
This lecture begins
the material from
Chapter 8 of EaC

Introduction to Code Optimization 
 

Copyright 2010, Keith D. Cooper & Linda Torczon, all rights reserved.

Faculty from other educational institutions may use these materials for nonprofit educational
purposes, provided this copyright notice is preserved

Traditional Three-Phase Compiler

Optimization (or Code Improvement)

• Analyzes IR and rewrites (or transforms) IR

• Primary goal is to reduce running time of the compiled code

— May also improve space, power consumption, …

Transformations have to be:

• Safely applied and (it does not change the result of the running program)

• Applied when profit has expected

Errors

Source

Code

OptimizerFront

End

Machine

code

Back

End

IR IR

Background

• Until the early 1980s optimisation was a feature should be added
to the compiler only after its other parts were working well

• Debugging compilers vs. optimising compilers

• After the development of RISC processors the demand for
support from the compiler had increased

The Optimizer

Typical Transformations

• Discover & propagate some constant value

• Move a computation to a less frequently executed place

• Specialize some computation based on context

• Discover a redundant computation & remove it

• Remove useless or unreachable code

Errors

Opt

1

Opt

3

Opt

2

Opt

n

...IR IR IR IR IR

Modern optimizers are structured as a series of passes

The Role of the Optimizer
• The compiler can implement a procedure in many ways

• The optimizer tries to find an implementation that is “better”

— Speed, code size, data space, …

To accomplish this, it

• Analyzes the code to derive knowledge about run-time behavior

— Data-flow analysis, pointer disambiguation, …

— General term is “static analysis”

• Uses that knowledge in an attempt to improve the code

— Literally hundreds of transformations have been proposed

— Large amount of overlap between them

Nothing “optimal” about optimization

• Proofs of optimality assume restrictive & unrealistic conditions

Scope of Optimization

In scanning and parsing, “scope” refers to a region of the code
that corresponds to a distinct name space.

In optimization “scope” refers to a region of the code that is
subject to analysis and transformation.

•Notions are somewhat related

•Connection is not necessarily intuitive

Different scopes introduces different challenges & different
opportunities

Historically, optimization has been performed at several distinct
scopes.

Scope of Optimization

Local optimization

• Operates entirely within a single basic block

• Properties of block lead to strong optimizations

Regional optimization

• Operate on a region in the CFG that contains multiple blocks

• Loops, trees, paths, extended basic blocks

Whole procedure optimization (intraprocedural)

• Operate on entire CFG for a procedure

Whole program optimization (interprocedural)

• Operate on some or all of the call graph (multiple procedures)

• Must contend with call/return & parameter binding

CFG of basic blocks: BB is a
maximal length sequence of
straightline code.

new opportunities

Redundancy Elimination as an Example

An expression x+y is redundant if and only if, along every

path from the procedure’s entry, it has been evaluated, and its

constituent subexpressions (x & y) have not been re-defined.

