
Bottom-up Parsing 

Recap of Top-down Parsing
• Top-down parsers build syntax tree from root to leaves

• Left-recursion causes non-termination in top-down parsers

— Transformation to eliminate left recursion

— Transformation to eliminate common prefixes in right recursion

• FIRST, FIRST+, & FOLLOW sets + LL(1) condition

— LL(1) uses left-to-right scan of the input, leftmost derivation of the

sentence, and 1 word lookahead

— LL(1) condition means grammar works for predictive parsing

• Given an LL(1) grammar, we can

— Build a recursive descent parser

— Build a table-driven LL(1) parser

• LL(1) parser doesn’t explicitly build the parse tree

— Keeps lower fringe of partially complete tree on the stack

Parsing Techniques

Top-down parsers (LL(1), recursive descent)

• Start at the root of the parse tree and grow toward leaves

• Pick a production & try to match the input

• Bad “pick” ⇒ may need to backtrack

• Some grammars are backtrack-free (predictive parsing)

Bottom-up parsers (LR(1), operator precedence)

• Start at the leaves and grow toward root

• As input is consumed, encode possibilities in an internal state

• Bottom-up parsers handle a large class of grammars

Bottom-up parser handle a larger class of grammars

Bottom-up Parsing (recap of definitions)
The point of parsing is to construct a derivation

A derivation consists of a series of rewrite steps

S ⇒ γ0 ⇒ γ1 ⇒ γ2 ⇒ … ⇒ γn–1 ⇒ γn ⇒ sentence

• Each γi is a sentential form

— If γ contains only terminal symbols, γ is a sentence in L(G)

— If γ contains 1 or more non-terminals, γ is a sentential form

• To get γi from γi–1, expand some NT A ∈ γi–1 by using A →β

— Replace the occurrence of A ∈ γi–1 with β to get γi

— In a leftmost derivation, it would be the first NT A ∈ γi–1

A left-sentential form occurs in a leftmost derivation

A right-sentential form occurs in a rightmost derivation

Bottom-up parsers build a rightmost derivation in reverse

Bottom-up Parsing

A bottom-up parser builds a derivation by working from

the input sentence back toward the start symbol S

S ⇒ γ0 ⇒ γ1 ⇒ γ2 ⇒ … ⇒ γn–1 ⇒ γn ⇒ sentence

To reduce γi to γi–1 match some rhs β against γi then replace β

with its corresponding lhs, A. (assuming the production A→β)

bottom-up

In terms of the parse tree, it works from leaves to root

• Nodes with no parent in a partial tree form its upper fringe (border)

0 Goal → a A B e

1 A → A b c

2 | b

3 B → d

Goal

d

b

Consider the grammar

Bottom-up Parsing

a A B e

A b c

• Since each replacement of β with A shrinks
the upper fringe, we call it a reduction.

(remember we are constructing a rightmost
derivation)

The input string abbcde

a b b c d e

Finding Reductions

The input string abbcde

The trick is scanning the input and finding the next reduction

The mechanism for doing this must be efficient

While the process of finding the next reduction appears to be almost oracular, it
can be automated in an efficient way for a large class of grammars

0 Goal → a A B e

1 A → A b c

2 | b

3 B → d

Sentential Reduction

Form Prod’n Pos’n

abbcde 2 2

a A bcde 1 4

a A de 3 3

a A B e 0 4

Goal — —

“Position” specifies where the right end of
β occurs in the current sentential form.

Leftmost reductions for rightmost derivations

0 Goal → a A B e

1 A → A b c

2 | b

3 B → d

Rightmost

derivation

Goal

a A B e

a A de

a A bcde
abbcde

To reconstruct a Rightmost derivation bottom up we have to look for the

leftmost substring that matches a right handside of a derivation!

Finding Reductions (Handles)
The parser must find a substring β of the tree’s frontier that

matches some production A → β that occurs as one step

in the rightmost derivation. We call this substring β an handle

An handle of a right-sentential form γ is a pair <A→β,k> where

A→β ∈ P and k is the position in γ of β’s rightmost symbol.

