Reqgular Expressions

A regular expression denotes a set of strings (a language).

Given a finite alphabet X, the following constants are defined as regular
expressions:

- @ denoting the empty seft,
¢ denoting the set {¢},
 ain X denoting the set containing only the character {a.}

If rands are regular expression (denoting the sets R and S,respectively)
then (r+s), (rs) and r* denotes the set R U S, RS and R*, respectively.

L(r) indicates the language denoted by r

Examples

- (0* 4+ 1* + (01)*) denotes the language

bﬂﬁi mst.HH©:<aHH:<&HSCsW

e a|b* denotes
{e,"a","b", "bb", "bbb", ...}
e (a+b)* denotes
all the strings formed with "a" and "b"
e ab*(c+¢) denotes
the set of strings starting with "a", then zero or more "b"s
and finally optionally a "c"
(0+(1(01*0)*1))*
denotes the set of binary numbers that are multiples of 3

_Noaaaom

DFA > _M_T.>A|v RG

RE muz_u,»

Encoding the language of a DFA into a RE

Theorem 3
For each DFA D, there is a regular expression r such that L(D)=L(r).

Construction:
1) Eliminates states of the automaton replacing the edges with regular
expressions that includes the behavior of the eliminated paths
2) When the automaton has just one starting and all final states, we

synthesize the corresponding RE

Start —
Start

0+10 0+1

o

State Elimination

Note: q; and p; may be the same statel!

* Figure below shows the elimination of a state s. The labels on all edges
are regular expressions.
e Toremove s, we must make labels for the paths between q; and p; p,

we had in the original DFA through s.
R

Im

R, +Q;S*P,
Jq, " Py

R, +Q,S*P
OH m 1 1

c (o)

From a DFA to RE State Elimination Point (1)

Apply the state elimination process to produce an equivalent
automaton with regular expression labels on the edges:

-Start with intermediate states and then moving to accepting
states,

-The result will be some state automaton with one start state
and (one or more than one) accepting states.

From a DFA to RE State Elimination Point (2)

Just one final state and a different starting state

R U
S
o @@
T

We can describe this automaton as: (R+SU*T)*SU*

From a DFA to RE State Elimination Point (2)

Just one final state that coincides with the starting state

R
A
Start —

We can describe this automaton as simply R*.

From a DFA to RE State Elimination Point (2)

Several final statess,,s,, ..s,

Repeat the previous steps for each s. turning any other accepting state

In hon accepting.
In this way we get n different regular expressions, R, R,, .. R .

The desired regular expression for the automaton is then the union
of each of the n regular expressions: R,UR,.. UR

DFA->RE Example

* Convert the following o a RE

e

* First convert the edges to RE's:

0 0+1
1 1
Start —
0

DFA > RE Example (2)

0 0-+1
1 1
Start — g @
0
0+10 0+1
Note edge from 323 >

11
Start >

Answer: (0+10)*11(0+1)*

Third Example

* Automata that accepts even number of 1's

0 0 0
1/ 1
Start ———— N .

* Eliminate state 2:

10*1

Start

Third Example (2)

 Two accepting states, turn off state 3 first

0 0+10*1

10*1
Start

This 1s just 0*; can ignore going to state 3
since we would “die” 0 0+10%*1

>
10¥1 @

Start

Second Example (3)

e Turn off state 1 second:
0 0+10%1

A

10*1

Start

This 1s just 0*10*1(0+10*1)*

0 0+10*1
Combine from previous slide to get
0* +0*10*1(0+10*1)*

10*1

Start

Exercises

Convert the following DFA into a RE

0
.le &

qQ3)

_Noaaaom

DFA < > Z_M..> «—» RG

RE > m-_u__u,»

Converting a RE to an Automata

* We can convert a RE to an e-NFA
— Inductive construction
— Start with a simple basis, use that to build more
complex parts of the NFA

RE to e-NFA

e RBasis:

—d

—&

RE to e-NFA Example

e Convert R= (ab+a)* to an NFA
— We proceed by steps, starting from simple elements and
working our way up

e o

RE to e-NFA Example (2)

Esempio: from RE to &-NFA

hnﬁi dneN.z=0"Vz=1" Vv z=(01)" W

(0" + 1%+ (01)).

What have we shown?

* Regular expressions, finite state automata and reqular grammars
are different ways of expressing the same languages

* TIn some cases you may find it easier to start with one and move
to the other
- e.g., the language of an even number of 1's is typically easier
to design as a NFA or DFA and then convert it to a RE

Not all languages are reqgular!

