Linguaggi formali

Let's start from the beginning

- A program is written in a programming language
- Every programming language (as every language in general) needs to obey its own rules
- We need to formally define languages...

Strings

- An alphabet is a finite set of symbols
- Examples

$$\Sigma_1 = \{a, b, c, d, ..., z\}$$
: the set of letters in Italian

$$\Sigma_2 = \{0, 1\}$$
: the set of binary digits

$$\Sigma_3 = \{ (,) \}$$
: the set of open and closed brackets

A string over alphabet Σ is a finite sequence of symbols in Σ .

Examples

abfbz is a string over $\Sigma 1 = \{a, b, c, d, ..., z\}$

11011 is a string over $\Sigma 2 = \{0, 1\}$

))()(() is a string over $\Sigma 3 = \{(,)\}$

The empty string is a string having no symbol, denoted by ϵ .

Operations on strings: lenght

number of symbols which compose x. The length of a string x, denoted by |x|, is the

```
    Examples
        |abfbz|=5
        |110010|=6
        |))()(()|=7
        |ε|=0
```

Operations on strings: concatenation and substrings

The concatenation of two strings ${\sf x}$ and ${\sf y}$ is a string ${\sf x}{\sf y}$, i.e., x is followed by y.

It is an associative operation that admits the neutral element ϵ

such that x = ysz. s is a substring of x if there exist two strings y and z Example:

In particular,

the prefixes of abc are : ϵ , a, ab, abc

when x = ys (substring with $z=\varepsilon$), s is called a suffix of x; when x = sz (substring with $y=\varepsilon$), s is called a prefix of x;

ε is a prefix and a suffix of any string (including ε itself)

Power of an alphabet

 $\Sigma^{\!n}$ denotes the strings of length n whose symbols are in Σ We define the set of all strings over Σ of a given length.

If
$$\Sigma = \{0,1\}$$

$$\Sigma^{0} = \{\varepsilon\}$$

$$\Sigma^{1} = \Sigma = \{0,1\}$$

$$\Sigma^{2} = \{00,01,11,10\}$$

$$\Sigma^{3} = \{000,001,010,011,100,101,110,111\}$$

$$\Sigma^{+} = \Sigma^{1} \cup \Sigma^{2} \cup \Sigma^{3} \cup \Sigma^{4} \cup ... = \bigcup_{i>0} \Sigma^{i} \qquad \Sigma^{*} = \{\varepsilon\} \cup \Sigma^{+}$$

$$\Sigma^{+} = \{0,1,00,01,11,10,000,001,010,011,100,101,110,111...\}$$

Languages

A language is a set of strings over an alphabet:

 $L \subseteq \Sigma^*$ is a language over Σ

Examples

 L_1 = The set of all strings over Σ_1 that contain the substring "fool"

divisible by 7 L_2 = The set of all strings over Σ_2 that represents a binary number = {111, 10001, 10101, ...}

2 occurrences of ')' L_{3} The set of all strings over Σ_{3} where every '(' is followed exactly by ={ε,),)), ()),)()), ...}

Other examples of Languages

 L_4 = The set of binary numbers whose value is prime ={ 10, 11, 101, 111, 1011, 1101, ...}

 L_5 = The set of legal English words over the English alphabet

 L_{6} . The set of legal C programs over the strings of characters and punctuation symbols

Union: A U B

Intersection: A \cap B

Difference: $A \setminus B$ (when $B \subseteq A$)

Complement: $\overline{A} = \Sigma^* - A$ where Σ^* is the set of all strings on Σ

Concatenation: $AB = \{ab \mid a \in A \text{ and } b \in B\}$

Example: $\{0, 1\}\{1, 2\} = \{01, 02, 11, 12\}.$

Kleene Clousure

Kleene closure:

$$A^* = \bigcup_{i=0}^{\infty} A^i$$

Notation:

$$A^+ = \bigcup_{i=1}^{\infty} A^i$$

More example of Languages

Examples:

- The set of strings with n 1's followed by n 0's {ε, 01, 0011, 000111, . . . }
- The set of strings with an equal number of 0's and $\{\varepsilon, 01, 10, 0011, 0101, 1001, \ldots\}$ 1's
- The empty language Ø
- The language {\varepsilon} consisting of the empty string only

Remember $\emptyset \neq \{\epsilon\}$

Problems

Does the string w belong to the language L?

Example: $11101 \in L_4$?

We want to define a procedure to decide it!

We can try to generate all words....

