
Introduction to Code Generation 
 

Copyright 2010, Keith D. Cooper & Linda Torczon, all rights reserved.

Faculty from other educational institutions may use these materials for nonprofit
educational purposes, provided this copyright notice is preserved.

Structure of a Compiler

A compiler is a lot of fast stuff followed by some hard problems

— The hard stuff is mostly in code generation and optimization

— For multicores, we need to manage parallelism & sharing

— For unicore performance, allocation & scheduling are critical

Instruction

Selection

Register

Allocation

Instruction 
Scheduling

Scanner Parser
Analysis

&

Optimization

O(n log n) to
ExponentialO(n)O(n)

NP-Complete NP-CompleteEither fast or

NP-Complete

words IR

IR

∞

regs

∞

regs

k

regs

Structure of a Compiler

We assume the following model

• Selection can be fairly simple (problem of the 1980s)

•Allocation & scheduling are complex

•Operation placement is not yet critical

 we assumed a unified register set

Instruction

Selection

Instruction 
Scheduling

Register

Allocation

Analysis

&

Optimization

IR

∞

regs

∞

regs

∞

regs

∞

regs

k

regs

IR

What about the IR ? 

• Low-level, RISC-like IR such as ILOC

• Has “enough” registers

• ILOC was designed for this stuff with:

• Branches, compares, & labels

• Memory tags

• Hierarchy of loads & stores

• Provision for multiple ops/cycle

• The translation of the front end was obtained by considering the
statements one of the time as they were encountered

• This initial IR contains general implementation strategies that
will work in any surrounding context

• At run time the code will be executed in a more constrained and
predictable context

• The optimizer analyses the IR form of the code to discover facts
about the context and use them to rewrite (transform) the code
so that it will compute the same answer in a more efficient way

Analysis & Optimization 

The Back End

The compiler back end traverses the IR form and emits the
code for the target machine

• It selects target-machine operations to implement each IR
operation (Instruction selection)

• It chooses an order in which the operations will execute
efficiently (Instruction scheduling)

• It will decide which values will reside in registers and which
in memory (Register allocation)

7

Memory Models
Two major models
• Register-to-register model

— Keep all values that can legally be stored in a register in registers
— Ignore machine limitations on number of registers
— Compiler back-end must insert loads and stores

• Memory-to-memory model
— Keep all values in memory
— Only promote values to registers directly before they are used
— Compiler back-end can remove loads and stores

• Compilers for RISC machines usually use register-to-register
— Easier to determine when registers are used

use virtual
registers!

Definitions
Instruction selection

• Mapping IR into assembly code

• Assumes a fixed memory model & code shape

• Combining operations, using address modes (instr. reg+offset or reg to

reg mode)

Instruction scheduling

• Reordering operations to hide latencies

• Assumes a fixed program (set of operations)

• Changes demand for registers

Register allocation

• Deciding which values will reside in registers

• Changes the storage mapping, may add false sharing

• Concerns about placement of data & memory operations

These 3 problems
are tightly coupled

and need static
analysis

Code Shape 	 	 	 (Chapter 7)

Definition

• The compiler must choose among many alternative ways to

implement each construct on a given processor

• Those choices have a strong and direct impact on the quality of

the final produced code

• Code shape is the end product of many decisions (big & small)

Impact

• Code shape has a strong impact on the behaviour of the compiled

code and on the ability of the optimizer and back end to improve
it

• Code shape can encode important facts, or hide them

Code Shape
Example -- the case statement on a character value

• Implement it as cascaded if-then-else statements

— Cost depends on where your case actually occurs

— O(256)

• Implement it as a binary search

— Need a dense set of conditions to search

— Uniform (log 256) cost

• Implement it as a jump table

— Lookup address in a table & jump to it

— We trade data space for speed

— Uniform (constant) cost

All these are legal (and reasonable) implementations of the switch
statement

Performance depends
on order of cases!

Which implementation for switch?

The one that is the best for a particular switch statement depends
on many factors such as:

-The number of cases and their relative executions frequencies

-The knowledge of the cost structure for branching on the
processor

Even when the compiler does not have enough information to
choose it must choose an implementation strategy

No amount of massaging or transforming will convert one into
another

Code Shape: the ternary operation x+y+z

Several ways to implement x+y+z

• What if the compiler knows that x is constant 2 and z is 3?

The compiler should detect 2+3 evaluates and fold it into the code

• What if y+z is evaluated earlier?

The “best” shape for x+y+z depends on contextual knowledge

— There may be several conflicting options

x + y + z x + y → t1

t1+ z → t2

x + z → t1

t1+ y → t2

y + z → t1

t1+ x → t2
+

zyx

+

+

z

yx

+

+

y

zx

+

+

x

zy

Addition is commutative &
associative for integers

Code Shape

Why worry about code shape? Can’t we just trust the

optimizer and the back end?

