Abstract Interpretation

Abstract In’rerEr'eTa’rion

» Designed to describe static analyses of imperative
programs and to prove their correctness

+ Since then, applied to numerous classes of
programming languages and software/hardware

systems

+ Today, viewed as a general technique for reasoning on
semantics at various abstraction levels

The geneml idea

* The starting point is a concrete semantics that provides
the meaning of program commands into a given
computational domain

* Anabstract domain, which models some properties of
intferest of concrete computations and leaves out the
remaining information

* Anabstract semantics that allows us "to abstractly
execute"” a program on the abstract domain in order to
compute the program properties modelled by the abstract
domain.

Abstract Interpretation

It Is a technigque to formally reason on approximations

It allows to derive effective methods to compute approximations
Generally used to compute overapproximations
Seldom used to compute underapproximations

Example: out of bounds

function arrayOutOfBounds(int n, int x[10]) {

Let us assume n > 0

if n >= 10 then

n =n->5
else
a = ++n

a = Is it a safe access? (0 < a <9?)

return x[a] }

Using exact semantics

function arrayOutOfBounds(int n, int x[10]) {
(0,)(L,)2,)(3,_) (4,)(5,)6,)(7,_)(8,_)(9,_)(L10,)...

a =0
(0,0)(L1,0)(2,0)(3,0)(4,0)(5,0)(6,0)(7,0)(8,0)(9,0)(10,0)....

1f n >= 10 then
(10,0)(11,0)(12,0)(13,0)(14,0)(15,0)(16,0)(17,0)(18,0)(19,0)...

n =n->5

(5,0)(6,0)(7,0)(8,0)(9,0)(10,0)(11,0)(12,0)(13,0)(14,0)...

else

a = ++n

We can’t track the infinite set of pairs!
use intervals !
a = max(0,a — n)

return x[a] }

Example: interval abstraction

function arrayOutOfBounds(int n, int x[10]) {
[0,00]
a =0
[0,00][0,0]
1f n >= 10 then
[10,00][0,0]
n =n -5
[5,00][0,0]
else

[0,9][0,0]
a = ++n

Merging branches looses precision

[1,10][1,10]

 etarn]x[a]

Abstract Interpretation: the idea

Goal: Compute the set S of possible values at each line of code

But... this is not feasible in general

We want to find an (over)approximation S C §

The theory of abstract interpretation allows to compute 5™ as a
set of abstract values obtained by applying abstract operations

Abstraction and concretization

Concrete domain

The set of values S that we would like to compute belongs to the concrete domain C

(§o(£), &)

{...,—1,0,1,2,....}

T T

=21 (0,1,2,...)
[.-2=1 AN

(12,..)

i 1} (0, 1} (1,2} ..

/\%

L {=2) {— (0} {1} 2} ..

IR

e

Abstract Domain

(A, C) expresses some properties of the concrete values

Sign

For example / \
The order L on the abstract domain reflects the precision \/

Ingredients of Abstract Interpretation

A concrete domain C
- An abstract domain A

» An abstraction function a that connects the concrete domain to the abstract one
» A concretisation function y that relates the abstract domain to the concrete one

Defining approximation

C A
7% Sign
9 {0,1,2,...}
{... 52 1} N
T {12,000
{—2,<} {0,1}ﬂ{1,2} .)
(=2} {-1} {0} {1} 21 ...

Defining approximation

C A

{...,—1,0,1.2,..} Sign

\{012

Lo=2) ;,\
-)
-2, {0,1% 2 .

-. AN

Any set that contains negative integers only

Defining approximation

Any set that contains positive integers only

Defining approximation

Concretization function
Definition
Concretization function y : A — C is a monotone function
that maps abstract a into the greatest concrete ¢ that it approximates

’ {1,2,...}
{ 2, —1} {01} (121 ..

"{ -2) {— {O%\\/

Defining approximation

C A
t...,—1,0,1,2,.... -
/\} Slgn
=21 (0,1,2,...)
(=21 R
(1.2,..)

