Linguaggi formali



Let's start from the beginnin

* A program is written in a programming language
- Every programming language (as every language in general) needs
to obey its own rules

* We need to formally define languages...



Strings

* An alphabet is a finite set of symbols
+ Examples
2,={a, b, c,d, .. z} the set of letters in Italian

2, = {0, 1}: the set of binary digits
25,={(,)} the set of open and closed brackets

A string over alphabet Z is a finite sequence of symbols in Z.
+ Examples
abfbz is a stringover Z1={a, b, ¢, d, ..., z}

11011 is a string over 22 = {0, 1}

)O(Q is a string over 23 = {(, )} The empty string is a string having

no symbol, denoted by ¢.




Operations on strings: lenght

+ The length of a string x, denoted by |x|, is the
number of symbols which compose x.

- Examples
abfbz|=5

110010(=6
)OWOI=7
e|=0




Operations on strings: concatenation and substrings

The concatenation of two strings x and y is a string xy,
i.e., x is followed by y.
It is an associative operation that admits the neutral element ¢

s is a substring of x if there exist two strings y and z

such that x = ysz.
Example:

the prefixes of abc are : €, a, ab, abc

In particular,
when x = sz (substring with y=¢), s is called a prefix of x;
when x = ys (substring with z=¢), s is called a suffix of x;

e is a prefix and a suffix of any string (including ¢ itself)



Power of an alphabet

+  We define the set of all strings over Z~ of a given length.
5 denotes the strings of length n whose symbols are in >

If ¥={0,1}

0

> = (g}

so- 5= {0, 1)

s> = {00,01, 11, 10}

53 = {000, 001, 010, 011, 100, 101, 110, 111}

+ _ vyl 2 3 4 _ 1
st=3'ur’uzius c...|Com S = {hUSH
+ 1>

> = {0,1,00,01,11,10,000, 001, 010, 011, 100, 101, 110, 111....}



Languages

A language is a set of strings over an alphabet:
L € Z*is alanguage over *

Examples
L, = The set of all strings over X, that contain the substring “fool”

L, = The set of all strings over Z, that represents a binary number
divisible by 7
= {111, 10001, 10101, ..}

L, . The set of all strings over X, where every (" is followed exactly by
2 occurrences of ')

=&, ), N.0)O), )



Other examples of Languages

L, = The set of binary numbers whose value is prime
={ 10, 11, 101, 111, 1011, 1101, ..}

L, = The set of legal English words over the English alphabet

L, . The set of legal C programs over the strings of characters and

punctuation symbols



Operations on Languages

Union: AUB

Intersection: AN B

Difference: A\ B (whenBC A)

Complement: A = X* - A where X* is the set of all strings on X

Concatenation: AB ={ab | a €A and b € B}
Example: {0, 1K1, 2} = {01, 02, 11, 12}.



Kleene Clousure

o0
Kleene closure: AF — C Al
i=0

©,@)
*  Notation: AT = C A’
i=1



More example of Languages

Examples:
* The set of strings with n1's followed by n O's
{e, 01,0011, 000111, .. }

* The set of strings with an equal humber of O'sand 1's
{¢, 01, 10, 0011, 0101, 10014, . . .}

* The empty language @
* The language {¢} consisting of the empty string only

Remember o#{c}



Problems

* Does the string w belong to the language L?

Example: 11101 € L,?

We want to define a procedure to decide it!

We can try to generate all words....

We can try to recognise when a word belongs to L



The generative approach: Grammars

Starting from a particular initial symbol, using the rewriting rules
of the productions,
we generate the set of all the strings belonging to the language



Definition of Grammars

We define a Grammar 6=(Z, N, S, P) where :
* 2 is the alphabet, a set of symbols (called terminals)

N is the set of nonterminals

- S € N is the starting symbol

‘P is the set of productions, each of the form

U—V
where Ue€ (X UN)T andV e (CUN)*.



Derivations of 6G=(Z, N, S, P)

A string w € 2* is generated by G if there exists a derivation starting
from S and resulting in w obtained by rewriting the string using the
productions in P

G= ({a}, {S}, S, P) S —>¢
S —a
S —a$S

A language generated by grammar G is denoted L(G) and it is the set of
strings derived using G.



