
Foundations for Extensible Objects with Roles

Giorgio Ghelli
Dipartimento di Informatica, Corso Italia, 40, 56125 Pisa, Italy

E-mail: ghelli@di.unipi.it

Object-oriented database systems are an emerging, promising technology, under-

pinned by the integration of ideas from object-oriented languages along with the

specific needs of database applications.

The fundamental reason for using such systems is that any real-world entity can

be modeled by one object which matches its structure and behavior. To this end, the

standard notion of object has to be augmented so that it can model the fact that an

entity may acquire new pieces of structure and behavior during its existence, without

changing its identity. Toallow this extensibility in a statically typed system, a notion

of context-dependent behavior (“role playing”) has to be added to the basic features

of object-oriented languages. This feature is also a useful modeling device.

Languages with role mechanisms have already been proposed. However, their

design is full of choices which cannot be easily justified. A strong foundation for

the object-with-roles notion would be extremely helpful to justify these choices and

to understand, and prove, the properties of such a mechanism. In this paper we

describe such a foundation, building on the object model proposed by Abadi and

Cardelli.

Key Words:Object-oriented languages, roles

1. INTRODUCTION

In the database field, the object-oriented data model attracts much attention because
of its ability to faithfully represent real world entities. However, database applications
need an operation, which we callobject extension, which is not allowed in the standard
object-oriented model. Object extension is the operation which allows an object, created
in a classC, to become an instance of a subclassS too, without changing itsidentity.

The problematic aspect of extension can be better explained by an example. Consider
an object typePersonwith two subtypes,StudentandEmployee, which both introduce an
IdCodefield, with a different meaning and even a different type. Extension allows one to
build a studentJohnwith IdCode 100 and then to extend it to be also an employee with
IdCode “I1”. It is not clear, now, howJohnshould answer anIdCodemessage.

1

2 GIORGIO GHELLI

We call “incompatible” such an extension that adds an already present field with a non
compatible type. Many foundational studies have been devoted to the problem of defining
an object (or record) extension operation which prevents incompatible extensions.

A different approach, studied in the field of database languagues ([19], [8], [28], [5]. . .),
is to allow incompatible extensions, by giving a context dependent behavior to the extended
object: in our example, in different contexts,John will play either theStudentor the
Employeerole, and will answer theIdCodemessage in a role-dependent way. The idea
of objects with multiple roles, whose behavior depends on the role played, is also a useful
modeling device, which combines the flexibility given by method overriding with the ability
to access different methods in different situations.

In the Pisa University database group we have defined and developed a database pro-
gramming language,Fibonacci, which embodies these ideas ([5]). During this process,
we had to make some design choices, and to adopt some typing rules, often without a
clear understanding of the different choices, or of their consequences and interplay. Our
understanding of the object with roles mechanism was not complete, and this paper tries to
fill this gap.

We define here a role calculus, defined as a minimal extension of Abadi-Cardelliς-
calculus [2], which embodies, in an abstract way, the essential features we need in a calculus
for extensible objects with roles. The focus of our research is not on the extension operation,
but on the good formation properties which allow the different methods introduced by
incompatible extensions to coexist, on the semantics of message passing, and on the role
of generative types.

The paper is structured as follows. In Section 2 we recall Abadi-Cardelliς-calculus,
which is the basis of our proposal. In Section 3 we give an informal introduction to our
calculus. The calculus is formally introduced in Section 4. In Section 5 we prove the main
properties of the calculus, subject reduction and strong typing. In Section 6 we show how
the calculus can be enriched with an inheritance mechanism, and we describe a translation
from the hierarchical to the basic calculus. In Section 7 we discuss an important technical
point, the internal structure of the set of role-tags. Section 8 discusses some related works.
Section 9 draws some conclusions.

2. THE ς-CALCULUS

Our model is defined as an extension of Abadi-Cardelliς-calculus [2]. In that calculus,
an object is simply a method suite, where each method has a special “self-variable”, bound
by theς binder. Three operations are defined on objects: construction[li = ς(xi : A)bi∈I

i],
method selectiona.l, and method updatea.l ← ς(xi : A)b. Method selection returns
the body of the selected method and substitutes the “self-variable” with the whole object;
method update updates the body of a method. The syntax of the Abadi-Cardelli calculus is
defined below.

Types A,B :: = K | [li : Bi
i∈I]

Terms a, b, o :: = x | k | [li = ς(xi : A)bi
i∈I] | o.l | o.l← ς(xi:A) b

The notation[Xi
i∈1...n] stands for a sequence[X1; . . . ;Xn].

The operational semantics is defined by the following evaluation relation.

FOUNDATIONS FOR EXTENSIBLE OBJECTS WITH ROLES 3

(Red. Object)
v = [li = ς(xi:A) bi

i∈I]

v → v

(Red. Select)
a → [li = ς(xi:A) bi

i∈I] = o h ∈ I bh{xh ← o} → v

a.lh → v

(Red. Update)
a → [li = ς(xi:A) bi

i∈I] h ∈ I

a.lh ← ς(x:A) b → [lh = ς(x:A) b, li = ς(xi:A) bi
i∈I\{h}]

The type rules of the calculus are as follows.