» L={ a"b" | n € Nat }

Pumping Lemma

Given L an infinite regular language then there exists an integer k such

that for any string » € L.|z| >k itis possible to split z into 3

substrings
z = uwvw with |uv| < k, |v| > 0 such that Vi € N,uv'w € L
0 k
“ =S S | vzel
“ — , €L
“ — el

el

memizm the PL

The PL gives a necessary condition, that can be used to prove that a
language is not a reqgular language!

If Vk € N dz € L.|z| > k for all possible splitting
z = uvw with |uv| < k, |v] > 0 Ji € N such that uv'w ¢ L

then L is not a reqgular language!

mxwam_w

- L={ a"b" | n€eN }, take any k € N

» Consider the string z = ab*

N_A _u k

-
L
= =

zel, |v|=i,

T

%

luv| > k

Esempio

- L={ a"b" | neN }, take any k € N

» Consider the string z = ab*

N_A _U k

: “ v zel, |v|=i,

-C- < -i |] [

m._&_ | | . akvibkel
v2 iz0

Exercises

Prove that the following are not regular languages

Lya = {w € {0,1}* | w = wf} = {¢,0,1,00,11,00100, 01110, ...}

Lo = {0"10"|n > 1}

N\H — AOQ@HST@ m 3@%

Property of Reqgular languages

The reqgular languages are closed with respect to the union,
concatenation and Kleene closure.

The complement of a regular language is always regular.
The regular language are closed under intersection

Decision Properties:

Approximately all the properties are decidable in case of finite
automaton.

(i) Emptiness

ii) Non-emptiness
(iii) Finiteness

(iv) Infiniteness
(v) Membership

~N

DFA Minimization

® Some states can be redundant:
— The following DFA accepts (a|b)+
— State sl is not necessary

a
[y
a,
G— _U

DFA Minimization

® The task of the DFA minimization is o automatically
transform a given DFA into a state-minimized DFA
Several algorithms and variants are known

A DFA Minimization Algorithm

e Recall that a DFA M=(Q, Z, 3, q,, F)

e Two states p and q are distinct if

p €F and q&F or vice versa, or
d(p, a) and &(q, a), for some a in X, are distinct

e Using this inductive definition, we can calculate which
states are distinct

DFA Minimization Algorithm

® Create lower-triangular table DISTINCT, initially
blank

® For every pair of states (p,q):

If pis final and q is not, or vice versa
DISTINCT(p,q) = ¢

® Loop until no change for an iteration:
For every pair of states (p,q) and each symbol a
If DISTINCT(p,q) is blank and

DISTINCT(d(p,a), 8(q,a)) is not blank
= DISTINCT(pg)=a

® Combine all states that are not distinct

Very Simple Example

sO
s

S2

sO |s1 |s2

Very Simple Example

sO
s1 |g
S2 |€

sO |s1 |s2

Label pairs with € where one is a final state and the other is not

Very Simple Example

DISTINCT(p,q) is blank and

DISTINCT(d(p,a), 8(q,a)) is not blank
= DISTINCT(p,9) = a

sO
s1 |g

S2 |€

sO |s1 |s2

Main loop (no changes occur)

Very Simple Example

sO
s1 |g

a
S2 |€

sO |s1 |s2

DISTINCT(s1, s2) is empty, so s1 and s2 are equivalent states

Very Simple Example

9@
| |

Merge s1 and s2

a, b
@

a,b

V®m;@

More Complex Example

More Complex Example

® Check for pairs with one state final and one

alblc|dle|f]|g

More Complex Example

e First iteration of main’

b

c _mu 1)

d HVJ_

e (O[O0 [0[O0

f _m € |le | € | €

olle € |€e|€e|e€

h L1 1T]0]€e]e
al|lblc|d|e|f]|g

More Complex Example

® Second iteration of main loop:

b

cfl 1|1

di1]1

e ||lO[O0O[0]0

f (e |€e| €| € |e€

olle|€e|€e|€e|e€

h(f 1) L)L |[1]|0]€]e
alblc|de]tf g

More Complex Example

® Third iteration makes no changes
— Blank cells are equivalent pairs of states

A‘
b
c || 1]1
di 1]1
e |O]0]0]0
f||e|€|€|€|€ «
ocfle|€e|€|€|e€
hi1[1T[1]1[0]€e]e
alblc|d|e |l |g

More Complex Example

® Combine equivalent states for minimized DFA:

Conclusion

e The algorithm described is O(kn?2)
John Hopcraft describes another more complex
algorithm that is O(k (n log n))