Example of a grammar

We want to describe L1 the language of strings with an even number of
I's

L1 can be generated by a grammar ({0,1} {S,T},5,P) with P equal to

S —¢
S —0S
S—1T
T—0T
T—1S

A string belongs to L1 iff it can be generated by the grammar



Grammar Example

Does the string 01010 belong to L1?
We need to find a derivation

S —-¢|0S|1T
T—-0T]|1S



Recognising a language: Automata

+ A finite state automaton is finite state machine with an input of
discrete values.

» The state machine consumes the input and possibly moves to a
different state.

+ The system may be in a state among a finite set of possible states.
Being in a state allows to keep track of previous history.

input: baab ! e

—_— qdo




Back to our Problems

* Does the string w belong to the language L?

We want to define a procedure to decide it!

» Which is the computational complexity necessary to answer
to the previous question ?

It depends on the complexity of the languagell



Classification of Languages

Restrictions on productions give different types of grammars :

*Reqgular (type 3)
-Context-free (type 2)

- Context-sensitive (type 1)
* Phrase-structure (type 0O)

U—V
where U€ (ZUN)" andVeE (X UN)* .

For context-free,eg., U EN
No restrictions for phrase-structure

A language is of a type iff it admits a grammar of that type



Complexity of Languages Problems

Regular Context Context Unrestricted
Free Sensitive
Grammar Grammar Grammar ©rammar
Type3  Type2 Type1l  '1vPe0
Is W< L(6G)? P P PSPACE U
Is L(6) empty? P P U U
Is L(61)= L(62)? PSPACE U U U

P: decidable in polynomial time
PSPACE: decidable in polynomial space (at least as hard as NP-complete)
U: undecidable



_Nwm:_Q1 _m:mcammm

All the following ways to represent regular languages are equivalent:

Regular grammars (RG, type 3)

Deterministic finite automata (DFA)

Non-deterministic finite automata (NFA)

Non-deterministic finite automata with € transitions (¢-NFA)

Regular expressions (RE)



_Nwm:_Q1 Grammars

A Right (or, analogously, Left) Regular Grammar is a grammar,
where

- every production has the form A->aB| a
» only for the starting symbol S we can have S— ¢

Example
6=({a,b}, {S.B},S,P) where productions P are:
S->aS|aB
B->bB|b I
aaabb € L(6)?? L(G)={a"b™| n,m>0}

S



Deterministic Finite Automata

A deterministic finite automaton (DFA) (Q,2, 0 qo.F)
Q a finite set of states

> a finite set Z of symbols

d: 0 X2 — (Q the transition function takes as argument a state and a symbol
and returns one state

qo the starting state

F C O the set of final or accepting states



Deterministic Finite Automata

How to represent a DFA? With a transition table

0 1
~ -> indicates the starting state
d | 4 | 90 * indicates the final states
*q1 || 91 | Q1
q2 q2 | q1

This defines the following transition system




Deterministic Finite Automata

When does an automaton accept a word?
It reads a word and accept it if it stops in an accepting state

here On AQO“QTQMva“Q%uQmW _HHAQRLV
Only the word then is accepted



How DFA processes Strings

We build an automaton that accepts string containing the substring
01

>={0,1} .
L={x0ly| xy€X}
S\N @N._. O ”_.
—A || C| B
Bl C|B
Cl|lC|D
*xD || D | D




Extending the transition function to strings

We define the transitive closure of 0

5:0xI*—0Q

AN

A string x is accepted by M=(Q, =, § ,qo,F) iff AQ? &v c F

AN

L(M)={x € X*0(qo,x) € F}



Nondeterministic Finite Automata

A nondeterministic finite automaton (NFA) allows more than one
transition on the same input symbol.

Formally, a NFA is defined as (Q, %, & ,qo, F) where the only
difference is the transition function

0:0 XX — PO)atransition function that takes as argument
a state and a symbol and returns a set of states




Extending the transition function to strings

We define the transitive closure of &

AN

A string x is accepted by M=(Q, Z, § ,qo,F) iff d(qo,x) N F # ()

AN

L(M)={xeX*6(qo,x) N F #£D}

* NFAs do not expand the class of language that can be
accepted.



