
Context-sensitive Analysis
or

Semantic Elaboration

Copyright 2010, Keith D. Cooper & Linda Torczon, all rights reserved.
Faculty from other educational institutions may use these materials for nonprofit
educational purposes, provided this copyright notice is preserved.

Beyond Syntax

There is a level of correctness that is deeper than grammar

To generate code, we need to understand its meaning !

fie(int a, int b,int c,int d) {
 …
}
fee() {

int f[3],g[0], h, i, j, k;
 char *p;

fie(h,i,“ab”,j, k);
k = f * i + j;
h = g[17];
printf(“<%s,%s>.\n”,p,q);
p = 10;

}

What is wrong with this program?
(let me count the ways …)

• number of args to fie()
• declared g[0], used g[17]
• “ab” is not an int
• wrong dimension on use of f
• undeclared variable q
• 10 is not a character string

All of these are
“deeper than syntax”

Beyond Syntax

To generate code, the compiler needs to answer many questions
• Is “x” a scalar, an array, or a function? Is “x” declared?
• Are there names that are not declared? Declared but not used?
• Which declaration of “x” does a given use reference?
• Is the expression “x * y + z” type-consistent?
• In “a[i,j,k]”, does a have three dimensions?
• Where can “z” be stored? (register, local, global, heap, static)

• In “f ← 15”, how should 15 be represented?
• How many arguments does “fie()” take? What about “printf ()” ?
• Does “*p” reference the result of a “malloc()” ?
• Do “p” & “q” refer to the same memory location?
• Is “x” defined before it is used?

These are beyond the expressive power of a CFG

Beyond Syntax

These questions are part of context-sensitive analysis
• Answers depend on values, not parts of speech
• Questions & answers involve non-local information
• Answers may involve computation

How can we answer these questions?
• Use formal methods

— Context-sensitive grammars?
— Attribute grammars

• Use ad-hoc techniques
— Symbol tables
— Ad-hoc code (action routines)

In context-sensitive analysis, ad-hoc techniques dominate in practice.

Beyond Syntax

Telling the story
• We will study the formalism — an attribute grammar

— Clarify many issues in a succinct and immediate way
— Separate analysis problems from their implementations

• We will see that the problems with attribute grammars
motivate actual, ad-hoc practice
— Non-local computation
— Need for centralised information

We will cover attribute grammars, then move on to ad-hoc ideas

When?

• These kind of analyses are either performed together with
parsing or in a post-pass that traverses the IR produced by the
parser

Attribute Grammars

What is an attribute grammar?

• A context-free grammar augmented with a set of rules
computing values

• Each symbol in the derivation (or parse tree) has a set of
named values, or attributes

• The rules specify how to compute a value for each attribute

— Attribution rules are functional; they uniquely define the value
— Each attribute is defined by rules that can refer to the values

of all the other attributes in the production (local information)

Example

This grammar defines

signed binary numbers

e.g., -10010 or +00101

Examples

We will use these two examples throughout the lecture

Number → Sign List

→ Sign Bit

→ Sign 1

→ – 1

Number

List

Bit

1

Sign

–

For “–1”

Number → Sign List

→ Sign List Bit

→ Sign List 1

→ Sign List Bit 1

→ Sign List 0 1

→ Sign Bit 0 1

→ Sign 1 0 1

→ – 101

Number

ListSign

– Bit

1

List

Bit

0

List

Bit

1

For “–101”

• We would like to augment it with rules that defines an attribute
containing the decimal value of each valid input string:

• e.g. -10010 -> -18 +00101 -> +5

• For this we consider the following attributes

Attribute Grammars

Attribute Grammars

Add rules to compute the decimal value of a signed binary number

Note: for some rules the information flows from left to right
 for some rules the information flows from right to left

Back to the Examples

One possible evaluation order:

1 List.pos
2 Sign.neg
3 Bit.pos
4 Bit.val
5 List.val
6 Number.val

Other orders are possible

Evaluation order
must be consistent
with the attribute
dependence graph

Knuth suggested a data-flow model for evaluation

• Independent attributes first

• Others in order as input values become available

Rules + parse tree imply an
attribute dependence graph

Evaluation order

Back to the Examples

This is the complete
attribute dependence
graph for “–101”.