If <A→β,k> is a handle, then replacing β at k with A produces the right

sentential form from which γ is derived in the rightmost derivation.

handles A->β k

abbcde 2 2

a A bcde 1 4

a A de 3 3

a A B e 0 4

Goal — —

For this string is

b not d !!

Because γ is a right-sentential form, the substring to the right of a handle
contains only terminal symbols

handles A->β k

abbcde 2 2

a A bcde 1 4

a A de 3 3

a A B e 0 4

Goal — —

A property of handles

Example

A simple left-recursive form of
the classic expression grammar

 0 Goal → Expr

1 Expr → Expr + Term

2 | Expr - Term

3 | Term

4 Term → Term * Factor

5 | Term / Factor

6 | Factor

7 Factor → number

8 | id

9 | (Expr)

Bottom up parsers handle
either left-recursive or
right-recursive grammars.

Example
A simple left-recursive form of
the classic expression grammar

Rightmost derivation of x – 2 * y

 0 Goal → Expr

1 Expr → Expr + Term

2 | Expr - Term

3 | Term

4 Term → Term * Factor

5 | Term / Factor

6 | Factor

7 Factor → number

8 | id

| (Expr)

Prod’n Sentential Form

— Goal

0 Expr

2 Expr - Term

4 Expr - Term * Factor

8 Expr - Term * <id,y>

6 Expr - Factor * <id,y>

7 Expr - <num,2> * <id,y>

3 Term- <num,2>*<id,y>

6 Factor - <num,2> * <id,y>

8 <id,x> - <num,2> * <id,y>

derivation

Example

Handles for rightmost derivation of x – 2 * y

Prod’n Sentential Form Handle

— Goal —

0 Expr 0,1

2 Expr - Term 2,3

4 Expr - Term * Factor 4,5

8 8,5

6 Expr - Factor * <id,y> 6,3

7 Expr - <num,2> * <id,y> 7,3

3 Term- <num,2>*<id,y> 3,1

6 Factor - <num,2> * <id,y> 6,1

8 <id,x> - <num,2> * <id,y> 8,1
parse

Expr - Term * <id,y>

Bottom-up Parsing (Abstract View)
A bottom-up parser repeatedly finds a handle A → β in the

current right-sentential form and replaces β with A.

To construct a rightmost derivation

S ⇒ γ0 ⇒ γ1 ⇒ γ2 ⇒ … ⇒ γn–1 ⇒ γn ⇒ w

Apply the following conceptual algorithm

for i ← n to 1 by –1

 Find the handle <Ai →βi , ki > in γi

 Replace βi with Ai to generate γi–1

This takes 2n steps

of course, n is unknown
until the derivation is built

More on Handles

Bottom-up reduce parsers find a rightmost derivation in reverse
order

— Rightmost derivation ⇒ rightmost NT expanded at each step in

the derivation

— Processed in reverse ⇒ parser proceeds left to right

These statements are somewhat counter-intuitive

Handles Are Unique

Theorem:

If G is unambiguous, then every right-sentential form has a

unique handle.

Sketch of Proof:

1 G is unambiguous ⇒ rightmost derivation is unique

2 ⇒ a unique production A → β applied to derive γi from γi–1

3 ⇒ a unique position k at which A→β is applied

4 ⇒ a unique handle <A→β,k>

This all follows from the definitions

If we can find the handles, we can build a derivation!

Shift-reduce Parsing

To implement a bottom-up parser, we adopt the shift-reduce paradigm

A shift-reduce parser is a stack automaton with four actions

• Shift — next word is shifted onto the stack (push)

• Reduce — right end of handle is at top of stack

 Locate left end of handle within the stack

 Pop handle off stack & push appropriate lhs

• Accept — stop parsing & report success

• Error — call an error reporting/recovery routine

Reduce consists in |rhs| pops & 1 push

But how does the parser know when to shift and when to reduce?

It shifts until it has a handle at the top of the stack.