If the compiler can prove that an expression is redundant

• It can preserve the results of earlier evaluations

• It can replace the current evaluation with a reference

Two pieces to the problem

• Proving that x+y is redundant, or available

• Rewriting the code to eliminate the redundant evaluation

One technique for accomplishing both is called value numbering

Assume a low-level, linear IR such as ILOC

a b+ c
b a� d
c b+ c
d a� d

<latexit sha1_base64="OD0w7JmAgfGY8FW3xJUwl0tmIM8=">AAACUHicbZFLaxsxFIXvuHl1moeTLrsRsQuBEDPjLJplSDZdJhA7Bo8xdzR3bGGNZpA0DWbwT8wmu/6ObrpoaeVHIIlzQejw3aPXUVxIYWwQ/PRqHzY2t7Z3Pvqfdvf2D+qHR12Tl5pTh+cy170YDUmhqGOFldQrNGEWS7qPJ9fz/v0P0kbk6s5OCxpkOFIiFRytQ8P6qBnFNBKqQq1xOqvkzEcWSUqtA/kDi095FPnxS4RniUN8zZS89vgRqWS1bdMf1htBK1gUWxfhSjRgVTfD+lOU5LzMSFku0Zh+GBR24Pazgkua+VFpqEA+wRH1nVSYkRlUi0Bm7KsjCUtz7YaybEFfrqgwM2aaxc6ZoR2bt705fK/XL216MaiEKkpLii8PSkvJbM7m6bJEaOJWTp1AroW7K+Nj1Mit+4N5COHbJ6+LbrsVnrfat+3G5dUqjh34AsdwAiF8g0v4DjfQAQ6P8Av+wF/vyfvt/at5S+vzDJ/hVdX8/w6Fs70=</latexit>

Original Block

a b+ c
b a� d
c b+ c
d b

<latexit sha1_base64="IfWDQ35DdopUDkazwAqWMTavaeM=">AAACTnicbZFNS8MwGMfT+Tbr29Sjl+AUBHG086DHoRePCk6FdYyn6dMZTNOSpMoo+4RexJsfw4sHRTSbPUznA4E/v+ct+SfMBNfG816cyszs3PxCddFdWl5ZXautb1zpNFcM2ywVqboJQaPgEtuGG4E3mUJIQoHX4d3pKH99j0rzVF6aQYbdBPqSx5yBsahXw50gxD6XBSgFg2Ehhi7QQGBsLEgfaLjPgsANJxEcRBaxqaJokrgByqgcuuP2anWv4Y2DTgu/FHVSxnmv9hxEKcsTlIYJ0Lrje5np2nmGM4FDN8g1ZsDuoI8dKyUkqLvF2I4h3bUkonGq7JGGjulkRwGJ1oMktJUJmFv9NzeC/+U6uYmPuwWXWW5Qsp9FcS6oSenIWxpxhcyIgRXAFLd3pewWFDBjf2Bkgv/3ydPiqtnwDxvNi2a9dVLaUSVbZJvsEZ8ckRY5I+ekTRh5JK/knXw4T86b8+l8/ZRWnLJnk/yKSvUbwja0GA==</latexit>

Rewritten Block

The resulting code runs more quickly but extend the lifetime of b

This could cause the allocator to spill the value of b

Since the optimiser cannot predict the behaviour of the register
allocator, it assumes that rewriting to avoid redundancy is
profitable!

Rewriting to avoid Redundancy

a b⇥ c
d b
e d⇥ c

<latexit sha1_base64="rIFZ/2oDvl/5CT1yOGv54EDp934=">AAACSnicbVBNTxsxEPUGKHRb2gDHXixCpZ6i3XAoR9ReOFKJBKQ4ima9s8HC613Zs6Bold/XS0/c+BFcOIAqLjhhD+FjJEvP772ZsV9SauUoim6C1srq2of1jY/hp8+bX762t7YHrqisxL4sdGHPEnColcE+KdJ4VlqEPNF4mlz8nuunl2idKswJTUsc5TAxKlMSyFPjNuyJBCfK1GAtTGe1noXAhcaMPFFc8USQytFxKUSYvhREiEt3LzZOHgo0aTNwLxy3O1E3WhR/C+IGdFhTx+P2tUgLWeVoSGpwbhhHJY38PFJS4ywUlcMS5AVMcOihAb91VC+imPHvnkl5Vlh/DPEFu9xRQ+7cNE+8Mwc6d6+1OfmeNqwoOxjVypQVoZHPi7JKcyr4PFeeKouS9NQDkFb5t3J5DhYk+fTnIcSvv/wWDHrdeL/b+9PrHP5q4thg39gu+8Fi9pMdsiN2zPpMsr/slt2zh+BfcBf8Dx6fra2g6dlhL6q1+gTUIrKy</latexit>

Redundancy without textual identity

The problem is more complex that it may seem!