Example

NFA

o : (a2)
— qo | {qo} 6

{do,d1} 01
qair | {d1} {do, q2} ,

_
* dz2 ({491,492} | {90, 91,92} 1
Fetaal (a0) ()
1
0,1 0

L= {z<€{0,1}" | x contains at least 2 occurrences of 1}

0 _ 0 0 0,1
1 1

L aTeta (o) —Sn—-@)

d1 | 91 | 92

*xd2 | A2 | a2 DFA




Different characterisation of Regular Languages

There are different ways to characterise a reqular language

e Regular grammars

* Deterministic Finite Automata

* Non deterministic Finite Automata

e Epsilon non deterministic Finite Automata
* Regular expression



Different characterisation of Regular Languages

DFA NFA RG

RE &-NFA

+ We formally will show how to pass from one characterization
to another one



Roadmap: equivalence between NFA and RG

DFA NFA « —» RG

RE &-NFA



From Regular Grammars to NFA

Theorem 1.
For each right grammar RG there is a non deterministic finite automaton
NFA such that L(RG)=L(NFA).

Construction Algorithm

Given aRG=(Z, N, S, P) constructa NFA=(NU{F}, =, 8,S, F')
where F is a hewly added state and
if F'= {F}U{S}if S-> ¢ belongs to P, F'= {F}, otherwise.

The transition function & is defined by the following rules
1) For any A->a belonging to P, withain Z, set 6(A,a) = F
2) For any A-> aB belonging to P, witha in Z and B in N, set d(A,a)=B



mxa_sm_w

G=({a,b}, {S.B},S,P) where productions P are:
S->aS|aB
B->bB|b L(G)={ a"b™ | n,m>0}



From NFA to Regular Grammars

Theorem 2

For each nondeterministic automaton NFA, there is one right grammar RG
such that L(RG)=L(NFA).

Construction Algorithm

Given an automaton NFA= (Q, Z, & , qo,F), construct a grammar
RG=(~,Q, qo’, P) according the following steps:

1) for any 3(A,a)=B add A—aB 1o P,
2) if B belongs to F add also A—~a toP;

3) if qo belongs to F then add (q-> qo | € to P and qo'=q ) else qo'=qo.



Example

0 1
0 1
— qo | {qo} {do, g1} Q
dr | {d1} {do, dz2} 0,1
* q2 | {91,492} | {90,491, 92} A,/
F={qz2} e\_}ve
ri\
0,1

L= {z<€{0,1}" | x contains at least 2 occurrences of 1}

NFA

0



Exercises

Write the NFA for the following languages

» Strings over the alphabet {a,b,c} containing at least one a and at
least one b

» Strings of O's and 1's whose tenth symbol from the right is 1

* The set of strings of O's and 1's with at most one pair of
consecutive 1's

and derive the corresponding grammars



Roadmap: equivalence between DFA and NFA

trivial |

DFA & " NFA «— RG

RE &-NFA



From a NFA to a DFA

The NFA are usually easier to "program”.
For each NFA N there is a DFA D, such that L (D) = L (N),.

This involves a subset construction.

Given an
NFA N =

we will build a (QnN,2,0N,q0, FN)
DFA D=

such that (@p,%,9p,q0, Fp)

L (D)=L (N)



From NFA to a DFA

(p = %AQZY

Note that not all these state are necessary, most of them will be
unreachable.

VP € P(QnN) : op(P,a)=,cpdn(p,a)

Fp={PePQn)| PNF #0}



manm_m

NFA

0 1
do | {do} {do,d1}
qir | {a1} {do, q2}
X q2 | {d1,492} | {do, 91,492}

0,1

Consider all the subsets ﬁAQZV

. R
o) fa1l [aa) Which ones are final:

{d0,a1}  |{do,4dz2}| ({91,492}

{do,d1,4d2}




Example

NFA

0 1
do | {dqo!} {do,d1}
qi | {q1} {do, q2}
x 42 |{d1,d2} | {do,d1,d2}

d
O
1
A
0
(a0 )

0
0,1 0

ﬁAQZV 0

{do} {q1} (d2)