It shows the flow of all
attribute values in the
example.

Some flow downward
→ inherited attributes

Some flow upward
→ synthesized attributes

A rule may use attributes
in the parent, children, or
siblings of a node

The Rules of the Game

• Attributes associated with nodes in parse tree
• Rules are value assignments associated with productions
• Attribute is defined once, using local information
• Rules & parse tree define an attribute dependence graph

— Graph must be non-circular

This produces a high-level, functional specification

We need an attributed grammar evaluator N.B.: AG is a specification
for the computation, not an
algorithm

Using Attribute Grammars
Attribute grammars can specify context-sensitive actions
• Take values from syntax
• Perform computations with values
• Insert tests, logic, …

We want to use both kinds of attributes

Synthesized Attributes

• Use values from children
 & from constants

• S-attributed grammars

• Evaluate in a single
 bottom-up pass

Good match to LR parsing

Inherited Attributes
• Use values from parent,
 constants, & siblings

•Thought to be more natural

Not easily done at parse time

Back to the Example

Number

Sign List

BitList

BitList

Bit

–

1

0

1 For “–101”

Syntax Tree

Back to the Example

Number

Sign List

BitList

BitList

Bit

–

1

0

1

pos: 1
val: 0

pos: 0
val: 1

pos: 2
val: 4

pos: 2
val: 4

pos: 1
val: 4

pos: 0
val: 5

val: –5

neg: true

For “–101”

Attributed Syntax Tree

Back to the Example

Number

Sign List

BitList

BitList

Bit

–

1

0

1

pos: 1
val: 0

pos: 0
val: 1

pos: 2
val: 4

pos: 2
val: 4

pos: 1
val: 4

pos: 0
val: 5

val: –5

neg: true

For “–101”

Inherited Attributes

Back to the Example

Number

Sign List

BitList

BitList

Bit

–

1

0

1

pos: 1
val: 0

pos: 0
val: 1

pos: 2
val: 4

pos: 2
val: 4

pos: 1
val: 4

pos: 0
val: 5

val: –5

neg: true

For “–101”

Synthesized attributes

Val draws from children & the same node.

Back to the Example

Number

Sign List

BitList

BitList

Bit

–

1

0

1

pos: 1
val: 0

pos: 0
val: 1

pos: 2
val: 4

pos: 2
val: 4

pos: 1
val: 4

pos: 0
val: 5

val: –5

neg: true

For “–101”

More Synthesized attributes

Back to the Example

Number

Sign List

BitList

BitList

Bit

–

1

0

1

pos: 1
val: 0

pos: 0
val: 1

pos: 2
val: 4

pos: 2
val: 4

pos: 1
val: 4

pos: 0
val: 5

val: –5

neg: true

For “–101”

& then peel away the parse tree ...

If we show the computation ...

Back to the Example

All that is left is the attribute
dependence graph.

This succinctly represents the
flow of values in the problem
instance.

The dynamic methods sort this
graph to find independent values,
then work along graph edges.

The rule-based methods try to
discover “good” orders by
analyzing the rules.

The oblivious methods ignore the
structure of this graph.

The dependence graph must be acyclic

–

1

0

1

pos: 1
val: 0

pos: 0
val: 1

pos: 2
val: 4

pos: 2
val: 4

pos: 1
val: 4

pos: 0
val: 5

val: –5

neg: true

For “–101”

Circularity
We can only evaluate acyclic instances
• General circularity testing problem is inherently exponential!
• We can prove that some grammars can only generate instances

with acyclic dependence graphs
— Largest such class is “strongly non-circular” grammars (SNC)
— SNC grammars can be tested in polynomial time
— Failing the SNC test is not conclusive (sufficient conditions)
— Many evaluation methods discover circularity dynamically

