

To better illustrate the conservative properties of symplectic integrators, we
report the example of a simple harmonic oscillator. A harmonic oscillator is a
system that, when displaced from its equilibrium position, experiences a restor-
ing force F proportional to the displacement x, i.e., F = −kx with k > 0
constant. Figure 2.10 visually represents the motion of a simple harmonic oscil-
lator.

Figure 2.10: Motion of a simple harmonic oscillator.

From a differential equation perspective, the system is described as
d2x

dt2
= −kx. (2.25)

Figure 2.11 illustrates the system’s evolution using the Symplectic and For-
ward Euler methods. The Symplectic Euler method demonstrates a more stable
oscillation, preserving the amplitude and total energy of the system. In con-
trast, the Forward Euler method exhibits a drift in amplitude and energy, indi-
cating that such a method is less accurate in handling long-term dynamics and
highlighting the importance of symplectic integration in ensuring the long-term
stability of the system.

Finally, we note that although in this section we mainly focus on the Euler
and Runge-Kutta methods, for the sake of simplicity, the literature of discretiza-
tion schemes allows for more complex strategies, such as those methods that
approximate the solution using an adaptive step size.
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Figure 2.11: Simulation of a simple harmonic oscillator with unit mass (m=1)
and spring constant k = 1 over a timespan of 50 seconds (t ∈ [0, 50]), comparing
(a) the position and (b) the energy conservation over time using the Forward
Euler and Symplectic Euler methods.

2.2.4 Neural Differential Equations

The conjoining of dynamical systems and deep learning has become a topic of
great interest in recent years. In particular, neural differential equations (neural
DEs) demonstrate that neural networks and differential equations are two sides
of the same coin (Haber & Ruthotto, 2017; Chen et al., 2018; Chang et al., 2019).
Indeed, many popular neural network architectures, such as residual networks
(ResNets) (He et al., 2016) and recurrent neural networks (RNNs) (Rumelhart
et al., 1986), can be seen as a discretization of parameterized differential equa-
tions.

Definition 27 (Neural differential equation). A neural differential equation
is a differential equation using a neural network to parameterize the vector field,
i.e., 

dx(t)

dt
= fθ(x(t)), t ∈ [0, T ]

x(0) = c
(2.26)

where fθ(x(t)) : Rd → Rd is a neural architecture parametrized by θ.

The most famous family of neural DEs is that of neural ODEs, which
consider ordinary differential equations in Equation 2.26.

With the aim of drawing a link between neural networks and differential
equations, we follow Chen et al. (2018) and note that ResNets, RNNs, and
other similar architectures compute their outputs by composing a sequence of
transformations to a hidden state:

xt+1 = xt + fθ(xt). (2.27)
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Figure 2.12: At the top the continuous neural DE hidden state, in the middle the
time-discrete hidden state of neural networks (e.g., ResNet), and at the bottom
the real state evolution.

Interestingly, these iterative updates can be seen as an Euler discretization of a
continuous transformation. As an example, we consider the ODE

dx(t)

dt
= tanh(θx(t)) (2.28)

and its Euler discretization

xt+1 = xt + ϵ tanh(θx(t)). (2.29)

Equation 2.29 3 can be interpreted as one layer of a residual network or a recur-
rent network without input-drive data. Here, xt represents the hidden state at
the t-th step of the network (i.e., t-th layer), θ is the model weight, and the step
size ϵ is a hyperparameter. Each discretization step can be equated as one layer
of the network, thus providing a framework that maps neural architectures into
discretized ODEs. Therefore, Equation 2.28 is the continuous interpretation
of a neural architecture, which computes the final hidden state x(T ) starting
from the initial condition x(0). This interpretation is visually represented in
Figure 2.12.

In summary, we can reinterpret neural architectures as neural DEs by estab-
lishing a correspondence between the layers of the neural architecture and the
successive iterations of a discretization method. This reinterpretation involves
representing the transformation applied by each layer of the neural network as
the evolution of a continuous dynamical system governed by a differential equa-
tion. Therefore, neural DEs are a powerful tool for deep learning. This family of
models exploits the flexibility and generalization capabilities of neural networks
while inheriting properties and theoretical understanding from the differential
equation domain. Therefore, it provides a coherent theory for model design. In

3We note that in Equation 2.29 we slightly changed the notation with respect to Sec-
tion 2.2.3 to better highlight the similarity between discretized ODEs and neural architectures.
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other words, thanks to neural DEs, we can design neural architectures based
on differential equations to have desirable properties inherited by the theory of
dynamical systems.

2.3 Fundamentals of DGNs

In this section, we introduce fundamental concepts about representation learn-
ing for graphs and deep graph networks, mainly taken from Gravina & Bacciu
(2024) and Gravina et al. (2024a), which will be used throughout the rest of this
thesis.

In recent years, representation learning for graphs has emerged as a vibrant
research area at the intersection of graph theory and machine learning. Graphs,
which serve as powerful models for representing complex relationships and in-
teractions among entities, are ubiquitous in various domains, as emerged in
Section 2.1. The ability to effectively learn meaningful representations of nodes,
edges, and entire graphs is fundamental for numerous downstream tasks, includ-
ing node classification, link prediction, and graph classification.

Unlike traditional data structures such as vectors or sequences, graphs pose
unique challenges for representation learning due to their irregular and hetero-
geneous nature. Nodes within a graph can exhibit diverse characteristics and
may interact with their neighbors in complex ways, making it non-trivial to
capture the underlying structural and semantic information. Therefore, the key
challenge when learning from graph data is how to numerically represent the
combinatorial structures for effective processing and prediction by the model. A
classical predictive task of molecule solubility prediction, for instance, requires
the model to encode both topological information and chemical properties of
atoms and bonds. Graph representation learning solves the problem in a data-
driven fashion, by learning a mapping function that compresses the complex
relational information of a graph into an information-rich feature vector that
reflects both structural and label information in the original graph.

Representation learning for graphs has been pioneered by Graph Neural Net-
work (GNN) (Scarselli et al., 2009) and Neural Network for Graphs (NN4G)
(Micheli, 2009), which were the first to provide learning models amenable also
for cyclic and undirected graphs. The GNN leverages a recursive approach, in
which the state transition function updates the node representation through a
diffusion mechanism that takes into consideration the current node and its neigh-
borhood defined by the input graph. This procedure continues until it reaches
a stable equilibrium. On the other hand, the NN4G leverages a feed-forward
approach where node representations are updated by composing representations
from previous layers in the architecture.

The original approaches by NN4G and GNN have been later extended and
improved throughout a variety of approaches, which can be cast under the um-
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brella term of (static) Deep Graph Networks (DGNs) (Bacciu et al., 2020b;
Wu et al., 2020). DGNs denote a family of approaches capable of learning the
functional dependencies in a graph through a layered approach, where the single
layers are often referred to as graph convolutional layers (GCLs). Each of
these computes a transformation (often referred to as graph convolution) of
node representations by combining the previous node representations and their
neighborhoods, following the message passing paradigm. We refer to the updated
node representations resulting from the graph convolution as node embedding
or node (latent) state. We visually represent this procedure in Figure 2.13.

Figure 2.13: Visual representation of a DGN wih L layers. Given the input
graph, the (ℓ + 1) GCL computes the new representation of a node u as a
transformation of u and its neighbors representations at the previous layer, ℓ.

The number of GCLs plays a crucial role in determining the distance over
which information propagates within the graph. As the number of layers in-
creases, information is propagated further across the graph.

Depending on the use of GCLs we can distinguish between recurrent or
feed-forward architectures. In the former case, a single parametrized GCL is
unfolded iteratively for a number of steps equal to the desired number of layers.
Thus, the layer is shared across the DGN, and the layer parametrization is the
same across multiple steps. We refer to this architecture as implementing recur-
rence with weight sharing. On the other hand, the feed-forward architecture
employs multiple GCLs, each of which implements a different parametrization.
We refer to this architecture as implementing layer-dependent weights. Fol-
lowing the line of reservoir computing and randomized networks (Tanaka et al.,
2019; Gallicchio & Scardapane, 2020), we can also identify randomized DGNs
in which the layers’ parametrization is randomly initialized and kept fixed after
initialization. We refer to this architecture as implementing random weights.
Figure 2.14 visually represents the difference between recurrent and feed-forward
architectures.

Finally, it is noteworthy that the implementation of each GCL, i.e., the graph
convolution, significantly influences the overall behavior of the model as it shapes
the way node embeddings are learned. In fact, different graph convolutions
determine distinct patterns in information propagation across a graph. The
easiest implementation of a GCL is the one that updates the node state at layer
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Figure 2.14: A Deep Graph Network with 2 layers, ℓ, showcasing recurrent and
feed-forward architectures. In the recurrent architecture (at the top) a single
shared layer is iteratively unfolded for 2 steps, as indicated by the recurrent
connection. At the bottom, the feed-forward architecture leverages two Graph
Convolutional layers to process the input graph.

ℓ+ 1 as the sum of neighbors’ representations at the previous layer

xℓ+1
u =

∑
v∈Nu

xℓ
v. (2.30)

Form the graph point of view, Equation 2.30 can be rewritten as

Xℓ+1 = AXℓ = AℓX0 (2.31)

where A is the adjacency matrix, and Xℓ is the node state matrix at layer ℓ, Aℓ

is the ℓ-th power of the adjacency matrix, and X0 is the input feature matrix.
We observe that in this case, the adjacency matrix assumes the role of graph
shift operator, which is an operator that delineates the transformation of the
signal as it traverses the graph, thus it captures the dynamic of the information
flow. Additional instances of graph shift operators include the Laplacian matrix
or its normalized variants.

In the following sections, we analyze graph convolutions that are realized
either in the spectral or spatial domain. For the sake of completeness, we also
review two alternative approaches for learning node embeddings, which are based
on random walks and graph rewiring. The taxonomy behind our surveying
methodology is depicted in Figure 2.15. We observe that graph rewiring is not
displayed in the figure since it is a preprocessing technique for enhancing the
downstream DGN, and it does not implement a new graph convolution method.

Before analyzing such methods, we first define the common plights of graph
learning models, such as oversmoothing, oversquashing and underreaching.
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Figure 2.15: Taxonomy employed to structure our survey of DGN models for
static graphs. Graph rewiring is not displayed in the figure since it is a prepro-
cessing technique for enhancing the power of the downstream DGN.

2.3.1 Oversquashing, Oversmoothing, and Underreaching

Oversquashing (Alon & Yahav, 2021; Topping et al., 2022; Di Giovanni et al.,
2023), oversmoothing (Cai & Wang, 2020; Oono & Suzuki, 2020; Rusch et al.,
2023), and underreaching (Alon & Yahav, 2021) are common plights of DGNs.
Although DGNs have achieved remarkable success in multiple domains (Zitnik
et al., 2018; Monti et al., 2019; Wu et al., 2020; Derrow-Pinion et al., 2021;
Dwivedi et al., 2023), these challenges restrict their overall effectiveness. Over-
squashing refers to the shortcoming of a DGN when transferring information
between distant nodes. This shortcoming typically increases in tandem with
the distance between the nodes, which hampers the ability of DGNs to model
complex behaviors that require long-range interactions, such as protein folding
(Jumper et al., 2021). To allow a node to receive information from L-hops dis-
tant nodes, a DGN must employ at least L layers, otherwise, it will suffer from
underreaching, because the two nodes are too far to interact with each other.
However, the stacking of multiple GCLs also causes each node to receive an
exponentially growing amount of information, as multiple hops are considered,
since each node state update incorporates neighborhood information. This ex-
ponential growth of information, combined with the finite and fixed number of
channels (features), can lead to a potential loss of information. As a consequence,
the long-range effectiveness of DGNs is reduced.

Lastly, oversmoothing is defined as the tendency for node embeddings to
converge to an extremely small subspace (i.e., becoming indistinguishable) as
the number of layers increases. Thus, oversmoothing diminishes the ability of
the DGN to distinguish between different nodes, as node embedding’s simi-
larity increases. A common metric to measure oversmoothing is the Dirichlet
energy (Cai & Wang, 2020) computed over the set of node embeddings at a
specific layer ℓ, Xℓ,

E(Xℓ) =
1

|V|
∑
u∈V

∑
v∈Nu

∥xℓ
u − xℓ

v∥2. (2.32)

Therefore, oversmoothing not only diminishes the expressive power of node em-
beddings, but also prevents the long-range effectiveness of DGNs.
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2.3.2 Spectral Convolution

In the setting of spectral convolution, graphs are processed and learned through a
parameterization in the spectral domain of their Laplacian matrices. Specifically,
given a filter gθ = diag(θ) parametrized by θ ∈ R|V| and the graph signal x ∈ R|V|

for a graph G, we can define the spectral graph convolution as a multiplication
in the Fourier domain:

x ∗ gθ = U(U⊤x ◦ gθ) = UgθU
⊤x (2.33)

where U⊤x is the graph Fourier transform, and U is the matrix of eigenvec-
tors of the normalized graph Laplacian Lsym = I − D− 1

2AD− 1
2 = UΛU⊤ (see

Definition 6), with Λ the diagonal matrix of the eigenvalue of Lsym. The ap-
proach in Equation 2.33 is severely limited by the computational requirements
associated to the Laplacian decomposition and by the spectral parameterization
costs, which have motivated a whole body of followup works (Defferrard et al.,
2016; Kipf & Welling, 2017). Among these, the Graph Convolutional Network
(GCN) (Kipf & Welling, 2017) is certainly the most successful one. GCN lever-
ages the degree-normalized Laplacian introduced in (Defferrard et al., 2016),
hence, the output of the GCN’s (ℓ+ 1)-th layer for a node u is computed as

xℓ+1
u = σ

(
Wxℓ

u +V
∑
v∈Nu

xℓ
v√

deg(v)deg(u)

)
, (2.34)

where σ is the activation function, while deg(v) and deg(u) are, respectively,
the degrees of nodes v and u. W ∈ Rd×d and V ∈ Rd×d are the learnable
parameters, i.e., weight matrices, of the method. With such formulation, GCN
requires O(|E|) time.

Although GCN has demonstrated effectiveness across several applications
(Cao et al., 2022; Zhang et al., 2021), one limitation lies in its tendency for
node embeddings to become indistinguishable (i.e., oversmooth) as the number
of layers increase, which can lead to weakened performance. To improve the
resilience of GCN to this behavior, GCNII (Chen et al., 2020) introduces initial
residual and identity mapping . The initial residual constructs a skip connection
from the input layer, ensuring that the final embedding of each node retains at
least a fraction of the input representation. On the other hand, identity mapping
is employed to avoid information loss in the propagation, by preserving node
identity as more layers are employed. Thus, Equation 2.34 can be reformulated
as

xℓ+1
u = σ

((
(1−β)

∑
v∈Nu∪{u}

xℓ
v√

deg(v)deg(u)
+βx0

v

)(
(1−γ)I+γW

))
, (2.35)

with β, γ ∈ [0, 1] two hyperparameters.
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With a similar objective to GCNII, MixHop (Abu-El-Haija et al., 2019) ex-
tends GCN with a neighbor mixing strategy, enabling the learning of more in-
formative embeddings that capture higher-order graph information, i.e., coming
from distant nodes. In this scenario, the updated node state is derived by con-
catenating several GCN layers (as described in Equation 2.34), each computed
using a different power of the graph shift operator. This allows the integration
of information from nodes at varying distances within the graph.

2.3.3 Spatial Convolution

Spatial convolutions are typically framed in the Message Passing Neural Network
(MPNN) (Gilmer et al., 2017) framework, where the representation for a node
u at a layer ℓ+ 1 is computed as

xℓ+1
u = ρU(x

ℓ
u,
⊕
v∈Nu

ρM(xℓ
u,x

ℓ
v, euv)) (2.36)

where
⊕

is an aggregation invariant function, and ρU and ρM are respectively the
update and message functions. The message function computes the message for
each node, and then dispatches it among the neighbors. The update function col-
lects incoming messages and updates the node state. A typical implementation of
the MPNN use sum as

⊕
and ρU functions, and ρM(xℓ

u,x
ℓ
v, euv) = MLP(euv)x

ℓ
v,

with MLP implementing a Multi-Layer Perceptron.
Depending on the definition of the update and message functions, it is

possible to derive a variety of DGNs. The Graph Attention Network (GAT)
(Veličković et al., 2018) introduces an attention mechanism to learn neighbors’
influences computing node representation as

xℓ+1
u = σ

(∑
v∈Nu

αuvWxℓ
v

)
(2.37)

where αuv is the classical softmax attention score between node u and its neigh-
bor v. Similar to GAT, transformer-based approaches (Shi et al., 2021; Dwivedi
& Bresson, 2021; Ying et al., 2021; Wu et al., 2023) utilize an attention mech-
anism to capture dependencies between nodes in a graph. However, while GAT
applies localized attention across small neighborhoods, graph transformers en-
able the attention mechanism across the entire graph structure. In other words,
such approaches enable message passing between all pairs of nodes, sidestepping
oversquashing at the price of increased computational complexity. SAN (Kreuzer
et al., 2021) improves the power of fully-connected graph transformers by sepa-
rating the treatment of real and non-real graph edges and introducing a learned
positional encoding module based on Laplacian eigenvectors and eigenvalues.
Positional encodings (PEs) offer insights into the spatial location of individual
nodes within the graph, ensuring that nodes in close proximity exhibit similar PE



36 Chapter 2. Preliminaries

values. GraphGPS (Rampášek et al., 2022) expands upon this idea by propos-
ing not only to learn positional encodings but also to incorporate structural
encodings. Structural encodings (SEs) capture the graph or subgraph struc-
ture to enhance the expressiveness and generalizability of DGNs. When nodes
share similar subgraphs or graphs exhibit resemblance, their SE values should
be closely aligned. Therefore, GraphGPS employs PE and SE schemes to enrich
node features with local and global graph information.

When graphs are large and dense, i.e., |E| close to |V|2, it can be imprac-
tical to perform the convolution over the node’s neighborhood. Neighborhood
sampling has been proposed as a possible strategy to overcome this limitation,
i.e. by using only a random subset of neighbors to update node representation.
GraphSAGE (Hamilton et al., 2017a) exploits this strategy to improve efficiency
and scale to large graphs. GraphSAGE updates the representation of a node u
by fixing the subset of nodes treated as neighbors, and by leveraging aggregation
and concatenation operations:

xℓ+1
u = σ

(
W ·

[
xℓ
u

∥∥ ⊕
v∈NS(u)

xℓ
v

])
(2.38)

where NS : V → V is the function that computes the fixed subset of neighbors
for a node u. Differently, ClusterGCN (Chiang et al., 2019) samples a block of
nodes identified by a graph clustering algorithm to restrict the neighborhood
dimension.

The way models aggregate neighbors representations to compute node em-
beddings affects the discriminative power of DGNs. Xu et al. (2019) showed
that most DGNs are at most as powerful as 1-Weisfeiler-Lehman test (Weis-
feiler & Lehman, 1968). In particular, Graph Isomorphism Network (GIN) (Xu
et al., 2019) has been proven to be as powerful as 1-Weisfeiler-Lehman test by
computing node representations as

xℓ+1
u = MLP

(
(1 + γ)xℓ

u +
∑
v∈Nu

xℓ
v

)
(2.39)

with γ as a learnable parameter or a fixed scalar. GINE (Hu et al., 2020) extends
GIN by enriching node embeddings with additional domain-specific information
extracted from edge features.

More recently, advancements in the field of representation learning for graphs
have introduced new architectures that establish a connection between the do-
mains of DGNs and ODEs, with the primary objective of optimizing various
aspects of message passing. These new methods exploit the intrinsic properties
of ODEs to enhance the efficiency and effectiveness of message passing within
DGNs. Specifically, works like GDE (Poli et al., 2019), GRAND (Chamberlain
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et al., 2021b), and DGC (Wang et al., 2021c) propose to view GCLs as time
steps in the integration of the heat equation. This perspective allows control-
ling the diffusion (smoothing) in the network and understand the problem of
oversmoothing. Other architectures like PDE-GCN (Eliasof et al., 2021) and
GraphCON (Rusch et al., 2022) propose to mix diffusion and oscillatory pro-
cesses as a feature energy preservation mechanism.

In conclusion, by formulating the propagation of information in graphs as an
ODE system, these architectures effectively tackle multiple challenges, such as
reducing the computational complexity of message passing and mitigating the
oversmoothing phenomena.

In Chapter 4, we will delve deeper into the analysis of DGNs formulated
from the perspective of ODEs. Specifically, we will describe the mutual inter-
pretability between DGNs and ODEs.

2.3.4 Random Walks

A different strategy to learn node embeddings including local and global prop-
erties of the graph relies on random walks . Similarly to standard walks (see
Section 2.1.1), a random walk is a random sequence of edges which joins a se-
quence of nodes. Perozzi et al. (2014) proposed DeepWalk, a method that learns
continuous node embedding by modeling random walks as the equivalent of sen-
tences. Specifically, the approach samples multiple walks of a specified length
for each node in the graph, and then it leverages the SkipGram model (Mikolov
et al., 2013) to update node representations based on the walks, treating the
walks as sentences and the node representations as words within them.

Node2Vec (Grover & Leskovec, 2016) improves DeepWalk by exploiting bi-
ased random walks, i.e., we can control the likelihood of revisiting a node in the
walk (allowing the walk to be more or less explorative) and bias the exploration
of new nodes towards a breath first or a depth first strategy.

2.3.5 Graph Rewiring

The issue of oversquashing has been widely recognized due to its impact on
the inability of DGNs to effectively transfer information across nodes that are
far apart in the graph (refer to Section 2.3.1 for a comprehensive discussion on
oversquashing). In recent years, the strategy of graph rewiring (Gasteiger et al.,
2019; Shi et al., 2023) has been studied as a potential solution to mitigate this
issue. Graph rewiring is a technique used to modify the original edge set to
densify the graph as a preprocessing step, with the aim of enhancing the perfor-
mance of DGNs. Consequently, graph rewiring allows 1-hop direct connection
between nodes that would otherwise be ℓ-hops away in the original graph, with
ℓ ≫ 1. This preprocessing step aims to facilitate the subsequent operation of
the DGN by optimizing the flow of information within the graph. Figure 2.16
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shows an example of graph rewiring application, comparing the original graph
topology with the preprocessed version.

(a) Original graph (b) Original graph after rewiring

Figure 2.16: Comparison of original graph topology (left) and preprocessed
graph after applying graph rewiring (right), illustrating densification of edges
to facilitate information flow within the graph.

Initial methodologies applying graph rewiring include DIGL (Gasteiger et al.,
2019) and SDRF (Topping et al., 2022). DIGL leverages the graph heat kernel
and personalize PageRank for rewiring, while SDRF employs a curvature-based
graph rewiring strategy. In differential geometry, curvatures measure the de-
gree to which the geometry determined by a given metric tensor deviates from
a flat space. So, in the graph domain, curvatures identify bottlenecks in the
information flow. SDRF identifies edges with negative curvatures (indicators
of potential oversquashing issues) and constructs additional supportive edges
around them, effectively reinforcing their structural context within the graph.
Similarly, GRAND (Chamberlain et al., 2021b), BLEND (Chamberlain et al.,
2021a), and DRew (Gutteridge et al., 2023) dynamically adjust graph connec-
tivity based on updated node features.

Despite the success of these techniques in addressing oversquashing, a po-
tential drawback is the increased complexity associated with propagating infor-
mation at each update, often linked to denser graph shift operators.



Chapter 3

Learning Dynamic Graphs

In this chapter, building upon the work (Gravina & Bacciu, 2024), we provide
a survey of state-of-the-art approaches in the domain of representation learning
for dynamic graphs under our unified formalism defined in Section 2.1 (the
taxonomy behind our surveying methodology is depicted in Figure 3.1). Finally,
we provide the graph learning community with a fair performance comparison
among the most popular DGNs for dynamic graphs, using a standardized and
reproducible experimental environment. Specifically, we performed experiments
with a rigorous model selection and assessment framework, in which all models
were compared using the same features, same datasets and the same data splits.
As a by-product of our work, we also provide the community with a selection
of datasets which we put forward as good candidates for the benchmarking of
future works produced by the community.

Deep Graph Networks

Static graphs
(Sec 2.3)

Dynamic graphs

D-TDGs

Spatio-temporal
(Sec 3.1.1)

Stacked Inte-
grated

Generic D-TDGs
(Sec 3.1.2)

Inte-
grated

Stacked Meta Auto-
encoder

Random
walks

C-TDGs
(Sec 3.2)

Inte-
grated

Stacked Random
walks

Hybrid

Figure 3.1: Taxonomy employed to structure our survey of DGN models for
dynamic graphs.
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3.1 Survey on Discrete-Time Dynamic Graphs
Given the sequential structure of D-TDGs, a natural choice for many meth-
ods has been to extend recurrent neural networks (RNNs) (Rumelhart et al.,
1986) to graph data. Indeed, most of the models presented in the literature
can be summarized as a combination of static DGNs and RNNs. In particu-
lar, some approaches adopt a stacked architecture, where DGNs and RNNs are
used sequentially, enabling to separately model spatial and temporal dynamics.
Other approaches integrate the DGN inside the RNN, allowing to jointly cap-
ture the temporal evolution and the spatial dependencies in the graph. Thus,
the primary distinction between static and dynamic approaches lies in their ar-
chitectures. Static approaches predominantly utilize feedforward or recurrent
architectures. Both used for exploring and learning the inherent static graph
structure. Differently, dynamic approaches are characterized by recurrent archi-
tectures for learning and capturing temporal and spatial dependencies within the
evolving graph, which mirrors the increased complexity inherent in addressing
dynamic graphs. In the following, we review state-of-the-art approaches for both
spatio-temporal graphs and more general D-TDGs (for a detailed description of
such graphs, please refer to Section 2.1.2).

3.1.1 Spatio-Temporal Graphs

When dealing with spatio-temporal graphs, new methods are designed to solve
the problem of predicting the node states at the next step, Xt+1, given the history
of states, Xt. To do so, different types of architectures have been proposed to
effectively solve this task.

Stacked architectures. Seo et al. (2018) proposed Graph Convolutional Re-
current Network (GCRN), one of the earliest deep learning models able to learn
spatio-temporal graphs. The authors proposed to stack a Chebyshev spectral
convolution (Defferrard et al., 2016) (Equation 2.34 shows the first-order approx-
imation of this convolution) for graph embedding computation and a Peephole-
LSTM (Gers et al., 2002; Graves, 2013) for sequence learning:

X
′
t = Cheb(Xt, E , k,W)

Ht = peephole-lstm(X
′
t)

(3.1)

where Cheb(Xt, E , k,W) represents Chebyshev spectral convolution (leveraging
a polynomial of order k) computed on the snapshot Gt parametrized by W ∈
Rk×d×dn . We recall that d is the new latent dimension of node states. Ht is the
hidden state vector, which is equivalent to the node states at time t + 1 (i.e.,
Xt+1). To ease readability, in the following, we drop from the equation the edge
set, E , and the polynomial degree, k, since they are fixed for the whole snapshot
sequence.
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Equation 3.1 can be reformulated to define a more abstract definition of a
stacked architecture between a DGN and an RNN, i.e.,

X
′
t = dgn(Xt,W)

Ht = rnn(X
′
t)

(3.2)

Li et al. (2018) implement Equation 3.2 by leveraging the same spectral
convolution as GCRN and a Gated Recurrent Unit (GRU) (Cho et al., 2014) as
RNN. Differently, Zhao et al. (2020) employed the first-order approximation of
the Chebyshev polynomials, which lead to the usage of a GCN to learn spatial
features, and a GRU to extract temporal features.

A3TGCN (Bai et al., 2021) extends the implementation of Zhao et al. (2020)
with an attention mechanism to re-weight the influence of historical node states,
with the aim of capturing more global information about the system.

Integrated architectures. In contrast to the aforementioned approaches, an
alternative type of architecture is the one of an integrated architecture, where
the DGN is incorporated into the RNN to simultaneously capture and integrate
temporal evolution and spatial dependencies within the graph. Seo et al. (2018)
proposed a second version of GCRN that exploit this type of architecture, by
embedding the Chebyshev spectral convolution in the Peephole-LSTM. In this
case, input, forget, and output gates can be reformulated as

ĥ = σ(Cheb(Xt,Wx) + Cheb(Ht−1,Wh) + θc ⊙ ct−1), (3.3)

the rest of the LSTM is defined as usual. We note that ⊙ denotes the Hadamard
product, σ is the activation function, and ĥ if the output of a generic gate. The
weights Wh ∈ Rk×d×d, Wx ∈ Rk×d×dn , θc ∈ Rd are the parameters of the model.
We observe that (here and in the following) the bias term is omitted for ease of
readability.

The Spatio-Temporal Graph Convolutional Network (Yu et al., 2018) com-
poses several spatio-temporal blocks to learn topological and dynamical features.
Each block consists of two sequential convolution layers and one graph convolu-
tion in between. The temporal convolution layer contains a 1-D causal convo-
lution followed by a Gated Linear Unit (Dauphin et al., 2017), while the graph
convolution is in the spectral domain. Let’s consider ConvG the spectral graph
convolution, and ConvT1 and ConvT2 the first and second temporal convolutions,
respectively. Thus, each spatio-temporal block can be formulated as

Ht = ConvT2
(
ReLU(ConvG( ConvT1 (Xt) ))

)
. (3.4)

Guo et al. (2019) extend the spatio-temporal blocks with an attention mech-
anism on both spatial and temporal dimensions to better capture the spatial-
temporal dynamic of the graph.
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3.1.2 General D-TDGs

Different from spatio-temporal graphs, the topology of a general D-TDG can
evolve over time. In this case, the mere exploitation of the sole node states can
lead to poor performance, since the new topology leads to different dynamics in
the graph. In fact, the evolving topology is responsible for different information
flows in the graph over time. Thus, excluding the evolution of the graph struc-
ture becomes a major limit of the method, leading to inaccurate predictions.

Even in this case, we can categorize approaches for general D-TDGs depend-
ing on the architectural design.

Integrated architectures. Chen et al. (2022) proposed GC-LSTM an en-
coder-decoder model for link prediction, assuming fixed the node set V(t). The
encoder consists of a GCN embedded in a standard LSTM. The GCN learns
topological features of the cell state c and of the hidden state h, which are
used to save long-term relations and extract input information, respectively.
The encoder takes as input the sequence of adjacency matrices and returns an
embedding that encodes both temporal and spatial information. Thus, a generic
gate in the LSTM can be expressed as:

ĥt = σ(WhAt + gcnh(Ht−1, Et−1)) (3.5)

where Wh ∈ R|V|×d is the weight matrix, and At is the adjacency matrix at
time t, as usual. The decoder part of the model is an MLP that leverages the
embedding generated from the encoder to predict the probability of each edge
in future adjacency matrix At+1.

A similar strategy, which integrates topological changes into the computa-
tion, has also been employed by Li et al. (2019). Indeed, the authors proposed
the so-called LRGCN that embed a Relational-GCN (Schlichtkrull et al., 2018)
into a LSTM model. Different from GC-LSTM, LRGCN exploits the directional-
ity of the edges in accordance with node features rather than the only stream of
adjacency matrices, with the aim of effective modeling of the temporal dynam-
ics. In LRGCN the input, forget, and output gates are computed as the result of
the R-GCN model over the input node representations and the node embeddings
computed at the previous step. The authors distinguish between four edge types
to produce more informed latent representation: intra-incoming, intra-outgoing,
inter-incoming, inter-outgoing. An inter-time relation corresponds to an arc
(u, v) present at the previous time t − 1, while an intra-time relation is an arc
(u, v) present at current time t. To employ LRGCN in a path classification task,
the authors extend their model with a self-attentive path embedding (SAPE).
Given the representations of m nodes on a path, P ∈ Rm×do with do is the output
dimension of LRGCN, SAPE first applies LSTM to capture node dependency
along the path sequence, i.e., Γ = LSTM(P ) ∈ Rm×dnew . Then, SAPE uses the
self-attentive mechanism to learn node importance and generate size-invariant
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representation of the path, i.e.,

S = softmax(mlp(tanh(mlp(Γ)))) ∈ Rr×m (3.6)

with r an hyper-parameter. Lastly, the final path representation is obtained by
multiplying S with Γ, i.e., e = SΓ ∈ Rr×dnew .

With the aim of speeding up the dynamic graph processing, Micheli & Tor-
torella (2022) propose DynGESN, an extension of the Graph Echo State Net-
work (Gallicchio & Micheli, 2010) to the temporal domain. Specifically, Dyn-
GESN updates the embedding for a node u at time t as

ht
u = (1− γ)ht−1

u + γtanh

Wih
t
u +

∑
v∈N t

u

Wrx
t−1
v

 , (3.7)

with 0 < γ ≤ 1 being a leakage constant, Wi the input weights, and Wr the
recurrent weights. Both input and recurrent weights are randomly initialized.

Stacked architectures. Instead of integrating the DGN into the RNN, Pana-
gopoulos et al. (2021) stack an LSTM on top of a DGN (in this case an MPNN),
as previously proposed for spatio-temporal graphs. Differently from those ap-
proaches, the authors leverage as input the new node features as well as the
new topology. Thus, the MPNN updates node representations by exploiting the
temporal neighborhoods in each snapshot. You et al. (2022) extend the MPNN-
LSTM method by proposing the exploitation of hierarchical node states. Thus,
the authors propose to stack multiple DGN’s layers and interleave them with
the sequence encoder, e.g., the RNN, to better exploit the temporal dynamic
at each degree of computation. Thus, the node state at each layer depends on
both the node state from the previous layer and the historical node state. More
formally, the ℓ-th layer of You et al.’s framework is

H̃ℓ
t = dgnℓ(H̃ℓ−1

t )

Hℓ
t = update(H̃ℓ

t,H
ℓ−1
t ).

(3.8)

where update is the sequence encoder. Similarly Deng et al. (2019) employed
GCN to learn spatial dependencies and MLP as update function.

Contrarily from previous works, Cini et al. (2023) propose to first embed the
history of the node time series into latent representations that encode the tem-
poral dynamic of the system. Such representations are then processed leveraging
multiple powers of a graph shift operator (e.g., graph Laplacian or adjacency
matrix) to encode the spatial dynamic of the system. Specifically, the authors
propose to encode the temporal dynamics by means of an Echo State Networks
(ESNs) (Jaeger, 2010; Jaeger & Haas, 2004), a randomized recurrent neural net-
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works1, to efficiently compute node embedding and improve the scalability of
DGNs for D-TDG.

Meta architectures. We refer to meta architectures as those methods that
learn a function that maps the evolution of the graph into the evolution of the
parameters of the employed DGN. This kind of architecture has been proposed
by Pareja et al. (2020) to deal with those scenarios where nodes may frequently
appear and disappear. As observed by the authors, such dynamics can be chal-
lenging to model with RNN-based models, since they have difficulties in learning
these irregular behaviors. In such situation, the authors proposed Evolving GCN
(E-GCN) to capture the dynamism of such graphs by using an RNN to evolve
the parameters of a GCN. Thus, only the RNN parameters are trained. The
authors considered two versions of their model, depending on whether graph
structure or node features play the more important role. The first treats the
GCN weights as the hidden state of a GRU to assign more significance to node
representations. The second computes the weights as the output of the LSTM
model, and it is more effective when the graph structure is important for the
task. Let’s consider GRU(Xt,Wt−1) as an extended version of a standard GRU
model that exploits both the weight matrix at time t−1, Wt−1, and the previous
node embedding, Ht. The first E-GCN architecture can be formulated as

Wt = GRU(Xt,Wt−1)

Ht = GCN(Xt, Et,Wt)
(3.9)

while the second substitutes the GRU with an LSTM that takes as input only
the weight matrix at time t− 1.

Autoencoder architectures. Taheri & Berger-Wolf (2020) introduced Dy-
GrAE, an autoencoder for D-TDGs. Specifically, DyGrAE leverages the Gated
Graph Neural Network (GGNN) (Li et al., 2016) to capture spatial information,
and LSTM encoder-decoder architecture to capture the dynamics of the network.
GGNN is a DGN similar to the GNN introduced by Scarselli et al., but with
a fixed number of iterations. DyGrAE consists of four components: a GGNN
to learn the spatial dynamic; an RNN to propagate temporal information; an
encoder to project the graph evolution into a fixed-size representation; and a
decoder to reconstruct the structure of the dynamic graph. At each time step,
at first, DynGrAE computes the snapshot embedding as the result of the aver-
age pooling on node embeddings at time t, i.e., emb(Gt) = poolavg(GGNN(Xt)).
Then, the LSTM encoder-decoder uses the graph embeddings to encode and

1In randomized neural networks the hidden weights are randomly initialized and kept fixed
after initialization. Only the weights in the final readout layer are learned, typically employing
highly efficient methods like least-squared minimization (Gallicchio & Scardapane, 2020).
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reconstruct the input graph sequence:

encoder : henc
t = LSTMenc(emb(Gt),henc

t−1)

decoder : hdec
t = LSTMdec(Āt−1,h

dec
t−1)

(3.10)

where Āt−1 = sigmoid(mlp(hdec
t−1)) is the reconstructed adjacency matrix at time

t − 1. The decoder uses henc
w to initialize its first hidden state, if w is window

size. To improve the performance, the authors introduced a temporal attention
mechanism, which forces the model to focus on the time steps with significant
impact. That mechanism causes the reformulation of the decoder as

hdec
t = LSTMdec([h

∗
t ||Āt−1],h

dec
t−1) (3.11)

where h∗
t =

∑t−1
i=t−w ᾱi

th
enc
i is the attention distribution, the attention weights

ᾱi
t = softmax(f(hdec

t−1,h
enc
i )), and f is a function, e.g., dot product or MLP.

Dyngraph2vec (Goyal et al., 2020) introduces an analogous encoder-decoder ap-
proach featuring a deep architecture comprising dense and recurrent layers. This
design facilitates the utilization of a more extended temporal evolution for pre-
dictions.

A different strategy has been proposed by Goyal et al. (2018) that developed
DynGEM. Such method handles D-TDGs by varying the size of the autoencoder
network depending on a heuristic, which determines the number of hidden units
required for each snapshot. Such heuristic, named PropSize, ensures that each
pair of consecutive layers, ℓ and ℓ+ 1, satisfy the condition:

size(ℓ+ 1) ≥ µ · size(ℓ) (3.12)

where 0 < µ < 1 is a hyper-parameter. This heuristic is applied to both encoder
and decoder separately. If the condition in Equation 3.12 is not satisfied for
each pair of layers, then the number of (ℓ + 1)’s hidden units are increased. If
PropSize is still unsatisfied between the penultimate and ultimate layers, a new
layer is added in between. At each time step t and before any application of
PropSize, DynGEM initializes model parameters with those of the previous step
Wt = Wt−1. This results in a direct transfer of knowledge between adjacent
time steps, which guarantees a higher affinity between consecutive embeddings.

Random walk based architectures. Inspired by DeepWalk and Node2Vec,
Bastas et al. (2019) propose a random walk approach designed for D-TDGs
named Evolve2Vec. Given a sequence of graph snapshot, Bastas et al. consider
old interactions to contribute only in the propagation of topological information,
while they use more recent interactions to encode the temporal dynamic. Thus,
they proceed by aggregating old snapshots as a unique static graph. Evolve2Vec
starts random walks from all nodes with at least one outgoing edge in the static
graph, as discussed in Section 2.3.4. Then, in the temporal part, each walker
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move to a new neighbor if there is at least an outgoing edge in the current snap-
shot, otherwise it remains in the current node until an outgoing edge is added.
Depending on how threshold between old and new is set, we can interpolate
between a fully static or fully dynamic approach. After the computation of
the random walks, node embeddings are computed by feeding the walks into a
skip-gram model, as usual.

3.2 Survey on Continuous-Time Dynamic
Graphs

In a scenario where the dynamic graph is observed only as new incoming events
in the system, the methods defined in Section 3.1 are unsuitable. In fact, ap-
proximating a C-TDG through a sequence of graph snapshots can introduce
noise and loss of temporal information, since snapshots are captured at a more
coarse level, with consequent performance deterioration. Moreover, the previ-
ously discussed methods usually do not allow including the time elapsed since
the previous event. The majority of such methods update the embeddings only
when new events occur. However, depending on how long it passed since the
last event involving a node may result in the staleness of the embedding. In-
tuitively, the embedding may change depending on the time elapsed since the
previous event. For such reasons, new techniques have been introduced to han-
dle C-TDGs. We classify literature approaches into four categories depending
on the architectural choices.

Integrated architectures. Kumar et al. (2019) proposed JODIE, a method
that learns embedding trajectories to overcome the staleness problem. JODIE
computes the projection of a node u in a future timestamp t as an element-wise
Hadamard product of the temporal attention vector with the previous node
embedding,

x̂u(t) = (1 +w)⊙ xu(t
−
u ) (3.13)

where (1 + w) is the temporal attention vector, w = Wp∆t is the context
vector, and ∆t = t − t−u is the time since the last event involving u. Thanks
to the projection, JODIE can predict more accurately future embeddings, thus
new events. Similar to other models, when an interaction event occurs between
nodes u and v, JODIE computes the embeddings xu and xv by leveraging two
RNNs.

Trivedi et al. (2019) proposed DyRep, a framework that update the repre-
sentation of a node as it appear in an event in the C-TDG. DyRep captures
the continuous-time dynamics leveraging a temporal point process approach. A
temporal point process is characterized by the conditional intensity function that
models the likelihood of an event to happen given the previous events. DyRep’s
conditional intensity function, computed for an event between nodes u and v at
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time t, is:
λk
uv(t) = fk(g

k
uv(t

−)) (3.14)
where k is the event type, t− is the previous timestamp in which an event occur,
and

fk(z) = θk log

(
1 + exp

(
z

θk

))
(3.15)

with θk a parameter to be learned. The inner function

gkuv(t
−) = ωT

k · [xu(t
−)||xv(t

−)] (3.16)

is a function of node representations learned through a DGN, with ωk ∈ R2|F | the
model parameters that learn time-scale specific compatibility. Node embeddings
computed by the DGN are updated as

hu(t) = σ(Wih
loc
u (t−) +Wrhu(t

−
u ) +We(t− t−u )) (3.17)

where hloc
u (t−) ∈ Rd is the representation of the aggregation of u’s direct neigh-

bors, t−u is the timestamp of the previous event involving node u, and Wi,Wr ∈
Rd×d and We ∈ Rd are learnable parameters. In Equation 3.17 the first ad-
dend propagates neighborhood information, the second self-information, while
the third considers the exogenous force that may smoothly update node features
during the interval time. To learn hloc

u (t−), DyRep uses an attention mechanism
similar to the one proposed in the GAT model (see Section 2.3 for more details).
In this case, the attention coefficient is parametrized by S ∈ R|V|×|V|, which is a
stochastic matrix denoting the likelihood of communication between each pair
of nodes. S is updated according to the conditional intensity function. The
aggregated neighborhood representation is

hloc
u (t−) = max({σ(αuv(t) · hv(t

−)) | v ∈ N t
u)}), (3.18)

with σ the activation function and αuv(t) the attention factor, as usual.

Stacked architectures. In the case of sequential encoding of spatial and tem-
poral information, Xu et al. (2020) introduce TGAT, a model that learns the pa-
rameters of a continuous function that characterize the continuous-time stream.
Similar to GraphSAGE and GAT models, TGAT employs a local aggregator that
takes as input the temporal neighborhood and the timestamp and computes a
time-aware embedding of the target node by exploiting an attention mechanism.
The ℓ-th layer of TGAT computes the temporal embedding of node u at time t
as

hℓ
u(t) = mlpℓ

2(ReLU(mlpℓ
1([ĥ(t)||xu]))) (3.19)

where ĥ(t) is the attentive hidden neighborhood representation obtained as

q(t) = [Z(t)]0Wq

K(t) = [Z(t)]1:nWK

V(t) = [Z(t)]1:nWV

ĥ(t) = attn(q(t),K(t),V(t)).

(3.20)
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Z(t) =
[
xℓ−1
u (t)||Ωd(0), ...,x

ℓ−1
v (t)||Ωd(t− tv)

]
∈ R(d+dt)×n is the temporal fea-

ture matrix that concatenates the representation of each node in the neighbor-
hood of u with the time difference between the current time and the time of
the previous event involving the neighbor. We consider v ∈ N t

u and n the size
of u’s neighborhood. q(t), K(t), and V(t) are the query, key and value projec-
tions of the matrix; and attn is an attention mechanism similar to GAT. The
dimensional functional mapping Ωd : t→ Rdt is defined as

Ωd(t) = [cos(ω1t) sin(ω1t), ..., cos(ωdt) sin(ωdt)] (3.21)

where ωi are learnable parameters.
Differently, Ma et al. (2020) proposed an approach, named StreamGNN, to

learn the node embedding evolution as new edges appear in the dynamic graph.
Thus, it is design to only deal with interaction events. StreamGNN is composed
of two main components: the update component, which is responsible for up-
dating the node representations of the source and destination nodes of the new
link; and the propagation component, which propagates the new event across
the direct neighborhood of the involved nodes. When a new event is observed,
the update component computes the representation of the event as the result of
an MLP on the node representation of both source and destination. Then, such
representation is updated by an LSTM to include historical information from
previous interactions. The amount of the past node history used by the LSTM
is inversely proportional to the time difference with the previous node interac-
tion. Then, the lastly computed node embeddings of source and target nodes
are merged with the output of the LSTM model. After these first steps, the
propagation component diffuse the computed representations across the 1-hop
neighborhood by leveraging an attention mechanism and by filtering out those
neighbors which appear in an interaction before a predefined threshold.