(Type Object)
∀i∈I. ` Bi ♦
` [li : Bi

i∈I] ♦

(Val x)
E, x:A,E′ ` ♦

E, x:A,E′ ` x : A

(Val Select)
E ` a : [li : Bi

i∈I] h∈I

E ` a.lh : Bh

(Val Object)
let A = [li : Bi

i∈I]
∀i ∈ I. E, xi:A ` bi : Bi

E ` [li = ς(xi:A) bi
i∈I] : A

(Val Update)
let A = [li : Bi

i∈I]
E ` a : A h∈I E, x:A ` b : Bh

E ` a.lh ← ς(x:A) b : A

3. AN OVERVIEW OF THE ROLE CALCULUS
3.1. The Fibonacci model

Our role model is an abstract version of the Fibonacci model, which is better explained
by an example. The following piece of Fibonacci code defines three object types, then
builds a person and extends it to a student and to an employee.

Let Person = IsA NewObject With Name: String; End;

Let Student = IsA Person With IdCode: Int; End;

Let Employee = IsA Person With IdCode: String; End;

let john = object Person

methods Name = "John" end;

let johnAsStudent = extend john to Student

methods IdCode = 100 end;

let johnAsEmployee = extend john to Employee

methods IdCode = "I1" end;

According to the Fibonacci “arrows and boxes” informal model, the construction and
extension operations above build an object with an internal structure of threeroles, one

4 GIORGIO GHELLI

for each different object type owned by the object. Each of the three identifiersjohn...

denotes a different role of the same object, as depicted in Figure 1. TheStudentand
Employeeroles both contain anIdCodefield. Observe that the second extension does not
override the first one, hence the relative order of the two operations is irrelevant.

�-

-

johnAsEmployeejohnAsStudent

john

@@I

EmployeeStudent
���

Person

FIG. 1. The internal structure of an object with roles.

When a message is sent to an object, it is actually sent to one of its roles. The corre-
sponding method is then looked for in the receiving role and in its ancestors.

For example, in the previous examplejohnAsStudent.Name invokes theNamemethod
from thePersonrole, whilejohnAsStudent.IdCode invokes theIdCodemethod from
theStudentrole.

If object extension is never used, then every object is always accessed from its bottom
role, and Fibonacci semantics coincides with the standard Smalltalk one. Non standard
phenomena only happen after extension, as in the previous example.

3.2. The abstract model
The essential features of the Fibonacci model that we would like to represent are:

1. classical smalltalk-like objects are a special case of objects with roles (other proposals
support roles at the expense of other features, such as dynamic binding);

2. a Fibonacci object (a “role”, in Fibonacci jargon), denotes one specific role of an
object; messages are sent to roles, and method lookup depends on the receiving role (in
other approaches, messages are sent to objects, and it is the context, namely the static type
of the receiver, which influences method lookup, as in [8]);

3. object types (more precisely, role types) are generative: theIsa operator generates a
brand new type whenever it is invoked. For example,EmployeeandStudentwould be two
different types even ifIdCodewere an integer in both cases;

4. an object is not allowed to acquire the same role type twice: extending a student to
the typeStudentis not allowed.

Features (1) and (2) are fundamental and easily defendable design choices, while (3),
and hence (4), are more questionable.

In the type theoretic field, we usually prefer to deal with non-generative object types,
mainly because generative types, which may be seen as a limited form of dependent types,
have bad interactions with other constructs, such as modules and polymorphism. In the
database field, on the other hand, we prefer generative types because aPersonmodels a
class of entities which “happen” to have a certain interface, but the “identity” of the type,
and its position in the type hierarchy, cannot be simply identified with its interface.

We chose here to model generative types in order to have a more faithful model for
Fibonacci, and also because we believe that generative object types is an important notion

FOUNDATIONS FOR EXTENSIBLE OBJECTS WITH ROLES 5

which needs better foundations. However, the system we present here models generative
types with a non-generative approach, by exploiting the idea of “role-tags”; in Section 7
we give some details on this idea.

Finally, we adopt constraint (4) because it is found in Fibonacci, but it may be dropped
without any major consequences.

To model objects with roles we proceed as follows. Since methods are selected on the
basis of a message and a role, we extend the Abadi-Cardelli model by indexing methods
in an object with a(role-name,message)pair, instead of a message only. The “role-name”
is chosen from an infinite setR of role-tags. Then, since an “object expression” actually
denotes one specific role of an object, we transform objects into〈role-tag,method suite〉
pairs. Hence, an object-with-role playing the roleR is now represented as the following
pair, where thecurrent roleR belongs to{Ri} i∈I :

〈R, [(Ri, li) = ς(xi:A) bi
i∈I]〉

The role-tagsRi andR come from an arbitrary partially ordered setR. Our theory is
independent of the chosenR, hence we can assume that whichever object type hierarchy
we are interested in, this hierarchy is chosen asR (in a program written in a standard
class-based object-oriented language,R would be the set of the class names ordered by
inheritance). For example, the previous example can be modeled by taking

R = 〈{Pers, Stud, Emp}, Ord〉

whereOrd is the order generated byStud≤ Pers, Emp≤ Pers. We can do better, however,
and define a special setR where every finite object type hierarchy can be “faithfully”
embedded; this construction is presented in Section 7.