• Optimizer and back end approximate the answers to many
hard problems

• The compiler’s individual passes must run quickly

• It often pays to encode useful information into the IR

— Shape of an expression or a control structure

— A value kept in a register rather than in memory

• Deriving such information may be expensive, when possible

• Recording it explicitly in the IR is often easier and cheaper

How to generate ILOC code

• The three-address form lets the compiler name the result of any
operation and preserve it for later reuse

• It uses always new register and leave to the allocator the duty of
reduce them

• To generate code for a trivial expression a+b the compiler emits
code to ensure that the values of a and b are in registers

• If a is stored in memory at offset in the current Activation

Record (AR), the code is

@a
<latexit sha1_base64="qi6nE1AS4FVdI4xlrKx3OlprqUk=">AAACDXicbVC7TsMwFHXKq4RXgZHFokViqpIywFjBwlgk+pCaqHKcm9aq40S2g1RF/QEWfoWFAYRY2dn4G9w2A7Qc6UpH59xr33uClDOlHefbKq2tb2xulbftnd29/YPK4VFHJZmk0KYJT2QvIAo4E9DWTHPopRJIHHDoBuObmd99AKlYIu71JAU/JkPBIkaJNtKgUqt5AQyZyImUZDLNOedTbDeJ7YEIC7E2qFSdujMHXiVuQaqoQGtQ+fLChGYxCE05UarvOqn2zXOaUQ5T28sUpISOyRD6hgoSg/Lz+TVTfGaUEEeJNCU0nqu/J3ISKzWJA9MZEz1Sy95M/M/rZzq68nMm0kyDoIuPooxjneBZNDhkEqjmE0MIlczsiumISEK1CdA2IbjLJ6+STqPuXtQbd41q87qIo4xO0Ck6Ry66RE10i1qojSh6RM/oFb1ZT9aL9W59LFpLVjFzjP7A+vwBGN2bkA==</latexit>

loadI @a) r1
loadA0 rarp, r1) ra

<latexit sha1_base64="oTKoPzB9USR084koirwQDmoMdGA=">AAACTHicbVBNa9wwFJS3zUedr0177EVkScghLHYSkvS2bS/pLQ3ZJLBezLP8dlesLBlJTlmMf2AvPfTWX9FLDymlUK1jSr4GBMPMvCdpklxwY4Pgh9d68XJhcWn5lb+yura+0d58fWlUoRn2mRJKXydgUHCJfcutwOtcI2SJwKtk+nHuX92gNlzJCzvLcZjBWPIRZ2CdFLdZlOCYyxK0hllVCofKFwrST3SH9mCHRud8PLHOVl+ojsMoqt33gbN17Mbyas/Jj3PgRyjTZmvc7gTdoAZ9SsKGdEiDs7j9PUoVKzKUlgkwZhAGuR26bZYzgZUfFQZzYFMY48BRCRmaYVmXUdFtp6R0pLQ70tJavT9RQmbMLEtcMgM7MY+9uficNyjs6GRYcpkXFiW7u2hUCGoVnTdLU66RWTFzBJjm7q2UTUADs65/vy7h3RxH/7/8lFzud8OD7sHnw07vQ1PHMnlLtsguCckx6ZFTckb6hJGv5Ce5Jb+9b94v74/39y7a8pqZN+QBWov/AFRqsww=</latexit>

Generating Code for Expressions

The idea

• Assume an AST as input and ILOC

 as output

• Use a postorder treewalk evaluator

> Visits & evaluates children

> Emits code for the op itself

> Returns register with result

• Bury complexity of addressing

 names in routines that it calls

> base(), offset() and val()

• Works for simple expressions

• Easily extended to other operators

expr(node) {

 register result, t1, t2;

 switch (type(node)) {

 case ×,÷,+,− :

 t1← expr(left child(node));

 t2← expr(right child(node));

 result ← NextRegister();

 emit (op(node), t1, t2, result);

 break;

 case IDENTIFIER:

 t1← base(node);

 t2 ← NextRegister();

 emit (loadI, offset(node), none, t2);

 result ← NextRegister();

 emit (loadAO, t1, t2, result);

 break;

 case NUMBER:

 result ← NextRegister();

 emit (loadI, val(node), none, result);

 break;

 }

 return result;

 }

the node of the AST

Generating Code for Expressions (a naive translation)

Example:

Produces for register counter 0 :

+

x y

expr(node) {

 register result, t1, t2;

 switch (type(node)) {

 case ×,÷,+,− :

 t1← expr(left child(node));

 t2← expr(right child(node));

 result ← NextRegister();

 emit (op(node), t1, t2, result);

 break;

 case IDENTIFIER:

 t1← base(node);

 t2 ← NextRegister();

 emit (loadI, offset(node), none, t2);

 result ← NextRegister();

 emit (loadAO, t1, t2, result);

 break;

 case NUMBER:

 result ← NextRegister();

 emit (loadI, val(node), none, result);

 break;

 }

 return result;

 }

base(id) loads the right pointer to

 the AR where id is defined in register rarp

espr(“x”):

NextRegister(): r1 loadI @x -> r1

NextRegister(): r2 loadA0 rarp, r1 -> r2

espr(“y”):

NextRegister(): r3 loadI @y -> r3

NextRegister(): r4 loadA0 rarp, r3 -> r4

NextRegister() : r5

Emit(add, r2,r4,r5) :

 add r2, r4 -> r5

Generating Code for Expressions (a naive translation)

Produces for register counter 0 :