Rossi et al. (2020) extend previous concepts by proposing Temporal Graph
Network (TGN), a general framework composed of five core modules: memory,
message function, message aggregator, memory updater, and the embedding
module. The memory at time t is a matrix s(t) that has the objective of repre-
senting the node’s history in a vectorial format. For this purpose, it is updated
after every event. The message function has the role of encoding the event to
update the memory module. Given an interaction event involving nodes u and
v at time t, the message function computes two messages

mu(t) = msgsrc(su(t
−), sv(t

−),∆t, euv(t))

mv(t) = msgdst(sv(t
−), su(t

−),∆t, euv(t)),
(3.22)

where msg can be any learnable function, e.g., a MLP. In case of a node event,
it is sent a single message. The message aggregator is a mechanism to aggregate
messages computed at different timestamps. It can be a learnable function, e.g.,
RNN, or not, e.g., message average or most recent message. After every event
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involving a node u, the memory of the node is updated by the memory updater
as

su(t) = mem(m̄u(t), su(t
−)) (3.23)

where m̄u(t) represents the aggregation of computed messages in a batch related
to node u, and mem is an RNN. Lastly, the embedding module generates the
representation for a node u at time t by exploiting the information stored in the
memory module of the node itself and its neighborhood up to time t

hu(t) =
∑
v∈N t

u

f(su(t), sv(t),xu(t),xv(t), euv) (3.24)

with f a learnable function and xu(t), xv(t) the input node representations of
nodes u and v.

Random walk based architectures. Even in the scenario of C-TDGs, it
is possible to compute node embeddings relying on random walks. Differently
from a standard random walk, in the continuous-time domain a valid walk is a
sequence of interaction events with a non-decreasing timestamp. Nguyen et al.
(2018) extended the Node2Vec framework to exploit temporal random walks.
Once decided the starting timestamp t0, which is used to temporally bias the
walk, the framework samples new nodes for the walk by considering the temporal
neighborhood. Differently from the general formulation of temporal neighbor-
hood, Nguyen et al. apply a threshold to discriminate and filter old neigh-
bors. The distribution to sample nodes in the walk can be either uniform, i.e.,
P(v) = 1/|N t

u|, or biased. Specifically, the authors proposed two ways to obtain
a temporally weighted distribution. Let consider that the random walk is cur-
rently at the node u. In the first case, a node v is sampled with the probability

P(v) =
exp(T (v)− T (u))∑

v′∈N t
u
exp(T (v′)− T (u))

, (3.25)

where T : V → R+ is the function that given a node return the corresponding
timestamp of the event in which the node was involved; while in the second

P(v) =
δ(v, T (v))∑

v′∈N t
u
δ(v′, T (v′))

, (3.26)

where δ : V ×R+ → Z+ is a function that sorts temporal neighbors in descend-
ing order depending on time, thus returns a score that biases the distribution
towards the selection of edges that are closer in time to the current node.

Instead of temporal random walks, Wang et al. (2021b) exploited Causal
Anonymous Walks (CAW) to model C-TDGs. A CAW encodes the causality of
network dynamics by starting from an edge of interest and backtracking adja-
cent edges over time. Moreover, a CAW is anonymous because it replaces node
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identities in a walk with relative identities based on the appearance order. The
causality extraction helps the identification of temporal network motif, while
node anonymization guarantees inductive learning. Given an edge {u, v}, the
model extracts M walks of length m starting from both u and v, and then per-
forms the anonymization step. Afterward, an RNN encodes each walks leverag-
ing two functions. The first consists of two MLPs ingested with the encoding of
the correlation between the node w and the sampled walks

f1(w) = mlp(g(w, Su)) + mlp(g(w, Sv)) (3.27)

where Su is the set of sampled walks started from u, and g is the function
that counts the times a node w appears at certain positions in Su. The second
function encodes time as Equation 3.21. All the encoded walks are aggregated
through mean-pooling or the combination of self-attention and mean-pooling to
obtain the final edge representation.

NeurTWs (Jin et al., 2022) extends Wang et al.’s work by employing a
different sampling strategy for the temporal random walks, which integrates
temporal constraints, topological properties, and tree traversals, allowing to
sample spatiotemporal-biased random walks. These walks prioritize neighbors
with higher connectivity (promoting exploration of more diverse and potentially
expressive motifs), while being aware of the importance of recent neighbors.
Furthermore, NeurTWs replaces the RNN-based encoding approach for walks
with a component based on neural ODEs to facilitate the explicit embedding of
irregularly-sampled events.

Hybrid architectures. Souza et al. (2022) propose to improve the expres-
sive power of methods designed for C-TDGs by leveraging the strengths of both
CAW and TGN-based architectures. Thus, by providing a hybrid architecture.
Specifically, the authors observe that for TGN-based architectures, most ex-
pressive power is achieved by employing injective embedding module, message
aggregator and memory updater functions. On the other hand, the main advan-
tage of CAW is its ability to leverage node identities to compute representative
embeddings and capture correlation between walks. However, such approach im-
poses that walks have timestamps in decreasing order, which can limit its ability
to distinguish events. Under such circumstances, the authors propose PINT, an
architecture that leverages injective temporal message passing and relative posi-
tional features to improve the expressive power of the method. Specifically, the
embedding module computes the representation of node u at time t and layer ℓ
as

ĥℓ
u(t) =

∑
v∈N t

u

mlpℓ
agg(h

ℓ−1
v (t)||euv)α−β(t−t−)

hℓ
u(t) = mlpℓ

upd(h
ℓ−1
u (t)||ĥℓ

u(t))

(3.28)

where α and β are scalar hyper-parameters the node state is initialized with
its memory representation, i.e., h0

u(t) = su(t). To boost the power of PINT,
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the authors augment memory states with relative positional features, which
include information about the number of existing temporal walks of a given
length between two nodes.

3.3 The Benchmarking Problem

In this section, we provide the graph learning community with a performance
comparison among the most popular DGNs for dynamic graphs. The aim is
to support the tracking of the progress of the state-of-the-art and to provide
robust baseline performance for future works. To the best of our knowledge, in
fact, there are no widely agreed standard benchmarks in the domain of dynamic
graphs. For such a reason, nowadays, it is not easy to fairly compare models
presented in different works, because they typically use different data and em-
pirical settings. The latter plays a crucial role in the definition of a fair and
rigorous comparison, e.g., including multiple random weights initialization and
hyperparameter search and similar data splits.

With this in mind, we designed three benchmarks to assess models that deal
with spatio-temopral graphs, general D-TDGs, and C-TDGs. Specifically, we
evaluated methods for D-TDGs on both link and node prediction tasks while we
constrained the evaluation of C-TDG methods to link prediction tasks due to the
scarcity of suitable datasets. To do so, we extended the library PyDGN (Errica
et al., 2023a) to the D-TDG learning setting to foster reproducibility and robust-
ness of results. With the same aim, we developed a Pytorch Geometric (Fey &
Lenssen, 2019) based framework to allow reproducible results in the continuous
scenario. Lastly, in Appendix A.1 we provide the community with a selection
of datasets useful for benchmarking future works. An interest reader is referred
to SNAP (Leskovec & Krevl, 2014), TSL (Cini & Marisca, 2022), and Network
Repository (Rossi & Ahmed, 2015) for a broader data collections. We release
openly the code implementing our methodology and reproducing our empirical
analysis at https://github.com/gravins/dynamic_graph_benchmark.

3.3.1 Spatio-Temporal Graph Benchmark

In the spatio-temporal setting, we consider three graph datasets for traffic fore-
casting, i.e., Metr-LA (Li et al., 2018), Montevideo (Rozemberczki et al., 2021b),
and PeMSBay (Li et al., 2018), and Traffic (Li et al., 2019). Specifically,

• Metr-LA consists of four months of traffic readings collected from 207
loop detectors in the highway of Los Angeles County every five minutes;

• Montevideo comprises one month of hourly passenger inflow at stop level
for eleven bus lines from the city of Montevideo;

https://github.com/gravins/dynamic_graph_benchmark
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• PeMSBay contains six months of traffic readings collected by Califor-
nia Transportation Agencies (CalTrans) Performance Measurement Sys-
tem (PeMS) every five minutes by 325 traffic sensors in San Francisco Bay
Area.

• Traffic: consists of traffic data collected over a period of three months,
with hourly granularity, from 4,438 sensor stations located in the 7th Dis-
trict of California.

For all the three datasets, the objective is to perform temporal node regression,
thus, to predict the future node values, Xt+1, given the past graph history,
[Gi]ti=1.

The baseline performance for this type of predictive problems on graphs is
based on five spatio-temporal DGNs (i.e., A3TGCN (Bai et al., 2021), DCRNN
(Li et al., 2018), GCRN-GRU (Seo et al., 2018), GCRNN-LSTM (Seo et al.,
2018), TGCN (Zhao et al., 2020)), within the aim of assessing both stacked and
integrated architectures, and the influence of an attention mechanism.

We designed each model as a combination of three main components. The
first is the encoder which maps the node input features into a latent hidden space;
the second is the DGN which computes the spatio-temporal convolution; and
the third is a readout that maps the output of the convolution into the output
space. The encoder and the readout are MLPs that share the same architecture
among all models in the experiments. We performed hyperparameter tuning via
grid search, optimizing the Mean Absolute Error (MAE). We perform a time-
based split of the dataset which reserves the first 70% of the data as training
set, 15% of the following data as validation set, and the last 15% as test set. We
trained the models using Adam optimizer for a maximum of 1000 epochs and
early stopping with patience of 50 epochs on the validation error. For each model
configuration, we performed 5 training runs with different weight initialization
and report the average of the results. We report in Table A.4 (Appendix A.2)
the grid of hyperparameters exploited for this experiment.

Results. In Table 3.1 we report the results on the spatio-temporal-based ex-
periments, including Mean Squared Error (MSE) as an additional metric. Over-
all, DCRNN and GCRN-GRU achieve the better performance on the selected
tasks. Interestingly, they both rely on Chebyshev spectral convolution and GRU,
but with different architectural structure. Indeed, DCRNN employs a stacked
architecture, while GCRN-GRU embeds the DGN into the RNN, enabling a
combined modeling of the temporal and spatial information. This result shows
that there is not a superior architectural design, in these tasks. However, it seems
relevant to include a bigger neighborhood in the computation (e.g., by exploiting
a larger Chebishev polynomial filter size). Indeed, even if A3TGCN employs an
attention mechanism to capture more global information, it is not enough to
achieve comparable performance to DCRNN or GCRN-based approaches. Nev-
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ertheless, it is noteworthy that the superior performance of these approaches
comes at the expense of computational speed, as it is shown in Table 3.2.

Table 3.1: Mean test scores of the spatio-temporal models and std averaged over
5 random weight initializations. MAE is the optimized metric. The lower, the
better.

Montevideo Metr-LA
Model MAE MSE MAE MSE

A3TGCN 0.3962±0.0021 1.0416±0.0047 0.3401±0.0008 0.3893±0.0039

DRCNN 0.3499±0.0006 1.0686±0.0012 0.1218±0.0013 0.0960±0.0017

GCRN-GRU 0.3481±0.0008 1.0534±0.0062 0.1219±0.0007 0.0973±0.0009

GCRN-LSTM 0.3486±0.0026 1.0451±0.0099 0.1235±0.0009 0.0985±0.0004

TGCN 0.4024±0.0022 1.0678±0.0049 0.3422±0.0046 0.3891±0.0058

PeMSBay Traffic
Model MAE MSE MAE MSE

A3TGCN 0.2203±0.0105 0.2540±0.0039 0.1373±0.0300 0.0722±0.0053

DRCNN 0.0569±0.0004 0.0398±0.0002 0.0153±0.0002 0.0018±4·10−5

GCRN-GRU 0.0571±0.0005 0.0404±0.0007 0.0153±0.0003 0.0018±0.0001

GCRN-LSTM 0.0593±0.0004 0.0436±0.0001 0.0153±0.0006 0.0018±0.0001

TGCN 0.2109±0.0039 0.2466±0.0033 0.1375±0.0299 0.0724±0.0052

Table 3.2: Average time to execute a forward pass on the whole dataset (mea-
sured in seconds) and std of the best configuration of each model in each task
in the spatio-temporal setting, averaged over 5 repetitions. The evaluation was
carried out on an Intel(R) Xeon(R) Gold 6240R CPU @ 2.40GHz.

Model Montevideo Metr-LA PeMSBay Traffic

A3TGCN 1.59±0.05 95.12±0.53 167.05±1.96 18.81±1.04

DCRNN 3.15±0.1 291.44±0.76 366.34±2.73 112.49±11.52

GCRN-GRU 4.89±0.1 216.99±3.77 289.38±3.38 32.44±1.03

GCRN-LSTM 6.92±0.13 313.27±4.09 534.65±5.85 46.08±1.6

TGCN 1.64±0.07 95.08±1.43 165.19±2.69 17.96±0.52

3.3.2 D-TDG Benchmark

In the setting of general D-TDGs (i.e., both nodes’ state and topology may
evolve over time), we consider the following datasets:

• Twitter Tennis (Béres et al., 2018): a mention graph in which nodes are
Twitter accounts and their labels encode the number of mentions between
them;

• Elliptic (Weber et al., 2019): a network of bitcoin transactions, wherein
a node represents a transaction and an edge indicate the payment flow.
Node are also mapped to real entities belonging to licit categories (e.g.,
exchanges, wallet providers, miners, licit services) versus illicit ones (e.g.,
scams, malware, terrorist organizations, ransomware, Ponzi schemes);
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• AS-773 (Leskovec et al., 2005): the communication network of who-talks-
to-whom defined in a timespan of almost 26 months from the BGP (Border
Gateway Protocol) logs;

• Bitcoin-α (Kumar et al., 2016, 2018): a who-trusts-whom network of
bitcoin users trading on the platform http://www.bitcoin-alpha.com.
To convert this graph into a succession of snapshots, we adopted the same
daily aggregation strategy as in Pareja et al. (2020).

We use the first two datasets to run node-level tasks. Specifically, similarly to
the case of spatio-temporal setting, in Twitter tennis we perform temporal node
regression, while in the Elliptic dataset temporal node classification. Therefore,
we predict the class associated to the nodes of the snapshot at time t given the
past graph history, [Gi]ti=1. We employ the last two datasets for temporal link
prediction task, i.e., to predict the future topology of the graph given its past
history.

In this benchmark we evaluate three different classes of architectures (i.e.,
stacked, integrated and meta) and we show the potential of randomized net-
works in the tradeoff between performance and complexity. Thus, we con-
sider five DGNs for our experiments: DynGESN (Micheli & Tortorella, 2022),
EvolveGCN-H (Pareja et al., 2020), EvolveGCN-O (Pareja et al., 2020), GC-
LSTM (Chen et al., 2022), LRGCN (Li et al., 2019).

We performed hyperparameter tuning via grid search, optimizing the MAE
in the case of node regression, Area Under the ROC curve (AUC) in the case of
link prediction, and balanced accuracy (B-Acc) for node classification. We con-
sidered the same experimental setting, split strategy, and architectural choice as
for the spatio-temporal graphs. In the case of link prediction, we perform neg-
ative sampling by randomly sampling non-occurring links from the next future
snapshots. We note that in the case of DynGESN, the model employs fixed and
randomized weights and only the final readout is trained. We report in Table A.5
(Appendix A.2) the grid of hyperparameters exploited for this experiment.

Results. Table 3.3 and Table 3.4 show the results on general D-TDGs on
node-level and link-level tasks, respectively. Differently than the spatio-temporal
setting, different tasks benefit from different architectures. Indeed, integrating
topology’s changes (such as in GCLSTM and LRGCN) is more effective in link
prediction tasks, while evolving the parameters of the DGN is more beneficial
for node-level tasks, since it is more difficult to change the parameters of a
static DGN to predict the topological evolution of the system. Notably, Dyn-
GESN achieves comparable results by exploiting only few trainable parameters
and reduced computational overhead (see Table 3.5), showing an advantageous
tradeoff between performance and complexity. This makes it an ideal choice
when the computational resources are limited.

http://www.bitcoin-alpha.com
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Table 3.3: Mean test scores and std of DGNs for general D-TDGs averaged over
5 random weight initializations on node-level tasks. For MAE and MSE scores,
lower values corresponds to better performances, while for B-Acc, AUC and F1
the higher values are better. The optimized metric is colored.

Node-level tasks
Twitter tennis Elliptic

Model MAE MSE AUC F1 B-Acc

DynGESN 0.1944±0.0056 0.3708±0.0411 51.12±1.30 79.2±19.62 50.56±1.10

EvolveGCN-H 0.1735±0.0007 0.2858±0.0074 48.43±2.71 92.54±8.39 49.52±1.55

EvolveGCN-O 0.1749±0.0007 0.3020±0.0111 45.11±1.68 90.80±12.67 49.23±1.03

GCLSTM 0.1686±0.0015 0.2588±0.0049 45.77±1.60 70.84±30.01 48.20±1.80

LRGCN 0.1693±0.0014 0.2507±0.0057 45.82±3.81 65.69±20.21 47.84±3.37

Table 3.4: Mean test scores and std of DGNs for general D-TDGs averaged over
5 random weight initializations on link-level tasks. The higher, the better. The
optimized metric is colored.

Link-level tasks
AS-773 Bitcoin α

Model AUC F1 B-Acc AUC F1 B-Acc

DynGESN 95.34±0.04 79.83±5.27 82.80±3.40 97.68±0.12 69.98±1.57 76.79±0.93

EvolveGCN-H 59.52±17.53 39.85±34.24 53.72±16.79 51.35±2.88 29.55±30.58 50.69±1.69

EvolveGCN-O 58.90±17.80 29.99±37.10 56.99±13.97 51.42±2.84 31.74±29.98 51.42±2.84

GCLSTM 96.35±0.01 91.22±0.13 91.11±0.06 97.75±0.17 91.22±1.38 91.72±1.11

LRGCN 94.77±0.23 89.59±0.33 89.07±0.34 98.05±0.03 91.33±0.08 91.89±0.07

Table 3.5: Average time to execute a forward pass on the whole dataset (mea-
sured in seconds) and std of the best configuration of each model in each task
in the generic D-TDG, averaged over 5 repetitions. The evaluation was carried
out on an Intel(R) Xeon(R) Gold 6240R CPU @ 2.40GHz.

Model Twitter tennis Elliptic AS-773 Bitcoin α

DynGESN 0.04±2·10−3 0.03±0.01 0.53±0.13 0.15±0.01

EvolveGCN-H 0.38±0.01 21.14±0.07 3.73±0.18 2.33±0.03

EvolveGCN-O 0.11±0.02 19.5±0.25 2.35±0.29 1.07±0.03

GCLSTM 1.08±0.42 1.2±0.13 31.14±0.83 28.37±1.59

LRGCN 1.63±0.08 3.28±0.28 21.66±2.65 24.77±3.21

3.3.3 C-TDG Benchmark

In the continuous scenario, we perform our experiment leveraging three datasets:

• Wikipedia (Kumar et al., 2019): one month of interactions (i.e., 157,474
interactions) between user and Wikipedia pages. Specifically, it corre-
sponds to the edits made by 8,227 users on the 1,000 most edited Wikipedia
pages;

• Reddit (Kumar et al., 2019): one month of posts (i.e., interactions) made
by 10,000 most active users on 1,000 most active subreddits, resulting in
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a total of 672,447 interactions;

• LastFM (Kumar et al., 2019): one month of who-listens-to-which song
information. The dataset consists of 1000 users and the 1000 most listened
songs, resulting in 1,293,103 interactions.

For all the datasets we considered the task of future link prediction, thus,
predicting if a link between two nodes u and v exists at a future time t given
the history of past events.

For our experimental purposes, we consider the following DGNs: DyRep
(Trivedi et al., 2019), JODIE (Kumar et al., 2019), TGAT (Xu et al., 2020), and
TGN (Rossi et al., 2020). These methods allow us to evaluate the sequential
encoding of spatial and temporal information as well as integrated architectures.
Moreover, they allow assessing the contribution of attention mechanism, embed-
ding trajectories, and memory components. We consider as additional baseline
EdgeBank (Poursafaei et al., 2022) with the aim of showing the performance of a
simple heuristic. EdgeBank is a method that merely stores previously observed
interactions (without any learning), and then predicts stored links as positive.

We performed hyperparameter tuning via grid search, optimizing the AUC
score. We considered the same experimental setting and split strategy as pre-
vious experiments. We perform negative sampling by randomly sampling non-
occurring links in the graph, as follows: (1) during training we sample negative
destinations only from nodes that appear in the training set, (2) during valida-
tion we sample them from nodes that appear in training set or validation set
and (3) during testing we sample them from the entire node set.

We report in Table A.6 (Appendix A.2) the grid of hyperparameters exploited
for this experiment.

Results. We report the results of the C-TDG experiments in Table 3.6. Over-
all, TGN generally outperforms all the other methods, showing consistent im-
provements over DyRep and JODIE. This result shows how the spatial informa-
tion is fundamental for the effective resolution of the tasks. Indeed, an advantage
of TGAT and TGN is that they can exploit bigger neighborhoods with respect to
DyRep, which uses the information coming from one-hop distance, and JODIE,
which only encode the source and destination information. Despite these re-
sults, we observe that the temporal information is still extremely relevant to
achieve good performance. In fact, the EdgeBank baseline is able to exceed 91%
AUC score by only looking at the graph’s history. This is even more evident
in the LastFM task, which, as observed in Poursafaei et al. (2022), contains
more reoccurring edges with respect to Wikipedia and Reddit. Consequently,
such a task is comparatively easier to solve by solely exploiting these temporal
patterns. Considering that EdgeBank’s performance is directly correlated to the
number of memorized edges, in this task, it is able to outperform all the other
methods. Lastly, it is worth mentioning that the enhanced performance of TGN
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and TGAT is accompanied by a trade-off in computational speed, as illustrated
in Table 3.7.

Table 3.6: Mean test scores and std of DGNs for C-TDGs averaged over 5
random weight initializations. The higher, the better. The models are trained
to maximize the AUC score.

Wikipedia
Model AUC F1 Acc

EdgeBank 91.82 91.09 91.82
DyRep 89.72±0.59 79.02±0.91 80.46±0.63

JODIE 94.94±0.48 87.52±0.39 87.85±0.44

TGAT 95.54±0.22 88.11±0.45 88.58±0.31

TGN 97.07±0.15 90.49±0.24 90.66±0.22

Reddit
Model AUC F1 Acc

EdgeBank 96.42 96.29 96.42
DyRep 97.69±0.04 92.12±0.13 92.02±0.19

JODIE 96.72±0.21 89.97±0.66 89.48±0.86

TGAT 98.41±0.01 93.58±0.05 93.63±0.04

TGN 98.66±0.04 94.20±0.15 94.19±0.17

LastFM
Model AUC F1 Acc

EdgeBank 94.72 94.43 94.72
DyRep 78.41±0.50 71.80±0.92 68.63±1.01

JODIE 69.32±1.33 63.95±2.64 62.08±2.78

TGAT 81.97±0.08 70.96±0.24 72.64±0.09

TGN 79.84±1.58 71.09±2.36 63.13±7.03

Table 3.7: Average time to execute a forward pass on the whole dataset (mea-
sured in seconds) and std of the best configuration of each model in each task
in the C-TDG setting, averaged over 5 repetitions. The evaluation was carried
out on an Intel(R) Xeon(R) Gold 6278C CPU @ 2.60GHz.

Model Wikipedia Reddit LastFM

DyRep 13.95±1.05 99.11±9.04 143.15±12.72

JODIE 12.66±1.98 83.27±6.47 117.17±6.86

TGAT 36.84±2.09 303.70±7.80 167.65±13.33

TGN 28.35±2.14 114.73±14.77 178.15±7.87

3.4 Summary
Despite the field of representation learning for (static) graphs is now a consoli-
dated and vibrant research area, there is still a strong demand for work in the
domain of dynamic graphs.

In light of this, in this chapter we proposed, at first, a survey that focuses on
recent representation learning techniques for dynamic graphs under the uniform
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formalism introduced in Section 2.1. Second, we provide the research com-
munity with a fair performance comparison among the most popular methods
of the three families of dynamic graph problems, by leveraging a reproducible
experimental environment. We believe that this work will help to foster the
research in the domain of dynamic graphs by providing a clear picture of the
current development status and a good baseline to test new architectures and
approaches.

We point out to the reader that to further improve the maturity of represen-
tation learning for dynamic graphs, we believe that certain aspects still represent
open challenges and need further work from the community in the future. A
future interesting direction, in this sense, is to extend the work that has been
done for heterophilic (static) graphs (Pei et al., 2020; Yan et al., 2022; Cavallo
et al., 2023) to the temporal domain. This will require addressing the problem of
generating information-rich node representations when neighboring nodes tend
to belong to different classes. A similar challenge is the one of heterogeneus
graphs (Ji et al., 2022; Li et al., 2022), which contain different types of nodes
and links. In this scenario, new architectures should learn the semantic-level in-
formation coming from node and edge types, in addition to topological and label
information. While these are interesting future directions, we observe that there
are compelling challenges that need addressing and that relate to studying, in the
temporal domain, aspects such as robustness to adversarial attacks (Maddalena
et al., 2022; Deng et al., 2022), oversmoothing (see Section 2.3.1), oversquashing
(see Section 2.3.1), and DGNs’ expressive power (Xu et al., 2019; Li & Leskovec,
2022).

With respect to the challenge of mitigating the oversquashing phenomenon
over space and time, in Chapter 7 we propose a novel method for long-range
propagation within dynamic graphs that addresses this challenge.
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Chapter 4

The Antisymmetric Constraint

The primary challenge in the field of representation learning for graphs is how we
capture and encode structural information in the learning model, as previously
discussed in Section 2.3. However, in some problems, the exploitation of local
interactions between nodes is not enough to learn representative embeddings.
In this scenario, it is often the case that the DGN needs to capture information
concerning interactions between nodes that are far away in the graph, i.e., by
stacking multiple layers. A specific predictive problem typically needs to consider
a specific range of node interactions in order to be effectively solved, hence
requiring a specific number (possibly large) of DGN layers.

Despite the progress made in recent years in the field, many of the proposed
methods suffer from the oversquashing problem when the number of layers in-
creases (see Section 2.3.1). Specifically, when increasing the number of layers to
cater for longer-range interactions, one observes an excessive amplification or an
annihilation of the information being routed to the node by the message passing
process to update its fixed length encoding. As such, oversquashing prevents
DGNs to learn long-range information.

To overcome this limitation, we build on the observations and understand-
ings of neural DEs in Section 2.2 and use similar concepts to forge the field of
differential-equations inspired DGNs (DE-DGNs). Through this view, we design
DGNs with strong inductive biases. Specifically, we are interested in addressing
the oversquashing problem in a principled manner, accompanied by theoretical
understanding through the prism of DE-DGNs.

Inspired by stable and non-dissipative dynamical systems, in the following we
provide the theoretical conditions for realizing DE-DGNs for long-range propa-
gation, within static graphs, through the use of antisymmetric constraints. In
Section 4.1 we first explore the benefits of antisymmetric weight parametriza-
tion, building on Gravina et al. (2023) and Gravina et al. (2024b). Afterward, in
Section 4.2, we improve the long range propagation (i.e., the non-dissipative be-
havior) thanks to an additional antisymmetric constrain on the space domain,
i.e., in the neighborhood aggregation. We base Section 4.2 on Gravina et al.
(2024a).

61
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4.1 Antisymmetric Weight Parametrization

In this section, we present Antisymmetric Deep Graph Network (A-DGN), a
framework for effective long-term propagation of information in DGN architec-
tures designed through the lens of ordinary differential equations. Leveraging the
connections between ODEs and deep neural architectures, we provide theoreti-
cal conditions for realizing a stable and non-dissipative ODE system on graphs
through the use of antisymmetric weight matrices. The formulation of the A-
DGN layer then results from the forward Euler discretization of the achieved
graph ODE. Thanks to the properties enforced on the ODE, our framework
preserves the long-term dependencies between nodes as well as prevents from
gradient explosion or vanishing. Interestingly, our analysis also paves the way
for rethinking the formulation of standard DGNs as discrete versions of non-
dissipative and stable ODEs on graphs.

The key contributions of this section can be summarized as follows:

• We introduce A-DGN, a novel design scheme for deep graph networks
stemming from an ODE formulation. Stability and non-dissipation are the
main properties that characterize our method, allowing the preservation
of long-term dependencies in the information flow.

• We theoretically prove that the employed ODE on graphs has stable and
non-dissipative behavior. Such result leads to the absence of exploding
and vanishing gradient problems during training, typical of unstable and
lossy systems.

• We conduct extensive experiments to demonstrate the benefits of our
method. A-DGN can outperform classical DGNs over several datasets
even when dozens of layers are used. Overall, A-DGN shows the ability to
effectively explore long-range dependencies and leverage dozens of layers
without any noticeable drop in performance. For such reasons, we believe
it can be a step towards the mitigation of the over-squashing problem in
DGNs.

4.1.1 From graph-ODEs to DGNs

Recent advancements in the field of representation learning propose to treat
neural network architectures as an ensemble of continuous (rather than discrete)
layers, thereby drawing connections between deep neural networks and ODEs,
as described in Section 2.2.4. This connection can be pushed up to neural
processing of graphs as introduced in Poli et al. (2019), by making a suitable
ODE define the computation on a graph structure.

We focus on static graphs, i.e., on structures with fixed sets of nodes and
edges (see Section 2.1.1). For each node u ∈ V we consider a state xu(t) ∈ Rd,
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which provides a representation of the node u at time t. We can then define a
Cauchy problem on graphs in terms of the following node-wise defined ODE:

dxu(t)

dt
= fG(xu(t)), (4.1)

for time t ∈ [0, T ], and subject to the initial condition xu(0) = x0
u ∈ Rd. The

dynamics of node’s representations is described by the function fG : Rd → Rd,
while the initial condition xu(0) can be interpreted as the initial configuration
of the node’s information, hence as the input for our computational model. As
a consequence, the ODE defined in Equation 4.1 can be seen as a continuous
information processing system over the graph, which starting from the input
configuration xu(0) computes the final node’s representation (i.e., embedding)
xu(T ). Notice that this process shares similarities with standard DGNs, in what
it computes nodes’ states that can be used as an embedded representation of the
graph and then used to feed a readout layer in a downstream task on graphs. The
top of Figure 4.1 visually summarizes this concept, showing how nodes evolve
following a specific graph ODE in the time span between 0 and a terminal time
T > 0.

Since for most ODEs it is impractical to compute an analytical solution (as
discussed in Section 2.2.3) a common approach relies on finding an approximate
one through a numerical discretization procedure, such as the forward Euler
method. In this way, the time variable is discretized and the ODE solution is
computed by the successive application of an iterated map that operates on the
discrete set of points between 0 and T , with a step size ϵ > 0. Crucially, as
already observed for feed-forward and recurrent neural models in Section 2.2.4,
each step of the ODE discretization process can be equated to one layer of
a DGN network. The whole neural architecture contains as many layers as
the integration steps in the numerical method (i.e., L = T/ϵ), and each layer
ℓ = 1, ..., L computes nodes’ states xℓ

u which approximates xu(ϵ ℓ). This process
is summarized visually in the middle of Figure 4.1.

4.1.2 Antisymmetric Deep Graph Network

Leveraging the concept of graph neural ODEs (Poli et al., 2019), we perform a
further step by reformulating a DGN as a solution to a stable and non-dissipative
Cauchy problem over a graph. The main goal of our work is therefore achieving
preservation of long-range information between nodes, while laying down the
conditions that prevent gradient vanishing or explosion. Inspired by the works
on stable deep architectures that discretize ODE solutions (Haber & Ruthotto,
2017; Chang et al., 2019), we do so by first deriving conditions under which the
graph ODE is constrained to the desired stable and non-dissipative behavior.

Since we are dealing with static graphs, we instantiate Equation 4.1 for a
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+

Figure 4.1: A high level overview of our proposed framework, summarizing
the involved concepts of ODE over a graph, its discretization as layers of a
DGN, and the resulting node update of Antisymmetric DGN. At the top, it is
illustrated the continuous processing of nodes’ states in the time span between 0
and T > 0, as a Cauchy problem on graphs. The node-wise ODE fG determines
the evolution of the states xu(t), while the initial conditions xu(0) play the role
of input information. In the middle, the discretized solution of the graph ODE
is interpreted as a succession of DGN layers in a neural network architecture.
The node state xℓ

u computed at layer ℓ is updated iteratively by leveraging its
neighborhood and self representations at the previous layer ℓ − 1. The bottom
part sketches the computation performed by a layer in an Antisymmetric DGN
(in Equation 4.12), resulting from the forward Euler discretization of a stable
and non-dissipative ODE on graphs. The more the layers, the more long-range
dependencies are included in the final nodes’ representations.

node u as follows:

dxu(t)

dt
= σ (Wtxu(t) + Φ({xv(t)}v∈Nu) + bt) , (4.2)

where σ is a monotonically non-decreasing activation function, Wt ∈ Rd×d and
bt ∈ Rd are, respectively, a weight matrix and a bias vector that contain the
trainable parameters of the system. We denote by Φ({xv(t)}v∈Nu) the aggrega-
tion function for the states of the nodes in the neighborhood of u1. For simplicity,

1Following the notation in Section 2.3, the function Φ encompasses both the aggregation
function

⊕
and the message function ρM , i.e., Φ({xv(t)}v∈Nu

) =
⊕

v∈Nu
ρM (xv(t)). We refer

to the neighborhood aggregation function as Φ({xv(t)}v∈Nu
) for brevity.
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in the following we keep Wt and bt constant over time, hence dropping the t
subscript in the notation. Moreover, to ease readability, we drop the bias term
b.

Well-posedness and stability are essential concepts when designing DGNs as
solutions to Cauchy problems, both relying on the continuous dependence of the
solution from initial conditions. An ill-posed unstable system, even if potentially
yielding a low training error, is likely to lead to a poor generalization error on
perturbed data. On the other hand, the solution of a Cauchy problem is stable
if the long-term behavior of the system does not depend significantly on the
initial conditions (Ascher et al., 1995). In our case, where the ODE defines a
message passing diffusion over a graph, our intuition is that a stable encoding
system will be robust to perturbations in the input nodes information. Hence,
the state representations will change smoothly with the input, resulting in a
non-exploding forward propagation and better generalization. This intuition is
formalized by the following definition.

Definition 28 (Stability of a graph ODE). A solution xu(t) of the ODE in
Equation 4.2, with initial condition xu(0), is stable if for any ω > 0, there exists
a δ > 0 such that any other solution x̃u(t) of the ODE with initial condition
x̃u(0) satisfying |xu(0) − x̃u(0)| ≤ δ also satisfies |xu(t) − x̃u(t)| ≤ ω, for all
t ≥ 0.

The idea is that a small perturbation of size δ of the initial state (i.e., the
node input features) results in a perturbation on the subsequent states that is
at most ω. As known from the stability theory of autonomous systems (Ascher
et al., 1995), this condition is met when the maximum real part of the Jacobian’s
eigenvalues of fG is smaller or equal than 0, i.e., maxi=1,...,d Re(λi(J(t))) ≤ 0,
∀t ≥ 0.

Although stability is a necessary condition for successful learning, it alone is
not sufficient to capture long-term dependencies. As it is discussed in Haber &
Ruthotto (2017), if maxi=1,...,d Re(λi(J(t)))≪ 0 the result is a lossy system sub-
ject to catastrophic forgetting during propagation. Thus, in the graph domain,
this means that only local neighborhood information is preserved by the system,
while long-range dependencies among nodes are forgotten. If no long-range in-
formation is preserved, then it is likely that the DGN will underperform, since it
will not be able to reach the minimum radius of inter-nodes interactions needed
to effectively solve the task.

Therefore, we can design an ODE for graphs which is stable and non-dissi-
pative (see Definition 24 in Section 2.2) that leads to well-posed learning, when
the criterion that guarantees stability is met and the Jacobian’s eigenvalues of
fG are nearly zero. Under this condition, the forward propagation produces at
most moderate amplification or shrinking of the input, which enables to pre-
serve long-term dependencies in the node states. During training, the backward
propagation needed to compute the gradient of the loss ∂L/∂xu(t) will have the
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same properties of the forward propagation. As such, no gradient vanish nor
explosion is expected to occur. More formally:

Proposition 1. Assuming that J(t) does not change significantly over time, the
forward and backward propagations of the ODE in Equation 4.2 are stable and
non-dissipative if

Re(λi(J(t))) = 0, ∀i = 1, ..., d. (4.3)

Proof. Let us consider the ODE defined in Equation 4.2 and analyze the sen-
sitivity of its solution to the initial conditions. Following (Chang et al., 2019),
we differentiate both sides of Equation 4.2 with respect to xu(0), obtaining:

d

dt

(
∂xu(t)

∂xu(0)

)
= J(t)

∂xu(t)

∂xu(0)
. (4.4)

Assuming the Jacobian does not change significantly over time, we can apply
results from autonomous differential equations (Glendinning, 1994) and solve
Equation 4.4 analytically as follows:

∂xu(t)

∂xu(0)
= etJ = TetΛT−1 = T

( ∞∑
k=0

(tΛ)k

k!

)
T−1, (4.5)

where Λ is the diagonal matrix whose non-zero entries contain the eigenvalues
of J, and T has the eigenvectors of J as columns. The qualitative behavior
of ∂xu(t)/∂xu(0) is then determined by the real parts of the eigenvalues of J.
When maxi=1,...,d Re(λi(J(t))) > 0, a small perturbation of the initial condition
(i.e., a perturbation on the input graph) would cause an exponentially exploding
difference in the nodes representations, and the system would be unstable. On
the contrary, for maxi=1,...,d Re(λi(J(t))) < 0, the term ∂xu(t)/∂xu(0) would
vanish exponentially fast over time, thereby making the nodes’ representation
insensitive to differences in the input graph. Accordingly, the system states
xu(t) would asymptotically approach the same embeddings for all the possible
initial conditions xu(0), and the system would be dissipative. Notice that the
effects of explosion and dissipation are progressively more evident for larger
absolute values of maxi=1,...,d Re(λi(J(t))). If Re(λi(J(t))) = 0 for i = 1, ..., d
then the magnitude of ∂x(t)/∂x(0) is constant over time, and the input graph
information is effectively propagated through the successive transformations
into the final nodes’ representations. In this last case, the system is hence both
stable and non-dissipative.
Let us now consider a loss function L, and observe that its sensitivity to
the initial condition (i.e., the input graph) ∂L/∂xu(0) is proportional to
∂xu(t)/∂xu(0). Hence, in light of the previous considerations, if Re(λi(J(t))) =
0 for i = 1, ..., d, then the magnitude of ∂L/∂xu(0), which is the longest gra-
dient chain that we can obtain during back-propagation, stays constant over
time. The backward propagation is then stable and non-dissipative, and no
gradient vanishing or explosion can occur during training.
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A simple way to impose the condition in Equation 4.3 is to use an antisym-
metric weight matrix in Equation 4.2. Under this assumption, we can rewrite
Equation 4.2 as follows:

dxu(t)

dt
= σ

(
(W −WT )xu(t) + Φ({xv(t)}v∈Nu)

)
(4.6)

where (W−WT ) ∈ Rd×d is the antisymmetric weight matrix. The next Proposi-
tion 2 ensures that when the aggregation function Φ({xv(t)}v∈Nu) is independent
of xu(t) (see for example Equation 4.13), the Jacobian of the ODE has imaginary
eigenvalues, hence it is stable and non-dissipative according to Proposition 1.

Proposition 2. Provided that Φ({xv(t)}v∈Nu) is independent of xu(t), the Ja-
cobian matrix of the ODE in Equation 4.6 has purely imaginary eigenvalues,
i.e.

Re(λi(J(t))) = 0,∀i = 1, ..., d.

Therefore the ODE in Equation 4.6 is stable and non-dissipative.

Proof. Under the assumption that the aggregation function Φ({xv(t)}v∈Nu)
does not include a term that depends on xu(t) itself (see Equation 4.13 for
an example), the Jacobian matrix of Equation 4.6 is given by:

J(t) = diag
[
σ′ ((W −WT )xu(t) + Φ({xv(t)}v∈Nu)

)]
(W −WT ). (4.7)

Following (Chang et al., 2018, 2019), we can see the right-hand side of Equa-
tion 4.7 as the result of a matrix multiplication between an invertible diagonal
matrix and an antisymmetric matrix. Specifically, defining

A = diag
[
σ′ ((W −WT )xu(t) + Φ({xv(t)}v∈Nu)

)]
(4.8)

B = W −WT , (4.9)

we have J(t) = AB.
Let us now consider an eigenpair of AB, where the eigenvector is denoted by
v and the eigenvalue by λ. Then:

ABv = λv,

Bv = λA−1v,

v∗Bv = λ(v∗A−1v) (4.10)

where ∗ represents the conjugate transpose. On the right-hand side of Equa-
tion 4.10, we can notice that the (v∗A−1v) term is a real number. Recalling
that B∗ = BT = −B for a real antisymmetric matrix, we can notice that
(v∗Bv)∗ = v∗B∗v = −v∗Bv. Hence, the v∗Bv term on the left-hand side of
Equation 4.10 is an imaginary number. Thereby, λ needs to be purely imagi-
nary, and, as a result, all eigenvalues of J(t) are purely imaginary.
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Whenever Φ({xv(t)}v∈Nu) includes xu(t) in its definition (see for example
Equation 4.14), the eigenvalues of the resulting Jacobian are still bounded in a
small neighborhood around the imaginary axis. Let us consider here the case in
which Φ({xv(t)}v∈Nu) is defined such that it depends on xu(t) (see for example
Equation 4.14). In this case, the Jacobian matrix of Equation 4.6 can be written
(in a more general form than Equation 4.7), as follows:

J(t) = diag
[
σ′ ((W −WT )xu(t) + Φ({xv(t)}v∈Nu)

)] (
(W −WT ) +C

)
,

(4.11)
where the term C represents the derivative of Φ({xv(t)}v∈Nu) with respect to
xu(t). Similarly to the proof of Proposition 2, we can see the right-hand side of
Equation 4.11 as J(t) = A(B + C) = AB +AC. Thereby, we can bound the
eigenvalues of J(t) around those of AB by applying the results of the Bauer-
Fike’s theorem (Bauer & Fike, 1960). Recalling that the eigenvalues of AB are
all imaginary (as proved in Proposition 2), we can conclude that the eigenval-
ues of J(t) are contained in a neighborhood of the imaginary axis with radius
r = ∥AC∥ ≤ ∥C∥. Although this result does not guarantee that the eigenvalues
of the Jacobian are imaginary, in practice it crucially limits their position around
the imaginary axis, limiting the dynamics of the system on the graph to show
at most moderate amplification or loss of signals over the structure.

We now proceed to discretize the ODE in Equation 4.6 by means of the
forward Euler’s method. To preserve stability of the discretized system (see
Section 2.2.3), we add a diffusion term to Equation 4.6, yielding the following
node state update equation:

xℓ
u = xℓ−1

u + ϵσ
(
(W −WT − γI)xℓ−1

u + Φ({xℓ−1
v }v∈Nu)

)
(4.12)

where I is the identity matrix, γ is a hyperparameter that regulates the strength
of the diffusion, and ϵ is the discretization step. In particular, subtracting a
small positive constant γ > 0 from the diagonal elements of the weight matrix
W allows positioning (1 + ϵλ(J(t))) inside the unit circle, thus improving the
stability of the numerical discretization method. By building on the relationship
between the discretization and the DGN layers, we have introduced xℓ

u as the
state of node u at layer ℓ, i.e. the discretization of state at time t = ϵℓ.

Now, both ODE and its Euler discretization are stable and non-dissipative.
We refer to the framework defined by Equation 4.12 as Antisymmetric Deep
Graph Network (A-DGN), whose state update process is schematically illus-
trated in the bottom of Figure 4.1. Notice that having assumed the parameters
of the ODE constant in time, A-DGN can also be interpreted as a recursive
DGN with weight sharing between layers.

We recall that Φ({xℓ−1
v }v∈Nu) can be any function that aggregates nodes (and

edges) information. Therefore, the general formulation of Φ({xℓ−1
v }v∈Nu) in A-

DGN allows casting all standard DGNs through in their non-dissipative, stable
and well-posed version. As a result, A-DGN can be implemented leveraging the
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aggregation function that is more adequate for the specific task, while allowing
to preserve long-range relationships in the graph. As a demonstration of this,
in Section 4.1.3 we explore two neighborhood aggregation functions, that are

Φ({xℓ−1
v }v∈Nu) =

∑
v∈Nu

Vxℓ−1
v , (4.13)

(which is also employed in Morris et al. (2019a)) and the classical GCN aggre-
gation

Φ({xℓ−1
v }v∈Nu) = V

∑
v∈Nu∪{u}

1√
d̂vd̂u

xℓ−1
v , (4.14)

where V is the weight matrix, d̂v and d̂u are, respectively, the degrees of nodes
v and u.

Finally, although we designed A-DGN with weight sharing in mind (for ease
of presentation), a more general version of the framework, with layer-dependent
weights Wℓ − (Wℓ)T , is possible2.

4.1.3 Experiments

In this section, we discuss the empirical assessment of our method. Specifically,
we show the efficacy of preserving long-range information between nodes and
mitigating the over-squashing by evaluating our framework on graph property
prediction tasks where we predict single source shortest path, node eccentric-
ity, and graph diameter (see Section 4.1.3.1). Moreover, we assess the per-
formance of the proposed A-DGN approach on classical graph homophilic (see
Section 4.1.3.2) and heterophilic (see Section 4.1.3.3) benchmarks. The perfor-
mance of A-DGN is assessed against DGN variants from the literature.

To show that A-DGN allows by design for effective propagation of long-
term propagation of information in DGN architectures, we tested a variant of
A-DGN (on graph property prediction and homophilic tasks) in which we lim-
ited the training algorithm to act only on a minor set of weights, leaving the
internal connections untrained after random initialization. Therefore, the final
performance of the model almost solely relies on the employed architectural bias.

We refer the reader to Appendix B.1.2 for more details about the employed
datasets. We report in Table B.2 (Appendix B.1.3) the grid of hyperparameters
employed in our experiments. We observe that even if we do not directly explore
in the hyperparameter space the terminal time T in which the node evolution
produces the best embeddings, that is done indirectly by fixing the values of the
step size ϵ and the maximum number of layers L, since T = Lϵ.

