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Beyond Syntax

There is a level of correctness that is deeper than grammar 

To generate code, we need to understand its meaning !

fie(int a, int b,int c,int d) {
     … 
}
fee() {

int f[3],g[0], h, i, j, k;
    char *p;

fie(h,i,“ab”,j, k); 
k = f * i + j;
h = g[17];
printf(“<%s,%s>.\n”,p,q);
p = 10;

}

What is wrong with this program? 
(let me count the ways …) 

• number of args to fie() 
• declared g[0], used g[17] 
• “ab” is not an int 
• wrong dimension on use of f 
• undeclared variable q 
• 10 is not a character string 

All of these are  
“deeper than syntax”



Beyond Syntax

To generate code, the compiler needs to answer many questions  
• Is “x” a scalar, an array, or a function?  Is “x” declared? 
• Are there names that are not declared?  Declared but not used? 
• Which declaration of “x” does a given use reference? 
• Is the expression “x * y + z” type-consistent? 
• In “a[i,j,k]”, does a have three dimensions? 
• Where can “z” be stored?            (register, local, global, heap, static) 

• In “f ← 15”, how should 15 be represented? 
• How many arguments does “fie()” take? What about “printf ()” ? 
• Does “*p” reference the result of a “malloc()” ?   
• Do “p” & “q” refer to the same memory location? 
• Is “x” defined before it is used?

These are beyond the expressive power of a CFG



Beyond Syntax

These questions are part of context-sensitive analysis 
• Answers depend on values, not parts of speech 
• Questions & answers involve non-local information 
• Answers may involve computation 

How can we answer these questions? 
• Use formal methods 

— Context-sensitive grammars? 
— Attribute grammars                                 

• Use ad-hoc techniques 
— Symbol tables 
— Ad-hoc code              (action routines)

In context-sensitive analysis, ad-hoc techniques dominate in practice.



Beyond Syntax

Telling the story 
• We will study the formalism — an attribute grammar 

— Clarify many issues in a succinct and immediate way 
— Separate analysis problems from their implementations 

• We will see that the problems with attribute grammars 
motivate actual, ad-hoc practice 
— Non-local computation 
— Need for centralised information 

We will cover attribute grammars, then move on to ad-hoc ideas



When? 

• These kind of analyses are either performed  together with 
parsing or in a post-pass that traverses the IR produced by the 
parser



Attribute Grammars

What is an attribute grammar? 

• A context-free grammar augmented with a set of rules 
computing values 

• Each symbol in the derivation (or parse tree) has a set of 
named values, or attributes  

• The rules specify how to compute a value for each attribute 

— Attribution rules are functional; they uniquely define the value 
— Each attribute is defined by rules  that can  refer to  the values 

of all the other attributes in the production (local information)



Example

This grammar defines 

signed binary numbers 

e.g., -10010 or +00101 



Examples 

We will use these two examples throughout the lecture
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• We would like to augment it with rules that defines an attribute  
containing the decimal value of each valid input string:   

• e.g.     -10010 -> -18      +00101 -> +5 

• For this we  consider  the following attributes  

Attribute Grammars



Attribute Grammars

Add rules to compute the decimal value of a signed binary number

Note: for some rules the information flows from left to right  
         for some rules the information flows from right to left



Back to the Examples



One possible evaluation order: 

1 List.pos  
2 Sign.neg 
3 Bit.pos 
4 Bit.val 
5 List.val 
6 Number.val 

Other orders are possible

Evaluation order 
must be consistent 
with the  attribute 
dependence graph 

Knuth suggested a data-flow model for evaluation 

• Independent attributes first 

• Others in order as input values become available

Rules + parse tree imply an 
attribute dependence graph

Evaluation order



Back to the Examples

This is the complete 
attribute dependence 
graph for “–101”. 

It shows the flow of all 
attribute values in the 
example. 

