
Overview of the Course

Your teachers:

Schedule :

Two weekly lectures

One weekly lecture for experiencing with practical applications

 Roberta Gori

roberta.gori@di.unipi.it

Tuesday 14:00 16:00 L1
Friday 9:00 11:00 L1

Thursday 11:00 13:00 lab I

Lorenzo Ceragioli

lorenzo.ceragioli@imtlucca.it

mailto:roberta.gori@di.unipi.it

• Formal languages (maybe a recall for someone):

•Grammars, automata, theorems, regular and context free languages

•Chomsky hierarchy

• Lexical analysis

• Parser

• Contextual analysis

• Intermediate representation

• Code shape

• Optimization

• Dataflow analysis

• More static analyses: Abstract interpretation

• Register allocation

What we will see

Our textbook

Other informations

• web page, I will add there all the slides

www.di.unipi.it/~gori/Linguaggi-Compilatori2023

Material for specific topics:

• Introduction to Automata Theory, Languages, And Computation.  
Hopcroft, Motwani, Ullman

• Introduction to static Analysis: an abstract interpretation perspective
Rival, Yi

• Principles of abstract interpretation
Cousot

• Static Inference of Numeric Invariants by Abstract Interpretation a tutorial by Antoine
Mine on Abstract interpretation.  

http://www.di.unipi.it/~gori/Linguaggi-Compilatori2022
http://pages.di.unipi.it/gori/Linguaggi-Compilatori2020/course_ok.pdf

Roberta Gori

roberta.gori@di.unipi.it

My own research program

Program analysis for verification and optimization

• Static analysis to prove properties on program behaviors

• Abstract interpretation based techniques for proving

correctness or devise bugs in programs:

connections with Meta and real world tools

About this teacher

mailto:roberta.gori@di.unipi.it

CAVEAT on the slides

• Apart from the first two weeks, we will follow the slides of the
authors of the book

• These are slides for a course in U.S.A. which intend to give you

basic concepts and ideas (they do not summarise the book but
they give you more ideas and perspectives)

• All the details have to be found in the book

• Use the slides as a guide on the different topics

Final Exam

 The exam will consist in

 1. a project developed partly during the hours of thursdays

 2. a seminar on a chosen topic between a list

 3. an oral discussion mainly on the project

Please, actively partecipate to lectures

Compilers

• What is a compiler?

— A program that takes other programs and prepare them for
execution

• In particular, a program that takes a program and

translate it in program written in a target language

— The target language is in general the instruction set of an
architecture

— The target language can be a human-oriented programming
language (Source-to-source translators)

AOT vs JIT

— Most compiler are designed to run in a separate step before
execution (ahead-of-time AOT)

— Some new compilers translate the code to executable form at
runtime (just-in-time JIT)

the cost of the translation has to be summed to the one of the execution

Compilers vs Interpreters

• A compiler is a program that takes a program and translate
it in a program written in an another language

• What is an interpreter?

— A program that reads a program and an input and produces the results

of executing that program on the input

Results

 Input

 Input

• C and C++ are typically compiled,

Pyton and Scheme are typically interpreted

• Java has a complex translation schema:

 - compiled to bytecode for the Java VM (by AOT compiler)

 - bytecode is interpreted or hybrid strategy is used (JIT compiler)

It’s a property of the implementation !

Compilers vs Interpreters

Compiler scans the whole program in one go. Translates program one statement at a time.

It converts the source code into object code.
It does not convert source code into object
code instead it scans it line by line

The translation is performed before executing
The translation and execution is performed at
the same time

Good execution time. Slow in executing the object code.

It does not require source code for later
execution. It requires source code for later execution.

The errors are shown at the end together. Errors are shown line by line.

Why Study Compilers?

Deep Understanding of Programming Languages

Studying compilers provides a deeper insight into how programming languages work, including structures,
optimizations, and resource management.

