Principles of Abstract
Interpretation

Program Analysis

A technique to check if a program satisfies a semantic property

Useful for optimisation and verification

What to Analyse: When to Analyse:

Target Programs
» Domain-specific vs Non-domain-specific analyses

* Program-level vs Model-level analyses

Target Properties Dynamic vs Static techniques

» Safety properties: some behavior observable in finite
time will never occur.

» Liveness properties: some behavior observable after
infinite time will never occur.

* Information flow properties

What to Analyse: Safety Properties

Some behaviors observable in finite time will never occur.
Examples:
* No crashing error — e.g., no divide by zero, no uncaught exceptions, etc

* No invariant violation
- Loop invariant: assertion that holds at the beginning of every loop iteration

What to Analyse: Safety Properties

X = 0;
while (x < 10) “xis an integer”
{ x =x + 1;} “O<=x<10”

states states states

invariant

—> —> —>
time time time

(a) Correct executions (b) An incorrect execution (¢c) Proof by invariance

What to Analyse: Liveness Properties

Some behaviors observable after infinite time will never occur

Examples:
* No unbounded repetition of a given behavior
* No non-termination

What to Analyse: Liveness Properties

X = read 1int ();
while (x > 0)
{ Xx=x-1; }

» If x is initially a negative integer = the program terminates
* If x is initially a positive integer = x strictly decreases every iteration

= the program terminates

Undecidability in the way

Rice theorem.

Let L be a Turing-complete language, and let P be a nontrivial semantic
property of programs of L.

There exists no algorithm such that,

for every program p € L, it returns true if and only if p satisfies the

semantic property P

while (x>0)
X=x+1:
print (“27");

Limitations of the analysis

We need to give something up:
automation: machine-assisted techniques

the universality "for all programs”: targeting only a
restricted class of programs

claim to find exact answers: introduce approximations

Approximation: Soundness and Completeness

Given a semantic property P and a program p € L. An analysis
is perfectly accurate iff

for all program p, analysis(p) =true <> p satisfies the property P

which consists of

1) for all program p € L, analysis (p) =true = = p satisfies P (soundness)

2) for all program p e L, analysis(p) =true = <= p satisfies P (completeness)

Approximation: Soundness and Completeness

programs programs
programs programs satisfying & :::. not satisfying &

satisfying & not satisfying &

(a) Programs (b) Sound, incomplete analysis
. programs el programs programs that satisfy &7
- satisfying &2 i not satisfying &2 ,
e S programs that do not satisfy &2
iy true cooco¥ . false cioc:s programs for which the analysis returns true
RO RN SESBSEEEEE e1i:| programs for which the analysis returns false

(¢) Unsound, complete analysis (d) Legend

Spectrum of Program Analysis Techniques

Testing

Machine-assisted proving
Finite-state model checking
Conservative static analysis

Bug-finding

Comparison

automatic | sound | complete
testing yes no yes
machine-assisted proving no yes yes/no
finite-state model checking yes yes/no | yes/no
conservative static analysis yes VES no
bug-finding yes no no

Abstract Interpretation

A general technique, for any programming language L and safety
property S, that checks, for input program P inL, if [| P|] is contained
in S

automatic (software)

finite (terminating)

sound (guarantee)

malleable for arbitrary precision

Denotational Semantics

Semantics

What is the meaning of a program "1 + 2" ?

Meaning = what it "denotes”:
“3" (Denotational semantics)

Meaning = how to compute the result:
"add 1 into 2 and get 3" (Operational semantics)

Different approaches for different purposes and languages

Denotational Semantics

Mathematical meaning of a program (no machine states or
transitions)

Program semantics is a function from input states to output states

The semantics of a program is determined by that of each
component (compositionality principle)

Semantics of a Simple Language (WHILE)

C — skip
.=k

if ECC
C:.C
while £ C

E — n (n € Z)
X
E+E
- B
The semantics of C is a function from memories to memories

Memory = Function from memory locations to values

Semantic Domain
A set of objects used to define program semantics (i.e., semantic objects)

r € X = ProgramV ariables
V=%
meM =X —

Meaning of commands IC]: M — (MU L)

Meaning of expressions |[E]] M —s

Denotational Semantics of Expressions

[z]

[n]
[Eq + Eo]

- E]

13+ x| {x—2,y— 1}

Compositional

S 3 3 3

= m (x)

= ([E1] m) + ([E2] M)

= —([E]m)

Bl {z—2,y— 1} +|z] {z — 2,y — 1}
3+2=25

(i.e., the semantics of an expression is determined

by that of its sub-expressions)

Denotational Semantics of Commands

i
lz :=E] m =m {z— [E]lm
[if E C1 Co]l m = if [Elm # 0then [Clm else [Com
[C15 Co] m = [Co] ([Ch]m)

E.g., [x:=7;y:=83{}={x+— 7,y — 3}

Compositional
(i.e., the semantics of a program is determined by that of its sub-components)

Semantics of Loops

The semantics of while E C

[while E C[™M
= if [E] m # 0 then [while E C|([C]|M) else m

IS not compositionall

Not a definition, but a recursive equation!

Semantics of Loops

[while E C|m
= if [E]m # 0 then [while E C|([C]|M) else m

how to denote functions:

Ax . function body
where x is the parameter

e.g. inc(x) =x+1vs
inc =Ax.x+1

[while E C =
Amaf [Elm # 0 then [while E C|([Clm) elsem

* Fgo(X) = Am. { X([Clm) it [E]m) 70

m otherwise

[while E C| = Fg c([while E C1])

Semantics of Loops

Semantics of a loop: a solution of this equation

[while E C| = Fg ¢([while E C])

Semantics of Loops

Semantics of a loop: a solution of this equation

[while E C| = Fg ¢([while E C])

Solution: a fixed point of Fg.c

X([C]m) it [E]m) # 0

FE’C(X) = A { m otherwise

Domain for Commands

ﬂCﬂ:M%ML where Vvm e M, L T m
[while E C]| = Fg ¢([while F C])
(M — MJ_) .
A partial function, FE,C(X) — \1.. { X(ﬂcﬂ m) if ﬂEﬂ m) # 0
Sets of pairs (m,m’) m otherwise

FE,C’ (M —M,;)— (M —M,)

It is monotone and continuous on the domain of partial functions

Semantics of while

By applying Klene's theorem
IIWhile E CH — ﬁXFE,C = |_|F37C(| M >MJ_)

Ao. L
vhile £>1do 7 == — 1 Fro(X) = Am. { (m, X (m[m(z) — 1/x])
Y T (m’m)
_ - (m,m’) m(x)
Fo(o)=0 Fpcld)=Am. \ (m,m) m(z) <1
FLo(@) ={(m,m) | m(z) <1} =2 10n[l/x],m[1/x])]

c(@)Uilm,m[1/z]) | m(z) = 2}
c(@)Ui(m,m[l/z]) | m(z) = 3}

Fg.c(@) = {(m,m) [m(z) <1} U{(m,m[l/z]) | 1 <m(x) < n}

fix Fig,o = {(m,m) | m(z) < 1} U{(m,m[1/a]) | 1 < m(x)}