We can try to recognise when a word belongs to L

The generative approach: Grammars

of the productions, Starting from a particular initial symbol, using the rewriting rules

we generate the set of all the strings belonging to the language

Definition of Grammars

We define a Grammar $G=(\Sigma, N, S, P)$ where :

- $\cdot \Sigma$ is the alphabet, a set of symbols (called terminals)
- ·N is the set of nonterminals
- $S \in N$ is the starting symbol
- ·P is the set of productions, each of the form

$$\bigvee \rightarrow \bigvee$$

where $U \in (\Sigma \cup N)^+$ and $V \in (\Sigma \cup N)^*$.

Derivations of $G=(\Sigma, N, S, P)$

from S and resulting in w obtained by rewriting the string using the productions in P A string $w \in \Sigma^*$ is generated by 6 if there exists a derivation starting

$$G=(\{a\}, \{S\}, S, P)$$
 $S \rightarrow \varepsilon$ $S \rightarrow aS$

strings derived using 6. A language generated by grammar G is denoted L(G) and it is the set of

Example of a grammar

We want to describe L1 the language of strings with an even number of

L1 can be generated by a grammar ({0,1},{S,T},S,P) with P equal to

$$S \rightarrow \varepsilon$$

$$S \rightarrow 0S$$

$$S \rightarrow 1T$$

$$T \rightarrow 0T$$

$$T \rightarrow 1S$$

A string belongs to L1 iff it can be generated by the grammar

Does the string 01010 belong to L1? We need to find a derivation

$$S \rightarrow \varepsilon \mid 0S \mid 1T$$

T $\rightarrow 0T \mid 1S$

Recognising a language: Automata

- A finite state automaton is finite state machine with an input of discrete values.
- different state. The state machine consumes the input and possibly moves to a
- Being in a state allows to keep track of previous history. The system may be in a state among a finite set of possible states.

input: baab

Back to our Problems

Does the string w belong to the language L?

We want to define a procedure to decide it!

to the previous question? Which is the computational complexity necessary to answer

It depends on the complexity of the language!!

Classification of Languages

Restrictions on productions give different types of grammars:

- Regular (type 3)
- •Context-free (type 2)
- Context-sensitive (type 1)
- Phrase-structure (type 0)

where
$$U \rightarrow V$$

$$U \in (\Sigma \cup N)^+ \text{ and } V \in (\Sigma \cup N)^*.$$

For context-free, e.g., $U \in N$ No restrictions for phrase-structure

A language is of a type iff it admits a grammar of that type

Complexity of Languages Problems

P: decidable in polynomial time

PSPACE: decidable in polynomial space (at least as hard as NP-complete)

U: undecidable

Regular languages

All the following ways to represent regular languages are equivalent:

- Regular grammars (R6, type 3)
- Deterministic finite automata (DFA)
- Non-deterministic finite automata (NFA)
- Non-deterministic finite automata with ϵ transitions (ϵ -NFA)
- Regular expressions (RE)

Regular Grammars

where A Right (or, analogously, Left) Regular Grammar is a grammar,

- every production has the form A-> aB| a
- · only for the starting symbol S we can have Sightarrow ϵ

Example

G=({a,b}, {S,B},S,P) where productions P are:

$$S \rightarrow aS | aB$$

$$L(G)=\{a^nb^m| n,m>0\}$$

Deterministic Finite Automata

A deterministic finite automaton (DFA) (Q, Σ , δ , qo,F)

Q a finite set of states

 Σ a finite set Σ of symbols

and returns one state $oldsymbol{\delta}: Q imes \Sigma o Q$ the transition function takes as argument a state and a symbol

 q_0 the starting state

 $F\subseteq \mathcal{Q}$ the set of final or accepting states

Deterministic Finite Automata

How to represent a DFA? With a transition table

q_2	$*q_1$	$\rightarrow q_0$	
q_2	q_1	q_2	0
q_1	q_1	q_0	1

- -> indicates the starting state
- * indicates the final states

This defines the following transition system

Deterministic Finite Automata

It reads a word and accept it if it stops in an accepting state When does an automaton accept a word?

here Q=
$$\{q_0,q_1,q_2,q_3,q_4,q_5\}$$
 F= $\{q_4\}$ Only the word then is accepted

How DFA processes Strings

We build an automaton that accepts string containing the substring

$$\Sigma = \{0,1\}$$

$$L = \{x01y | x,y \in \Sigma^*\}$$
We get

*	Q	В	\rightarrow A	
D			С	0
D	D	В	В	1

Extending the transition function to strings

We define the transitive closure of δ

$$\widehat{\delta}: Q \times \Sigma^* \longrightarrow Q$$

$$\begin{cases} \hat{\delta}(q, \varepsilon) = q \\ \hat{\delta}(q, wa) = \delta(\hat{\delta}(q, w), a) \end{cases}$$