2The dynamical properties discussed in this section are in fact still true even in the case of
time varying Wt in Equation 4.2, provided that maxi=1,...,d Re(λi(J(t))) ≤ 0 and J(t) changes
sufficiently slow over time (see Ascher et al. (1995); Haber & Ruthotto (2017)). We refer the
reader to Appendix B.1.1 for the analysis on the layer-dependent weights continuity.
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We carried the experiments on a Dell server with 4 Nvidia GPUs A100. We
release openly the code implementing our methodology and reproducing our
empirical analysis at https://github.com/gravins/Anti-SymmetricDGN.

4.1.3.1 Graph Property Prediction

Setup. For the graph property prediction task, we considered three datasets
extracted from the work of Corso et al. (2020). The analysis consists of clas-
sical graph theory tasks on undirected unweighted randomly generated graphs
sampled from a wide variety of distributions. Specifically, we considered two
node level tasks and one graph level task, which are single source shortest path
(SSSP), node eccentricity, and graph diameter. Such tasks require capturing
long-term dependencies in order to be solved, thus mitigating the over-squashing
phenomenon. Indeed, in the SSSP task, we are computing the shortest paths
between a given node u and all other nodes in the graph. Thus, it is fundamental
to propagate not only the information of the direct neighborhood of u, but also
the information of nodes which are extremely far from it. Similarly, for diameter
and eccentricity.

We employed the same seed and generator as Corso et al. (2020) to generate
the datasets, but we considered graphs with 25 to 35 nodes, instead of 15-25
nodes as in the original work, to increase the task complexity and lengthen
long-range dependencies required to solve the task. As in the original work, we
used 5120 graphs as training set, 640 as validation set, and 1280 as test set.

We explored the performance of three versions of A-DGN, i.e., weight sharing,
layer-dependent weights, and weight sharing with random fixed weights. More-
over, we employed two instances of our method leveraging the two aggregation
functions in Equation 4.13 and 4.14. We will refer to the former as simple aggre-
gation and to the latter as GCN-based aggregation. We compared our method to
three DE-DGN models, i.e., DGC (Wang et al., 2021c), GRAND (Chamberlain
et al., 2021b), and GraphCON (Rusch et al., 2022); and the five most popular
MPNN-based DGNs, i.e., GCN (Kipf & Welling, 2017), GraphSAGE (Hamilton
et al., 2017a), GAT (Veličković et al., 2018), GIN (Xu et al., 2019), and GC-
NII (Chen et al., 2020). We refer the reader to Section 2.3 for a more in depth
description of such methods.

We designed each model as a combination of three main components. The
first is the encoder which maps the node input features into a latent hidden
space; the second is the graph convolution (i.e., A-DGN or the DGN baseline);
and the third is a readout that maps the output of the convolution into the
output space. The encoder and the readout are MLPs that share the same
architecture among all models in the experiments.

We performed hyperparameter tuning via grid search, optimizing the Mean
Square Error (MSE). We trained the models using Adam optimizer for a max-
imum of 1500 epochs and early stopping with patience of 100 epochs on the

https://github.com/gravins/Anti-SymmetricDGN
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validation error. For each model configuration, we performed 4 training runs
with different weight initialization and report the average of the results.

Results. We present the results on the graph property prediction in Table 4.1.
Specifically, we report log10(MSE) as the evaluation metric. We observe that
our method, A-DGN, outperforms all the DGNs employed in this experiment.
Indeed, by employing GCN-based aggregation, we achieve an error score that is
on average 0.70 points better than the selected baselines. A-DGN with simple
aggregation shows a decisive improvement with respect to baselines, with an
improvement of 0.53 points (on average) when randomized weights are employed.
Specifically, A-DGN achieves a performance that is up to 2.02 points better
than the best baseline in each task. Moreover, it is on average 3.3× faster
than the baselines (see Table 4.2). If the model is left untrained after random
initialization, this speedup increases to 4.7×.

We observe that the main challenge when predicting diameter, eccentricity,
or SSSP is to leverage not only local information but also global graph informa-
tion. Such knowledge can only be learned by exploring long-range dependencies.
Indeed, the three tasks are extremely correlated. All of them require computing
the shortest paths in the graph. Thus, as for standard algorithmic solutions
(e.g., Bellman–Ford (Bellman, 1958), Dijkstra’s algorithm (Dijkstra, 1959)),
more messages between nodes need to be exchanged in order to achieve accu-
rate solutions. This suggests that A-DGN can better capture and exploit such
information. Moreover, this indicates also that the simple aggregator is more
effective than the GCN-based because the tasks are mainly based on counting
distances. Thus, exploiting the information derived from the Laplacian operator
is not helpful for solving these kinds of algorithmic tasks.

4.1.3.2 Graph Benchmarks

Setup. In the graph benchmark setting we consider five well-known graph
datasets for node classification, i.e., PubMed (Namata et al., 2012); coauthor
graphs CS and Physics; and the Amazon co-purchasing graphs Computer and
Photo from Shchur et al. (2018). Also for this class of experiments, we considered
the same baselines and architectural choices as for the graph property prediction
task. However, in this experiment we study only the versions of A-DGN with
weight sharing and randomized weights, since it achieve good performances with
low training costs.

Within the aim to accurately assess the generalization performance of the
models, we randomly split the datasets into multiple train/validation/test sets.
Similarly to Shchur et al. (2018), we use 20 labeled nodes per class as the training
set, 30 nodes per class as the validation set, and the rest as the test set. We
generate 5 random splits per dataset and 5 random weight initialization for each
configuration in each split.
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Table 4.1: Mean test set log10(MSE) and std averaged over 4 random weight
initializations for each configuration. The subscript ws stands for weight sharing,
while ldw for layer-dependent weights. The lower the better. First, second,
and third best results for each task are color-coded.

Model Diameter SSSP Eccentricity

MPNNs
GCN 0.7424±0.0466 0.9499±9.18·10−5 0.8468±0.0028

GAT 0.8221±0.0752 0.6951±0.1499 0.7909±0.0222

GraphSAGE 0.8645±0.0401 0.2863±0.1843 0.7863±0.0207

GIN 0.6131±0.0990 -0.5408±0.4193 0.9504±0.0007

GCNII 0.5287±0.0570 -1.1329±0.0135 0.7640±0.0355

DE-GNNs
DGC 0.6028±0.0050 -0.1483±0.0231 0.8261±0.0032

GRAND 0.6715±0.0490 -0.0942±0.3897 0.6602±0.1393

GraphCON 0.0964±0.0620 -1.3836±0.0092 0.6833±0.0074

Ours - random weights
A-DGNfix 0.1243±0.0626 -1.2731±0.1622 0.8061±0.0188

A-DGNfix(GCN) 0.5549±0.2156 -0.9510±0.0511 0.7649±0.0108

Ours - weight sharing
A-DGNws -0.5188±0.1812 -3.2417±0.0751 0.4296±0.1003

A-DGNws(GCN) 0.2646±0.0402 -1.3659±0.0702 0.7177±0.0345

Ours - layer-dependent weights
A-DGNldw -0.5455±0.0328 -3.4020±0.1372 0.3046±0.1181

A-DGNldw(GCN) 0.2271±0.0804 -1.8288±0.0607 0.7235±0.0211

We perform hyperparameter tuning via grid search, optimizing the accuracy
score. We train for a maximum of 10000 epochs to minimize the Cross-Entropy
loss. We use an early stopping criterion that stops the training if the validation
score does not improve for 50 epochs.

Results. We present the results on the graph benchmark in Table 4.3. Specif-
ically, we report the accuracy as the evaluation metric and ratio between the
accuracy score in percentage points and the employed total number of trainable
hidden units, i.e., acc/Ntot, for a more fair evaluation. Even in this scenario, A-
DGN outperforms the selected baselines, except in PubMed and Amazon Com-
puters where GCNII is slightly better than our method. In this benchmark,
results that the GCN-based aggregation produces higher scores with respect to
the simple aggregation. Thus, additional local neighborhood features extracted
from the graph Laplacian seem to strengthen the final predictions. It appears
also that, in the weight sharing version, there is less benefit from including
global information with respect to the graph property prediction scenario. As
a result, exploiting extremely long-range dependencies do not strongly improve
the performance as the number of layers increases. Differently, A-DGN with
randomized weights benefits from propagating information across distant nodes
in the input graph, demonstrating the effectiveness of A-DGN’s architectural
bias.
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Table 4.2: Average time per epoch (measured in seconds) and std, averaged over
4 random weight initializations. Each time is obtained by employing 20 layers
and an embedding dimension equal to 30. The subscript ws stands for weight
sharing, ldw for layer-dependent weights. The evaluation was carried out on an
AMD EPYC 7543 CPU @ 2.80GHz. First, second, and third best results.

Model Diameter SSSP Eccentricity

MPNNs
GCN 32.45±2.54 17.44±3.85 11.78±2.43

GAT 20.20±5.18 26.41±8.34 17.28±1.92

GraphSAGE 13.12±2.99 13.12±2.99 8.20±0.75

GIN 6.63±0.28 21.16±2.33 14.22±3.17

GCNII 13.13±6.85 14.96±7.17 15.70±3.92

DE-GNNs
DGC 8.97±9.07 12.54±1.62 7.21±11.10

GRAND 133.84±42.57 109.15±27.49 202.46±85.01

GraphCON 9.26±0.47 7.76±0.05 7.80±0.05

Ours - random weights
A-DGNfix 7.77±6.98 7.69±3.56 5.33±3.82

A-DGNfix(GCN) 10.73±1.50 14.80±2.72 10.92±1.77

Ours - weight sharing
A-DGNws 8.42±2.71 7.86±2.11 13.18±9.07

A-DGNws(GCN) 13.08±5.49 28.74±10.92 16.26±4.58

Ours - layer-dependent weights
A-DGNldw 14.59±8.67 10.47±6.95 14.04±11.60

A-DGNldw(GCN) 40.50±16.45 26.72±17.98 24.43±19.10

To demonstrate that our approach performs well with many layers, we show
in Figure 4.2 how the number of layers affects the accuracy score. Our model
maintains or improves the performance as the number of layers increases. On
the other hand, all the baselines obtain good scores only with one to two layers,
and most of them exhibit a strong performance degradation as the number of
layers increases. Indeed, in the Coauthor CS dataset we obtain that Graph-
SAGE, GAT, GCN and GIN lose 24.5% to 78.2% of accuracy. We observe that
DGC does not degrade its performance since the convolution does not contain
parameters.

Although extreme long-range dependencies do not produce the same boost as
in the graph property prediction scenario, including more than 5-hop neighbor-
hoods is fundamental to improve state-of-the-art performances. As clear from
Figure 4.2, this is not practical when standard DGNs are employed. On the
other hand, A-DGN demonstrates that can capture and exploit such informa-
tion without any performance drop.

4.1.3.3 Heterophilic Graph Benchmarks

Setup. In the graph heterophilic benchmarks we consider six well-known graph
datasets for node classification, i.e., Chameleon, Squirrel, Actor, Cornell, Texas,
and Wisconsin. We employed the same experimental setting as Pei et al. (2020).
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Table 4.3: Mean test set accuracy and std in percent averaged over 5 random
train/validation/test splits and 5 random weight initializations for each config-
uration in each split. The normalized test accuracy (i.e., acc/Ntot) is reported
in between parenthesis. The higher, the better. First, second, and third best
results.

Model PubMed Coauthor Coauthor Amazon Amazon
CS Physics Computers Photo

MPNNs
GCN 76.75±1.29 90.34±0.31 92.80±0.44 81.63±0.93 89.14±0.59

(0.0006) (0.0001) (0.0001) (0.0009) (0.0011)

GAT 75.64±1.27 81.57±1.02 89.25±0.82 76.36±0.89 85.58±0.91

(0.0010) (0.0001) (0.0001) (0.0004) (0.0006)

GraphSAGE 74.96±1.69 89.93±0.79 92.47±0.94 79.37±1.38 88.04±0.85

(0.0006) (0.0001) (0.0001) (0.0003) (0.0005)

GIN 76.24±1.86 89.26±0.31 91.40±0.70 79.64±0.72 87.69±1.16

(0.0013) (0.0001) (0.0001) (0.0009) (0.0009)

GCNII 77.39±1.36 91.16±0.28 92.97±0.60 82.72±0.98 89.98±0.86

(0.0005) (0.0001) (0.0001) (0.0009) (0.0009)

DE-GNNs
DGC 66.71±2.55 85.84±0.01 82.95±1.20 66.44±0.63 76.13±0.01

(0.0015) (0.0001) (0.0001) (0.0013) (0.0014)

GRAND 76.18±1.56 89.20±0.62 90.72±0.87 81.09±0.70 89.05±0.73

(0.0012) (0.0001) (0.0002) (0.0009) (0.0014)

Ours - random weights
A-DGNfix 67.47±2.63 84.84±0.66 87.37±1.18 75.65±0.45 85.30±0.86

(0.0438) (0.0110) (0.0341) (0.0147) (0.0208)

A-DGNfix(GCN) 69.95±3.27 87.25±0.57 89.21±1.02 75.39±1.27 84.25±0.47

(0.0455) (0.0113) (0.0348) (0.0147) (0.0206)

Ours - weight sharing
A-DGNws 76.57±1.00 91.35±0.88 92.45±0.53 81.83±0.75 88.83±1.12

(0.0013) (0.0001) (0.0001) (0.0008) (0.0007)

A-DGNws(GCN) 76.82±0.86 91.71±0.43 93.27±0.62 82.35±0.89 90.52±0.40

(0.0011) (0.0001) (0.0001) (0.0007) (0.0010)

Given the good performance observed in Section 4.1.3.1 and Section 4.1.3.2,
here we study only the version of A-DGN with weight sharing. We perform
hyperparameter tuning via grid search, optimizing the accuracy score.

Results. We present the results on the graph heterophilic benchmarks in Ta-
ble 4.4, reporting the achieved accuracy. We observe that our method obtains
comparable results to state-of-the-art methods on four out of six datasets (i.e.,
Actor, Cornell, Texas, Wisconsin). As stated in the work of Yan et al. (2022), the
main cause of performance degradation in heterophilic benchmarks is strongly
related to over-smoothing. Therefore, since A-DGN is not designed to tackle
the over-smoothing problem, the achieved level of accuracy on these datasets is
a remarkable performance. In fact, our method outperforms most of the DGNs
specifically designed to mitigate this phenomenon, ranking third and fourth
among all the models when considering the average rank of each model across
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Figure 4.2: The test accuracy with respect to the number of layers on all the
graph benchmark datasets. From the top left to the bottom, we show: PubMed,
Coauthor CS, Coauthor Physics, Amazon Computers, and Amazon Photo. The
accuracy is averaged over 5 random train/validation/test splits and 5 random
weight initialization of the best configuration per split.

all benchmarks.
Similarly to the graph benchmarks in Section 4.1.3.2, our approach maintains

or improves the performance as the number of layers increases, as Figure 4.3
shows. Moreover, in this experiment, we show that A-DGN has outstanding
performance even with 64 layers. Thus, A-DGN is able to effectively propagate
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the long-range information between nodes even in the scenario of graphs with
high heterophily levels. Such result suggests that the presented approach can
be a starting point to mitigate the over-smoothing problem as well.

Table 4.4: Mean test set accuracy and std in percent averaged over different
train/validation/test splits. The higher the better. The “∗” results are obtained
from Yan et al. (2022), while the “⋄” results are obtained from Topping et al.
(2022). We also report the average ranking of each model across all benchmarks,
showing that the proposed method ranks third and fourth (in the GCN variant)
among all the models considered.

Model Chameleon Squirrel Actor Cornell Texas Wisconsin avg
rank

Baseline
MLP∗ 46.21±2.99 28.77±1.56 36.53±0.70 81.89±6.40 80.81±4.75 85.29±3.31 7.67

MPNNs
GGCN∗ 71.14±1.84 55.17±1.58 37.54±1.56 85.68±6.63 84.86±4.55 86.86±3.29 1.33
GPRGNN∗ 46.58±1.71 31.61±1.24 34.63±1.22 80.27±8.11 78.38±4.36 82.94±4.21 8.50
H2GCN∗ 60.11±2.15 36.48±1.86 35.70±1.00 82.70±5.28 84.86±7.23 87.65±4.98 4.67
GCNII∗ 63.86±3.04 38.47±1.58 37.44±1.30 77.86±3.79 77.57±3.83 80.39±3.40 5.83
Geom-GCN∗ 60.00±2.81 38.15±0.92 31.59±1.15 60.54±3.67 66.76±2.72 64.51±3.66 9.17
PairNorm∗ 62.74±2.82 50.44±2.04 27.40±1.24 58.92±3.15 60.27±4.34 48.43±6.14 11.00
GraphSAGE∗ 58.73±1.68 41.61±0.74 34.23±0.99 75.95±5.01 82.43±6.14 81.18±5.56 6.67
GCN∗ 64.82±2.24 53.43±2.01 27.32±1.10 60.54±5.30 55.14±5.16 51.76±3.06 9.83
GAT∗ 60.26±2.50 40.72±1.55 27.44±0.89 61.89±5.05 52.16±6.63 49.41±4.09 11.00

Multi-hop DGNs
FA⋄ 42.33±0.17 40.74±0.13 28.68±0.16 58.29±0.49 64.82±0.29 55.48±0.62 11.33
DIGL⋄ 42.02±0.13 33.22±0.14 24.77±0.32 58.26±0.50 62.03±0.43 49.53±0.27 15.33
DIGL+Undir⋄ 42.68±0.12 32.48±0.23 25.45±0.30 59.54±0.64 63.54±0.38 52.23±0.54 14.00
SDRF⋄ 42.73±0.15 37.05±0.17 28.42±0.75 54.60±0.39 64.46±0.38 55.51±0.27 12.67
SDRF+Undir⋄ 44.46±0.17 37.67±0.23 28.35±0.06 57.54±0.34 70.35±0.60 61.55±0.86 11.67

Ours - weight sharing
A-DGN 49.69±2.59 38.70±1.26 35.34±1.01 78.38±2.70 82.97±2.72 86.67±3.70 5.83
A-DGN(GCN) 48.71±3.07 36.36±1.08 36.11±0.83 76.49±4.99 83.24±6.02 87.25±3.64 6.50
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Figure 4.3: The test accuracy of A-DGN with respect to the number of layers on
all the graph heterophilic datasets. From the top left to the bottom, we show:
Chameleon, Squirrel, Actor, Cornell, Texas, and Wisconsin. The accuracy is
averaged over 10 train/validation/test splits.
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4.2 Space and Weight Antisymmetry

In Section 4.1, we showed that by incorporating an antisymmetric transforma-
tion to the learned channel-mixing weights, it is possible to obtain a locally, i.e.,
node-wise, non-dissipative behavior. Here, we extend the model introduced in
the previous section by proposing SWAN (Space-Weight Antisymmetric Deep
Graph Network), a novel DGN model that is both globally (i.e., graph-wise)
and locally (i.e., node-wise) non-dissipative, achieved by space and weight an-
tisymmetric parameterization. To understand the behavior of SWAN and its
effectiveness in mitigating oversquashing, we propose a global, i.e., graph-wise,
analysis, and show that compared to A-DGN (Section 4.1), our SWAN is both
globally and locally non-dissipative. The immediate implication of this property
is that SWAN is guaranteed to have a constant information flow rate, thereby
mitigating oversquashing. This property is illustrated in Figure 4.4, which de-
picts the signal strength received by a target node from a distant node in the
graph. In this scenario, SWAN demonstrates improved capabilities in propagat-
ing information across the graph, as the target node receives the entire signal.
In contrast, diffusion and local non-dissipative approaches can only transmit a
portion of the signal to the target node. To complement our theoretical analysis,
we experiment with several long-range benchmarks, from synthetic to real-world
datasets and tasks.

(a) Source (b) Target (c) Diffusion (d) Local
Non-Dissipativity

(e) Local and Global
Non-Dissipativity

Figure 4.4: An illustration of the ability of Global and Local Non-Dissipativity
(e) to propagate information to distant nodes, from the source (a) to the target
(b). Other dynamics, such as diffusion (c) cannot achieve the desired behavior,
while Local Non-Dissipativity (d) has only limited effect. A-DGN implements
(d) and SWAN implements (e). The color yellow represents the signal at its
maximum strength, while the color blue indicates the absence of signal. In-
termediate signal strengths are depicted through a gradient of colors between
yellow and blue.

In this section, we present the following contributions:

• A novel graph perspective theoretical analysis of the stability and non-
dissipativity of antisymmetric DE-GNNs, providing a general design prin-
ciple for introducing non-dissipativity as an inductive bias in any DE-GNN
model.
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• We propose SWAN, a space and weight antisymmetric DE-GNN with a
constant information flow rate, and an increased distant node interaction
sensitivity.

• We experimentally verify our theoretical understanding of SWAN, on both
synthetic and real-world datasets.

4.2.1 SWAN: Space-Weight Antisymmetric DGN

In this section, we are interested in achieving both local and global non-dissipa-
tive behavior in our system.

Definition 29 (Local non-dissipativity). A system is locally non-dissipative
when the final representation of each node retains its historical information.

Definition 30 (Global non-dissipativity). A system is globally non-dissipa-
tive when the information between nodes continues to propagate at a constant
rate.

Therefore, local non-dissipativity ensures the long-term memory capacity of
individual nodes, and global non-dissipativity ensures that the system retains its
ability to share information between nodes with the same effectiveness regardless
of node distance.

To achieve such properties, we keep being interested in studying the stability
and non-dissipativity propagation of information. Therefore, we follow the anal-
ysis techniques presented in Section 4.1 and focus on analyzing the sensitivity
of an ODE solution with respect to its initial condition (Equation 4.4).

Again, we consider the Jacobian, J(t), to not change significantly over time.
An interested reader is referred to Appendix B.2.1 where we provide a discussion
of the justification as well as numerical verification of our the assumption.

We recall from Section 4.1.2 that, by solving Equation 4.4 analytically, the
qualitative behavior of ∂x(t)/∂x(0) is determined by the real parts of the eigen-
values of J, leading to three different behaviors: (i) instability, (ii) dissipativity
(i.e., information loss), (iii) non-dissipativity (i.e., information preservation).

We now turn to present SWAN, space-weight antisymmetric DGN. We ana-
lyze its theoretical behavior and show that it is both global (i.e., graph-wise) and
local (i.e., node-wise) non-dissipative. As a consequence, one of the key features
of SWAN is that it has a constant global information flow rate, unlike common
diffusion DGNs. Therefore, SWAN should theoretically be able to propagate
information between any nodes with a viable path in the graph, allowing to mit-
igate oversquashing. Figure 4.5 exemplifies the differences between dissipative,
local non-dissipative, and global and local non-dissipative systems.
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(a) (b) (c)

Figure 4.5: The difference among non-dissipative and dissipative behaviors.
With global (i.e., graph-wise) and local (i.e., node-wise) non-dissipative behavior
(a), information is propagated between any pair of nodes with a viable path in
the graph. Therefore, such a behavior increases the long-range effectiveness of
the model, with propagation reaching distant nodes. A model exhibiting local
non-dissipative behavior (b) enhances only the long-term memory capacity of
individual nodes. A model demonstrating dissipative behavior (c) exhibits a
convergence of node features toward non-informative values.

Space and Weight Antisymmetry. We define SWAN by including a new
term that introduces antisymmetry in the aggregation function to A-DGN, i.e.,

dxu(t)

dt
= σ

(
(W −W⊤)xu(t) + Φ({xv}v∈Nu) + βΨ({xv}v∈Nu)

)
, (4.15)

where W is a learnable weigh matrix (as usual). Φ and Ψ are permutation
invariant neighborhood aggregation functions, where Ψ performs antisymmetric
aggregation. While Ψ can assume various forms of antisymmetric aggregation
functions with imaginary eigenvalues, and Φ can be any aggregation function,
in this section we explore the following family of parametrizations:

Φ =
∑
v∈Nu

(Âuv + Âvu)(V −V⊤)xv(t),

Ψ =
∑
v∈Nu

(Ãuv − Ãvu)(Z+ Z⊤)xv(t),
(4.16)

where V, and Z are learnable weight matrices, and Ã, Â ∈ R|V|×|V| are neigh-
borhood aggregation matrices that can be either pre-defined or learned. In our
experiments, we consider two instances of Equation 4.16. The first, where Ã, Â
are pre-defined by the random walk and symmetrically normalized adjacency ma-
trices, respectively. The second, allows Ã, Â to be learned (see Section 4.2.2.2).
More importantly, as we show now, the blueprint of Ψ and Φ, which is de-
scribed in Equation 4.16 stems from a theoretical analysis of SWAN, that shows
its ability to be non-dissipative both locally and globally, therefore leading to a
globally constant information flow, regardless of time, that is, the model’s depth.
Lastly, we note that the general formulation of Φ and Ψ provide a general design
principle for introducing non-dissipativity as an inductive bias in any DE-DGNs.
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4.2.1.1 Node-wise Analysis of SWAN

We reformulate Equation 4.15 to consider the formulation of Φ and Ψ as in
Equation 4.16, reading:

dxu(t)

dt
= σ

(
(W −W⊤)xu(t) +

∑
v∈Nu

(Âuv + Âvu)(V −V⊤)xv(t)

+ β
∑
v∈Nu

(Ãuv − Ãvu)(Z+ Z⊤)xv(t)
)
. (4.17)

SWAN is locally non-dissipative. Following the sensitivity analysis intro-
duced in Section 4.1, we show that SWAN is stable and non-dissipative from
the node perspective, i.e., it is locally non-dissipative. Therefore, we study the
Jacobian matrix of our node-wise reformulation of SWAN.

In this case, the Jacobian J(t) = M1M2 of Equation 4.17 is composed of :

M1 = diag
[
σ′
(
(W −W⊤)xu(t) +

∑
v∈Nu

(Âuv + Âvu)(V −V⊤)xv(t)

+ β
∑
v∈Nu

(Ãuv − Ãvu)(Z+ Z⊤)xv(t)
)]

, (4.18)

M2 = (W −W⊤) + (Âuu + Âuu)(V −V⊤). (4.19)

Following results from Chang et al. (2019) and Section 4.1, only the eigenval-
ues of M2 determine the local stability and non-dissipativity of the system in
Equation 4.15 for the final behavior of the model. Specifically, if the real part
of all the eigenvalues of M2 is zero, then stability and non-dissipativity are
achieved. We note that this is indeed the case in our system, since the real part
of the eigenvalues of antisymmetric matrices is zero, and M2 is composed of a
summation of two antisymmetric matrices.

4.2.1.2 Graph-wise Analysis of SWAN

While the node perspective analysis is important because it shows the long-
term memory capacity of individual nodes, as illustrated in Figure 4.5b, it over-
looks the pairwise interactions between nodes, which is equivalently described
by considering the properties of Equation 4.15 with respect to the graph, and is
illustrated in Figure 4.5a.

As we show below, our SWAN is a globally non-dissipative architecture, and
therefore it allows a constant rate of information flow and interactions between
all nodes, independently of time t, equivalent to the network’s depth. There-
fore, we deem that SWAN’s non-dissipativity behavior is beneficial to address
oversquashing in MPNNs.
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SWAN is globally non-dissipative. We start by reformulating Equation
4.17 from a node-wise formulation to a graph-perspective formulation, as follows:

dX(t)

dt
= σ

(
X(t)(W −W⊤) + (Â+ Â⊤)X(t)(V −V⊤)

+ β(Ã− Ã⊤)X(t)(Z+ Z⊤)
)
. (4.20)

We therefore turn to analyze the ODE in Equation 4.20 from a graph perspective,
again, using the sensitivity analysis introduced in Section 4.1. Applying the
vectorization operator, the Jacobian J(t) = M1M2 writes as the multiplication
of:

M1 = diag
[
vec
(
σ′
(
IX(W −W⊤)+

+ (Â+ Â⊤)X(t)(V −V⊤)

+ β(Ã− Ã⊤)X(t)(Z+ Z⊤)
))]

(4.21)

M2 = (W −W⊤)⊤ ⊗ I+

+ (V −V⊤)⊤ ⊗ (Â+ Â⊤)

+ β(Z+ Z⊤)⊤ ⊗ (Ã− Ã⊤), (4.22)

where I ∈ R|V|×|V| is the identity matrix, vec is the vectorization operator, and
⊗ is the Kronecker product. An interested reader is referred to Appendix B.2.2
for the explicit derivations of the Jacobian.

Similar to our node-wise analysis in Section 4.2.1.1, M1 in Equation 4.21 is
a diagonal matrix, and therefore to obtain stability and non-dissipativity, we
need to demand that M2 from Equation 4.22 has eigenvalues with real part
equal to zero. Indeed, we see that M2 satisfies this condition because it is
composed of a summation of three antisymmetric matrices, whose eigenvalues
are all purely imaginary, i.e., have a real part of zero. Thus, we conclude that
SWAN (Equation 4.20) is both stable and globally and locally non-dissipative.

We now show that the properties of global stability and non-dissipativity
allow us, theoretically, to design DGNs that can mitigate oversquashing.

Theorem 1 (SWAN has a constant global information propagation rate). The
information propagation rate among the graph nodes V is constant, c, indepen-
dently of time t: ∥∥∥∥∂vec(X(t))

∂vec(X(0))

∥∥∥∥ = c. (4.23)

Proof. Let us consider the following equation:

d

dt

(
∂X(t)

∂X(0)

)
=

d

dt

(
∂vec(X(t))

∂vec(X(0))

)
= J(t)

∂vec(X(t))

∂vec(X(0))
. (4.24)

We follow the assumption in Section 4.1 that the Jacobian, J(t), does not
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change significantly over time, then we can apply results from autonomous
differential equations and solve Equation 4.24:

∂vec(X(t))

∂vec(X(0))
= etJ = TetΛT−1 = T

( ∞∑
k=0

(tΛ)k

k!

)
T−1, (4.25)

where Λ is the diagonal matrix whose non-zero entries contain the eigenvalues
of J, and T has the eigenvectors of J as columns. As we have previously shown,
it holds that Re(λi(J(t))) = 0 for i = 1, ..., d, since the Jacobian is the result
of the multiplication between a diagonal matrix and an antisymmetric matrix.
Therefore, the magnitude of ∂X(t)/∂X(0) is constant over time, and the input
graph information is effectively propagated through the successive layers into
the final nodes’ features.

The outcome of Theorem 3.1 is that regardless of the integration time t
(equivalent to ℓ = t/ϵ layers of SWAN, where ϵ is the step size), the information
between nodes will continue to propagate at a constant rate, unlike diffusion-
based DGNs that exhibit an exponential decay in the propagation rate with
respect to time, as shown below.

Theorem 2 (Time Decaying Propagation in Diffusion DGNs). A diffusion-based
network with Jacobian eigenvalues with magnitude Kii = |Λii| , i ∈ {0, . . . , |V|−
1} has an exponentially decaying information propagation rate, as follows:∥∥∥∥∂vec(X(t))

∂vec(X(0))

∥∥∥∥ = ∥e−tK∥, (4.26)

Proof. Let us assume a diffusion-based network whose Jacobian’s eigenval-
ues are represented by the diagonal matrix Λ, and let denote the eigenval-
ues magnitude by a diagonal matrix K ∈ R|V|×|V|

+ such that Kii = |Λii| for
i ∈ {0, . . . , |V| − 1}. Applying the vectorization operator, it is true that :

∂vec(X(t))

∂vec(X(0))
= etJ (4.27)

As it is known from Evans (1998), diffusion-based network are characterized
by Jacobian’s eigenvalues with negative real part. Indeed, diffusion DE-DGNs
are based on the heat equation. Therefore, the right-hand side of the ODE is
the graph Laplacian, reading ∂X(t)

∂t
= −LX(t). Therefore, we analyze −L. It is

known that the graph Laplacian has non-negative eigenvalues, and therefore−L
has non-positive eigenvalues. Thus, the Jacobian has non-positive eigenvalues.
Assuming a connected graph (i.e., it exists at least one edge), then there is
at least one value that is strictly negative in −L, and any entry that is not
non-negative will be equal to zero. Therefore, we can write J = −K, leading
to the equation ∥∥∥∥∂vec(X(t))

∂vec(X(0))

∥∥∥∥ = ∥e−tK∥. (4.28)
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Therefore, the information propagation rate among the graph nodes exponen-
tially decays over time. Note, that at t → ∞, it will converge to 1, which is
exponentially lower than the propagation rate at early time t.

This result means that with diffusion methods, after sufficiently large integra-
tion time t, i.e., layers, they will not be able to effectively share new information
between nodes, as in early layers of the network. On the contrary, our SWAN
maintains the same capacity, independent of time, meaning it retains its ability
to share information across nodes with the same effectiveness in each layer of
the network, regardless of its depth. We illustrate this discussion in Figure 4.4
and Figure 4.5.

4.2.1.3 The Benefit of Spatial Antisymmetry

While oversquashig was not mathematically defined in Alon & Yahav (2021),
it was recently proposed in Topping et al. (2022); Di Giovanni et al. (2023)
to quantify the level, or lack of oversquashing, by measuring the sensitivity
of node embedding after ℓ layers with respect to the input of another node
∥∂xv(ℓ)/∂xu(0)∥. Furthermore, they bounded this sensitivity score on a MPN-
Nas: ∥∥∥∥ ∂xv(ℓ)

∂xu(0)

∥∥∥∥ ≤ (cσwp)
ℓ︸ ︷︷ ︸

model

(Oℓ)vu︸ ︷︷ ︸
topology

(4.29)

where cσ is the Lipschitz constant of non linearity σ, w is the maximal entry-
value over all weight matrices, and p is the embedding dimension. The term
O = crI+ caA ∈ R|V|×|V| is the message passing matrix adopted by the MPNN,
with cr and ca being the weighted contributions of the residual and aggregation
term, respectively. Oversquashing occurs if the right-hand side of Equation 4.29
is too small.

The sensitivity of SWAN. In light of the discussion above, we now provide
a theoretical bound of our SWAN.

Theorem 3 (SWAN sensitivity upper bound). Consider SWAN (Equation 4.15),
with ℓ layers, and u, v ∈ V two connected nodes of the graph. The sensitivity of
v’s embedding after ℓ layers with respect to the input of node u is∥∥∥∥ ∂xv(ℓ)

∂xu(0)

∥∥∥∥ ≤ (cσwp)
ℓ︸ ︷︷ ︸

model

((crI+ caA+ βcbS)
ℓ)vu︸ ︷︷ ︸

topology

(4.30)

with cσ the Lipschitz constant of non-linearity σ, w is the maximal entry-value
of all weight matrices, p the embedding dimension, A the graph shift operator,
S = (Ã − Ã⊤) the antisymmetric graph operator, and cr and ca the weighted
contribution of the residual term and aggregation term.
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Proof. This proof follows the one proposed in Di Giovanni et al. (2023) (Ap-
pendix B). We proceed by induction and we show only the inductive step (i.e.,
ℓ > 1), since the case ℓ = 1 is straightforward (we refer to Di Giovanni et al.
(2023) for more details). Assuming the Einstein summation convention and
given that Ŵ = W −W⊤, Ẑ = Z+ Z⊤, and α, β ∈ [p], we have:∣∣∣∣∂xα

v (ℓ+ 1)

∂xγ
u(0)

∣∣∣∣ = ∣∣∣∣σ′
(
crŴ

ℓ
α,k

∂xk
v(ℓ)

∂xγ
u(0)

+ caV
ℓ
α,kAvz

∂xk
z(ℓ)

∂xγ
u(0)

+ βcbẐ
ℓ
α,kSvz

∂xk
z(ℓ)

∂xγ
u(0)

)∣∣∣∣
≤ |σ′|

(
cr|Ŵℓ

α,k|
∣∣∣∣∂xk

v(ℓ)

∂xγ
u(0)

∣∣∣∣+ ca|Vℓ
α,k|Avz

∣∣∣∣∂xk
z(ℓ)

∂xγ
u(0)

∣∣∣∣+
+ βcb|Ẑℓ

α,k|Svz

∣∣∣∣∂xk
z(ℓ)

∂xγ
u(0)

∣∣∣∣)
≤ cσw

(
cr

∥∥∥∥ ∂xv(ℓ)

∂xu(0)

∥∥∥∥+ caAvz

∥∥∥∥ ∂xz(ℓ)

∂xu(0)

∥∥∥∥+ βcbSvz

∥∥∥∥ ∂xz(ℓ)

∂xu(0)

∥∥∥∥)
≤ cσw(cσwp)

ℓ
(
cr((crI+ caA+ βcbS)

ℓ)vu+

+ caAvz((crI+ caA+ βcbS)
ℓ)vz+

+ βcbSvz((crI+ caA+ βcbS)
ℓ)vz

)
≤ cσw(cσwp)

ℓ
(
(crI+ caA+ βcbS)

ℓ+1
)
vu

where | · | denotes an absolute value of a real number, w is the maximal entry-
value over all weight matrices, and cσ, cr, ca , and cb are the Lipschitz maps of
the components in the computation of SWAN. We can now sum over α on the
left, generating an extra p on the right side.

The result of Theorem 3 indicates that the added antisymmetric term Ψ
contributes to an increase in the measured upper bound. This result, together
with the constant rate of information flow obtained from Theorem 1, holds the
potential to theoretically mitigate oversquashing using SWAN.

4.2.2 Architectural Details of SWAN

4.2.2.1 Integration of SWAN

The ODE that defines SWAN follows the general DE-DGNs form, presented
and discussed in Section 4.1. While there are various ways to integrate these
equations (see for example various integration techniques in Ascher & Petzold
(1998)), as for A-DGN, we follow the common forward Euler discretization ap-
proach. Formally, using the forward Euler method to discretize SWAN (Equa-
tion 4.20) yields the following graph neural layer:

Xℓ+1 = Xℓ + ϵσ
(
Xℓ(W −W⊤) + Φ(A,Xℓ,V) + βΨ(A,Xℓ,Z)

)
. (4.31)
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Note, that in this procedure we replace the notion of time with layers, and
therefore instead of using t to denote time, we use ℓ to denote the step or layer
number. Here, ϵ is the discretization time steps which replaces the infinitesimal
dt from Equation 4.20.

To strengthen the stability of the Euler’s numerical discretization method,
similar to A-DGN, we introduce a small positive constant γ > 0, which is sub-
tracted from the diagonal elements of the weight matrix W, with the aim of
placing back (1 + ϵλ(J(t))) within the unit circle.

4.2.2.2 Spatial Aggregation Terms

In Equation 4.16 we utilize two aggregation terms, denoted by Â and Ã. The
first, Ã, is used to populate the weight antisymmetric term Φ, while the second,
Â, is used to populate the space antisymmetric Ψ. As discussed, in our exper-
iments we consider two possible parameterizations of these terms, on which we
now elaborate.

Pre-defined Â, Ã. In this case, we denote our architecture as SWAN and
utilize the symmetric normalized adjacency matrix and the random walk nor-
malized adjacency matrix for Â, Ã, respectively. Formally:

Â = D−1/2AD−1/2, Ã = D−1A, (4.32)

where A is the standard binary adjacency matrix that is induced by the graph
connectivity E , and D is the degree matrix of the graph. We observe that the
implementation of Â and Ã can be treated as a hyperparameter. To show
this, in our experiments, we consider both the symmetric normalized adjacency
matrix and the original adjacency matrix as implementations of Â.

Learnable Â, Ã. Here, we denote our architecture by SWAN -learn, and
we use a multilayer perceptron (MLP) to learn edge-weights according to the
original graph connectivity, to implement learnable Â, Ã. Specifically, we first
define edge features as the concatenation of the initial embedding of input node
features X0 of neighboring edges. Formally, the edge features of the (u, v) ∈ E
edge, read:

f in
(u,v)∈E = x0

u ⊕ x0
v, (4.33)

where f in
(u,v)∈E ∈ R2d and ⊕ denotes the channel-wise concatenation operator.

Then, we embed those features using a 2 layer MLP:

f emb
(u,v)∈E = ReLU(K2σ(K1(f

in
((u,v)∈E)))), (4.34)

where K1 ∈ Rd×2d and K2 ∈ R|V|×|V| are learnable linear layer weights, and σ is
an activation function which is a hyperparameter of our method. By averaging
the feature dimension and gathering the averaged edge features f emb

(u,v)∈E into a
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sparse matrix F ∈ R|V|×|V|, such that Fu,v = 1
d

∑
f emb
(u,v)∈E we define the learned

spatial aggregation terms as follows:

ÂF = D
−1/2
F FD

−1/2
F , ÃF = D−1

F F, (4.35)

where DF is the degree matrix of F, i.e., a matrix with the column sum of F on
its diagonal and zeros elsewhere.

4.2.2.3 SWAN versions

In the following, we leverage the general formulation of our method and explore
two main variants of SWAN, each distinguished by the implementation of the
aggregation terms Â, Ã in the functions Ψ and Φ, as shown in Equation 4.16.
Specifically, we consider

(1) SWAN which implements the aggregation terms using pre-defined oper-
ators, which are the symmetric normalized and random walk adjacency
matrices, as described in Section 4.2.2.2.

(2) SWAN-learn which utilizes the learned aggregation terms described in
Section 4.2.2.2.

Both variants follow our parameterization from Equation 4.16, and therefore are
in line with the theoretical analysis provided in Section 4.2, and in particular
Theorem 1. In addition to these variants, we explore other two versions of our
SWAN method, depending on the implementation of Φ and Ψ, as reported in
Table 4.5. All these four versions can be grouped into two main groups, which
differ in the resulting non-dissipative behavior. In the first group, which contains
SWAN and SWAN-learn both Φ and Ψ lead to purely imaginary eigenvalues,
since we use symmetric graph shift operators and antisymmetric weight matrices,
thus allowing for a node- and graph-wise non-dissipative behavior. The last
group, which includes SWAN-ne and SWAN-learn-ne, can deviate from being
globally non-dissipative. Indeed, if the weight matrix, V, is an arbitrary matrix,
then the eigenvalues of the Jacobian matrix of the system, J(t), are contained
in a neighborhood of the imaginary axis with radius r ≤ ||V|| (Bauer-Fike’s
theorem Bauer & Fike (1960)). Although this result does not guarantee that
the eigenvalues of the Jacobian are imaginary, in practice it crucially limits
their position, limiting the dynamics of the system on the graph to show at
most moderate amplification or loss of signals through the graph.

4.2.2.4 Applicability of SWAN to general MPNNs

Nowadays, most DGNs rely on the concepts introduced by the MPNN as intro-
duced in Section 2.3, which is a general framework based on the message passing
paradigm. A general MPNN updates the representation for a node u by using
message and update functions. The first (message function) is responsible for
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Table 4.5: The grid of the evaluated SWAN versions. We consider Â to be
either the original adjacency matrix A or the symmetric normalized adjacency
matrix, D−1/2AD−1/2, while Ã is the random walk normalized adjacency matrix,
D−1A. The learned versions (-learn) employ learnable Â and Ã as described
in Section 4.2.2.2, here referred as ÂF and ÃF.

Name Φ Ψ

Weight Antisymmetry Only
SWANβ=0 (Â+ Â⊤)X(V −V⊤) –

Bounded Non-Dissipative
SWAN-ne ÂXV (Ã− Ã⊤)X(Z+ Z⊤)

SWAN-learn-ne ÂFXV (ÃF − Ã⊤
F )X(Z+ Z⊤)

Global and Local Non-Dissipative
SWAN (Â+ Â⊤)X(V −V⊤) (Ã− Ã⊤)X(Z+ Z⊤)

SWAN-learn (ÂF + Â⊤
F )X(V −V⊤) (ÃF − Ã⊤

F )X(Z+ Z⊤)

defining the messages between nodes and their neighbors. On the other hand,
the update function has the role of collecting (aggregating) messages and updat-
ing the node representation. As shown for A-DGN in Section 4.1.1, our SWAN,
in Equation 4.15, operates according to the MPNN paradigm, with the functions
Φ and Ψ that operate as the message function, while the sum operator among
the node and neighborhood representations is the update function. Therefore,
SWAN can be interpreted as a special case of an MPNN with the aformentioned
parameterization, and can potentially be applied to different types of MPNNs.

4.2.3 Experiments

In this section, we empirically evaluate our SWAN and compare it with literature
methods. Specifically, we seek to address the following questions:

(i) Can SWAN effectively propagate information to distant nodes?

(ii) Can SWAN accurately predict graph properties that are related to long-
range interactions?

(iii) How does SWAN perform on real-world long-range benchmarks?

In our experiments, the performance of SWAN is compared with various
DGN baselines, namely: (i) MPNNs with linear complexity with respect to the
size of nodes and edges, similarly to the complexity of our SWAN, i.e., GCN (Kipf
& Welling, 2017), GraphSAGE (Hamilton et al., 2017a), GAT (Veličković et al.,
2018), GatedGCN (Bresson & Laurent, 2018), GIN (Xu et al., 2019), GINE (Hu
et al., 2020), and GCNII (Chen et al., 2020). (ii) DE-DGNs, as a direct compari-
son to the family of DGNs considered in this chapter, such as DGC (Wang et al.,
2021c), GRAND (Chamberlain et al., 2021b), GraphCON (Rusch et al., 2022),
and A-DGN (Section 4.1). (iii) Oversquashing designated techniques such as
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Graph Transformers and Higher-Order DGNs, i.e., Transformer (Vaswani et al.,
2017; Dwivedi & Bresson, 2021), DIGL (Gasteiger et al., 2019), MixHop (Abu-
El-Haija et al., 2019), SAN (Kreuzer et al., 2021), GraphGPS (Rampášek et al.,
2022), and DRew (Gutteridge et al., 2023).

In the following experiments, we evaluate the versions of SWAN discussed in
Section 4.2.2.3. We refer the reader to Appendix B.2.3 for more details about
the employed datasets. We report in Table B.3 (Appendix B.2.4) the grid of
hyperparameters employed in our experiments.