Bottom-up Parser

A simple shift-reduce parser:

push $

token ← next_token()

repeat until (top of stack = Goal and token = EOF)

 if the top of the stack is a handle A→β

 then // reduce β to A

 pop |β| symbols off the stack

 push A onto the stack

 else if (token ≠ EOF)

 then // shift

 push token

 token ← next_token()

 else // need to shift, but out of input

	 report an error

• It fails to find a handle

• Thus, it keeps shifting

• Eventually, it consumes

 all input

This parser reads all input
before reporting an error,
not a desirable property.

Error localization is an issue
in the handle-finding
process that affects the
practicality of shift-reduce
parsers…

We will fix this issue later.

What happens on an error?
It uses a stack where we memorize terminal and nonterminal

Back to x - 2 * y

Stack Input Handle Action

$ id - num * id none shift

$ id - num * id 8,1 reduce 8

$ Factor - num * id 6,1 reduce 6

$ Term - num * id 3,1 reduce 3

$ Expr - num * id

 0 Goal → Expr

1 Expr → Expr + Term

2 | Expr - Term

3 | Term

4 Term → Term * Factor

5 | Term / Factor

6 | Factor

7 Factor → number

8 | id

9 | (Expr)

Expr is not a handle at this point because it does not occur in
this point in a rightmost derivation of

id - num * id

While that statement sounds like oracular mysticism, we will
see that the decision can be automated efficiently.

1. Shift until the top of the
stack is the right end of
a handle

2. Find the left end of the
handle and reduce

5 shifts +

9 reduces + 1
accept

Stack Input Handle Action

$ id - num * id none shift

$ id - num * id 8,1 reduce 8

$ Factor - num * id 6,1 reduce 6

$ Term - num * id 3,1 reduce 3

$ Expr - num * id none shift

$ Expr - num * id none shift

$ Expr - num * id 7,3 reduce 7

$ Expr - Factor * id 6,3 reduce 6

$ Expr - Term * id none shift

$ Expr - Term * id none shift

$ Expr - Term * id 8,5 reduce 8

$ Expr - Term * Factor 4,5 reduce 4

$ Expr - Term 2,3 reduce 2

$ Expr 0,1 reduce 0

$ Goal none accept

1. Shift until the top of the stack is
the right end of a handle

2. Find the left end of the handle
and reduce

 0 Goal → Expr

1 Expr → Expr + Term

2 | Expr - Term

3 | Term

4 Term → Term * Factor

5 | Term / Factor

6 | Factor

7 Factor → number

8 | id

9 | (Expr)

Comp 412, Fall 2010

Goal

<id,x>

Term

Fact.

Expr –

Expr

<id,y>

<num,2>

Fact.

Fact.Term

Term

*

Stack Input Action

$ id - num * id shift

$ id - num * id reduce 8

$ Factor - num * id reduce 6

$ Term - num * id reduce 3

$ Expr - num * id shift

$ Expr - num * id shift

$ Expr - num * id reduce 7

$ Expr - Factor * id reduce 6

$ Expr - Term * id shift

$ Expr - Term * id shift

$ Expr - Term * id reduce 8

$ Expr - Term * Factor reduce 4

$ Expr - Term reduce 2

$ Expr reduce 0

$ Goal accept

Parse tree for x - 2 * y

Corresponding Parse Tree

An Important Lesson about Handles
An handle must be a substring of a sentential form γ such that :

— It must match the right hand side β of some rule A → β; and

— There must be some rightmost derivation from the goal symbol

that produces the sentential form γ with A → β as the last
production applied

• Simply looking for right hand sides that match strings is not
good enough

Critical Question: How can we know when we have found an
handle without generating lots of different derivations?

Answer: We use left context encoded in a “parser state” and a
lookahead at the next word in the input. (Formally, 1 word beyond
the handle.)

• LR(1) parsers use states to encode information on the left context

and also use 1 word beyond the handle.

