Dataflow Analyses

Code Optimization in Compilers

- Semantic Preparation Cede
| Scanner =N Parser =N L naivzer for Code 1™ Genarator |1
Genaraton
RS ——

Control
t Flow Wiov:zmm :
Analysis

Correctness Above All!

If may seem obvious, but it bears repeating that optimization should not change the
correctness of the generated code. Transforming the code to something that runs faster
but incorrectly is of little value. It is expected that the unoptimized and optimized
variants give the same output for all inputs. This may not hold for an incorrectly
written program (e.g., one that uses an uninitialized variable).

Control flow graph

Program commands are encoded by nodes in a control flow
graph
If a command S may be directly followed by a command T

then the control flow graph must include a direct arc from
the node encoding S to the node encoding T

Example

[input n;]!
[m:= 1;]2
[while n>1 do]3
[m:=m * n;]4
[n:=n - 1;]5

[output m;]°¢

6

output m;

Data-Flow analxses

We will see data-flow analyses:
-Liveness analysis

- Reaching definitions analysis
-Available Expressions analysis

Liveness or Live Variables Analysis

+ We need to translate the source program in the
intermediate representation IR that can use a large
(potentially unbounded) number of registers.

* but the program will be executed by a processor with
a (finite and) small number of registers

» Two variables a and b can be stored in the same
register when it furns out that a and b are never
simultaneously "used”

IR: Three Address Code

Three-address instruction has at most three operands
and is typically a combination of an assignment and a
binary operator.

For example: t1 := 2 + 13.

The name derives from the use of three operands in
these statements even though instructions with fewer
operands may occur.

Example

a=20;
do {
b = a+l;
c += b;
a = b*2;
}
while (a<N) ;
return c;

We want to know if a and b are
simultaneously used.

a<N;

: |

return c;

Live Variables Analxsis

» A compiler needs to analyze programs in IR in order to
find out which variables are simultaneously used

- A variable X is live at the exit of a command C if X stores
a value which will be actually used in the future, that is,
X will be used as R-value with no previous use as L-value

- A variable X which is not live at the exit of C is also
called dead (this information can be used for dead code
elimination)

- This is an undecidable property

Back to the example

- A variable X is live when it stores a value a:= 0;
which will be later used with no prior
assignment to X

- The "last” use of the variable b as r-value is in
command 4

» The variable b is used in command 4: it is
therefore live along the arc 3 — 4

- Command 3 does not assign b, hence b is live
along 2 — 3

+ Command 2 assigns b. This means that the
value of b along 1 — 2 will not be used later

* Thus, the "live range” of b turns out to be: {2 _

—3,3—>4} return c;

Live variables
—l—1

-ais livealong4 — 5and 5 — 2

- aislivealongl — 2

* aisnotlivealong2 -3 and 3 — 4

- Even if the variable a stores a value in node
3, this value will not be later used, since

nhode 4 assigns a new value to the variable
a.

return c;

More on live variables

* cis live along all the arcs , ||

* By the way: liveness analysis can be :
exploited to deduce that if cisa |
local variable then ¢ will be used with [¢.= c4b:
no prior initialization (this | |
information can be used by compilers = B*2-
to raise a warning message) : ’

s ||

a<N;

: |

return c;

o)
Il
()
<+ |
=

return c;

return c;

-> Two registers are enough: variables a and b will be
never simultaneously live along the same arc

Variables a and b will be
never simultaneously live
along the same arc. Hence,
instead of using two distinct
variables a and b we can
correctly employ a single
variable ab

ab<N;

: |

return c;

We need a way to compute live variables

* A CFG has outgoing edges (out-edges) that lead to ;| |
successor nodes, and ingoing edges (in-edges) that |5.= 0.
originate from predecessor nodes.

2
b:= a+l;
* pre[n] and post[n] denote, respectively, the 5
predecessor and successor nodes of some node n.
c:= c+b;
* As an example, in this CFG: 4a = p*2 -
— 2 and 6 are successors of node 5 because i ’
5 — 6 and 5 — 2 are the out-edges of 5
— 1and 5 predecessor 2 since a<N;

5 —2and1— 2 are the in-edges of 2 6
— pre[2]={1,5}; post[5]=(2,6}. return c;

Notation

» An assignment to some variable (a use of the
variable as L-value) is called a definition of the
variable

- A use of some variable as R-value in a command is

called a use of this variable b:= a+l;
- def[n] denotes the set of variables that are c:= c+b;
defined in the node n
a.:= b*2;
» use[n] denotes the set of variables that are used
in the node n a<N;
* As an example, in this CFG: 6
- def[3]={c}, def[5]=0) return c;

- use[3]={b,c}, use[B]={a}

Formalization of the property:

» A variable x is live along an arc e—f if there exists a
real execution path P from the node e to some node
n such that:

—e—f is the first arc of such path P
— X €use[n]

— for any node n'ze and n'zn in the path P,
x¢def[n']

» A variable x is live-out in some node n if x is live
along some (i.e., at least one) out-edge of n

- A variable x is live-in in some node n if x is live 6

1
a:= 0;
2
b:= a+l1;
3
c:= c+b;
4
a.:= b*2;
a<N;

along any in-edge of n

return c;

Examele

As an example, in this CFG:
aislivealongl - 2,4 —-5and5 — 2
bislivealong2 — 3,3 - 4
c is live along any arc
a is live-in in node 2, while it is not live-out in node 2

a is live-out in hode 5 .

1
a:= 0;
2
b:= a+l1;
3
c:= c+b;
4
a.:= b*2;
a<N;

return c;

Computing an approximation of Liveness property

Let us define the following notation:

in[n] is the set of variables that the static analysis
determines to be live-in at node n

out[n] is the set of variables that the static analysis
determines to be live-out at node n

ComEu’ring an approximation of Liveness property

Liveness information: the sets in[n] and out[n] is computed
as an over-approximation in the following way

n node of the CFG

2. If avariable xcuse[n] then x is live-in in node n.
In other terms, if a node n uses a variable x as R-value then
this variable x is live along each arc that enters into n.

y:= x+z+2;

In[n] 2 use[n]

Computing Liveness

2. If avariable x is live-out in a node n and x & def[n] then the
variable x is also live-in in this node n.
If a variable x is live for some arc that leaves a node n and x is
not assigned in n then x is live for all the arcs that enter inn

N/

y:= wtz*2;

VAN

in[n] 2 out[n] - def[n]

ComEu’ring Liveness

3. TIf avariable x is live-in in a hode m then x is live-out for all the
nodes n such that m&post[n].

This is clearly correct by definition.

n,

n,

/ [\

y:= x+z*2;

m

out[n,] 2 U{in[m] | m € post[n,]}
out[n,] 2 U{in[m] | m € post[n,]}

Dataflow Egua’rions

The previous three rules of liveness analysis can be
thus formalized by two equations for each node n:

1. in[n] = use[n] U (out[n] - def[n]) (rules1and 2)

2.out[n] = U{in[m] | m € post[n]} (rule 3)

Correctness of the analxsis of Liveness

This definition of liveness analysis in[n] and out[n] is correct:
If x is concretely live-in (live-out) in some node n then the
static analysis will detect that x €in[n] (x€ out[n]):

in[n] 2 live-in[n]
out[n] 2 live-out[n]

In other terms, no actually live variable is neglected by liveness
analysis.

Correctness in Dr'agon Book

Why the Available-Expressions Algorithm Works

We need to explain why starting all OUT’s except that for the entry block
with U, the set of all expressions, leads to a conservative solution to the
data-flow equations; that is, all expressions found to be available really
are available. First, because intersection is the meet operation in this
data-flow schema, any reason that an expression x + y is found not to be
available at a point will propagate forward in the flow graph, along all
possible paths, until + y is recomputed and becomes available again.
Second, there are only two reasons x + y could be unavailable:

1. @ +y is killed in block B because x or y is defined without a subse-
quent computation of x +y. In this case, the first time we apply the
transfer function fg, « 4+ y will be removed from ouUT[B].

2. x + y is never computed along some path. Since 2 + y is never in
OUT[ENTRY], and it is never generated along the path in question,
we can show by induction on the length of the path that x + y is
eventually removed from IN’s and OUT’s along that path.

Thus, after changes subside, the solution provided by the iterative algo-
rithm of Fig. 9.20 will include only truly available expressions.

ComEu’ring Liveness

Liveness analysis is approximate:

it assumes that each path of the CFG is a feasible path
while this hypothesis is obviously not true

ComEu’ring Liveness

Liveness analysis is approximate: it assumes that each path
of the CFG actually is a feasible path while this hypothesis
is obviously not true.

1

The analysis determines that a is live-in in

a:=5*b; nine .
5, and therefore a is live-out in 3.
f: —a+b However, no real execution path from 3 to
: 5 exists (because b+b*b<b is always false)
3 | e . .
o>=b so that a is not really live when exiting 3!

N

rljreturn c| |return a

How can we compute a solution to 1 and 2?

1. in[n] = use[n] U (out[n] - def[n])
2. out[n] = U {in[m] | m € post[n]}

Correctness tells us that in[n] 2 live-in[n] and out[n] 2 live-
out[n]

But we need a way to compute Live variable analysis

How can we compute a solution to 1 and 2?