This syntax allows one to model thejohnAsEmployeevalue which is produced by the
previous Fibonacci operations as follows.

johnAsEmployee =
〈Emp, [(Pers, Name) = ς(x : A) "John";

(Stud, Name) = ς(x : A) "John"; (Stud, IdCode) = ς(x : A) 100;
(Emp, Name) = ς(x : A) "John"; (Emp, IdCode) = ς(x : A) "I1"]〉

Since this basic calculus is modeled over theς-calculus, it has no inheritance operator,
and inheritance can be represented using the same techniques as in [2]. However, the
example above shows that here inheritance is more important than in usual object calculi.
In fact, in object calculi, inheritance is used to avoid code replication in the definition of
different objects (or classes), while here we have to deal with code replication inside one
single object. For example, we have to write down all the three identical methods for
(Pers,Name), (Stud,Name), and(Emp,Name), which will be used when the above object
will be asked its name through itsPers, Stud, andEmproles. Later, in Section 6, we will
also present a version of the role calculus with inheritance where this redundancy can be
avoided, and we will discuss how it can be translated into the basic role calculus. However,
we start with the inheritance-free calculus because we are looking for the simplest calculus
where the notion of roles can be studied.

For the same reason, as is common in the type-theoretic field, we will define a side-
effect-free calculus, where we can study the essential features and avoid some unnecessary

6 GIORGIO GHELLI

complications. More precisely, though the notion of ‘object identity’ is not modeled in our
calculus, our study will nevertheless face the type-theoretic problems which are posed by
identity preserving updates, while avoiding having to deal with stores and locations. This
presence of the typing problems of imperative object-oriented languages in the functional
setting is a well-known phenomenon, which is explained by the presence ofself, combined
with the requirement that methods which have been type-checked before a functional
update of the object should not need to be checked again after the update. Informally, an
updated object is referenced both by the instances ofself in the methods checked before
the update and by those in the methods added by the update operation. This form of
sharing, though limited, already presents the same type-theoretic challenges that arise in
the imperative setting because of the full sharing allowed by the presence of updatable
locations. Extending this calculus to an imperative one is relatively straightforward (see
[2], Chapters 10-11, but also [7, 22]).

4. THE BASIC CALCULUS
4.1. The syntax

By extending theς-calculus with the(role-tag,label)indexing of methods and by pairing
each object with a “current role”, we already obtain a kernel role calculus, where most
issues can be discussed. We decided, however, to study a calculus which is richer, but more
complex, because we want to model all the main Fibonacci role-related operators, hence
we extend the calculus with the following additional operations:

1. object extension: this operation adds a new set of methods to an object; the(role-
tag,label)pairs of the new methods are required not to appear in the object. For the sake of
simplicity, we allow at most one new role-tagR to be added by each extension operation,
but we have to allow a set of methodsς(xi:A) bi

i∈I to be added at once, for reasons which
we will discuss later:

o + [(R, li) = ς(xi:A) bi
i∈I]

2. role coercion: the operationo asR sets the current role-tag ofo to R;
3. role checking: the operationo is R tests whether the current role-tag ofo is R;
4. dynamic type cast: the operationcheck(a : A) castsa to the object typeA, and fails

if this is not sound. We model this failure by the propagation of a special valuecheckerr,
i.e. check(a : A) evaluates tocheckerr whenever the run-time type ofa is not a subtype
of A, andf(checkerr) evaluates tocheckerr for everyf .

The check(a : A) operation is just a simple model of a type-cast (or dynamic typing)
facility which is, in practice, very useful in this context. We deal with it for the sake
of completeness, but it may be substituted by any other dynamic typing operator, or be
dropped altogether, without affecting the rest of the system.

In some approaches, object extension and field update are merged in one operation which
either updates the field, when it is already in the object, or adds it, when it is not there. We
prefer to keep the two operations separate, both because we want to study their different
typing rules, and because we believe that this separation, in a programming language,
increases program readability.

We may substitute object construction with empty object construction (〈R, []〉) plus
extension. However, we prefer to keep full object construction because we see extension,
as, is , andcheck(a : A), as something which is not in the hard kernel of the system,

FOUNDATIONS FOR EXTENSIBLE OBJECTS WITH ROLES 7

hence we prefer to have a system which would remain complete even if we took these
operators out.

The syntax of the calculus is thus defined as follows. Hereafter, metavariablesR, Si,
Ri, and their primed versions, range overR, while l, m, andli range over a denumerable
set of labels. The two forms of the object type will be explained in the next subsection.
As usual, we consider terms moduloα-equivalence, and the order of fields is irrelevant in
objects and in object types.