Performance Optimization

You will learn how to optimize code for speed and memory usage,

 crucial for high-performance applications or resource-constrained environments.

 Foundation for Language Development

Knowledge of compilers is essential for creating new programming languages or extending existing ones.

Development Tools and Automation

Compilers are the backbone of many tools like IDEs, debuggers, and static analyzers, enabling
productivity improvements for developers.

 Problem-Solving and Transferable Skills

Compilers involve complex algorithmic and data structure, applicable in various fields like OS development
or search engines.

 High Demand in the Job Market

Skills in compilers are sought after in industries working with custom languages, high-level compilers, or
software optimization.

 Research Opportunities
 Still many open problems!

Artificial intelligence Greedy algorithms

Heuristic search techniques

Algorithms Graph algorithms, union-find

Dynamic programming

Theory DFAs & PDAs, pattern matching

Fixed-point algorithms

Systems Allocation & naming,
Synchronization, locality

Architecture Pipeline & hierarchy management

Instruction set use

Compiler are interesting

➢ Compiler construction involves ideas from many different parts
of computer science

Performance: reducing the price of language abstraction

Computer Science is the art of creating virtual objects and
making them useful.

• We invent abstractions and uses for them

• Programming is the way we realize these inventions

Well written compilers make such abstraction affordable

• Cost of executing code should reflect the underlying work

rather than the way the programmer chose to write it

• Change in expression should bring small performance change

• Cannot expect compiler to devise better algorithms

— Don’t expect bubblesort to become quicksort

Making Languages Usable

It was our belief that if FORTRAN, during its first months, were to
translate any reasonable “scientific” source program into an object
program only half as fast as its hand-coded counterpart, then
acceptance of our system would be in serious danger... I believe that
if we failed to produce efficient programs, the widespread use of
languages like FORTRAN would have been seriously delayed.

— John Backus on the subject of the 1st FORTRAN compiler

Era nostra convinzione che se FORTRAN, nei suoi primi mesi di vita, avesse tradotto qualsiasi
ragionevole programma sorgente "scientifico" in un programma oggetto che una volta eseguito fosse
piu’ veloce solo la mets’ della codifica a mano dello stesso programma, l'accettazione del nostro
sistema di compilazione sarebbe stata in serio pericolo... Credo che se non fossimo riusciti a
produrre programmi compilati efficienti, l'uso diffuso di linguaggi come il FORTRAN sarebbe stato
seriamente ritardato.

Simple Examples

Which is faster?

for (i=0; i<n; i++)
 for (j=0; j<n; j++)
 A[i][j] = 0;

p = &A[0][0];
t = n * n;
for (i=0; i<t; i++)
 *p++ = 0;

All three loops have distinct
performance.

for (i=0; i<n; i++)
 for (j=0; j<n; j++)
 A[j][i] = 0;

0.51 sec on 10,000 x 10,000 array

1.65 sec on 10,000 x 10,000 array

0.11 sec on 10,000 x 10,000 array

All data collected with gcc 4.1, -O3, running on a
multiuser Intel T9600 @ 2.8 GHz

bzero((void*) &A[0][0],(size_t) n*n*sizeof(int))

Conventional wisdom suggests using
0.52 sec on 10,000 x 10,000 array

A good compiler should know these tradeoffs,
on each target, and generate the best code.

Few real compilers do.

Fundamental Principles of Compilation

• The compiler must preserve the meaning of the program being
compiled

• The compiler must improve the input program

The View from 35,000 Feet 

Source

code

Machine

codeCompiler

Errors

High-level View of a Compiler

Implications

• Must recognize legal (and illegal) programs

• Must generate correct code

• Must manage storage of all variables (and code)

• Must agree with OS & linker on format for object code

Big step up from assembly language

Source

code

Front

End

Errors

Machine

code

Back

EndIR

Depends primarily
on source language

Depends primarily
on target machine

Traditional Two-pass Compiler

Implications of the division:

• Use an intermediate representation (IR)