1. in[n] = use[n] VU (out[n] - def[n])
2. out[n]=U{in[m] | m € post[n]}

We need to compute a fix point
* but how can we be sure that such fix-points exist?
It depends on the domain and on the function!

Questions

Does a solution of the semantic equation always exist?

If it exists, is it unique?

How to compute it?

Fixpoint?
fixF = X such that F(X) = X

(z) =2* — 4

least fixed point greatest fixed point gfp

The fix point theory

Definition (Partial Order). A binary relation L isa
partial order on a set D

if it holds:

1. reflexivity:a £ a foralla €D

2. Antisymmetry: a C b and b Ca impliesa = b
3. Transitivity:a bandb cimpliesa ¢

A set D with a partial order C is called a partially ordered
set (D,C), or
simply poset.

Examples

« Example 1: (p(\+,y,2}), ©) * Example 2: (Z.,C)

Hasse diagrams

e Example 3: (N, <) Example 4: (N + {+x0}, <)

Least Upper Bound

Definition (Least Upper Bound).

For a partial ordered set (D, E) and X C D,

d € D isanupper bound of Xiff Vx € X. x C d

An upper bound d is the least upper bound of X iff for all upper
bounds y of X

dLl y

The least upper bound of X is denoted by X

Examples

« Example 1: (p(\+,y,2}), ©) * Example 2: (Z.,C)

Hasse diagrams

e Example 3: (N, <) Example 4: (N + {+x0}, <)

Chain

Definition (Chain). Let (D, £) be a partial ordered set. A subset
X C D, is called achain if X is totally ordered:

Vazl,xg € X.x1 L 29 or o C x4

e Example 2: (Z,,C)

wagpe

« Example 3: (N, <) o Example 4: (N + {+00}, <)

CPO

Definition (CPO). A poset (D. L) is a CPO (complete
partial order) if every chain X of D has a

|| X eD

We consider CPOs (D, E) with a least element L

Monotone and Continuous Functions

Definition (Monotone Function). Given two partially ordered
sets D and E

a functionf: D—E is monotone if it preserves orders
between any two elements in D Vdi,d, € D. di Cdy = f(d1) C f(da)

Monotonicity illustrated

a chain

o fld)

- f(d2)

- f(do)

a chain
(by monotonicity)

E

Continuity illustrated

lub |_| d; - f <|_| di) u.b.
veN €N (by mono’romcu‘ry)

‘ = | | f(di) Cr f <|_| d)

|_| (dz) |ub i€N follows from \i€N

monotonicity

1€N (and CPO)
|_| f(d jE f <|_| d;)
dg P S —— f(dg) | continuity
achain, a chair
o ~/(d) (by monotonicity)

oI

(NU {oo}, <)

Example

(NU {oo}, <)

Example

Example

(NU {00}, <) monotone function, not continuous
0 ifxeN

< 1 ifx =00

f:D—D

Lemma

Repeated application

frd) = f(---(f(d)) -

frHd) = F((d)) I

(D,E) POL f:D— D monotone=

n times

D — D

{f" (L) }nen
is a chain

)

Towards Kleene's

when (D,C) isa CPO, {F(d) e
then {/"(1)Yer is a chain not necessarily

a chain!
it must have a limit

Kleene's fix point theorem states that
if f is continuous, then the limit of the
above chain is the least fixpoint of /

Pre-Fixpoints
(D,E)PO f:D— D monotone
fixpoint €D f(p)=p
pre-fixpoint pe D f(p)Cp

Clearly any fixpoint is also a pre-fixpoint

Tarsky 's Theorem

prefixpoints
{leL | f()c

gfp(f) = lub{ 1 €L | 1 c () }

Fix(f) ={1eL | f()=l}

Ifp(f) =glb{leL|f()c]}

postfixpoint
{leL | Icf)}

Kleene 's Theorem

(D,E) CPOL f:D— D continuous
let S =[] W)

neN

1. fiw(f) is a fix point of f
f(fiz(f)) = fix(f)

o fiz(f) is the least pre-fixpoint of f
Vde D. f(d)Cd= fiz(f)CTd

if d is a pre-fixpoint then fiz(f) is smaller than

Kleene's Theorem

fp(f) = Mnf"(T)

1

Ifp(f) = Un/"(L)

1. in[n]=use[n]VU (out[n] - def[n])
2. out[n] = U {in[m] | m € post[n]}

Which is our domain?

Our objects:

Given a node we need to compute the set in and the set out (sets of
variables)

* Let Vars be the finite set of variables that occur in the program P to
analyze. We consider all possible subsets: p(Vars)

Given a node we will need a set for in and a set for out: p(Vars)x p(Vars)

But we have N nodes, one for each node of the CFG so our domain will be

(p(Vars)x p(Vars))N : N-tuples of pairs of subsets of Vars

The order : C2V
1

<ini,outi,... ink,outh >C?V

<ini,outi,...,ink,outh > iff

in; Cin? and out; C out?