Local Value Numbering
The key notion

• Assign an identifying number, V(e), to each identifier,

constant or expression in general with the following

 property:

— V(e1) = V(e2) iff e1 and e2 always have the same value for all
possible operand

— Use hashing over the value numbers to make it efficient

• Use these numbers to improve the code

Improving the code

• Replace redundant expressions

— Same V(e) ⇒ refer rather than recompute

Local algorithm due to Balke
(1968) or Ershov (1954)

Local Value Numbering
The Algorithm

For each operation o = <operator, o1, o2> in the block, in order

1. Get value numbers VN(o1) and VN(o2) for operands from

hash lookup

2. Hash <operator,VN(o1),VN(o2)> to get a value number for o

3. If o already had a value number, replace o with a reference

<operator,VN(o1),VN(o2)>

If hashing behaves, the algorithm runs in linear time

Local Value Numbering

An example

With VNs

 a3 ← b1 + c2

 b5 ← a3 - d4

 c6 ← b5 + c2

∗ d5 ← a3 - d4

Rewritten

 a ← b + c

 b ← a - d

 c ← b + c

∗ d ← b

Original Code

 a ← b + c

 b ← a - d

 c ← b + c

∗ d ← a - d

One redundancy

• Eliminate stmt with ∗

Local Value Numbering: the role of naming

An example

With VNs

 a3 ← x1 + y2

 b3 ← x1 + y2

 a4 ← 17

 c3 ← x1 + y2

Rewritten

 a3 ← x1 + y2

∗ b3 ← a3

 a4 ← 17

∗ c3 ← a3 (oops!)

Options

• Use c3
 ← b3

with a mapping from values

to names

• Save a3 in t3

• Rename around it

Original Code

 a ← x + y

 b ← x + y

 a ← 17

 c ← x + y

Two redundancies

• Eliminate stmts

with a ∗

Local Value Numbering: renaming

Example (continued):

With VNs

 a0

3 ← x0
1 + y0

2

∗ b0

3 ← x0
1 + y0

2

 a1

4 ← 17

∗ c0

3 ← x0
1 + y0

2

Notation:

• While complex,

the meaning is
clear

Original Code

 a0 ← x0 + y0

∗ b0 ← x0 + y0

 a1 ← 17

∗ c0 ← x0 + y0

Renaming:

• Give each value a

unique name

• Makes it clear

Rewritten

 a0

3 ← x0
1 + y0

2

∗ b0

3 ← a0
3

 a1
4 ← 17

∗ c0
3 ← a0

3

Result:

• a0
3 is available

• Rewriting now
works

How to reconcile this new subscripted names with the original ones? A clever
implementation would map

Remember the SSA form?

c0
 -> c b0

 -> b a1
 -> a a0

 -> t

The impact of indirect assignments on SSA form

• To manage the subscripted naming the compiler maintain a map
from names to the current subscript.

• With a direct assignment a <- b + c, the changes are clear

• With an indirect assignment *p <- 0?

• The compiler can perform static analysis to disambiguate pointer
references (to restrict the set of variables to whom p can refer
to).

Ambiguous reference

the compiler cannot isolate a single memory location

Simple Extensions to Value Numbering

Commutative operations

• commutative operations that differs only for the order of their operands should receive
the same value numbers a x b and b x a

 Impose an order !!

Constant folding

• Add a bit that records when a value is constant

• Evaluate constant values at compile-time

• Replace an operation with load of the immediate value

Algebraic identities

• Must check (many) special cases

(organize them into operator-specific decision tree)

• Replace result with input VN

Identities (on VNs)

x←y, x+0, x-0, x∗1, x÷1, x-x, x∗0,
x÷x, x∨0, x ∧ x, ….

max(x,MAXINT), min(x,MININT),
max(x,x), min(y,y), and so on ...

