
Bottom-up Parsing 



Recap of Top-down Parsing
• Top-down parsers build syntax tree from root to leaves


• Left-recursion causes non-termination in top-down parsers

— Transformation to eliminate left recursion

— Transformation to eliminate common prefixes in right recursion


• FIRST, FIRST+, & FOLLOW sets + LL(1) condition

— LL(1) uses left-to-right scan of the input, leftmost derivation of the 

sentence, and 1 word lookahead 

— LL(1) condition means grammar works for predictive parsing


• Given an LL(1) grammar, we can

— Build a recursive descent parser

— Build a table-driven LL(1) parser


• LL(1) parser doesn’t explicitly build the parse tree

— Keeps lower fringe of partially complete tree on the stack



Parsing Techniques

Top-down parsers     (LL(1), recursive descent)

• Start at the root of the parse tree and grow toward leaves

• Pick a production & try to match the input

• Bad “pick” ⇒ may need to backtrack

• Some grammars are backtrack-free           (predictive parsing)


Bottom-up parsers     (LR(1), operator precedence)

• Start at the leaves and grow toward root

• As input is consumed, encode possibilities in an internal state

• Bottom-up parsers handle a large class of grammars



Bottom-up parser handle a larger class of grammars



Bottom-up Parsing                          (recap of definitions)
The point of parsing is to construct a derivation


A derivation consists of a series of rewrite steps

S ⇒ γ0  ⇒ γ1  ⇒ γ2  ⇒ …  ⇒ γn–1 ⇒ γn ⇒ sentence


• Each γi is a sentential form 

— If γ contains only terminal symbols, γ is a sentence in L(G) 

— If γ contains 1 or more non-terminals, γ is a sentential form


• To get γi from γi–1, expand some NT A ∈ γi–1 by using A →β

— Replace the occurrence of A ∈ γi–1 with β to get γi 


— In a leftmost derivation, it would be the first NT A ∈ γi–1 


A left-sentential form occurs in a leftmost derivation

A right-sentential form occurs in a rightmost derivation


Bottom-up parsers build a rightmost derivation in reverse



Bottom-up Parsing                         

A bottom-up parser builds a derivation by working from

the input sentence back toward the start symbol S 


S ⇒ γ0  ⇒ γ1  ⇒ γ2  ⇒ …  ⇒ γn–1 ⇒ γn ⇒ sentence


To reduce γi  to γi–1 match some rhs  β against γi then  replace β 

with its corresponding lhs, A.    (assuming the production A→β) 


bottom-up



In terms of the parse tree, it works from leaves to root

• Nodes  with no parent in a partial tree form its upper fringe (border)


0 Goal → a A B e

1 A → A b c

2 | b

3 B → d

Goal

d

b

Consider the grammar

Bottom-up Parsing

a A B e

A b c

• Since each replacement of β with A shrinks 
the upper fringe, we call it a reduction.


(remember we are constructing a rightmost 
derivation)


The input string abbcde

a b b c d e



Finding Reductions

The input string abbcde


The trick is scanning the input and finding the next reduction

The mechanism for doing this must be efficient

While the process of finding the next reduction appears to be almost oracular, it 
can be automated in an efficient way for a large class of grammars

0 Goal → a A B e

1 A → A b c

2 | b

3 B → d

Sentential  Reduction

Form Prod’n Pos’n

abbcde 2 2

a A bcde 1 4

a A de 3 3

a A B e 0 4

Goal — —

“Position” specifies where the right end of 
β occurs in the current sentential form. 



Leftmost reductions for rightmost derivations 

0 Goal → a A B e

1 A → A b c

2 | b

3 B → d

Rightmost

derivation

Goal

a A B e

a A de

a A bcde
abbcde

To reconstruct a Rightmost derivation bottom up we have to look for the 

leftmost substring that matches a right handside  of a derivation!



Finding Reductions                              (Handles)
The parser must find a substring β of the tree’s frontier that 


matches some production A → β that occurs as one step 

in the rightmost derivation. We call this substring β an handle


An handle of a right-sentential form γ is a pair <A→β,k> where

A→β ∈ P and k is the position in γ of β’s rightmost symbol.

