Principles of Abstract
Interpretation

Abstract Interpretation Framework

Abstract interpretation Framework

r'eal execution |[P]] = fix F' € D A domain of concrete states
(e.g.sets of integers)

C(bSTr'C(CT execurion ﬂpﬂ = fix ' € D A domain of abstract states

(e.g.sets of intervals)

correctness P] ~ [P]

implementation computation of [P]

Abstract interpretation Framework

real execution [P] = fix F € D
abstract execution [P] = fix F € D
correctness [P] ~ [P]

The framework requires:

A function corresponding to
one-step abstract execution

e arelation between D and D | onestepat
e Arvrelationbetween F:D—sDand F:D — D

A function corresponding to
one-step concrete execution

The framework guarantees:

* correctness and implementation
e freedom: any such D and F are fine

Recipe for the construction of an abstract interpreter

Step 1: Define the language and a concrete semantics
Step 2 : Select an abstraction describing the set of properties

Step 3 : Derive the abstract semantics

The language

Assume a syntax for arithmetic expressions E and Boolean
expression B, the syntax for the command is the following

L o= commands
| skip command that “does nothing™
| C:;C sequence of commands
| X:=E assignment command
| input(x) command reading of a value
| if(B){C}else{(C} conditional command
| while(B){C} loop command

P = ¢ program

Step 1. Define concrete Semantics

Formalization of a single program execution

Operational semantics (transitional style)
* Big-step / small-step

Denotational semantics (compositional style)
» State — State

Step 1. Define concrete Semantics

m(t) I l l l ExeCUtion |
 traces

Possible
discrete
trajectories

Semantics Style: Compositional vs.Transitional

Compositional semantics is defined by the semantics of sub-

arts of a program
D Prog [AB] = ...[A]....[B]

For some realistic languages, even defining their compositional

("denotational”) semantics is a hurdle
goto, exceptions, function calls

Transitional-style ("operational”) semantics avoids the hurdle

I[AB]] — {81 — S99 — }

Step 1. Define concrete Semantics

Formalization of all possible program executions

Also called collecting semantics

Simple extension of the standard semantics in general

ZStates BN QStates

Traces vs. Reachable States

Execution S e §

Traces o>, —eo

® ®
Reachable ® ®
States ,. ®

Transitions of sets of States

90 --0-®-0-00 0>

Transitions of Abstract States

20

			I		I			
						I		
						I		
	I							
! [
©
® o
-
o @
i ® O ® .
C @
»
@ @ ® .
' | —
<« 4 — A xt_;.i-_:?::":’ y .
|
@
|

ﬂ Interval transition

Collecting Semantics

r € X = ProgramV ariables

V=2 M

meM=X—=YV

Assume IE|: M —Vand |[B|:M — B

[C] - (M) — p(M)
M € p(M)
[skip (M) = M [x:=E](M) ={m[x— [E](m)] | me M}

| Co; C1 (M) = [C1 [([Co [(M)) | input(M) = {m[x —n||[necV,mec M;

Filtering function for the conditional

Since M is a set of states, the conditional filters the memories for which
the condition is true and for them evaluate the first branch, do the same
for the memories for which the condition is false and take the union

For each Boolean expression B, the filtering function

Fp(M)={me M | |B||(m)=true}

Collecting semantics for the conditional

Fp(M)={me M | |B]|(m) = true}

Syntactic negation
E_g_—l(a? > 3) —x<J

F_g(M)={me M| |-B|(m)=true} ={m e M | |B]|(m) = false}

[if (B){Coy else {Cy1;[(M) = [Co] Fp(M)U [C1] F-p(M)

Collecting semantics [while(B){C}](M)

We can partition executions based on the number of iterations
they spend inside the loop before exit

M. denotes the memories that are produced by program executions that wer
thought the loop body exactly i times starting from M

My = F-g(|[C] FB(M))
My, = F-p([C] Fs [C] Fe(M)) = F-p(([C] Fp)*(M))

M; = F-p(([C] FB)'(M))

Collecting semantics [while(B){C}](M)

Thus, the set of output states of the loop Is

L M; = | Fon(([C] Fa)i (M)

i>0 i>0

Since & 5 commutes with the union

| Mi = Fop(|J([C] Fp)'(M))

1 >0 1 >0

Definition as fix-point

[while(B){C}](M) = F-p(| J([C] Fg)'(M))

i>0

This can be rewritten as

[while(B){C'}[(M) = F-p(fix Fi)