⇒ Bad property for a compiler to have

A Circular Attribute Grammar

Productions Attribution Rules

Number → List List.a ← 0

List0
 → List1 Bit List1.a ← List0.a + 1

List0.b ← List1.b
List1.c ← List1.b + Bit.val

| Bit List0.b ← List0.a + List0.c + Bit.val

Bit → 0 Bit.val ← 0

| 1 Bit.val ← 1

Remember, the circularity is in the attribution rules, not the underlying CFG

Circular Grammar Example

Number

Sign List

BitList

BitList

Bit

–

1

0

1 For “–101”

a: 0
b:
c:

a:
b:
c:

a:
b:
c:

val:

val:

val:

Circular Grammar Example

Number

Sign List

BitList

BitList

Bit

–

1

0

1 For “–101”

a: 0
b:
c:

a:
b:
c:

a:
b:
c:

val:

val:

val:

Circular Grammar Example

Number

Sign List

BitList

BitList

Bit

–

1

0

1

a: 0
b:
c:

a:
b:
c:

a:
b:
c:

val:

val:

val:

Circular Grammar Example

Number

Sign List

BitList

BitList

Bit

–

1

0

1

a: 0
b:
c:

a:
b:
c:

a:
b:
c:

val:

val:

val:

Circular Grammar Example

Number

Sign List

BitList

BitList

Bit

–

1

0

1

a: 0
b:
c:

a:
b:
c:

a:
b:
c:

val:

val:

val:

Here is the circularity …

Circular Grammar Example

Number

Sign List

BitList

BitList

Bit

–

1

0

1

a: 0
b:
c:

a:
b:
c:

a:
b:
c:

val:

val:

val:

Here is the circularity …

Circularity — The Point

• Circular grammars have indeterminate values
— Algorithmic evaluators will fail

• Noncircular grammars evaluate to a unique set of values

⇒Should (undoubtedly) use provably noncircular grammars

Remember, we are studying AGs to gain insight

• We should avoid circular, indeterminate computations

• If we stick to provably noncircular schemes, evaluation should
be easier

Another Example on Attribute Grammar

Grammar for a basic block
Let’s estimate cycle counts
• Each operation has a COST
• Assume a load per value that
has a COST
•Add them, bottom up
• Assume no reuse
Simple problem for an AG

Hey, that is a practical
application!

An Extended Example (continued)

These are all
synthesized
attributes !

Values flow
from rhs to
lhs in prod’ns

An Extended Example (continued)

Properties of the example grammar
• All attributes are synthesized ⇒ S-attributed grammar

• Rules can be evaluated bottom-up in a single pass
— Good fit to bottom-up, shift/reduce parser

• Easily understood solution
• Seems to fit the problem well

What about an improvement? x=y+y
• Values are loaded only once per block (not at each use)
• Need to track which values have been already loaded

• We would like something like

• to realize it we consider two attributes before and after that
contains set of names

• before contains the set of all names that occur earlier in the
block

• after contain all names in before plus any name that was loaded
in the subtree rooted at that node

An Extended Example

Non local information!

Adding load tracking
• Need sets Before and After for each production
• Must be initialized, updated, and passed around the tree

A Better Execution Model

This version is much more complex

• Load tracking adds complexity
• But, most of it is in the “copy rules”
• Every production needs rules to copy Before & After

A sample production

These copy rules multiply rapidly
Each creates an instance of the set
Lots of work, lots of space, lots of rules to write

A Better Execution Model

• Any compiler that tries to generate efficient code for a typed
language must confront the problem of inferring types for
every expression in the program

• This relies on context-sensitive information: the type of name
or of a num depends on its identity rather than its syntactic
category

A second example: inferring expression types

Type inference for expressions

Assume
• name and num that appear in the parse tree has already an

attribute type
• encode information as the one for + in this

table

The attribute Grammar

a - 2 x c

For each case the operand will have a different type from the type of the other
operand the compiler need to add a conversion

• We have assumed that name.type and num.type were already defined

• but to fill those values using an attribute grammar the compiler writer
would need to develop a set of rules for the portion of the grammar
that handle declarations, to collect this information and to add
attributes for propagate that information on all variables: many copy
rules!