Some flow downward 
→ inherited attributes 

Some flow upward 
→ synthesized attributes 

A rule may use attributes 
in the parent, children, or 
siblings of a node



The Rules of the Game

• Attributes associated with nodes in parse tree 
• Rules are value assignments associated with productions 
• Attribute is defined once, using local information 
• Rules & parse tree define an attribute dependence graph 

— Graph must be non-circular  

This produces a high-level, functional specification 

We need an attributed grammar evaluator N.B.: AG is a specification 
for the computation, not an 
algorithm



Using Attribute Grammars
Attribute grammars can specify context-sensitive actions 
• Take values from syntax 
• Perform computations with values 
• Insert tests, logic, … 

We want to use both kinds of attributes 

Synthesized Attributes 

• Use values from children  
  & from constants 

• S-attributed grammars 

• Evaluate in a single  
   bottom-up pass 

Good match to LR parsing

Inherited Attributes 
• Use values from parent,   
  constants, & siblings 

•Thought to be more natural 

Not easily done at parse time



Back to the Example
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Back to the Example
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Attributed Syntax Tree



Back to the Example
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Back to the Example
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Synthesized attributes

Val draws from children & the same node.



Back to the Example
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More Synthesized attributes



Back to the Example
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& then peel away the parse tree ...

If we show the computation ...



Back to the Example

All that is left is the attribute 
dependence graph. 

This succinctly represents the 
flow of values in the problem 
instance. 

The dynamic methods sort this 
graph to find independent values, 
then work along graph edges.   

The rule-based methods try to 
discover “good” orders by 
analyzing the rules. 

The oblivious methods ignore the 
structure of this graph.

The dependence graph must be acyclic
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Circularity
We can only evaluate acyclic instances 
• General circularity testing problem is inherently exponential! 
• We can prove that some grammars can only generate instances 

with acyclic dependence graphs 
— Largest such class is “strongly non-circular” grammars (SNC ) 
— SNC grammars can be tested in polynomial time 
— Failing the SNC test is not conclusive (sufficient conditions) 
— Many evaluation methods discover circularity dynamically 

⇒ Bad property for a compiler to have



A Circular Attribute Grammar

Productions Attribution Rules

Number  → List List.a ← 0

List0
 → List1 Bit List1.a ← List0.a + 1 

List0.b ← List1.b 
List1.c ← List1.b + Bit.val 

| Bit List0.b ← List0.a + List0.c + Bit.val

Bit  → 0 Bit.val ← 0

| 1 Bit.val ← 1

Remember, the circularity is in the attribution rules, not the underlying CFG



Circular Grammar Example
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Circular Grammar Example
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Circular Grammar Example
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Circular Grammar Example
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Circular Grammar Example
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Circular Grammar Example
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Circularity — The Point

• Circular grammars have indeterminate values 
— Algorithmic evaluators will fail  

• Noncircular grammars evaluate to a unique set of values 

⇒Should (undoubtedly) use provably noncircular grammars 

Remember, we are studying AGs to gain insight 

• We should avoid circular, indeterminate computations 

• If we stick to provably noncircular schemes, evaluation should 
be easier



Another Example on Attribute Grammar

Grammar for a basic block                                 
Let’s estimate cycle counts 
• Each operation has a COST 
• Assume a load per value that 
has a COST 
•Add them, bottom up 
• Assume no reuse 
Simple problem for an AG

Hey, that is a practical 
application!



An Extended Example                       (continued)   

These are all 
synthesized 
attributes ! 

Values flow 
from rhs to 
lhs in prod’ns



An Extended Example                       (continued)

Properties of the example grammar 
• All attributes are synthesized ⇒ S-attributed grammar 

• Rules can be evaluated bottom-up in a single pass 
— Good fit to bottom-up, shift/reduce parser 

• Easily understood solution 
• Seems to fit the problem well 

What about an improvement?  x=y+y 
• Values are loaded only once per block (not at each use) 
• Need to track which values have been already loaded



• We would like something like  

• to realize it we consider two attributes before and after that 
contains set of names 

• before contains the set of all names that occur earlier in the 
block  

• after contain all names in before plus any name that was loaded 
in the subtree rooted at that node

An Extended Example   

Non local information!



Adding load tracking 
• Need sets Before and After for each production 
• Must be initialized, updated, and passed around the tree

A Better Execution Model

This version is much more complex



• Load tracking adds complexity 
• But, most of it is in the “copy rules” 
• Every production needs rules to copy Before & After 

A sample production 

These copy rules multiply rapidly 
Each creates an instance of the set 
Lots of work, lots of space, lots of rules to write

A Better Execution Model



• Any compiler that tries to generate efficient code for a typed 
language must confront  the problem of inferring types for 
every expression in the program  

• This relies on   context-sensitive information: the type of name 
or of a num depends on its identity rather than its syntactic 
category 

A second example: inferring expression types



Type inference for expressions

Assume  
•  name and num that appear in the parse tree has already an 

attribute type 
•                        encode information as the one for + in this  

table 



The attribute Grammar



a - 2 x c

For each case the  operand will have a different type from the type of the other 
operand the compiler need to add a conversion 



• We have assumed that name.type and num.type  were already defined 

• but to fill those values using an attribute grammar the compiler writer 
would need to develop a set of rules for the portion of the grammar 
that handle declarations, to collect this information and  to add 
attributes for propagate that information on all variables: many copy 
rules! 