Local Value Numbering 	 	 	 (Recap)

The LVN Algorithm, with bells & whistles
for i ← 0 to n-1
1. get the value numbers V1 and V2 for Li and Ri

2. if Li and Ri are both constant then
evaluate Li Opi Ri, assign it to Ti and mark Ti as a constant

3. if Li Opi Ri matches an identity then
replace it with a copy operation or an assignment

4. if Opi commutes and V1 > V2 then
swap V1 and V2

5. construct a hash key <V1,Opi ,V2>
• if the hash key is already present in the table then

 replace operation I with a copy into Ti and mark Ti with the VN
else

 insert a new VN into table for hash key & mark Ti with the VN

Block is a sequence of n
operations of the form

Ti ← Li Opi Ri

Constant folding

Algebraic identities

Commutativity

Local Value Numbering

The Algorithm

For each operation o = <operator, o1, o2> in the block, in order

1 Get value numbers for operands from hash lookup

2 Hash <operator,VN(o1),VN(o2)> to get a value number for o

3 If o already had a value number, replace o with a reference

Complexity & Speed Issues

• “Get value numbers” — linear search versus hash

• “Hash <op,VN(o1),VN(o2)>” — linear search versus hash

• Copy folding — set value number of result

• Commutative ops — double hash versus sorting the operands

Terminology Control-flow graph (CGF)

m ← a + b
n ← a + b

A

p ← c + d
r ← c + d

B

y ← a + b
z ← c + d

G

q ← a + b
r ← c + d

C

e ← b + 18
s ← a + b
u ← e + f

D e ← a + 17
t ← c + d
u ← e + f

E

v ← a + b
w ← c + d
x ← e + f

F

• Nodes for basic blocks

• Edges for branches

• Basis for much of
program analysis &
transformation

This CFG, G = (N,E)

• N = {A,B,C,D,E,F,G}

• E = {(A,B),(A,C),(B,G),(C,D),

(C,E),(D,F),(E,F),(F,E)}

• |N| = 7, |E| = 8

Missed opportunities

(need stronger methods)

m ← a + b
n ← a + b

A

p ← c + d
r ← c + d

B

y ← a + b
z ← c + d

G

q ← a + b
r ← c + d

C

e ← b + 18
s ← a + b
u ← e + f

D e ← a + 17
t ← c + d
u ← e + f

E

v ← a + b
w ← c + d
x ← e + f

F

Local Value Numbering

Local Value Numbering

• 1 block at a time

• Strong local results

• No cross-block effects

LVN finds these redundant ops

Superlocal Value Numbering

m ← a + b
n ← a + b

A

p ← c + d
r ← c + d

B

y ← a + b
z ← c + d

G

q ← a + b
r ← c + d

C

e ← b + 18
s ← a + b
u ← e + f

D e ← a + 17
t ← c + d
u ← e + f

E

v ← a + b
w ← c + d
x ← e + f

F
{A,B,C,D,E} is an EBB

•It has 3 paths: (A,B), (A,C,D), &
(A,C,E)

•Can sometimes treat each path
as if it were a block

{F} & {G} are degenerate EBBs

A Regional Technique Extended Basic Block: maximal
set of blocks B1, B2, …, Bn where
each Bi, except B1, has exactly one
predecessor in the EBB itself.

23

Superlocal Value Numbering

m ← a + b
n ← a + b

A

p ← c + d
r ← c + d

B

y ← a + b
z ← c + d

G

q ← a + b
r ← c + d

C

e ← b + 18
s ← a + b
u ← e + f

D e ← a + 17
t ← c + d
u ← e + f

E

v ← a + b
w ← c + d
x ← e + f

F

The Concept

• Apply local method to paths

through the EBBs

• Do {A,B}, {A,C,D}, & {A,C,E}

• Obtain reuse from ancestors

• Avoid re-analyzing A & C

• Does not help with F or G

EBB: A maximal set of blocks B1,
B2, …, Bn where each Bi, except B1,
has only exactly one predecessor
and that block is in the EBB.