Types A,B,C :: = K | 〈R, [(Ri, li) : Bi
i∈I]〉

| 〈R, [(Ri, li) : Bi
i∈I]〉+

Terms a, b, o :: = x | k | 〈R, [(Ri, li) = ς(xi:A) bi
i∈I]〉

| o.l | o.l← ς(x:A) b

| o + [(R, li) = ς(xi:A) bi
i∈I]

| o asR | o is R | check(a : A)
| checkerr

Environments E :: = () | E, x:A
Judgements J :: = E ` ♦ | ` A ♦ | E ` a : A

| ` A ≤ B

Note that, in the object construction and object extension operations,A does not depend
on i because all methods must declare the same type for theirself parameterxi. R does
not depend oni in the object extension operation since an object acquires at most one new
role at a time.

Hereafter we will use the following notation:

• if A = 〈R, [(Ri, li) : Bi
i∈I]〉, thenA+ = 〈R, [(Ri, li) : Bi

i∈I]〉+.
• if A = 〈R, [(Ri, li) : Bi

i∈I]〉+, thenA− = 〈R, [(Ri, li) : Bi
i∈I]〉.

4.2. Typing and subtyping
As in [2], the type of an object describes the structure of the object itself, hence its syntax is

〈R, [(Ri, li) : Bi
i∈I]〉. On these types, we would like to have a non trivial subtype relation,

including at least width subtyping (more fields in a subtype), as in Abadi-Cardelli calculus.
However, we also have to type the object extension operation. Subsumption combined
with width subtyping implies that the type of an objecto only records a subset of its actual
fields, which makes it impossible to statically check some good formation properties of
objects built by extendingo. This is a classical problem, which we solve in the simplest
way, by defining both a strict and a weak object type. The strict type〈R, [(Ri, li) : Bi

i∈I]〉
describes the exact structure of an object, hence only trivial subtyping is defined on strict
types (rule [StrictForm] below), and strict types are used to type the extension operation
(rule [Ext]). The weak object type〈R, [(Ri, li) : Bi

i∈I]〉+ only lists some messages which
are guaranteed to be answered by the object, hence width subtyping applies to weak types,
and weak types are used to type method extraction (rule [Meth]). We use strict types to
type-check method updates too (rule [Upd]), hence we gain depth subtyping on weak types
(rule [WeakDepthSub]) (depth subtyping means that the type of a method in a subtype is
generally not equal but just a subtype of the type of the same method in the supertype;
depth subtyping is not compatible with method update operations). Strict types can be

8 GIORGIO GHELLI

promoted to the corresponding weak type (rule [StrictWeakSub]). Hereafter, unqualified
“object type” stands for the weak version. The use of strict and weak types to type update
and query operations respectively was first proposed in [16], and developed independently,
for object update, in [14, 15]; it is also strictly connected with the idea of “row variables”
[30].

Weak object subtyping also allows the current role to be promoted to a super-role. This
happens because we want, for example, to be able to define a function to print the name
of a person as in the following two lines, written in a role-based toy-language, and then to
apply that function to students and employees.

let type Person = <Pers,[(Pers,Name):String]>+;

let printName = fun(x:Person) printString(x.Name);

However, role promotion creates a soundness problem. It would not be sound to pass an
objecto whose strict type is〈Stud, [(Pers, Name) : string]〉 to the function above, since
x.Namewould look for a(Stud,Name)method, buto is not able to answer theNamemethod
in its Studentrole (we have no inheritance here); however, the type ofo is a subtype of
〈Pers, [(Pers, Name) : string]〉. We solve this problem by considering such an object as ill
formed: if a student can answer a methodm as a person, it must be able to answerm as a
student too. This “downward closure” condition is formalized in the third premise of rule
[StrictForm], and will come (almost) for free in the version with inheritance. The premise
can be read as: for every method(Rj , lj) and for every roleRi ≤ Rj which appears in
some other method, there is a method(Rh, lh) which answers the messagelj for the role
Ri (i.e.,(Rh, lh) = (Ri, lj)). We check this condition for every role-tagRi which appears
in some other method, instead of every role-tag inR, thanks to the conditionR ∈ {Ri} i∈I

which appears in the [StrictForm] and [As] rules.
A problem would also arise if we allowed an object with strict type〈Stud, [(Stud, Name) :

int; (Pers, Name) : string]〉 to be passed to the same function. In this case, the(Stud, Name)
method answers the callx.name which has been typed with respect to the(Pers, Name)
method, hence the type of the first method must be a subtype of the type of the second.
This “covariance” condition is captured by the second premise of rule [StrictForm]. Notice
that this covariance is orthogonal to the depth subtyping question, but is strictly related to
the same condition we find in theλ-& calculus of overloaded functions with late binding
[17, 11, 9].

We are now ready to present the good formation and subtyping rules of our system. In
the [Env] rule, Dom(E) is the set of all variablesx such that, for someA, x:A appears in
E. We do not state an explicit reflexivity rule, since it is implied (i.e., admissible) by the
[StrictSub] and [WeakDepthSub] rules.