If <A→β,k> is a handle, then replacing β at k with A produces the right 

sentential form from which γ is derived in the rightmost derivation.

handles A->β k

abbcde 2 2

a A bcde 1 4

a A de 3 3

a A B e 0 4

Goal — —

For this string is 

b not d !!



Because γ is a right-sentential form, the substring to the right of a handle 
contains only terminal symbols


handles A->β k

abbcde 2 2

a A bcde 1 4

a A de 3 3

a A B e 0 4

Goal — —

A property of handles



Example

A simple left-recursive form of 
the classic expression grammar

 0 Goal → Expr

1 Expr → Expr  + Term

2 | Expr  - Term

3 | Term

4 Term → Term  * Factor

5 | Term / Factor

6 | Factor

7 Factor → number

8 | id

9 | ( Expr ) 

Bottom up parsers handle 
either left-recursive or 
right-recursive grammars.




Example
A simple left-recursive form of 
the classic expression grammar

Rightmost derivation of  x – 2 * y 

 0 Goal → Expr

1 Expr → Expr  + Term

2 | Expr  - Term

3 | Term

4 Term → Term  * Factor

5 | Term / Factor

6 | Factor

7 Factor → number

8 | id

| ( Expr ) 

Prod’n Sentential Form

— Goal

0 Expr

2 Expr - Term

4 Expr - Term * Factor

8 Expr - Term * <id,y>

6 Expr - Factor * <id,y>

7 Expr - <num,2> * <id,y>

3 Term- <num,2>*<id,y>

6 Factor - <num,2> * <id,y>

8 <id,x> - <num,2> * <id,y>

derivation



Example

Handles for rightmost derivation of  x – 2 * y 

Prod’n Sentential Form Handle

— Goal —

0 Expr 0,1

2 Expr - Term 2,3

4 Expr - Term * Factor 4,5

8 8,5

6 Expr - Factor * <id,y> 6,3

7 Expr - <num,2> * <id,y> 7,3

3 Term- <num,2>*<id,y> 3,1

6 Factor - <num,2> * <id,y> 6,1

8 <id,x> - <num,2> * <id,y> 8,1
parse

Expr - Term * <id,y>



Bottom-up Parsing                    (Abstract View)
A bottom-up parser repeatedly finds a handle A → β in the 

current right-sentential form and replaces β with A.


To construct a rightmost derivation

S ⇒ γ0  ⇒ γ1  ⇒ γ2  ⇒ …  ⇒ γn–1 ⇒ γn ⇒ w


Apply the following conceptual algorithm


for i ← n to 1 by –1

     Find the handle <Ai →βi , ki > in γi 

     Replace βi with Ai to generate γi–1 


This takes 2n steps

of course, n is unknown 
until the derivation is built



More on Handles

Bottom-up reduce parsers find a rightmost derivation in reverse 
order

— Rightmost derivation ⇒ rightmost NT expanded at each step in 

the derivation

— Processed in reverse ⇒ parser proceeds left to right


These statements are somewhat counter-intuitive



Handles Are Unique

Theorem:

If G is unambiguous, then every right-sentential form has a 

unique handle. 


Sketch of Proof:

1 G is unambiguous ⇒ rightmost derivation is unique


2 ⇒ a unique production A → β applied to derive γi  from γi–1


3 ⇒ a unique position k at which A→β is applied

4 ⇒ a unique handle <A→β,k> 


This all follows from the definitions


If we can find the handles, we can build a derivation!



Shift-reduce Parsing

To implement a bottom-up parser, we adopt the  shift-reduce paradigm 


A shift-reduce parser is a stack automaton with four actions

• Shift — next word is shifted onto the stack (push)

• Reduce — right end of handle is at top of stack


    Locate left end of handle within the stack

    Pop handle off stack & push appropriate lhs


• Accept — stop parsing & report success

• Error  — call an error reporting/recovery routine

Reduce consists in  |rhs| pops & 1 push

But how does the parser know when to shift and when to reduce?

It shifts until it has a handle at the top of the stack.