• Such information is encoded in a GOTO and ACTION tables

The actions are driven by the state and the lookhaed

LR(1) Parsers

The additional left context is precisely the reason why LR(1) grammars express a
superset of the languages that can be expressed as LL(1) grammars

LR(1) Parsers
• LR(1) parsers are table-driven, shift-reduce parsers that

 use a limited right context (1 token) for handle recognition

• The class of grammars that these parsers recognize is called the

set of LR(1) grammars

A grammar is LR(1) if, given a rightmost derivation

S ⇒ γ0 ⇒ γ1 ⇒ γ2 ⇒ … ⇒ γn–1 ⇒ γn ⇒ sentence

We can

1. isolate the handle of each right-sentential form γi, and

2. determine the production by which to reduce,

going at most 1 symbol beyond the right end of the handle of γi

LR(1) means left-to-right scan of the input, rightmost derivation (in reverse),
and 1 word of lookahead.

LR(1) Parsers

A table-driven LR(1) parser looks like

Tables can be built by hand

However, this is a perfect task to automate

Scanner Table-driven

Parser

ACTION &

GOTO

Tables

Parser

Generator

source

code

grammar

IR

LR(1) Parsers
A table-driven LR(1) parser looks like

Tables can be built by hand

However, this is a perfect task to automate

Just like automating construction of scanners …

Scanner Table-driven

Parser

ACTION &

GOTO

Tables

Parser

Generator

source

code

grammar

IR

Scanner

Generator

regular

expression

LR(1) Skeleton Parser

stack.push($);

stack.push(s0); // initial state

token = scanner.next_token();

loop forever {

 	 s = stack.top(); // reads the top of the stack

 	 if (ACTION[s,token] == “reduce A→β”) then {

	 stack.popnum(2*|β|); // pop 2*|β| symbols

 s = stack.top();

 stack.push(A); // push A

 stack.push(GOTO[s,A]); // push next state

	 }

 	 else if (ACTION[s,token] == “shift si”) then {

	 	 stack.push(token); stack.push(si);

	 	 token ← scanner.next_token();

	 }

 	 else if (ACTION[s,token] == “accept”

	 	 	 	 & token == EOF)

	 	 then break;

	 else throw a syntax error;

}

report success;

The skeleton parser

• relies on a stack & a scanner

• uses two tables, called

ACTION & GOTO

ACTION: state x word → action

GOTO: state x NT → state

• detects errors by failure of

the other three cases

It uses a stack where we memorize
pairs of the form (T U NT, state)

To make a parser for L(G), need the ACTION and GOTO tables

The grammar

For now assume we have the tables

LR(1) Parsers (parse tables)