• Front end maps legal source code into IR

• Back end maps IR into target machine code

• Admits multiple passes (better code)

Front end is O(n) or O(n log n) Back end is NP-Complete

Compiler

Source

code

Front

End

Errors

Machine

code

Back

EndIR

Depends primarily
on source language

Depends primarily
on target machine

Classic principle from
software engineering:

Separation of concerns

Advantages of two-pass compiler

• The some architecture can target a different machine code

• The some architecture can target a source code

• The IR has to encode all the knowledge that the compiler has on

the program

Compiler

Errors

Source

Code

Optimizer

(Middle End)

Front

End

Machine

code

Back

End

IR IR

Traditional three-part Compiler

Code Improvement (or Optimization)

• analyzes IR and transform IR

• primary goal is to reduce running time of the compiled code

— and/or reduce code space, power consumption, page faults…..

• Must preserve “meaning” of the code

Compiler

• In the actual architecture each phase is divided into

a series of passes

• The optimiser contains passes that use distinct analyses and
transformation to improve the code

The phases of a Compiler

Source

code Scanner

IR
Parser

Errors

tokens

The Front End

Responsibilities

• Recognize legal (& illegal) programs

• Report errors in a useful way

• Produce IR & preliminary storage map

• Shape the code for the rest of the compiler

• Much of Front-End construction can be automated

Front-End

Source

code Scanner

IR
Parser

Errors

tokens

The Front End

Scanner

• Maps stream characters into stream of words (Lexical analysis)

• It determines

• Produces pairs — a word & its part of speech

x = x + y ; becomes <id,x> = <id,x> + <id,y> ;

• Typical words include numbers, identifier, +, –, new, while, if

• Speed is important

Textbooks advocate automatic scanner generation

Commercial practice appears to be hand-coded scanners

Front-End

 

Split program into individual words that makes sense:

Lexical analysis

while (y < z) {
 int x = a + b;
 y += x; }

1g2h3i is neither a valid identifier nor a valid number

Source

code Scanner

IR
Parser

Errors

tokens

The Front End

Parser

• Check the syntax & reports errors (Syntax Analysis)

• It determines if the stream of words is a sentence in the source

language

• Builds IR for source program

Hand-coded parsers are fairly easy to build

Most books advocate using automatic parser generators

Front-End

Grammars for the Front-End

To recognise words and sentences of the source language, the Front-End uses
grammars like

	 	 SheepNoise → SheepNoise baa

 | baa

It defines the set of noises that a sheep makes under normal circumstances

It is written in a variant of Backus–Naur Form (BNF)

A grammar G = (S,N,T,P)

• S is the start symbol

• N is a set of non-terminal symbols

• T is a set of terminal symbols or words

• P is a set of productions or rewriting rules (P : N → N ∪T)

1. Goal → Expr
2. Expr → Expr Op Term
3. | Term
4. Term → number

5. | id
6. Op → +
7. | -

S = Goal

T = { number, id, +, - }

N = { Goal, Expr, Term, Op }

P = { 1, 2, 3, 4, 5, 6, 7 }

Grammars for simple expressions

• It defines simple expressions with + & - over number and id

• This grammar falls in a class called “context-free grammars”,
abbreviated CFG

Production Result

 	 	 Goal
	 1	 Expr

	 2	 Expr Op Term

	 5	 Expr Op y

	 7	 Expr - y
	 2	 Expr Op term - y

	 4	 Expr Op 2 - y
	 6	 Expr + 2 - y
	 3	 Term + 2 - y
	 5	 x + 2 - y

1. Goal → Expr
2. Expr → Expr Op Term
3. | Term
4. Term → number
5. | id
6. Op → +
7. | -

A derivation

The Front End

Given a CFG, we can derive sentences by repeated substitution

To recognize a valid sentence, we reverse this process and start from x+2-y

The Front End

To recognise if x + 2 - y

belongs to the language we construct the

parsing tree (or syntax tree)