Example

Vars ={a,b} N=2.
<(7D (Vars)xP(Vars) 22, C% is a finite domain.

b:

Our domain

<(7D (Vars)xP(Vars) N, RN
CPO with bottom?

It is a CPO because it is finite
bottom?

1. in[n] = use[n] VU (out[n] - def[n))
Which is our function? 2. out[n] = U{in[m] | m € post[n]}

The map Live:
((Vars)x P(Vars) N -> (7) (Vars)xP(Vars))N defined by

Live(<in;,outy,...,ing,0uty>)=

<use[1]u(out,-def[1]), U ing, ..., use[N]JU (outy, -def[N]), U in.>

mepost|1] meEpost|N|

Is it continuous?

The map Live:
((Vars)x P(Var's) N -> (77 (Vars)xP(Var's))N defined by

Live(<ing,outy,...,ing,0uty>)=

<use[1]u(out,-def[1]), ing, ..., use[NJu (outy, -def[N]), L in,>

méepost[1] mepost[N]|

IS continuous?

Yes! because it is monotone on a finite domain

In conclusion

The map Live:
(7)(Vars)x P(Vars) N > (P (Vars)xP(Vars))N defined by

Live(<ingout,,...iny,outy)=

<use[1]U(out,-def[1]), U in., ..., use[N]U (out -def[N]), U in_>

méepost[1] mepost[N]|

is a monotonic (and therefore continuous) function on the finite CPO
P P Y -
<«(/~ (Vars)x/~(Vars))N, = > and therefore Live has

a least fixpoint

th a least fixEoin’r

* Live is a possible analysis,
in[n] 2 live-in[n] and out[n] 2 live-out[n]

i.e., if a variable x will be really live in a node n during some program
execution then x belongs to in[n] of all the fixpoints of the function Live

All fixpoints of the equation system is an over-approximation of really live
variables.

We want the least fixpoint (more precise over approximations)

Conservative AEEroximaTion

* How to interpret the output of this static analysis?
» Correctness tells us that:

in[n] 2 live-in[n] and out[n] 2 live-out[n]

If the variable x will be really live in some node n during some

program execution then x belongs to in[n] of all the fixpoints of the
function Live (least fixpoint)

* The converse does not hold: the analysis can tell us that x is in the
computed set out[n], but this does not imply that x will be necessarily
live in n during some program execution

- In liveness analysis "conservative approximation” means that the analysis may
erroneously derive that a variable is live, while the analysis is not allowed to
erroneously derive that a variable is "dead” (i.e., not live).

%if x €in[n] then x could be live at program point n.
%if xin [n] then x is definitely dead at program point n.

for all n
in[n] :={} out[n]:={};
repeat
for all n (1 to 6)
in'[n] :=in[n]; out'[n]:=out[n];
in[n] := use[n] U (out[n] - def[n]);
out[n]:= U { in[m] | m € post[n]};
until (for all n: in'[n]=in[n] && out'[n]=out[n])

Live? Live2 Lives

1n out |in out |in out

C
U
U
@)
on

6

AN DN B WIN|—
Uﬂ

O | (oo |®
Gﬁ

return c;

for all n
in[n] :=?; out[n]:=?;
repeat
for all n (1 to 6)
in'[n] :=in[n]; out'[n]:=out[n];
in[n] := use[n] U (out[n] - def[n]);
out[n]:= U { in[m] | m € post[n]};
until (for all n: in'[n]=in[n] && out'[n]=out[n])

Live3 Live4 Lives

1n out |in out |in out

a 2C C ac

ac bc lac bc Jac bec

bc b bc b bc b

b a b ac 'bc ac

acC ac acC ac ac ac

a:= 0;
2
b:= a+l;
3
c:= c+b;
4
a:= b*2;
a<N;

6

AN DN B WIN|—

return c;

[T S o] — |

Lived Live6 Live?

In out |(In out |iIn out
C ac |c ac |c ac
ac bc |ac bc Jac bec
bc b bc bc |bc bec
bc ac |bc ac |bc ac
ac ac |ac ac J|ac ac
C C C

The algorithm thus gives the following output:
out[1]={a,c}, out[2]={b,c}, out[3]={b,c}, out[4]-{a,c},

out[5]={a,c}

In this case, the output of the analysis is precise

a:= 0;
2 /
b:= q+1,
3 |
c:= c+b;
a |
a:= b*2;
a<N;

6

return c;

ImEr'ovemenT

In this iterative computation, observe that we have to wait for the next
iteration in order to exploit the new information computed for in and out
on the nodes.