{90,491} |{do0,4az2}| (191,492}

{do, q1,4d2}




Example

NFA
0 1
do | {do} {do,q1}
qir | {di1} {do, q2}
x d2 | {d1,4d2} | {do,d1,4d2}
0 1
P@N) o R
\\\\\\\\\\, 4} {qo} A/mmmW\v Qmwmwm_v
{do} {q1} (d2}
{do,d1}  |{do,qz2}| [{d1,92}

{do, q1,4d2}




Example

NFA
0 1
do | {do} {go0,q1}
qir | {di1} {do, q2}
xd2 | {d1,4d2} | {do,d1,4d2}
P(QnN) 0 :
o 0 0 0
4} {qo) Age) {de~q1)
e — ] {q1) ({g1) ) | (ao0,92)
{do} {a1} (d2} ~— S——
{do,d1}  |{do,qz2}| [{d1,92}

Aﬂov qi,

q2}




Example

NFA
0 1

do | {do} {do, q1}
qir | {a1} {do, q2}
xd2 | {d1,4d2} | {do,d1,4d2}

0 1
P@N) o T i ]
T} {qo) {0} {qo0, a1}
fqo) \ﬁ ) \ ; w///\\* of {a1} Aa) 190,42}
do q1 92 s qb | {q2) Amuwmmw (a0, a1, 42))

{d0,a1}  [{do,qz2}| |[{a1,d2}

{do, q1,4d2}




Example

NFA
0 1

do | {do} {do, q1}
qi | {a1} {do, q2}
x{dz2|| {d1,4d2} | {do,d1,4d2}

0 1
o 0 0 0
4} {qo} {doN 1o, A1\
) \ﬁ e m #//\\+ q] {q1} Adl | | Ado,q2} )
do AR CE3 e —- L B ) lg1.d2)
\\\\ S q} {do,q1} Anov q @ do, q1,92

{d0,a1}  [{do,qz2}| |[{a1,d2}

{do, q1,4d2}




Example

NFA

0 1

do | {do} {do, d1}
qr | {q1} {do, q2}
*q2 | {q1,42} | {do, 41, qz2}

0 1
o 0 0 0
- .dp {do} {do N, {do, 1N
[ v\ﬁ B o e 1 B (1) (@) \ | {do,d2) \
do a1 - m_ms % .q) {d2} Adr,q2}| | tdo, a1, a2}
a3 | {40,491} { 1Y [({do,a1,42))
{do0,aq1} Wao,qz2}| [{g1, 492} N {do, d2} /ﬁnovnfnw @ovgf@

{do, q1,4d2}




Example

NFA
0 1

do | {do} {do, d1}
qr | {q1} {do, q2}
* g2 AQAVQNV ﬁﬂovﬁ:,QNw

0 1
o 0 0 0

4} {qo} {do} 1o, d1J
ol \ﬁ e “ W//,\\Ai {q1} {a1) 1o, d2%,
do d1 I W_N/‘ N (g2} Adr, a2\ | {do, a1, 2},
o a3 | {do, a1} m {do, g1 W\W A 140, a1, n_&\,

(o, o aa]] [fan,aa)] % 94| {do,a2) | {do,ay,aj |[do, a1, a2

0, q1 0,92 1,92 ///*é_m (q1, 42! QQ_TQ_NU g}:bwv

{do, q1,4d2}




Example

NFA
0 1
do | {do} {do,q1}
qi | {41} {do, 2}
* q2 | {q1,492} | {do,d1,92}
0 1
o 0 0 0
) {qo} Ado} {do, 11\
\ \ /,/J(\\k\\\l ni AQ 1} \ ﬁm_ 1 w/ AEOV QN/V//
{do} 11 - 192] T %-q) {q2} [Adr,d2)\ | o, d1, 42\
\\ 43| {qo,qi1} {do, g1} \ |[{do,d1,92
{ago, a1} [{ao,a2}] [far,a2)] X da] 1do,d2} |Rdo,d1,daf |ido,d1, 42}
~xds | {91,492} {d1,492}) |\{do,d1.92
%96 | {do,dr,d2) {do,d1,92D| (g0, 91, 92D
{do,q1,a2t—