Wher'e Fyv = MM .M U HC]] FB(M/)

Definition as fix-point

IIWhﬂe(B){C}ﬂ(M) — FﬁB(fiQT FM) FM —)\M/M L) I[C]] IB (M/)

F, is continuous then we can apply the Kleene's theorem to compute
the invariant FO = Fu(0) = M
Flp = Fy(FS) = MU [C] F(M)
Fry = Fu(Fy) = MU ([C] FB)* (M)
Fry =M U([C] FB)' (M)

[while(B){C}(M) = F-p(Ui<oFi)

Toward abstraction

Our concrete domain (M), €)

We abstract each concrete element with an abstract element

c E a when the abstract element a describes ¢

Moy={meM]|0<m(x) <m(y) <8 = M#* ={x—[0,10],y — [0,80]}

Mi={meM|1<mz)} &= M* ={z— [0,10],y — [0,80]}

Abstract relation

Given a concrete domain (C, C) an abstraction is defined by an

abstract domain (A, C) and an abstract relation F C C X A such
that

- if ap C a, and ¢ F ay then also ¢ F a,
apg = {z — [0,10},y — [0,80]} C a; = {y — |0,100]}

co={meM|0<m(x)<m(y) <8} E ag = 1 =aq

*if co € cyand ¢y F a thenalso ¢y F a

co={meM|0<m(x) <4,m(y) =6} C
C1 ap — Co — Qg

Concretization function

A common way to describe the abstract relation F is by defining a function
‘hat maps each abstract element to the largest concrete element it describes

Definition
Concretization function ¥ : A — C is a monotone function
that maps abstract a into the greatest concrete ¢ that satisfies a

(c Fa) c=a < cCvy(a)

v(ag) = v({x +— [0,10],y — [0,80]}) ={m e M |0 <m(x) <10,0 <m(y) <80}

co={meM|0<m(x) <m(y) <8} = ag since ¢; C vy(ap)

Abstraction function

Another way to describe the abstract relation F is by defining a function

that maps each concrete element to the smallest abstract element that
describes it

Definition
Abstraction function a : C — A (if it exists) is a monotone

function
that maps concrete c into the most precise abstract a that

describes ¢ (¢ F a). c=a < alc)Ca

a(c1) = a({m e M| 0 <m(x) <m(y) <8}) =1z~ [0,8],y — [0,8]}
) E aq

cp = a1 =4y —|0,100|} since a(cl

Galois connection

a and ¥ should agree on a same abstraction relation F

c=a<cCvya) s alc) Ca

Definition
Galois connection: a pair of concretization functiony : A — C and
an abstraction function ¢ : C — A such that

c Cv(a) & alc) Ca

* o and y are monotone

Properties of Galois connections

concrete domain abstract domain

» ¢ C y(a(c))
» a(y(a)) Ea

Step 2: Non-relational abstractions

Non-relational abstractions: they forget relations among program variables
All the values for variables are abstracted indipendently
They proceed in two steps:

1. Collect the values a variables may take across a set of states

2. Over-approximate the set of values for each variable with an abstract
element of a domain of value abstraction

ay(M)(x) = ay(im(x) | m € M})

V(M

Abstract states

s (M, C)

MTe M =X -V

)= {m | Vx.m(x) € yy (M

(%))}

)={n eV |n >0}
)={n eV |n <0}
(= 0]) =10}
NWT) =V

(L) =1

/‘// \ !
1< 0] 1= 0]
\“\"\\ ,.-’/,// a({27 4,8, 16, }) — [2 O
[= 0] a(10}) = [0

a{—1,1}) =T

Variation of Signs -

< ifn [_ 0)

)={neV|n>0}
)={neV|n<0}
(1) =V
y(L) =1{}

:

Thereisnoasince {O} F[>0],{0} F[<0] and {O} F T
but the smallest element does not exists

Intervals o0, + o0

b o 4 B 4 \ / N\ /
Elements of A: [-3,00 [-2,1] [-1, [0.3]

+ | the empty set of values N/ \/\/\/\/

(=3, —1] [-' o =L (0.2 1.3

o (no,nl), Ny € (7U{—OO}), n € (ZU{‘FOO}),VLOSI’ZI /\ / \ / /\ //\

=2,—-1] [-10] [”] 1.2]

C is the interval inclusion \/ \ / \ / \ /\/

[—2 —_] [l—l [0,0]