4.2.3.1 Graph Transfer

Setup. We consider three graph transfer tasks, whose goal is to transfer a label
from a source node to a target node, placed at distance k in the graph. Due
to oversquashing and dissipative behavior of existing DGN methods that are
based on diffusion, the performance is expected to degrade as k increases. We
initialize nodes with a random valued feature and we assign values “1” and “0” to
source and target nodes, respectively. We consider three graph distributions, i.e.,
line, ring, crossed-ring, as illustrated in Figure 2.2. We consider four different
distances k = {3, 5, 10, 50}. By increasing k, we increase the complexity of the
task and require long-range information.

We design each model as a combination of three main components. The first
is the encoder which maps the node input features into a latent hidden space;
the second is the graph convolution (i.e., SWAN or the other baselines); and the
third is a readout that maps the output of the convolution into the output space.
The encoder and the readout share the same architecture among all models in
the experiments. SWAN and A-DGN are implemented using weight sharing.

We perform hyperparameter tuning via grid search, optimizing the Mean
Squared Error (MSE) computed on the node features of the whole graph. We
train the models using Adam optimizer for a maximum of 2000 epochs and early
stopping with patience of 100 epochs on the validation loss. For each model
configuration, we perform 4 training runs with different weight initialization
and report the average of the results.

Results. Figure 4.6 reports the results of the transfer graph tasks. The ring-
graph proved to be the hardest, leading to higher errors when compared with
other graphs. Overall, baselines struggle to accurately transfer the informa-
tion through the graph, especially when the distance is high, i.e., #hops ≥ 10.
Differently, non-dissipative methods, such as A-DGN and SWAN, achieve low
errors across all distances. Moreover, SWAN consistently outperforms A-DGN,
empirically supporting our theoretical findings that SWAN can better propagate
information among distant nodes.
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Figure 4.6: Information transfer on (a) Line, (b) Ring, and (c) Crossed-Ring
graphs. While baseline approaches struggle to transfer the information accu-
rately, non-dissipative methods like A-DGN and our SWAN achieve low errors.

4.2.3.2 Graph Property Prediction

Setup. We address tasks involving the prediction of three graph properties -
Diameter, Single-Source Shortest Paths (SSSP), and node Eccentricity on syn-
thetic graphs as introduced in Section 4.1.3.1.

Results. In Table 4.6 and 4.7 we compare SWAN and SWAN-learn with
other MPNNs and DE-DGNs. Our results indicate that SWAN improves per-
formance across all baselines. Specifically, SWAN-learn yields the lowest (best)
results across all models, showing an improvement of up to 117% with respect
to the runner up model, in the weight sharing scenario. Such improvements are
further increased when layer-dependent weights are employed. We note that
similarly to the transfer task in Section 4.2.3.1, solving Graph Property Pre-
diction tasks necessitates capturing long-term dependencies. Hence, successful
prediction requires the mitigation of oversquashing. For instance, in the eccen-
tricity task, the goal is to calculate the maximal shortest path between a node u
and all other nodes. Thus, it is crucial to propagate information not only from
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the direct neighborhood of u but also from nodes that are considerably distant.
This requirement holds true for diameter and SSSP tasks as well.

Table 4.6: Mean test set log10(MSE) and std averaged over 4 random weight
initializations on the Graph Property Prediction tasks. SWAN and DE-DGN
baselins employ weight sharing. The lower, the better. First, third and
fourth best results for each task are color-coded.

Model Diameter SSSP Eccentricity

MPNNs
GCN 0.7424±0.0466 0.9499±9.18·10−5 0.8468±0.0028

GAT 0.8221±0.0752 0.6951±0.1499 0.7909±0.0222

GraphSAGE 0.8645±0.0401 0.2863±0.1843 0.7863±0.0207

GIN 0.6131±0.0990 -0.5408±0.4193 0.9504±0.0007

GCNII 0.5287±0.0570 -1.1329±0.0135 0.7640±0.0355

DE-DGNs
DGC 0.6028±0.0050 -0.1483±0.0231 0.8261±0.0032

GRAND 0.6715±0.0490 -0.0942±0.3897 0.6602±0.1393

GraphCON 0.0964±0.0620 -1.3836±0.0092 0.6833±0.0074

Ours
A-DGN -0.5188±0.1812 -3.2417±0.0751 0.4296±0.1003

SWAN -0.5249±0.0155 -3.2370±0.0834 0.4094±0.0764

SWAN-learn -0.5981±0.1145 -3.5425±0.0830 -0.0739±0.2190

Table 4.7: Mean test set log10(MSE) and std averaged over 4 random weight
initializations on the Graph Property Prediction tasks. SWAN and A-DGN
emply layer-dependent weights. The lower, the better. First and second
best results for each task are color-coded.

Model Diameter SSSP Eccentricity

A-DGN -0.5455±0.0328 -3.4020±0.1372 0.3046±0.1181

SWAN -0.6381±0.0358 -3.9342±0.1993 -0.2706±0.0948

SWAN-learn -0.5905±0.0372 -3.8258±0.0950 -0.2245±0.0840

4.2.3.3 Long-Range Graph Benchmark

Setup. We employ the same datasets and experimental setting presented in
Dwivedi et al. (2022). Therefore, we perform hyperparameter tuning via grid
search, optimizing the Average Precision (AP) in the Peptide-func task, the
Mean Absolute Error (MAE) in the Peptide-struct task, and F1 in Pascal-VOC,
training the models using AdamW optimizer for a maximum of 300 epochs.
For each model configuration, we perform 3 training runs with different weight
initialization and report the average of the results. Also, we follow the guidelines
in Dwivedi et al. (2022); Gutteridge et al. (2023) and stay within the 500K
parameter budget. SWAN and other DE-DGN baselines are implemented using
weight sharing.
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Results. In Table 4.8 we are interested in directly comparing the performance
of SWAN and its non-dissipative properties with other MPNNs and DE-DGNs,
as well as the popular approach of using graph transformer to address long-range
interaction modeling. We provide additional comparisons with other methods
that utilize multi-hop information, and are therefore more computationally ex-
pensive than our SWAN, while also utilizing additional features such as the
Laplacian positional encoding. In our evaluation of SWAN, we chose not to use
additional feature enhancements, in order to provide a clear exposition of the
contribution and importance of the local and global non-dissipativity offered by
SWAN.

In the Peptide-struct task, SWAN demonstrates superior performance com-
pared to all the compared methods. On the Peptide-func task, SWAN out-
performs MPNNs, Graph Transformers, DE-DGNs, and some multi-hop DGNs,
while being second to multi-hop methods such as DRew. The PascalVOC-SP
results show the effectiveness of SWAN with other DE-DGNs (GRAND, Graph-
CON, A-DGN), which are the focus of this chapter, while offering competitive
results to multi-hop and transformer methods. However, it is essential to note
that multi-hop DGNs incur higher complexity, while SWAN maintains a linear
complexity. Therefore, we conclude that SWAN offers a highly effective approach
for tasks that require long-range interactions, as in the LRGB benchmark.

To summarize, our results in Table 4.8 suggest the following: (i) SWAN
achieves significantly better results than standard MPNNs such as GCN, GINE,
or GCNII (e.g., SWAN-learn improves GCN’s performance by 7.2% Peptides-
func). (ii) Compared with Transformers, which are of complexity O(|V|2), our
SWAN achieves better performance while remaining with a linear complexity of
O(|V|+ |E|). (iii) Among its class of DE-DGNs, our SWAN offers overall better
performance.

4.2.3.4 Ablation Study

In this section, we study the different components of SWAN, namely, the con-
tribution of guaranteed global (i.e., graph-wise) and local (i.e., node-wise) non-
dissipativity, and the benefit the spatial antisymmetry.

The importance of global and local non-dissipativity. To verify the
contribution of the global and local non-dissipativity offered by SWAN, we also
evaluate the performance of the following variants, which can deviate from be-
ing globally and locally non-dissipative, although in a bounded manner, as we
discuss in Section 4.2.2.3. Specifically, we consider the non-enforced (NE) vari-
ants of SWAN and SWAN-learn, which differ from the original version by the
use of unconstrained weight matrix V, rather than forcing it to be antisymmet-
ric. These two additional variants are called SWAN-ne and SWAN-learn-ne,
respectively.
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Table 4.8: Performance of various classical, multi-hop and static rewiring
MPNN, graph Transformer benchmarks, DE-GNNs, and our SWAN across two
LRGB tasks. Results are averaged over 3 weight initializations. The first, sec-
ond, and third best results for each task are color-coded. Beseline results are
reported from Gutteridge et al. (2023).

Model
Peptides- Peptides- Pascal

func struct voc-sp
AP ↑ MAE ↓ F1 ↑

MPNNs
GCN 0.5930±0.0023 0.3496±0.0013 0.1268±0.0060

GINE 0.5498±0.0079 0.3547±0.0045 0.1265±0.0076

GCNII 0.5543±0.0078 0.3471±0.0010 0.1698±0.0080

GatedGCN 0.5864±0.0077 0.3420±0.0013 0.2873±0.0219

GatedGCN+PE 0.6069±0.0035 0.3357±0.0006 0.2860±0.0085

Multi-hop GNNs
DIGL+MPNN 0.6469±0.0019 0.3173±0.0007 0.2824±0.0039

DIGL+MPNN+LapPE 0.6830±0.0026 0.2616±0.0018 0.2921±0.0038

MixHop-GCN 0.6592±0.0036 0.2921±0.0023 0.2506±0.0133

MixHop-GCN+LapPE 0.6843±0.0049 0.2614±0.0023 0.2218±0.0174

DRew-GCN 0.6996±0.0076 0.2781±0.0028 0.1848±0.0107

DRew-GCN+LapPE 0.7150±0.0044 0.2536±0.0015 0.1851±0.0092

DRew-GIN 0.6940±0.0074 0.2799±0.0016 0.2719±0.0043

DRew-GIN+LapPE 0.7126±0.0045 0.2606±0.0014 0.2692±0.0059

DRew-GatedGCN 0.6733±0.0094 0.2699±0.0018 0.3214±0.0021

DRew-GatedGCN+LapPE 0.6977±0.0026 0.2539±0.0007 0.3314±0.0024

Transformers
Transformer+LapPE 0.6326±0.0126 0.2529±0.0016 0.2694±0.0098

SAN+LapPE 0.6384±0.0121 0.2683±0.0043 0.3230±0.0039

GraphGPS+LapPE 0.6535±0.0041 0.2500±0.0005 0.3748±0.0109

DE-GNNs
GRAND 0.5789±0.0062 0.3418±0.0015 0.1918±0.0097

GraphCON 0.6022±0.0068 0.2778±0.0018 0.2108±0.0091

Ours
A-DGN 0.5975±0.0044 0.2874±0.0021 0.2349±0.0054

SWAN 0.6313±0.0046 0.2571±0.0018 0.2796±0.0048

SWAN-learn 0.6751±0.0039 0.2485±0.0009 0.3192±0.0250

Table 4.9 presents the performance of several SWAN variants on the Graph
Property Prediction and LRGB tasks. The best performance on both synthetic
and real-world problems is achieved through a global and local non-dissipative
behavior by SWAN-learn, showcasing the importance of global and local non-
dissipativity.

The benefit of spatial antisymmetry. Table 4.9 highlights the advantages
of the spatial antisymmetry in Equation 4.15. By setting β = 0, we obtain
a model with antisymmetry solely in the weight space, exhibiting only a local
non-dissipative behavior. Our results showcase a noteworthy performance im-
provement when spatial antisymmetry is employed. This is further supported
by the improved performance of -ne versions of SWAN, which do not guarantee
both global and local non-dissipative behavior, compared to SWANβ=0. Thus,
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Table 4.9: Performance of different versions of SWAN on Graph Property Predic-
tion and LRGB tasks. Results are averaged over 4 random weight initializations
on the Graph Property Prediction, while over 3 on the LRGB. The first, sec-
ond, and third best results for each task are color-coded.

Model Diam. SSSP Ecc. Peptides- Peptides-
func struct

log10(MSE)↓ log10(MSE)↓ log10(MSE)↓ AP ↑ MAE ↓

Weight Antisymmetry Only
SWANβ=0 -0.3882±0.0610 -3.2061±0.0416 0.5573±0.0247 0.6195±0.0067 0.2703±0.0023

Bounded Non-Dissipative
SWAN-ne -0.5497±0.0766 -3.1913±0.0762 0.3792±0.1514 0.6119±0.0037 0.2672±0.0012

SWAN-ne-learn -0.5631±0.0694 -3.5296±0.0831 0.1317±0.1253 0.6249±0.0051 0.2606±0.0007

Global and Local Non-Dissipative
SWAN -0.5249±0.0155 -3.2370±0.0834 0.4094±0.0764 0.6313±0.0046 0.2571±0.0018

SWAN-learn -0.5981±0.1145 -3.5425±0.0830 -0.0739±0.219 0.6751±0.0039 0.2485±0.0009

spatial antisymmetry emerges as a beneficial factor in effective information prop-
agation.

Complexity Analysis. Our SWAN architecture remains within the compu-
tational complexity of MPNNs (e.g., Morris et al. (2019b); Xu et al. (2019))
and other DE-GNNs such as GRAND. Specifically, each SWAN layer is linear
in the number of nodes |V| and edges |E|, therefore it has a time complexity of
O(|V|+ |E|). Assuming we compute L steps of the ODE defined by SWAN, the
overall complexity is O (L · (|V|+ |E|)).

Runtimes. We measure the training and inference (i.e., the epoch-time and
test-set time) runtime of SWAN on the Peptides-struct dataset and compare it
with other baselines. Our runtimes show that SWAN obtains high performance,
while retaining a linear complexity aligned to other MPNNs and DE-GNNs.
Our measurements in Table 4.10 present the training and inference runtimes
in seconds. The runtimes were measured on an NVIDIA RTX-3090 GPU with
24GB of memory. In all measurements, we use a batch size of 64, 128 feature
channels, and 5 layers. For reference, we also provide the reported downstream
task performance of each method.

4.3 Related Work
As introduced in Section 2.3, most of the DGNs typically relies on the concepts
introduced by the Message Passing Neural Network (MPNN) (Gilmer et al.,
2017), which is a general framework based on the message passing paradigm.
As observed in Sections 4.1.1 and 4.2.2.4, by relaxing the concepts of stability
and local and global non-dissipation from our frameworks, MPNN becomes a
specific discretization instance of A-DGN and SWAN.
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Table 4.10: Measured training and inference runtimes in seconds, and the obtain
MAE of SWAN and other baselines on the Peptides-func dataset.

Method Training Inference MAE ↓

GCN 2.90 0.32 0.3496±0.0013

GraphGPS+LapPE 23.04 2.39 0.2500±0.0005

GraphCON 3.03 0.27 0.2778±0.0018

A-DGN 2.83 0.25 0.2874±0.0021

SWAN 2.88 0.24 0.2571±0.0018

SWAN-learn 2.93 0.26 0.2485±0.0009

Depending on the definition of the update and message functions, it is pos-
sible to derive a variety of DGNs that mainly differ on the neighbor aggregation
scheme (Kipf & Welling, 2017; Veličković et al., 2018; Hamilton et al., 2017a; Xu
et al., 2019; Defferrard et al., 2016; Hu et al., 2020). However, all these methods
focus on presenting new and effective functions without questioning the stabil-
ity and non-dissipative behavior of the final network. As a result, most of these
DGNs are usually not able to capture long-term interactions. Indeed, only few
layers can be employed without falling into the oversquashing phenomenon, as
it is discussed in Section 2.3.1.

Since the previous methods are all specific cases of MPNN, they are all
instances of the discretized and unconstrained version of A-DGN and SWAN.
Moreover, a proper design of the functions Φ and Ψ in A-DGN and SWAN allows
rethinking the discussed DGNs through the lens of non-dissipative and stable
ODEs. Chen et al. (2020), Zhou et al. (2021), and Eliasof et al. (2022) proposed
three methods to alleviate oversmoothing (see Section 2.3.1). Similarly to the
forward Euler discretization, the first method employs identity mapping. It also
exploits initial residual connections to ensure that the final representation of each
node retains at least a fraction of input. The second method proposes a DGN
that constrains the Dirichlet energy at each layer and leverages initial residual
connections, while the latter tackles oversmoothing by aggregating random paths
over the graph nodes. Thus, the novelty of our methods is still preserved since
both A-DGN and SWAN define a map between DGNs and stable and non-
dissipative graph ODEs to preserve long-range dependencies between nodes.

Inspired by the NeuralODE approach (Chen et al., 2018), Poli et al. (2019)
develops a DGN defined as a continuum of layers. In such a work, the authors
focus on building the connection between ODEs and DGNs. We extend their
work to include stability and non-dissipation, which are fundamental properties
to preserve long-term dependencies between nodes and prevent gradient explo-
sion or vanishing during training. Thus, by relaxing these two properties from
our frameworks, the work by Poli et al. (2019) becomes a specific instance of A-
DGN and SWAN. Chamberlain et al. (2021b) propose GRAND an architecture
to learn graph diffusion as a PDE. Differently from GRAND, our frameworks de-
sign an architecture that is theoretically non-dissipative and free from gradient
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vanishing or explosion. DGC (Wang et al., 2021c) and SGC (Wu et al., 2019)
propose linear models that propagate node information as the discretization of
the graph heat equation, dX(t)/dt = −LX(t), without learning. Specifically,
DGC mainly focus on exploring the influence of the step size ϵ in the Euler
discretization method. Eliasof et al. (2021) and Rusch et al. (2022) present two
methods to preserve the energy of the system, i.e., they mitigate over-smoothing,
instead of preserving long-range information between nodes. Differently from our
methods, which employs a first-order ODE, the former leverages the conservative
mapping defined by hyperbolic PDEs, while the latter is defined as second-order
ODEs that preserve the Dirichlet energy. In general, this testifies that non-
dissipation in graph ODEs is an important property to pursue, not only when
preserving long-range dependencies. However, to the best of our knowledge, we
are the first to propose a non-dissipative graph ODEs to effectively propagate
the information on the graph structure.

The graph representation learning community explored various strategies in
recent years to effectively transfer information across distant nodes, such as
graph rewiring and Transformer-based architectures. In the first setting, meth-
ods like SDRF (Topping et al., 2022), GRAND (Chamberlain et al., 2021b),
BLEND (Chamberlain et al., 2021a), and DRew (Gutteridge et al., 2023) (dy-
namically) alter the original edge set to densify the graph during preprocessing
to facilitate node communication. Differently, Transformer-based methods (Shi
et al., 2021; Dwivedi & Bresson, 2021; Ying et al., 2021; Wu et al., 2023) en-
able message passing between all node pairs. FLODE (Maskey et al., 2023)
incorporates non-local dynamics by using a fractional power of the graph shift
operator. Although these techniques are effective in addressing the problem of
long-range communication, they can also increase the complexity of information
propagation due to denser graph shift operators, whereas our approaches avoid
this issue.

4.4 Summary

In this chapter, we have presented Antisymmetric Deep Graph Network (A-
DGN) and Space-Weight Antisymmetric Deep Graph Network (SWAN), two
novel differential-equation inspired DGNs (DE-DGNs) designed to address the
oversquashing problem.

Unlike previous approaches, by imposing stability and conservative con-
straints on the differential equation through the use of antisymmetric con-
straints, the proposed frameworks can learn and preserve long-range dependen-
cies between nodes. We prove theoretically that the differential equation corre-
sponding to A-DGN is both stable and non-dissipative. Consequently, typical
problems of systems with unstable and lossy dynamics, e.g., gradient explosion
or vanishing, do not occur. On the other hand, SWAN extends the concepts
introduced by A-DGN to include both global (i.e., graph-wise) and local (i.e.,
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node-wise) non-dissipative properties through space and weight antisymmetric
parameterization. Thanks to their formulations, both A-DGN and SWAN pro-
vide a general design principle for introducing non-dissipativity as an inductive
bias in any DE-DGN.

Our theoretical and experimental results emphasize the importance of global
and local non-dissipativity achieved by SWAN and A-DGN. Moreover, our exper-
imental analysis shows that our frameworks largely outperform standard DGNs
when capturing long-range dependencies on several graph benchmarks. For these
reasons, we believe that our methods represent a significant step forward in ad-
dressing oversquashing in DGNs.





Chapter 5

A Physics-Inspired DGN

Chapter 4 introduces antisymmetric constraints to achieve stable and non-dissi-
pative dynamical systems enabling long-range propagation in DGNs for static
graphs. In this chapter, we are interested in designing the information flow
within a (static) graph as a solution of a port-Hamiltonian system (Van der
Schaft, 2017), which is a generalization of Hamiltonian systems introduced in
Section 2.2.2, that provides a general formalism for physical systems that allows
for both conservative and non-conservative dynamics with the aim of allowing
flexible long-range propagation in DGNs.

Thus, we provide a theoretically grounded framework through the prism of
Hamiltonian-inspired DE-DGNs, named (port-)Hamiltonian Deep Graph Net-
work (PH-DGN), which defines a new message-passing scheme inspired by port-
Hamiltonian dynamics. By design, our method introduces the flexibility to bal-
ance non-dissipative long-range propagation and non-conservative behaviors as
required by the specific task at hand. Therefore, when using purely Hamiltonian
dynamics, our method allows the preservation and propagation of long-range in-
formation by obeying the conservation laws. In contrast, when our method
is used to its full extent, internal damping and additional forces can deviate
from this purely conservative behavior, potentially increasing effectiveness in
the downstream task. Leveraging the connection with Hamiltonian systems,
we provide theoretical guarantees that information is conserved over time, i.e.,
spatial hops. Lastly, the general formulation of our approach can seamlessly in-
corporate any neighborhood aggregation function (i.e., DGN), thereby endowing
these methods with the distinctive properties of our PH-DGN.

Our main contributions of this chapter are:

• We introduce PH-DGN, a novel general DE-DGN inspired by (port-)Hamil-
tonian dynamics, which enables the balance and integration of non-dissi-
pative long-range propagation and non-conservative behavior while seam-
lessly incorporating the most suitable aggregation function.

• We theoretically prove that, when pure Hamiltonian dynamic is employed,
both the continuous and discretized versions of our framework allow for

99
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long-range propagation in the message passing flow, since node states re-
tain their past.

• We introduce tools inspired by mechanical systems that deviate the Hamil-
tonian dynamic from its conservative behavior, thus facilitating a clear
interpretation from the physics perspective.

• We conduct extensive experiments to demonstrate the benefits of our
method and the ability to stack thousands of layers. Our PH-DGN outper-
forms existing state-of-the-art methods on both synthetic and real-world
tasks.

We base this chapter on Heilig et al. (2024).

5.1 (Port-)Hamiltonian Deep Graph Network

We introduce a new DE-DGN framework that designs the information flow
within a graph as the solution of a (port-)Hamiltonian system (Van der Schaft,
2017). Differently from the pure Hamiltonian systems introduced in Section
2.2.2, port-Hamiltonian systems let us introduce non-conservative phenomena,
such as internal dampening and external forcing, thereby relaxing the guarantee
of energy preservation.

Here, we show how the Hamiltonian formulation provides the backing to
preserve and propagate long-range information between nodes, in adherence to
the laws of conservation. The casting of the system in the more general port-
Hamiltonian setting, then, introduces the possibility of trading non-dissipation
with non-conservative behaviors when needed by the task at hand. Our ap-
proach is general, as it can be applied to any message-passing DGN, and frames
in a theoretically sound way the integration of non-dissipative propagation and
non-conservative behaviors. In the following, we refer to a Hamiltonian Deep
Graph Network (H-DGN) when the framework is instantiated to a purely conser-
vative DGN, and port-Hamiltonian Deep Graph Network (PH-DGN) otherwise.
Figure 5.1 shows our high-level architecture hinting at how the initial state of
the system is propagated up to the terminal time T . While the state evolves
preserving energy, internal dampening and additional forces can intervene to
alter its conservative trajectory.

In the following, we first derive our method from a purely Hamiltonian sys-
tem and prove its conservative behavior theoretically. We then complete our
method by incorporating non-conservative behaviors through port-Hamiltonian
dynamics.
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Figure 5.1: A high-level overview of the proposed (port-)Hamiltonian Deep
Graph Network. It summarizes how the initial node state xu(0) is propagated
by means of energy preservation up until the terminal time T (i.e., layer L),
xu(T ). While the global system’s state y evolves preserving energy, external
forces (i.e., dampening D(y) and external control F (y, t)) can intervene to alter
its conservative trajectory. The gray trajectories between the initial and final
states represent the continuous evolution of the system. The discrete message
passing step from layer ℓ to ℓ+1, which is shown in middle of the figure, is given
by the coupling of coordinates q and momenta p in terms of neighborhood ag-
gregation ΦG and influence to adjacent neighbors Φ∗

G. Self-influence on both q
and p from the previous step ℓ are omitted for simplicity.

5.1.1 Hamiltonian-Inspired Message Passing

To inject the Hamiltonian dynamics into a DE-DGN, we start by considering
the graph Hamiltonian system described by the following ODE

dy(t)

dt
= J∇HG(y(t)), (5.1)

for time t ∈ [0, T ] and subject to an initial condition y(0) = y0. The term y(t) ∈
Rnd is the vectorized view of X(t) that represents the global state of the graph at
time t, with an even dimension d, following the notation of Hamiltonian systems
(Hairer et al., 2006). HG : Rnd → R is a neural-parameterized Hamiltonian
function capturing the energy of the system. The skew-symmetric matrix J =(

0 −Ind/2
Ind/2 0

)
, with Ind/2 being the identity matrix of dimension nd/2, reflects

a rotation of the gradient ∇HG and couples the position and momentum of the
system.

Since we are dealing with a Hamiltonian system, the global state y(t) is com-
posed by two components which are the momenta, p(t) = (p1(t), . . . ,pn(t)), and
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the position, q(t) = (q1(t), . . . ,qn(t)), of the system, thus y(t) = (p(t),q(t)).
Therefore, from the node (local) perspective, each node state is expressed as
xu(t) = (pu(t),qu(t)).

Under this local node-wise perspective, Equation 5.1 can be equivalently
written as

dxu(t)

dt
=

(
ṗu(t)
q̇u(t)

)
=

(
−∇quHG(p(t),q(t))
∇puHG(p(t),q(t))

)
, ∀u ∈ V . (5.2)

With the aim of designing a Hamiltonian system based on message passing,
we instantiate the Hamiltonian function HG as

HG(y(t)) =
∑
u∈V

σ̃(Wxu(t) + ΦG({xv(t)}v∈Nu) + b)⊤1d, (5.3)

where σ̃(·) is the anti-derivative of a monotonically non-decreasing activation
function σ, Nu is the neighborhood of node u, and ΦG is a neighborhood ag-
gregation permutation-invariant function. Terms W ∈ Rd×d and b ∈ Rd are
the weight matrix and the bias vector, respectively, containing the trainable
parameters of the system; 1d denotes a vector of ones of length d.

By computing the gradient ∇xuHG(y(t)) we obtain an explicit version of
Equation 5.2, which can be rewritten from the node-wise perspective of the
information flow as the sum of the self-node evolution influence and its neighbor’s
evolution influence (referred to as Φ∗

G). More formally, for each node u ∈ V

dxu(t)

dt
= Ju

[
W⊤σ(Wxu(t) + ΦG({xv(t)}v∈Nu) + b)

+
∑

v∈Nu∪{u}

(
∂ΦG({xv(t)}v∈Nu)

∂xu(t)

)⊤

σ(Wxu(t) + ΦG({xv(t)}v∈Nu) + b)

︸ ︷︷ ︸
Φ∗

G

]
. (5.4)

Here, Ju has the same structure as J , but the identity blocks have dimension
d/2 as it is applied to the single node u. We refer to the system in Equation 5.4 as
Hamiltonian Deep Graph Network (H-DGN) as it adheres solely to conservation
laws.

Now, given an initial condition xu(0) for a node u, and the other nodes
in the graph, the ODE defined in Equation 5.4 (i.e., H-DGN) is a continuous
information processing system over a graph governed by conservation laws that
computes the final node representation xu(T ). This is visually summarized in
Figure 5.1 when dampening and external forcing are excluded.

Moreover, we observe that the general formulation of the neighborhood ag-
gregation function ΦG({xv(t)}v∈Nu) allows implementing any function that ag-
gregates nodes (and edges) information. Therefore, ΦG({xv(t)}v∈Nu) allows en-
hancing a standard DGNs with our Hamiltonian conservation. As a demonstra-
tion of this, in Section 5.2, we experiment with two neighborhood aggregation
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functions, which are the classical GCN aggregation (Kipf & Welling, 2017) and
the simple aggregation function presented in Equation 4.13.

5.1.2 H-DGN allows Long-Range Propagation

We show that our H-DGN in Equation 5.4 adheres to the laws of conservation,
allowing long-range propagation in the message-passing flow.

As discussed in (Haber & Ruthotto, 2017; Gravina et al., 2023), non-dissipative
(i.e., long-range) propagation is directly linked to the sensitivity of the solution
of the ODE to its initial condition, thus to the stability of the system. Such
sensitivity is controlled by the Jacobian’s eigenvalues of Equation 5.4. Un-
der the assumption that the Jacobian varies sufficiently slow over time and its
eigenvalues are purely imaginary, then the initial condition is effectively prop-
agated into the final node representation, making the system both stable and
non-dissipative, thus allowing for long-range propagation.

Theorem 4. The Jacobian matrix of the system defined by the ODE in Equa-
tion 5.4 possesses eigenvalues purely on the imaginary axis, i.e.,

Re

(
λi

(
∂

∂xu

Ju∇xuHG(y(t))

))
= 0, ∀i,

where λi represents the i-th eigenvalue of the Jacobian.

Proof. First, we note that

∂

∂xu

Ju∇xuHG(y(t)) = ∇2
xu
HG(y(t))J ⊤

u , (5.5)

where ∇2
xu
HG is the symmetric Hessian matrix. Hence, the Jacobian is shortly

written as AB, where A is symmetric and B is antisymmetric. Consider an
eigenpair of AB, where the eigenvector is denoted by v and the eigenvalue by
λ ̸= 0. Then:

v∗AB = λv∗

v∗A = λv∗B−1

v∗Av = λ
(
v∗B−1v

)
where ∗ represents the conjugate transpose. On the left-hand side, it is noticed
that the (v∗Av) term is a real number. Recalling that B−1 remains antisym-
metric and for any real antisymmetric matrix C it holds that C∗ = C⊤ = −C,
it follows that (v∗Cv)∗ = v∗C∗v = −v∗Cv. Hence, the v∗B−1v term on
the right-hand side is an imaginary number. Thereby, λ needs to be purely
imaginary, and, as a result, all eigenvalues of AB are purely imaginary.

Then, we take a further step and strengthen such result by proving that
the nonlinear vector field defined by H-DGN is divergence-free, thus preserving
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information within the graph during the propagation process and helping to
maintain informative node representations. In other words, the H-DGN’s dy-
namics possess a non-dissipative behavior independently of both the assumption
regarding the slow variation of the Jacobian and the position of the Jacobian
eigenvalues on the complex plane.

Theorem 5. The autonomous Hamiltonian HG of the system in Equation 5.4
with learnable weights shared across time stays constant at the energy level spec-
ified by the initial value HG(y(0)), i.e.,

dHG

dt
= 0. (5.6)

H-DGN also possesses a divergence-free nonlinear vector field

∇ · Ju∇xuHG(y(t)) = 0, t ∈ [0, T ]. (5.7)

Proof. When the system in Equation 5.4 employs shared weights across time,
then the resulting Hamiltonian is autonomous and does not depend explicitly
on time, i.e., HG(y(t), t) = HG(y(t)). In such case, the energy is naturally
conserved in the system it represents.
The time derivative of H(y(t)) is given by means of the chain-rule:

dH(y(t))

dt
=

∂H(y(t))

∂y(t)
· dy(t)

dt
=

∂H(y(t))

∂y(t)
· J ∂H(y(t))

∂y(t)
= 0, (5.8)

where the last equality holds since J is antisymmetric. Having no change over
time implies that H(y(t)) = H(y(0)) = const for all t.
Since the Hessian ∇2HG(y(t)) is symmetric, it follows directly

∇ · Ju∇xvHG(y(t)) =
d∑

i=1

−∂2HG(y(t))

∂qiv ∂p
i
v

+
∂2HG(y(t))

∂piv ∂q
i
v

= 0

This allows us to interpret the system dynamics as purely rotational, without
energy loss, and demonstrates that H-DGN is governed by conservation laws.

We now provide a sensitivity analysis, following Chang et al. (2019); Gal-
imberti et al. (2023) and Chapter 4, to prove that H-DGN effectively allows
for long-range information propagation. Specifically, we measure the sensitivity
of a node state after an arbitrary time T of the information propagation with
respect to its previous state, ∥∂xu(T )/∂xu(T − t)∥. In other words, we compute
the backward sensitivity matrix (BSM). We now provide a theoretical bound of
our H-DGN.
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Theorem 6. Considering the continuous system defined by Equation 5.4, the
backward sensitivity matrix (BSM) is bounded from below:∥∥∥∥ ∂xu(T )

∂xu(T − t)

∥∥∥∥ ≥ 1, ∀t ∈ [0, T ].

Proof. In order to prove the lower bound on the BSM, we need a technical
lemma that describes the time evolution of the BSM itself, which extends the
result from Galimberti et al. (2023).

Lemma 1. Given the system dynamics of the ODE in Equation 5.1 governing
the H-DGN, we have that

d

dt

∂y(T )

∂y(T − t)
= J ∂H

∂y

∣∣∣∣
y(T−t)

∂y(T )

∂y(T − t)
(5.9)

as in (Galimberti et al., 2023). The same applies, with a slightly different
formula, for each node u, that is the BSM satisfies

d

dt

∂xu(T )

∂xu(T − t)
=

∂y

∂xu

∣∣∣∣
(T−t)

∂fu
∂y

∣∣∣∣
y(T−t)

∂xu(T )

∂xu(T − t)
= Fu

∂xu(T )

∂xu(T − t)
(5.10)

where fu is the restriction of f = J ∂H
∂y

to the components corresponding to xu,
that is the dynamics of node u, which can be written as

fu = Luf = LuJ
∂H

∂y
(5.11)

where Lu is the readout matrix, of the form

Lu =

[
0 d

2
× d

2
(u−1) I d

2
× d

2
0 d

2
× d

2
(n−u) 0 d

2
× d

2
(u−1) 0 d

2
× d

2
0 d

2
× d

2
(n−u)

0 d
2
× d

2
(u−1) 0 d

2
× d

2
0 d

2
× d

2
(n−u) 0 d

2
× d

2
(u−1) I d

2
× d

2
0 d

2
× d

2
(n−u)

]
(5.12)

which is a projection on the coordinates of a single node u. Notice as well that,
in denominator notation

∂y

∂xu

= Lu (5.13)

We only show Equation 5.10, as it is related to graph networks and is actu-
ally a harder version of Equation 5.9, with the latter being already proven in
Galimberti et al. (2023). We also show the last part of the proof in a general
sense, without using the specific matrices of the Hamiltonian used.

Proof. Following Galimberti et al. (2023), the solution to the ODE dxu

dt
=

fu(y(t)) can be written in integral form as

xu(T ) = xu(T−t)+
∫ T

T−t

fu(y(τ))dτ = xu(T−t)+
∫ t

0

fu(y(T−t+s))ds (5.14)
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Differentiating by the solution at a previous time xu(T − t) we obtain

∂xu(T )

∂xu(T − t)
= Iu +

∂
∫ ⊤
0
fu(y(T − t+ s))ds
∂xu(T − t)

= Iu +

∫ t

0

∂fu(y(T − t+ s))

∂xu(T − t)

= Iu +

∫ t

0

∂y(T − t+ s)

∂xu(T − t)

∂fu
∂y

∣∣∣∣
y(T−t+s)

ds (5.15)

where in the second equality we brought the derivative term under the integral
sign and in the third we used the chain rule of the derivative (recall we are
using denominator notation). Considering a slight perturbation in time δ, we
consider ∂xu(T )

∂xu(T−t−δ)
as this will be used to calculate the time derivative of the

BSM. Using again the chain rule for the derivative and the formula above with
T − t− δ instead of T − t, we have that

∂xu(T )

∂xu(T − t− δ)
=

∂xu(T − t)

∂xu(T − t− δ)

∂xu(T )

∂xu(T − t)

=

(
Iu +

∫ δ

0

∂y(T − t− δ + s)

∂xu(T − t− δ)

∂fu
∂y

∣∣∣∣
y(T−t−δ+s)

ds

)
∂xu(T )

∂xu(T − t)
(5.16)

This way, we have expressed ∂xu(T )
∂xu(T−t−δ)

in terms of ∂xu(T )
∂xu(T−t)

. To calculate our
objective, we want to differentiate with respect to δ. We first calculate the
difference:

∂xu(T )

∂xu(T − t− δ)
− ∂xu(T )

∂xu(T − t)
=

=

(∫ δ

0

∂y(T − t− δ + s)

∂xu(T − t− δ)

∂fu
∂y

∣∣∣∣
y(T−t−δ+s)

ds

)
∂xu(T )

∂xu(T − t)
(5.17)

We can now divide by δ and take the limit δ → 0

lim
δ→0

1

δ

(
∂xu(T )

∂xu(T − t− δ)
− ∂xu(T )

∂xu(T − t)

)
=

= lim
δ→0

(
1

δ

∫ δ

0

∂y(T − t− δ + s)

∂xu(T − t− δ)

∂fu
∂y

∣∣∣∣
y(T−t−δ+s)

ds

)
∂xu(T )

∂xu(T − t)

=
∂y

∂xu

∣∣∣∣
(T−t)

∂fu
∂y

∣∣∣∣
y(T−t)

∂xu(T )

∂xu(T − t)
(5.18)

Where in the final equality we used the fundamental theorem of calculus. Fi-
nally

d

dt

∂xu(T )

∂xu(T − t)
=

∂y

∂xu

∣∣∣∣
(T−t)

∂fu
∂y

∣∣∣∣
y(T−t)

∂xu(T )

∂xu(T − t)
= Fu

∂xu(T )

∂xu(T − t)
(5.19)

giving us the final result.
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We are now ready to prove Theorem 6. First, we calculate that

∂fu
∂y

=
∂

∂y

(
LuJ

∂H

∂y

)
=

∂2H

∂y2
J ⊤L⊤

u = SJ ⊤L⊤
u (5.20)

so that Fu = LuSJ ⊤L⊤
u . This will be helpful in the following matrix calcula-

tions.

Proof. For brevity, we call
[

∂xu(T )
∂xu(T−t)

]
= Ψu(T, T − t), which will be indicated

simply as Ψu. When t = 0, Ψu is just the Jacobian of the identity map
Ψu(T, T ) = Iu and the result Ψ⊤

uJuΨu = Ju is true for t = 0. Calculating
the time derivative on Ψ⊤

uJuΨu we have that

d

dt
[Ψ⊤

uJuΨu] = Ψ̇⊤
uJuΨu +Ψ⊤

uJuΨ̇u

= (FuΨu)
⊤JuΨu +Ψ⊤

uJuFuΨu

= Ψ⊤
uLuJ S⊤L⊤

uJuΨu +Ψ⊤
uJuLuSJ ⊤L⊤

uΨ

= Ψ⊤
u

(
LuJ SL⊤

uJu + JuLuSJ ⊤L⊤
u

)
Ψu (5.21)

where in the second equality we used the result from Lemma 1. We just need
to show that the term in parentheses is zero so that the time derivative is zero.
Using the relations J ⊤L⊤

u = −L⊤
uJu and JuLu = LuJ we easily see that,

finally

d

dt

([ ∂xu(T )

∂xu(T − t)

]⊤
Ju

[
∂xu(T )

∂xu(T − t)

])
=

= Ψ⊤
u

(
LuJ SL⊤

uJu + LuJ S(−L⊤
uJu)

)
Ψu

= 0 (5.22)

which means that
[

∂xu(T )
∂xu(T−t)

]⊤
Ju

[
∂xu(T )

∂xu(T−t)

]
is constant and equal to Ju for all

t, that is our thesis. Now, the bound on the gradient follows by considering
any sub-multiplicative norm ∥ · ∥:

∥Ju∥ =

∥∥∥∥∥
[

∂xu(T )

∂xu(T − t)

]⊤
Jk

[
∂xu(T )

∂xu(T − t)

]∥∥∥∥∥ ≤
∥∥∥∥ ∂xu(T )

∂xu(T − t)

∥∥∥∥2 ∥Ju∥

and simplifying by ∥Ju∥ = 1.

This concludes the proof of Theorem 6.

The result of Theorem 6 indicates that the gradients in the backward pass do
not vanish, enabling the effective propagation of previous node states through
successive transformations to the final nodes’ representations. Therefore, H-
DGN has a conservative message passing, where the final representation of each
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node retains its complete past. We observe that Theorem 6 holds even during
discretization when the Symplectic Euler method is employed (see Section 5.1.4).

Although the sensitivity of a node state after a time t with respect to its pre-
vious state can be bounded from below, allowing effective conservative message
passing in H-DGN, we observe that it is possible to compute an upper bound
on such a measure, which we provide in the following theorem, giving the full
picture of the time dynamics of the gradients. While the theorem shows that,
theoretically, the sensitivity measure may grow (i.e., potentially causing gradi-
ent explosion), we emphasize that during our experiments we did not encounter
such a problem.

Theorem 7. Consider the continuous system defined by Equation 5.4, if σ is a
non-linear function with bounded derivative, i.e. ∃M > 0, |σ′(x)| ≤ M , and the
neighborhood aggregation function is of the form ΦG =

∑
v∈Nu

Vxv, the backward
sensitivity matrix (BSM) is bounded from above:∥∥∥∥ ∂xu(T )

∂xu(T − t)

∥∥∥∥ ≤ √d exp(QT ), ∀t ∈ [0, T ],

where Q =
√
dM∥W∥22 +

√
dMmaxi∈[n]|Ni|∥V∥22.

Proof. To prove the upper bound, we use the following technical lemma:

Lemma 2 (Galimberti et al. (2023)). Consider a matrix A ∈ Rn×n with
columns ai ∈ Rn, i.e., A =

[
a1 a2 · · · an

]
, and assume that ∥ai∥2 ≤

γ+ for all i = 1, . . . , n. Then, ∥A∥2 ≤ γ+
√
n.

This lemma gives a bound on the spectral norm of a matrix when its columns
are uniformly bounded in norm. Therefore, our proof strategy for Theorem 7
lies in bounding each column of the BSM matrix.

Proof. Consider the ODE in Equation 5.19 from Lemma 1 and split ∂xu(T )
∂xu(T−t)

into columns ∂xu(T )
∂xu(T−t)

=
[
z1(t) z2(t) . . . zd(t)

]
. Then, Equation 5.19 is

equivalent to

żi(t) = Au(T − t)zi(t), t ∈ [0, T ], i = 1, 2 . . . , d, (5.23)

subject to zi(0) = ei, where ei is the unit vector with a single nonzero entry in
position i. The solution of the linear system of ODEs in Equation 5.23 is given
by the integral equation

zi(t) = zi(0) +

∫ t

0

Au(T − s)zi(s)ds, t ∈ [0, T ]. (5.24)

By assuming that ∥Au(τ)∥2 ≤ Q for all τ ∈ [0, T ], and applying the triangular
inequality in Equation 5.24, it is obtained that:

∥zi(t)∥2 ≤ ∥zi(0)∥2 +Q

∫ t

0

∥zi(s)∥2 ds = 1 +Q

∫ t

0

∥zi(s)∥2 ds,
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where the last equality follows from ∥zi(0)∥2 = ∥ei∥2 = 1 for all i = 1, 2, . . . , d.
Then, applying the Gronwall inequality, it holds for all t ∈ [0, T ]

∥zi(t)∥2 ≤ exp(QT ). (5.25)

By applying Lemma 2, the general bound follows.
Lastly, we characterize Q by bounding the norm ∥Au(τ)∥2 ∀τ ∈ [0, T ]. From
Lemma 1 Av can be expressed as Au = LuSJ ⊤L⊤

u , which is equivalently
Au = ∇2

xu
HG(y)J ⊤

u , since J ⊤L⊤
u = L⊤

v J ⊤
u . The Hessian ∇2

xu
HG(y) is of the

form:

∇2
xu
HG(y) = W⊤ diag(σ′(Wxu + Φu + b))W

+
∑
v∈Nu

V⊤ diag(σ′(Wxv + Φv + b))V.

After noting that ∥∇2
xu
HG(y)J ⊤

u ∥2 ≤ ∥∇2
xu
HG(y)∥2∥J ⊤

u ∥2, the only varying
part is the Hessian ∇2

xu
HG(y) since ∥J ⊤

u ∥2 = 1. By Lemma 2 diag(σ′(x)) ≤√
dM and noting that ∥X⊤∥ = ∥X∥ for any square matrix X, then∥∥∇2

xu
HG(y)

∥∥
2
≤
√
dM ∥W∥22 +

√
dM maxi∈[n] |Ni| ∥V∥22 =: Q.

This also justifies our previous assumption that ∥Au(τ)∥2 is bounded.

5.1.3 Introducing Dissipative Components

A purely conservative Hamiltonian inductive bias forces the node states to follow
trajectories that maintain constant energy, potentially limiting the effectiveness
of the DGN on downstream tasks by restricting the system’s ability to model all
complex nonlinear dynamics. To this end, we complete the formalization of our
port-Hamiltonian framework by introducing tools from mechanical systems, such
as friction and external control, to learn how much the dynamic should deviate
from this purely conservative behavior. Therefore, we extend the dynamics in
Equation 5.4 to a port-Hamiltonian by including two new terms D(q) ∈ Rd/2×d/2

and F (q, t) ∈ Rd/2, i.e.,

dxu(t)

dt
=

[
Ju −

(
D(q(t)) 0

0 0

)]
∇xuHG(y(t)) +

(
F (q(t), t)

0

)
, ∀u ∈ V . (5.26)

Depending on the definition of D(q(t)) we can implement different forces. Specif-
ically, if D(q(t)) is positive semi-definite then it implements internal dampening,
while a negative semi-definite implementation leads to internal acceleration. A
mixture of dampening and acceleration is obtained otherwise. In the case of
dampening, the energy is decreased along the flow of the system (Van der Schaft,
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2017). To further enhance the modeling capabilities, we integrate the learnable
state- and time-dependent external force F (q(t), t), which further drives node
representation trajectories. Figure 5.1 visually summarizes how such tools can
be plugged in our framework during node update.