+

×x

yz
expr(node) {

 register result, t1, t2;

 switch (type(node)) {

 case ×,÷,+,− :

 t1← expr(left child(node));

 t2← expr(right child(node));

 result ← NextRegister();

 emit (op(node), t1, t2, result);

 break;

 case IDENTIFIER:

 t1← base(node);

 t2 ← NextRegister();

 emit (loadI, offset(node), none, t2);

 result ← NextRegister();

 emit (loadAO, t1, t2, result);

 break;

 case NUMBER:

 result ← NextRegister();

 emit (loadI, val(node), none, result);

 break;

 }

 return result;

 }

 espr(“x”):

 NextRegister():r1, loadI @x -> r1

 NextRegister():r2 loadA0 rarp, r1 -> r2

 espr(“z”):

 NextRegister():r3 loadI @z -> r3

 NextRegister():r4 loadA0 rarp, r3 -> r4

 espr(“y”):

 NextRegister():r5 loadI @y -> r5

 NextRegister():r6 loadA0 rarp, r5 -> r6

 NextRegister():r7

 Emit(mul, r4,r6,r7) :

 mult r4, r6 -> r7

 NextRegister():r8

 Emit(add, r2,r7,r8) :

 add r2, r7 -> r8

Effects of code shape on the demand of registers
• Code shape decisions encoded into the tree walk code generator

have an effect on the demand of registers

• The previous naive code uses 8 registers +

• The register allocator (later in compilation) can reduce the
demand for register to 3 + rarp

<latexit sha1_base64="0CnDF0hJXWaX075C6LwUuKy9Ddg=">AAACFXicbVDLSsNAFJ34rPFVdelmsBVcSEnqQpdFNy4r2Ac0IUymt+3QySTMTIQS8hNu/BU3LhRxK7jzb5y2WWjrgQuHc+6dufeECWdKO863tbK6tr6xWdqyt3d29/bLB4dtFaeSQovGPJbdkCjgTEBLM82hm0ggUcihE45vpn7nAaRisbjXkwT8iAwFGzBKtJGC8nnVC2HIREakJJM845zn2MYyMEKSe57tgegXZjUoV5yaMwNeJm5BKqhAMyh/ef2YphEITTlRquc6ifbNc5pRDrntpQoSQsdkCD1DBYlA+dnsqhyfGqWPB7E0JTSeqb8nMhIpNYlC0xkRPVKL3lT8z+ulenDlZ0wkqQZB5x8NUo51jKcR4T6TQDWfGEKoZGZXTEdEEqpNkLYJwV08eZm06zX3ola/q1ca10UcJXSMTtAZctElaqBb1EQtRNEjekav6M16sl6sd+tj3rpiFTNH6A+szx+v+J8j</latexit>

rarp
<latexit sha1_base64="0CnDF0hJXWaX075C6LwUuKy9Ddg=">AAACFXicbVDLSsNAFJ34rPFVdelmsBVcSEnqQpdFNy4r2Ac0IUymt+3QySTMTIQS8hNu/BU3LhRxK7jzb5y2WWjrgQuHc+6dufeECWdKO863tbK6tr6xWdqyt3d29/bLB4dtFaeSQovGPJbdkCjgTEBLM82hm0ggUcihE45vpn7nAaRisbjXkwT8iAwFGzBKtJGC8nnVC2HIREakJJM845zn2MYyMEKSe57tgegXZjUoV5yaMwNeJm5BKqhAMyh/ef2YphEITTlRquc6ifbNc5pRDrntpQoSQsdkCD1DBYlA+dnsqhyfGqWPB7E0JTSeqb8nMhIpNYlC0xkRPVKL3lT8z+ulenDlZ0wkqQZB5x8NUo51jKcR4T6TQDWfGEKoZGZXTEdEEqpNkLYJwV08eZm06zX3ola/q1ca10UcJXSMTtAZctElaqBb1EQtRNEjekav6M16sl6sd+tj3rpiFTNH6A+szx+v+J8j</latexit>

 loadI @x -> r1

 loadA0 rarp, r1 -> r1

 loadI @z -> r2

 loadA0 rarp, r2 -> r2

 loadI @y -> r3

 loadA0 rarp, r3 -> r3

 mult r2, r3 -> r2

 add r1, r2 -> r2

load @z) r1
loadA0 rarp, r1) r2
load @y) r3
loadA0 rarp, r3) r4
mult r2, r4) r5
load @x) r6
loadA0 rarp, r6) r7
add r7, r5) r8