Exercises

Minimize the following automata

T(OIMMTIO|®©|(>
OMOIC(O|IO|>|W©|O
TOMMI>I©O|>|

HiT|®|MMmg|[O|lw|>

D(HIT(O(MMTT|O|®|O

MOo|lw|w|H|T|T|[M|m|~—

Linguaggi Context Free

Context free Grammars

A Context free Grammar (£, N, S, P) is a grammar, where

- every production has the form U — V

UeNandV e (ZUN)T

- only for the starting symbol S, we can have S— ¢

Example
m — Aﬁmvv AOAJV D‘_\Hgv 3o.ﬁv Av vv ov ‘—Wv m~ TW

E — O

E — 1

E — (EorkE)
E — (EandE)
E — (notk)

Esempio

S— 0S1]¢

0" :n > 0}

Example

S — ¢€|0]T/0SO[1ST

z={rec{0,1}" |z =2"}

Parse tree

Given a grammar (%, N, S, P).
The parse tree is the graph representation of a derivation,
which can be defined in the following way:

- every vertex has a label in 2 U N U {¢},

* the label of the root and of every internal vertex belongs to N,

- if a vertex is labeled with A and has m children labeled with X1,. ..., Xk
* then the production A->X1..Xk belongs to P,

- if avertex is labeled with € then is a leaf and is an only child.

Example

E — O|1/(E or m@& E).

| —

A\\ HV

an

Example

E — O[T[(E or E)J(E and E)|(not E).

Ax H%

an

AN

or

Example

E — O[1/(E or E)|(E and E){(not E))

S

A\\sﬁ//
AN N

Example

E l@::m or E)|(E and E)|(not E).

S

ﬁ\\eﬁ//

Example

E o@m or E)|(E and E)|(not E).

S

Ax ﬁ//

Example

E I@Em or E)|(E and E)|(not E).

S

\ ﬁ//v

an

\/ N

or (“not E

Example

E — O|1/(E or E)|(E and E)|(not E).

—

w = ((0 or 1) and (not 0))

IS

A and T

A or) ("not)t ()

Pushdown automata

S1 | S2 | S3 tape

)
@ Alphabet of stack symbols: R

)
1| 4o | Z3 stack

The stack head always scans the top symbol
It performs three basic operations:

Push: add a new symbol at the top of the stack
Pop: read and remove the top symbol
Empty: verify if the stack is empty

Pushdown automata

A push down automatonis M = (Q, Z, R, 8, q0,Z0, F) where

* R is the alphabet of stack symbols,

¢« 0:0X(2ZU{e})XR — PO X R*)is the transition

function

« Z0 belonging to R is the starting symbol on the stack

Instantaneous Description

The evolution of the PDA is described by triples (q, w, v) where;

e g is the current state
e w is the unread part of the input string or the remaining input

e v is the current contents of the stack

A move from one instantaneous description to another
will be denoted by

(q0, aw, Zr) > (q1, w, yr) iff (q1, y) belongs to 8(q0, a, Z)

The language accepted by a pushdown automaton

Two ways to define the accepted language:

- with empty stack (in this case F is the empty set)

L,(M) = {x€ZX*:(qo,x,2Zo) 3 (4,¢¢),q € Q}

- with explicit final states F

ﬂl—uﬁgv — Ax SR AQO.X. Nov IWA ﬁﬂvm,\v\vv\v\ S —N*vﬂ S _.uv

mmw_\:mmo

We will recognise the

L={zct®™ z € {a,b}* },¥ = {a,b,c} string when the input and
stack are empty!

({go,a1},{a,b,c},{Z,A,B},8,q0,Z,2) APND

do | € a b C qi | € a b C
A do,ZA | qo,ZB | qi1,e Z qi,Z | 41,2

A A ai,¢ | d1,Z | 41,2
B B q1,Z | qi1,¢ | q1,2

Example: abcba

Remember:we will recognise the
string when the input and stack

are empty!
do | € a b C d1 a b c
vA do,ZA | 4o, ZB | a1, Z qi,Z | a1,Z
A A qi,¢ | 41, Z | 1,2
B B q1,Z| q1,¢ | q1,Z
a bcba a b cba ab ¢ ba
T nastro T nastro T nastro
do = do qo =
I via 1 pia T il
Z Z A Z BA
abc b a abcb a abcba
T nastro T nastro T nastro
q = q1 q1
I vin 1 pia T »ia
B A A

Exawple

L={zz"|ze{a,b}*},X ={a,b}

di, €

® O“ﬁﬂovﬁﬂv

¢ = ={a,b}

o —N v>ku‘v

do a b

vA qo,AZ | qo,BZ

A Qov>> QOVW\»
di, €

_w n_ov\P_mw ﬁ_ov—ww

di, €

di, €

qi, €

Exercises

Design a PDA to recognise the following languages:

{w € {0, 1}*| every prefix has more 0’s than 1’s}

{fw € {0,1}*| w has an equal number of 0’s and 1’s}

Unfortunately...

not all languages are Context Free |

Pumping Lemma for CF

Given a context free language L there exists an integer k such
that for any string 2 € L.|z| > k it is possible to split z into 5
substrings

z = wvwzy with |[vwz| < k, [vz] > 0 such that Vi € N, uv'wz'y € L

0 k

L CF
U \' \' \' . , X X X .m_l

Negating the PL for CF

The PL for CF gives a necessary condition, that can be used to prove
that a language is not context free!

