Abstract Interpretation

Abstract Interpretation

- Designed to describe static analyses of imperative programs and to prove their correctness
- Since then, applied to numerous classes of programming languages and software/hardware systems
- Today, viewed as a general technique for reasoning on semantics at various abstraction levels

The general idea

- The starting point is a concrete semantics that provides the meaning of program commands into a given computational domain
- An abstract domain, which models some properties of interest of concrete computations and leaves out the remaining information
- An abstract semantics that allows us "to abstractly execute" a program on the abstract domain in order to compute the program properties modelled by the abstract domain.

Abstract Interpretation

It is a technique to formally reason on approximations

It allows to derive effective methods to compute approximations

Generally used to compute overapproximations

Seldom used to compute underapproximations

Example: out of bounds

```
function arrayOutOfBounds(int n, int x[10]) {
  a = 0
                                            Let us assume n \ge 0
  if n >= 10 then
      n = n - 5
  else
                         Is it a safe access? (0 \le a \le 9?)
  a = \max(0, a - n)
  return x[a] }
```

Using exact semantics

```
function arrayOutOfBounds(int n, int x[10]) {
(0, -)(1, -)(2, -)(3, -)(4, -)(5, -)(6, -)(7, -)(8, -)(9, -)(10, -)...
  a = 0
(0,0)(1,0)(2,0)(3,0)(4,0)(5,0)(6,0)(7,0)(8,0)(9,0)(10,0)...
  if n >= 10 then
(10,0)(11,0)(12,0)(13,0)(14,0)(15,0)(16,0)(17,0)(18,0)(19,0)...
     n = n - 5
(5,0)(6,0)(7,0)(8,0)(9,0)(10,0)(11,0)(12,0)(13,0)(14,0)...
  else
     a = ++n
                                                   use intervals!
  a = \max(0, a - n)
```

return x[a] }

We can't track the infinite set of pairs!

Example: interval abstraction

```
function arrayOutOfBounds(int n, int x[10]) {
[0,\infty]
    a = 0
[0, \infty][0, 0]
    if n >= 10 then
     [10, \infty][0, 0]
       n = n - 5
     [5, \infty][0, 0]
   else
     [0,9][0,0]
        a = ++n
                           Merging branches looses precision
     [1,10][1,10]
[1, \infty][0, 10]
   a = \max(0, a - n)
[1, \infty][0, 9]
                                   safe! 0 \le a \le 9!
   return x[a]
```

Abstract Interpretation: the idea

Goal: Compute the set S of possible values at each line of code

But... this is not feasible in general

We want to find an (over)approximation $S \subseteq S^{\#}$

The theory of abstract interpretation allows to compute $S^{\#}$ as a set of abstract values obtained by applying abstract operations

Abstraction and concretization

Concrete domain

The set of values S that we would like to compute belongs to the concrete domain C $(\wp(\mathbb{Z}), \subseteq)$

Abstract Domain

 (A, \sqsubseteq) expresses some properties of the concrete values

For example

The order

on the abstract domain reflects the precision

Ingredients of Abstract Interpretation

- A concrete domain C
- An abstract domain A
- An abstraction function α that connects the concrete domain to the abstract one
- A concretisation function γ that relates the abstract domain to the concrete one

Any set that contains negative integers only

Any set that contains positive integers only

Concretization function

Definition

Concretization function $\gamma:A\to C$ is a monotone function that maps abstract a into the greatest concrete c that it approximates

Abstraction function

Definition

Abstraction function $\alpha:C\to A$ is a monotone function

that maps concrete c into the most precise abstract element that

approximates it.

Abstract Interpretation (AI)

Properties of Galois insertions

$$(C, \subseteq)$$

- α and γ are monotone
- $c \subseteq \gamma(\alpha(c))$
- $\alpha(\gamma(a)) = a$

Correct approximation of functions

Best correct approximation (bca)