<latexit sha1_base64="zDnpkzNZEl0BwyYrhlnNqhoLtbg=">AAADIHicbZJNb9NAEIbX5quEj6Zw5LIiJeKAIttpkx4DXDgWRNpKcWSt15tk1fXa2l3TGss/hQt/hQsHEIIb/BrGrg+tnZFWGs37zDv27Iap4No4zl/LvnX7zt17O/d7Dx4+erzb33tyopNMUTaniUjUWUg0E1yyueFGsLNUMRKHgp2G528r/fQTU5on8qPJU7aMyVryFafEQCnYsyb7fsjWXBZEKZKXhRCixD2RkAgP8Qx/xkP/A19vDMjJBVaB6/u1+trBQxVAV1q+gipuc17D1S55Wx1vdRl3XA6AizNhKsoD4gDsbhKH1+dctvsnW+dMOnOmwJEoqqApAIedMUcA+ExGzZr2g/7AGTl14G7iNskANXEc9P/4UUKzmElDBdF64TqpWYKd4VSwsudnmqWEnpM1W0AqScz0sqgvuMQvoBLhVaLgSIPr6vWOgsRa53EIZEzMRre1qrhNW2RmdbQsuEwzwyS9GrTKBDYJrl4Ljrhi1IgcEkIVh2/FdEMUoQbeVA+W4LZ/uZuceCN3PPLee4PZm2YdO+gZeo5eIhdN0Qy9Q8dojqj1xfpm/bB+2l/t7/Yv+/cValtNz1N0I+x//wH9WPYd</latexit>

load @z) r1
loadA0 rarp, r1) r1
load @y) r2
loadA0 rarp, r2) r2
mult r1, r2) r1
load @x) r2
loadA0 rarp, r2) r2
add r2, r1) r1

<latexit sha1_base64="vsnMu19iZmlyPeJvvaZ6FB5cl8k=">AAADIHicpVJNj9MwEHXC11K+unDkYtGl4oCqJEjAscCF44Lo7kpNFU0ct7XWsSN7AoQoP4ULf4ULBxCCG/wanGwO0BYujGTp6b03M56x00IKi0Hww/PPnb9w8dLe5cGVq9eu3xju3zyyujSMz5iW2pykYLkUis9QoOQnheGQp5Ifp6fPWv34NTdWaPUKq4IvclgpsRQM0FHJvvfwIE75SqgajIGqqaWUDR1IDRkd0yl9R8fxS7Fao5P1G2qSMI479UlAxyZxWUVz37H0b76uSrWpRjurRFtVWl9eSmxdYecY03/0efs/fSDLWlPUjbOrTcxV1q/pIBmOgknQBd0GYQ9GpI/DZPg9zjQrc66QSbB2HgYFLlw5FEzyZhCXlhfATmHF5w4qyLld1N0DN/SuYzK61MYdhbRjf8+oIbe2ylPnzAHXdlNryV3avMTl40UtVFEiV+ys0bKUFDVtfwvNhOEMZeUAMCPcXSlbgwGG7k8N3BLCzZG3wVE0CR9MohfRaPq0X8ceuU3ukHskJI/IlDwnh2RGmPfe++h99r74H/xP/lf/25nV9/qcW+SP8H/+ArNK9fQ=</latexit>

 after register allocation

The best solution: alternate right and left children

evaluating z×y first

General rule: evaluate first the

child that has more demand for registers

Code shape!

Some observations

What if our IDENTIFIER is

• already in a register?

• in a global data area?

• a parameter value?

✴ call by value

✴ call by reference

Extending the Simple Treewalk Algorithm

It assumes a single case for id, more cases for IDENTIFIER

• What about values that reside in registers?

— Modify the IDENTIFIER case

• Already in a register ⇒ return the register name

• Not in a register ⇒ load it as before, but record the fact

— Choose names to avoid creating false dependences

• What about parameter values ?

— Call-by-value ⇒ it can be handled as it was a local variable as
before

— Call-by-reference ⇒ extra indirection 3 instructions. The value
may not be kept in a register across an assignment (see next
slide)

• What about function calls in expressions?

— Generate the calling sequence & load the return value

— Severely limits compiler’s ability to reorder operations

Keeping values in registers

• In a register-to register memory model, the compiler tries to
assigns many values as possible to virtual registers

• Then the register allocator will map the set of virtual to physical
registers inserting the spills

• However, the compiler can keep values in a register only for
unambiguous value:

a value that can be accessed with just one name is unambiguous

The problem with ambiguous values
• Consider a and b ambiguous and the following code

a := m+n;

b := 13;

c:= a+b;

If a and b refers to the same location c gets value 26,
otherwise c gets value m+n+13;

The compiler cannot keep a in a register during the assignment
of b unless it proves that the set of location that the two name
refer to are disjoint. This analysis can be expensive!

sharing analysis !

Where do ambiguous values arise?

Ambigous values may arise in several ways :

• values stored in a pointer based variable

• call by reference formal parameter

• many compilers treat array element values as ambiguous because
they can not tell if two references A[i,j] e A[n,m] refer to the
same location

for safety the compiler has to consider
that values as ambiguous

Extending the Simple Treewalk Algorithm

Adding other operators

• Evaluate the operands, then perform the operation

• Complex operations may turn into library calls (exp. and trig fun.)

Mixed-type expressions

• Insert conversion code as needed from conversion table

• Most languages have symmetric & rational conversion tables

Typical
Table for
Addition

If the type cannot be inferred at compile time, the compiler must insert code for run-time checks
that test for illegal cases!

Extending the Simple Treewalk Algorithm

What about evaluation order?

Can use commutativity & associativity to improve code for integers

• For recognising that already computed that value

a+b = b+a

• For recognising that it can compute subexpressions

a+b+d and c+a+b

(it does not if it evaluates the expressions in strict left right order!)

