Principles of Abstract Interpretation

Program Analysis

A technique to check if a program satisfies a semantic property

Useful for optimisation and verification

What to Analyse:

Target Programs

- Domain-specific vs Non-domain-specific analyses
- Program-level vs Model-level analyses

Target Properties

- Safety properties: some behavior observable in finite time will never occur.
- Liveness properties: some behavior observable after infinite time will never occur.
- Information flow properties

When to Analyse:

Dynamic vs Static techniques

What to Analyse: Safety Properties

Some behaviors observable in finite time will never occur.

Examples:

- No crashing error e.g., no divide by zero, no uncaught exceptions, etc
- No invariant violation
 - Loop invariant: assertion that holds at the beginning of every loop iteration

What to Analyse: Safety Properties

$$x = 0;$$
while $(x < 10)$ "x is an integer"
 $\{x = x + 1;\}$ "0 <= x < 10"

(a) Correct executions

(b) An incorrect execution

(c) Proof by invariance

What to Analyse: Liveness Properties

Some behaviors observable after infinite time will never occur

Examples:

- · No unbounded repetition of a given behavior
- · No non-termination

What to Analyse: Liveness Properties

```
x = read_int ();
while ( x > 0 )
{ x = x - 1; }
```

- If x is initially a negative integer \Rightarrow the program terminates
- If x is initially a positive integer \Rightarrow x strictly decreases every iteration
- \Rightarrow the program terminates

Undecidability in the way

non trivial property:

- there exists a program c such that $\mathcal{P}(c)$ holds true
- and there exists also some program c such that $\mathcal{P}(c)$ is false

Rice theorem.

Let $\mathcal{P}(c)$ be a non trivial semantic property of programs c. There exists no algorithm such that, for every program c, it returns true if and only if $\mathcal{P}(c)$ holds true

no analysis method that is automatic, universal, exact!

For some program...

 $\mathcal{P}(c) \equiv \text{per ogni insieme di input lo stato}$ finale assegna a x un valore diverso da 0

```
c \triangleq \\ \mathbf{x} := 1;
```

and for some other program...

 $\mathcal{P}(c) \equiv \text{per ogni insieme di input lo stato finale}$ assegna a x un valore diverso da 0

```
c ≜
while 'n>1) {
  n = n+1;
  x := 0;
}
x := 1;
```

but for Collatz's conjecture?

```
\mathcal{P}(c) \equiv \text{per ogni insieme di input lo stato finale} assegna a x un valore diverso da 0
```

```
c ≜
while (n>1) {
   if (even(n)) { n := n/2; }
   else { n:= 3n+1; }
} % does it terminate for any value of n?
x := 1;
```

As of 2020, the conjecture has been checked by computer for all starting values up to $2^{68} \approx 10^{20}$.

Limitations of the analysis

We need to give something up:

automation: machine-assisted techniques

the universality "for all programs": targeting only a restricted class of programs

claim to find exact answers: introduce approximations

Approximation: Soundness and Completeness

Given a semantic property P and a program $p \in L$. An analysis is perfectly accurate iff

for all program p, analysis(p) = true \iff p satisfies the property P which consists of

- 1) for all program $p \in L$, analysis $(p) = true \Rightarrow p$ satisfies P (soundness)
- 2) for all program $p \in L$, analysis(p) = true \leftarrow p satisfies P (completeness)

Approximation: Soundness and Completeness

programs programs not satisfying ${\mathscr P}$

(a) Programs

(b) Sound, incomplete analysis

(c) Unsound, complete analysis

(d) Legend

Spectrum of Program Analysis Techniques

Testing

Machine-assisted proving

Finite-state model checking

Conservative static analysis

Bug-finding

Comparison

	automatic	sound	complete
testing	yes	no	yes
machine-assisted proving	no	yes	yes/no
finite-state model checking	yes	yes/no	yes/no
conservative static analysis	yes	yes	no
bug-finding	yes	no	no

Abstract Interpretation

A general technique, for any programming language L and safety property S, that checks, for input program P in L, if the semantics of a program P is contained in S

automatic (software)
finite (terminating)
sound (guarantee)
malleable for arbitrary precision

Denotational Semantics

Semantics

What is the meaning of a program "1 + 2"?

Meaning = what it "denotes":

"3" (Denotational semantics)

Meaning = how to compute the result:
"add 1 into 2 and get 3" (Operational semantics)

Different approaches for different purposes and languages

Denotational Semantics

Mathematical meaning of a program (no machine states or transitions)

Program semantics is a function from input to output

The semantics of a program is determined by that of each component (compositionality principle)

Semantics of a Simple Language (WHILE)

```
| \quad C; C \ | \quad 	ext{while} \ E \ C
 E \to n \qquad (n \in \mathbb{Z})
```

The semantics of C is a function from memories to memories

Memory = Function from memory locations to values

Semantic Domain

A set of objects used to define program semantics (i.e., semantic objects)

$$x \in \mathbb{X} = Program Variables$$

$$\mathbb{V} = \mathbb{Z}$$

$$m \in \mathbb{M} = \mathbb{X} \to \mathbb{V}$$

Meaning of commands

Meaning of expressions

Denotational Semantics of Expressions

$$[\![x]\!] m = m(x)$$
 $[\![n]\!] m = n$
 $[\![E_1 + E_2]\!] m = ([\![E_1]\!] m) + ([\![E_2]\!] m)$
 $[\![-E]\!] m = -([\![E]\!] m)$

$$[\![3+x]\!] \{x\mapsto 2,y\mapsto 1\} = [\![3]\!] \{x\mapsto 2,y\mapsto 1\} + [\![x]\!] \{x\mapsto 2,y\mapsto 1\}$$
$$= 3+2=5$$

Compositional!