A string x is accepted by M=(Q, Σ , δ ,qo,F) iff $\widehat{\delta}(q_0,x) \in F$

$$L(M) = \{ x \in \Sigma^* | \widehat{\delta}(q_0, x) \in F \}$$

Nondeterministic Finite Automata

transition on the same input symbol. A nondeterministic finite automaton (NFA) allows more than one

difference is the transition function Formally, a NFA is defined as $(Q, \Sigma, \delta, qo, F)$ where the only

a state and a symbol and returns a set of states $\delta: Q imes \Sigma o \mathscr{P}(Q)$ a transition function that takes as argument

Extending the transition function to strings

We define the transitive closure of δ

$$\begin{cases} \hat{\delta}(q, \varepsilon) = \{q\} \\ \hat{\delta}(q, wa) = \bigcup_{p \in \hat{\delta}(q, w)} \delta(p, a) \end{cases}$$

A string x is accepted by M=(Q, Σ , δ ,qo,F) iff $\delta(q_0,x)\cap F\neq\emptyset$ $L(M) = \{ x \in \Sigma^* | \widehat{\delta}(q_0, x) \cap F \neq \emptyset \}$

accepted. NFAs do not expand the class of language that can be

Example

*		1	
* q ₂	q_1	q_0	
$\{q_1,q_2\}$	$\{q_1\}$	$\{q_0\}$	0
$\{q_0, q_1, q_2\}$	$\{q_0, q_2\}$	$\{q_0,q_1\}$	_

 $F = \{q_2\}$

 $L= \{x \in \{0,1\}^* \mid \mathbf{x} \text{ contains at least 2 occurrences of 1} \}$

Different characterisation of Regular Languages

There are different ways to characterise a regular language

- Regular grammars
- Deterministic Finite Automata
- Non deterministic Finite Automata
- Epsilon non deterministic Finite Automata
- Regular expression

DFA NFA

RG

RA 8-NFA

We formally will show how to pass from one characterization to another one

Roadmap: equivalence between NFA and RG

DFA RE RG

From Regular Grammars to NFA

Theorem 1.

NFA such that L(RG)=L(NFA). For each right grammar RG there is a non deterministic finite automaton

Construction Algorithm

if $F' = \{F\} \cup \{S\}$ if $S \rightarrow \varepsilon$ belongs to P, $F' = \{F\}$, otherwise. where F is a newly added state and Given a RG=(Σ , N, S, P) construct a NFA=(N U { F}, Σ , δ , S, F')

The transition function δ is defined by the following rules

- 1) For any A->a belonging to P, with a in Σ , set $\delta(A,a) = F$
- 2) For any A-> aB belonging to P, with a in Σ and B in N, set $\delta(A,a)=B$

Example

G=({a,b}, {S,B},S,P) where productions P are: S-> aS|aB

B->bB|b

 $L(G)=\{ a^n b^m | n,m>0 \}$

From NFA to Regular Grammars

Theorem 2

such that L(RG)=L(NFA). For each nondeterministic automaton NFA, there is one right grammar RG

Construction Algorithm

Given an automaton NFA= $(Q, \Sigma, \delta, qo, F)$, construct a grammar $RG=(\Sigma,Q,qo',P)$ according the following steps:

- 1) for any $\delta(A,a)=B$ add $A\rightarrow aB$ to P,
- 2) if B belongs to F add also $A \rightarrow a$ to P;
- 3) if qo belongs to F then add (q-> qo | ϵ to P and qo'=q) else qo'=qo.

*	·	\	
* q ₂	q_1	q_0	
$\left\{q_1,q_2\right\}$	$\{q_1\}$	$\{q_0\}$	0
$\{q_0, q_1, q_2\}$	$\{q_0, q_2\}$	$\{q_0,q_1\}$	_

 $F = \{q_2\}.$

NFA

 $\mathbf{L} = \{x \in \{0,1\}^* \mid \mathbf{x} \text{ contains at least 2 occurrences of 1} \}$

Exercises

Write the NFA for the following languages

- Strings over the alphabet {a,b,c} containing at least one a and at least one b
- Strings of 0's and 1's whose tenth symbol from the right is 1
- The set of strings of 0's and 1's with at most one pair of consecutive 1's

and derive the corresponding grammars

Roadmap: equivalence between DFA and NFA

From a NFA to a DFA

The NFA are usually easier to "program".

For each NFA N there is a DFA D, such that L(D) = L(N)..

This involves a subset construction.