It should not reorder floating point expressions!

• The subset of reals represented on a computer does not
preserve associativity

a-b-c the results may depend on the evaluation order!

Handling Assignment (just another operator)

lhs ← rhs

Strategy

• Evaluate rhs to a value (an rvalue)

• Evaluate lhs to a location (an lvalue)

— lvalue is a register ⇒ move rhs

— lvalue is an address ⇒ store rhs

• If rvalue & lvalue have different types

— Evaluate rvalue to its “natural” type

— Convert that value to the type of *lvalue

Unambiguous scalars go into registers

Ambiguous scalars or aggregates go into memory

Handling Assignment
What if the compiler cannot determine the type of the rhs?

• It is a property of the language & the specific program

• For type-safety, compiler must insert a run-time check

— Some languages & implementations ignore safety (bad idea)

• Add a tag field to the data items to hold type information

— Explicitly check tags at runtime

Code for assignment becomes more complex

evaluate rhs
if type(lhs) ≠ rhs.tag
 then
 convert rhs to type(lhs) or
 signal a run-time error
lhs ← rhs

Choice between conversion & a
runtime exception depends on
details of language & type system

Much more complex than static
checking, plus costs occur at
runtime rather than compile time

Handling Assignment
Compile-time type-checking

• Goal is to eliminate the need for both tags & runtime checks

• Determine, at compile time, the type of each subexpression

• Use runtime check only if compiler cannot determine types

Optimization strategy

• If compiler knows the type, move the check to compile-time

• Unless tags are needed for garbage collection, eliminate them

• If check is needed, try to overlap it with other computation

Can design the language so all checks are static

Code Generation for Expressions

• Simple treewalk produces reasonable code

— Execute most demanding subtree first

— Can implement treewalk explicitly, with an Attributed grammar

 or ad hoc Syntax directed translation …

• Handle assignment as an operator

— Insert conversions according to language-specific rules

— If compile-time checking is impossible, check tags at runtime

Summary

Next computing Array access!

Almost always a power

of 2, known at compile-time
⇒ use a shift for speed

Color Code:

	
Invariant

	 Varying

Depending on how A is declared, @A may be

•an offset from the ARP,

•an offset from some global label, or

•an arbitrary address.

The first two are compile time constants.

Computing an Array Address of an array A[low:high]
A[i]

• @A + (i – low) x sizeof(A[i])

• In general: base(A) + (i – low) x sizeof(A[i])

Almost always a power of
2, known at compile-time

⇒ use a shift for speed

Computing an Array Address A[low:high]

A[i]

• @A + (i – low) x w

• In general: base(A) + (i – low) x w

If the compiler knows low it can fold the subtraction

into @A
 A0 = @A� (low ⇤ w)

<latexit sha1_base64="o9adgsuvOIHC8YpeEE49zwW8WGA=">AAAB+HicbVDLSgMxFM3UV62Pjrp0EyxCFSwzVdCN0OrGZQX7gHYYMmmmDc0kQ5Kx1KFf4saFIm79FHf+jeljoa0HLhzOuZd77wliRpV2nG8rs7K6tr6R3cxtbe/s5u29/YYSicSkjgUTshUgRRjlpK6pZqQVS4KigJFmMLid+M1HIhUV/EGPYuJFqMdpSDHSRvLtfNV3rivVsyITQ3g6PPHtglNypoDLxJ2TApij5ttfna7ASUS4xgwp1XadWHspkppiRsa5TqJIjPAA9UjbUI4iorx0evgYHhulC0MhTXENp+rviRRFSo2iwHRGSPfVojcR//PaiQ6vvJTyONGE49miMGFQCzhJAXapJFizkSEIS2puhbiPJMLaZJUzIbiLLy+TRrnknpfK9xeFys08jiw4BEegCFxwCSrgDtRAHWCQgGfwCt6sJ+vFerc+Zq0Zaz5zAP7A+vwBClCRZA==</latexit>

The false zero of A

where w = sizeof(A[i])

 2 6 5 4 7 3

A[2..7]

@A

 1 0

@A0

The False Zero

loadI @A0) r@A0

lshiftI ri, 2) r1
loadA0 r@A0 , r1) rv

<latexit sha1_base64="YweNpKilgXnHByJ6gRj43Ueq/YY=">AAACeXicbVHBbtQwEHUClBKg3cKxPRhWXVVVtUq2SOW4pRd6K4htK21WkeNMdq06dmRPilZR/oFv48aPcOGCsw0S7XYky0/vvRmPZ9JSCoth+Mvznzx9tvF880Xw8tXrre3ezptLqyvDYcK11OY6ZRakUDBBgRKuSwOsSCVcpTdnrX51C8YKrb7hsoRZweZK5IIzdFTS+xGnMBeqZsawZVNLKZtAapad0wEdnyYhdXf8VcwX6Bz6OzVJ3dJNHAfSLkSOzmgScTRa80WtxVU6DZ30L40eOYEO7jtvgxhU1rWQ9PrhMFwFXQdRB/qki4uk9zPONK8KUMgls3YahSXOXDUUXEITxJWFkvEbNoepg4oVYGf1anIN3XdMRnNt3FFIV+z/GTUrrF0WqXMWDBf2odaSj2nTCvOPs1qoskJQ/O6hvJIUNW3XQDNhgKNcOsC4Ea5XyhfMMI5uWYEbQvTwy+vgcjSMjoejLx/640/dODbJLnlPDkhETsiYfCYXZEI4+e3tefvewPvjv/MP/MM7q+91OW/JvfCP/wKHRrw9</latexit>