-
-
-

- -
- =

y(L) = {} -

v(lng,n1]) ={n eV |ng<n<ni}
Y(|—oo,n]) ={neV|n<ng}
v({ng, +o0]) ={n eV |ny <n}
Y([—00, +o0]) =V a

= 1 ife=10,

= [min(c), max(c)| if ¢ # 0, min(c) and maz(c) exists

= [—o00, max(c)] if ¢ # 0, max(c) exists

(¢)
(¢)
a(c) = [min(c), +ool if ¢ # 0, min(c) exists
(¢)
(¢)

= |—00, +00| otherwise

Congruences

1740
Elements of A: ...
* 1 the empty set of values
e (pZ,n)withp e N,n € ”/ V7 +1
’Y(J—):{} If p#0then0) <n<p \)(/
Y((pZ,n)) = { pk +n | k € Z) , it
the greatest element is 1Z 4+ 0 OZ;-G 02+3

—

singletons {c} are represented as 0Z + ¢ v

Example
Consider the following set of memories M

o . X — 235)’t—°-' Z— —12
my: X—=28 yv—=-7 z+—-—1I
mr: Xx—20 y—0 2z~ -—10
’”3 : X}—o:{s :V'*—’B 7 — —4
With the Sign abstraction With the interval abstraction

M7 X [=0] ypT z»[=<0] M": xw[2535] ye»[-7,8] z+[-12,-9]

Example

Consider the following set of memories M
mg : {x — 100,y — 201}

i - {ZE — 1’ Y= 2} A non relational domain is
mo : {:E — 27. Yy 55} not able to model the

relation between variables

ms : {x — 30,y — 61} y=2x+1

my : {x +— 45,y — 91}

With the interval abstraction

M# . {z — [1,100],y — [2,201]}

Relational domain
Convex Polyhedra domain

sets of numerical constraints of the form
cixX+c,y< ¢

(at most two variables per constraint,
with unit coefficients)

3 does not admit a best abstraction

Relational domain
Octagon domain

sets of numerical constraints of
the form

rxxry<c

(at most two variables per
constraint, with unit
coefficients)

A dmits the best abstraction

Step 3: Abstract semantics

We want to define a sound abstract semantics

analyze p '
“pre “pre + apest = [p]" (apre)

A ‘ [Ip]]: il A4

If % then =
U W

run p

, |
m ‘: [[p]] 3 > M m

It will defined by induction on the syntax

1C]7 [skip]|" M7 = M7

[Co; C1]7* M# = [C1]* ([Co] ™ (M 7))

Abstract semantics of command

This and all inductive
construction relay on the
following result:

Let

Fo, 'y - go(M) — go(M)

FIFT A - Al
it F,yCyF],
then

FoF, y Cy FiF}

Abstract interpretation of expressions

|[E]]# . M7 — V7
[a]#M* = a({n})
[x]" M7 = M7 ()

[Eo + E1]" M7 =

[Eo]™ +7 [E1]7

Sign domain

>0

>0

| +7
| +7

<0=T
> 0] = [>0

Interval domain

0,6

[_007 _2:

L #
L #

—2,3] = [—2,9]
4,18] = |[—00, 16]

Analysis of assignment

[x :=E["M*" = M¥*[x+— ([E]"(M7))]

linput(z)][# M# = M#[z s T]

Sign domain

le =x+64+y|{xz— [>0,y— T}
={x— T,y— T}

Interval domain

le i =x+64+y|{zx—[3,8

= {x — (6,19

Y
Y =

:_37 5}
:_37 5}

Abstract interpretation of the conditional branching

[if (B){Co} else {Ci};[(M) = [Co] FB(M)U [Ci] F-p(M)

We use the compositional principle and we need to define over
approximations of

o Fp andof F_,
e the join operator U

Analysis of conditions

For all M*, F 5(y(M") € ((F ™)

' i (veX)— 1 ifM(x)=([>0lor|=0|orL
")Zx“ <) ‘: M*) = { . | | [‘

Mix— [<0] ifM(x)=[<0lorT

Sign domain

-

Interval domain ~ F;.,(M*) = Mix— la,n]] fa<n<bh

Analysis of conditions

1f(x -'n{
y:=X-—1/

telseq
Fi=7—3%

Interval domain

Fr ({z T,y T} ={z— [8,+00),
Froo({om Ty e T = {a > [—00, 7],

y— T}
y— T}

Analysis of flow joins

We need to define a correct over approximation of the join U, that is, an abstract
join U™ s.t. 14 ,-\.-[':.' ANRY ‘.\.1'-13) C ¥ .'\-'If. mL Mii |