Superlocal Value Numbering

Efficiency

• Use A’s table to initialize tables for B & C

• To avoid duplication, use a scoped hash table

— A, AB, A, AC, ACD, AC, ACE, F, G

• Need a VN → name mapping to handle kills

— Must restore map with scope

— Adds complication, not cost m ← a + b

n ← a + b

A

p ← c + d
r ← c + d

B

y ← a + b
z ← c + d

G

q ← a + b
r ← c + d

C

e ← b + 18
s ← a + b
u ← e + f

D e ← a + 17
t ← c + d
u ← e + f

E

v ← a + b
w ← c + d
x ← e + f

F

“kill” is a re-definition
of some name

Superlocal Value Numbering

Efficiency

• Use A’s table to initialize tables for B & C

• To avoid duplication, use a scoped hash table

— A, AB, A, AC, ACD, AC, ACE, F, G

• Need a VN → name mapping to handle kills

— Must restore map with scope

— Adds complication, not cost

To simplify THE PROBLEM

• Need unique name for each definition

• Use the SSA name space

m ← a + b
n ← a + b

A

n ← 0

m ← 1

p ← c + d

r ← c + d

B

y ← a + b
z ← c + d

G

q ← a + b
r ← c + d

C

e ← b + 18
s ← a + b
u ← e + f

D e ← a + 17
t ← c + d
u ← e + f

E

v ← a + b
w ← c + d
x ← e + f

F

“kill” is a re-definition
of some name

SSA Name Space 	 	 	 	 (locally)

Example (from earlier):

With VNs

 a0

3 ← x0
1 + y0

2

∗ b0

3 ← x0
1 + y0

2

 a1

4 ← 17

∗ c0

3 ← x0
1 + y0

2

Notation:

• While complex,

the meaning is
clear

Original Code

 a0 ← x0 + y0

∗ b0 ← x0 + y0

 a1 ← 17

∗ c0 ← x0 + y0

Renaming:

• Give each value a

unique name

• Makes it clear

Rewritten

 a0

3 ← x0
1 + y0

2

∗ b0

3 ← a0
3

 a1
4 ← 17

∗ c0
3 ← a0

3

Result:

• a0
3 is available

• Rewriting just
works

SSA Name Space 	 	 	 (in general)

Two principles

• Each name is defined by exactly one operation

• Each operand refers to exactly one definition

To reconcile these principles with real code

• Insert φ-functions at merge points to reconcile name space

• Add subscripts to variable names for uniqueness

x ← ... x ← ...

... ← x + ...

x0 ← ... x1 ← ...

x2 ←φ(x0,x1)

 ← x2 + ...

becomes

Superlocal Value Numbering

m0 ← a + b
n0 ← a + b

A

p0 ← c + d
r0 ← c + d

B

r2 ← φ(r0,r1)
y0 ← a + b
z0 ← c + d

G

q0 ← a + b
r1 ← c + d

C

e0 ← b + 18
s0 ← a + b
u0 ← e + f

D e1 ← a + 17
t0 ← c + d
u1 ← e + f

E

e2 ← φ(e0,e1)
u2 ← φ(u0,u1)
v0 ← a + b
w0 ← c + d
x0 ← e + f

F

Our example in SSA form

• Φ-functions at join points for

names that need them
• Minimal set of Φ-functions

Superlocal Value Numbering 	 	 	

The SVN Algorithm
WorkList ← { entry block }
Empty ← new table
while (WorkList is not empty)

remove a block b from WorkList
SVN(b, Empty)

SVN(Block, Table)
t ← new table for Block, with Table linked as surrounding scope
LVN(Block, t)
for each successor s of Block