By a suitable reordering of the nodes and by first computing out[n] and
then in[n], we are able to converge to the fixpoint in just 3 iteration
steps.

for all n
in[n] :=?; out[n]:=7?;
repeat
for all n (6 to 1)
in'[n] :=in[n]; out'[n]:=out[n];
out[n]:= U { in[m] | m € post[n]};
in[n] := use[n] U (out[n] - def[n]);
until (for all n: in'[n]=in[n] && out' [n]=out[n])

for all n

in[n] :=?; out[n]:=7?;

repeat

for all n (6 to 1)

until (for all n:

— N[W || U

in'[n]:=in[n]; out'[n]:=out[n];

out[n]:
in[n]:=

U { in[m]

| m € post[n]};
use[n] U (out[n] - def[n]);

in'[n]=in[n] && out' [n]=out[n])

Live! Live2 Live3
out In |out In |out In
C C C
C ac |ac ac |ac ac
ac bc |ac bc |ac bec
bc bc |[bc bec |bc be
bc ac |bc ac |bc ac
ac c ac ¢ ac ¢

Backward Analxsis

As shown by the previous example, Live Variable
Analysis is a "backward” analysis. This means that
information propagates "backward” from terminal
nodes to initial nodes:

in[n] can be computed from out[n];

out[n] can be computed from in[m] for all the nodes m
that are successors of n.

Application:

i := 0;
t3 := 0; _
while i <= n do d€ad variable
/
j =05
t2 = t3;
while j <= m do
tl = t3 + j;
temp := Base(A) + t1;

Cont(temp) := Cont(Base(B) + t1)
+ Cont(Base(C) + t1);

j = j+1
od;
i = i+1;
t3 := t3 + (m+1)
od

i :=0;
t3 := 0;
while i <= n do
j = 0;
while j <= m do
tl := t3 + j;
temp := Base(A) + ti;
Cont (temp) := Cont(Base(B) + t1)
+ Cont(Base(C) + t1);
j o= 41
od;
i := i+1;
t3 := t3 + (m+1)
od

Reaching Definitions (Reaching Assignment) Analysis

One of the more useful data-flow analysis

dl : y :
d2 : x :

3

dl is a reaching definition for d2

dl : y := 3
d2 : y := 4
d3 : x :=y

dl is no longer a reaching definition for d3, because d2 kills its reach:
the value defined in d1 is no longer available and cannot reach d3

A definition d at point i reaches a point p if there is a path from the
point i Yo p such that d is not killed (redefined) along that path

Reaching definitions

This information is very useful
» The compiler can know whether x is a constant at point p

» The debugger can tell whether is possible that x is an undefined
variable at point p

Reaching definitions

Given a program point n, which definitions are actual - not
successively overwritten by a different assignment - when the
execution reaches n?

And when the execution leaves n?
A program point may clearly "generate” new definitions
A program point n may “kill" a definition:
if nis an assignment x:zexp then n kills all the assignments to the

variable x which are actual in input to n

We are thus interested in computing input and output reaching
definitions for any program point

The intuition: the factorial of n

S

input n;

2 ‘ Which are the points that are reached by
m:= 1;| thisdefinition of m?

Which is the actual 2 ‘

definition of n n>1; 4 ich are the points that are reached by
here? Can h be \/ m:= m*n; definition of m?
initialised? 5 hich are the actual
T efinition of nand m ? Can
n-= n or m be initialised?

output m;

Which is the actual
definition of m here?
Can m be initialised?

Formalization of the r'eaching definition property

The property can be represented by sets of pairs:

{(x,p) | xeVars, p is a program point}<c7AVars x Points)

where (x,p) means that the variable x is assigned at
program point p

For each program point, this dataflow analysis computes a

set of such pairs

The meaning of a pair (x,p) in the set for a program point g
is that the assignment of x at point p is actual at point g

? is a special symbol that we add to Points and we use to
represent the fact that a variable x is not initialized.

The set 1 = {(x,?) | x&Vars} therefore denotes that all the
program variables are not initialized.

The domain for Reaching Definitions Analxsis

Vars is the (finite) set of variables occuring in the program P.
Let N be the number of nodes of the CFG of P.
Let Points={?,1,..N}.