Mé {:(— [i).}].y - [(\7].2 s [4\]}
M = ({x~[5.6],y—[0,2].2+— [6,9]}

For the interval domain is defined in terms of min and max of intervals

MyU*M] = {x+[0,6].y+ [0.7]).z2+ [4.9]}

Analysis of Conditional Command
[if (B){Co} else {Ci}]#(M#) = [Col# FJ (M) U# [Ci]# F7y(M#)

Startingwith {x » T ,y— T }

if(x >7){

T on the true branch we filter for condition x > '/
et Fhol{o o Ty = TY = fo s 8,400y = T)
} - " [y:=x=7]"({z = [8, 400,y = T}) = {z > [8, +o0], y = [L, +od]}

on the false branch we filter for condition x < 7/

fi’;7({a}HT,yHT}) ={x+— |—00, 7,y — T}

[y:=7-x]" ({z — [—o00, 7],y = T}) = {z — [—o0, 7],y — [0, +00]}

Applying the abstract join we obtain {z+ T,y [0, +00c]}

Abstract interpretation of the loop

Recall the concrete semantics of the loop

[while(B){C}(M) = F-s({J([C] Fp)'(M)) = F-p(| F*(M))

i>0 i>0

We can approximate & 5 and F' so the problem we need to solve is how to compute
an approximation of an infinite union U F{(M)

>0
Concrete iterations Abstract iterations
M, =| | F*(M)
— 7+ 7 7
Mo = M M, = My U F7 (M)

Abstract iterations ==

X :=0):

while(x > 0){

X:=x+1

M;
M;
M:

M

After the first assignment we have M* = {x — [0,0]}

{x+ [0.0]}
{x+—[0.1]}
(x+[0,2]}

{x+— [0.1]}

M;,
M
M

M},
M5,
M,
M5,

{x—
{x—

{x—

{x—
{x—
{x—

{x—

while(x < 100){
if(x > S50)4

x:= 10

telse{

X:=x+1

0.0]}
0. 1]}

0.2]}

0.49
0,50
0, 50]

0,50

e T~

Convergence of iterates

The computation of abstract iterations may not converge or it can converge
too slowly

We can choose to use finite Height Domain

We can desigh widening operators

Finite height lattices

If the abstract domain has finite height the abstract iterations are finite

| . X =
abs_iter(F* M*) X :=0U; .
“ while(x < 100){
R« M¥*; while(): 2 “:‘{ if(x > 5():,{
repeat Xx'=x+ | x:=]0
T « R: o } relseq
R—RU* F*(R): X:=Xx+1
until R :“T M: = {x—[=0]))
return ""!ﬁnx = Kt M;"' = {x~[>0]} }
M, = {x~[=0]}

Widening operator

Definition A widening operator over an abstract domain is a
binary operator s.t.

+it holds 7y(ao) Uv(a1) € y(apVay)

» for any sequence (a,), -, the sequence (a,), -y defined as follows is ultimately
stationary:
CL6 — A

/]
a,, 1 = a,Vay

Widening operator for intervals

n,p if p >
n,p| Vy |n.q| = { | P . " =1 The same for the other bound
n,+e=) Up<gq

abs_iter(F* M*)
R+ M*:
repeat
The abstract iterations become T «R:
R+« RV F*R):
until R =T
return M. =T

Iim

Example x:=0;

while(x < 100){

x :=0: .
. if(x > S0
while(x > 0){ x:= 10
X:=x+ 1 telse{
X:=x+1
h)

Mg = {x + [0,0]}

0

7 Stable! Not

M]# = {x +— [0, +o0|} very precise
0,

Mg = {o > [0, +00])

The analysis

[n]*M* = a({n})
[x]" M* = M7 ()
[Eo + E1]# M# = [Eo]" +7 [E1]"
[x :=E]|*M# = M¥%[z — ([E]7 (M7¥))]
[input(z)]" M7 = M%7 [z — T]
[if (B){Co} else {Ci}[*(M¥) = [Co]* Ff (M) U* [C1]* F7y(M#)
[while(B){C}]# (M#) = F7,(abs_iter([C]* F&, M%)

Theorem The computation of [C]* M* terminates and [C]y(M*) C ~([C]* (M*))