) /2<} }\1} (1,2} .. <0
o ZKV - \

Defining approximation

C A

{...,—1,0,1,2,....}

/\

(....-271) (0.12...)
s N\

(1,2....)

o1 (12) -
N

Defining approximation

Defining approximation

C A
/w Sign
_9 _ 10,1,2,...}
(=20 IR
{1,2,...}

*
*

{_/Zaiil} {Oalfﬂ{ll} <0 > 0
-2y {—-1) } {2}... \/
\/// J_

Abstraction function
Definition
Abstraction function a : C — A is a monotone function

that maps concrete ¢ into the most precise abstract element that
approximates It. 7

C {....—1012..) A

T T /_/\\
//-0\+

<0

Y {I2) <

> ()

{ 1}

Emn _2’5_
/
=T

P

Abstract Interpretation
(Al)

Properties of Galois insertions

(C, C) [(A, E)

i

* (@ and y are monotone » Y

e ¢ C y(a(c)) 7(0‘(6));' I I ‘a(c)
» a(y(a)) = a |

Correct approximation of functions
(C, C) 4, L)

(
|
|
\

F¥a)

F'a 1 aF

Best correct approximation (bca)

(C,C), (4, E)

+

a \
I
* FA(a)
F(c) p
4 \
c

*

FA 2 aFy

Abstract operations: +

(§o(£), &) /T\
+: (Z) = p(Z) ~

{135} +{-2,4} ={1,7,3,9}

We lost
precision
(12,)0-2-11 T €3
0 <0 > 0

o
31+ 12} =11}

(1.2, ! {1,2,...}§ [{2,3,...}

37+ 127 = 19)

Abstract operations: X

(§2(Z), C) ~_"

X g(ZL) = g(£)
(3,5} x {=2,4} = {=6,12, - 10,20}

> 0 <0 <0 Q Precise result!
{Lz,u}gL.w—cz—P}{.“,— {—1}

13) X {=2} = {—6j

0 —f g
UQW}[-uLJ[l1.2,...

> 0 > () > 0
{3} X {2} = {6}

Correctness

The abstract operations +7and X" are correct on the domain Sign:

<0

/\
Vnome C. a(n)+" a(m) J a(n + m) \L/

>0

Remember that an abstract operation [*is correct on an abstract domain A

whenever it returns a correct approximation of the result of the concrete
computation:

F" 1 aFy = FA

Completeness

The abstract operation X" has a very nice property on the domain Sign:

N
A .

Vn,m e C. an) X" a(m) = a(n X m)

An abstract operation [" is complete on an abstract domain A

whenever It returns the best abstraction of the result of the concrete
computation:

Ffa = aF

Fixpoint computation approximation

If F monotone and F¥ correct

a / lfp(F ") A, C
(C9 g) lfp(F) NG ’ ()

g

F

[fp(F™) is a correct over approximation of Ifp(F)

FiXxpoint computation approximation

f F monotone and F* is complete

/ Ifp(F) C Ifp(FY)

n (A, E)

(C, C)

C

_

Abstract domains

Intervals [— 00, + oo]

b P W 4 » F \ /
Elements of A: [-3,0] [-2,1] [-], [0.3]

« | the empty set of values £ \ / \ / \ / \/

- G, 1y € U (—oo]), 1 € ZU (+oolmg<m D1 D20 CUI 8303

5. \/ /\

=2,—-1] [-10] [”] 1.2]

N
L is the interval inclusion \/ \ & & / \ /\/

- —_] [l—l] [0,0]

- o
- =

v(L) =4} alc) = Lif ¢ =0,
v(ng,n1]) ={nezZ |ng<n<ny} a(c) = [min(c), max(c)] if ¢ # 0, min(c) and maz(c) exists
Y(|—oo,n1]) ={neZ|n<n} a(c) = [min(ce), +oo] if ¢ # (), min(c) exists
v(|ng,+o0|) ={n € Z|ng <n} ac) = [—oo,max(c)] if ¢ # 0, max(c) exists
v([—o00, +o0]) = Z a(c) = |—00, +00] otherwise

+4 and X4 are complete on Int

p P 4 R K x A

A B -3.0] [-2,1] [-1.2] [0.3]
ol 4 (e = e VAVAVAVAY
—3,-1] [-2,0] [-1,1] [0,2] [1.3]
[n,m] X [p,r] = [n X p,m X r] NN N N
-2,-1] [-1,0] [0,1] [1.2]
S SN N
attention ‘]‘_ [=1.-1] [0,0] 1, 1] 2.2
%“""\I/

<
1

11,46} +{-3,1} ={-2,1,2,3,5,7}

Example: translation

Example: rotation

Non-relational domains

The domains of Sign and Interval are non-relational domains

They cannot track relations between variables values

The set of states

x— 1l,y— 6
{[x = 1,y = 6] o) Y t ’ |
x> [110],y > [6,15]) —— [Ly =]

lx — 3,y > §]
[x = 10,y — 15]} -

Relational domain
Octagon domain

sets of numerical constraints of the form
Txxy<c
(at most two variables per constraint, with unit coefficients)

The set of states
r < 10

x> 3y 8 T YS0
x> 10,y — 15]) S =

Relational domain
Convex Polyhedra domain

sets of numerical constraints of the form
cCiX+cy<c

(at most two variables per constraint,
with unit coefficients)

does not admit an abstraction map
| o b

best abstraction of O ?