<(7D (Vars x Poin’rs)xP(Var's x Points))N, 2>

- Example Vars={a,b} e N=2

SEecifica’rion

{(x,q9) |q €Points and {x}=def[q]} if {x}=def[p]

o killy[p] = [
0 it () =deflp]
{(x.p)} if {x}=def[p]

* genylp]l= [
) if () =deflp]

As usual, def[p] = {x} when the command in the point p is an assignment
Xizexp

Kill and Gen

output m;

Specification

* Reaching definitions analysis is
specified by equations:

R Dentry(p): <

RDexit(p) =

[{(x?) | x € VARS}

if p is initial

\U{RDexit(q) I q Gpr‘e[p]}

if p is not initial

(RD..c.y(P) \ Killos[p]) U genyylpl

__—

output m;

:='1;
e
n>1;

4
m:= m*n;
5
n:= n-1;

/

The solution of the previous system

Once again the solution for the equations in the previous system
requires the existence of a fix point

We can apply the Kleene theorem if we have

a) a continuous function on
b) a CPO with bottom

Point b

2N
<(7D (Vars x PoinTs)xP(Vcr‘s x Points))N, &7

is a CPO with bottom?

It is a CPO because it is finite
Bottom?

Point a: the function

The map Reach:

<(7D (Vars x Poim‘s)xP(Vurs x Points))N-> <(7D (Vars x Poinfs)xP(Vcr‘s x Points))N
defined by

(assuming 1 is the only initial node)

ReGCh(<RDen’rryl,RDexi‘rl,...,RDen‘rryN, >)=
<{(x.2) | xin VARS}, (RD_,¢ry1 \Killgp[1]) U gengy[1],
U{RD,,;., Im in pre[2]} , (RD_,.,» \Killg5[2]1) U gengy[2],

exit2

U{RD Im in pre[N]}, >

exitm

Point a

Reach(<RDentry, RDexit,,...RDentry,, >)=
<{(x,?) | x in VARS}, (RD,,¢.y1 \Killpp[11) U geny,[1],
U{RD |m in pre[2]} , (RD \kill,;[2]) U geng[2]

U{RD_,,. Iminpre[NI}, (>
kill . (1)={(a.?)}, gen,(1)={(a,1)}
- Example kil (2)={(b,?)}, geny,(2)={(b.2)}
Reach(<{(a,?)}, {1, (.00)=<((a,2)(b.2)} {(a,1)(b.2)}L(a,1)(b)}, [;—‘—= o
Reach(<{(a,2)(a,2)}{(a,2)},0}.{(b,1)})= i
{(a,2)(b.2)} A(a,1)(b.2)A(a,1)(b)}, > l

b:= a+l;
|

Since it is monotone on a finite domain then it is continuous

Note that Reach is monotonel

Why a least fix point

RD analysis is possible,

if an assignment x:=a in some point q is really actual in entry
to some point p then

(X,Q) < RDem‘r'y(P)

The vice versa does not hold

All fixpoints of the above equation system is an over-approximation of
really reaching definitions.

Computing the least fixpoint gives a more precise over approximation

' en
First iteration: 2 ﬁ —

1
> [N

input n;

> |

m:= 1; RD,....,(1)= {(n,2),(m,2)}
. RD___. (1) = {(n,2),(m,?)}
n>1:; P RD,,(2)= {(n,2),(m,?)}
\/ m:.-=— RDexit(2)= {(n,?),(m,2)}

- RD,,(3)=4(n,2),(m,2)}

RD___.(3)={(n,2),(m,2)}

6 n:=

RD,.....(4)= {(n,?),(m,2)}

output m; RD,,, (4= {(n,?), (m,4)}

RD,,...,(5)= {(n,?),(m,4)}
RO, (P) ={(x,2)| x in Vars}, if p is initial RD_,,.(5)={(n,5),(m,4)}
ROy (P) =U{RD,,;x(q) | q in pre[p]}, otherwise RD_....(6)= {(n,?),(m,2)}

RDexif(p) = (RDem,.Y(P) \ k'”RD[P]) V) genRD[p] RDexit(6)= {(nl?)l(mlz)}

Second iteration:

RD,,..,(1)={(n,?),(m,?)}
RD,,; (1) = {(n,?),(m,?)}

n>1; 4— D, ..,(2)= {(n2),(m,2))
M= D,....(2)= {(n,2),(m,2)}

> D, ..., (3)={(n,?),(m,2)}

6 n:= D._...(3)={(n,?),(m,2)}

RD,, (4= {(n,?),(m,2)}
RD,,;(4)={(n,?), (m4)}
RD,4ry (P) ={(x,?)| x in Vars}, if p is initial RD ey (2)= 4(0,2),(M,4)}
RD 4y (P) =U{RD,,4(q) | q in pre[p]}, otherwise RD_...(5)= {(n,5),(m,4)}

output m;

0,,t(P) = (RD,py (P) \ Killgp[p1) U gengplp]l RDqe,,(6)=(n,?7),(M,2)}
RD,,;.(6)={(n,?),(m,2)}