Abstract operations: +

+#	1	<0	>0	Т
1	\dashv	1	4	4
<0	1	<0	Т	T
>0	Τ	Т	>0	Т
Τ	Т	Т	Т	Т

Abstract operations: X

× [#]	1	<0	>0	Т
\dashv	\dashv	4	\dashv	4
V	1	>0	<0	T
>0	Н	<0	>0	Τ
_	Т	Т	Т	Т

Correctness

The abstract operations $+^{\#}$ and $\times^{\#}$ are correct on the domain Sign:

$$\forall n, m \in C \cdot \alpha(n) + \alpha(m) \supseteq \alpha(n+m)$$

Remember that an abstract operation $F^{\#}$ is correct on an abstract domain A whenever it returns a correct approximation of the result of the concrete computation:

$$F^{\#} \supseteq \alpha F \gamma = F^{A}$$

Completeness

The abstract operation $x^{\#}$ has a very nice property on the domain Sign:

$$\forall n, m \in C . \alpha(n) \times^{\#} \alpha(m) = \alpha(n \times m)$$

An abstract operation $F^{\#}$ is complete on an abstract domain A whenever it returns the best abstraction of the result of the concrete computation:

$$F^{\#}\alpha = \alpha F$$

Fixpoint computation approximation

If F monotone and $F^{\#}$ correct

 $lfp(F^{\#})$ is a correct over approximation of lfp(F)

Fixpoint computation approximation

If F monotone and ${\cal F}^A$ is complete

Abstract domains

Intervals

 $[-\infty, +\infty]$

Elements of A:

- \(\Delta\) the empty set of values
- $(n_0, n_1), n_0 \in (\mathbb{Z} \cup \{-\infty\}), n_1 \in (\mathbb{Z} \cup \{+\infty\}), n_0 \le n_1$

□ is the interval inclusion

$$\gamma(\bot) = \{\}$$

$$\gamma([n_0, n_1]) = \{ n \in \mathbb{Z} \mid n_0 \le n \le n_1 \}$$

$$\gamma([-\infty, n_1]) = \{ n \in \mathbb{Z} \mid n \le n_1 \}$$

$$\gamma([n_0, +\infty]) = \{ n \in \mathbb{Z} \mid n_0 \le n \}$$

$$\gamma([-\infty, +\infty]) = \mathbb{Z}$$

$$\alpha(c) = \bot \text{ if } c = \emptyset,$$

$$\alpha(c) = [min(c), max(c)] \text{ if } c \neq \emptyset, min(c) \text{ and } max(c) \text{ exists}$$

$$\alpha(c) = [min(c), +\infty] \text{ if } c \neq \emptyset, min(c) \text{ exists}$$

$$\alpha(c) = [-\infty, max(c)] \text{ if } c \neq \emptyset, max(c) \text{ exists}$$

$$\alpha(c) = [-\infty, +\infty]$$
 otherwise

$+^{A}$ and \times^{A} are complete on Int

$$[n,m] +^{A} [p,r] = [n+p,m+r]$$

$$[n,m] \times^A [p,r] = [n \times p, m \times r]$$

if all positives, otherwise pay attention

Example: translation

Example: rotation

Non-relational domains

The domains of Sign and Interval are non-relational domains

They cannot track relations between variables values

The set of states

$$\begin{cases}
[x \mapsto 1, y \mapsto 6] \\
[x \mapsto 3, y \mapsto 8]
\end{cases}$$

$$[x \mapsto 10, y \mapsto 15]$$

$$[x \mapsto 1, y \mapsto 6]$$

$$[x \mapsto 1, y \mapsto 7]$$

$$\dots \}$$

Relational domain Octagon domain

sets of numerical constraints of the form

$$\pm x \pm y \le c$$

(at most two variables per constraint, with unit coefficients)

The set of states

$$x \le 10$$

$$\{[x \mapsto 1, y \mapsto 6] \qquad \alpha \qquad x \ge 1$$

$$[x \mapsto 3, y \mapsto 8] \qquad y \le 15$$

$$[x \mapsto 10, y \mapsto 15]\}$$

$$y = 6$$

$$y - x = 5$$

$$x \ge 1$$

$$y \le 15$$

$$y \ge 6$$

Relational domain Convex Polyhedra domain

sets of numerical constraints of the form

$$c_1 x + c_2 y \le c$$

(at most two variables per constraint, with unit coefficients)

does not admit an abstraction map

best abstraction of ()?