Although D(q(t)) and F (q(t), t) can be implemented as static (fixed) func-
tions, in our experiments in Section 5.2 we employ neural networks to learn
such terms. We provide additional details on the specific architectures in Ap-
pendix C.1. In the following, we refer to a DGN following Equation 5.26 as
port-Hamiltonian Deep Graph Network (PH-DGN) to distinguish it from the
purely conservative H-DGN in Equation 5.4. We provide further details about
the discretization of PH-DGN in Section 5.1.4.

5.1.4 Discretization of (port-)Hamiltonian DGNs

As for standard DE-DGNs a numerical discretization method is needed to solve
Equation 5.4. However, as observed in Haber & Ruthotto (2017); Galimberti
et al. (2023), not all standard techniques can be employed for solving Hamil-
tonian systems. Indeed, symplectic integration methods need to be used to
preserve the conservative properties in the discretized system (see Section 2.2.3).

For the ease of simplicity, in the following we focus on the Symplectic Euler
method (see Section 2.2.3), however, we observe that more complex methods
such as Strömer-Verlet can be employed (Hairer et al., 2006).

The Symplectic Euler scheme, applied to our H-DGN in Equation 5.4, up-
dates the node representation at the (ℓ+ 1)-th step as

xℓ+1
u =

(
pℓ+1
u

qℓ+1
u

)
=

(
pℓ
u

qℓ
u

)
+ ϵJu

(
∇puHG(p

ℓ,qℓ)

∇quHG(p
ℓ+1,qℓ)

)
, ∀u ∈ V . (5.27)

with ϵ the step size of the numerical discretization. We note that Equation 5.27
relies on both the current and future state of the system, hence marking an im-
plicit scheme that would require solving a linear system of equations in each step.
To obtain an explicit version of Equation 5.27, we consider the neighborhood
aggregation function in Equation 4.13 and impose a structure assumption on W

and V, namely W =

(
Wp 0
0 Wq

)
and V =

(
Vp 0
0 Vq

)
. We note that a com-

parable assumption can be made for other neighborhood aggregation functions,
such as GCN aggregation.

Therefore, the gradients in Equation 5.27 can be rewritten in the explicit
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form as

pℓ+1
u = pℓ

u − ϵ

[
W⊤

q σ(Wqq
ℓ
u + ΦG({qℓ

v}v∈Nu) + bq)

+
∑

v∈Nu\{u}

V⊤
q σ(Wqq

ℓ
v + ΦG({qℓ

j}j∈Nv) + bq)

]
(5.28)

qℓ+1
u = qℓ

u + ϵ

[
W⊤

p σ(Wpp
ℓ+1
u + ΦG({pℓ+1

v }v∈Nu) + bp)

+
∑

v∈Nu\{u}

V⊤
p σ(Wpp

ℓ+1
v + ΦG({pℓ+1

j }j∈Nv) + bp)

]
. (5.29)

We observe that Equations 5.28 and 5.29 can be understood as coupling
two DGN layers. This discretization mechanism is visually summarized in the
middle of Figure 5.1 where a message-passing step from layer ℓ to layer ℓ+ 1 is
performed.

In the case of PH-DGN in Equation 5.26 the discretization employs the
same step for qℓ+1 in Equation 5.29 while Equation 5.28 includes the dissipative
components, thus it can be rewritten as

pℓ+1
u = pℓ

u + ϵ

[
−∇quHG(p

ℓ,qℓ)−Du(q
ℓ)∇puHG(p

ℓ,qℓ) + Fu(q
ℓ, t)

]
. (5.30)

To provide a clear understanding of our PH-DGN, Algorithm 1 presents
how node embeddings are computed by the discretized version of our model.
Additional insights on practical implementations of the dampening and external
force components are presented in Appendix C.1.

Lastly, it is important to acknowledge that properties observed in the con-
tinuous domain may not necessarily hold in the discrete setting due to the lim-
itations of the discretization method. In the following theorem, we show that
when the Symplectic Euler method is employed, then Theorem 6 holds.

Theorem 8. Considering the discretized system in Equation 5.27 obtained by
Symplectic Euler discretization, the backward sensitivity matrix (BSM) is bounded
from below: ∥∥∥∥ ∂xL

u

∂xL−ℓ
u

∥∥∥∥ ≥ 1, ∀ℓ ∈ [0, L].

Proof. In the discrete case, since the semi-implicit Euler integration scheme is
a symplectic method, it holds that:[

∂xℓ
u

∂xℓ−1
u

]⊤
Ju

[
∂xℓ

u

∂xℓ−1
u

]
= Ju (5.31)



112 Chapter 5. A Physics-Inspired DGN

Further, by using the chain rule and applying Equation 5.31 iteratively we get:

[
∂xL

u

∂xL−ℓ
u

]⊤
Ju

[
∂xL

u

∂xL−ℓ
u

]
=

[
L−1∏

i=L−ℓ

∂xi+1
u

∂xi
u

]⊤
Ju

[
L−1∏

i=L−ℓ

∂xi+1
u

∂xi
u

]
= Ju

Hence, the BSM is symplectic at arbitrary depth and we can conclude the proof
with:

∥Ju∥ =

∥∥∥∥∥
[

∂xL
u

∂xL−ℓ
u

]⊤
Ju

[
∂xL

u

∂xL−ℓ
u

]∥∥∥∥∥ ≤
∥∥∥∥ ∂xL

u

∂xL−ℓ
u

∥∥∥∥2 ∥Ju∥ . (5.32)

Again, this indicates that even the discretized version of H-DGN enables for
effective propagation and conservative message passing.

Algorithm 1: PH-DGN node embeddings computation
Input: A static graph G = (V , E ,X,E), Symplectic Euler step size ϵ,

the number of discretization steps L.
Result: Final nodes’ embeddings XL.

1 for ℓ ∈ {1, . . . , L} do ▷ Iterate the Symplectic Euler’s method
2 for u ∈ V do ▷ Iterate over the graph
3 (pℓ−1

u ,qℓ−1
u )← xℓ−1

u

4 zp ← ∇quHG(p
ℓ−1,qℓ−1)

5 if apply dampening then
6 zp ← Du(q

ℓ−1)zp ▷ PH-DGN used to its maximum potential
7 end
8 if apply external force then
9 zp ← zp + F (qℓ−1

u , t) ▷ PH-DGN used to its maximum potential
10 end
11 pℓ

u ← pℓ−1
u − ϵ(zp) ▷ Update pu as in Eq. 5.28 or Eq. 5.30

12 zq ← ∇puHG(p
ℓ,qℓ−1)

13 qℓ
u ← qℓ−1

u + ϵ(zq) ▷ Update qu as in Eq. 5.29
14 xℓ

u ← (pℓ
u,q

ℓ
u)

15 end
16 end

5.2 Experiments
We empirically verify both theoretical claims and practical benefits of our frame-
work on popular graph benchmarks for long-range propagation. First (Section
5.2.1), we conduct a controlled synthetic test showing non-vanishing gradients
even when thousands of layers are used. Afterward (Section 5.2.2), we run a
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graph transfer task inspired by Di Giovanni et al. (2023) to assess the efficacy in
preserving long-range information between nodes. Then, we assess our frame-
work in popular benchmark tasks requiring the exchange of messages at large
distances over the graph, including graph property prediction (Section 5.2.3)
and the long-range graph benchmark (Dwivedi et al., 2022) (Section 5.2.4). We
compare our performance to state-of-the-art methods, such as MPNN-based
models, DE-DGNs (which represent a direct competitor to our method), higher-
order DGNs, and graph transformers, as in Section 4.2. We investigate two
neighborhood aggregation functions for our H-DGN and PH-DGN, which are
the classical GCN aggregation and that proposed in Equation 4.13. We report
in Table C.1 (Appendix C.1) the grid of hyperparameters employed in our ex-
periments. Our experimental results were obtained using NVIDIA A100 GPUs
and Intel Xeon Gold 5120 CPUs.

5.2.1 Numerical Simulations

Setup. We empirically verify that our theoretical considerations on H-DGN
hold true by an experiment requiring to propagate information within a Carbon-
60 molecule graph without training on any specific task, i.e., we perform no
gradient update step. While doing so, we measure the energy level captured
in HG(y(ℓϵ)) in the forward pass and the sensitivity, ∥∂xL

u/∂x
ℓ
u∥, from each

intermediate layer ℓ = 1, . . . , L in the backward pass. We consider the 2-d
position of the atom in the molecule as the input node features, fixed terminal
propagation time T = 10 with various integration step sizes ϵ ∈ {0.1, 0.01, 0.001}
and T = 300 with ϵ = 0.3. Note that the corresponding number of layers is
computed as L = T/ϵ, i.e., we use tens to thousands of layers. For the ease
of the simulation, we use tanh-nonlinearity, fixed learnable weights that are
randomly initialized, and the aggregation function in Equation 4.13.

Results. In Figure 5.2a, we show the energy difference HG(y(ℓϵ))−HG(y(0))
for different step sizes. For a fixed time T , a smaller step size ϵ is related to a
higher number of stacked layers. We note that the energy difference oscillates
around zero, and the smaller the step size the more accurately the energy is
preserved. This supports our intuition of H-DGN being a discretization of a
divergence-free continuous Hamiltonian dynamic, that allows for non-dissipative
forward propagation, as stated in Theorem 4 and Theorem 5. Even for larger
step sizes, energy is neither gained nor lost.

Regarding the backward pass, Figures 5.2b, 5.2c assert that the lower bound
∥∂x(L)/∂x(ℓ)∥ ≥ 1 stated in Theorem 6 and its discrete version in Theorem 8
leads to non-vanishing gradients. In particular, Figure 5.2c shows a logarithmic-
linear increase of sensitivity with respect to the distance to the final layer, hinting
at the exponential upper bound derived in Theorem 7. This growing behavior
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can be controlled by regularizing the weight matrices, or by use of normalized
aggregation functions, as in GCN (Kipf & Welling, 2017).

(a) (b) (c)

Figure 5.2: (a) Time evolution of the energy difference to the initial state
y(0) = y0 obtained from one forward pass of H-DGN with fixed random weights
on the Carbon-60 graph with three different numbers of layers given by T/ϵ.
The sensitivity ∥∂xL

u/∂x
ℓ
u∥ of 15 different node states to their final embedding

obtained by backpropagation on the Carbon-60 graph after (b) T = 10 and
ϵ = 0.1 (i.e., 100 layers) and (c) T = 300 and ϵ = 0.3 (i.e., 1000 layers). The log
scale’s horizontal line at 0 indicates the theoretical lower bound.

5.2.2 Graph Transfer

Setup. We address the task of propagating a label from a source node to
a target node located at increasing distances k in the graph as introduced in
Section 4.2.3.1. Given the conservative nature of the task, we focus on assessing
the purely Hamiltonian H-DGN model.

Results. Figure 5.3 reports the test mean-squared error (and std) of H-DGN
compared to literature models. It appears that classical MPNNs do not effec-
tively propagate information across long ranges, as their performance decrease
when k increases. Differently, H-DGN achieves low errors even at higher dis-
tances, i.e., k ≥ 10. The only competitors to our H-DGN are A-DGN and
SWAN, which are other non-dissipative methods. Overall, H-DGN outperforms
all the classical MPNNs baseline while having on average better performance
than A-DGN, thus empirically supporting our claim of long-range capabilities
while introducing a new architectural bias. Moreover, our results highlight how
our framework can push simple graph convolutional architectures to state-of-
the-art performance when imbuing them with dynamics capable of long-range
message exchange.
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Figure 5.3: Information transfer performance on (a) Line, (b) Ring, and (c)
Crossed-Ring graphs. Overall, baseline approaches are not able to transfer the
information accurately as distance increase, while non-dissipative methods like
A-DGN, SWAN, and our H-DGN achieve low errors.

5.2.3 Graph Property Prediction

Setup. We address tasks involving the prediction of three graph properties -
Diameter, Single-Source Shortest Paths (SSSP), and node Eccentricity on syn-
thetic graphs as introduced in Section 4.1.3.1. In this experiment, we investigate
the performance of our complete port-Hamiltonian framework, PH-DGN, and
present the pure Hamiltonian H-DGN as an ablation study.

Results. We present the results on the graph property prediction tasks in
Table 5.1, reporting log10(MSE) as evaluation metric. We observe that both
our H-DGN and PH-DGN show a strong improvement with respect to baseline
methods, achieving new state-of-the-art performance on all the tasks. Indeed,
our ablation reveals that the purely conservative H-DGN model has, on average,
a log10(MSE) that is 0.33 lower than the best baseline. Such gap is pushed to
0.81 when the full port-Hamiltonian bias (i.e., PH-DGN) is employed, marking
a significant decrease in the test loss. The largest gap is achieved by PH-DGN
in the eccentricity task, where it improves the log10(MSE) performance of the
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best baseline by 1.36. Moreover, PH-DGN improves SWAN’s performance by
0.52, on average.

Table 5.1: Mean test log10(MSE) and std average over 4 training seeds on the
Graph Property Prediction. Our methods and DE-DGN baselines are imple-
mented with weight sharing. The first, second, and third best scores are
colored.

Model Diameter SSSP Eccentricity

MPNNs
GCN 0.7424±0.0466 0.9499±9.2·10−5 0.8468±0.0028

GAT 0.8221±0.0752 0.6951±0.1499 0.7909±0.0222

GraphSAGE 0.8645±0.0401 0.2863±0.1843 0.7863±0.0207

GIN 0.6131±0.0990 -0.5408±0.4193 0.9504±0.0007

GCNII 0.5287±0.0570 -1.1329±0.0135 0.7640±0.0355

DE-DGNs
DGC 0.6028±0.0050 -0.1483±0.0231 0.8261±0.0032

GraphCON 0.0964±0.0620 -1.3836±0.0092 0.6833±0.0074

GRAND 0.6715±0.0490 -0.0942±0.3897 0.6602±0.1393

Ours
A-DGN -0.5188±0.1812 -3.2417±0.0751 0.4296±0.1003

SWAN -0.5249±0.0155 -3.2370±0.0834 0.4094±0.0764

SWAN-learn -0.5981±0.1145 -3.5425±0.0830 -0.0739±0.2190

H-DGN -0.5473±0.1074 -3.0467±0.1615 -0.7248±0.1068

PH-DGN -0.5385±0.0187 -4.2993±0.0721 -0.9348±0.2097

Although our purely conservative H-DGN shows improved performance with
respect to all baselines, it appears that relaxing such bias via PH-DGN is more
beneficial overall, leading to even greater improvements in long-range informa-
tion propagation. Our intuition is that such tasks do not require purely con-
servative behavior since nodes need to count distances while exchanging more
messages with other nodes, similar to standard algorithmic solutions such as
Dijkstra (1959). Therefore, the energy may not be constant during the resolu-
tion of the task, hence benefiting from the non-purely conservative behavior of
PH-DGN.

As for the graph transfer task, our results demonstrate that our PH-DGNs
can effectively learn and exploit long-range information while pushing simple
graph neural architectures to state-of-the-art performance when modeling dy-
namics capable of long-range propagation.

In Table 5.2 we report runtimes of both our H-DGN and PH-DGN as well
as baseline methods on the graph property prediction task as in Section 4.1.3.2.
Our results shows that both H-DGN and PH-DGN have improved or comparable
runtimes compared to MPNNs. Notably, H-DGN is on average 5.92 seconds
faster than GAT and 5.19 seconds faster than GCN. Compared to DE-DGN
baselines, our methods show longer execution times, which are inherently caused
by the sequential computation of both p and q explicited in Section 5.1.4 and
non-conservative components (detailed in Appendix C.1).
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Table 5.2: Average time per epoch (measured in seconds) and std, averaged over
4 random weight initializations. Each time is obtained by employing 20 layers
and an embedding dimension equal to 30. Our methods and DE-DGN baselines
are implemented with weight sharing. The evaluation was carried out on an
AMD EPYC 7543 CPU @ 2.80GHz. First, second, and third best results.

Model Diameter SSSP Eccentricity

MPNNs
GCN 32.45±2.54 17.44±3.85 11.78±2.43

GAT 20.20±5.18 26.41±8.34 17.28±1.92

GraphSAGE 13.12±2.99 13.12±2.99 8.20±0.75

GIN 6.63±0.28 21.16±2.33 14.22±3.17

GCNII 13.13±6.85 14.96±7.17 15.70±3.92

DE-GNNs
DGC 8.97±9.07 12.54±1.62 7.21±11.10

GRAND 133.84±42.57 109.15±27.49 202.46±85.01

GraphCON 9.26±0.47 7.76±0.05 7.80±0.05

Ours
A-DGN 8.42±2.71 7.86±2.11 13.18±9.07

H-DGN 15.49±0.05 15.28±0.02 15.34±0.04

PH-DGN 17.18±0.04 17.12±0.07 17.13±0.06

5.2.4 Long-Range Graph Benchmark

Setup. We address the LRGB benchmark as introduced in Section 4.2.3.3,
focusing on the Peptide-func and Peptide-struct tasks. As in Section 5.2.3, we
decouple our method into H-DGN and PH-DGN to provide an ablation study
on the strictly conservative behavior. Acknowledging the results from Tönshoff
et al. (2023), we also report results with a 3-layer MLP readout.

Results. We report results on the LRGB tasks in Table 5.3. Our results show
that both H-DGN and PH-DGN outperform classical MPNNs, graph trans-
formers, most of the multi-hop DGNs, and recent DE-DGNs (which represent
a direct competitor to our method). Overall, our (port-)Hamiltonian meth-
ods show great benefit in propagating long-range information without requiring
additional strategies such as global position encoding, global attention mecha-
nisms, or rewiring techniques that increase the overall complexity of the method.
Consequently, our results reaffirm the effectiveness of our (port-)Hamiltonian
framework in enabling efficient long-range propagation, even in simple DGNs
characterized by purely local message exchanges.

5.3 Related Work

Recent advancements in the field of representation learning have introduced
new architectures that establish a connection between neural networks and dy-
namical systems, as observed in Section 4.1.1. Indeed, works like GDE (Poli
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Table 5.3: Results for Peptides-func and Peptides-struct averaged over 3 training
seeds. Baseline results are taken from Dwivedi et al. (2022) and Gutteridge
et al. (2023). Re-evaluated methods employ the 3-layer MLP readout proposed
in Tönshoff et al. (2023). Our methods and DE-DGN baselines are implemented
with weight sharing. Note that all MPNN-based methods include structural
and positional encoding. The first, second, and third best scores are colored.

Model Peptides-func Peptides-struct
AP ↑ MAE ↓

MPNNs
GCN 0.5930±0.0023 0.3496±0.0013

GINE 0.5498±0.0079 0.3547±0.0045

GCNII 0.5543±0.0078 0.3471±0.0010

GatedGCN 0.5864±0.0077 0.3420±0.0013

Multi-hop DGNs
DIGL+MPNN 0.6469±0.0019 0.3173±0.0007

DIGL+MPNN+LapPE 0.6830±0.0026 0.2616±0.0018

MixHop-GCN 0.6592±0.0036 0.2921±0.0023

MixHop-GCN+LapPE 0.6843±0.0049 0.2614±0.0023

DRew-GCN 0.6996±0.0076 0.2781±0.0028

DRew-GCN+LapPE 0.7150±0.0044 0.2536±0.0015

DRew-GIN 0.6940±0.0074 0.2799±0.0016

DRew-GIN+LapPE 0.7126±0.0045 0.2606±0.0014

DRew-GatedGCN 0.6733±0.0094 0.2699±0.0018

DRew-GatedGCN+LapPE 0.6977±0.0026 0.2539±0.0007

Transformers
Transformer+LapPE 0.6326±0.0126 0.2529±0.0016

SAN+LapPE 0.6384±0.0121 0.2683±0.0043

GraphGPS+LapPE 0.6535±0.0041 0.2500±0.0005

DE-DGNs
GRAND 0.5789±0.0062 0.3418±0.0015

GraphCON 0.6022±0.0068 0.2778±0.0018

Re-evaluated
GCN 0.6860±0.0050 0.2460±0.0007

GINE 0.6621±0.0067 0.2473±0.0017

GatedGCN 0.6765±0.0047 0.2477±0.0009

DRew-GCN+LapPE 0.6945±0.0021 0.2517±0.0011

GraphGPS+LapPE 0.6534±0.0091 0.2509±0.0014

Ours
A-DGN 0.5975±0.0044 0.2874±0.0021

SWAN 0.6313±0.0046 0.2571±0.0018

SWAN-learn 0.6751±0.0039 0.2485±0.0009

H-DGN 0.6961±0.0070 0.2581±0.0020

PH-DGN 0.7012±0.0045 0.2465±0.0020

et al., 2019), GRAND (Chamberlain et al., 2021b), PDE-GCN (Eliasof et al.,
2021), DGC (Wang et al., 2021c), and GRAND++ (Thorpe et al., 2022) pro-
pose to interpret DGNs as discretization of ODEs and PDEs. The conjoint
of dynamical systems and DGNs have found favorable consensus, as these new
methods exploit the intrinsic properties of differential equations to extend the
characteristic of message passing within DGNs, as introduced in Section 4.3.
GRAND, GRAND++, and DGC bias the node representation trajectories to
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follow the heat diffusion process, thus performing a gradual smoothing of the
initial node states. On the contrary, GraphCON (Rusch et al., 2022) used os-
cillatory properties to enable linear dynamics that preserve the Dirichlet energy
encoded in the node features; PDE-GCNM (Eliasof et al., 2021) uses an inter-
polation between anisotropic diffusion and conservative oscillatory properties;
and HamGNN (Kang et al., 2023) leverages Hamiltonian dynamics to encode
node input features, which are then fed into classical DGNs to enhance their
conservative properties. Similarly to HamGNN, HANG (Zhao et al., 2023) lever-
ages Hamiltonian dynamics to improve robustness to adversarial attacks to the
graph structure. Differently from HamGNN and HANG, our PH-DGN is the
first port-Hamiltonian framework, which provides theoretical guarantees of both
conservative and non-conservative behaviors while seamlessly incorporating the
most suitable aggregation function for the task at hand, enabling long-range
information propagation.

A-DGN (Section 4.1) and SWAN (Section 4.2) introduces antisymmetric
constraint mechanisms that lead to non-dissipative dynamics. Differently from
such approaches, PH-DGN designs the information flow within a (static) graph
as a solution of a port-Hamiltonian system, thus allowing for non-dissipative
propagation without relying on such architectural constraints.

As observed in Sections 2.3 and 4.3, the graph representation learning com-
munity focused on graph rewiring and transformer-based method to effectively
transfer information across distant nodes. Despite the success of these techniques
in addressing oversquashing, a potential drawback is the increased complexity
associated with propagating information at each update, often linked to denser
graph shift operators. Similar to A-DGN and SWAN, our PH-DGN allows ef-
fective long-range propagation without densifying the original graph.

5.4 Summary

In this chapter, we have presented (port-)Hamiltonian Deep Graph Network (PH-
DGN), a general framework that gauges the equilibrium between non-dissipative
long-range propagation and non-conservative behavior while seamlessly incorpo-
rating the most suitable neighborhood aggregation function. We theoretically
prove that, when pure Hamiltonian dynamic is employed, both the continuous
and discretized versions of our framework allow for long-range propagation in
the message passing flow since node states retain their past. To demonstrate
the benefits of including (port-)Hamiltonian dynamics in DE-DGNs, we con-
ducted several experiments on synthetic and real-world benchmarks requiring
long-range interaction. Our results show that our method outperforms state-of-
the-art models and that the inclusion of data-driven forces that deviate from a
purely conservative behavior is often key to maximize efficacy of the approach
on tasks requiring long-range propagation. Indeed, in practice, effective infor-
mation propagation requires a balance between long-term memorization and
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propagation and the ability to selectively discard and forget information when
necessary.
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Dynamic Graphs
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Chapter 6

Learning irregularly-sampled
D-TDGs

Graph-based processing methods turned out to be extremely effective in pro-
cessing the spatio-temporal evolution of dynamic graphs, as shown in Chap-
ter 3. However, real-world complex problems described as D-TDGs call for
novel methods that can move beyond the common assumptions found in most
of the methods proposed until now. Indeed, modern graph representation learn-
ing for D-TDGs works mostly under the assumption of dealing with regularly
sampled temporal graph snapshots, which is far from realistic. Such problems
require dealing with mutable relational information, irregularly and severely
under-sampled data. As an example, social networks and physical systems
are characterized by continuous dynamics and sporadic observations. Indeed,
the use of strategies that involve recording only changes of state are necessary
to conserve sensor battery life or reduce storage needs, inherently producing
sporadic data. For instance, temperature sensors in environmental monitoring
may log data only when significant changes occur, even though the environment
is constantly changing. Similarly, sensor failures can lead to intermittent data
collection and inconsistencies.

As discussed in Section 2.2.4, recent works propose to model input-output
data relations as a continuous dynamic described by a learnable differential
equation. Notably, relying on differential equations has shown promising for
modeling complex temporal patterns from irregularly and sparsely sampled data
(Chen et al., 2018; Rubanova et al., 2019; Kidger et al., 2020).

Inspired by such findings, in this chapter we introduce Temporal Graph Or-
dinary Differential Equation (TG-ODE), a general continuous-time modeling
framework for D-TDGs, which learns both the temporal and spatial dynamics
from graph streams where the intervals between observations are not regularly
spaced. TG-ODE is designed through the lens of ODEs for effective learning
of irregularly sampled D-TDGs, and its predictions are trajectories obtained by
numerical integration of the learned ODE.

The key contributions of this chapter can be summarized as follows:

123
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• we introduce TG-ODE, a general modeling framework suited for handling
irregularly sampled D-TDGs;

• we introduce new benchmarks of synthetic and real-world scenarios for
evaluating forecasting models on irregularly sampled D-TDGs;

• we conduct extensive experiments to demonstrate the benefits of our ap-
proach and show that TG-ODE outperforms state-of-the-art DGNs on all
benchmarks.

Finally, we stress that, other than the outstanding empirical performance
achieved by even simple TG-ODE instances, the framework allows us to rein-
terpret many state-of-the-art DGNs as a discretized solution of an ODE, thus
facilitating their extension to handle graph streams with irregular sampling.

This chapter has been developed during a three months visiting period at the
Swiss AI Lab IDSIA (Istituto Dalle Molle di Studi sull’Intelligenza Artificiale)
in Lugano, Switzerland. We base this chapter on Gravina et al. (2024d).

6.1 Temporal Graph ODE
We consider a dynamical system of interacting entities u ∈ V that is described
by a Cauchy problem defined on an ODE of the form

dX(t)

dt
= F (X(t),E(t), z(t)), (6.1)

with initial condition X(0) = X0. X(t) collects the node-level states (i.e., xu(t))
associated with each node u ∈ V(t) and E(t) edge-level attributes (i.e., evu(t)),
as described in Section 2.1.2. The node set V(t) and the edge set E(t) are
allowed to vary over time. The system can also be driven by vector zu(t) ∈ Rc

accounting for exogenous variables relevant to the problem at hand, such as
weather conditions, hour of the day, or day of the week.

Accordingly, for all u ∈ V(t), we write

dxu(t)

dt
= F

(
xu(t), zu(t), {xv(t)}v∈Nu(t), {evu(t)}v∈Nu(t)

)
, (6.2)

to emphasize the local dependencies of node state xu(t) at a time t from its
neighboring nodes v ∈ Nu(t) at the corresponding time.

We express any solution of ODE in Equation 6.1 as the dynamic graph

G(t) = (V(t), E(t),X(t),E(t)) (6.3)

defined for t ≥ 0. However, we assume to observe the system in Equation 6.1
only as a (discrete) sequence of snapshot graphs

G = {Gti : i = 0, 1, 2, . . . , T} (6.4)
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that arrive at irregular timestamps, i.e., the sampling is not uniform and, in
general, ti − ti−1 ̸= ti+1 − ti. Each snapshot Gt = (Vt, Et,Xt,Et) corresponds to
an observation of the system state at a specific timestamp t ∈ R.

In this section, we address the problem of learning a model of the differential
equation underlying the observed data, which is subsequently exploited to pro-
vide estimates of unobserved system’s node states and make forecasts. To ease
readability, in the following of this chapter, we drop the time variable t.

To learn the function F in Equation 6.2, we consider a family of models

fθ(xu, z, {xv}v∈Nu , {evu}v∈Nu) (6.5)

parameterized by vector θ, and optimized so that the solution x̂ of the differential
equation

dxu

dt
= fθ (xu, zu, {xv}v∈Nu , {evu}v∈Nu) , ∀u ∈ V (6.6)

minimizes the discrepancy with the observed sequence of graphs in Equation 6.4.
We follow the message-passing paradigm introduced in Section 2.3 and instan-
tiate Equation 6.6 as

dxu

dt
= ρU

(
xu, zu,

⊕
v∈Nu

(
ρM(xu,xv, evu)

))
, (6.7)

with message function ρM , aggregation operator
⊕

, and update function ρU (as
usual). We refer to the above framework in Equation 6.7 as Temporal Graph
Ordinary Differential Equation (TG-ODE).

We observe that, since our framework relies on ODEs, it can naturally deal
with snapshots that arrive at an arbitrary time. Indeed, the original Cauchy
problem can be divided into multiple sub-problems, one per snapshot in the
dynamic graph. Here, the i-th sub-problem is defined for all u ∈ Vt as

dxu

dt
= ρU

(
xu, zu,

⊕
v∈Nu

(
ρM(xu,xv, evu)

))
,

xu(0) = η(xti−1
u , x̂u(ti−1))

(6.8)

in the time span between the two consecutive timestamps, i.e., t ∈ [ti−1, ti], where
η is a function that combines the i-th observed state of the node u related to
the snapshot graph Gti−1

in Equation 6.4 (i.e., xti−1
u ) and the prediction x̂u(ti−1)

obtained by solving Equation 6.8 at the previous step.
When given, we consider the true – potentially variable – topology E(t) to

define the neighborhoods for t ∈ [ti−1, ti], otherwise, we set E(t) ≡ Eti−1
for every

t, i.e., equal to the last observed topology associated with Gti−1
. Accordingly,

we optimize θ in order to minimize the mean of some loss L,

1

T

T∑
i=1

1

|Vti |
∑
u∈Vti

L(xti
u , x̂u(ti)) (6.9)
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Figure 6.1: The continuous processing of node u’s state in a discrete-time dy-
namic graph with irregularly-sampled snapshots over a set of 4 nodes and fixed
edge set. At the top, the node-wise ODE function fθ defines the evolution
of the states xu(t). At the bottom, the discretized solution of the node-wise
ODE, which corresponds to our framework TG-ODE. The node embedding xℓ

u

is computed iteratively over a discrete set of points by leveraging the temporal
neighborhood and self-representation at the previous step.

where prediction x̂u(ti) at time ti is obtained by solving Equation 6.8.
As discussed in Section 2.2.3, for most ODEs, it is not possible to compute

analytical solutions. For simplicity, here we employ the forward Euler’s method,
thus the solution is computed through iterative applications of the method over
a discrete set of points in the time interval. The solution to Equation 6.8 is
obtained by the recursion

xℓ+1
u = xℓ

u + ϵρU

xℓ
u, zu(tℓ),

⊕
v∈Nu(tℓ)

(
ρM(xℓ

u,x
ℓ
v, e

ℓ
vu)
) , (6.10)

starting from initial condition x0
u = xu(0) = η(xti−1

u , x̂u(ti−1)) and is reiterated
until ϵℓ ≥ ti − ti−1. In Equation 6.10, ϵ ≪ ti − ti−i is the step size, while
ℓ indicates the generic iteration step, and tℓ = ti−1 + ϵℓ. Finally, a solution
x̂(t) to Equation 6.8 in the interval [ti−1, ti] is provided by the discretization
x̂u(ti−1 + ϵℓ) = xℓ

u, for all ℓ, and interpolated elsewhere. The process is visually
summarized at the bottom of Figure 6.1.

As previously introduced in Chapter 4, we acknowledge that not all resulting
ODEs allow unique solutions and yield numerical stable problems. Generally,
numerical stability is associated with the ODE to solve rather than the input
data. Thus, a proper design of the ODE prevents stability issues. Indeed, the
solution of a Cauchy problem exists and is unique if the differential equation
is uniformly Lipschitz continuous in its input and continuous in t, as states in
the Picard–Lindelöf theorem (Coddington & Levinson, 1955). Thus, different
implementations of Equation 6.7 should address the continuous behavior of the
differential equation. We note that this theorem holds for our model if the
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underlying neural network has finite weights and uses Lipschitz non-linearities,
e.g., the tanh.

By Equation 6.10 and the generality of the message passing in Equation 6.7,
we observe that TG-ODE allows us to cast basically any standard DGN through
the lens of an ODE for D-TDGs with irregular timestamps. Secondly, we stress
that, even though TG-ODE is solved here by means of the forward Euler’s
method, other discretization methods can still be utilized. To conclude, our
framework can be implemented using the aggregation function that is most suit-
able for the given task and the discretization method that best fits the computa-
tional resources and problem at hand. As a demonstration of this, in Section 6.2
we explore the neighborhood aggregation scheme proposed in Du et al. (2017).
Thus, Equation 6.7 can be reformulated as

dxu

dt
= σ

 K∑
k=0

Vk

∑
v∈N k

u∪{u}

α(k)
u,v xv

 , (6.11)

where σ is an activation function, K is the number of hops in the neighborhood,
Vk is the k-th weight matrix, N k

u is the k-hop neighborhood of u, and α
(k)
u,v is

a normalization term. For instance, α(k)
u,v =

(
d̂
(k)
v d̂

(k)
u

)−1/2

weighs according to

the degrees d̂
(k)
v and d̂

(k)
u of nodes v and u in the k-hop graph; other choices

can include edge attributes as well. We note that θk is a parameter specific to
the k-hop neighborhood of node u. Thus, it allows the model to learn different
transformation patterns at different distances from the considered node u.

6.2 Experiments
We provide an empirical assessment of our method against related temporal
DGN models from the literature. First, we test the efficacy in handling dynamic
graphs with irregularly sampled time series by evaluating the models on several
heat diffusion scenarios (see Section 6.2.1). Afterward, we assess and discuss
the performance on real graph benchmarks on traffic forecasting problems (see
Section 6.2.2). We report in Table D.2 (Appendix D.2) the grid of hyperpa-
rameters employed in our experiments by each method. We carried out the
experiments on 7 nodes of a cluster with 96 CPUs per node. We release the
code implementing our methodology and reproducing our empirical analysis at
https://github.com/gravins/TG-ODE.

6.2.1 Heat Diffusion

Setup. In this section, we focus on simulating the heat diffusion over time on
a graph. The data is composed of irregularly sampled graph snapshots providing
the temperature of the graph’s nodes at the given timestamp, where the initial

https://github.com/gravins/TG-ODE
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temperature profile located at some nodes was altered with hot and cold spikes.
We address the task of predicting the nodes’ temperature at future (irregular)
timestamps. We considered two experimental scenarios. In the first, we altered
the temperature of a single node, in the following referred to as single-spike. In
the second, we altered the temperature of one third of the graph’s nodes, which
we refer to as multi-spikes. In both scenarios, we simulated seven different
diffusion functions. We report additional details about heat diffusion datasets
in Appendix D.1.

We explored the performance of TG-ODE leveraging the aggregation scheme
in Du et al. (2017) and the forward Euler’s method as discretization procedure,
for simplicity. Thus, the nodes’ states for the entire snapshot are updated as

Xℓ = Xℓ−1 + ϵσ

(
K∑
k=0

LkXℓ−1Vk

)
, (6.12)

where K corresponds to the number of neighborhood hops and Vk is the k-
th weight matrix. We recall that other choices of aggregation and discretiza-
tion schemes are possible. We compared our method with six common DGNs
for dynamic graphs: A3TGCN (Bai et al., 2021), DCRNN (Li et al., 2018),
TGCN (Zhao et al., 2020), GCRN-GRU (Seo et al., 2018), GCRN-LSTM (Seo
et al., 2018), and NDCN (Zang & Wang, 2020). We note that whenever we used
the NDCN model with embedding dimension set to none (see Table D.2), the
resulting model corresponds to DNND (Liu et al., 2023).

Moreover, we considered two additional baselines: NODE (Chen et al., 2018)
and LB-baseline. NODE represents an instance of our approach that does not
take into account node interactions. Instead, LB-baseline returns the same node
states received as input (i.e., , the prediction of Xti+1

is X̂(ti+1) = Xti) and
provides a lower bound on the performance we should expect from the learned
models.

We designed each model as a combination of three main components. The
first is the encoder which maps the node input features into a latent hidden
space; the second is the temporal graph convolution (i.e., TG-ODE or the DGN
baselines) or the NODE baseline; and the third is a readout that maps the
output of the convolution into the output space. The encoder and the readout
are MLPs that share the same architecture among all models in the experiments.

To allow all considered baseline models to handle irregular timestamps, we
used a similar strategy employed for TG-ODE. Specifically, we selected the unit
of time, τ , and then we iteratively applied the temporal graph convolution for
a number of steps equal to the ratio between the time difference between two
consecutive timestamps and the time unit, i.e., #steps = (ti+1 − ti)/τ .

We performed hyperparameter tuning via grid search, optimizing the Mean
Absolute Error (MAE). We trained the models using the Adam optimizer for a
maximum of 3000 epochs and early stopping with patience of 100 epochs on the
validation error.
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Results. We present the results on the heat diffusion tasks in Table 6.1 and
Table 6.2, using the log10(MAE) as performance metric in both the single-spike
and multi-spikes scenarios. The first observation is that TG-ODE has outstand-
ing performance compared to literature models and the baseline. Despite its
simpler architecture, our method produces an error that is significantly lower
than the runner-up in each task. In the single-spike setting, TG-ODE achieves a
log10(MAE) that is on average 308% to 628% better than the competing models
in each task. Interestingly, not all DGN-based models are capable of improving
the results of the LB-baseline. This situation suggests that such approaches at-
tempt to merely learn the mapping function between inputs and outputs rather
than learning the actual latent dynamics of the system. Such behavior be-
comes more evident in the more complex multi-spike scenario. Here, our method
achieves up to almost 2080% better log10(MAE) score and more literature models
fail in improving the performance with respect to the LB-baseline. These results
indicate that capturing the latent dynamics is fundamental, in particular, when
the time intervals between observations are not regular over time. We conclude
that such methods from the literature might not be suitable for more realistic
settings characterized by continuous dynamics and sporadic observations.

Finally, we observe that GCRN-GRU and GCRN-LSTM generate the highest
error levels, while DCRNN, NDCN, and NODE are the best among the baselines.
Since literature models use RNN architectures to learn temporal patterns, it is
reasonable to assume that the poor performance might be due to the limited
capacity of RNNs to handle non-uniform time gaps between observations. In
contrast, ODE-based models (NODE, NCDN and ours) demonstrate enhanced
learning capabilities in this scenario. The performance gap between our model
and the considered baselines is an indication that the diverse spatial patterns
learned by different DGN architectures can heavily impact the performance of
the performed tasks.

6.2.2 Traffic Benchmarks

Setup. This section introduces a set of graph benchmarks whose objective
is to assess traffic forecasting performance from irregular time series; similar
to the heat diffusion tasks, we predict the future node values given only the
past history. We considered six real-world graph benchmarks for traffic fore-
casting: MetrLA (Li et al., 2018), Montevideo (Rozemberczki et al., 2021b),
PeMS03 (Guo et al., 2022), PeMS04 (Guo et al., 2022), PeMS07 (Guo et al.,
2022), and PeMS08 (Guo et al., 2022). We used a modified version of the origi-
nal datasets where we employed irregularly sampled observations. We will refer
to the datasets by using the subscript “i” – e.g., MetrLAi – to make apparent
the difference from the original versions. We report additional details about the
datasets in Appendix D.1. We considered a temporal data splitting in which 80%
of the previously selected snapshots are used as training set, 10% as validation
set, and the remaining as test set.
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Table 6.1: Test log10(MAE) score and std in the single-spike heat diffusion ex-
periments, averaged over 5 separate runs. The lower the better. First, second,
and third best results for each task are color-coded.

M
od

el
−
L
X
(t
)

−
L

2
X
(t
)

−
L

5
X
(t
)

−
ta
n
h
(L

)X
−
5
L
X
(t
)

−
0
.0
5
L
X
(t
)

−
(L

+
N

0
,1
)X

(t
)

B
as

el
in

es
L
B

-b
as

el
in

e
-0

.5
57

-0
.5

72
-0

.5
62

-0
.5

38
-0

.3
37

-0
.5

65
-0

.8
37

N
O

D
E

-2
.8

28
±
0
.0
6
3

-2
.6

57
±
0
.0
5
3

-2
.1

39
±
0
.0
0
5

-2
.7

11
±
0
.1
3
6

-2
.3

13
±
0
.0
1
6

-3
.9

83
±
0
.0
0
3

-2
.0

59
±
0
.0
0
5

D
G

N
fo

r
D

-T
D

G
s

A
3T

G
C

N
-0

.8
34

±
0
.1
4
5

-0
.9

02
±
0
.0
9
3

-0
.8

19
±
0
.0
3
6

-0
.8

90
±
0
.0
3
5

-1
.0

84
±
0
.0
0
4

-0
.6

53
±
0
.0
0
1

-0
.7

81
±
0
.0
9
4

D
C

R
N

N
-1

.3
20

±
0
.1
6
3

-0
.9

13
±
0
.2
4
2

-0
.8

67
±
0
.3
0
5

-1
.2

73
±
0
.0
7
5

-1
.0

98
±
0
.1
5
4

-0
.9

64
±
0
.3
6
6

-1
.1

50
±
0
.3
7
5

G
C

R
N

-G
R

U
-0

.4
74

±
0
.2
3
2

-0
.6

33
±
0
.0
0
4

-0
.4

64
±
0
.0
6
4

-0
.6

21
±
0
.0
4
7

-0
.6

95
±
0
.0
0
2

-0
.6

40
±
0
.0
1
9

-0
.4

90
±
0
.0
9
4

G
C

R
N

-L
ST

M
-0

.4
30

±
0
.1
4
0

-0
.3

23
±
0
.0
1
9

-0
.4

05
±
0
.0
5
3

-0
.3

51
±
0
.0
9
7

-0
.5

11
±
0
.1
5
7

-0
.4

28
±
0
.1
4
0

-0
.3

67
±
0
.7
9
0

T
G

C
N

-0
.8

25
±
0
.1
0
8

-0
.9

00
±
0
.1
4
3

-0
.8

04
±
0
.0
7
4

-0
.8

34
±
0
.1
4
9

-1
.0

51
±
0
.0
2
0

-0
.6

53
±
0
.0
0
1

-0
.7

81
±
0
.0
9
4

D
E
-D

G
N

fo
r

D
-T

D
G

s
N

D
C

N
-1

.4
97

±
0
.0
3
4

-1
.3

37
±
0
.0
7
0

-0
.3

50
±
0
.3
2
8

-1
.4

85
±
0
.0
7
5

-1
.0

97
±
0
.0
4
6

-2
.4

08
±
0
.1
8
3

-0
.4

14
±
0
.1
5
5

O
u
r

T
G

-O
D

E
-4

.0
87

±
0
.1
7
1

-3
.1

06
±
0
.1
8
1

-2
.2

65
±
0
.0
5
3

-4
.1

66
±
0
.1
4
0

-2
.3

51
±
0
.0
3
6

-4
.8

11
±
0
.1
9
8

-2
.0

69
±
0
.0
0
1

For these experiments, we considered the same models, baseline and architec-
tural choices of the heat diffusion experiments. Since NODE does not take into
account interactions between nodes for its predictions, we choose not to include
it as a baseline in this scenario. Hyperparameter tuning has been performed
by grid search, optimizing the MAE. Optimizer settings are the same as for the
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Table 6.2: Test log10(MAE) score and std in the multi-spikes heat diffusion ex-
periments, averaged over 5 separate runs. The lower the better. First, second,
and third best results for each task are color-coded.
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previous experiments.

Results. Table 6.3 reports the traffic forecasting results in terms of MAE. Sim-
ilarly to the heat diffusion scenario, TG-ODE shows a remarkable performance
improvement compared to literature models, achieving an MAE that is up to
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202% better than the runner-up model. Moreover, as reported in Figure 6.2,
we observe that TG-ODE is 2× to 13× faster than the other approaches under
test. NDCN is the sole method matching the speed of our approach. However,
it’s noteworthy that NDCN utilizes only one neighbor hop, thereby simplifying
the final computation.

Table 6.3: Test MAE score and std in the traffic forecasting setting, averaged
over 5 separate runs. † means gradient explosion. The first, second, and third
best scores are colored.

Model MetrLAi Montevid.i PeMS03i PeMS04i PeMS07i PeMS08i

Baseline
LB-baseline 58.191 0.442 165.015 211.230 314.710 227.380

DGN for D-TDGs
A3TGCN 5.731±0.011 0.378±4·10−4 28.897±0.733 32.221±1.355 38.303±0.795 30.652±0.995

DCRNN † 0.332±0.001 18.652±0.136 † † †
GCRN-GRU 8.438±0.004 0.332±0.001 49.360±18.619 53.389±4.728 68.785±5.787 51.787±10.872

GCRN-LSTM 8.440±0.009 0.333±0.002 62.210±0.923 52.427±4.162 151.824±17.654 80.567±24.891

TGCN 5.832±0.125 0.380±4·10−4 28.506±0.332 33.059±1.063 38.750±1.429 33.114±1.963

DE-DGN for D-TDGs
NDCN 8.471±0.022 0.435±0.021 † 127.202±0.334 † 129.667±44.385

Our
TG-ODE 2.828±0.001 0.327±6·10−5 17.423±0.012 24.739±0.014 26.081±0.004 18.818±0.021
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Figure 6.2: Average time per epoch (measured in seconds) and std computed
using an Intel Xeon Gold 6240R CPU @ 2.40GHz. Each time is obtained using
5 neighbor hops (when possible) and embedding dimension equal to 64. The
graph size is computed as size = #steps ∗#edges.