Using analysis’results

The program Is correct

Using analysis’results

The program is correct and
our approximation can prove It

Using analysis’results

The program Is correct and
our approximation can’t prove it

alse alarm

Unsound analysis

The program is not correct and
our approximation says it is correct

Trace-based operational semantics

Py : while isEven(x) {
pyp: x = x div 2;

}
pZ:x=4*x;
2% exit

The operational semantics updates a program-point, storage-cell pair,
PP, X, using these four transition rules:

po,2Zn — p1,2n p1,n — po,n/2

po,2n+1 —pr,2n+1 P2, N — Pp3,4n
A program’s operational semantics is written as a trace:

po, 12 — p1,12 — po,6 — P1,6 — po,3 — p2,3 — p3, 12

The parity domain

Pa"ty R v : Parity — P(Int)

" even

Odd v(even) ={...,—2,0,2,...}

/ v(odd) ={...,—1,1,3, ...}
1
J

. v(T)=1Int, y(Ll)={
«: P(Int) — Parity

x(S) =LHP(v)|v e S}, where f(2n) =evenand (2n + 1) = odd

The abstract transition rules are synthesized from the orginals:
pi,a — pj, (v, if v €y(a) and py,v — pj, v’

This recipe ensures that every transition in the original, “concrete”
semantics is simulated by one in the abstract semantics.

The abstraction rules o, 21— p1, 2n

170,211 + 1 —]32,211 + 1

Py : while isEven(x) { Do, even , 1, even
Py x = x div 2;
} po,0dd — p>y, odd
py: x =4 * x;

p; - exit Pi1,even — po, even

p1,even — po,odd

P2, a — P3,even

Two trace trees cover the full range of inputs:

O ¢
Po, €even Do, odd

P11, €ven Pz,Odd
\ P3, €ven
po,odd
p2,0dd

Da2. €VETL

pP1, N — po,n/2

p.-Z» n— p}, 4n

The interpretation of the program’s semantics with the abstract values
IS an abstract interpretation:

O ¢
Po, €ven no, 0dd

P1, €ven pz,Odd
\ P3, €VvET
po,odd
p2,0dd
P3, €VETL

We conclude that

¢ if the program terminates, x Is even-valued

¢ if the input is odd-valued, the loop body, p, will not be entered

Due to the loss of precision, we can not decide termination for almost
all the even-valued inputs. (Indeed, only 0 causes nontermination.)

Another examEIe: array bounds using intervals

Integer variables receive values from the interval domain,

[={[i,j]|1,) € IntU{—00,+00}}.

We define [a,b] U [a’, b’] = [min(a, a’), max(b,b’)].
int a = new int[10]; @ _ _. i =[0,0]
i=0; =---—-""""7 ’
while (1 < 10) { P -i=[00][]|[- ,9 =[0,0]
c.. afi] .. -
~i=[0,0] | [1,1] [[- ,9] =[0,1]

i=1+1;
} "\:\\\kai:n,u
~i=[L1]| | [22]=[12]

—

atp; :10..9
At convergence, i’s ranges are atp, : [1..10]

at loop exit : [1..10] 1 [10, 40| = [10, 10

Constant ProEaga‘rion cmalxsis

po : X = 1; Y & 2; COHSt/T B :\\'\zir\hol.ds
P : while (x < y + z) ; 0/ AN mqltlple values
. x = x + 1; S r hold
}172 ' \\\ / / Vtalfls 3allsle only
. : | _ var holds no value
p;: exut T -~ (dead code)
. Abstract trace: po, (T, T, |
where m + n is interpreted 3? 21 2.7 >
k1 + k2 — sum(kq, k2), ¢ Nops,(1,2,T)
T4£ki#Lie1.2 p2,(1,2,T)

1# 431><2>2>—_>
T—I—k_ﬁ—l_ \l/ \p3)<2)2>—|—>
k+T —T p2,(2,2,T)

_ ‘31,<3,2,__>
Let (u, v, w) abbreviate N

(X:W,y:v,z2:W)

An acceleration is heeded for finite convergence

Po, (T, T, T) Drawn as a data—flow analysis:
P, <] y 2) T>

\L \p3><1>2>—|_> p0|""
P2, <1 y Z) —_> \l/ L -
P, <z>2> —_> L <1>2>—|—> p] 1!25 — p3 1521

— P, <—|_> Z) T> O 2’2’__ TJZJT

The analysis tells us to replace y at p; by 2:

p: x=1; v = 2;

p; : while (x < ¥+ z {
p: x=x+1; -~ __
} 2

p; ¢ exit