loadI @A) r@A

subI ri, 2) r1
lshiftI r1, 2) r2
loadA0 r@A, r2) rv

<latexit sha1_base64="tUNnTxhGDE6+obiZEb8HzbE8NEQ=">AAACknicbVFdT9swFHUyNlj2QffxthdrFWgPqEoK06Y9QDtehsQDmyggNVXkODethWNH9g1TFeUH7e/wxr+Z2+YBKFeydXTOuR++TkspLIbhnec/23j+YnPrZfDq9Zu325137y+srgyHEddSm6uUWZBCwQgFSrgqDbAilXCZXh8v9MsbMFZodY7zEiYFmyqRC87QUUnnX5zCVKiaGcPmTS2lbAKpWXZCd+lgSN0d/xHTGTpd/6UmqQfDJo4DW6XOYRKx11+zRE6XdiZyXFqiJyz9hcV1GYZOWhWle47efWi7CWJQWTtb0umGvXAZdB1ELeiSNs6Szm2caV4VoJBLZu04CkucuGoouIQmiCsLJePXbApjBxUrwE7q5UobuuOYjObauKOQLtn7GTUrrJ0XqXMWDGf2sbYgn9LGFebfJ7VQZYWg+KpRXkmKmi7+h2bCAEc5d4BxI9yslM+YYRzdLwZuCdHjJ6+Di34v2u/1fx90Bz/bdWyRT+Qz+UIi8o0MyC9yRkaEe9veV+/QO/I/+j/8oX+8svpem/OBPAj/9D95/sN2</latexit>

computing A[i] with A0computing A[i] with A

A0 = @A� (low ⇤ w)
<latexit sha1_base64="o9adgsuvOIHC8YpeEE49zwW8WGA=">AAAB+HicbVDLSgMxFM3UV62Pjrp0EyxCFSwzVdCN0OrGZQX7gHYYMmmmDc0kQ5Kx1KFf4saFIm79FHf+jeljoa0HLhzOuZd77wliRpV2nG8rs7K6tr6R3cxtbe/s5u29/YYSicSkjgUTshUgRRjlpK6pZqQVS4KigJFmMLid+M1HIhUV/EGPYuJFqMdpSDHSRvLtfNV3rivVsyITQ3g6PPHtglNypoDLxJ2TApij5ttfna7ASUS4xgwp1XadWHspkppiRsa5TqJIjPAA9UjbUI4iorx0evgYHhulC0MhTXENp+rviRRFSo2iwHRGSPfVojcR//PaiQ6vvJTyONGE49miMGFQCzhJAXapJFizkSEIS2puhbiPJMLaZJUzIbiLLy+TRrnknpfK9xeFys08jiw4BEegCFxwCSrgDtRAHWCQgGfwCt6sJ+vFerc+Zq0Zaz5zAP7A+vwBClCRZA==</latexit>

How does the compiler handle A[i,j] ?

First, must agree on a storage scheme

Row-major order (most languages)

Lay out as a sequence of consecutive rows

Rightmost subscript varies fastest

A[1,1], A[1,2], A[1,3], A[2,1], A[2,2], A[2,3]

Column-major order (Fortran)

Lay out as a sequence of columns

Leftmost subscript varies fastest

A[1,1], A[2,1], A[1,2], A[2,2], A[1,3], A[2,3]

Indirection vectors (Java)

Vector of pointers to pointers to … to values

Takes much more space, trades indirection for arithmetic

Not amenable to analysis

The Concept

Row-major order

Column-major order

Indirection vectors

1,1 1,2 1,3 1,4 2,1 2,2 2,3 2,4A

1,1 2,1 1,2 2,2 1,3 2,3 1,4 2,4A

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4
A

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4
A

These can have
distinct & different
cache behavior

Laying Out Arrays

This stuff looks expensive!

Lots of implicit +, -, x ops

e.g., @A + (i1 – low) x w

Computing an Array Address

A[i]

• @A + (i – low) x w

• In general: base(A) + (i – low) x w

What about A[i1,i2] ?

Row-major order, two dimensions

	 @A + ((i1 – low1) x (high2 – low2 + 1) + i2 – low2) x w

Column-major order, two dimensions

	 @A + ((i2 – low2) x (high1 – low1 + 1) + i1 – low1) x w

Indirection vectors, two dimensions

	 *(A[i1])[i2] — where A[i1] is, itself, a 1-d array reference

where w = sizeof(A[1,1])

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4

low2 hight2

hight1

low1

A[2,3] @A+(2-1)x 4+(3-1)

In row-major order

@A + (i–low1) x (high2–low2+1) x w + (j – low2) x w

Which can be factored into

@A + i x (high2–low2+1) x w + j x w

 – (low1 x (high2–low2+1) x w) - (low2 x w)

If lowi, highi, and w are known, the last term is a constant

Define @A0 as

 @A – (low1 x (high2–low2+1) x w - low2 x w

And len2 as (high2-low2+1)

Then, the address expression becomes

 @A0 + (i x len2 + j) x w

Compile-time constants

If @A is known, @A0
is a known constant.