Environment formation

[EmptyEnv]
() ` ♦

E ` ♦ ` A ♦ x /∈ Dom(E)
[Env]

E, x:A ` ♦

Type formation

FOUNDATIONS FOR EXTENSIBLE OBJECTS WITH ROLES 9

(1) ∀i 6= j. (Ri, li) 6= (Rj , lj)
(2) ∀i, j∈I. Ri ≤ Rj , li = lj ⇒ ` Bi ≤ Bj

(3) ∀i, j∈I. Ri ≤ Rj ⇒ ∃h∈I. (Rh, lh) = (Ri, lj)
(4) R ∈ {Ri} i∈I

[StrictForm]
` 〈R, [(Ri, li) : Bi

i∈I]〉 ♦

` 〈R, [(Ri, li) : Bi
i∈I]〉 ♦

[WeakForm]
` 〈R, [(Ri, li) : Bi

i∈I]〉+ ♦

Subtyping

` 〈R, [(Ri, li) : Bi
i∈I]〉 ♦

[StrictSub]
` 〈R, [(Ri, li) : Bi

i∈I]〉 ≤ 〈R, [(Ri, li) : Bi
i∈I]〉

` 〈R′, [(R′
i, l

′
i) : B′

i
i∈I′

]〉+ ♦
` 〈R, [(Ri, li) : Bi

i∈I]〉+ ♦
R′ ≤ R

∀i∈I. ∃i′∈I ′. (R′
i′ , li′) = (Ri, li) ∧ ` B′

i′ ≤ Bi
[WeakDepthSub]

` 〈R′, [(R′
i, l

′
i) : B′

i
i∈I′

]〉+ ≤ 〈R, [(Ri, li) : Bi
i∈I]〉+

` 〈R, [(Ri, li) : Bi
i∈I]〉 ♦

[StrictWeakSub]
` 〈R, [(Ri, li) : Bi

i∈I]〉 ≤ 〈R, [(Ri, li) : Bi
i∈I]〉+

` A ≤ A′ ` A′ ≤ A′′

[Transitivity]
` A ≤ A′′

We can now present the typing rules.
Rules [ObjIntro], [Ext], and [Upd], check that the resulting type is well formed, and that

every (new) method has the correct type, under suitable assumptions over the type ofself
(xj or x). In all these rules, methods are type-checked under the assumption that the type
of self is a weak versionA+ of the object type. We cannot use the stronger assumption that
self has the strict typeA, since otherwise every method should be re-type-checked any time
the object is extended and its type grows. Indeed, observe that, in the [Ext] rule, theA+

type ofself after extension is different from the type ofa before extension, and from the
type ofself used to type-check the methods ofa. This coexistence of different self types is
a well-known phenomenon, and an essential feature of most calculi which support object
extension. The proof of the compatibility between the actual run-time type of an object
and the types of its self variables is the kernel of the proof of the strong typing theorem in
Section 5.

In the [ObjIntro] rule, eachbj method is checked under the assumption thatxj has type
〈Rj , [(Ri, li) : Bi

i∈I]〉+, rather thanA+ = 〈R, [(Ri, li) : Bi
i∈I]〉+. We fix the role ofxj

10 GIORGIO GHELLI

to Rj since we know that, when the methodbj is selected, the role of the receiving object
is Rj , hence this will be the role ofself (xj). In the [Ext] and [Upd] rules we can write the
same assumption asx:A+ because, in both cases, the role associated with the methodbj

(b, in the [Upd] rule) is exactly the roleR which appears inA.
The extension operator is allowed to add many fields at a time, while updating can only

update one of them. We need this ability of adding many methods at a time, because the
type of the resulting object must be well-formed, and the third well-formedness condition
of rule [StrictForm] (downward closure) requires that, when one roleR is added to an
object,all messages which have a method for a superrole ofR inside the object acquire a
method forR too. We may extend the update operation to update many fields too, but we
prefer to keep it simpler.

The [Meth] rule only requires the messagel to be understood by the current roleR of a.
If the type ofa contains more fields, we use subsumption to promote the type ofa to one
which only contains the(R, l) method.

The [As] rule requiresR′ to be a role for whicha has at least one method. This side
condition is used to model the notion that an object only has some specific roles (for
example, one person is a student, while another one is not), and cannot be casted to a
role which the object does not possess. It is also useful, as we said before, to make the
downward closure condition more tractable (rule [ObjIntro], condition (3)).

[Is] and [Check] only requirea to belong to some object type.
Finally, the [Error] rule givescheckerr any type. This happens becausecheckerr

behaves likes an exception: any operator can be applied tocheckerr, and the result is
always the propagation of the exception, i.e. the valuecheckerr itself. This may also be
modeled by assigning a bottom type tocheckerr, as happens for example in the Galileo
language [3], or by designing a full-fledged exception mechanism.