Example

NFA
0 1
do | {dqo!} {do, d1}
qi | {q1} {do, 2}
*x d2 | {91,492} | {do, g1, 92}
0 1
o—— —— 0 ] 0
g {qo} {do} {do, a1}
\\\\\ \\\\\“ — g {d1} {d1} {do, d2}
ot Al M2 kgl {qa) 191,92} | 190,41, 92}
\\\\\\\\x a3 | {qoa1) {do,d1} [ {do,d1,92}
(0,91} [ao,a21] [{a1,qz0] *-9a| {do,d2) |{do,d1,92} | {do, 1,92}
% q; | {d1,q2} {d1,d2} | {do,q1,4d2}
~q¢ | 140,491,492} | {do, a1, d2} | {do, q1, 92}
{d0,q1, 92— —*

DFA

* * F %

0 1
do | do | 43
dqir | 91 | d4
d2 | 95 | de
d3 | 93 | de
ds4 | de6 | de
ds | d5 | de
de | de | de




Example

DFA

0 1

do | do | 93
dir | 91 | d4
X q, |45 | g6
d3 | 93 | de

X d4 | 96 | Qe
X g5 | d5 | de
X g6 | d6 | g6

DFA with



Example

a0 | do | a3 DFA with
a1 | a1 | qs unreachable states

dj | ds | de
DFA 493 | d3 | ge
d4 | 96 | de
d5 | d5 | de
ddq | de | de

minimum DFA




The €-NFA: NFA with epsilon transitions

Extension of finite automaton.

The new feature: we allow transition on €, the
empty string.

An NFA that is allowed to make transition
spontaneously, without receiving any input symbol.

As in the case of NFA w.r.t. DFA this new feature
does not expand the class of languages that can be
accepted.



Definition of €-NFA

A NFA whose transition function can always choose epsilon
as input symbol

0:Qx (XU1e}) = p(Q)




Definition of €-closure for extending & to Strings

We need to define the c-closure that

applied to a state gives all the states reachable with
&-transitions

(D=~ —()

e-closure(q)={q} e-closure(q’)={q’,q¢"}

e-closure(P) = C e-closure(p)
peEP



The extension of & to strings

O : Q x X — p(Q)

o

(gq,e) = e-closure(q)

d(q,wa) = Upes(q.w) E-closure(d(p, a)) \lm/ﬁ,o

d,a)
(o)== () —()

8(d,a) = Upes(q o) E-closure(8(p,a)) = ???



] —

c-NFA NFA DFA

€

O=C)
1

L={z|IneNz=0"Vvz=1"V z=(01)" }



Roadmap: equivalence between NFA and £-NFA

DFA — _M__H>A|v RG

trivial |

RE m-_u__u>



From €-NFA to NFA

For each €-NFA E there is a NFA N, such that L (E) =L (N), and

vice versa.

Given an
e-NFAE = (Q,>, 0k, q, Fk)
we build a
NFAN=(Q, %, 0N, qo, Fiv)
such that

L (E) =L (N)



Equivalence between £-NFA and NFA

Sn(q,a) = dp(g, a)

Nul Numcgowmm-QOmswmAQovDﬁmwms
Y7l Fe otherwise

if a final state can be reached with an epsilon
transition from the initial state



manm_m

( qo)| {a1, a4} | {q2)
i {an) 0
q2 0 {2}
qs | {qa4} 0
d4 0 {q3}




manm_m

— B
e 0 1

A qo)| {a1, 494} [ {q2)
a7 | {an) 0

q2 0 {q2}
q3 | {44} )

da 0 ,ﬁmww




Example

{q1, 94} | {d2}

do
(arY ‘{a1} 0
el 0 {q2}

qs | {qa4} 0

4 0 {q3}




manm_m

o
{d1,94)

(a2}
{d1} 0
0 {2}
{4} 0
0 {q3}




manm_m

(o) | 1
do | {a17a4} | {q2)

— qi | {a1} 0
42 0 {q2}

( q3)] {da) 0
ert 0 {q3}




manm_m

&6-INFA

o (1)
qo | {d1,4a4} | {g3}
qr | {ai} 0
qz2 0 {d2}
e {aa) | 0
(as ] 0 |{qs)




manm_m




Operations on languages: recap.

Union: AU B

Intersection: An B
Difference: A\ B
Complement: compl(A)=2* - A

Concatenation: AB = {ab | acA, b € B}

©.@)
Kleene Clousure: A* = C A’
i=0



