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Traditional Three-Phase Compiler

Optimization (or Code Improvement)

• Analyzes IR and rewrites (or transforms ) IR


• Primary goal is to reduce running time of the compiled code

— May also improve space, power consumption, …


Transformations have to be:

• Safely applied and  (it does not change the result of the running program)

•  Applied when profit has expected
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Background  

• Until the early 1980s optimisation was a feature  should be added 
to the compiler only after its other parts were working well


• Debugging compilers vs. optimising compilers


• After the development of RISC processors the demand for 
support from the compiler had increased



The Optimizer

Typical Transformations

• Discover & propagate some constant value

• Move a computation to a less frequently executed place

• Specialize some computation based on context

• Discover a redundant computation & remove it

• Remove useless or unreachable code
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Modern optimizers are structured as a series of passes



The Role of the Optimizer
• The compiler can implement a procedure in many ways

• The optimizer tries to find an implementation that is “better”


— Speed, code size, data space, …


To accomplish this, it

• Analyzes the code to derive knowledge about run-time behavior


— Data-flow analysis, pointer disambiguation, …

— General term is “static analysis”


• Uses that knowledge in an attempt to improve the code

— Literally hundreds of transformations have been proposed

— Large amount of overlap between them


Nothing “optimal” about optimization

• Proofs of optimality assume restrictive & unrealistic conditions



Scope of Optimization

In scanning and parsing, “scope” refers to a region of the code 
that corresponds to a distinct name space.


In optimization “scope” refers to a region of the code that is 
subject to analysis and transformation.

•Notions are somewhat related

•Connection is not necessarily intuitive

Different scopes introduces different challenges & different  
opportunities


Historically, optimization has been performed at several distinct 
scopes.



Scope of Optimization

Local optimization

• Operates entirely within a single basic block

• Properties of block lead to strong optimizations


Regional optimization

• Operate on a region in the CFG that contains multiple blocks

• Loops, trees, paths, extended basic blocks


Whole procedure optimization  (intraprocedural )

• Operate on entire CFG for a procedure


Whole program optimization  (interprocedural )

• Operate on some or all of the call graph   (multiple procedures)

• Must contend with call/return & parameter binding

CFG of basic blocks: BB is a 
maximal length sequence of 
straightline code.

new opportunities



Loop Unrolling
Applications spend a lot of time in loops

• We can reduce loop overhead by unrolling the loop


• Eliminated  additions, tests and branches: reduce the number of 
operations. The resulting code  can be subjected to strong local 
optimization!


• Only works with fixed loop bounds & few iterations

• The principle, however, is sound

• Unrolling is always safe, as long as we get the bounds right

A Regional Technique

do i = 1 to 100 by 1
a(i) ← b(i) * c(i)
end

a(1)     ← b(1) * c(1)
a(2)     ← b(2) * c(2)
a(3)     ← b(3) * c(3)
  …
a(100) ← b(100) * c(100)

Complete unrolling



Loop Unrolling

Unrolling by smaller factors can achieve much of the benefit


Example: unroll by 4 (8, 16, 32? depends on # of registers)


Achieves much of the savings with lower code growth

• Reduces tests & branches by 25%

• Less overhead per useful operation


But, it relied on knowledge of the loop bounds…

do i = 1 to 100 by 1
          a(i) ← b(i) * c(i)

end

do i = 1 to 100 by 4
a(i)     ← b(i) * c(i)
a(i+1) ← b(i+1) * c(i+1)
a(i+2) ← b(i+2) * c(i+2)
a(i+3) ← b(i+3) * c(i+3)
end

Unroll by 4



Loop Unrolling

Unrolling with unknown bounds


Need to generate guard loops


Achieves most of the savings

• Reduces tests & branches by 25%

• Guard loop takes some space


Can generalize to arbitrary upper & lower bounds, unroll factors

do i = 1 to n by 1
a(i) ← b(i) * c(i)
end

i ← 1
do while (i+3 < n )

a(i)     ← b(i) * c(i)
a(i+1) ← b(i+1) * c(i+1)
a(i+2) ← b(i+2) * c(i+2)
a(i+3) ← b(i+3) * c(i+3)
i ←i + 4
end

do while (i < n)
a(i)     ← b(i) * c(i)
i ← i + 1
end

Unroll by 4



Loop Unrolling
One other unrolling trick


Eliminate copies at the end of a loop


Unroll

• Eliminates the copies, which were a naming artifact

• Achieves some of the benefits of unrolling


— Lower overhead, longer blocks for local optimization


• Situation occurs in more cases than you might suspect

t1 ← b(0)
do i = 1 to 100 by 1
            t2 ← b(i)
           a(i) ← a(i) + t1 + t2

t1 ← t2
end

Unroll and rename

t1 ← b(0)
do i = 1 to 100 by 2
          t2    ← b(i)
         a(i)   ← a(i) + t1 + t2
          t1    ← b(i+1)
       a(i+1) ← a(i+1) + t2 + t1
       end

i=1,…100 : a(i)=a(i)+b(i)+b(i-1)



• It increases the size of the code 

• The unrolled loop may have more demand for registers

• If the demand for registers forces additional register  spills 

(store and reloads) then the resulting memory traffic may 
overwhelm the potential  benefits of unrolling

Sources of Degradation