Bottom-up Parser

A simple shift-reduce parser:

push $

token ← next_token( )

repeat until (top of stack = Goal and token = EOF)

     if the top of the stack is a handle A→β 

          then      // reduce β to A

               pop |β| symbols off the stack

               push A onto the stack

          else if (token ≠ EOF)

               then // shift 

                     push token 

                     token ← next_token( )

           else     // need to shift, but out of input 

	 report an error   

• It fails to find a handle


• Thus, it keeps shifting


• Eventually, it consumes

   all input


This parser reads all input 
before reporting an error, 
not a desirable property.


Error localization is an issue 
in the handle-finding 
process that affects the 
practicality of shift-reduce 
parsers…


We will fix this issue later.

What happens on an error?
It uses a stack where we memorize terminal and nonterminal 



Back to x - 2 * y

Stack Input Handle Action

$ id - num * id none shift

$ id - num * id 8,1 reduce 8

$ Factor - num * id 6,1 reduce 6

$ Term - num * id 3,1 reduce 3

$ Expr - num * id

 0 Goal → Expr

1 Expr → Expr + Term

2 | Expr - Term

3 | Term

4 Term → Term * Factor

5 | Term / Factor

6 | Factor

7 Factor → number

8 | id

9 | ( Expr ) 

Expr is not a handle at this point because it does not occur in 
this point in  a rightmost derivation of 

id - num * id


While that statement sounds like oracular mysticism, we will 
see that the decision can be automated efficiently.

1. Shift until the top of the 
stack is the right end of 
a handle


2. Find the left end of the 
handle and reduce 



5 shifts + 

9 reduces + 1 
accept

Stack Input Handle Action

$ id - num * id none shift

$ id - num * id 8,1 reduce 8

$ Factor - num * id 6,1 reduce 6

$ Term - num * id 3,1 reduce 3

$ Expr - num * id none shift

$ Expr - num * id none shift

$ Expr - num * id 7,3 reduce 7

$ Expr - Factor * id 6,3 reduce 6

$ Expr - Term * id none shift

$ Expr - Term * id none shift

$ Expr - Term * id 8,5 reduce 8

$ Expr - Term * Factor 4,5 reduce 4

$ Expr - Term 2,3 reduce 2

$ Expr 0,1 reduce 0

$ Goal none accept

1. Shift until the top of the stack is 
the right end of a handle


2. Find the left end of the handle 
and reduce 

 0 Goal → Expr

1 Expr → Expr + Term

2 | Expr - Term

3 | Term

4 Term → Term * Factor

5 | Term / Factor

6 | Factor

7 Factor → number

8 | id

9 | ( Expr ) 



Comp 412, Fall 2010

Goal

<id,x>

Term

Fact.

Expr –

Expr

<id,y>

<num,2>

Fact.

Fact.Term

Term

*

Stack Input Action

$ id - num * id shift

$ id - num * id reduce 8

$ Factor - num * id reduce 6

$ Term - num * id reduce 3

$ Expr - num * id shift

$ Expr - num * id shift

$ Expr - num * id reduce 7

$ Expr - Factor * id reduce 6

$ Expr - Term * id shift

$ Expr - Term * id shift

$ Expr - Term * id reduce 8

$ Expr - Term * Factor reduce 4

$ Expr - Term reduce 2

$ Expr reduce 0

$ Goal accept

Parse tree for x - 2 * y

Corresponding Parse Tree



An Important Lesson about Handles
An handle must be a substring of a sentential form γ such that :


— It must match the right hand side β of some rule A → β; and 

— There must be some rightmost derivation from the goal symbol 

that produces the sentential form γ with A → β as the last 
production applied


• Simply looking for right hand sides that match strings is not 
good enough


Critical Question: How can we know when we have found an 
handle without generating lots of different derivations?

Answer: We use left context encoded in a “parser state” and a 
lookahead at the next word in the input.  (Formally, 1 word beyond 
the handle.)



• LR(1) parsers use  states  to encode information on the left context 

and  also use  1 word beyond the handle.