Term formation

E, x:A,E′ ` ♦
[Var]

E, x:A,E′ ` x : A

let A = 〈R, [(Ri, li) : Bi
i∈I]〉

` A ♦ ∀j ∈ I. E, xj:〈Rj , [(Ri, li) : Bi
i∈I]〉+ ` bj : Bj

[ObjIntro]
E ` 〈R, [(Ri, li) = ς(xi:A+) bi

i∈I]〉 : A

let A = 〈R, [(Ri, li) : Bi
i∈I ;R,mj : Cj

j∈J]〉
E ` a : 〈R′, [(Ri, li) : Bi

i∈I]〉 ` A ♦
∀j∈J. E, xj:A+ ` bj : Cj

[Ext]
E ` a + [(R,mj) = ς(xj:A+) bj

j∈J] : A

E ` a : A = 〈R, [(Ri, li) : Bi
i∈I]〉

∃h∈I. (Rh, lh) = (R, l) E, x:A+ ` b : Bh
[Upd]

E ` a.l← ς(x:A+) b : A

E ` a : A ` A ≤ B
[Subs]

E ` a : B

E ` a : 〈R, [(R, l) : B]〉+
[Meth]

E ` a.l : B

FOUNDATIONS FOR EXTENSIBLE OBJECTS WITH ROLES 11

E ` a : 〈R, [(Ri, li) : Bi
i∈I]〉+ R′∈{Ri} i∈I

[As]
E ` a asR′ : 〈R′, [(Ri, li) : Bi

i∈I]〉+

E ` a : 〈R, []〉+
[Is]

E ` a is R′ : bool

` A ♦ E ` a : 〈R, []〉+
[Check]

E ` check(a : A) : A

E ` ♦ ` A ♦
[Error]

E ` checkerr : A

We give now an example of a typing derivation for the term

(〈R, [(R, l) = ς(x:A) true]〉+ [(S, l) = ς(x:B) 1]).l

where we consider a setR whereR andS are not related, we assume the existence of
boolean and integer constants with their types, and we use the following abbreviations:

A = 〈R, [(R, l) : bool]〉, B = 〈S, [(R, l) : bool; (S, l) : int]〉

We omit some easy proofs of good formation and subtyping.

(1) ` A = 〈R, [(R, l) : bool]〉 ♦

(2) x : 〈R, [(R, l) : bool]〉+ ` true : bool

(3) ` (〈R, [(R, l) = ς(x:A+) true]〉 : 〈R, [(R, l) : bool]〉 by 1, 2, [ObjIntro]

(4) ` B = 〈S, [(R, l) : bool; (S, l) : int]〉 ♦

(5) x : 〈S, [(R, l) : bool; (S, l) : int]〉+ ` 1 : int

(6) ` (〈R, [(R, l) = ς(x:A+) true]〉+ [(S, l) = ς(x:B+) 1])
: 〈S, [(R, l) : bool; (S, l) : int]〉 by 3, 4, 5, [Ext]

(7) ` (〈R, [(R, l) = ς(x:A+) true]〉+ [(S, l) = ς(x:B+) 1])
: 〈S, [(S, l) : int]〉+ by 6, [Subs]

(8) ` (〈R, [(R, l) = ς(x:A+) true]〉+ [(S, l) = ς(x:B+) 1]).l
: int by 7, [Meth]

4.3. The reduction rules
We now define the operational semantics of the language as a deterministic relation

between terms and values, where values are defined by the following grammar, wherek

includestrue andfalse.

Values v :: = k | 〈R, [(Ri, li) = ς(xi:A) bi
i∈I]〉 | checkerr

12 GIORGIO GHELLI

The operatorcheck(a : A) may raise run-time errors (exceptions) when well-typed
terms are evaluated. We model these errors as special values, which are generated by the
application of rule [RCheckErr], and are propagated by the rules [RError] and [RMeth]
(whenbh{xh ← o} reduces tocheckerr). The propagation of this error does not violate
subject reduction, or strong typing, because we decided thatcheckerr has any type. We
may say that, by givingcheckerr any type, we decided that it models those errors which we
are not able to prevent by static type-checking. You may compare it with the pseudo-value
crash, which we introduce in the next section, which has no type and models those errors
which arepreventedby static type-checking. In any case, remember thatcheck(a:A) and
checkerr are not essential to our approach, and the rest of the system does not depend on
them in any way.

Observe that the [RExt], [RUpd], and [RAs] rules update the type which is stored inside
the object. This is a technical trick, needed to make the system enjoy the subject reduction
property. Observe that types are stored inside objects only to support dynamic typing (i.e.,
thecheck(a:A) operator).

[RValue]
v → v

a → 〈R, [(Ri, li) = ς(xi:A) bi
i∈I]〉 = o

∃h ∈ I. (Rh, lh) = (R, l) bh{xh ← o} → v
[RMeth]

a.l → v

a → 〈R′, [(Ri, li) = ς(xi:A′) b′i
i∈I]〉 ¬∃i∈I, j∈J. (Ri, li) = (R,mj)

[RExt]
a + [(R,mj) = ς(xj:A) bj

j∈J]
→ 〈R, [(Ri, li) = ς(xi:A) b′i

i∈I ; (R,mj) = ς(xj:A) bj
j∈J]〉

a → 〈R, [(Ri, li) = ς(xi:A′) bi
i∈I]〉 ∃h ∈ I. (Rh, lh) = (R, l)