RD,,..,(1)={(n,?),(m,?)}

RD,,;.(1) = {(n,?),(m,?)}
RD,,..,(2)={(n,?),(m,?)}
RD,,;(2)={(n,?),(m,2)}

RD,, .., (3)={(n,?),(m,2),(n,5)(m,4)}
RD,,;(3)={(n,?),(m,2),(n,5)(m,4)}
RD,,..,(9)={(n,?),(m,2),(n,5)(m,4)}
RD,, .. (4= {(n,?),(n,5)(mA4)}
RD,,..,(5)={(n,?),(n,5)(m,4)}
RD,;.(3)={(n,5),(m,A4)}
RD,,...,(6)={(n,?),(m,2),(n,5)(m,4)}
RD,..(6)={(n,?),(m,2),(n,5)(m,4)}

fix point!

RD analxsis

* RD analysis is forward and possible,
i.e., if an assignment x:=a in some point q is really actual in entry

to some point p then
(X,.9)ERD,pyry(p) (while the vice versa does not hold).

How can we use this?

-If the analysis tells us that a variable is undefined (that is we just have
the pair (x,?)) then it is
-Loop invariant code motions

Application:

Consider a loop where:

1. mis the entry point

2. an inner point n contains an

assignment x:=exp

3. if for any variable y occurring

in exp (i.e. yevars(exp)) and for any program

point p, we have that
(y'p)E RDentry(m) @ (y'p)E RDentry(n)

then, the assignment x:=zexp can be correctly moved out as
preceding the entry point of the loop

AEEIica’rion:

Loop-invariant code motion

y:=3; z:=5; ;
for(int 1i=0; i<9; i++) { X =y + z;
X =y + z; for(int i=0; i<9; i++) {
a[l] = 2%1 + Xy a[l] = 2%1 + X3
}

}

y:=3; z:=5;

Available ExEr'essions Analxsis

Let p be a program point. For each execution path ending in p,
we want track the expressions that have already been
evaluated and then not modified.

These are called available expressions

Example

X:=a+b;

y:=a*b;

while y>a+b 1

do (a:=a+1; x:= a+b;
x:=a+b;) 2

when the execution reaches 3, the expression a+b
is available, since it has been previously evaluated
(in point 1 for the first iteration of the while-loop
and in point 5 for the next iterations) and does
not need to be evaluated again in 3

- This analysis can be therefore used to avoid re-
evaluations of available expressions

The domain

Let E={ e | e is a sub-expressions/expression appearing in P}
Let N be the number of nodes of the CFG of P

«PExXPE)Yy, s is afinite domain

Kill ,c and Gen,e

An expression e in E is killed in a program point p (e is in kill ,c(p))

if a variable occurring in e is modified (i.e., it is defined by some assignment)
by the command in p.

kill ,e([x:=€'JP)= {e in E | x € vars(e)}

An expression e is generated in a program point p (e is in gen ,(p))
if e is evaluated in p and no variable occurring in e is modified in p.

gen ,=([x:=eJr) ={e} if x ¢ vars(e),
gen c([x:=elP) = () if x evars(e);
gen,-([el>e2]r) = expr({el, e2}) where expr(S) returns
the subset of S that are expressions

ExamEIe

x:=a+b; y:=a*b; while y>a+b do (a:za+l; x:=a+b)

E = {a+b, a*b, a+1}

%)

n Kill\e(N) gen,e(n)
1 |9 {a+b}

2 %) {a*b}

3 |J {a+b}

4 {a+b, a*b,a+1} |C

5

{a+b}

Specification

* Available expressions analysis is specified by the following

equations, for any program point p:
(
% if p is initial

<
AEenTr‘y(p) =

. N{AE_..(q@) | q €pre[p]} otherwise

AEexiT(p): (AEenTry(p) \ k'”AE(p)) U genAE(p)

Point aand b to GEEIX Kleene Theorem

To find a solution to the previous equation system we need to apply
Kleene Theorem

b) (73 (E)xP(E) N, <5 is a finite domain therefore is a
CPO, moreover, it has a bottom element

a) Themap (P EXPE))N > PExXPE)) defined by
(assuming 1 is the only initial node)
AE(<AEenTry11AEexi1’11"'IAEenTryNI) =
<D, (AEeniey1 \ Kill,g(1)) U gen,g(1),

N{AEuitq | q in pre[2]}, (AE 2 \ Kill,g(2)) U gen,g(2),

N{AE.irq | q in pre[N]}, >

Point a
a) The map
AB(AE oy 1, AE cxitt o AE etryn >) =
<D, (AEeniey1 \ Killg(1)) U gen, (1),
N{AEuitg | q in pre[2]}, (AE 2 \ Kill,g(2)) U gen,g(2),

N{AE .irq | q in pre[N]}, >
iS monotone on the finite domain

P exPeE» <>

- Example

AE(«2,0,2,0,2,25)=

<@ {a+b}, {}, {a*b}, {a*b}, >

AE(<2 {a+b}, {}, {a*b}, {a*b}, >)=

<@ {a+b}, {a+b}, {a+b,a*b}, {a+b,a*b}, >

Which fix point?