• Such information is encoded in a GOTO and ACTION tables 


The actions are driven by the  state and the lookhaed 


LR(1) Parsers

The additional left context is precisely the reason why LR(1) grammars express a 
superset of the languages that can be expressed as LL(1) grammars



LR(1) Parsers
• LR(1) parsers are table-driven, shift-reduce parsers that

     use a limited right context (1 token) for handle recognition

• The class of grammars that these parsers recognize is called the 

set of LR(1) grammars


A grammar is LR(1) if, given a rightmost derivation

S ⇒ γ0  ⇒ γ1  ⇒ γ2  ⇒ …  ⇒ γn–1 ⇒ γn ⇒ sentence


We can 

1. isolate the handle of each right-sentential form γi, and 

2. determine the production by which to reduce,


going at most 1 symbol beyond the right end of the handle of γi 

LR(1) means left-to-right scan of the input, rightmost derivation (in reverse), 
and 1 word of lookahead.



LR(1) Parsers

A table-driven LR(1) parser looks like


Tables can be built by hand

However, this is a perfect task to automate

Scanner Table-driven

Parser

ACTION & 

GOTO

Tables

Parser

Generator

source

code

grammar

IR



LR(1) Parsers
A table-driven LR(1) parser looks like


Tables can be built by hand

However, this is a perfect task to automate

Just like automating construction of scanners …


Scanner Table-driven

Parser

ACTION & 

GOTO

Tables

Parser

Generator

source

code

grammar

IR

Scanner

Generator

regular

expression



LR(1) Skeleton Parser

stack.push($);

stack.push(s0);                              // initial state

token = scanner.next_token();

loop forever {

   	 s = stack.top(); // reads the top of the stack

   	 if ( ACTION[s,token] == “reduce A→β” ) then {

	     stack.popnum(2*|β|);       // pop 2*|β| symbols

             s = stack.top(); 

             stack.push(A);                 // push A

             stack.push(GOTO[s,A]);  // push next state

	 }

   	 else if ( ACTION[s,token] == “shift si” ) then {

	 	 stack.push(token); stack.push(si);

	 	 token ← scanner.next_token();

	 }

   	 else if ( ACTION[s,token] == “accept”  

	 	 	 	 & token == EOF )

	 	 then break; 

	 else throw a syntax error;

} 

report success;

The skeleton parser 

• relies on a stack & a scanner

• uses two tables, called 

ACTION & GOTO

ACTION: state x word → action    

GOTO: state x NT → state

• detects errors by failure of 

the other three cases 

It uses a stack where we memorize 
pairs of the form (T U NT, state)



To make a parser for L(G), need the ACTION and GOTO tables


The grammar 


For now assume we have the tables

LR(1) Parsers                                              (parse tables)