We observe that the baseline performs poorly in these benchmarks, suggest-
ing that such tasks are more complex than the ones based on heat diffusion.
Despite all DGN models outperforming the LB-baseline, they still produce an
error that is on average double than that of TG-ODE, highlighting the added
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value of our approach when dealing with D-TDGs characterized by irregular
sampling.

Finally, we comment that the DCRNN and NDCN suffered from gradient
issues in most of the tasks. We believe this is due to their inability to learn the
latent dynamics of the system when the models’ outputs are not computed over
a regular time series.

6.2.2.1 Impact of the Sample Sparsity

To demonstrate the effectiveness of our approach, we study the prediction per-
formance under different sparsity levels. We consider here the PeMS04 dataset.
In this analysis, we systematically decreased the number of graph snapshots
considered in the time series. This reduction makes the resulting task more
challenging than the original one, as the snapshots become more sparse over
time – the expected difference ti+1 − ti gets larger. Additionally, the model
has fewer data to learn the task, thereby amplifying the task complexity. We
generated the irregular time series by randomly selecting 500, 1000, 2000, 4000,
8000, or 16000 graph snapshots from the original dataset (from 3% to 94% of the
original data), resulting in varying degrees of sparsity. For each dataset size, we
used an 80/10/10 temporal data split and performed hyperparameter tuning, as
previously done in this section.
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Figure 6.3: Test MAE scores and std of TG-ODE on PeMS04, averaged over 5
runs, for different sparsity levels.

Figure 6.3 illustrates the performance of our method, TG-ODE, at various
degrees of data sparsity. As expected, we observe that as the number of samples
increases, the test MAE decreases. Notably, TG-ODE maintains robust per-
formance even with higher degrees of sparsity, with a decrease in performance
by only ∼7 points when reducing the size from 16000 to 4000 samples. While
the prediction error is indeed relatively large when considering only 3-7% of the
original data, we comment that it is still substantially better than that of the
LB-baseline and comparable to that of the other DGN’s which used 33% of the
data. Overall, the model exhibits excellent performance even in situations of
high to extreme sparsity (i.e., less than 8000 samples). The observed outcome
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supports the effectiveness of TG-ODE, emphasizing its potential for real-world
applications with irregularly sampled D-TDGs.

6.3 Related Work

A natural choice for many methods in the D-TDG domain has been to extend
Recurrent Neural Networks to graph data. Indeed, most of the models presented
in the literature can be summarized as a combination of DGNs and RNNs.
We refer the reader to Section 3.1 for a deeper discussion on such methods.
Differently from these approaches, which are intrinsically designed to deal with
regular time series, TG-ODE can naturally handle arbitrary time gaps between
observations. This makes our framework more suitable for realistic scenarios, in
which data are irregular over time.

More recently, neural differential equation approaches have also been devel-
oped for D-TDGs. TDE-GNN (Eliasof et al., 2024) employs higher-order ODEs
to capture the D-TDG dynamic, while NDCN (Zang & Wang, 2020) extends
GDE (Poli et al., 2019) to learn continuous-time dynamics on both static and
D-TDGs by diffusing input features until the termination time. MTGODE (Jin
et al., 2023) adopts an ODE-based approach to deduce missing graph topologies
from the time-evolving node features in regularly sampled D-TDGs. Differently,
Huang et al. (2020) and Huang et al. (2021) propose an ODE-based model in the
form of a variational auto-encoder for learning latent dynamics from sampled
initial states. To infer missing observations, the methods consider both past
and future neighbors’ information. This prevents them from being used in an
online setting, where data becomes available in a sequential order. Lastly, STG-
NCDE (Choi et al., 2022) employs a stacked architecture of two neural controlled
differential equations to model temporal and spatial information, respectively.
In the STG-NCDE’s paper, irregular data are considered, yet they are handled
by making them regular via interpolation. In contrast to these approaches, in
this chapter we explicitly address irregularly-sampled D-TDGs and we propose a
simple model to showcase the effectiveness and efficiency of the TG-ODE frame-
work in working with such data, eliminating the need for additional strategies,
such as interpolation. It should be noted that while many of the ODE-based
approaches mentioned earlier can be viewed as instances of the introduced TG-
ODE framework, our model is specifically designed to demonstrate the benefits
of this approach.

Finally, we note that the general formulation of TG-ODE allows extending
the Message Passing Neural Network (MPNN) (Gilmer et al., 2017) – hence, all
its specific instances, such as Kipf & Welling (2017); Veličković et al. (2018);
Hamilton et al. (2017a); Xu et al. (2019); Defferrard et al. (2016); Hu et al.
(2020); Du et al. (2017) – to the domain of D-TDGs by selecting appropriate
operators in Equation 6.7 and, in turn, it allows us to tailor our TG-ODE to
exploit relational inductive biases and fulfill given application requirements. For
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instance, by considering a graph attentional operator (Veličković et al., 2018)
in Equation 6.7, we can implement an anisotropic message passing within the
D-TDG during the update of node states.

6.4 Summary
In this chapter, we have presented Temporal Graph Ordinary Differential Equa-
tion (TG-ODE), a new general framework for effectively learning from irregu-
larly sampled D-TDGs. Thanks to the connection between ODEs and neural
architectures, TG-ODE can naturally handle arbitrary time gaps between ob-
servations, allowing to address a common limitation of DGNs for D-TDGs, i.e.,
the restriction to work solely on regularly sampled data.

To demonstrate the benefits of our approach, we conducted extensive ex-
periments on ad-hoc benchmarks that include several synthetic and real-world
scenarios. The results of our experimental analysis show that our method out-
performs state-of-the-art models for D-TDGs by a large margin. Furthermore,
our method benefits from a faster training, thus suggesting scalability to large
networks.





Chapter 7

Non-Dissipative Propagation for
C-TDGs

In this chapter, we focus on dynamic graphs with a continuous evolution, i.e.,
C-TDGs (see Section 2.1.2). Real-world scenario examples include the continual
activities and interactions between members of social as well as communication
networks, recurrent purchases by users on e-commerce platforms, or evolving
interactions of processes with files in an operating system.

As observed in Chapter 3, recent works investigated models that can process
the spatio-temporal dimension of a dynamic graph defined through irregularly
sampled event streams. However, such dynamic methods are based on static
DGNs and RNNs as backbone architectures, thus retaining the limitations of
their core components. Specifically, static DGNs suffer from the oversquashing
phenomenon (see Section 2.3.1), which prevents the final network to learn and
propagate long range information as demonstrated in Chapters 4 and 5. Simi-
larly, RNNs often face similar challenges in propagating long-term dependencies,
as evidenced by Chang et al. (2019), mainly due to exploding or vanishing gra-
dients. With growing evidence from the static and dynamic case (Dwivedi et al.,
2022; Yu et al., 2023) that long-range dependencies are necessary for effective
learning, the ability to learn properties beyond the event’s temporal and spatial
locality remains an open challenge in the C-TDG domain.

In this chapter, we propose the Continuous-Time Graph Antisymmetric Net-
work (CTAN), a framework for learning of C-TDGs with scalable long range
propagation of information, thanks to properties inherited from stable and non-
dissipative ODEs.

We establish theoretical conditions for achieving stability and non-dissipation
in the CTAN ODE by employing antisymmetric weight matrices, which is the
key factor for modeling long-range spatio-temporal interactions. The CTAN
layer is derived from the forward Euler discretization of the designed differential
equation. The formulation of CTAN allows scaling the radius of propagation of
information depending on the number of discretization steps, i.e., the number
of layers in the final architecture. Remarkably, even with a limited number of
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layers, the non-dissipative behavior enables the transmission of information for
a past event as new events occur, since node states are used to efficiently re-
tain and propagate historical information. This mechanism permits scaling the
single event propagation to cover a larger portion of the C-TDG. The general
formulation of the node update state function allows the implementation of the
more appropriate dynamics to the problem at hand. Specifically, it allows the
inclusion of static DGN dynamics, thus reinterpreting current state-of-the-art
static DGNs as a discretized representation of non-dissipative ODEs tailored
for C-TDGs, mirroring previous approaches in the static case (discussed in Sec-
tion 4.1.1). To the best of our knowledge, CTAN is the first framework to
effectively address the problem of long-range propagation in C-TDGs and the
first to bridge the gap between ODEs and C-TDGs.

The key contributions of this chapter can be summarized as follows:

• We introduce the problem of long-range propagation (i.e., non-dissipative-
ness) within C-TDGs.

• We introduce CTAN, a new deep graph network for learning C-TDGs
based on ODEs, which enables stable and non-dissipative propagation to
preserve long term dependencies in the information flow, and it does so in
a theoretically founded way.

• We present novel benchmark datasets specifically designed to assess the
ability of DGNs to propagate information over long spatio-temporal dis-
tances within C-TDGs.

• We conduct extensive experiments to demonstrate the benefits of our
method, showing that CTAN not only outperforms state-of-the-art DGNs
on synthetic long-range tasks but also outperforms them on several real-
world benchmark datasets.

This chapter has been developed during a six months internship at Huawei
Technologies, Munich Research Center, in Munich, Germany. We base this
chapter on Gravina et al. (2024c).

7.1 Continuous-Time Graph Antisymmetric
Network

Learning the dynamics of a C-TDG can be cast as the problem of learning
information propagation following newly observed events in the system. This
entails learning a diffusion function that updates the state of node u as

hu(t) = F (t,xu,hu(t), {hv(t)}, {euvt−}) , (7.1)

where (v, t−) ∈ N t
u, and N t

u = {(v, t−) | {u, v, t−} ∈ E(t)} is the temporal neigh-
borhood of a node u at time t, which consists of all the historical neighbors of u
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prior to current time t (as usual). In the following, we omit the time subscript
from the edge feature vector to enhance readability, since it refers to a time in
the past in which the edge appeared.

As evidenced in Section 4.1.1, Equation 7.1 can be modeled through a dy-
namical system described by a learnable ODE. Differently from discrete models,
neural-ODE-based approaches learn more effective latent dynamics and have
shown the ability to learn complex temporal patterns from irregularly sampled
timestamps (Chen et al., 2018; Rubanova et al., 2019; Kidger et al., 2020), mak-
ing them more suitable to address C-TDG problems.

Here, we leverage non-dissipative ODEs for the processing of C-TDGs. Thus,
we propose a framework as a solution to a stable and non-dissipative ODE over a
streamed graph. The main goal of this chapter is therefore achieving preservation
of long-range information between nodes over a stream of events. We do so by
first showing how a generic ODE can learn the hidden dynamics of a C-TDG
and then by deriving the condition under which the ODE is constrained to the
desired behavior.

7.1.1 Modeling C-TDGs as Cauchy Problems

As in previous chapters, we first define a Cauchy problem in terms of the node-
wise ODE defined in time t ∈ [0, T ]

dhu(t)

dt
= fθ

(
t,xu,hu(t), {hv(t)}v∈N t

u
, {euv}v∈N t

u

)
(7.2)

and subject to an initial condition hu(0) ∈ Rd. The term fθ is a function
parametrized by the weights θ that describes the dynamics of node state. We
observe that this framework can naturally deal with events that arrive at an
arbitrary time. Indeed, the original Cauchy problem in Equation 7.2 can be
divided into multiple sub-problems, one per each event in the C-TDG. The i-th
sub-problem, defined in the interval t ∈ [ts, te], is responsible for propagating
only the information encoded by the i-th event. Overall, when a new event oi
happens, the ODE in Equation 7.2 computes new nodes representations hi

u(te),
starting from the initial configurations hi

u(ts). In other words, fθ evolves the
state of each node given its initial condition. The top-right of Figure 7.1 visu-
ally summarizes this concept, showing the nodes evolution given the propagation
of an incoming event. We observe that the knowledge of past events is preserved
and propagated in the system thanks to an initial condition that includes not
only the current node input states but also the node representations computed
in the previous sub-problem, i.e., hi

u(ts) = η(hi−1
u (te),xu(i)). We notice that the

terminal time te (treated as an hyperparameter) is responsible for determining
the extent of information propagation across the graph, since it limits the prop-
agation to a constrained distance from the source. Consequently, smaller values
of te allow only for localized event propagation, whereas larger values enable the
dissemination of information to a broader set of nodes.
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While this approach similar to the one in Chapter 6 and it is applicable to
all ODE-based DGNs for C-TDGs, we note that we are the first to introduce
this truncated history propagation method in C-TDGs.

Figure 7.1: A high-level overview of the proposed framework illustrated for the
i-th Cauchy sub-problem. On the left, we depict the propagation of the informa-
tion of event oi through the graph. oi is an interaction event (E⊕) between nodes
u and v. The faded portion of the graph corresponds to historical information,
while the rest is the incoming event. On the right, we illustrate the evolution of
node states given the propagation of the incoming event. Specifically, the top
right shows the evolution as an ODE, fθ, that computes the node representa-
tion for a node k, hk(t). Such computation is subject to an initial condition
hk(ts) = η(hi−1

k (te),xk(i)) that includes the node representations computed in
the previous sub-problem hi−1

k (te) and the current node input state. In the bot-
tom right, the discretized solution of the ODE is computed as iterative steps of
the method over a discrete set of points in the time interval [ts, te].

7.1.2 Non-Dissipativeness in C-TDGs

We now proceed to derive the condition under which the ODE is constrained to
a stable and non-dissipative behavior, allowing for the propagation of long-range
dependencies in the information flow. Non-Dissipativeness in C-TDGs can be
dissected into two components: non-dissipativeness over space and over time.

Definition 31 (Non-dissipativeness over space). Let u, v ∈ V(t) be two nodes
of the C-TDG at some time t, connected by a path of length L. If an event oi
occurs at node u, then the information of oi is propagated from u to v, ∀L ≥ 0.

We start by instantiating Equation 7.2 as

dhu(t)

dt
= σ

(
Wthu(t) + Φ

(
{hv(t), euv, t

−
v , t}v∈N t

u

))
(7.3)

where σ is a monotonically non-decreasing activation function; Φ is the aggre-
gation function that computes the representation of the neighborhood of the
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node u considering node states and edge features; t−v is the time point of the
previous event for node v; and Wt ∈ Rd×d. Here and in the following, the bias
term is omitted for simplicity. We notice that including t−v in Φ encodes the
time elapsed since the previous event involving node v. This inclusion allows for
smooth updates of the node’s current state during the time interval to prevent
the staleness problem (see Section 3.2).

As discussed in Chapter 4, a non-dissipative propagation is directly linked
to the sensitivity of the solution of the ODE to its initial condition, thus to
the stability of the system. Such sensitivity is controlled by the Jacobian’s
eigenvalues of Equation 7.3. Given λi(J(t)) the i-th eigenvalue of the Jacobian,
when Re(λi(J(t))) = 0 for i = 1, ..., d the initial condition is effectively prop-
agated into the final node representation, making the system both stable and
non-dissipative1.

Definition 32 (Non-dissipativeness over time). Let u ∈ V(t) be a node in the
C-TDG at time t and ot an event that occurs at node u at time t. A DGN
for C-TDGs is non-dissipative over time if, regardless of how many more events
subsequently occur at u, the information of event ot will persist in u’s embedding.

In essence, Definition 32 captures the idea that the embedding computed by
a DGN for a node in a C-TDG retains the information from a specific event
indefinitely, ensuring that the historical context is preserved and not forgotten
despite the occurrence of additional events at that node.

To show the property of non-dissipativity over time, we analyze the entire
system defined in Equation 7.3 from a temporal perspective. Thus, Equation 7.3
can be reformulated as:

dhu(t)

dt
= σ

(
Wtη(hu(t),xu(t))

+ Φ
(
{η(hv(t),xv(t)), euv, t

−
v , t}v∈N t

u

))
(7.4)

where η is the function that computes the initial condition for the propagation of
each event considering the node representations computed in the previous event
propagation hu(t) and the current node input state xu(t) (as before).

In this context, we can view the system as having e∆t steps, where e de-
notes the number of events and ∆t represents the propagation time of an event.
Furthermore, the input state of the node xu(t) is only present upon occurrence
of a new event, meaning that during the propagation of events, xu(t) is set to
0. Therefore, its impact on information propagation is confined to the event’s
specific occurrence and does not affect each step of the propagation process.

The next proposition ensures that when the eigenvalues of the Jacobian ma-
trix of Equation 7.4 are placed only on the imaginary axes, then the ODE in

1This result holds also when the eigenvalues of the Jacobian are still bounded in a small
neighborhood around the imaginary axis (see Section 4.1.2).
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Equation 7.4 is non-dissipative in both space and time. Thus, we guarantee
the preservation of historical context over time and the propagation of event
information through the C-TDGs.

Proposition 3. Provided that the weight matrix Wt is antisymmetric and the
aggregation function Φ does not depend on hu(t), then the ODE in Equation 7.4
is stable and non-dissipative over space and time if the resulting Jacobian matrix
has purely imaginary eigenvalues, i.e.,

Re(λi(J(t))) = 0, ∀i = 1, ..., d.

For the proof, we refer the reader to the proof of Proposition 1 and substitute
the Jacobian computed with respect to space with a Jacobian computed with
respect to time.

By constraining weight matrix Wt to be antisymmetric we obtain that the
ODE in Equation 7.3 is not-dissipative in both space and time, guaranteeing the
preservation of historical node context over time while propagating event infor-
mation “spatially” through the C-TDGs. We provide a more in-depth analysis
of non-dissipativeness over time in the following paragraph where we show that
varying the formulation of η can yield to diverse behaviors.

In-depth analysis of non-dissipativeness over time. We note that the
non-dissipative behavior of the system in Equation 7.4 is contingent on the
specific definition of the function η. Varying the formulation of η can yield to
diverse behaviors, significantly impacting the system’s ability to either preserve
or dissipate information over time.

Proposition 4. Provided that the aggregation function Φ does not depend on
hu(t), the Jacobian matrix resulting from the ODE in Equation 7.4 has purely
imaginary eigenvalues, i.e., Re(λi(J(t))) = 0,∀i = 1, ..., d if the function η is
implemented as one of the following functions:

• addition, i.e., η = hu(t) + xu(t);

• concatenation, i.e., η = hu(t)∥xu(t);

• composition of tanh and concatenation, i.e., η = tanh(hu(t)∥xu(t)).

Proof. Let’s consider η = hu(t)+xu(t), i.e., addition. In this case Equation 7.4
can be reformulated as

dhu(t)

dt
= σ

(
Wthu(t)+Wtxu(t)+Φ

(
{(hu(t) + xu(t)), euv, t

−
v , t}v∈N t

u

))
. (7.5)
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The Jacobian matrix of Equation 7.5 is defined as

J(t) = diag
[
σ′
(
Wthu(t) +Wtxu(t)

+ Φ
(
{(hu(t) + xu(t)), euv, t

−
v , t}v∈N t

u

))]
Wt. (7.6)

Thus, it is the result of a matrix multiplication between in-
vertible diagonal matrix and a weight matrix. Imposing A =
diag

[
σ′ (Wthu(t) + Φ

(
{hv(t), euv, t

−
v , t}v∈N t

u

)
+ bt

)]
, then the Jacobian

can be rewritten as J(t) = AWt.
Let us now consider an eigenpair of AWt, where the eigenvector is denoted by
v and the eigenvalue by λ. Then:

AWtv = λv,

Wtv = λA−1v,

v∗Wtv = λ(v∗A−1v) (7.7)

where ∗ represents the conjugate transpose. On the right-hand side of Equa-
tion 7.7, we can notice that the (v∗A−1v) term is a real number. If the
weight matrix Wt is anti-symmetric (i.e., skew-symmetric), then it is true that
W∗

t = W⊤
t = −Wt. Therefore, (v∗Wtv)

∗ = v∗W∗
tv = −v∗Wtv. Hence, the

v∗Wtv term on the left-hand side of Equation 7.7 is an imaginary number.
Thereby, λ needs to be purely imaginary, and, as a result, all eigenvalues of
J(t) are purely imaginary.
Let’s now consider η = hu(t)∥xu(t), i.e., concatenation. In this case, the
product Wt(hu(t)∥xu(t)) can be decomposed as Kthu(t) + Vtxu(t), with Kt

and Vt weight matrices. Similarly to the addition case, the Jacobian has purely
imaginary eigenvalues.
Lastly, we consider the case of η = tanh(hu(t)∥xu(t)), i.e., the composition
of tanh and concatenation. Here, Equation 7.4 is

dhu(t)

dt
= σ

(
Wttanh(hu(t)) +Vttanh(xu(t))

+ Φ
(
{tanh(hu(t)∥xu(t)), euv, t

−
v , t}v∈N t

u

))
. (7.8)

The Jacobian matrix is the results of the multiplica-
tion of three matrices, i.e., J(t) = ABWt, with A =
diag [σ′ (Wttanh(hu(t)) +Vttanh(xu(t)) + Φ(...) + b)] and B = diag[1 −
tanh2(hu(t))]. Thanks to the associative property of multiplication
J(t) = ABWt = (AB)Wt = DWt, where D is the result of the multi-
plication of two diagonal matrices, thus D is diagonal. As detailed for the
addition case, we can conclude that the Jacobian matrix has purely imaginary
eigenvalues.
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As a counterexample, if η = xu(t), Equation 7.4 can result in a dissipative
behavior, leading to the loss of information over time and compromising the
model’s ability to preserve historical context, since past node information is
always discarded between new events. As a result, the function η can function
as a parameter to control the balance between the dissipative and non-dissipative
behavior of CTAN.

7.1.3 Numerical Discretization

Now that we have defined the conditions under which the ODE in Equation 7.3
is stable and non-dissipative, i.e., it can propagate long-range dependencies be-
tween nodes in the C-TDG, we rely on a discretization method to compute
an approximate solution. We employ the forward Euler’s method to discretize
Equation 7.3 for the i-th Cauchy sub-problem, yielding the following node state
update equation for the node u at step ℓ:

hℓ
u = hℓ−1

u + ϵσ
(
(Wℓ −W⊤

ℓ − γI)hℓ−1
u + Φ

(
{hv(t), euv, t

−
v , t}v∈N t

u

))
, (7.9)

with ϵ > 0 being the discretization step size. We notice that the antisymmetric
weight matrix (Wℓ−W⊤

ℓ ) is subtracted by the term γI to preserve the stability
of the forward Euler’s method, see Section 2.2.3 for a more in-depth analysis.
We refer to I as the identity matrix and γ to a hyperparameter that regulates
the stability of the discretized diffusion. We note that the resulting neural
architecture contains as many layers as the discretization steps, i.e., L = te/ϵ.

7.1.4 Truncated Non-Dissipative Propagation

As previously discussed, the number of iterations in the discretization (i.e., the
terminal time te) plays a crucial role in the propagation. Specifically, few itera-
tions result in a localized event propagation. Consequently, the non-dissipative
event propagation does not reach each node in the graph, causing a truncated
non-dissipative propagation. This method allows scaling the radius of prop-
agation of information depending on the number of discretization steps, thus
allowing for a scalable long-range propagation in C-TDGs. Crucially, we notice
that, even with few discretization steps, it is still possible to propagate infor-
mation from a node u to z (if a path of length P connects u and z). As an
example, consider the situation depicted in the left segment of Figure 7.1, where
nodes u and v establish a connection at some time t, and our objective is to
transmit this information to node z. In this scenario, we assume L = 1, thus
the propagation is truncated before z. Upon the arrival of the event at time t,
this is initially relayed (due to the constraint of L = 1) to node k, which then
captures and retains this information. If a future event at time t + τ involving
node k occurs, its state is propagated, ultimately reaching node z. Consequently,
the information originating from node u successfully traverses the structure to
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reach node z. More formally, if it exists a sequence of (at least P/L) successive
events, such that each future i-th event is propagated to an intermediate node
at distance iP/L from u, then u is able to directly share its information with z.
Therefore, even with a limited number of discretization steps, the non-dissipative
behavior enables scaling the single event propagation to cover a larger portion
of the C-TDG. We also notice that if the number of iterations is at least equal to
the longest shortest path in the C-TDG, then each event is always propagated
throughout the whole graph.

7.1.5 The CTAN Framework

We name the framework defined through the above sections as Continuous-Time
Graph Antisymmetric Network (CTAN). Note that Φ in Equations 7.3 and 7.9
can be any function that aggregates nodes and edges states. Then, CTAN can
leverage the aggregation function that is more adequate for the specific task.
As an exemplification of this, in Section 7.2 we leverage the aggregation scheme
based on the one proposed by Shi et al. (2021):

Φ
(
{hv(t), euv, t

−
v , t}v∈N t

u

)
=

∑
v∈N t

u∪{u}

αuv

(
Vnh

ℓ−1
v +Veêuv

)
(7.10)

where êuv = euv∥ (V(t− t−v )) is the new edge representation computed as the
concatenation between the original edge attributes and a learned embedding of
the elapsed time from the previous neighbor interaction, αuv = softmax

(
q⊤K√

d

)
is the attention coefficient with d the hidden size of each head, q = Vqh

ℓ−1
u , and

K = Vkh
ℓ−1
v +Veêuv.

Despite CTAN being designed from the general perspective of layer-dependent
weights, it can be used with weight sharing between layers (as in Section 7.2).

7.2 Experiments
To evaluate the performance of CTAN, we design two novel temporal tasks which
require propagation of long-range information by design, Section 7.2.1.1 and
Section 7.2.1.2. Afterward, we assess the performance of the proposed CTAN
approach on classical benchmarks for C-TDGs in Section 7.2.2. We comple-
ment these classical benchmarks with a larger evaluation on the TGB frame-
work (Huang et al., 2023) in Section 7.2.3, showcasing the model capabilities
in diverse settings, covering evaluations with (i) improved negative sampling
techniques and (ii) transductive and inductive settings.

In Section 7.2.4 we conduct an investigation on the scalability property of
CTAN and computational efficiency. In Appendix E.1, we present comprehen-
sive descriptions and statistics of the datasets. We release the long-range bench-
marks and the code implementing our methodology and reproducing our analysis
at https://github.com/gravins/non-dissipative-propagation-CTDGs.

https://github.com/gravins/non-dissipative-propagation-CTDGs
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Shared Experimental Settings. In the following experiments, we consider
weight sharing of CTAN parameters across the neural layers. We compare CTAN
against four popular dynamic graph network methods (i.e., DyRep (Trivedi
et al., 2019), JODIE (Kumar et al., 2019), TGAT (Xu et al., 2020), and TGN
(Rossi et al., 2020)) and include recent methods GraphMixer (Cong et al., 2023)
and DyGFormer (Yu et al., 2023) for evaluation in long-range tasks. In the TGB
experiments we also consider CAWN (Wang et al., 2021b) and TCL (Wang et al.,
2021a). To ensure fair comparison and efficient implementation, we implement
these methods in our framework. With the same purpose, we reuse the graph
convolution operators in the original literature, considering for all methods the
aggregation function defined in Equation 7.10. We designed each model as a
combination of two components: (i) the DGN (i.e., CTAN or a baseline) which
is responsible to compute the node representations; (ii) the readout that maps
node embeddings into the output space. The readout is a 2-layer MLP, used
in all models with the same architecture. We perform hyperparameter tuning
via grid search, considering a fixed parameter budget based on the number of
graph convolutional layers (GCLs). Specifically, for the maximum number of
GCL in the grid, we select the embedding dimension so that the total number of
parameters matches the budget; such embedding dimension is used across every
other configuration. We report more detailed information on each task in their
respective subsections. Detailed information about hyperparameter grids em-
ployed in our experiments are in Tables E.2 and E.3 (Appendix E.2). While we
do not directly investigate the optimal terminal time te within the hyperparam-
eter space, we implicitly address this aspect through the choice of the step size
ϵ and the maximum number of layers L, as they jointly determine the terminal
time, i.e., te = ϵL.

7.2.1 Long Range Tasks

Here, we introduce two temporal tasks which contain long-range interaction
(LRI). The first is a Sequence Classification task on path graphs (see Section 2.1)
and the second an extension to the temporal domain of the classification task
PascalVOC-SP introduced in the Long Range Graph Benchmark (Dwivedi et al.,
2022).

7.2.1.1 Sequence Classification on Temporal Path Graph

Setup. Inspired by the tasks in Chang et al. (2019), we consider a sequence
classification task requiring long-range information on a temporal interpretation
of a path graph. Here, the nodes of the path graph appear sequentially over
time from first to last, i.e., each event in the C-TDG connects each node to the
previous one in the path graph. The task objective is to predict the feature
observed at the source node in the first event after having traversed the entire
temporal path graph, i.e., after reaching the last event in the stream. After the
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model processes the last event in the graph, the output prediction for the whole
graph is computed by a readout that takes as input the updated embedding of
the destination node of the last event in the C-TDG. The task requires models
to propagate the information seen at the first node through the entire sequence.
Models that exhibit smoothing or dissipative behavior will fail to transmit rele-
vant information to the destination node for longer sequences, resulting in poor
performance.

When creating the dataset, we set the feature of the first source node to be
either 1 or -1, and we use uniformly random sampled features for intermediate
nodes and edges to ensure the only task-relevant information is on the earliest
node. We forward events one at a time to update neighboring nodes representa-
tions (i.e., batch size is 1). We considered graphs of different sizes, from length 3
to 20, to test how long information is propagated, i.e., longer graphs force mod-
els to propagate information for longer. During training, we optimize the binary
cross-entropy loss over two classes corresponding to the two possible signals (1
or -1) placed on the initial node.

We performed hyperparameter tuning via grid search, optimizing the accu-
racy score. We trained the models using the Adam optimizer for a maximum of
20 epochs and early stopping with patience of 5 epochs on the validation Binary
Cross Entropy loss. Each experimental run is repeated 10 times for different
weight initializations. To give models a fair setting for comparison, the grid is
computed considering a budget of ∼20k trainable parameters per model.

Results. The test accuracy on the sequence classification task is in Table 7.1.
CTAN exhibits exceptional performance in comparison to reference state-of-the-
art methods. This result highlights the capability of our method to propagate
information seen on the first node throughout long paths. Meanwhile, several
baseline models struggle in solving such a task because the information is lost
through the time-steps: in practice, informative gradients vanish over time.

Note that, memory-less methods such as TGAT, GraphMixer and DyG-
former can not effectively propagate information past the number of layers (i.e.,
hops) used in the neighbor aggregation. Note that while the latter two methods
are designed for 1-hop aggregation, TGAT allows for variable number of GCLs
aggregations, which we test up to 5. We notice TGAT can solve the task at
distance 5, but fails for longer graphs. JODIE and TGN are memory-based
methods, which grants them the ability to solve tasks for longer distances, but
being RNN-based methods inherently struggle to maintain long-term dependen-
cies (Bengio et al., 1994; Chang et al., 2019). TGN fails at distance 7, while
JODIE at distance 15. CTAN on the other hand, better propagates information
for longer distances, solving the task even at length 20.
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Table 7.1: Results of the sequence classification on path graph long-range task,
for increasing graph length n. The performance metric is the mean test set
accuracy score, averaged over 10 different random weights initializations for each
model configuration. Models have a maximum budget of learnable parameters
equal to ∼20k.

Model n=3 n=5 n=7 n=9 n=11 n=13 n=15 n=20

DGNs for C-TDGs
DyGFormer 100.0±0.0 42.55±16.95 52.94±7.3 53.02±6.06 51.80±9.52 51.70±8.52 42.80±16.25 42.79±19.62

DyRep 100.0±0.0 49.20±2.10 51.00±1.76 47.93±2.73 44.87±0.89 46.73±1.55 48.60±2.48 50.47±2.88

GraphMixer 100.0±0.0 42.58±21.2 55.40±6.44 52.80±5.56 44.65±19.42 43.77±16.51 52.49±5.36 52.04±8.20

JODIE 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 98.53±4.64 97.40±7.99 60.00±14.91 50.87±2.46

TGAT 100.0±0.0 100.0±0.0 50.67±4.12 47.87±2.72 42.67±2.15 43.53±0.83 50.53±2.15 49.07±1.55

TGN 100.0±0.0 100.0±0.0 60.20±13.2 48.13±1.63 45.07±1.64 44.40±0.64 48.67±2.76 50.13±2.17

Our
CTAN 100.0±0.0 100.0±0.0 100.0±0.0 99.93±0.21 99.6±0.56 98.67±1.89 93.47±8.78 88.93±12.06

7.2.1.2 Classification on Temporal Pascal-VOC

Setup. We consider edge classification on a temporal interpretation of the
PascalVOC-SP dataset, which has been previously employed by Dwivedi et al.
(2022) as a benchmark to show the efficacy of capturing LRI in static graphs.
Here, we adapt the task to the C-TDG domain: we forward edges one at a time
and predict the class of the destination node. We generate temporal graphs
by considering that nodes in each rag-boundary graph appear from the top-
left to the bottom-right of the image, sequentially. We consider two degrees of
SLIC superpixels compactness, i.e., 10 and 30. Larger compactness means more
patches, with less information included in each patch and more to be propagated.

To benchmark the ability of models to propagate information through the
graph, we test model performance for an increasing number of GCLs. Fewer
GCLs require models to store and transmit relevant information along node
embeddings rather than relying on effectively aggregating information from in-
creasingly larger neighborhoods.

We performed hyperparameter tuning via grid search, optimizing the F1-
score. We trained the models using the Adam optimizer for a maximum of 200
epochs and early stopping with patience of 20 epochs on the validation score.
Each experimental run is repeated 5 times for different weight initializations.
To give models a fair setting for comparison, the grid is computed considering a
budget of ∼40k trainable parameters per model and the neighbor sampler size
is set to 5.

Results. Table 7.2 reports the average F1-score on the temporal PascalVOC-
SP task. Note that DyRep, JODIE, GraphMixer and DyGFormer, in their
original definition, do not support a variable number of GCLs, hence the results
of such models are presented in the table under “1 GCL” for clarity. CTAN
largely outperforms reference methods.
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Table 7.2: Results of the classification on the Temporal PascalVOC task, for
increasing number of GCLs. The performance metric is the mean test set F1-
score, averaged over 5 different random weights initializations for each model
configuration.

Temporal Pascal VOC (sc=10) Temporal Pascal VOC (sc=30)
no. GCLs 1 3 5 1 3 5

DGNs for C-TDGs
DyGFormer 8.45±0.13 − − 8.07±0.27 − −
DyRep 5.29±0.47 − − 5.23±0.11 − −
GraphMixer 6.60±0.11 − − 5.88±0.08 − −
JODIE 6.33±0.41 − − 5.76±0.35 − −
TGAT 5.39±0.19 6.53±0.58 8.23±0.73 6.04±0.26 8.79±0.29 10.38±0.7

TGN 6.04±0.27 6.55±0.46 7.51±0.80 5.59±0.24 7.26±0.82 7.90±1.31

Our
CTAN 7.89±0.33 8.53±1.06 8.88±0.98 9.98±0.33 10.16±0.52 10.41±0.52

We observe that for SLIC compactness equal to 30, CTAN achieves a 65%
and 16% improvement against the second best performing model (i.e., TGAT),
for one and three GCLs, respectively. Interestingly, TGAT almost matches the
performance of CTAN when considering five GCLs. This is in line with the ex-
cellent results of computationally expensive Transformers-based models in the
static case (Dwivedi et al., 2022), corroborating the advantages of self-attention
blocks in modeling long-range dependencies between far away nodes. This result
also suggests that the majority of the relevant information necessary to solve the
temporal Pascal VOC task may lie within neighborhoods five hops away. We
note that at SLIC compactness 10, DyGFormer benefits from the shorter long-
range propagation (when sc=10 the graph contains fewer patches, hence fewer
nodes and spatially closer relevant information compared to sc=30), and from its
deeper architecture compared to CTAN’s single-layer design, when considering
the same number of spatial hops. In fact, in this setting DyGFormer contains
two transformer blocks, while CTAN does not. However, we observe that by
including multiple layers of CTAN (i.e., no.GCLs > 1), our method effectively
propagates information and outperforms DyGFormer even in the sc=10 task.
Nevertheless, the results indicate how CTAN is capable of propagating relevant
information across the time-steps to achieve accurate predictions, even when the
model is only allowed to extract information from limited, very local neighbor-
hoods.

7.2.2 Future Link Prediction Tasks

Setup. For the C-TDG benchmarks we consider four well-known datasets pro-
posed by Kumar et al. (2019) (i.e., Wikipedia, Reddit, LastFM, and MOOC)
to assess the model performance in real-world setting, with the task of future
link prediction. We consider as additional baseline EdgeBank (Poursafaei et al.,
2022) with the aim of showing the performance of a simple heuristic that merely
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stores previously observed interactions (without any learning), and then predicts
stored links as positive.

We performed hyperparameter tuning via grid search, optimizing the AUC
score. We trained the models using the Adam optimizer for a maximum of 1000
epochs and early stopping with patience of 50 epochs on the validation score.
Each experimental run is repeated 5 times for different weight initializations.
To give models a fair setting for comparison, the grid is computed considering a
budget of ∼140k trainable parameters per model and the neighbor sampler size
is set to 5.

Results. Table 7.3 reports the average test AUC on the C-TDG benchmarks.
CTAN shows remarkable performance, ranking first across datasets. Our method
achieves a score that on average is 4.7% better than other baselines. This finding
shows the importance of a non-dissipative behavior of the method even on real-
world tasks, since more information need to be retained and propagated from
the past to improve the final performance. Our results demonstrate that CTAN
is able to better capture and exploit such information. Nevertheless, note that
not all real-world datasets inherently present long-range dependencies. To eval-
uate how CTAN fares against state-of-the-art methods on several datasets, we
complement this analysis with an evaluation on the TGB Benchmark, see Sec-
tion 7.2.3. In this setting, CTAN characterizes by the best performing behavior
when considering the combination of TGB datasets.

Table 7.3: Mean test set AUC and std in percent averaged over 5 random weight
initializations. Each model have a maximum budget of learnable weights equal
to ∼140k. The higher, the better. First, second, and third best results for
each task are color-coded.

Wikipedia Reddit LastFM MOOC

Baseline
EdgeBank1% tr set 71.03 71.92 77.59 61.29
EdgeBank5% tr set 81.65 85.07 86.75 63.93
EdgeBank10% tr set 85.26 89.07 89.87 65.18
EdgeBank25% tr set 88.31 92.92 92.74 67.49
EdgeBank50% tr set 90.29 94.82 94.06 69.63
EdgeBank75% tr set 91.11 95.63 94.55 70.46
EdgeBank100% tr set 91.52 96.08 94.69 70.80
EdgeBank∞ 91.82 96.42 94.72 70.85

DGNs for C-TDGs
DyRep 88.64±0.15 97.51±0.10 77.89±1.39 81.87±2.47

JODIE 94.68±1.05 96.34±0.83 69.76±2.74 81.90±9.03

TGAT 94.91±0.25 98.18±0.05 81.53±0.34 87.61±0.15

TGN 95.60±0.18 98.23±0.10 79.18±0.79 90.74±0.99

Our
CTAN 97.55±0.09 98.61±0.04 83.81±0.92 92.47±0.78

Lastly, we note that Table 7.3 includes the performance of EdgeBank with
different time window sizes. We recall that EdgeBank is a memorization-based
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method without learning that simply stores previously observed edges from a
fixed-size time-window from the immediate past, and predicts stored edges as
positive. We evaluated EdgeBank with different time windows spanning from a
size of 1% of the training set to infinite size, i.e., all observed edges are stored
in memory.

In this scenario, EdgeBank is particularly good at capturing long-range infor-
mation along the time dimension in the LastFM task, surpassing all the baselines
and CTAN as the time window increases. We highlight that the experiments
in this section are meant to outline how CTAN outperforms baselines under an
even field of number of trainable parameters (i.e., 140k) and restricted range
of hyperparameter values, e.g., sampler size equal to 5. On the other hand,
EdgeBank is a non-parametric method that at the time of inference accesses
the entire temporal adjacency matrix. In LastFM, the median node degree after
training is 903 (mean 1152±1722), which is high compared to other datasets. At
validation time, for the average node in LastFM, EdgeBank pools information
from 903 node neighbors, while in our setting we allow DGN baselines to pool
information from 5 randomly sampled neighbors. As nodes have larger degrees,
sampling larger neighborhoods is fundamental to access and therefore retain in-
formation. To show that CTAN performance is limited by the considered range
of hyperparameter values, we present, in Table 7.4, the performance of CTAN by
solely adjusting the neighbor sampler size, while maintaining a budget of ∼350k
learnable parameters. The evaluation involves substituting various sampler size
values into the optimal combination of hyperparameters obtained for CTAN on
the LastFM dataset in Table 7.3, with the embedding dimension configured to
achieve the target of ∼350k learnable parameters (i.e., 192). The results indicate
that CTAN performs better by adjusting the sampler size alone.

Table 7.4: Mean test set AUC and std on LastFM (in percent) for increasing
size of sampled neighbors, averaged over three different weights initializations.
The model has a budget of learnable weights equal to ∼350k. When nodes have
large degrees as in LastFM, accessing larger neighborhoods with the neighbor
sampler is fundamental to access and retain important information.

Sampler size 2 8 16 32 64 128

CTAN 82.64±0.93 86.21±0.58 86.16±0.55 86.27±0.55 86.32±0.81 87.82±0.42

7.2.3 TGB Benchmarks

Setup. We evaluate CTAN on the Temporal Graph Benchmark (TGB) (Huang
et al., 2023). TGB contains a set of real-world small-to-large scale benchmark
datasets with varying graph properties. We focus on dynamic link property
prediction tasks, i.e., tgbl-wiki-v2, tgbl-review-v2, tgbl-coin-v2, tgbl-comment.
To overcome the existing limitations on negative edge sampling, i.e., where only
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one random negative edge is sampled per each positive edge, TGB provides pre-
sampled negative edge sets with both random and historical negatives (Pour-
safaei et al., 2022). Here, for each positive edge, several negatives are sampled
for the evaluation (Huang et al., 2023). Note that for computational efficiency,
since validation passes are extremely costly given the large number of negative
edges, we only do a validation pass every three training epochs.

We performed hyperparameter tuning via grid search, optimizing the Mean
Reciprocal Rank. We trained our model on tgbl-wiki-v2 using the Adam op-
timizer for a maximum of 200 epochs and early stopping with patience of 20
epochs on the validation score, with each experimental run repeated 5 times for
different weight initializations. On the other tasks, we trained our model for a
maximum of 50 epochs, with early stopping equal to 3 and 3 different runs.

Results. In Table 7.5, we report the test Mean Reciprocal Rank (MRR) for
the experiments. We note that CTAN performs quite well in general: its average
rank across the four datasets is 3.25 which is the highest, together with DyG-
Former. CTAN performs quite well on tgbl-review-v2, even significantly outper-
forming state-of-the-art methods DyGFormer and GraphMixer. In such dataset,
the surprise index (namely, the proportion of unseen edges at test time (Pour-
safaei et al., 2022)) is 0.987, meaning that nodes do not have large histories.
In this case, it seems that CTAN better propagates information from neigh-
bors compared to methods focusing on first-hop information passing such as
GraphMixer and DyGFormer. On the other hand, it seems that DyGFormer
is well suited in propagating long-range time information by modeling a large
number of previous node interactions within the transformer input sequence,
given enough computational budget, particularly in tgbl-wiki-v2, where nodes
have long histories. Nevertheless, we notice that even with limited number of
parameters, CTAN is extremely competitive within the leaderboard.

7.2.4 Ablation Study

In this section, we investigate the scalability property of CTAN and its compu-
tational efficiency.

Scalability of CTAN. We conduct an investigation on the scalability prop-
erty of CTAN. Note that while in some related works the term scalable refers to
the computational complexity of methods, here we use scalable to refer to how
the range of information propagation can be controlled by increasing the num-
ber of graph convolutions in CTAN. To show this property, we assess the task
in Section 7.2.1.1 for different values of GCLs (when possible). We report the
results in Figure 7.2, which shows how for increasing GCLs, CTAN is capable
of conveying information further away in the graph compared to other graph
convolutional based models. In addition, we observe that both DyGFormer and
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Table 7.5: Results of the Dynamic Link Property Prediction task on the TGB
benchmark datasets (Huang et al., 2023). The table reports the average MRR
on the test split of the datasets over the considered weight initializations. For
CTAN, the average is taken over a maximum of five runs with different random
seeds for different weight initializations. All baselines’ results are taken from Yu
(2023). The number of parameters is computed from the TGB Baselines reposi-
tory (Huang et al., 2023) by loading the best performing model across the model
selection search. First, second, and third best results for each task are color-
coded.