(i.e., the semantics of an expression is determined by that of its sub-expressions)

Denotational Semantics of Commands

Compositional!

(i.e., the semantics of a program is determined by that of its sub-components)

The semantics of while $E\ C$

[while
$$E\ C]\ m$$
 = $if\ [E]\ m \neq 0 \ then$ [while $E\ C]([C]M) \ else\ m$

is not compositional!

Not a definition, but a recursive equation!

while E C

 $= if [E] m \neq 0 then [while E C]([C]M) else m$

how to denote functions: λx . function body where x is the parameter e.g. inc(x) = x + 1 vs $inc = \lambda x \cdot x + 1$

 $\llbracket \mathtt{while} \; E \; C
 \rrbracket = 0$

 λm if $[E]m \neq 0$ then [while E C]([C]m) else m

$$F_{E,C}(X) = \lambda m.$$

$$\begin{cases} X(\llbracket C \rrbracket m) & \text{if } \llbracket E \rrbracket m \neq 0 \\ m & \text{otherwise} \end{cases}$$

 $\llbracket \mathtt{while} \ E \ C \rrbracket = F_{E,C}(\llbracket \mathtt{while} \ E \ C \rrbracket)$

Semantics of a loop: a solution of this equation

$$\llbracket \mathtt{while}\ E\ C \rrbracket = F_{E,C}(\llbracket \mathtt{while}\ E\ C \rrbracket)$$

Semantics of a loop: a solution of this equation

[while
$$E[C] = F_{E,C}([while E[C]])$$

Solution: a fixed point of $F_{E,C}$

$$F_{E,C}(X) = \lambda m.$$

$$\begin{cases} X(\llbracket C \rrbracket m) & \text{if } \llbracket E \rrbracket m) \neq 0 \\ m & \text{otherwise} \end{cases}$$

Domain for Commands

$$\llbracket C
Vert \colon \mathbb{M} o \mathbb{M}_{\perp}$$
 where $orall m \in \mathbb{M}, \ \bot \sqsubseteq m$ $\llbracket ext{while } E \ C
Vert = F_{E,C}(\llbracket ext{while } E \ C
Vert)$ $F_{E,C}(\llbracket ext{while } E \ C
Vert)$ A partial function, We can represent it as sets of pairs (m,m') $F_{E,C}(X) = \lambda m. \ \begin{cases} X(\llbracket C
Vert m) & \text{if } \llbracket E
Vert m)
otherwise \\ F_{E,C}(\mathbb{M} o \mathbb{M}_{\perp}) o (\mathbb{M} o \mathbb{M}_{\perp}) \end{cases}$

It is monotone and continuous on the domain of partial functions

Semantics of while

By applying Klene's theorem

[while
$$E[C]$$
] = $\operatorname{fix} F_{E,C} = \bigsqcup_n F_{E,C}^n (-\lambda \sigma. \perp)$

$$\begin{array}{lll} \text{while } \underbrace{x > 1}_{E} \text{ do } \underbrace{x := x - 1}_{C} & F_{E,C}(X) = \lambda m. \begin{cases} & (m, X(m[m(x) - 1/x]) & m(x) > 1 \\ & (m, m) & m(x) \leq 1 \end{cases} \\ & F_{E,C}(X) = \lambda m. \begin{cases} & (m, m') & m(x) > 1, (m[m(x) - 1/x], m') \in X \\ & (m, m) & m(x) \leq 1 \end{cases} \\ & F_{E,C}(X) = \lambda m. \begin{cases} & (m, m') & m(x) > 1, (m[m(x) - 1/x], m') \in X \\ & (m, m) & m(x) \leq 1 \end{cases} \\ & F_{E,C}(X) = \lambda m. \begin{cases} & (m, m') & m(x) > 1, (m[m(x) - 1/x], m') \in X \\ & (m, m) & m(x) \leq 1 \end{cases} \\ & F_{E,C}(X) = \lambda m. \begin{cases} & (m, m') & m(x) > 1, (m[m(x) - 1/x], m') \in X \\ & (m, m) & m(x) \leq 1 \end{cases} \\ & F_{E,C}(X) = \lambda m. \begin{cases} & (m, m') & m(x) > 1, (m[m(x) - 1/x], m') \in X \\ & (m, m) & m(x) \leq 1 \end{cases} \\ & F_{E,C}(X) = \lambda m. \begin{cases} & (m, m') & m(x) > 1, (m[m(x) - 1/x], m') \in X \\ & (m, m) & m(x) \leq 1 \end{cases} \\ & F_{E,C}(X) = \lambda m. \begin{cases} & (m, m') & m(x) > 1, (m[m(x) - 1/x], m') \in X \\ & (m, m) & m(x) \leq 1 \end{cases} \\ & F_{E,C}(X) = \lambda m. \begin{cases} & (m, m') & m(x) > 1, (m[m(x) - 1/x], m') \in X \\ & (m, m) & m(x) \leq 1 \end{cases} \\ & F_{E,C}(X) = \lambda m. \end{cases}$$

 $F_{E,C}^{n}(\varnothing) = \{(m,m) \mid m(x) \le 1\} \cup \{(m,m[1/x]) \mid 1 < m(x) \le n\}$... $\operatorname{fix} F_{E,C} = \{(m,m) \mid m(x) \le 1\} \cup \{(m,m[1/x]) \mid 1 < m(x)\}$