• at the leaf node the rules need to extract the appropriate facts
The result set of rules would be similar the one of the previous example 

Type inference for expressions



• Attribute grammars handle well problems where all information 
flows in the same direction and is local 

• There is a problem in handling non local information 
• Non-local computation need a lots of supporting rules 

• Copy rules increase cognitive overhead 
• Copy rules increase space requirements 

— Need copies of attributes 

• Result is an attributed tree             
— Must build the parse tree 
— All the answer are in the values of the attributed tree. To find them 

later phases has  either visit the tree for answers or copy relevant 
information in  the root (more copy rules)

Problems with Attribute-Grammar Approach



To solve the Problems

• Drop the functional approach of the rules  
• Add a central repository for attributes 
• An attribute rule can write or read from a global table: it can 

access to non-local information



The Realist’s Alternative
Ad-hoc syntax-directed translation 
• Build on the grammar as attribute grammar 
• Associate a snippet (action) of code with each production 
• If you have a descendent parser call a procedure at each parsing 

routine 
• In the bottom up  parser, for each reduction, the corresponding 

snippet runs (in the next slides assume a bottom up parser!) 



This looks cleaner 
& simpler than the 

AG ! 

One missing detail: 
initializing cost 

Reworking the Example         The variable cost is global!



• Before parser can reach Block, it must reduce Init 

• Reduction by Init sets cost to zero 

We split the production to create a reduction in the middle — for the 
sole purpose of hanging an action there. This trick  is often used.

and so on as shown on previous slide… 

Reworking the Example          (with load tracking)



• Need names for attributes of each symbol on lhs & rhs 
— Yacc introduced $$, $1,  $2, … $n, left to right 

• Need an evaluation scheme 
— Fits nicely into LR(1) parsing algorithm

To make this work



Example — Assigning Types in  
                  Expression Nodes

• Assume typing functions or tables  
     F+, F−, F×, and F÷

Assuming leaf nodes already have typed information!



Three major categories 
• Structural 

— Graphically oriented 
— Heavily used in source-to-source translators 
— Tend to be large 

• Linear 
— Pseudo-code for an abstract machine  
— Level of abstraction varies 
— Simple, compact data structures 
— Easier to rearrange 

• Hybrid 
— Combination of graphs and linear code  

Different kinds of Intermediate Representations



Intermediate representations: Abstract syntax tree

• Abstract syntax tree: retains the essential strutture of the parse 
tree but eliminates  the non-terminal nodes 



Intermediate representations:   Linear IR

• Linear code: sequence of instructions that execute in their order 
of appearance 

• In your book  ILOC  is an example of three-address code



Building an Abstract Syntax Tree

Assume  the following 4 routines : 

• MakeAddNode (A, B)                               + 
• MakeSubNode (A, B) 
•  MakeDivNode (A, B)  
• MakeMulNode (A, B) 

and  
• MakeNumNode(<num,val>)                             val 
• MakeIdNode(<name,x>)

A B

x



Example — Building an Abstract Syntax Tree
• Assume constructors for each node 
• Assume stack holds pointers to nodes 
• Assume yacc syntax



MakeIdNode(token)

MakeAddNode(S1,S3)

MakeMulNode(S1,S3)

MakeNumNode(token)

MakeIdNode(token)
MakeMulNode(S1,S3)

MakeNumNode(token)

MakeMulNode(S1,S3)

MakeIdNode(token)MakeIdNode(token)

+

x

x

x

a 2

a 2

b

ax2+ax2xb



 Emitting ILOC

Assume  
• NextRegister()  returns a new register name 
• 4 routines  
   - Emit(sub, r1,r2,r3)                        sub  r1, r2, r3  (r1-r2->r3) 
   - Emit(mult, r1,r2,r3)                       mult  r1, r2, r3  (r1xr2->r3)  
   - Emit(add, r1,r2,r3)                        add  r1, r2, r3  (r1+r2->r3)  
  -  Emit(div, r1,r2,r3)                         div  r1, r2, r3  (r1/r2->r3) 
  