Model N. params tgbl- tgbl- tgbl- tgbl- Avg.
wiki-v2 review-v2 coin-v2 comment rank

Baseline
EdgeBank∞ − 52.50 2.29 35.90 10.87 11
EdgeBanktw-ts − 63.25 2.94 57.36 12.44 8.25
EdgeBankre − 65.88 2.84 59.15 − 8.25
EdgeBankth − 52.81 1.97 43.36 − 11.33

DGNs for C-TDGs
CAWN 4M 73.04±0.60 19.30±0.10 − − 5.50
DyRep 700k 51.91±1.95 40.06±0.59 45.20±4.60 28.90±3.30 8.00
GraphMixer 600k 59.75±0.39 36.89±1.50 75.57±0.27 76.17±0.17 4.25
DyGFormer 1.1M 79.83±0.42 22.39±1.52 75.17±0.38 67.03±0.14 3.25
JODIE 200k 63.05±1.69 41.43±0.15 − − 4.50
TCL 900k 78.11±0.20 16.51±1.85 68.66±0.30 70.11±0.83 4.25
TGAT 1.1M 59.94±1.63 19.64±0.23 60.92±0.57 56.20±2.11 6.50
TGN 1M 68.93±0.53 37.48±0.23 58.60±3.70 37.90±2.00 5.25

Our
CTAN 600k 66.76±0.74 40.52±0.41 74.82±0.42 67.10±6.72 3.25

GraphMixer may have increased capability to capture long-range dependencies,
however, this is only applicable to time-only dependencies, and not spatial ones.
Indeed, DyGFormer and GraphMixer model long-range time dependencies on
node representations by fetching previous interactions for a node, both only re-
lying on first-hop neighbors information and not considering spatial propagation
of higher-order node information, which is in fact mentioned as a limitation of
DyGFormer. Comparably, CTAN remains a graph convolution-based model,
hence capable of propagating information in a non-dissipative way over time as
well as over the spatial dimension of the graph, scaling the range of propagation
with the number of discretization steps (equivalently, the termination time te).
This property enables propagating information to neighbors beyond first-hop
ones, which in turns allows solving tasks such as those in Sections 7.2.1.1 and
7.2.1.2.

Runtimes. To show the computational advantage of our CTAN, we report in
Table 7.6 the average time per epoch (measured in seconds) for each model on
the four considered link prediction datasets in Section 7.2.2. In this evaluation,
each model has the same embedding dimension and number of GCLs. Similarly,
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Figure 7.2: Mean accuracy on the T-PathGraph task on the experiment of
Section 7.2.1.1, with distinction between the performance at different number
of GCLs (whenever possible). With 3 and 5 GCLs we report in grey the results
of DyGFormer, DyRep, GraphMixer, and JODIE, which are designed for 1-
hop aggregation only. The plots show that not only CTAN can better retain
information at low number of GCLs, but also that increasing the number of
GCL enables solving the T-PathGraph task on longer graphs, where the task is
harder because information needs to be propagated further away. The number
of GCL allows CTAN to scale up the range of information propagation.

Figure 7.3 shows the average time per epoch of each model on the Wikipedia
dataset. Here, the time is reported with respect to a varying embedding size and
similar number of GCLs. We observe that our method has a speedup on average
of 1.3× to 2.2× on the four benchmarks when one layer of graph convolutions
is considered, and 1.5× to 1.9× when five layers are used.

Table 7.6: Mean time (in seconds) and std averaged over 10 epochs. Each model
is run with an embedding dimension equal to 100 on an Intel(R) Xeon(R) Gold
6278C CPU @ 2.60GHz.

Model Wikipedia Reddit LastFM MOOC

1 layer

DGNs for C-TDGs
DyRep 27.07±0.32 161.43±0.96 216.88±2.83 53.32±0.56

JODIE 20.62±0.24 131.71±0.85 176.61±3.02 43.92±0.68

TGAT 11.56±0.14 67.83±0.64 139.79±20.78 33.92±0.50

TGN 30.92±0.25 196.87±1.35 289.22±30.38 53.46±0.62

Our
CTAN 11.16±0.11 64.48±0.56 123.19±11.33 34.42±0.50

5 layer

DGNs for C-TDGs
TGAT 101.26±0.46 895.35±5.46 862.47±217.38 73.77±1.29

TGN 127.99±0.60 1099.19±3.91 1034.24±221.04 95.45±1.07

Our
CTAN 60.16±0.20 532.36±9.87 495.18±111.13 56.19±0.63
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Figure 7.3: Average time per epoch (measured in seconds) and std with respect
to the embedding size computed on the Wikipedia dataset, averaged over 10
epochs. The experiments were carried out on an Intel(R) Xeon(R) Gold 6278C
CPU @ 2.60GHz. On the left (a), each model has 1 DGN layer (when possible),
while on the right (b) the models have 5 GCLs.

7.3 Related Work

Nowadays, most of the DGNs tailored for learning C-TDGs can be generalized
within the Temporal Graph Network (TGN) framework (Rossi et al., 2020)2.
Many state-of-the-art architectures (Kumar et al., 2019; Trivedi et al., 2019; Xu
et al., 2020; Ma et al., 2020; Souza et al., 2022) fit this framework, with later
methods outperforming earlier ones thanks to advances in the local message
passing or even in the encoding of positional features. Two recent methods
Cong et al. (2023) and Yu et al. (2023) focus on modeling long-range (temporal)
dependencies by including longer node histories in the context while not relying
on memory modules, as in the TGN framework. While recent methods often
provide improved results, none of them explicitly models long-range temporal and
spatial dependencies between nodes or events in the C-TDG. As increasingly
evidenced both in sequence-model architectures (Chang et al., 2019), and in
the static graph case (Dwivedi et al., 2022), propagating information across
various time steps is extremely beneficial for learning. CTAN, instead, provably
enables effective long-range propagation by design. Note that our approach
does not require the co-existence of memory and graph propagation module, as
in the TGN framework. CTAN stores all necessary information within the node
embeddings themselves as computed by the graph convolution, while achieving
non-dissipative propagation by design. This makes CTAN more lightweight.
Lastly, as TGN allows for different graph propagation modules, the general
formulation of the aggregation function Φ in Equation 7.9 allows extending state-
of-the-art DGNs for static graphs to the domain of C-TDGs through the lens of
non-dissipative and stable ODEs.

Lastly, we compare CTAN with A-DGN (see Section 4.1), an ODE-based
2We refer the reader to Section 3.2 for a deeper discussion on the TGN framework.
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model achieving non-dissipative propagation through static graphs, i.e., in the
time-unaware spatial domain. We note that time-aware nodes and edges com-
bined with possibly irregularly sampled repetitive edges between the same pair
of nodes natively render A-DGN (as well as other methods designed for static
graphs) inapplicable to C-TDGs. Less trivially, non-dissipative propagation in
C-TDGs cannot be achieved through mere non-dissipative propagation through
space. On the contrary, non-dissipative propagation of information through time
is a property unique to DGNs designed for C-TDG, necessary for their overall
non-dissipativeness.

To the best of our knowledge, we are the first to propose an ODE-based
architecture suitable for C-TDGs that can effectively propagate long-range in-
formation between nodes.

7.4 Summary
In this chapter, we have presented Continuous-Time Graph Antisymmetric Net-
work (CTAN), a new framework based on stable and non-dissipative ODEs
for learning long-range interactions in Continuous-Time Dynamic Graphs (C-
TDGs). Differently from previous approaches, CTAN’s formulation allows scal-
ing the radius of effective propagation of information in C-TDGs (i.e., allowing
for a scalable long-range propagation in C-TDGs) and reimagines state-of-the-
art static DGNs as a discretization of non-dissipative ODEs for C-TDGs. To the
best of our knowledge, CTAN is the first framework to address the long-range
propagation problem in C-TDGs, while bridging the gap between ODEs and
C-TDGs.

Our experimental investigation reveals, at first, that when it comes to cap-
turing long-range dependencies in a task, our framework significantly surpasses
state-of-the-art DGNs for C-TDGs. Our experiments indicate that CTAN is ca-
pable of propagating relevant information incrementally across time to achieve
accurate predictions, even when the model is only allowed to extract information
from very local neighborhoods, i.e., by using only a single or few layers. Thus,
CTAN enables scaling the extent of information propagation in C-TDG data
structures without increasing the number of layers nor incurring in dissipative
behaviors. Moreover, our results indicate that CTAN is effective across vari-
ous graph benchmarks in both real and synthetic scenarios. In essence, CTAN
showcased its ability to explore long-range dependencies (even with limited re-
sources), suggesting its potential in mitigating over-squashing in C-TDGs.

We believe that CTAN lays down the basis for further investigations of the
problem of oversquashing and long-range interaction learning in the C-TDG
domain.
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Conclusions

In this thesis, we have investigated novel information propagation dynamics in
DGNs for both static and dynamic graphs, integrating concepts from dynamical
systems. Despite the progress of recent years, learning effective information
propagation patterns remains a critical challenge that heavily influences the
DGNs’ capabilities. With this aim, we highlighted the pivotal role of differential-
equations-inspired DGNs (DE-DGNs) in addressing the challenges of learning
long-term dependencies in graphs and complex spatio-temporal patterns from
irregular and sparsely sampled data.

We started this dissertation with the broader objective of fostering the re-
search in the graph representation learning domain by reviewing the principles
underlying DGNs and their limitations in information propagation. We fol-
lowed with a survey that focused on recent representation learning techniques
for dynamic graphs under a unified formalism and a fair performance compari-
son among the most popular methods, thus filling the fragmented and scattered
literature in terms of model formalization, empirical setups, and performance
benchmarks.

Afterward, we moved our focus to the main objective of this thesis. We
presented multiple frameworks achieved from the study of ordinary differential
equation (ODE) representing a continuous process of information propagation
on both static and dynamic graphs.

Starting from static graphs, we studied how non-dissipative dynamical sys-
tems can provide a general design principle for introducing non-dissipativity as
an inductive bias in any DE-DGN. Therefore, we explored the benefits of a DE-
DGN with antisymmetric weight parametrization, theoretically proving that the
differential equation corresponding to our framework is stable, non-dissipative
as well as has improved capacities of propagating information over long radii.
Consequently, typical problems of systems with unstable and lossy dynamics do
not occur.

We improved the node-wise non-dissipative behavior introduced with our
first framework with two methods. The first includes antisymmetric constraints
on both the space domain, i.e., the neighborhood aggregation function, and the
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weight domain, with the goal of achieving graph- and node-wise non-dissipative
behavior, so that more information is preserved and conveyed during propaga-
tion. The second approach explores a new message-passing scheme based on
the principles of physics-inspired dynamical systems, i.e., port-Hamiltonian sys-
tems. Therefore, leveraging the connection with such systems, we provide the-
oretical guarantees that information is conserved, thus our method allows the
preservation and propagation of long-range information by obeying the conser-
vation laws. Moreover, we showed how additional forces can be used to deviate
from this purely conservative behavior, potentially increasing effectiveness in the
downstream task.

Afterward, we moved our focus to space and time propagation in dynamic
graphs. We started from the domain of D-TDGs, whose approaches are usually
restricted to work solely on regularly sampled data. Therefore, we addressed the
problem of learning complex information propagation patterns from irregular
and sparsely sampled data, typical of real-world complex scenarios. In this case,
it is fundamental for novel approaches to thoroughly comprehend the underlying
dynamics of information flow to effectively solve the task. With this aim, we
showed that thanks to the connection between ODEs and neural architectures,
we can naturally handle arbitrary time gaps between observations, allowing to
address the most common limitation of DGNs for D-TDGs. Our last contribu-
tion of this dissertation fuses the aforementioned problems and learns complex
spatio-temporal information patterns from an irregular domain (i.e., that of C-
TDGs) while exhibiting a non-dissipative behavior that allows long-range spatio-
temporal propagation. We leveraged antisymmetric weight parametrization and
established theoretical conditions for achieving spatio-temporal non-dissipation
enabling the transmission of information of a past event as new events occur,
since node states are used to efficiently retain and propagate historical informa-
tion.

We formulate each of the proposed frameworks from a general perspective,
allowing the incorporation of the most appropriate neighborhood aggregation
function for the task at hand. Hence, our methods can be used to reinterpret and
extend most of the classical DGNs as neural ODEs for graph, enabling for long-
range propagation and/or learning from irregular and sparsely sampled data.
Overall, our experimental investigations reveal that when it comes to capturing
long-range dependencies within graphs (either static or dynamic), our frame-
works significantly surpass state-of-the-art DGNs, indicating that our methods
are capable of propagating relevant information incrementally across space and
time to achieve accurate predictions. At the same time, our experiments show
that thanks to the connection between ODEs and neural architectures, we can
naturally handle arbitrary time gaps between observations and improve litera-
ture approaches by a large margin on real-world problems.

Furthermore, our analysis shows that our methods remain within the com-
putational complexity bounds of other fast, standard literature methods while
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setting new state-of-the-art standards. We note that, in the static case, intro-
ducing antisymmetric aggregation adds complexity compared to using antisym-
metry solely in the weight domain, especially in the case of learned aggregation
terms. Similarly, the port-Hamiltonian framework enhances long-range propa-
gation capabilities even more, albeit at a computational cost of decoupling the
state computation into two components and accounting not only for the self-node
evolution but also for the neighbor’s evolution influence. This requires additional
aggregation steps, increasing the computational overhead. Therefore, tasks with
resource constraints may benefit from our first framework, which is constrained
only to the weight domain, offering a balance between performance and effi-
ciency. Importantly, while the port-Hamiltonian framework is more beneficial
for capturing intricate long-range dependencies, its added complexity may be
less suitable for low-resource environments. By highlighting this performance-
cost tradeoff, we emphasize that the choice between these approaches should
be guided by the specific resource limitations and accuracy requirements of the
task.
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8.1 Future Directions

Looking ahead to future developments, there are a number of potential directions
to be investigated in the future, which broaden across multiple areas.

All the discussed frameworks employ Euler’s discretization schemes for the
ease of simplicity. However, as discusses in Section 2.2.3, there are several dis-
cretization techniques that can be employed. Looking at more sophisticated
numerical methods, adaptive multistep schemes (Ascher & Petzold, 1998; Dor-
mand, 1996) allows us to dynamically adjust the step size based on local error
estimates. As a result, both the accuracy and efficiency of the solution are en-
hanced. In the static domain, the adaptive step size enables the adaptation
of the number of layers to the specific requirements of each task, while in the
temporal domain, it enables ad-hoc event propagation tailored to diverse and
complex data patterns, improving propagation flexibility. Additionally, these
schemes reduce the need to manually tune the step size hyperparameter, sim-
plifying the model selection process.

Another interesting future direction is that of designing DE-DGNs by lever-
aging theory from state space models. State space models (SSMs) (DeCarlo,
1989; Slotine & Li, 1991) are mathematical models used to describe the be-
havior of dynamic systems and are widely employed in control theory and sig-
nal processing. Recently, SSM-based neural architectures have demonstrated
state-of-the-art performance in learning time-series data (Voelker et al., 2019;
Gu et al., 2022b,a), particularly excelling in handling sequences with very long
(potentially unbounded) dependencies while being highly efficient and requir-
ing fewer training parameters compared to current literature methods. Thus,
we believe that integrating SSM architectures into DE-DGNs can be beneficial,
especially for propagating long-range spatio-temporal dependencies.

Another promising avenue for future research is the use of adaptive message
passing schemes to improve the non-dissipative behavior of the resulting DE-
DGN. Recent approaches (Finkelshtein et al., 2024; Errica et al., 2024) propose
to learn a generalization of message passing by allowing each node to decide
how to propagate information from or to its neighbors, allowing for a more flex-
ible flow of information. The interplay between node actions and the ability to
change them locally and dynamically makes the overall approach richer than
standard message passing. This adaptability can lead DE-DGNs to improved
efficiency in capturing complex dependencies from larger radii, ultimately en-
hancing the model’s capability to represent intricate patterns transcending the
classical task-agnostic message-passing scheme.

Lastly, we foresee neuromorphic implementations of our proposed frameworks
allowing for efficient and effective DGNs that preserve long-range dependencies
between nodes and learn complex spatio-temporal propagation patterns from
irregular and undersampled data. By leveraging the energy efficiency and par-
allel processing capabilities inherent in neuromorphic hardware (Tanaka et al.,
2019; Marković et al., 2020), such implementations can significantly enhance the
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performance and scalability of DGNs. Additionally, this approach could enable
real-time processing and learning in resource-constrained environments, ulti-
mately paving the way for advanced applications in areas such sensor networks,
and autonomous systems.
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Appendix A

Supplementary materials of
Chapter 3

A.1 Datasets, models, and previous studies
In Table A.1 we provide the community with a selection of datasets useful for
benchmarking future works. In Table A.2 we report an overview of the exam-
ined models with respect to the specific changes in the graph structure that each
model was designed to address, i.e., node/edge additions/deletions. We observe
that each method is designed to address changes in node/edge features. Further-
more, the methods developed for D-TDGs that are not specifically designed to
address changes in the node set can still be applied to tasks involving an evolv-
ing node set by treating nodes not in the current snapshot as isolated entities.
Lastly, in Table A.3 we show a comparative analysis with previous benchmark-
ing studies and surveys, assessing the provision of datasets and benchmarks and
delineating the types of analyzed graphs.
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Table A.1: A selected list of datasets used in dynamic graphs representation learning field. The “C” in the type column
means C-TDG, “D” corresponds to D-TDG, and “ST ” to spatio-temporal graph.

Name #Nodes #Edges Seq. len. Snapshot sizes
(nodes/edges) Granularity Type Link

Autonomous
systems 7,716 13,895 733 103-6,474 / 243-13,233 daily D http://snap.stanford.edu/data/as-733.html

Bitcoin-α 3,783 24,186 24,186 − seconds C http://snap.stanford.edu/data/
soc-sign-bitcoin-alpha.html

Bitcoin-OTC 5,881 35,592 35,592 − seconds C http://snap.stanford.edu/data/
soc-sign-bitcoin-otc.html

CONTACT 274 2,712 28,244 − − C https://networkrepository.com/ia-contact.php

ENRON 151 2,227 50,572 − unix timestamp C https://networkrepository.com/
ia-enron-employees.php

Elliptic 203,769 234,355 49 1,552-12,856 / 1,168-9,164 49 steps D https://www.kaggle.com/ellipticco/elliptic-data-set

FB-Forum 899 7,089 33,700 − − C https://networkrepository.com/fb-forum.php

FB-Covid19

152(ENG)
104(ITA)
95(FRA)
53(ESP)

2,347(ENG)
771(ITA)
864(FRA)
145(ESP)

61(ENG)
105(ITA)
78(FRA)
122(ESP)

152 / 2,347(ENG)
104 / 771(ITA)
95 / 864(FRA)
53 / 145(ESP)

daily D https://github.com/geopanag/pandemic_tgnn

Github 284 1,420 20,726 − − C https://github.com/uoguelph-mlrg/LDG

HEP-TH 27,770 352,807 3487 1-650 / 0-688 montly D https://snap.stanford.edu/data/cit-HepTh.html

HYPER-
TEXT09 113 2,498 20,819 − seconds C https://networkrepository.com/

ia-contacts-hypertext2009.php

IA-Email-EU 986 24,929 332,334 − seconds C https://snap.stanford.edu/data/
email-Eu-core-temporal.html

LastFM 2,000 154,993 1,293,103 − unix timestamp C http://snap.stanford.edu/jodie/lastfm.csv

Los-loop 207 2,833 2,017 207 / 2,833 5 mins ST https://github.com/lehaifeng/T-GCN/tree/
master/data

METR-LA 207 1,515 34,272 207 / 1515 5 mins ST https://github.com/liyaguang/DCRNN

http://snap.stanford.edu/data/as-733.html
http://snap.stanford.edu/data/soc-sign-bitcoin-alpha.html
http://snap.stanford.edu/data/soc-sign-bitcoin-otc.html
https://networkrepository.com/ia-contact.php
https://networkrepository.com/ia-enron-employees.php
https://www.kaggle.com/ellipticco/elliptic-data-set
https://networkrepository.com/fb-forum.php
https://github.com/geopanag/pandemic_tgnn
https://github.com/uoguelph-mlrg/LDG
https://snap.stanford.edu/data/cit-HepTh.html
https://networkrepository.com/ia-contacts-hypertext2009.php
https://snap.stanford.edu/data/email-Eu-core-temporal.html
http://snap.stanford.edu/jodie/lastfm.csv
https://github.com/lehaifeng/T-GCN/tree/master/data
https://github.com/liyaguang/DCRNN
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Montevideo 675 690 740 675 / 690 hourly ST https://pytorch-geometric-temporal.readthedocs.io/
en/latest/modules/dataset.html

MOOC 7,144 411,749 178,443 − unix timestamp C http://snap.stanford.edu/data/act-mooc.html

PeMS03 358 442 26208 358 / 442 5 mins ST https://torch-spatiotemporal.readthedocs.io/en/
latest/modules/datasets.html

PeMS04 307 209 16992 307 / 209 5 mins ST https://torch-spatiotemporal.readthedocs.io/en/
latest/modules/datasets.html

PeMS07 883 790 28225 883 / 790 5 mins ST https://torch-spatiotemporal.readthedocs.io/en/
latest/modules/datasets.html

PeMS08 170 137 17856 170 / 137 5 mins ST https://torch-spatiotemporal.readthedocs.io/en/
latest/modules/datasets.html

PeMSBay 325 2,369 52,116 325 / 2,369 5 mins ST https://github.com/liyaguang/DCRNN

PeMSD7 228 19,118 1,989 228 / 19,118 5 mins ST https://github.com/hazdzz/STGCN/tree/main/
data/pemsd7-m

RADOSLAW 167 5,509 82,927 − seconds C https://networkrepository.com/
ia-radoslaw-email.php

Reddit 11,000 78,516 672,447 − unix timestamp C http://snap.stanford.edu/jodie/reddit.csv

Reddit Hyper-
link Network

55,863 339,643 858,490 − seconds C http://snap.stanford.edu/data/
soc-RedditHyperlinks.html

SBM-synthetic 1,000 130,415 50 1000 / 93,835-105,358 50 steps D https://github.com/IBM/EvolveGCN/tree/
master/data

SOC-Wiki-Elec 7,118 103,673 107,071 − − C https://networkrepository.com/soc-wiki-elec.php

SZ-taxi 156 532 2,977 156 / 532 15 mins ST https://github.com/lehaifeng/T-GCN/tree/
master/data

Traffic 4,438 8,996 2,160 4,438 / 8,996 hourly ST https://github.com/chocolates/
Predicting-Path-Failure-In-Time-Evolving-Graphs

Twitter-Tennis 1000 40,839 120 1000 / 41-936 hourly D https://pytorch-geometric-temporal.readthedocs.io/
en/latest/modules/dataset.html

UCI messages 1,899 20,296 59,835 − unix timestamp C https://snap.stanford.edu/data/CollegeMsg.html

Wikipedia 9,227 18,257 157,474 − unix timestamp C http://snap.stanford.edu/jodie/wikipedia.csv

https://pytorch-geometric-temporal.readthedocs.io/en/latest/modules/dataset.html
http://snap.stanford.edu/data/act-mooc.html
https://torch-spatiotemporal.readthedocs.io/en/latest/modules/datasets.html
https://torch-spatiotemporal.readthedocs.io/en/latest/modules/datasets.html
https://torch-spatiotemporal.readthedocs.io/en/latest/modules/datasets.html
https://torch-spatiotemporal.readthedocs.io/en/latest/modules/datasets.html
https://github.com/liyaguang/DCRNN
https://github.com/hazdzz/STGCN/tree/main/data/pemsd7-m
https://networkrepository.com/ia-radoslaw-email.php
http://snap.stanford.edu/jodie/reddit.csv
http://snap.stanford.edu/data/soc-RedditHyperlinks.html
https://github.com/IBM/EvolveGCN/tree/master/data
https://networkrepository.com/soc-wiki-elec.php
https://github.com/lehaifeng/T-GCN/tree/master/data
https://github.com/chocolates/Predicting-Path-Failure-In-Time-Evolving-Graphs
https://pytorch-geometric-temporal.readthedocs.io/en/latest/modules/dataset.html
https://snap.stanford.edu/data/CollegeMsg.html
http://snap.stanford.edu/jodie/wikipedia.csv
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Table A.2: An overview of the examined models and the specific changes in
the graph structure that each model was designed to address, i.e., node addi-
tions/deletions and edge addition/deletions. The “C” in the type column means
C-TDG, “D” corresponds to D-TDG, and “ST ” to spatio-temporal graph.

Node Edge
Name Cit. Type Add Del Add Del

A3TGCN Bai et al. (2021) ST ✗ ✗ ✗ ✗
ASTGCN Guo et al. (2019) ST ✗ ✗ ✗ ✗
CAW Wang et al. (2021b) C ✓ ✓ ✓ ✓
CTDNG Nguyen et al. (2018) C ✓ ✓ ✓ ✓
DCRNN Li et al. (2018) ST ✗ ✗ ✗ ✗
DyGrAE Taheri & Berger-Wolf (2020) D ✓ ✓ ✓ ✓
DyRep Trivedi et al. (2019) C ✓ ✓ ✓ ✓
DynGEM Goyal et al. (2018) D ✓ ✓ ✓ ✓
DynGESN Micheli & Tortorella (2022) D ✓ ✓ ✓ ✓
DynGraph2Vec Goyal et al. (2020) D ✓ ✓ ✓ ✓
E-GCN Pareja et al. (2020) D ✓ ✓ ✓ ✓
Evolve2Vec Bastas et al. (2019) D ✓ ✓ ✓ ✓
GC-LSTM Chen et al. (2022) D ✗ ✗ ✓ ✓
GCRN Seo et al. (2018) ST ✗ ✗ ✗ ✗
JODIE Kumar et al. (2019) C ✓ ✓ ✓ ✓
LRGCN Li et al. (2019) D ✗ ✗ ✓ ✓
MPNN-LSTM Panagopoulos et al. (2021) D ✗ ✗ ✓ ✓
NeurTW Jin et al. (2022) C ✓ ✓ ✓ ✓
PINT Souza et al. (2022) C ✓ ✓ ✓ ✓
ROLAND You et al. (2022) D ✓ ✓ ✓ ✓
SGP Cini et al. (2023) D ✗ ✗ ✓ ✓
STGCN Yu et al. (2018) ST ✗ ✗ ✗ ✗
StreamGNN Ma et al. (2020) C ✓ ✓ ✓ ✓
T-GCN Zhao et al. (2020) ST ✗ ✗ ✗ ✗
TGAT Xu et al. (2020) C ✓ ✓ ✓ ✓
TGN Rossi et al. (2020) C ✓ ✓ ✓ ✓

Table A.3: Comparative analysis with previous benchmarking studies and sur-
veys, assessing the provision of datasets and benchmarks and delineating the
types of analyzed graphs. The “C” in the columns means C-TDG, “D” corre-
sponds to D-TDG, and “ST ” to spatio-temporal graph.

Survey
Year of
the last
surveyed
method

Datasets Dyn. graph
benchmark

Study Static ST D C static dynamic ST D C

Hamilton et al. (2017b) ✓ ✗ ✗ ✗ 2017 ✗ ✗ ✗ ✗ ✗
Bacciu et al. (2020b) ✓ ✗ ✗ ✗ 2020 ✗ ✗ ✗ ✗ ✗
Wu et al. (2020) ✓ ✓ ✗ ✗ 2019 ✓ ✗ ✗ ✗ ✗
Kazemi et al. (2020) ✓ ✓ ✓ ✓ 2020 ✗ ✓ ✗ ✗ ✗
Jiang & Luo (2022) ✓ ✓ ✗ ✗ 2022 ✗ ✓(ST only) ✗ ✗ ✗

Our ✓ ✓ ✓ ✓ 2023 ✗ ✓ ✓ ✓ ✓
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A.2 Explored hyperparameter space

In Table A.4, Table A.5, and Table A.6 we report the grids of hyperparameters
employed during model selection for the spatio-temporal, D-TDG, and C-TDG
experiments by each method.

Table A.4: The grid of hyperparameters employed during model selection for
the spatio-temporal tasks.

Hyperparameter Values

learning rate 10−2, 10−3, 10−4

weight decay 10−3, 10−4

embedding dim 1, 2, 4, 8
σ ReLU
Chebishev poly. filter size 1, 2, 3

normalization scheme for L

L = D−A,
Lsym = I−D−1/2AD−1/2,
Lrw = I−D−1A

Table A.5: The grid of hyperparameters employed during model selection for
the D-TDG tasks. The “∗” value refer only to LRGCN model, while “⋄” to
DynGESN.

Hyperparameter Values

learning rate 10−2, 10−3, 10−4

weight decay 10−3, 10−4

embedding dim 8, 16, 32
σ ReLU
Chebishev poly. filter size 1, 2, 3

normalization scheme for L

L = D−A,
Lsym = I−D−1/2AD−1/2,
Lrw = I−D−1A

n. bases in the basis-decomposition
regularization scheme∗ None, 10, 30

leakage (i.e., γ)⋄ 0.1, 0.5, 0.9
random weight init. value⋄ 0.1, 0.5, 0.9

Table A.6: The grid of hyperparameters employed during model selection for
the C-TDG tasks.

Hyperparameter Values

learning rate 10−3,10−4

weight decay 10−4,10−5

n. DGN layers 1, 3
embedding dim 32, 64, 96
DGN dim emb dim, emb dim / 2
σ tanh
Neighborhood sampler size 5
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To favor reproducibility of the results and transparency of our benchmarking
analysis, in Table A.7, Table A.8, and Table A.9 we report the hyperparameters
selected for benchmarking task and model assessed in our empirical analysis.

Table A.7: The table of selected hyper-parameters for the spatio-temporal tasks.

emb dim lr weight decay filter size norm.

M
on

te
vi

d
eo A3TGCN 8 10−2 10−3 - -

DCRNN 8 10−2 10−3 1 -
GCRN-GRU 8 10−2 10−3 3 L
GCRN-LSTM 8 10−2 10−4 3 L
TGCN 8 10−2 10−3 - -

M
et

r-
L
A

A3TGCN 8 10−3 10−3 - -
DCRNN 8 10−3 10−3 2 -
GCRN-GRU 8 10−3 10−3 3 L
GCRN-LSTM 8 10−3 10−3 3 Lsym

TGCN 8 10−3 10−4 - -

P
eM

S
B

ay

A3TGCN 8 10−3 10−4 - -
DCRNN 8 10−4 10−4 2 -
GCRN-GRU 8 10−4 10−4 2 L
GCRN-LSTM 8 10−4 10−4 3 Lrw

TGCN 8 10−4 10−4 - -

T
ra

ffi
c

A3TGCN 8 10−2 10−4 - -
DCRNN 8 10−3 10−3 3 -
GCRN-GRU 8 10−2 10−4 2 Lsym

GCRN-LSTM 8 10−2 10−3 2 Lsym

TGCN 8 10−2 10−4 - -

A.3 Stability of training under various
hyperparameters

Table A.10, Table A.11, and Table A.12 report the minimum and maximum
standard deviation (std) of validation scores obtained by fixing individual hy-
perparameter values in spatio-temporal, D-TDGs, and C-TDGs, respectively.
Thus, we study the stability of training under various hyperparameters. We
observe that models typically exhibit stability across diverse hyperparameter
settings, and that weight decay is among the hyperparameters with less influ-
ence on the final score, while the embedding dimension and learning rate are the
most affecting ones.
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Table A.8: The table of selected hyper-parameters for the D-TDG tasks.

emb
dim lr weight

decay
n.

bases K norm.

random
weight
init.
value

γ
T
w

it
te

r
te

n
n
is DynGESN 32 10−2 10−3 - - - 0.9 0.5

EvolveGCN-H 8 10−2 10−3 - - L - -
EvolveGCN-O 32 10−3 10−3 - - L - -
GCLSTM 32 10−2 10−4 - 2 L - -
LRGCN 32 10−2 10−4 None - - - -

E
ll
ip

ti
c

DynGESN 8 10−2 10−4 - - - 0.1 0.9
EvolveGCN-H 32 10−4 10−4 - - Lsym - -
EvolveGCN-O 16 10−4 10−3 - - Lsym - -
GCLSTM 8 10−4 10−4 - 1 L - -
LRGCN 8 10−4 10−4 10 - - - -

A
S
-7

33

DynGESN 32 10−2 10−4 - - - 0.9 0.5
EvolveGCN-H 32 10−3 10−3 - - L - -
EvolveGCN-O 16 10−3 10−4 - - L - -
GCLSTM 32 10−2 10−3 - 2 Lsym - -
LRGCN 32 10−3 10−3 10 - - - -

B
it

co
in

α

DynGESN 32 10−2 10−4 - - - 0.9 0.1
EvolveGCN-H 32 10−4 10−3 - - L - -
EvolveGCN-O 16 10−3 10−4 - - L - -
GCLSTM 16 10−2 10−4 - 3 L - -
LRGCN 32 10−2 10−4 10 - - - -

Table A.9: The table of selected hyper-parameters for the C-TDG tasks.

emb dim lr weight decay n. DGN layers DGN dim

W
ik

ip
ed

ia DyRep 96 10−3 10−4 - -
JODIE 96 10−4 10−5 - -
TGAT 96 10−3 10−4 3 96
TGN 96 10−3 10−5 3 48

R
ed

d
it

DyRep 96 10−4 10−4 - -
JODIE 96 10−4 10−5 - -
TGAT 96 10−3 10−4 3 96
TGN 96 10−3 10−5 1 96

L
as

tF
M

DyRep 96 10−4 10−4 - -
JODIE 32 10−4 10−5 - -
TGAT 48 10−4 10−4 3 48
TGN 32 10−3 10−5 3 16
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Table A.10: The minimum and maximum standard deviation of validation
scores obtained by fixing individual hyperparameter values in spatio-temporal
models. The hyperparameter names corresponding to these values are also pro-
vided for reference. “wd” means weight decay, “ed” embedding dimension, “lr”
learning rate, and “fs” filter size.

Montevideo MetrLA
min max min max

A3TGCN ed: 0.009 lr: 0.015 wd: 0.099 ed: 0.127
DCRNN ed: 0.016 lr: 0.025 wd: 0.019 ed: 0.034
GCRN-GRU lr: 0.038 K: 0.043 wd: 0.057 K: 0.071
GCRN-LSTM wd: 0.031 ed: 0.039 wd: 0.056 ed: 0.082
TGCN ed: 0.013 lr: 0.018 wd: 0.099 ed: 0.120

PeMSBay Traffic
min max min max

A3TGCN ed: 0.039 lr: 0.081 ed: 0.006 lr: 0.009
DCRNN ed: 0.050 fs: 0.131 wd: 0.017 ed: 0.020
GCRN-GRU ed: 0.086 K: 0.150 wd: 0.040 K: 0.047
GCRN-LSTM ed: 0.072 K: 0.155 wd: 0.024 lr: 0.031
TGCN ed: 0.041 lr: 0.087 ed: 0.006 lr: 0.009

Table A.11: The minimum and maximum standard deviation of validation
scores obtained by fixing individual hyperparameter values in D-TDGs models.
The hyperparameter names corresponding to these values are also provided for
reference. “wd” means weight decay, “ed” embedding dimension, “lr” learning
rate, “ns” normalization scheme, and “nb” number of bases.

Twitter tennis Elliptic
min max min max

DynGESN lr: 0.004 σ: 0.006 lr: 0.004 ed: 0.005
EvolveGCN-H wd: 0.011 lr: 0.012 lr: 0.003 ed: 0.005
EvolveGCN-O ed: 0.010 lr: 0.012 lr: 0.005 ed: 0.007
GCLSTM lr: 0.012 ed: 0.016 wd: 0.004 ed: 0.005
LRGCN nb: 0.008 ed: 0.01 wd: 0.005 nb: 0.005

AS-733 Bitcoin-α
min max min max

DynGESN ed: 0.003 σ: 0.005 γ: 0.009 lr: 0.052
EvolveGCN-H wd: 0.082 ed: 0.109 ns: 0.018 ed: 0.020
EvolveGCN-O ed: 0.095 wd: 0.105 lr: 0.022 wd: 0.024
GCLSTM K: 0.201 ed: 0.226 K: 0.025 lr: 0.207
LRGCN nb: 0.036 lr: 0.057 nb: 0.003 ed: 0.004
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Table A.12: The minimum and maximum standard deviation of validation
scores obtained by fixing individual hyperparameter values in C-TDGs models.
The hyperparameter names corresponding to these values are also provided for
reference. “wd” means weight decay, “ed” embedding dimension, “lr” learning
rate, “gl” number of DGN layers, “ge” DGN dimension, and “re” readout embed-
ding dim.

Wikipedia Reddit LastFM
min max min max min max

DyRep ed: 0.004 wd: 0.009 lr: 0.002 wd: 0.003 lr: 0.004 ed: 0.007
JODIE lr: 0.023 ed: 0.027 wd: 0.007 ed: 0.007 wd: 0.004 ed: 0.006
TGAT gl: 0.004 re: 0.023 ge: 0.002 re: 0.011 gl: 0.007 wd: 0.030
TGN ed: 0.004 wd: 0.005 wd: 0.004 ge: 0.006 gl: 0.012 lr: 0.033
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B.1 Supplementary materials of Section 4.1

B.1.1 Continuity of layer-dependent weights

To ensure stability of the forward propagation, the continuous interpretation of
the DGN should not change significantly in time. In other words, the weights
of the model should not drastically change between layers. This can be easily
achieved by sharing weights across layers, thereby implementing weight shar-
ing, as done in previous approaches (Chen et al., 2018; Chang et al., 2019; Poli
et al., 2019; Chamberlain et al., 2021b; Rusch et al., 2022). However, when layer-
dependent weights are used, maintaining such smoothness becomes more chal-
lenging. To address this, Ruthotto & Haber (2020) introduced a regularization
term that penalizes abrupt changes, thus promoting smooth weight transitions
across layers.

Building on this observation, we provide an empirical measurement to study
the continuity (i.e., smoothness) of the weights in the case of layer-dependent
weights for both our A-DGN (Section 4.1) and SWAN (Section 4.2), which is
crucial for ensuring the smooth and accurate evolution of the learned dynamics.
We consider the best configurations of A-DGN and SWAN on the Diameter task
of the Graph Property Prediction experiment. Figure B.1 shows that weight
changes between consecutive layers are minimal, with averages of 0.08 for A-
DGN, 0.10 for SWAN, and 0.06 for SWAN-learn. This confirms the smooth
transitions of weights across layers, supporting the model’s validity even with
layer-dependent weights.

Lastly, we observe that the layer-dependent weight setting can also be ob-
tained by stacking multiple instances of the A-DGN (or SWAN) model. In this
scenario, the resulting framework can be interpreted as a composition of dy-
namical systems, where each layer (i.e., the A-DGN or SWAN instance) evolves
the state computed by the previous one, ensuring the non-dissipative properties
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Figure B.1: The relative change in the weights (W̄) across layers for A-DGN,
SWAN, and SWAN-learn models, measured on the Diameter task of the Graph
Property Prediction experiment. Here, W̄ represents the norm of the weights
of the entire graph convolutional layer, i.e., W̄ℓ = norm (concat(Wℓ,Vℓ,Zℓ)),
with Vℓ the weights of the aggregation function Φ and Zℓ the weights of the
antisymmetric aggregation function Ψ (when possible). The encoder and readout
components’ weights are excluded.

discussed in Chapter 4. Specifically, each layer operates with its hyperparameter
values (e.g., the step size or the number of iterations) and evolves the system
in a weight sharing setting before passing its output to the next layer. The
resulting prediction then serves as the initial condition for the subsequent dy-
namical system, ensuring that each layer builds upon the state produced by its
predecessor, thereby capturing complex dependencies across the network.

B.1.2 Datasets description and statistics

In the graph property prediction (GPP) experiments, we employed the same
generation procedure as in Corso et al. (2020). Graphs are randomly sampled
from several graph distributions, such as Erdős–Rényi, Barabasi-Albert, and
grid. Each node have random identifiers as input features. Target values repre-
sent single source shortest path, node eccentricity, and graph diameter.

PubMed is a citation network where each node represents a paper and each
edge indicates that one paper cites another one. Each publication in the dataset
is described by a 0/1-valued word vector indicating the absence/presence of the
corresponding word from the dictionary. The class labels represent the papers
categories.

Amazon Computers and Amazon Photo are portions of the Amazon co-
purchase graph, where nodes represent goods and edges indicate that two goods
are frequently bought together. Node features are bag-of-words encoded product
reviews, and class labels are given by the product category.
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Coauthor CS and Coauthor Physics are co-authorship graphs extracted from
the Microsoft Academic Graph1 where nodes are authors, that are connected by
an edge if they co-authored a paper. Node features represent paper keywords
for each author’s papers, and class labels indicate most active fields of study for
each author.

Cornell, Texas, and Wisconsin are subgraphs of the WebKB dataset2, where
nodes represent web pages, and edges are hyperlinks between them. Node fea-
tures are the bag-of-words representation of web pages. The web pages are
manually classified into the five categories, i.e., student, project, course, staff,
and faculty.

The Actor dataset is a film-directoractor-writer network. Each node corre-
sponds to an actor, and the edge between two nodes denotes co-occurrence on
the same Wikipedia page. Node features correspond to some keywords in the
Wikipedia pages. Nodes are classified into five categories in terms of words of
actor’s Wikipedia.

Chameleon and Squirrel are two page-page networks on specific Wikipedia
topics. In those datasets, nodes represent web pages and edges are mutual links
between pages. Node features correspond to the presence of specific nouns in
the Wikipedia pages. Nodes are classified into five categories in terms of the
number of the average monthly traffic of the web page.

Table B.1 contains the statistics of the employed datasets, sorted by graph
density. The density of a graph is computed as the ratio between the number of
edges and the number of possible edges, i.e., d = |E|

|V|(|V|−1)
.

Table B.1: Datasets statistics ordered by graph density.

Nodes Edges Features Classes Density

GPP 25 - 35 22 - 553 2 — 0.0275 - 0.5
Texas 183 309 1703 5 9.3e−3

Cornell 183 295 1703 5 8.9e−3

Squirrel 5201 217073 2089 5 8.0e−3

Wisconsin 251 499 1703 5 8.0e−3

Chameleon 2277 36101 2325 5 7.0e−3

Amazon Computers 13,752 491,722 767 10 2.6e−3

Amazon Photo 7,650 238,162 745 8 4.1e−3

Actor 7600 33544 931 5 5.8e−4

Coauthor CS 18,333 163,788 6,805 15 4.9e−4

Coauthor Physics 34,493 495,924 8,415 5 4.2e−4

PubMed 19,717 88,648 500 3 2.3e−4

B.1.3 Explored hyperparameter space

In Table B.2 we report the grids of hyperparameters employed in our experiments
by each method. We recall that the hyperparameters ϵ and γ refer only to our

1https://www.kdd.org/kdd-cup/view/kdd-cup-2016/Data
2http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb
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method.

Table B.2: The grid of hyperparameters employed during model selection for
the graph property prediction tasks (GraphProp), graph benchmarks (Bench),
and graph heterophilic benchmarks (H-Bench).

Hyperparameter Values

GraphProp Bench H-Bench

optimizer Adam AdamW Adam
learning rate 0.003 10−2, 10−3, 10−4 10−1, 10−2, 10−4

weight decay 10−6 0.1 10−2

n. layers 1, 5, 10, 20 1, 2, 3, 5 ,10, 20, 30 8, 16, 32, 64
embedding dim 10, 20, 30 32, 64, 128 128, 256, 512, 1024
σ tanh tanh tanh, relu
ϵ 1, 10−1, 10−2, 10−3 1, 10−1, 10−2, 10−3, 10−4 10−1, 10−2

γ 1, 10−1, 10−2, 10−3 1, 10−1, 10−2, 10−3, 10−4 10−1, 10−2

dropout — — 0, 0.2, 0.4, 0.6
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B.2 Supplementary materials of Section 4.2

B.2.1 The stability of the Jacobian

As discussed in Section 4.1 and 4.2, assuming that the Jacobian of the underlying
system does not change significantly over time allows us to analyze the system
from an autonomous system perspective Ascher & Petzold (1998) and mirrors
prior approaches, such as Ruthotto & Haber (2020); Chen et al. (2018); Chang
et al. (2019); Chamberlain et al. (2021b). In addition to building on existing
literature, below, we provide an empirical measurement on a real-world dataset
(pepties-func) of the Jacobian of our SWAN over time (layers). For reference,
we compare it with the Jacobian of GCN. As can be seen from Figure B.4, the
Jacobian of SWAN has a minimal Jacobian change over time with an average
of 0.6% between layers, while the change in the Jacobian over time in GCN is
40% on average.

B.2.2 Derivation of the graph-wise Jacobian

Recall the ODE that defines SWAN in Equation 4.20:

∂X(t)

∂t
= σ

(
X(t)(W −W⊤) + (Â+ Â⊤)X(t)(V −V⊤)+

+ β(Ã− Ã⊤)X(t)(Z+ Z⊤)
)
. (B.1)

The Jacobian of Equation B.1 with respect to X(t) is:

M1 = σ′
(
X(t)(W −W⊤) + (Â+ Â⊤)X(t)(V −V⊤)+

+ β(Ã− Ã⊤)X(t)(Z+ Z⊤)
)

(B.2)

M2 = (W −W⊤) + (V −V⊤)⊤ ⊗ (Â+ Â⊤)+

+ β(Z+ Z⊤)⊤ ⊗ (Ã− Ã⊤) (B.3)

where ⊗ is the Kronecker product. To analyze M1, we use the following identity
for arbitrary matrices A,X,B with appropriate dimensions:

vec(AXB) =
(
B⊤ ⊗A

)
vec(X) (B.4)
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Figure B.4: The relative change in Jacobian of GCN and our SWAN over layers,
measured on the peptides-func data.

Using the identity from Equation B.4, we can rewrite M1 as follows:

M1 = σ′
(
IX(W −W⊤) + (Â+ Â⊤)X(t)(V −V⊤)+

+ β(Ã− Ã⊤)X(t)(Z+ Z⊤)
)

= diag
(
vec(σ′

(
IX(W −W⊤) + (Â+ Â⊤)X(t)(V −V⊤)+

+ β(Ã− Ã⊤)X(t)(Z+ Z⊤)))
)

= diag
(
σ′
(
((W −W⊤)⊤ ⊗ I)vec(X)+

+ ((V −V⊤)⊤ ⊗ (Â+ Â⊤))vec(X(t))+

+ β((Z+ Z⊤)⊤ ⊗ (Ã− Ã⊤))vec(X(t))
))

, (B.5)
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where I is the identity matrix. Therefore M1 is a diagonal matrix. We note that
Equation B.1 is the result of the composite function σ(g(X(t))), where g(X(t)) =
X(t)(W −W⊤)+(Â+ Â⊤)X(t)(V −V⊤)+β(Ã− Ã⊤)X(t)(Z+ Z⊤) and σ is
the activation function.

