
Introduction to Code Optimization 
 

Copyright 2010, Keith D. Cooper & Linda Torczon, all rights reserved.

Faculty from other educational institutions may use these materials for nonprofit educational
purposes, provided this copyright notice is preserved

Traditional Three-Phase Compiler

Optimization (or Code Improvement)

• Analyzes IR and rewrites (or transforms) IR

• Primary goal is to reduce running time of the compiled code

— May also improve space, power consumption, …

Transformations have to be:

• Safely applied and (it does not change the result of the running program)

• Applied when profit has expected

Errors

Source

Code

OptimizerFront

End

Machine

code

Back

End

IR IR

Background

• Until the early 1980s optimisation was a feature should be added
to the compiler only after its other parts were working well

• Debugging compilers vs. optimising compilers

• After the development of RISC processors the demand for
support from the compiler had increased

The Optimizer

Typical Transformations

• Discover & propagate some constant value

• Move a computation to a less frequently executed place

• Specialize some computation based on context

• Discover a redundant computation & remove it

• Remove useless or unreachable code

Errors

Opt

1

Opt

3

Opt

2

Opt

n

...IR IR IR IR IR

Modern optimizers are structured as a series of passes

The Role of the Optimizer
• The compiler can implement a procedure in many ways

• The optimizer tries to find an implementation that is “better”

— Speed, code size, data space, …

To accomplish this, it

• Analyzes the code to derive knowledge about run-time behavior

— Data-flow analysis, pointer disambiguation, …

— General term is “static analysis”

• Uses that knowledge in an attempt to improve the code

— Literally hundreds of transformations have been proposed

— Large amount of overlap between them

Nothing “optimal” about optimization

• Proofs of optimality assume restrictive & unrealistic conditions

Scope of Optimization

In scanning and parsing, “scope” refers to a region of the code
that corresponds to a distinct name space.

In optimization “scope” refers to a region of the code that is
subject to analysis and transformation.

•Notions are somewhat related

•Connection is not necessarily intuitive

Different scopes introduces different challenges & different
opportunities

Historically, optimization has been performed at several distinct
scopes.

Scope of Optimization

Local optimization

• Operates entirely within a single basic block

• Properties of block lead to strong optimizations

Regional optimization

• Operate on a region in the CFG that contains multiple blocks

• Loops, trees, paths, extended basic blocks

Whole procedure optimization (intraprocedural)

• Operate on entire CFG for a procedure

Whole program optimization (interprocedural)

• Operate on some or all of the call graph (multiple procedures)

• Must contend with call/return & parameter binding

CFG of basic blocks: BB is a
maximal length sequence of
straightline code.

new opportunities

Loop Unrolling
Applications spend a lot of time in loops

• We can reduce loop overhead by unrolling the loop

• Eliminated additions, tests and branches: reduce the number of
operations. The resulting code can be subjected to strong local
optimization!

• Only works with fixed loop bounds & few iterations

• The principle, however, is sound

• Unrolling is always safe, as long as we get the bounds right

A Regional Technique

do i = 1 to 100 by 1
a(i) ← b(i) * c(i)
end

a(1) ← b(1) * c(1)
a(2) ← b(2) * c(2)
a(3) ← b(3) * c(3)
 …
a(100) ← b(100) * c(100)

Complete unrolling

Loop Unrolling

Unrolling by smaller factors can achieve much of the benefit

Example: unroll by 4 (8, 16, 32? depends on # of registers)

Achieves much of the savings with lower code growth

• Reduces tests & branches by 25%

• Less overhead per useful operation

But, it relied on knowledge of the loop bounds…

do i = 1 to 100 by 1
 a(i) ← b(i) * c(i)

end

do i = 1 to 100 by 4
a(i) ← b(i) * c(i)
a(i+1) ← b(i+1) * c(i+1)
a(i+2) ← b(i+2) * c(i+2)
a(i+3) ← b(i+3) * c(i+3)
end

Unroll by 4

Loop Unrolling

Unrolling with unknown bounds

Need to generate guard loops

Achieves most of the savings

• Reduces tests & branches by 25%

• Guard loop takes some space

Can generalize to arbitrary upper & lower bounds, unroll factors

do i = 1 to n by 1
a(i) ← b(i) * c(i)
end

i ← 1
do while (i+3 < n)

a(i) ← b(i) * c(i)
a(i+1) ← b(i+1) * c(i+1)
a(i+2) ← b(i+2) * c(i+2)
a(i+3) ← b(i+3) * c(i+3)
i ←i + 4
end

do while (i < n)
a(i) ← b(i) * c(i)
i ← i + 1
end

Unroll by 4

Loop Unrolling
One other unrolling trick

Eliminate copies at the end of a loop

Unroll

• Eliminates the copies, which were a naming artifact

• Achieves some of the benefits of unrolling

— Lower overhead, longer blocks for local optimization

• Situation occurs in more cases than you might suspect

t1 ← b(0)
do i = 1 to 100 by 1
 t2 ← b(i)
 a(i) ← a(i) + t1 + t2

t1 ← t2
end

Unroll and rename

t1 ← b(0)
do i = 1 to 100 by 2
 t2 ← b(i)
 a(i) ← a(i) + t1 + t2
 t1 ← b(i+1)
 a(i+1) ← a(i+1) + t2 + t1
 end

i=1,…100 : a(i)=a(i)+b(i)+b(i-1)

• It increases the size of the code

• The unrolled loop may have more demand for registers

• If the demand for registers forces additional register spills

(store and reloads) then the resulting memory traffic may
overwhelm the potential benefits of unrolling

Sources of Degradation