Example: translation

Example: rotation

Refinements of abstraction

An (in)-finite set of points:

 $\{\ldots(19,77)\ldots(20,03)\ldots\}$

Refinements of abstraction

An (in)-finite set of points:

 $\{\ldots(19,77)\ldots(20,03)\ldots\}$

Let us analyse a code fragment on Int

```
[x \mapsto T, y \mapsto T]
                                   if(x > 7)
if (x>7) {
                                     [x \mapsto [8,\infty], y \mapsto T]
  y := x-7
                                     y := x - 7
} else {
                                     [x \mapsto [8,\infty], y \mapsto [1,\infty]
  y := 7-x
{ y \ge 0 }?
                                      else
                                   [x \mapsto [-\infty, 7], y \mapsto T]
                                      y := 7 - x
                                   [x \mapsto [-\infty, 7], y \mapsto [0, +\infty]
                            [x \mapsto T, y \mapsto [0, +\infty]]
```

Example on Interval

```
c_1
x := 10;
while (x>0) {
    x := x-1
}; { x = 0 }?
```

```
[x \mapsto T]
x := 10;
[x \mapsto [10,10]]
while(x > 0)
    [x \mapsto [10,10]]
x := x - 1
    [x \mapsto [9,9]]
  [\mathbf{x} \mapsto [0,10]]
end while
 [x \mapsto [0,0]]
```


Abstract loop invariant

Trace-based operational semantics

```
p<sub>0</sub>: while isEven(x) {
          p<sub>1</sub>: x = x div 2;
        }

p<sub>2</sub>: x = 4 * x;
p<sub>3</sub>: exit
```

A program's operational semantics is written as a trace:

$$p_0, 12 \longrightarrow p_1, 12 \longrightarrow p_0, 6 \longrightarrow p_1, 6 \longrightarrow p_0, 3 \longrightarrow p_2, 3 \longrightarrow p_3, 12$$

We would have infinite traces!

The parity domain

$$\gamma: \text{Parity} \rightarrow \mathcal{P}(\text{Int})$$

$$\gamma(\text{even}) = \{..., -2, 0, 2, ...\}$$

$$\gamma(\text{odd}) = \{..., -1, 1, 3, ...\}$$

$$\gamma(\top) = \text{Int}, \quad \gamma(\bot) = \{\}$$

 $\alpha: \mathcal{P}(Int) \to Parity$ $\alpha(S) = \sqcup \{\beta(\nu) | \nu \in S\}, \text{ where } \beta(2n) = \text{even and } \beta(2n+1) = \text{odd}$

We interpret for parity

```
p_0: while isEven(x) {
p_1: x = x div 2;
}
p_0, even \longrightarrow p_1, even
p_0, odd \longrightarrow p_2, odd
p_2: x = 4 * x;
p_3: exit

p_1, even \longrightarrow p_0, even
p_1, even \longrightarrow p_0, even
p_1, even \longrightarrow p_0, odd
p_2, a \longrightarrow p_3, even
```

Two trace trees cover the full range of inputs:

The interpretation of the program's semantics with the abstract values is an *abstract interpretation*:

We conclude that

- ♦ if the program terminates, x is even-valued
- ♦ if the input is odd-valued, the loop body, p₁, will not be entered

Due to the loss of precision, we can not decide termination for almost all the even-valued inputs. (Indeed, only 0 causes nontermination.)

Constant Propagation analysis

where m + n is interpreted

$$k_1 + k_2 \longrightarrow sum(k_1, k_2),$$
 $\top \neq k_i \neq \bot, i \in 1...2$
 $\top + k \longrightarrow \top$
 $k + \top \longrightarrow \top$
Let $\langle u, v, w \rangle$ abbreviate
 $\langle x : u, y : v, z : w \rangle$

Abstract trace: $p_0, \langle \top, \top, \top \rangle$ $p_1, \langle 1, 2, \top \rangle$ $p_3, \langle 1, 2, \top \rangle$ $p_2, \langle 1, 2, \top \rangle$ $p_1, \langle 2, 2, \top \rangle$ $p_3, \langle 2, 2, \top \rangle$ $p_2, \langle 2, 2, \top \rangle$ $p_1, \langle 3, 2, \top \rangle$

An acceleration is needed for finite convergence: widening

The analysis tells us to replace y at p_1 by 2:

```
p_0: x = 1; y = 2;

p_1: while (x < x + z) {

p_2: x = x + 1;

}

p_3: exit
```