Optimizing Address Calculation for A[i,j]

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4
A

low1

hight1

hight2low2

@A
low1

high1

low2

high2

Array References

What about arrays as actual parameters?

Whole arrays, as call-by-reference parameters

• Need dimension information ⇒ build a dope vector

• Store the values in the calling sequence

• Pass the address of the dope vector in the parameter slot

• Generate complete address polynomial at each reference

Some improvement is possible

• Choose the address polynomial based on the false zero

• Pre-compute the fixed terms in prologue sequence

What about call-by-value?

• Most languages pass arrays by reference

• This is a language design issue

The Dope vector

false zeros!

Range checking
A program that refers out-of-the-bound array elements is not well

formed.

Some languages like Java requires out-of-the-bound accesses be
detected and reported.

In other languages compilers have included mechanisms to detect and
report out-of-the-bound accesses.

The easy way is to introduce a runtime check that verifies that the index
value falls in the array range

Information on the bounds in the dope vector

the compiler has to prove

that a given reference cannot

generate an out-of-bounds reference

Expensive!!

Array Address Calculations

Array address calculations are a major source of overhead

• Scientific applications make extensive use of arrays and array-like

structures

— Computational linear algebra, both dense & sparse

• Non-scientific applications use arrays, too

— Representations of other data structures

→ Hash tables, adjacency matrices, tables, structures, …

Array calculations tend iterate over arrays

• Loops execute more often than code outside loops

• Array address calculations inside loops make a huge difference in

efficiency of many compiled applications

Reducing array address overhead has been a major focus of

optimization since the 1950s.

A, B are declared as conformable
floating-point arrays

Example: Array Address Calculations in a Loop

DO J = 1, N

	 A[I,J] = A[I,J] + B[I,J]

END DO

Naïve: Perform the address calculation twice

DO J = 1, N

	 R1 = @A0 + (J x len1 + I) x w

	 R2 = @B0 + (J x len1 + I) x w

	 MEM(R1) = MEM(R1) + MEM(R2)

END DO

 @A0 + (j x len1 + i) x w

In column-major order

number of rows!

Loop-invariant code motion

Example: Array Address Calculations in a Loop

DO J = 1, N

	 A[I,J] = A[I,J] + B[I,J]

END DO

More sophisticated: Move common calculations out of loop

R1 = I x w

c = len1 x w ! Compile-time constant

R2 = @A0 + R1

R3 = @B0 + R1

DO J = 1, N

	 a = J x c

	 R4 = R2 + a

	 R5 = R3 + a

	 MEM(R4) = MEM(R4) + MEM(R5)

END DO

Operator Strength Reduction (§ 10.4.2 in EaC)

J is now bookkeeping

Example: Array Address Calculations in a Loop
DO J = 1, N

	 A[I,J] = A[I,J] + B[I,J]

END DO

Very sophisticated: Convert multiply to add

R1 = I x w

c = len1 x w ! Compile-time constant

R2 = @A0 + R1 ;

R3 = @B0 + R1;

DO J = 1, N

	 R2 = R2 + c

	 R3 = R3 + c

	 MEM(R2) = MEM(R2) + MEM(R3)

END DO

Representing and Manipulating Strings

Character strings differ from scalars, arrays, & structures

• Languages support can be different:

• In C most manipulations takes the form of calls to library routines

• Other languages provvide first-class mechanism to specify

substrings or concatenate them

• Fundamental unit is a character

— Typical sizes are one or two bytes

— Target ISA may (or may not) support character-size operations

String operation can be costly

• Older CISC architectures provide extensive support for string manipulation

• Modern RISC architectures rely on compiler to code this complex

operations using a set a of simpler operations

@b

Length field may
take more space
than terminator

@b

Representing and Manipulating Strings

Two common representations of string “a string”

• Explicit length field

• Null termination

• Language design issue

Representing and Manipulating Strings

Each representation as advantages and disadvantages

Unfortunately, null termination is almost considered normal

• Hangover from design of C

• Embedded in OS and API designs

Manipulating Strings

Single character assignment

• With character operations

— Compute address of rhs, load character

— Compute address of lhs, store character

• With only word operations 	 (>1 char per word)

— Compute address of word containing rhs & load it

— Move character to destination position within word

— Compute address of word containing lhs & load it

— Mask out current character & mask in new character

— Store lhs word back into place

a[1]=b[2]

Manipulating Strings

Multiple character assignment

Two strategies

1. Wrap a loop around the single character code, or

2. Work up to a word-aligned case, repeat whole word moves, and

handle any partial-word end case

With character operations

With only word operations

Manipulating Strings

Concatenation

• String concatenation is a length computation followed by a pair of

whole-string assignments

— Touches every character

— There can be length problems!