Example: translation

Example: rotation

Refinements of abstraction

An (in)-finite set of points :

1...(9,77)...20,03)....}

Refinements of abstraction

An (in)-finite set of points :

1...(9,77)...20,03)....}

Let us analyse a code fragment
on Int

[x—> T, v T]

if (x>7) { if(x > 7)
V= X-7 [x — [8,00], Y= T 1
} else { y.=x—1
y 1= 7-X [x = [8,00], vy [l,00]]
} {y>01}? else
[x = [-00,7], Y= T 1
y.=17T—x

[x = [=00,7], ¥y [0, +00]]

[x—> T, vy [0,+00]]

Example on Interval

[x— []
x = 10;
Cq [x — [@10]]
X :=10; while(x > 0)
while (x>0) { [x — [®,10]] h Abstract loop invariant
X = X-1 r:=x—1
L {x=0}? [x - [8.9]]
[x — [0,10]]
endwhile

[x = [0,0]]

Trace-based oEera’rional semantics

K while jD.sE:ven(x) {
Py x = x div 2;

}
@:x=4*x;
2% exit

A program’s operational semantics is written as a trace:

p0>]2 Hph]zHpo»6Hp]>6HpO>3 H]:)Zag) Hp3>]2

We would have infinite traces!

The parity domain

Parity T v : Parity — P(Int)

even odd v(ieven) ={...,—2,0,2,...}

\J_/ o ylodd) ={..,=1,1,3,..]
h

T T y(T)=Int, (L) =/
x: P(Int) — Parity
x(S) =LHPB(v)lv eS|, where p(2n) =even and 3(2Zn+ 1) = odd

We interpret for parit

D while 1isEven(x) { Po, €VEN — P1, even
py: x = x div 2;
} po,0odd — p»y,o0dd
p: x =4 * x;
D; : exit P1,even — po, even

p1,even — po, odd

p2,a — p3,even

Two trace trees cover the full range of inputs:

O ¢
Po, €ven po, 0odd

p1, even ., 0dd
\ p3, even
po,odd
p2,0dd

Da. €VETL

The interpretation of the program’s semantics with the abstract values
IS an abstract interpretation:

O ¢
Po, €ven no, 0dd

P1, €ven pz,Odd
\ P3, €VvET
po,odd
p2,0dd
P3, €VETL

We conclude that

¢ if the program terminates, x Is even-valued

¢ if the input is odd-valued, the loop body, p, will not be entered

Due to the loss of precision, we can not decide termination for almost
all the even-valued inputs. (Indeed, only 0 causes nontermination.)

Constant ProEaga‘rion cmalxsis

po : X = 1; Y & 2; COHSt/T B :\\'\zir\hol.ds
P : while (x < y + z) ; 0/ AN mqltlple values
. x = x + 1; S r hold
}172 ' \\\ / / Vtalfls 3allsle only
. : | _ var holds no value
p;: exut T -~ (dead code)
. Abstract trace: po, (T, T, |
where m + n is interpreted 3? 21 2.7 >
k1 + k2 — sum(kq, k2), ¢ Nops,(1,2,T)
T4£ki#Lie1.2 p2,(1,2,T)

1# 431><2>2>—_>
T—I—k_ﬁ—l_ \l/ \p3)<2)2>—|—>
k+T —T p2,(2,2,T)

_ ‘31,<3,2,__>
Let (u, v, w) abbreviate N

(X:W,y:v,z2:W)

An acceleration is needed for finite convergence: widening

Po, (T, T, T) Drawn as a data—flow analysis:
P, <1>2>—|—> -

\L \p3><1>2)—|_> po‘""
P2, <1> >—_> -
P, <2

p3><—|—>2>—|—> Ib 19 T Tz
P2, <—|_>2> T> T,Z,T

: i
2, T) W (1,2, T) 1.2+ _p 1,2,
(riT,z,T} (—/\ 22 : 3T2T

The analysis tells us to replace y at p; by 2:

p: x=1; v = 2;

p; - while (x < ¥&+ z) {
p: x=x+1; . -
} L2

p; ¢ exit