Given an

DFA D =

we will build a

 $(Q_N,\Sigma,\delta_N,q_0,F_N)$

$$(Q_D, \Sigma, \delta_D, q_0, F_D)$$

$$L(D) = L(N)$$

From NFA to a DFA

$$Q_D = \wp(Q_N),$$

unreachable. Note that not all these state are necessary, most of them will be

$$\forall P \in \mathcal{P}(Q_N) : \delta_D(P, a) = \bigcup_{p \in P} \delta_N(p, a)$$

$$F_D = \{ P \in \mathcal{P}(Q_N) \mid P \cap F \neq \emptyset \}$$

140, 425	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	3 4
(40, 41)	(40)	g 6
£02 011	راما	5

Consider all the subsets $\; \mathcal{P}(Q_N) \;$

Which ones are final?

 $\{q_0, q_1\} \quad \{q_0, q_2\}$

 $\{q_1,q_2\}$

 $\{q_0\}$

 $\{q_1\}$

 $\{q_2\}$

NFA

;	*			
	q_2	q 1	qo	
	$\{q_1, q_2\}$	$\{q_1\}$	$\{q_0\}$	0
	$\{q_0, q_1, q_2\}$	$\{q_0, q_2\}$	$\{q_0, q_1\}$	1

$\{q_0, q_1\}$	{q ₀ }	
$\{q_0, q_2\}$	$\{q_1\}$	0
$\{q_1,q_2\}$	$\{q_2\}$	

Example

Example

Example

Example

Example

Example

DFA

*	*	*		*			
9 <i>6</i>	q 5	q ₄	q ₃	q ₂	q_1	q 0	
9 <i>b</i>	q 5	q 6	q ₃	q 5	q_1	q_0	0
9 <i>6</i>	q 6	q 6	q 6	q 6	q ₄	q 3	_
		L	l		L		

DFA q_2 q_5 q_1 **q**0 q_{θ} **q**₄ **q**3 9*6* **q**5 q₁ **q**5 qo 9*6* **q**3 **q**₄ 9*b* 9*6* 9*b* **9**6 **q**6 q_3

DFA with unreachable states

The ϵ -NFA: NFA with epsilon transitions

- Extension of finite automaton.
- empty string. The new feature: we allow transition on ϵ , the
- spontaneously, without receiving any input symbol. An NFA that is allowed to make transition
- accepted. does not expand the class of languages that can be As in the case of NFA w.r.t. DFA this new feature

Definition of E-NFA

as input symbol A NFA whose transition function can always choose epsilon

$$\delta: Q \times (\Sigma \cup \{\epsilon\}) \to \wp(Q)$$

Definition of ϵ -closure for extending δ to Strings

We need to define the applied to a state gives all the states reachable with ϵ -closure that

E-transitions

$$\epsilon$$
-closure(q)={q} ϵ -closure(q')={q', q''}

$$\epsilon\text{-closure}(P) = \bigcup_{p \in P} \epsilon\text{-closure}(p)$$

The extension of δ to strings

$$\hat{\delta}: Q \times \Sigma^* \longrightarrow \wp(Q)$$

$$\hat{\delta}(q, \varepsilon) = \varepsilon\text{-closure}(q)$$

$$\hat{\delta}(q, wa) = \bigcup_{p \in \hat{\delta}(q, w)} \varepsilon\text{-closure}(\delta(p, a))$$

$$\widehat{\delta}(q, \alpha) = \bigcup_{p \in \widehat{\delta}(q, \epsilon)} \epsilon\text{-closure}(\delta(p, \alpha)) = ???$$

 ϵ -NFA

NFA

DFA

0

 (p_0)

90

(90)

 $L = \{ x \mid \exists n \in \mathbb{N}. \ x = 0^n \lor x = 1^n \lor x = (01)^n \}$

Roadmap: equivalence between NFA and ϵ -NFA

From &-NFA to NFA

For each ε -NFA E there is a NFA N, such that L (E) = L (N), and

vice versa.

Given an

 $\epsilon ext{-NFA E} = (Q, \Sigma, \delta_E, q_0, F_E)$

we build a

NFA N = $(Q, \Sigma, \delta_N, q_0, F_N)$

such that

L(E) = L(N)

Equivalence between ϵ -NFA and NFA

$$\delta_N(q,a) = \widehat{\delta}_E(q,a)$$

$$F_N = \left\{ egin{array}{ll} F_E \cup \{q_0\} & \mbox{if ϵ-closure}(q_0) \cap F_E
eq \emptyset \\ F_E & \mbox{otherwise} \end{array}
ight.$$

if a final state can be reached with an epsilon transition from the initial state

Operations on languages: recap.

Union: A U B

Intersection: A \cap B

Difference: A \ B

Complement: $compl(A) = \Sigma^* - A$

Concatenation: $AB = \{ab \mid a \in A, b \in B\}$

Kleene Clousure:

$$A^* = \bigcup_i A^i$$

i=0