 if s has just 1 predecessor
 then SVN(s, t)
 else if s has not been processed

then add s to WorkList
deallocate t

Table for base case

Blocks to process

Use LVN for the work

In the same EBB

 Starts a new EBB

Assumes LVN has been parameterized
around block and table

Superlocal Value Numbering

m ← a + b
n ← a + b

A

p ← c + d
r ← c + d

B

y ← a + b
z ← c + d

G

q ← a + b
r ← c + d

C

e ← b + 18
s ← a + b
u ← e + f

D e ← a + 17
t ← c + d
u ← e + f

E

v ← a + b
w ← c + d
x ← e + f

F

A Regional Technique

Superlocal Value Numbering

m0 ← a + b
n0 ← a + b

A

p0 ← c + d
r0 ← c + d

B

r2 ← φ(r0,r1)
y0 ← a + b
z0 ← c + d

G

q0 ← a + b
r1 ← c + d

C

e0 ← b + 18
s0 ← a + b
u0 ← e + f

D e1 ← a + 17
t0 ← c + d
u1 ← e + f

E

e3 ← φ(e0,e1)
u2 ← φ(u0,u1)
v0 ← a + b
w0 ← c + d
x0 ← e + f

F

With all we saw SVN

• Find more redundancy

• Pay minimal extra cost

• Still does nothing for F & G

which have some opportunities….

Superlocal techniques

• Some local methods extend

cleanly to superlocal scopes

Loop Unrolling
Applications spend a lot of time in loops

• We can reduce loop overhead by unrolling the loop

• Eliminated additions, tests and branches: reduce the number of
operations Can subject resulting code to strong local optimization!

• Only works with fixed loop bounds & few iterations

• The principle, however, is sound

• Unrolling is always safe, as long as we get the bounds right

A Regional Technique

do i = 1 to 100 by 1
a(i) ← b(i) * c(i)
end

a(1) ← b(1) * c(1)
a(2) ← b(2) * c(2)
a(3) ← b(3) * c(3)
 …
a(100) ← b(100) * c(100)

Complete unrolling

Loop Unrolling
Unrolling by smaller factors can achieve much of the benefit

Example: unroll by 4 (8, 16, 32? depends on # of registers)

Achieves much of the savings with lower code growth

• Reduces tests & branches by 25%

• LVN will eliminate duplicate adds and redundant expressions

• Less overhead per useful operation

But, it relied on knowledge of the loop bounds…

do i = 1 to 100 by 1
 a(i) ← b(i) * c(i)

end

do i = 1 to 100 by 4
a(i) ← b(i) * c(i)
a(i+1) ← b(i+1) * c(i+1)
a(i+2) ← b(i+2) * c(i+2)
a(i+3) ← b(i+3) * c(i+3)
end

Unroll by 4

Loop Unrolling
Unrolling with unknown bounds

Need to generate guard loops

Achieves most of the savings

• Reduces tests & branches by 25%

• LVN still works on loop body

• Guard loop takes some space

Can generalize to arbitrary upper & lower bounds, unroll factors

do i = 1 to n by 1
a(i) ← b(i) * c(i)
end

i ← 1
do while (i+3 < n)

a(i) ← b(i) * c(i)
a(i+1) ← b(i+1) * c(i+1)
a(i+2) ← b(i+2) * c(i+2)
a(i+3) ← b(i+3) * c(i+3)
i ←i + 4
end

do while (i < n)
a(i) ← b(i) * c(i)
i ← i + 1
end

Unroll by 4

Loop Unrolling
One other unrolling trick

Eliminate copies at the end of a loop

Unroll

• Eliminates the copies, which were a naming artifact

• Achieves some of the benefits of unrolling

— Lower overhead, longer blocks for local optimization

• Situation occurs in more cases than you might suspect

t1 ← b(0)
do i = 1 to 100 by 1
 t2 ← b(i)
 a(i) ← a(i) + t1 + t2

t1 ← t2
end

Unroll and rename

t1 ← b(0)
do i = 1 to 100 by 2
 t2 ← b(i)
 a(i) ← a(i) + t1 + t2
 t1 ← b(i+1)
 a(i+1) ← a(i+1) + t2 + t1
 end

i=1,…100 : a(i)=a(i)+b(i)+b(i-1)

• It increases the size of the code

• The unrolled loop may have more demand for registers

• If the demand for registers forces additional register spills

(store and reloads) then the resulting memory traffic may
overwhelm the potential benefits of unrolling

Sources of Degradation