[RUpd]
a.l← ς(x:A) b

→ 〈R, [(Ri, li) = ς(xi:A) bi
i∈I\{h}; (Rh, lh) = ς(x:A) b]〉

let A′ = 〈R′, [(Ri, li) : Bi
i∈I]〉

a → 〈R, [(Ri, li) = ς(xi:A) bi
i∈I]〉 R′ ∈ {Ri} i∈I

[RAs]
a asR′ → 〈R′, [(Ri, li) = ς(xi:A′) bi

i∈I]〉

a → 〈R, [(Ri, li) = ς(xi:A) bi
i∈I]〉

[RIsT]
a is R → true

a → 〈R, [(Ri, li) = ς(xi:A) bi
i∈I]〉 R′ 6= R

[RIsF]
a is R′ → false

a → 〈R, [(Ri, li) = ς(xi:A) bi
i∈I]〉 ` A− ≤ A′

[RCheck]
check(a : A′) → 〈R, [(Ri, li) = ς(xi:A) bi

i∈I]〉

FOUNDATIONS FOR EXTENSIBLE OBJECTS WITH ROLES 13

a → 〈R, [(Ri, li) = ς(xi:A) bi
i∈I]〉 6` A− ≤ A′

[RCheckErr]
check(a : A′) → checkerr

a → checkerr
[RError]

C[a] → checkerr

In the propagation rule [RError],C[a] stands for any of the following expressions:a.l,
a.l← ς(x:A) b, a + [(R, li) = ς(xi:A) bi

i∈I], a asR, a is R, andcheck(a : A).
In the [RCheck] and [RCheckErr] rules, we compare the actual run-time type of the

object withA′; the decidability of the subtyping problem is proved in the next section
(Corollary 5.1). The run-time type of the object is the strict typeA− which corresponds to
the weak typeA which is stored as the self type of every object method.

5. THE STRONG TYPING THEOREM
5.1. Strong typing and subject reduction

Strong typing is the property which specifies that the evaluation of a well-typed program
will not raise unchecked errors. In our context, strong typing can beinformally expressed
as:` a : C implies that either∃v. a → v or the evaluation ofa does not terminate.

Strong typing is strictly related tosubject reduction, i.e. to the fact that, if̀ a : C is well
typed anda reduces tov, thenv has typeC too. As is customary (see [2]), we will give a
real proof of the subject reduction property, which is the interesting kernel of the question,
while we will be less formal in the standard transformation from subject reduction to strong
typing.

5.2. Subject reduction
To prove subject reduction, we first need some lemmas.

Lemma 5.1.

` 〈R, [(Ri, li) : Bi
i∈I]〉 ♦, R′ ∈ {Ri} i∈I ⇒ ` 〈R′, [(Ri, li) : Bi

i∈I]〉 ♦
` 〈R, [(Ri, li) : Bi

i∈I]〉+ ♦, R′ ∈ {Ri} i∈I ⇒ ` 〈R′, [(Ri, li) : Bi
i∈I]〉+ ♦

Proof. By the shape of rules [StrictForm] and [WeakForm].

Lemma 5.2 (Subproof).

1.E,E′ ` ♦ ⇒ E ` ♦ andE′ ` ♦;

2.E ` ♦ andE′ ` ♦ and Dom(E) ∩ Dom(E′) = ∅ ⇒ E,E′ ` ♦;

3.̀ A ≤ B ⇒ ` A ♦ and` B ♦;

4.̀ 〈R, [(Ri, li) : Bi
i∈I]〉 ♦ ⇒ ∀i ∈ I. ` Bi ♦;

5.̀ 〈R, [(Ri, li) : Bi
i∈I]〉+ ♦ ⇒ ∀i ∈ I. ` Bi ♦;

6.E ` a : A ⇒ E ` ♦ and` A ♦;

7.E, x:A,E′ ` ♦ ⇒ E ` ♦ and` A ♦.

14 GIORGIO GHELLI

Proof. (1,2): by induction on the length ofE′. (3): by induction on the proof of
` A ≤ B. (4): by the shape of rule [StrictForm], and by (3). (5): by the shape of
rule [WeakForm], and by (4). (6) and (7): by simultaneous induction on the proof of
E ` a : A, E, x:A,E′ ` ♦, and by cases on the last applied rule. For (6), you need
(3) for rule [Subs], (5) for rule [Meth], Lemma 5.1 for rule [As]; all the other cases are

immediate either by induction or because the thesis is one of the premises of the rule.

Lemma 5.3. If E, x:A,E′ ` b : B and` A′ ≤ A then (1)E, x:A′, E′ ` ♦ and (2)
E, x:A′, E′ ` b : B.

Proof. (1): use the Subproof Lemma 5.2. (2): Substitute any application of rule [Var] to

x with [Var] plus subsumption, and use (1).

Lemma 5.4 (Generation). LetE ` c : C. Then:

1.if c = 〈R, [(Ri, li) = ς(xi:A) bi
i∈I]〉 then:

•A = 〈R, [(Ri, li) : Bi
i∈I]〉+, for some{Bi} i∈I ;

•∀j ∈ I. E, xj:〈Rj , [(Ri, li) : Bi
i∈I]〉+ ` bj : Bj ;

•` A− ≤ C.