• EmitLoad(iden, r)                               loadAI(rarp,@iden,r)  
                                                                Memory(rarp + c)->r 
• Emit(loadi,n,r)                                     loadI(n,r)   n->r 

activationrecordpointer



Example — Emitting ILOC



Example — Emitting ILOC



r0=NextRegister(), Emitload(a,r0)

LoadAI rarp, @a, r0 

r4=NextRegister(), Emit(loadi,2,r4)

LoadI   2 r1

LoadAI rarp, @b, r6

r6=NextRegister(), Emitload(b,r6)

r1=NextRegister(), Emit(loadi,2,r1)

LoadI    2 r4
LoadAI rarp, @a, r3

r3=NextRegister(), Emitload(a,r3)

r5=NextRegister(), Emit(mult, r3,r4,r5)

Mult      ro,  r1, r2 

r7=NextRegister(), Emitl(mult, r5,r6,r7)

Mult      r3,  r4, r5

r2=NextRegister(), Emitl(mult r0, r1, r2)

Mult      r5,  r6, r7

r8=NextRegister(), Emitl(add, r2,r7,r8)

Add       r2,  r7, r8



Reality

Most parsers are based on this ad-hoc style of context-sensitive 
analysis 

Advantages 
• Addresses the shortcomings of the AG paradigm 
• Efficient, flexible 

Disadvantages 
• Must write the code with little assistance 
• Programmer deals directly with the details 



Comp 412, Fall 2010

stack.push(INVALID); 
stack.push(s0);                             // initial state 
token = scanner.next_token(); 
loop forever { 
    s = stack.top(); 
    if ( ACTION[s,token] == “reduce A→β” ) then { 
     stack.popnum(2*|β|);       // pop 2*|β| symbols 
             s = stack.top();  
             stack.push(A);                 // push A 
             stack.push(GOTO[s,A]);  // push next state 
 } 
    else if ( ACTION[s,token] == “shift si” ) then { 
  stack.push(token); stack.push(si); 
  token ← scanner.next_token(); 
 } 
    else if ( ACTION[s,token] == “accept”   
    & token == EOF ) 
  then break;  
 else throw a syntax error; 
}  
report success;

From previous lectures 

Making Ad-hoc SDT Work
How do we fit this into an LR(1) parser?



Comp 412, Fall 2010

stack.push(INVALID); 
stack.push(NULL); 
stack.push(s0);                             // initial state 
token = scanner.next_token(); 
loop forever { 
    s = stack.top(); 
    if ( ACTION[s,token] == “reduce A→β” ) then { 

             stack.popnum(3*|β|);       // pop 3*|β| symbols 

/* insert case statement here computing $$ */ 
             s = stack.top();  
             stack.push(A);                 // push A 
             stack.push($$);                 // push $$ 
           stack.push(GOTO[s,A]);  // push next state} 
    else if ( ACTION[s,token] == “shift si” ) then { 
  stack.push(token); stack.push(si); 
  token ← scanner.next_token(); 
 } 
    else if ( ACTION[s,token] == “accept”   
    & token == EOF ) 
  then break;  
 else throw a syntax error; 
}  report success;

To add yacc-like actions 
• Stack 3 items per symbol 

rather than 2   (3rd is $$) 
• Add case statement to the 

reduction processing section 
→ Case switches on 

production number  
→ Each case holds the code 

snippet for that  
production  

→ Substitute appropriate 
names for $$, $1, $2, … 

• Slight increase in parse time 
•  increase in stack space

Augmented LR(1) Skeleton Parser



• Need a place to store the attributes 
— Stash them in the stack, along with state and symbol 
— Push three items each time, pop 3 x |β| symbols 

• Need a naming scheme to access them 
— $n translates into stack location (top - 3(n-1)-1)   

• Need to sequence rule applications 
— On every reduce action, perform the action rule 
— Add a giant case statement to the parser 

How do we fit this into an LR(1) parser?



Exercise

Write a grammar that generate all binary numbers multiple than 4.  
Assume we are interested in knowing whether the representation 
contain a even number of 0 or an odd one. 
• Design a attribute grammar to compute the information we are 

interested in  
• Design a ad-hoc directed translation solving the same problem 

• Construct the evaluation for the string 110100