1. Goal → Expr
2. Expr → Expr Op Term
3. | Term
4. Term → number
5. | id
6. Op → +
7. | -

Term

Op TermExpr

TermExpr

Goal

Expr

Op

<id,x>

<number,2>

<id,y>

+

-

+

-

<id,x> <number,2>

<id,y> The AST summarizes
grammatical structure,
without including detail
about the derivation

The Front End

Compilers often use an abstract syntax tree instead of

	 a parse tree

This is much more concise

ASTs can be used as intermediate representation

 Syntax analysis

while (y < z) {
 int x = a + b;
 y += x; }

Source

code Scanner

IR
Parser

Errors

tokens

a ← b x c + d

←

a +

dx

b c

Front-End produces the IR

If the IR is the Abstract Syntax Tree

becomes

Front-End

Source

code Scanner

IR
Parser

Errors

tokens

a ← b x c + d

e ← f + b x c + d

becomes

load @b ⇒ r1

load @c ⇒ r2

mult r1,r2 ⇒ r3

load @d ⇒ r4

add r3,r4 ⇒ r5

store r5 ⇒ @a

load @f ⇒ r6

add r5,r6 ⇒ r7

store r7 ⇒ @e

Front-End produces the IR

If the IR is the three address code

Front-End

The Optimizer

Errors

Source

Code

Optimizer

(Middle End)

Front

End

Machine

code

Back

End

IR IR

Compiler

The IR emitted by the Front-End is generated by looking to each statement

at the time

The IR program contains code that will work for any surrounding context

The optimizer can discover something on the context from the entire

IR code and use this knowledge to improve the code

Example of optimizations: loop invariant

becomes

Errors

IR Register

Allocation

Instruction

Selection

Machine

code

Instruction

Scheduling

IR IR

The Back End

Responsibilities

• Translate IR into target machine code

• Choose instructions to implement each IR operation

• Decide which value to keep in registers

• Reorder the instructions so that efficiency is gained

Automation has been less successful in the back end

Back-End

About ILOC

• ILOC (Intermediate Language for Optimizing Compiler) is an
assembly language for a simple RISC machine.

Instruction selection for a = (a x 2 x b x c) x d

 (Memory(r1+c2) ->r3)

(the constant c1 goes in register r2)

(r1-> Memory(r2+c3))

Errors

IR Register

Allocation

Instruction

Selection

Machine

code

Instruction

Scheduling

IR IR

The Back End

Instruction Selection

• It has to translate the IR code into sequence of ISA instructions

• Take advantage of features of the target machine

• Assume an infinite number of (virtual) registers

• Usually viewed as a pattern matching problem

— ad hoc methods, pattern matching

— Form of the IR influences choice of technique

— RISC architecture simplified this problem

Errors

IR Register

Allocation

Instruction

Selection

Machine

code

Instruction

Scheduling

IR IR

The Back End

Register Allocation

• It has to map virtual to physics registers

• Manage a limited set of resources

• Can change instruction choices & insert LOADs & STOREs

• Optimal allocation is NP-Complete in most settings

Compilers approximate solutions to NP-Complete problems

Register allocation for a = (a x 2 x b x c) x d

Use 3 registers!

 (Memory(r1+c2) ->r3)

(the constant c1 goes in register r2)

(r1-> Memory(r2+c3))

Use 6 registers!

The Back End

Instruction Scheduling

• It reorder the sequence of instructions to avoid stalls and interlocks

• Use all functional units productively

• Can increase lifetime of variables (changing the allocation)

Optimal scheduling is NP-Complete in nearly all cases

Heuristic techniques are well developed

Errors

IR Register

Allocation

Instruction

Selection

Machine

code

Instruction

Scheduling

IR IR

Before the instruction scheduling
LoadAI, storeAI 3 cycles

mult 2 cycles

others 1 cycle

• The original number of cycles

After the instruction scheduling