• at the leaf node the rules need to extract the appropriate facts
The result set of rules would be similar the one of the previous example

Type inference for expressions

• Attribute grammars handle well problems where all information
flows in the same direction and is local

• There is a problem in handling non local information
• Non-local computation need a lots of supporting rules

• Copy rules increase cognitive overhead
• Copy rules increase space requirements

— Need copies of attributes

• Result is an attributed tree
— Must build the parse tree
— All the answer are in the values of the attributed tree. To find them

later phases has either visit the tree for answers or copy relevant
information in the root (more copy rules)

Problems with Attribute-Grammar Approach

To solve the Problems

• Drop the functional approach of the rules
• Add a central repository for attributes
• An attribute rule can write or read from a global table: it can

access to non-local information

The Realist’s Alternative
Ad-hoc syntax-directed translation
• Build on the grammar as attribute grammar
• Associate a snippet (action) of code with each production
• If you have a descendent parser call a procedure at each parsing

routine
• In the bottom up parser, for each reduction, the corresponding

snippet runs (in the next slides assume a bottom up parser!)

This looks cleaner
& simpler than the

AG !

One missing detail:
initializing cost

Reworking the Example The variable cost is global!

• Before parser can reach Block, it must reduce Init

• Reduction by Init sets cost to zero

We split the production to create a reduction in the middle — for the
sole purpose of hanging an action there. This trick is often used.

and so on as shown on previous slide…

Reworking the Example (with load tracking)

• Need names for attributes of each symbol on lhs & rhs
— Yacc introduced $$, $1, $2, … $n, left to right

• Need an evaluation scheme
— Fits nicely into LR(1) parsing algorithm

To make this work

Example — Assigning Types in
 Expression Nodes

• Assume typing functions or tables
 F+, F−, F×, and F÷

Assuming leaf nodes already have typed information!

Three major categories
• Structural

— Graphically oriented
— Heavily used in source-to-source translators
— Tend to be large

• Linear
— Pseudo-code for an abstract machine
— Level of abstraction varies
— Simple, compact data structures
— Easier to rearrange

• Hybrid
— Combination of graphs and linear code

Different kinds of Intermediate Representations

Intermediate representations: Abstract syntax tree

• Abstract syntax tree: retains the essential strutture of the parse
tree but eliminates the non-terminal nodes

Intermediate representations: Linear IR

• Linear code: sequence of instructions that execute in their order
of appearance

• In your book ILOC is an example of three-address code

Building an Abstract Syntax Tree

Assume the following 4 routines :

• MakeAddNode (A, B) +
• MakeSubNode (A, B)
• MakeDivNode (A, B)
• MakeMulNode (A, B)

and
• MakeNumNode(<num,val>) val
• MakeIdNode(<name,x>)

A B

x

Example — Building an Abstract Syntax Tree
• Assume constructors for each node
• Assume stack holds pointers to nodes
• Assume yacc syntax

MakeIdNode(token)

MakeAddNode(S1,S3)

MakeMulNode(S1,S3)

MakeNumNode(token)

MakeIdNode(token)
MakeMulNode(S1,S3)

MakeNumNode(token)

MakeMulNode(S1,S3)

MakeIdNode(token)MakeIdNode(token)

+

x

x

x

a 2

a 2

b

ax2+ax2xb

 Emitting ILOC

Assume
• NextRegister() returns a new register name
• 4 routines
 - Emit(sub, r1,r2,r3) sub r1, r2, r3 (r1-r2->r3)
 - Emit(mult, r1,r2,r3) mult r1, r2, r3 (r1xr2->r3)
 - Emit(add, r1,r2,r3) add r1, r2, r3 (r1+r2->r3)
 - Emit(div, r1,r2,r3) div r1, r2, r3 (r1/r2->r3)