1 Goal → SheepNoise

2 SheepNoise → SheepNoise baa

3 | baa

ACTION Table

State EOF baa

0 — shift 2

1 accept shift 3

2 reduce 3 reduce 3

3 reduce 2 reduce 2

GOTO Table

State SheepNoise

0 1

1 0

2 0

3 0



The string baa

Example Parse 1

1 Goal → SheepNoise

2 SheepNoise → SheepNoise baa

3 | baa

Stack Input Action
$ s0 baa EOF

ACTION Table

State EOF baa

0 — shift 2

1 accept shift 3

2 reduce 3 reduce 3

3 reduce 2 reduce 2

GOTO Table

State SheepNoise

0 1

1 0

2 0

3 0



The string baa

Example Parse 1

1 Goal → SheepNoise

2 SheepNoise → SheepNoise baa

3 | baa

Stack Input Action
$ s0 baa EOF shift 2

$ s0 baa s2 EOF

ACTION Table

State EOF baa

0 — shift 2

1 accept shift 3

2 reduce 3 reduce 3

3 reduce 2 reduce 2

GOTO Table

State SheepNoise

0 1

1 0

2 0

3 0



The string baa

Example Parse 1

1 Goal → SheepNoise

2 SheepNoise → SheepNoise baa

3 | baa

Stack Input Action
$ s0 baa EOF shift 2

$ s0 baa s2 EOF reduce 3

$ s0 SN s1 EOF

ACTION Table

State EOF baa

0 — shift 2

1 accept shift 3

2 reduce 3 reduce 3

3 reduce 2 reduce 2

GOTO Table

State SheepNoise

0 1

1 0

2 0

3 0



The string baa

Example Parse 1

1 Goal → SheepNoise

2 SheepNoise → SheepNoise baa

3 | baa

Stack Input Action
$ s0 baa EOF shift 2

$ s0 baa s2 EOF reduce 3

$ s0 SN s1 EOF accept

ACTION Table

State EOF baa

0 — shift 2

1 accept shift 3

2 reduce 3 reduce 3

3 reduce 2 reduce 2

GOTO Table

State SheepNoise

0 1

1 0

2 0

3 0



The string baa baa

Example Parse 2

ACTION Table

State EOF baa

0 — shift 2

1 accept shift 3

2 reduce 3 reduce 3

3 reduce 2 reduce 2

GOTO Table

State SheepNoise

0 1

1 0

2 0

3 0

Stack Input Action
$ s0 baa baa EOF

1 Goal → SheepNoise

2 SheepNoise → SheepNoise baa

3 | baa



The string baa baa

Example Parse 2

ACTION Table

State EOF baa

0 — shift 2

1 accept shift 3

2 reduce 3 reduce 3

3 reduce 2 reduce 2

GOTO Table

State SheepNoise

0 1

1 0

2 0

3 0

Stack Input Action
$ s0 baa baa EOF shift 2

$ s0 baa s2 baa EOF

1 Goal → SheepNoise

2 SheepNoise → SheepNoise baa

3 | baa



The string baa baa

Example Parse 2

ACTION Table

State EOF baa

0 — shift 2

1 accept shift 3

2 reduce 3 reduce 3

3 reduce 2 reduce 2

GOTO Table

State SheepNoise

0 1

1 0

2 0

3 0

Stack Input Action
$ s0 baa baa EOF shift 2

$ s0 baa s2 baa EOF reduce 3

$ s0 SN s1 baa EOF
Last example, we faced EOF and we 
accepted.  With baa, we shift …

1 Goal → SheepNoise

2 SheepNoise → SheepNoise baa

3 | baa



The string baa baa

Example Parse 2

ACTION Table

State EOF baa

0 — shift 2

1 accept shift 3

2 reduce 3 reduce 3

3 reduce 2 reduce 2

GOTO Table

State SheepNoise

0 1

1 0

2 0

3 0

Stack Input Action
$ s0 baa baa EOF shift 2

$ s0 baa s2 baa EOF reduce 3

$ s0 SN s1 baa EOF shift 3

$ s0 SN s1 baa s3 EOF

1 Goal → SheepNoise

2 SheepNoise → SheepNoise baa

3 | baa



The string baa baa

Example Parse 2

ACTION Table

State EOF baa

0 — shift 2

1 accept shift 3

2 reduce 3 reduce 3

3 reduce 2 reduce 2

GOTO Table

State SheepNoise

0 1

1 0

2 0

3 0

Stack Input Action
$ s0 baa baa EOF shift 2

$ s0 baa s2 baa EOF reduce 3

$ s0 SN s1 baa EOF shift 3

$ s0 SN s1 baa s3 EOF reduce 2

$ s0 SN s1 EOF

Now, we accept

1 Goal → SheepNoise

2 SheepNoise → SheepNoise baa

3 | baa



The string baa baa

Example Parse 2

ACTION Table

State EOF baa

0 — shift 2

1 accept shift 3

2 reduce 3 reduce 3

3 reduce 2 reduce 2

GOTO Table

State SheepNoise

0 1

1 0

2 0

3 0

Stack Input Action
$ s0 baa baa EOF shift 2

$ s0 baa s2 baa EOF reduce 3

$ s0 SN s1 baa EOF shift 3

$ s0 SN s1 baa s3 EOF reduce 2

$ s0 SN s1 EOF accept

1 Goal → SheepNoise

2 SheepNoise → SheepNoise baa

3 | baa