Therefore, M2 results from the derivative of g with respect to X(t). Consid-
ering the vec operator, we have

M2 = vec(g′(X(t)))

= g′(vec(X(t)))

= (W −W⊤) + (V −V⊤)⊤ ⊗ (Â+ Â⊤)+

+ β(Z+ Z⊤)⊤ ⊗ (Ã− Ã⊤) (B.6)

B.2.3 Datasets description

Graph Transfer Dataset. We built the graph transfer datasets upon Di Gio-
vanni et al. (2023). In each task, graphs use identical topology, but, differently
from the original work, nodes are initialized with random input features sampled
from a uniform distribution in the interval [0, 0.5). In each graph, we selected a
source node and target node and initialized them with labels of value “1” and “0”,
respectively. We sampled graphs from three graph distributions, i.e., line, ring,
and crossed-ring. Figure B.5 shows a visual exemplification of the three types of
graphs when the distance between the source and target nodes is 5. Specifically,
ring graphs are cycles of size n, in which the target and source nodes are placed
at a distance of ⌊n/2⌋ from each other. Crossed-ring graphs are also cycles of
size n, but include crosses between intermediate nodes. Even in this case, the
distance between source and target nodes remains ⌊n/2⌋. Lastly, the line graph
contains a path of length n between the source and target node. We refer the
reader to Section 2.1.1 for additional details about these graph distributions. In
our experiments, we consider a regression task, whose aim is to swap source and
target node labels while maintaining intermediate nodes unchanged. We use an
input dimension of 1, and the distance between source and target nodes is equal
to 3, 5, 10, and 50. We generated 1000 graphs for training, 100 for validation,
and 100 for testing.

(a) Line (b) Ring (c) Crossed-Ring

Figure B.5: Line, ring, and crossed-ring graphs where the distance between
source and target nodes is equal to 5. Nodes marked with “S” are source nodes,
while the nodes with a “T” are target nodes.
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Graph Property Prediction. In our experiments on graph property pre-
diction, we used the same data outlined in Appendix B.1.2, thus graphs are
randomly selected from various graph distributions and each node is assigned
with random identifiers while target values represented single-source shortest
paths, node eccentricity, and graph diameter. The dataset comprised a total
of 7040 graphs, with 5120 used for training, 640 for validation, and 1280 for
testing.

Long Range Graph Benchmark. In the Long Range Graph Benchmark sec-
tion, we considered the “Peptides-func”, “Peptides-struct”, and “PascalVOC-sp”
datasets Dwivedi et al. (2022). In the first two datasets, the graphs correspond
to 1D amino acid chains, and they are derived such that the nodes correspond
to the heavy (non-hydrogen) atoms of the peptides while the edges represent the
bonds between them. Peptides-func is a multi-label graph classification dataset,
with a total of 10 classes based on the peptide function, e.g., Antibacterial,
Antiviral, cell-cell communication, and others. Peptides-struct is a multi-label
graph regression dataset based on the 3D structure of the peptides. Specifi-
cally, the task consists of the prediction of the inertia of the molecules using the
mass and valence of the atoms, the maximum distance between each atom-pairs,
sphericity, and the average distance of all heavy atoms from the plane of best
fit. Both Peptides-func and Peptides-struct consist of 15,535 graphs with a total
of 2.3 million nodes. PascalVOC-sp is a node classification dataset composed of
graphs created from the images in the Pascal VOC 2011 dataset (Everingham
et al., 2015). A graph is derived from each image by extracting superpixel nodes
using the SLIC algorithm (Achanta et al., 2012) and constructing a rag-boundary
graph to interconnect these nodes. Each node represents a region of an image
that belongs to a specific class. The dataset consists of 11,355 graphs for a total
of 5.4 million nodes. The task involves predicting the semantic segmentation
label for each superpixel node across 21 different classes.

We applied stratified splitting to Peptides-func and Peptides-struct to gen-
erate balanced train–valid–test dataset splits, using the ratio of 70%–15%–15%,
respectively. On PascalVOC-sp we consider 8,498 graphs for training, 1,428 for
validation and 1,429 test.

B.2.4 Explored hyperparameter space

In Table B.3 we report the grids of hyperparameters employed in our experiments
by each method. We recall that the hyperparameters ϵ, γ, and Â refer to SWAN
and A-DGN, while β only to SWAN. Moreover, we note that, in each graph
transfer task, we use a number of layers that isequal to the distance between the
source and target nodes.
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Table B.3: The grid of hyperparameters employed during model selection for the
graph transfer tasks (Transfer), graph property prediction tasks (GraphProp),
and Long Range Graph Benchmark (LRGB). We observe that, in each graph
transfer task, we use a number of layers that is equal to the distance between
the source and target nodes.

Hyperparameters Values

Transfer GraphProp LRGB

optimizer Adam Adam AdamW
learning rate 0.001 0.003 0.001, 0.0005
weight decay 0 10−6 0, 0.0001
n. layers 3, 5, 10, 50 1, 5, 10, 20 5, 8, 16, 32
embedding dim 64 10, 20, 30 64, 128
Â A, D−1/2AD−1/2 A, D−1/2AD−1/2 A, D−1/2AD−1/2

σ tanh tanh tanh
ϵ 0.5, 0.1 1, 0.1, 0.01 1, 0.01
γ 0.1 1, 0.1 1, 0.1
β 1, 0.1, 0.01, -1 2, 1, 0.5, 0.1, -0.5, -1 1, 0.1
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C.1 Explored hyperparameter space

Before providing the grid of hyperparameters employed in our experiments, we
first provide architectural details of the dissipative components in our PH-DGN.

As typically employed, we follow physics-informed approaches that learn how
much dissipation and external control is necessary to model the observations
(Desai et al., 2021). In particular, we consider these deep (graph) network
architectures for the dampening term D(q) and external force term F (q, t),
assuming for simplicity qu ∈ R d

2 .
Dampening D(q): it is a square d

2
× d

2
matrix block with only diagonal

entries being non-zero and defined as:

• param: a learnable vector w ∈ R d
2 .

• param+: a learnable vector followed by a ReLU activation, i.e., ReLU(w) ∈
R d

2 .

• MLP4-ReLU : a 4-layer MLP with ReLU activation and all layers of di-
mension d

2
.

• DGN-ReLU : a DGN node-wise aggregation layer from Equation 4.13 with
ReLU activation.

External forcing F (q, t): it is a d
2

dimensional vector where each compo-
nent is the force on a component of the system. Since it takes as input d

2
+ 1

components it is defined as:

• MLP4-Sin: 3 linear layers of d
2
+ 1 units with sin activation followed by a

last layer with d
2

units.
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• DGN-tanh: a single node-wise DGN aggregation from Equation 4.13 fol-
lowed by a tanh activation.

Note that dampening, i.e., energy loss, is only given when D(q) represents
a positive semi-definite matrix. Hence, we used ReLU-activation, except for
param, which offers a flexible trade-off between dampening and acceleration
learned by backpropagation.

In Table C.1 we report the grid of hyperparameters employed in our experi-
ments by each method.

Table C.1: The grid of hyperparameters employed during model selection for the
graph transfer tasks (Transfer), graph property prediction tasks (GraphProp),
and Long Range Graph Benchmark (LRGB). We refer to Appendix C.1 for more
details about dampening and external force implementations.

Hyperparameters Values

Transfer GraphProp LRGB

optimizer Adam Adam AdamW
learning rate 0.001 0.003 0.001, 0.0005
weight decay 0 10−6 0
embedding dim 64 10, 20, 30 195, 300
n. layers (L) 3, 5, 10, 50, 1, 5, 10, 20, 30 32, 64

100, 150
termination time (T ) Lϵ 0.1, 1, 2, 3, 4 3, 5, 6
ϵ 0.5, 0.2, 0.1, T/L T/L

0.05, 0.01, 10−4

Φp Eq. 4.13, GCN Eq. 4.13, GCN Eq. 4.13, GCN
Φq Eq. 4.13, GCN Eq. 4.13, GCN GCN
readout input p, q, p∥q p, q, p∥q p, q, p∥q
σ tanh tanh tanh
dampening – param, param+, param

MLP4-ReLU, DGN-ReLU
external Force – MLP4-Sin, DGN-tanh DGN-tanh
n. readout layers 1 1 1, 3
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D.1 Datasets description and statistics

In the heat diffusion experiments, we consider a grid graph consisting of 70
nodes, each of which is characterized by an initial temperature xu(0) randomly
sampled in the range between 0 and 0.2. We randomly alter the initial temper-
ature profile by generating hot and cold spikes located at some nodes. A hot
spike is characterized by a temperature between 10 and 15, while a cold spike
is between −15 and −10. Each altered node has a 40% chance of being associ-
ated with a cold spike and 60% with a hot spike. We considered two different
experimental scenarios depending on the number of altered nodes. In the first
scenario, we alter the temperature of a single node. In the second one, we alter
the temperature of one third of the graph’s nodes. We will refer to these settings
as single-spike and multi-spikes, respectively.

We collected the ground truth by simulating the heat diffusion equation
through the forward Euler’s method with step size ϵ = 10−3. Figure D.1 il-
lustrates two snapshot graphs from the simulated heat diffusion. The training
set consists of 100 randomly selected timestamps over the 1000 steps used to
simulate the diffusion process. The validation and test sets are generated from
two different simulations similar to the one used for building the training set.
However, validation and test sets are obtained through 500-step simulations, and
only 50 of them are kept as validation/test sets. We simulated seven different
diffusion functions, i.e., −LX(t), −L2X(t), −L5X(t), − tanh(L)X(t), −5LX(t),
−0.05LX(t), and −(L+N0,1)X(t). Here, N0,1 stands for a noise sampled from
a standard normal distribution, and L is the normalized graph Laplacian.

In the traffic benchmarks, we considered six real-world graph benchmarks
for traffic forecasting: MetrLA, Montevideo, PeMS03, PeMS04, PeMS07, and
PeMS08; we report additional details about the datasets in Table D.1. We used a
modified version of the original datasets where we employed irregularly sampled
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(a) (b)

Figure D.1: (a) A grid graph consisting of 70 nodes in which each node is
characterized by an initial temperature. Darker colors correspond to colder
temperatures, while brighter colors mean warmer temperatures. (b) The heat
diffusion simulation is computed through 1000 steps forward Euler’s method
leveraging −LX(t) as diffusion.

observations. We generated irregular time series by randomly selecting a third
of the original graph snapshots for most of the experiments; ratios from 3% to
94% are studied in Section 6.2.2.1.

Table D.1: Statistics of the original version of the datasets.

# Steps # Nodes # Edges Timespan

MetrLA 34,272 207 1,515 1st Mar. - 30th Jun. 2012
Montevideo 739 675 690 1st Oct. - 31st Oct. 2020
PeMS03 26,208 358 442 1st Sep. - 30th Nov. 2018
PeMS04 16,992 307 209 1st Jan. - 28th Feb. 2018
PeMS07 28,225 883 790 1st May - 31st Aug. 2017
PeMS08 17,856 170 137 1st Jul. - 31st Aug. 2016

D.2 Explored hyperparameter space
In Table D.2 we report the grids of hyperparameters employed in our experiments
by each method. We recall that the hyperparameter ϵ refers only to our method.
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Table D.2: The grid of hyperparameters employed during model selection for
the heat diffusion tasks (Heat) and graph benchmark tasks (Bench). The ϵ
hyperparameter is only used by our method (i.e., TG-ODE), and embedding
dim equal to None means that no encoder and readout are employed.

Hyperparameters Values

Heat Bench

learning rate 10−2, 10−3, 10−4

weight decay 10−2, 10−3

η concat, sum, η(x, x̂) = x
activation fun. tanh, relu, identity
embedding dim. None, 8 64, 32
ϵ 10−3 1, 0.5, 10−1, 10−2, 10−3

n. hops 5 1, 2, 5
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E.1 Datasets description and statistics
Table E.1 contains the statistics of the employed datasets. In the following, we
describe the datasets and their generation.

Table E.1: Statistics of the datasets used in our experiments. We report the
total number of nodes and edges in the dataset for the temporal path graph
(i.e., T-PathGraph) and temporal Pascal VOC (i.e., T-PascalVOC). “Chron.”
means that chronological order is preserved.

# Nodes # Edges # Edge ft. Split Surprise Index

T-PathGraph 3,000-20,000 2,000-19,000 1 70/15/15 1.0
T-PascalVOC10 2,671,704 2,660,352 14 70/15/15 1.0
T-PascalVOC30 2,990,466 2,906,113 14 70/15/15 1.0
Wikipedia 9,227 157,474 172 70/15/15, Chron. 0.42
Reddit 11,000 672,447 172 70/15/15, Chron. 0.18
LastFM 2,000 1,293,103 2 70/15/15, Chron. 0.35
MOOC 7,144 411,749 4 70/15/15, Chron. 0.79
tgbl-wiki-v2 9,227 157,474 172 70/15/15, Chron. 0.108
tgbl-review-v2 352,637 4,873,540 - 70/15/15, Chron. 0.987
tgbl-coin-v2 638,486 22,809,486 - 70/15/15, Chron. 0.120
tgbl-comment 994,790 44,314,507 - 70/15/15, Chron. 0.823

Sequence classification on temporal path graphs. To craft a temporal
long-range problem, we first introduced a sequence classification problem on
path graphs (see Section 2.1.1), which is a simple linear graph consisting of a
sequence of nodes where each node is connected to the previous one. In the
temporal domain, the nodes of the path graph appear sequentially over time
from first to last (e.g., bottom-to-top in Figure E.1).

We define the task objective as the prediction of the feature seen in the first
node (colored in orange in Figure E.1) by making the prediction leveraging only
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Figure E.1: The illustration of the sequence classification task on a temporal
path graph consisting of 5 nodes. The first node (colored in orange) has an
initial feature that can be either 1 or −1. All the other nodes and edges have
a feature set to random value sampled uniformly in [−1, 1]. At the end of the
sequence, the representation computed for the last node (colored in red) is used
to predict the original value of the first node. At each timestamp, the faded
portion of the graph corresponds to historical information.

the last node representation (colored in red in Figure E.1) computed at the end
of the sequence, i.e., when the last event appears. Note that this task is akin
to the sequence classification task designed in Chang et al. (2019), with the
addition of a graph convolution. We set the feature of the first node to be either
1 or −1, while we set every other node and edge feature to be sampled uniformly
in the range [−1, 1]. In other words, the feature xu0 of the first node u0 contains
a signal to be remembered as noise is added through the propagations steps
along the graph. Formally, we create a C-TDG: G = {ot | t ∈ [t0, tn]}, such that

ot = (t, E⊕, ut, ut+1,xut ,xut+1 , eut,ut+1),

where E⊕ corresponds to an edge addition event; xu0 ∼ Bernoulli(0.5)1; xuj
∼

U[−1,1],∀j > t0; and eut,ut+1 ∼ U[−1,1],∀t.
For this task we considered 8 temporal graph path datasets with different

sizes, ranging from n = 3 to n = 20, with n the number of nodes. For every
graph size we generate 1,000 different graphs, and we split the dataset into
train/val/test with the ratios 70%-15%-15%.

Temporal Pascal-VOC. We use the PascalVOC-SP dataset introduced in
Dwivedi et al. (2022) and discussed in Appendix B.2.3 to design a new tempo-
ral long-range task for edge classification. PascalVOC-SP is a node classifica-
tion dataset composed of graphs derived from each image in the Pascal VOC
2011 dataset (Everingham et al., 2015) by extracting superpixel nodes using the
SLIC algorithm (Achanta et al., 2012) and constructing a rag-boundary graph
to interconnect these nodes. Each node in a graph corresponds to one region

1Note that we sample 1 or -1 rather than 0 or 1 to make the problem balanced around
zero.
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Original image SP and r̀ag-boundary  ̀graph Static r̀ag-boundary  ̀graph Temporal r̀ag-boundary  ̀graph

T
im

e
 

Figure E.2: Construction of the Temporal PascalVOC-SP dataset. The SLIC
algorithm extracts patches from an image. We create the rag-boundary graph
connecting neighboring patches based on spatial closeness. We construct a tem-
poral graph by traversing from the topleftmost node with BFS. The goal of the
task is to predict the class of the destination node at each visited edge - in
the figure, either ’potted plant’ (red) or ’background’ (blue). For clarity in this
visualization, the compactness of the SLIC algorithm is low.

of the image belonging to a particular class, see Figure E.2 for an example.
PascalVOC-SP contains long-range interactions between spatially distant im-
age patches, evidenced by its average shortest path length of 10.74 and average
diameter of 27.62 (Dwivedi et al., 2022).

To craft a temporal task, we consider that nodes in a rag-boundary graph
appear from the top-left to the bottom-right of the image, sequentially. We
do so by selecting the top-leftmost node, i.e., the one closest (by means of L1

norm) to the origin in image coordinates. From this node, we traverse the graph
with a Breadth-First-Search, visiting each node exactly once. The order of
edge traversal corresponds to the timestamp of edge appearance in the temporal
task. We set the task’s objective to be the prediction of the class of the node
that is being visited by the current edge. Note that the traversal removes a
large number of edges from the initial graph, making the propagation of class
information more difficult, see Figure E.2.

Neighborhoods are constructed based on coordinates, connecting a node with
its 8 spatially closest neighbors. Nodes have 12 features extracted by channel-
wise statistics on the image (mean, std, max, min) and 2 features defining the
spatial location of the superpixel; we normalize these spatial features in the [0, 1]
range. We consider two SLIC superpixels compactness of 10 and 30 (smaller
compactness means fewer patches). To allow for batching, we fix the number of
nodes in each graph, allowing batching of edges that occur at the same timestep
across different graphs together. To do so, we discard rag-boundary graphs with
fewer nodes than the limit, and discard excess nodes on graphs with more nodes
than the limit, according to time (i.e., the most recent nodes are dropped).
This removes a small number of nodes corresponding to image patches on the
bottom-right of the image. In practice, for the two compactness levels 10 and
30, we set the number of minimum nodes per graph to be 434 and 474, which
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gives us 6,156 and 6,309 temporal graphs (out of the total 11,355 images in the
dataset). The resulting temporal datasets have 2,660,352 and 2,906,113 edges
respectively.

C-TDG benchmarks. For the C-TDG benchmarks on future link prediction,
we consider four well-known datasets proposed by Kumar et al. (2019):

• Wikipedia: one month of interactions (i.e., 157,474 interactions) between
user and Wikipedia pages. Specifically, it corresponds to the edits made
by 8,227 users on the 1,000 most edited Wikipedia pages;

• Reddit: one month of posts (i.e., interactions) made by 10,000 most ac-
tive users on 1,000 most active subreddits, resulting in a total of 672,447
interactions;

• LastFM: one month of who-listens-to-which song information. The dataset
contains 1000 users and the 1000 most listened songs, resulting in 1,293,103
interactions.

• MOOC: it consists of actions done by students on a MOOC online course.
The dataset contains 7,047 students (i.e., users) and 98 items (e.g., videos
and answers), resulting in 411,749 interactions.

Since the datasets do not contain negative instances, we perform negative sam-
pling by randomly sampling non-occurring links in the graph, as follows: (i)
during training we sample negative destinations only from nodes that appear in
the training set, (ii) during validation we sample them from nodes that appear
in training set or validation set and (iii) during testing we sample them from
the entire node set.

For all the datasets, we considered the same chronological split into train/-
val/test with the ratios 70%-15%-15% as proposed by Xu et al. (2020).

Transductive vs Inductive Settings. In Section 7.2.2 we employed trans-
ductive setting and random negative sampling as in Kumar et al. (2019); Xu
et al. (2020); Rossi et al. (2020); Yu et al. (2023); Cong et al. (2023). We chose
not to employ an inductive setting as it is not easily applicable to C-TDGs.
Specifically, there is no clear consensus in the literature regarding the definition
of inductive settings, making it difficult to identify the nodes considered for as-
sessing this experimental setup (e.g. Xu et al. (2020) differs from Rossi et al.
(2020)). Some definitions of inductive settings lead to the number of sampled
inductive nodes to be not statistically relevant for evaluation. Other interpreta-
tions of inductive settings disrupt the true dynamics of the graph, i.e., in Rossi
et al. (2020), certain nodes and their associated edges are removed from the
training set with the purpose of isolating an inductive set of nodes. Thanks to
the analysis performed in Yu et al. (2023), we can also observe that among all
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the considered datasets in Chapter 7 there is mix of inductive and transductive
edges, which can be measured with the surprise index from Yu et al. (2023),
measuring the proportion of unseen edges at test time; reported in Table E.1.
Hence, achieving strong performance on tasks with a high surprise index offers
valuable insights into the model’s capability to address the inductive setting.
Comparing CTAN performance to the surprise index, it is clear that CTAN can
cope reasonably well even in fully inductive tasks, such as those in Section 7.2.1
where it generally ranks first among other baselines.

Temporal Graph Benchmark. We consider four well-known datasets pro-
posed in the Temporal Graph Benchmark (TGB) (Huang et al., 2023):

• tgbl-wiki-v2: This dataset stores the co-editing network on Wikipedia
pages over one month introduced in (Kumar et al., 2019);

• tgbl-review-v2: Amazon product review network collected from 1997 to
2018 where users rate different products in the electronics category from
a scale from one to five. Both users and products are nodes and each edge
represents a particular review from a user to a product at a given time.
Only users with a minimum of 10 reviews. The task consists in predicting
which product a user will review at a given time.

• tgbl-coin-v2: cryptocurrency transaction network based on the Stable-
coin ERC20 transactions dataset (Shamsi et al., 2022), collecting trans-
action data of 5 stablecoins and 1 wrapped token from April 1st, 2022 to
November 1st, 2022. Each node is an address and each edge represents the
transfer of funds between two addresses at a time. The task consists in
predicting with which destination a given address will interact at a given
time;

• tgbl-comment: directed reply network of Reddit where users reply to
each other’s threads, collected from 2005 to 2010. Each node is a user and
each interaction is a reply from one user to another. The task consists in
predicting if a given user will reply to another one at a given time.

TGB provides pre-sampled negative edge sets with both random and his-
torical negatives (Poursafaei et al., 2022). For all the datasets, we considered
the same chronological split into train/val/test with the ratios 70%-15%-15% as
proposed by Huang et al. (2023).

E.2 Explored hyperparameter space
Table E.2 reports the grids of hyperparameters employed in our experiments by
each method in Sections 7.2.1 and 7.2.2, and Table E.3 lists the hyperparameters
used in our experiment in Section 7.2.3. We recall that the hyperparameters ϵ,



214 Appendix E. Supplementary materials of Chapter 7

γ, and η refer only to our method. We used dropout only for GraphMixer and
DyGFormer, where the values are loosely based on best-performing values in Yu
(2023).

Table E.2: The grid of hyperparameters employed during model selection for
the following three tasks: Sequence classification on temporal path graphs (Seq),
Temporal Pascal-VOC (Pasc), and Link Prediction (Link). For Seq and Pasc, we
conducted 10 runs and 5 runs with different random seeds for different weight
initializations for each configuration, whereas for Link, we conducted 5 runs
only for the configuration that resulted in the best performance in the initial
run. For the three tasks, the models were configured to have a maximum number
of learnable parameters of ∼20k, ∼40k, and ∼140k, respectively. Training was
conducted for 20 epochs, 200 epochs, and 1000 epochs, respectively. For Seq
and Pasc, we employed a scheduler halving the learning rate with a patience of
5 epochs, 20 epochs, respectively, whereas for Link we used early stopping with
a patience of 50 epochs. For all tasks, the neighbor sampler size was set to 5.
The batch size was set to 128, 256, and 256, respectively. We used the loss,
F1-score, and AUC on the validation set to optimize for the hyperparameters.
We used dropout only for GraphMixer and DyGFormer, where the values are
loosely based on best-performing values in Yu (2023).

Hyperparameters Method Values

Seq Pasc Link

optimizer Adam
learning rate 3 · 10−4 3 · 10−4 10−4, 10−5

weight decay 10−7 10−5 10−6

n. GCLs 1, 3, 5
σ tanh
ϵ 1, 0.5, 10−1, 10−2 1, 0.5, 10−1, 10−2 0.5, 10−1, 10−2, 10−3

γ 1, 0.5, 10−1, 10−2 1, 0.5, 10−1, 10−2 0.5, 10−1, 10−2, 10−3

η concat, η = tanh(hi−1(te)||x(i))
dropout 0.1, 0.2 0.1, 0.2 −
time dim 1 1 16

memory dim
(= DGN dim)

DyGFormer 10, 5 14, 7 −
DyRep 53, 26 74, 37 118, 87
GraphMixer 30, 15 24, 12 −
JODIE 69, 34 97, 48 164, 122
TGAT 24, 12 24, 12 33, 23
TGN 19, 9 21, 10 33, 20
CTAN 53, 26 74, 37 128, 96
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Table E.3: The grid of hyperparameters employed during model selection for
CTAN on the Dynamic Link Property Prediction task on the three TGB
benchmark datasets considered: tgbl-wiki-v2, tgbl-review-v2, tgbl-coin-v2, tgbl-
comment. For tgbl-wiki-v2 we conducted five runs with different random seeds
for different weight initializations for each configuration, whereas for the other
datasets we conducted three different runs. The rest of the training configura-
tion is taken from the TGB codebase: batch size is 200, weight decay penalty
was 0, the optimized metric is Mean Reciprocal Rank and is evaluated with the
TGB evaluator.

Hyperparameters Values

tgbl-wiki-v2 tgbl-review-v2 tgbl-coin-v2 tgbl-comment

optimizer Adam
σ tanh
γ 0.1 0.1, 0.01 0.1, 0.01 0.1
η concat, η = tanh(hi−1(te)||x(i))
n. GCLs 1, 2, 3 1,2 1 1
ϵ 1.0 0.5, 1.0 0.5, 1.0 1.0
embedding dim 256
sampler size 32
learning rate 10−3, 10−4, 3 · 10−6 10−4 10−4, 3 · 10−4,

3 · 10−4, 3 · 10−5 10−5, 3 · 10−5

epochs 200 50 50 50
LR scheduler patience 20 3 3 3





Appendix F

Additional contribution

F.1 Hidden Markov Models for dynamic graphs

In Chapter 3, we presented literature approaches for learning dynamic graphs.
An attentive reader may have noticed that most of these approaches are confined
to the class of neural networks, thus making probabilistic methods for dynamic
graphs widely understudied despite their potential. For instance, a probabilistic
model can easily capture the multimodality of the data distribution, which is
useful in the context of stochastic processes (Errica et al., 2021). Additionally,
they can deal with missing data and exploit large amounts of unlabeled data to
build rich unsupervised embeddings (Bacciu et al., 2020a). Therefore, in this
chapter, we propose the Hidden Markov Model for Dynamic Graphs (HMM4G),
a deep and purely probabilistic model for sequences of graph snapshots. HMM4G
extends hidden Markov models for sequences to the D-TDG domain by stacking
probabilistic layers that perform efficient message passing and learn representa-
tions for the individual nodes.

The key contributions of this chapter can be summarized as follows:

• We introduce a new probabilistic framework for learning D-TDGs, named
HMM4G. Our method combines the sequential processing of HMMs with
message passing to deal with topologically varying structures over time.

• We conduct experiments to demonstrate the benefits of our method on
temporal node prediction tasks, showing competitive performance with
neural network counterparts.

This contribution has been developed in collaboration with NEC Laborato-
ries Europe, Heidelberg, Germany. We base this chapter on Errica et al. (2023b).
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F.1.1 Basic Concepts of Probability, HMM, and
IO-HMM

Before delving into the description of how to deal with D-TDG representation
learning in a purely probabilistic fashion, we provide basic concepts that will be
used in the following section. The reader can refer to Bishop (2006), Bruni &
Montanari (2017), and Murphy (2022) for a complete treatment of this topic.

We start by introducing basic concepts of probability theory. Consider the
set of all possible outcomes of an experiment with the symbol Ω, and the set
of events of interest that may occur as A ⊆ P(Ω), where P(·) represent the
powerset operator. A probability is a function P : A→ [0,+∞], such that

1. P (∅) = 0;

2. P (Ω) = 1;

3. ∀A ∈ A⇒ P (A) ≥ 0;

4. for any countable collection {Ai}i∈N ⊆ A of disjoints sets it holds that
P (
⋃

i∈N Ai) =
∑

i∈N P (Ai).

To better understand these concepts, let’s consider the example of a coin toss. In
such a scenario, Ω = {head, tail} and A = {{∅}, {head}, {tail}, {head, tail}}. In
a fair coin toss, the probabilities are P ({∅}) = 0, P ({head}) = 1/2, P ({tail}) =
1/2, and P ({head, tail}) = 1.

Another useful concept is that of random variables. A random variable is a
function describing the outcome of a random process by assigning unique values
to all possible outcomes, i.e., X : Ω → E such that {ω ∈ Ω |X(ω) ∈ E} ∈ A.
The values associated to a random variable are called states. Depending on the
definition of the image E, we can distinguish between discrete and continuous
random variables. Recalling the coin toss example, we can define a discrete
random variable such that P (X = head) = 1/2 and P (X = tail) = 1/2. In the
following, we refer to P (x) instead of P (X = x) for brevity.

In many scenarios, we seek to determine the probability of multiple events
occurring simultaneously. These scenarios can be formalized by employing a
set of random variables, each representing the occurrence of a specific event.
Therefore, we can define the joint probability distribution P (x1, . . . , xn) to
represent this particular case. If the n random variables are mutually indepen-
dent, then it is true that P (x1, . . . , xn) =

∏n
i=1 P (xi). On the contrary, when

an event Y = y has an effect on the other random variables, then we talk about
conditional probabilities, P (x1, . . . , xn|y). In this case, random variables can
be conditionally independent if P (x1, . . . , xn|y) =

∏n
i=1 P (xi|y). Applying

the Bayes’ theorem the conditional probability P (x|y) (also referred to as
posterior probability) can be equated to

P (x|y) = P (y|x)P (y)

P (x)
(F.1)
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where P (y) is the prior probability; P (y|x) is the conditional probability of
Y = y given X = x (and it is also referred to as likelihood); and P (x) is the
marginal probability.

We now turn to define the distribution of a random variable, which is the
probability measure on the set of all possible states of the random variable. To
provide the reader with a better understanding, we introduce the categorical
distribution and the Dirichlet distribution.

The categorical distribution is a discrete probability distribution defined
over a finite set of C values. It is typically used to describe the possible results of
a discrete random variable that can take on one of C possible categories, which
is usually represented as a real vector of size C with entries that sum to 1. More
formally,

P (X = i) = pi, for i = 1, . . . , C. (F.2)

The Dirichlet distribution is a continuous multivariate probability distri-
bution parameterized by a vector of C positive reals, i.e., α ∈ RC . The Dirichlet
distribution is defined as

P (x1, . . . , xC |α1, . . . , αC) =
1

B(α)

C∏
i=1

xαi−1
i

where B(α) =

∏C
i=1 Γ(αi)

Γ(
∑C

i=1 αi)
and Γ(αi) = (αi − 1)!.

(F.3)

We now move our focus to the hidden Markov model (HMM), which is a
probabilistic model used to represent systems that transition between a series of
latent (hidden) states over time. A HMM is specified by a random variable that
recursively encode information over a set of C discrete latent states, where the
transition at time t from one state (Xt = i) to another (Xt+1 = j) is governed
by the transition probability matrix, where each element (i, j) defines the
likelihood of transitioning from state i to j, i.e., P (Xt+1 = j|Xt = i). The
initial latent state X1 is obtained by an initial probability distribution that
defines the probability that the HMM starts in state i, i.e., P (X1 = i). The
specification of the probabilistic model is completed by defining the observations
Y1, . . . , Yt, which are observed signals depended on the states. Observations
are governed by an emission probability, which identify the likelihood of an
observation being generated from a particular state, i.e., P (yt|xt, θ) with θ a set
of parameters governing the distribution, and yt and xt the realizations of Yt

and Xt, respectively. Figure F.1 visually represent an HMM.
The main task in HMM is to compute the joint probability of hidden states

and observations, i.e.,

P (Y |X) =
T∏
t=1

P (xt|xt−1)P (yt|xt). (F.4)
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(a) (b)

Figure F.1: Graphical model of an HMM, with its recurrent view (a) and its
unfolded view (b).

Input-Output HMM (IO-HMM) for sequences (Bengio & Frasconi, 1996) ex-
tends the HMM framework to support recurrent networks processing style, thus
allowing input states to further drive the transition among states. Therefore, IO-
HMM can be used to learn to map input sequences to output sequences. Since
states are influenced by the inputs, we can rewrite the transition distribution as

P (xt+1|xt, u1:t+1) =
C∑

j=1

P (xt+1|xt, ut)P (yt|u1:t) (F.5)

where C is the number of states, and u1:t is the subsequence of inputs from time
1 to t and ut is the t-th input.

F.1.2 The HMM4G Model

In order to facilitate differentiation from neural architectures, we introduce a
slightly modified notation and symbols. We introduce random variable (r.v.)
X t

u with realization xu to model the distribution of node u attributes at time-
step t. Similarly, we model the latent state of a node u at time-step t with
a categorical r.v. Qt

u with C possible states and discrete realization qtu. The
posterior distribution of Qt

u conditioned on the evidence is another categorical
distribution, and we refer to its parametrization with a vector ht

u ∈ RC belong-
ing to the C-1-simplex. Generally speaking, such a parametrization can be seen
as the realization of a Dirichlet distribution of order C that we denote with the
letter H t

u.

In HMM4G we mirror the same message passing mechanism of DGNs for
D-TDGs by stacking layers of temporal graph convolutions on top of each other.
The key difference is that we implement each layer as a special case of an IO-
HMM for sequences (introduced in Section F.1.1). We present HMM4G’s graph-
ical model for a generic node u and layer ℓ in Figure F.2, abstracting from the
layer to ease the exposition. Compared to an HMM, in a classical IO-HMM
the prior distribution of the latent variable Qt is replaced by the conditional
distribution of Qt given the input evidence at time-step t. Similarly, in a generic
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layer ℓ of HMM4G, we define a similar conditional distribution that takes into
account the “messages” of the neighbors of u computed at a previous layer ℓ−1.

neighbors’ contribution
from previous layer

Figure F.2: Graphical model of HMM4G at layer ℓ for node u in the graph.
Observed r.v.s (values estimated at layer ℓ − 1) are in blue and latent ones in
white.

Formally, the input evidence for node u at time t is modeled by a Dirichlet
r.v. H t

Nu
of order C, whose realization ht

Nu
∈ RC is computed as follows:

ht
Nu

=
1

|Nu|
∑
v∈Nu

ht
v, (F.6)

where we have aggregated the parameters of the posterior distributions of the
neighbors computed at the previous layer. This is akin to what happens in deep
graph neural networks, where the latent representations of neighboring nodes
are combined by a permutation invariant function. We use ht

Nu
to explicitly

parametrize the (categorical) transition distribution for node u at layer ℓ:

Pθ(Q
t
u = i | Qt−1

u = qt−1
u , H t

Nu
= ht

Nu
) =

C∑
j=1

Pθj(Q
t
u = i | qt−1

u )ht
Nu

(j), (F.7)

where θ = (θ1, . . . ,θC) are the transition parameters to be learned and ht
Nu

(j)
denotes the j-th component of a vector. The parameters θ are shared across
all nodes to generalize to unseen graphs of arbitrary topology. The only other
distribution of the model, that is P (X t

u|Qt
u), is learned as in standard IO-HMMs

and also shared across all nodes, e.g., a Gaussian for continuous attributes.
At each layer, due to the presence of cycles in the graphs, we break the

mutual dependencies between the node variables as a product of conditional
probabilities, and we maximize the following pseudo-log-likelihood with respect
to the parameters Θ:

log
∏
u∈Vg

PΘ(X
1
u, . . . , X

T
u |h1

Nu
, . . . ,hT

Nu
). (F.8)

Therefore, sequences of node attributes can be processed in parallel as it hap-
pens for temporal deep graph networks, meaning that the inference phase has
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the same linear complexity in the number of edges when processing the graph.
We train HMM4G incrementally: we apply Expectation Maximization (Bishop,
2006) to layer ℓ, and we infer the parameters of the posterior distribution of
the variable Qt

u for all nodes and time-steps in the graph sequence. We use this
information to compute ht

Nu
in the subsequent layer ℓ+1. Figure F.3 shows how

information is computed for node u in two consecutive layers of our HMM4G.

-th layer

-th layer

Figure F.3: Computation process for node u in two consecutive layers of our
HMM4G. In layer ℓ, Expectation Maximization is applied to infer the parameters
of the posterior distribution of the variable Qt

u for all nodes and time-steps in the
graph sequence. This information is then used to compute ht

Nu in the subsequent
layer ℓ+ 1. Finally, the computed htNu is used to transition to the new state.

When ℓ = 0, the layer reduces to an HMM. We can compute closed-form
update equations for the M-step by extending the classical HMM derivation; we
do not show them here in the interest of space. The final latent representation
of each node u at time t, which is eventually used to make predictions about
the nodes, is the concatenation of the realizations ht

u across the layers of the
architecture. In particular, we apply the same unibigram technique of Bacciu
et al. (2020a) to the learned representations, which modifies each ht

u of layer ℓ to
take into account some neighboring statistics as well. Indeed, it was shown that
unibigrams improve the quality of the learned representation for static graphs.
Training complexity is also similar to other literature models in Section 3.1.

We could extend the model to account for discrete edge types and multiple
prior layers using the techniques in Bacciu et al. (2020a), but we leave these ex-
tensions to future works. In addition, we do not assume a static graph structure
over time, i.e., limiting our model to spatio-temporal graphs only, but rather we
can let both the nodes’ attributes and their interactions freely change.
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F.1.3 Experiments

In this section, we provide an empirical assessment of our method against related
DGN models for dynamic graphs from the literature. Specifically, we consider
the task of temporal node regression (see Section 3.3 for more details). We
release the code implementing our methodology and reproducing our analysis at
github.com/nec-research/hidden_markov_model_temporal_graphs.

F.1.3.1 Temporal Node Regression Tasks

Setup. We consider four known graph datasets for node regression in the dy-
namic graph domain:

• Twitter Tennis (Béres et al., 2018): Twitter mention graphs of major
tennis tournaments from 2017. Nodes are Twitter accounts and edges are
mentions between them. Node features encode the number of mentions
received and other structural properties. The target is the number of
received mentions.

• Chickenpox (Rozemberczki et al., 2021c): this dataset comprises county-
level chicken pox cases in Hungary between 2004 and 2014. Nodes repre-
sent counties, and edges denote neighboring relationships. Node features
are lagged weekly counts of the chickenpox cases.

• Pedalme (Rozemberczki et al., 2021a): this dataset consists of the number
of weekly bicycle package deliveries by Pedal Me in London between 2020
and 2021. Nodes are localities and edges are spatial connections. Node
features are lagged weekly counts of the delivery demands.

• Wikimath (Rozemberczki et al., 2021a): this dataset comprises the num-
ber of daily visits of Wikipedia pages between 2019 and 2021. The nodes
represent Wikipedia pages about popular mathematics topics, and edges
describe the links between the pages. Node features are the daily visit
counts.

In Twitter Tennis the underlying topology is dynamic, i.e., changes over time.
In contrast, the remaining three datasets have a static underlying topology in
which only node features change over time. The task consists of predicting
future node labels given the previous evolution of the graph (also known as graph
snapshots). We report in Table F.1 the statistics of the employed datasets.

We compare our method against 11 state-of-the-art DGNs for D-TDGs:
DCRNN (Li et al., 2018), GCRN-GRU (Seo et al., 2018), GCRN-LSTM (Seo
et al., 2018), GCLSTM (Chen et al., 2022), DyGrAE (Taheri & Berger-Wolf,
2020), EvolveGCN-H (Pareja et al., 2020), EvolveGCN-O(Pareja et al., 2020),

https://github.com/nec-research/hidden_markov_model_temporal_graphs


224 Appendix F. Additional contribution

Table F.1: Statistics of the datasets used in our experiments.

# Nodes Seq. len. Frequencey Split

Chickenpox 20 522 Weekly 80/10/10
Pedalme 15 30 Weekly 80/10/10
Wikimath 1,068 731 Daily 80/10/10
Twitter tennis 1,000 120 Hourly 80/10/10

A3TGCN (Bai et al., 2021), TGCN (Zhao et al., 2020), MPNN LSTM (Pana-
gopoulos et al., 2021), and DynGESN (Micheli & Tortorella, 2022). Such base-
lines differ in the learning strategy, attention mechanisms, and employed tem-
poral and graph neural network layers (as detailed in Section 3.1).

Each model is designed as a combination of two main components. The first
is the recurrent graph encoder which maps each node’s input features into a
latent representation. The second is the readout, which maps the output of the
first component into the output space. The readout is a Multi-Layer Perceptron
for almost all models in the experiments (DynGESN uses ridge regression). For
each timestamp of the sequence, we first obtain the latent node representations
of the corresponding graph snapshot using the recurrent encoder, and then we
feed them into the readout to obtain a prediction for each node.

We leverage the same experimental setting and data splits reported in Micheli
& Tortorella (2022). Specifically, we performed hyperparameter tuning via grid
search, optimizing the Mean Square Error (MSE). We train using the Adam
optimizer for a maximum of 1000 epochs. We employ an early stopping criterion
that stops the training if the validation error does not decrease for 100 epochs.
We report in Table F.2 the grid of hyperparameters explored in our experiments.

Table F.2: The grid of hyperparameters employed during model selection for
our experiments.

Hyperparameters HMM4G Readout

n. layers 1, 2, 3, 4, 5 1, 2, 3
C 5, 10 –
epochs 10, 20, 40 1000
optimizer – Adam
learning rate – 10−3, 10−2

weight decay – 0, 0.0005, 0.005
embedding dim – 22, 23, 25, 26, 27

Results. We present the MSE test results of our experiments in Table F.3.
The first observation is that HMM4G has promising performances compared
to the baselines employed in the experiments, ranking first or second in three
out of four tasks. Indeed, HMM4G achieves an error score that is on average
16% better than the other baselines. The larger gain is achieved on Tennis and
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Table F.3: Test MSE with standard deviation averaged over 10 final runs. First,
second, and third best results for each task are color-coded. Baselines taken
from Micheli & Tortorella (2022).

Model Chickenpox Tennis Pedalme Wikimath

Baseline
Mean baseline 1.117 0.482 1.484 0.843
Linear baseline 0.952 0.356 1.499 0.663

DGN for D-TDGs
DCRNN 1.097±0.006 0.478±0.004 1.454±0.050 0.679±0.007

GCRN-GRU 1.103±0.004 0.477±0.007 1.420±0.054 0.680±0.021

GCRN-LSTM 1.097±0.006 0.477±0.006 1.453±0.085 0.678±0.008

GCLSTM 1.095±0.005 0.475±0.010 1.490±0.088 0.677±0.009

DyGrAE 1.102±0.013 0.480±0.005 1.426±0.089 0.621±0.012

EvolveGCN-H 1.137±0.026 0.481±0.003 1.446±0.168 0.779±0.031

EvolveGCN-O 1.135±0.011 0.484±0.002 1.469±0.137 0.807±0.047

A3TGCN 1.078±0.009 0.477±0.005 1.494±0.049 0.618±0.008

TGCN 1.083±0.011 0.478±0.004 1.515±0.059 0.616±0.011

MPNN LSTM 1.125±0.005 0.482±0.001 1.580±0.102 0.856±0.021

DynGESN 0.907±0.007 0.300±0.003 1.528±0.063 0.610±0.003

Our
HMM4G 0.939±0.013 0.333±0.004 1.769±0.370 0.542±0.008

Wikimath datasets, where HMM4G is on average 39% and 28% better than the
baselines, respectively. It is worth noting that Tennis and Wikimath datasets
are more challenging than the other tasks in our experiments, as they contain
two orders of magnitude more nodes than the others. Moreover, in the Twitter
task, models also have to capture the evolution of temporal edges. This highlight
that our method learns representative embeddings even in challenging scenarios.
In general, our method performs comparably with DynGESN. The worst perfor-
mance is achieved on the Pedalme dataset, which consists of only 36 timestamps
and 15 nodes, making it the smallest temporal graph in our experiments. The
amount of nodes is so small that the initialization of the Gaussian emission dis-
tributions is problematic (probably connected to the high standard deviation),
meaning there is not enough incentive for the model to differentiate the embed-
dings based on the structural information when maximizing the likelihood. On
the other hand, HMM4G achieves the best performance on Wikimath, which is
also the largest of the datasets considered, and it improves over DynGESN and
the other baselines by a large margin. This suggests that, with enough data,
our probabilistic model can learn good representations of the temporal graph
dynamics.
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F.1.4 Related Work

HMM4G is inspired by two different lines of research. The first is the one of
deep probabilistic models for static graphs (Bacciu et al., 2020a) that rely on
message passing mechanisms (Gilmer et al., 2017). These methods are trained
incrementally, one layer after another, and the depth of the architecture is func-
tional to the spreading of messages between nodes of the graph. The second is
the one of dynamic graph representation learning (see Chapter 3), which devel-
ops ad-hoc approaches to deal with the different technical and methodological
challenges that the temporal extension, such as the varying topology of graphs
across time, the sudden (dis)appearance of nodes, and the memory capacity of
temporal models. HMM4G lies at the intersection between these two fields, by
proposing a purely probabilistic method for graph representation learning. It
also profoundly differs from Kayaalp et al. (2022), where a multi-agent filtering
algorithm is proposed to determine an underlying state of the graph, but it is
orthogonal to the topic of graph representation learning.

F.1.5 Summary

We introduced a new probabilistic framework for learning D-TDGs. Our method
combines the sequential processing of HMMs with message passing to deal with
topologically varying structures over time. We showed how the learned rep-
resentations are useful for temporal node prediction tasks, especially on larger
datasets. We believe that our contribution is one of the first attempts at bridging
the gap between probabilistic models and dynamic graph learning.
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