• EmitLoad(iden, r) loadAI(rarp,@iden,r)
 Memory(rarp + c)->r
• Emit(loadi,n,r) loadI(n,r) n->r

activationrecordpointer

Example — Emitting ILOC

Example — Emitting ILOC

r0=NextRegister(), Emitload(a,r0)

LoadAI rarp, @a, r0

r4=NextRegister(), Emit(loadi,2,r4)

LoadI 2 r1

LoadAI rarp, @b, r6

r6=NextRegister(), Emitload(b,r6)

r1=NextRegister(), Emit(loadi,2,r1)

LoadI 2 r4
LoadAI rarp, @a, r3

r3=NextRegister(), Emitload(a,r3)

r5=NextRegister(), Emit(mult, r3,r4,r5)

Mult ro, r1, r2

r7=NextRegister(), Emitl(mult, r5,r6,r7)

Mult r3, r4, r5

r2=NextRegister(), Emitl(mult r0, r1, r2)

Mult r5, r6, r7

r8=NextRegister(), Emitl(add, r2,r7,r8)

Add r2, r7, r8

Reality

Most parsers are based on this ad-hoc style of context-sensitive
analysis

Advantages
• Addresses the shortcomings of the AG paradigm
• Efficient, flexible

Disadvantages
• Must write the code with little assistance
• Programmer deals directly with the details

Comp 412, Fall 2010

stack.push(INVALID);
stack.push(s0); // initial state
token = scanner.next_token();
loop forever {
 s = stack.top();
 if (ACTION[s,token] == “reduce A→β”) then {
 stack.popnum(2*|β|); // pop 2*|β| symbols
 s = stack.top();
 stack.push(A); // push A
 stack.push(GOTO[s,A]); // push next state
 }
 else if (ACTION[s,token] == “shift si”) then {
 stack.push(token); stack.push(si);
 token ← scanner.next_token();
 }
 else if (ACTION[s,token] == “accept”
 & token == EOF)
 then break;
 else throw a syntax error;
}
report success;

From previous lectures

Making Ad-hoc SDT Work
How do we fit this into an LR(1) parser?

Comp 412, Fall 2010

stack.push(INVALID);
stack.push(NULL);
stack.push(s0); // initial state
token = scanner.next_token();
loop forever {
 s = stack.top();
 if (ACTION[s,token] == “reduce A→β”) then {

 stack.popnum(3*|β|); // pop 3*|β| symbols

/* insert case statement here computing $$ */
 s = stack.top();
 stack.push(A); // push A
 stack.push($$); // push $$
 stack.push(GOTO[s,A]); // push next state}
 else if (ACTION[s,token] == “shift si”) then {
 stack.push(token); stack.push(si);
 token ← scanner.next_token();
 }
 else if (ACTION[s,token] == “accept”
 & token == EOF)
 then break;
 else throw a syntax error;
} report success;

To add yacc-like actions
• Stack 3 items per symbol

rather than 2 (3rd is $$)
• Add case statement to the

reduction processing section
→ Case switches on

production number
→ Each case holds the code

snippet for that
production

→ Substitute appropriate
names for $$, $1, $2, …

• Slight increase in parse time
• increase in stack space

Augmented LR(1) Skeleton Parser

• Need a place to store the attributes
— Stash them in the stack, along with state and symbol
— Push three items each time, pop 3 x |β| symbols

• Need a naming scheme to access them
— $n translates into stack location (top - 3(n-1)-1)

• Need to sequence rule applications
— On every reduce action, perform the action rule
— Add a giant case statement to the parser

How do we fit this into an LR(1) parser?

Exercise

Write a grammar that generate all binary numbers multiple than 4.
Assume we are interested in knowing whether the representation
contain a even number of 0 or an odd one.
• Design a attribute grammar to compute the information we are

interested in
• Design a ad-hoc directed translation solving the same problem

• Construct the evaluation for the string 110100