AE is a definite analysis:
if e CAE, () then e is really available in entry to p

the converse does not hold

* Any fixpoint of the above equation system is an under-approximation
of really available expressions.

Between all fix points, we are thus interested in computing
the greatest fixpoint (the more precise approximation)

Also, observe that this is a forward analysis.

C

The starting point, for all n
(n)=AE, ..(n)={a+b,a*b,a+1}

omputing the greatest fix point Eerntry exit

x:za+b; y:=a*b; while y>a+b do (a:=a+1; x:=a+b)
E = {a+b, a*b, a+1}

N [killyg(n) genae(n)

1 (<D {a+b}

2 |9 {a*b}

3 |J {a+b}

4 |{a+b, a*b,a+1}|L

5 | {a+b}
entry(l) %) ex1t(1)={a+b}
entry(Z)—{c‘Hb} E..;c(2) ={a+b,a*b}

(3)={a+b,a*b} AEex1t(3)—{a+b,a*b}
entry(4) ={a+b,a*b} AE_; (4)={}
entry(5)_{} exit(S)_{a+b}

entry

AE,...,(p)=2 if p is initial
AE ery(P)= N{AE.,; () | g in pre[p]}

AE,,:.(p) = (AEentry(p) \ kill ,e(p)) U gen,e(p)

1

Second iteration
(p)=2 if p is initial

entry

entry(p)— N{AE..;.(q) | g in pre[p] }

Previous iteration

AE_...(p) = (AE,....,(p) \ kill,g(p)) U gen,e(p)

N |AE ey () AE,...(n)

1 %) {a+b}

2 {a+b} {a+b, a*b}

3 {a+b,a*b} {a+b,a™b}

4 {a+b,a*b} %)

5 % {a+b}
AE.,;.(1)= AE,.. (1) U {a+b}
AE..;.(2)= AE,,..,(2) U {a*b}
AE.,;.(3)= AE,,..,(3) U {a+b}
AE,,..(4)= AE_. . (4) - {a+Db, a*b, a+1}
AE,,:.(5)= AE,,..,(5) U {a+b}

N |AE.., () AE....(n)
1 % {a+b}

2 {a+b} {a+b, a*b}
3 {a+b} {a+b}

4 |{a+b} %)

5 |< {a+b}

Third iteration and Greatest Fixpoint
AE,...,(p)=@ if pis initial

AEentry(p): rW{AEexit(q) | q In pr‘e[p]}

AEexit(p) = (AEentry(p) \ kl“AE(p)) U genAE(p)

Previous iteration

N |AE ey (N) AE,...(n)

1 %) {a+b}

2 {a+b} {a+b, a*b}

3 {a+b} {a+b}

4 |{a+b} %

5 % {a+b}
AE,,;.(1)= AE,,..,(1) U {a+b}
AE.,;.(2)= AE,,..,(2) U {a*b}
AE.,;.(3)= AE,,..,(3) U {a+b}
AE,,..(4)= AE,,..,(4) - {a+b, a*b, a+1}
AE,.:.(5)= AE,,..,(5) U {a+b}

n |AE,,..,(n) AE,....(n)
1 % {a+b}

2 {a+b} {a+b, a*b}
3 {a+b} {a+b}

4 |{a+b} %)

5 % {a+b}

Result

x:=a+b; y:=a*b; while y>a+b do (a:za+l; x:za+b)

1

X:= a+b;

N |AE,..,(N) AE,...(n)
1 |9 {a+b}

2 {a+b} {a+b, a*b}
3 {a+b} {a+b}

4 |{a+b} %)

5 |O {a+b}

Dataflow Analyses

A Dataflow Analxsis Framework

The above dataflow analyses (Reaching Definitions,
Available Expressions, Live Variables) reveal many
similarities.

One major advantage of a unifying framework of
dataflow analysis lies in the design of a generic
analysis algorithm that can be instantiated in order to
compute different dataflow analyses.

Ca’ralogue of Dataflow Analxses

Possible Analysis

Semantics C Analysis

Definite Analysis

Analysisc Semantics

Forward

in[n] out[n] 'Reaching definitions Available
pre post expressions
Backward

out[n] in[n] Live variables Very busy
post pre

expressions