1f VEe N dzc L.|z[> K for all possible splitting of the form
z = uvwry with |vwz| < k, |vz| > 0 Ji € N such that uwv'wz'y € L

then L is not context freel

mxm_sm_m

+ Let L={ anbrch | n e Nat }, consider ke N

« Let z = akbkck

N_A _u k C k

j ; : v zel, |v|=i, |x|=]
__C. \" .<<. X v~ .

remember |vwx|<k

mxn_sm_m

+ Let L={ anbrch | n e Nat }, consider ke N

- Let z = akbkck

| ak “ bk “ ck “ Nm_lo _<_“mu _x_“_.
.C. v .<<. X Y .
| e . ~ aabbbaabbb

V2 X2

manm_m

» Let L={ anbrch | n « Nat }, consider ke N

- Let z = akbkck

m_A _U_A ﬁ_A — —_
“ | _ . zeL, |v|=i, |x]F
—C [] < -é- x [1 K N
akbk+ick+ gL
" e 1 : | —

i+j =0

mxm_sm_m

» Let L={ anbrc" | n e Nat }, consider ke N

* Let z = akbkck

: ak “ bk " ck “ Nm_u. _<_Hr _X_H_.
UV owo X y :

[vwx| > k

X

manm_m

» Let L={ anbrch | n « Nat }, consider ke N

- Let z = akbkck

“ > : > : < v zel, |v[=i, x|

.C . v .<<. X) Y .

.“ i i +—i i i i

, N‘_A+E_U_A+_.0_A m_l

i+j =0

Example

- Let L={ anbrch | n e Nat }, consider ke N

- Let z = akbkck

m_A _U_A ﬁ_A — —_
“ | “ . zeL, |v|=i, |x]F
L] < -é- x N
| m - —i
. akbkektiti gl
| “ H—— “ — »
v2 X2 I+ # 0

manm_m

+ Let L={ anbrch | n e Nat }, consider ke N

- Let z = akbkck

“ > : > : < v zel, |v[=i, x|
.C. v .<<. X) Y .
-1
{ _ N_A_U_A+m+_.n_A m_l

i+j =0

Example

+ Let L={ anbrch | n e Nat }, consider ke N
- Let z = akbkck

ak bk . ck “ Nm_lo _<_”mu _x_”_.

b
o

N‘_A+m+=U_An_A m_l
<~ X2 m+_ 0

Exercises: are these languages context free?

{0"15"|n > 0}

{0"1**|n > 0 and k > 0}
'V c*li =7 or j =k}
'V Pk #1475}

{w e {a,b}*|w # vv}

Properties of the CF lanquages

The CF languages are closed with respect to the union, concatenation
and Kleene closure.

The complement of CF language is not always CF.
* The CF language are not closed under intersection

Decision Properties:
Approximately all the properties are decidable in case of CF

(i) Emptiness

(ii) Non-emptiness
(iii) Finiteness

(iv) Infiniteness
(v) Membership

Context Sensitive Grammar

Productions of the form U — V such that |U]| <=|V|

Example
S — aSBC|aBC bC — Dbc
CB — BC cC — cc
bB — Dbb aB — ab

(a'blct:i> 1}

Complexity of Languages Problems

Regular Context Context Unrestricted
Free Sensitive
Grammar Grammar Grammar ©rammar
Type 3 Type 2 Type 1 Type O
Isw L(6)? P P PSPACE U
Is L(6) empty? P P U U

Is L(61) L(62)? PSPACE U U U

Examples of Language Hierarchy

The expressing expressive power:
regular C context-free Ccontext-sensitive C phrase-structure

L1 = strings over {0, 1} with an even number of 1's is reqular

L2= {a"b" |n € N} is context-free, but not regular

L3 = {a"b"c"|n € N} is context-sensitive, but not
context-free

Relationships between Languages and Automata

A language is :

regular
context-free
context-sensitive
phrase-structure

iff accepted by

finite-state automata
pushdown automata
linear-bounded automata
Turing machine

Unristricted Grammar

>

(Recognized by
Turing Machine)

Context Sesitive
> Grammar

(Accepted by Linear
Bound Automata)

— Context Free Grammar
(Accepted by Push
Down Automata)

> Regular Grammar
(Acceped By
Finite Automata)