1 Goal → SheepNoise

2 SheepNoise → SheepNoise baa

3 | baa

ACTION Table

State EOF baa

0 — shift 2

1 accept shift 3

2 reduce 3 reduce 3

3 reduce 2 reduce 2

GOTO Table

State SheepNoise

0 1

1 0

2 0

3 0

The string baa

Example Parse 1

1 Goal → SheepNoise

2 SheepNoise → SheepNoise baa

3 | baa

Stack Input Action
$ s0 baa EOF

ACTION Table

State EOF baa

0 — shift 2

1 accept shift 3

2 reduce 3 reduce 3

3 reduce 2 reduce 2

GOTO Table

State SheepNoise

0 1

1 0

2 0

3 0

The string baa

Example Parse 1

1 Goal → SheepNoise

2 SheepNoise → SheepNoise baa

3 | baa

Stack Input Action
$ s0 baa EOF shift 2

$ s0 baa s2 EOF

ACTION Table

State EOF baa

0 — shift 2

1 accept shift 3

2 reduce 3 reduce 3

3 reduce 2 reduce 2

GOTO Table

State SheepNoise

0 1

1 0

2 0

3 0

The string baa

Example Parse 1

1 Goal → SheepNoise

2 SheepNoise → SheepNoise baa

3 | baa

Stack Input Action
$ s0 baa EOF shift 2

$ s0 baa s2 EOF reduce 3

$ s0 SN s1 EOF

ACTION Table

State EOF baa

0 — shift 2

1 accept shift 3

2 reduce 3 reduce 3

3 reduce 2 reduce 2

GOTO Table

State SheepNoise

0 1

1 0

2 0

3 0

The string baa

Example Parse 1

1 Goal → SheepNoise

2 SheepNoise → SheepNoise baa

3 | baa

Stack Input Action
$ s0 baa EOF shift 2

$ s0 baa s2 EOF reduce 3

$ s0 SN s1 EOF accept

ACTION Table

State EOF baa

0 — shift 2

1 accept shift 3

2 reduce 3 reduce 3

3 reduce 2 reduce 2

GOTO Table

State SheepNoise

0 1

1 0

2 0

3 0

The string baa baa

Example Parse 2

ACTION Table

State EOF baa

0 — shift 2

1 accept shift 3

2 reduce 3 reduce 3

3 reduce 2 reduce 2

GOTO Table

State SheepNoise

0 1

1 0

2 0

3 0

Stack Input Action
$ s0 baa baa EOF

1 Goal → SheepNoise

2 SheepNoise → SheepNoise baa

3 | baa

The string baa baa

Example Parse 2

ACTION Table

State EOF baa

0 — shift 2

1 accept shift 3

2 reduce 3 reduce 3

3 reduce 2 reduce 2

GOTO Table

State SheepNoise

0 1

1 0

2 0

3 0

Stack Input Action
$ s0 baa baa EOF shift 2

$ s0 baa s2 baa EOF

1 Goal → SheepNoise

2 SheepNoise → SheepNoise baa

3 | baa

The string baa baa

Example Parse 2

ACTION Table

State EOF baa

0 — shift 2

1 accept shift 3

2 reduce 3 reduce 3

3 reduce 2 reduce 2

GOTO Table

State SheepNoise

0 1

1 0

2 0

3 0

Stack Input Action
$ s0 baa baa EOF shift 2

$ s0 baa s2 baa EOF reduce 3

$ s0 SN s1 baa EOF
Last example, we faced EOF and we
accepted. With baa, we shift …

1 Goal → SheepNoise

2 SheepNoise → SheepNoise baa

3 | baa

The string baa baa

Example Parse 2

ACTION Table

State EOF baa

0 — shift 2

1 accept shift 3

2 reduce 3 reduce 3

3 reduce 2 reduce 2

GOTO Table

State SheepNoise

0 1

1 0

2 0

3 0

Stack Input Action
$ s0 baa baa EOF shift 2

$ s0 baa s2 baa EOF reduce 3

$ s0 SN s1 baa EOF shift 3

$ s0 SN s1 baa s3 EOF

1 Goal → SheepNoise

2 SheepNoise → SheepNoise baa

3 | baa

The string baa baa

Example Parse 2

ACTION Table

State EOF baa

0 — shift 2

1 accept shift 3

2 reduce 3 reduce 3

3 reduce 2 reduce 2

GOTO Table

State SheepNoise

0 1

1 0

2 0

3 0

Stack Input Action
$ s0 baa baa EOF shift 2

$ s0 baa s2 baa EOF reduce 3

$ s0 SN s1 baa EOF shift 3

$ s0 SN s1 baa s3 EOF reduce 2

$ s0 SN s1 EOF

Now, we accept

1 Goal → SheepNoise

2 SheepNoise → SheepNoise baa

3 | baa

The string baa baa

Example Parse 2

ACTION Table

State EOF baa

0 — shift 2

1 accept shift 3

2 reduce 3 reduce 3

3 reduce 2 reduce 2

GOTO Table

State SheepNoise

0 1

1 0

2 0

3 0

Stack Input Action
$ s0 baa baa EOF shift 2

$ s0 baa s2 baa EOF reduce 3

$ s0 SN s1 baa EOF shift 3

$ s0 SN s1 baa s3 EOF reduce 2

$ s0 SN s1 EOF accept

1 Goal → SheepNoise

2 SheepNoise → SheepNoise baa

3 | baa