Manipulating Strings

Length Computation

• Representation determines cost

• Length computation arises in other contexts

— Whole-string or substring assignment

— Checked assignment (buffer overflow)

— Concatenation

— Evaluating call-by-value actual parameter

Implementation of booleans, relational
expressions & control flow constructs
varies widely with the ISA

Boolean & Relational Values

How should the compiler represent them?

• Answer depends on the target machine

Two classic approaches

• Numerical (explicit) representation

• Positional (implicit) representation

Best choice depends on both context and ISA

Some cases works better with the first

representation other ones with the second!

Expr → Expr ∨ AndTerm

| AndTerm

AndTerm → AndTerm ∧ RelExpr

| RelExpr

RelExpr → RelExpr < NumExpr

| RelExpr ≤ NumExpr

| RelExpr = NumExpr

| RelExpr ≠ NumExpr

| RelExpr ≥ NumExpr

| RelExpr > NumExpr

NumExpr → NumExpr + Term

| NumExpr - Term

| Term

Term → Term × Value

| Term ÷ Value

| Value

Value → ¬ Factor

| Factor

Factor | (Expr)

| number

Boolean & Relational Expressions
First, we need to recognize boolean & relational expressions

Boolean & Relational Values
Next, we need to represent the values

Numerical representation

• Assign numerical values to TRUE and FALSE

• Use hardware AND, OR, and NOT operations

• Use comparison to get a boolean from a relational

If the target machine supports boolean operations that compute
the boolean result cmp_LT rx,ry-> r1 r1=True if rx<=ry, r1=False otherwise

Boolean & Relational Values

What if the target machine uses a condition code instead than

boolean operations as cmp_LT?

• Must use a conditional branch to interpret result of compare

If the target machine computes a code result of the comparison and
we need to store the result of the boolean operation

cmp r1,r2 -> cc sets cc with code for LT,LE,EQ,GE,GT,NE

cbr_LT CC l2,l3 sets
PC=l2 if CC=LT
PC=l3 otherwise

Boolean & Relational Values

The last example actually encoded result in r2

If result is used to control an operation we may not need to write

explicitly the result! Positional encoding!

r1

Other Architectural Variations

Conditional move & predication both simplify this code

Both versions avoid the branches

Both are shorter than cond’n codes or Boolean compare

Are they equivalent to the initial code? Not always!

Are they better? does code size matter? or execution time?

i2i_LT cc,r1,r2->r3 copy r1 in r3 if cc matches LT, copy r2 in r3 otherwise

Boolean & Relational Values

?
?

(r1)? add r2,r3 ->r4 the add operation executes if r1 is true

Boolean & Relational Values
Consider the assignment x ← a < b ∧ c < d

Here, Boolean compare produces much better code

x ← a < b ∧ c < d

Boolean & Relational Values
Conditional move help here, too

Conditional move is worse than Boolean compare

The bottom line:

⇒ Context & hardware determine the appropriate choice

i2i_LT cc,r1,r2->r3 copy r1 in r3 if cc matches LT, copy r2 in r3 otherwise

Control Flow

If-then-else

• Follow model for evaluating relationals & booleans with branches

Branching versus predication

• Frequency of execution

— Uneven distribution ⇒ do what it takes to speed common case

• Amount of code in each case

— Unequal amounts means predication may waste issue slots

• Control flow inside the construct

— Any branching activity within the construct complicates the

predicates and makes branches attractive

Short-circuit Evaluation

Optimize boolean expression evaluation (lazy evaluation)

• Once value is determined, skip rest of the evaluation

if (x or y and z) then …
— If x is true, need not evaluate y or z

→ Branch directly to the “then” clause

— On a PDP-11 or a VAX, short circuiting saved time

• Modern architectures may favor evaluating full expression

— Rising branch latencies make the short-circuit path expensive

— Conditional move and predication may make full path cheaper

• Past: compilers analyzed code to insert short circuits

• Future: compilers analyze code to prove legality of full path

evaluation where language specifies short circuits

Control Flow

Loops

• Evaluate condition before loop (if needed)

• Evaluate condition after loop

• Branch back to the top (if needed)

while, for, do, & until all fit this basic model

Pre-test

Loop body

Post-test

Next block

Implementing Loops

for (i = 1; i< 100; 1) { loop body }
next statement

Pre-test

Post-test

Initialization

Case (switch) Statements

1 Evaluate the controlling expression

2 Branch to the selected case

3 Execute the code for that case

4 Branch to the statement after the case

Parts 1, 3, & 4 are well understood,

part 2 is the key:

need an efficient method to locate the designated code

many compilers provvide several different search schemas each one
can be better in some cases.

(use break)

Case Statements

1 Evaluate the controlling expression

2 Branch to the selected case

3 Execute the code for that case

4 Branch to the statement after the case (use break)

Parts 1, 3, & 4 are well understood, part 2 is the key

Strategies

• Linear search (nested if-then-else constructs)

• Build a table of case expressions & binary search it

• Directly compute address (requires dense case set)

Linear Search

Switch StatementSwitch Statement

Switch Statement Implementing as a Linear Search

Binary Search

Jump Table

Switch Statement
Search Table

Code for Binary Search

Direct Address Computation

• requires dense case set

Switch Statement
Jump Table

Code for Address

Computation