2.if c = a + [R,mj = ς(xj:A) bj
j∈J] then

•A = 〈R, [(Ri, li) : Bi
i∈I ;R,mj : Cj

j∈J]〉+, for some{Ri, li, Bi} i∈I , {Cj} j∈J ;

•E ` a : 〈R′, [(Ri, li) : Bi
i∈I]〉, for someR′;

•∀j∈J. E, xj:A ` bj : Cj ;

•` A− ≤ C.

3.if c = a.l← ς(x:A) b then

•A = 〈R, [(Ri, li) : Bi
i∈I]〉+, for some{Ri, li, Bi} i∈I , R;

•E ` a : 〈R, [(Ri, li) : Bi
i∈I]〉;

•∃h∈I. (Rh, lh) = (R, l), E, x:A ` b : Bh;

•` A− ≤ C.

4.if c = a.l thenE ` a : 〈R, [(R, l) : C]〉+.

5.if c = a asR′ then there exist{Ri, li, Bi} i∈I such thatR′∈{Ri
i∈I},` 〈R′, [(Ri, li) :

Bi
i∈I]〉+ ≤ C, andE ` a : 〈R, [(Ri, li) : Bi

i∈I]〉+ for someR.

6.if c = a is R′ thenC = boolandE ` a : 〈R, []〉+ for someR.

7.if c = check(a : A) then` A ≤ C andE ` a : 〈R, []〉+ for someR.

Proof. The only non syntax-directed rule is [Subs]. For anyc, there are exactly two type
rules which may be applied toc, [Subs] and the rulerc which corresponds to the outermost
operator ofc. Hence, any proof ofE ` c : C terminates with a proof ofE ` c : C ′ by
rule rc, followed by a chain of subsumptions, whose subtyping premises can be grouped
by transitivity to form a proof of̀ C ′ ≤ C.

FOUNDATIONS FOR EXTENSIBLE OBJECTS WITH ROLES 15

Since we know thatE ` c : C ′ has been proved byrc, we know that the premises
of the corresponding instantiation of rulerc hold; this gives us properties (1), (2), (3),
(5), (6), (7). In case (4.), the actual premise ofrc is E ` a : 〈R, [(R, l) : C ′]〉+;

E ` a : 〈R, [(R, l) : C]〉+ follows by` C ′ ≤ C, [WeakDepthSub], and subsumption.

Lemma 5.5 (Generation2). Let` A ≤ B. Then:

1.if B is a strict object type, thenA = B.

2.if B is a weak object type〈R, [(Ri, li) : Bi
i∈I]〉+, and A is a strict object type

〈R′, [(R′
i, l

′
i) : B′

i
i∈I′

]〉 or a weak object type〈R′, [(R′
i, l

′
i) : B′

i
i∈I′

]〉+, then

(i)R′ ≤ R;

(ii)∀i∈I. ∃!i′∈I ′. (R′
i′ , l

′
i′) = (Ri, li),` B′

i′ ≤ Bi

(iii) ∀i∈I. ∀i′∈I ′. (R′
i′ , l

′
i′) = (Ri, li) ⇒ ` B′

i′ ≤ Bi

3.if A is a strict object type andB is a weak object type, theǹA+ ≤ B.

Proof. (1.) By induction on the size of the proof, and by cases on the last rule applied,
which is either [StrictSub] or [Transitivity].

(ii) We first prove∀i∈I. ∃i′∈I ′. (R′
i′ , l

′
i′) = (Ri, li),` B′

i′ ≤ Bi, by induction on the
size of the proof, and by cases on the last rule applied. [WeakDepthSub], [StrictWeakSub]:
immediate. [Transitivity]: if the intermediate type is strict, we conclude by induction and
by case (1.). If the intermediate type is〈R′′, [(R′′

i , l′′i) : B′′
i

i∈I′′
]〉+, then, by induction:

∀i′′∈I ′′. ∃i′∈I ′. (R′
i′ , l

′
i′) = (R′′

i′′ , l
′′
i′′),` B′

i′ ≤ B′′
i′′

∀i∈I. ∃i′′∈I ′′. (R′′
i′′ , l

′′
i′′) = (Ri, li),` B′′

i′′ ≤ Bi

The thesis follows by transitivity. The fact thati′ is unique derives from the good
formation ofA and from the first condition of rule [StrictForm]. (i) is proved in the same
way. (iii) is a consequence of (ii).

(3.) By induction on the size of the proof, and by cases on the last rule applied.
[StrictWeakSub]: immediate by [WeakDepthSub]. [Transitivity]: if the intermediate type is
strict, conclude by induction and case (1.). If the intermediate type is a weakC, ` A+ ≤ C

by induction, and conclude by transitivity.

Lemma 5.5 implies that subtyping is decidable. Consider a relation`alg A ≤ B which
is defined by the [StrictSub], [WeakDepthSub], [StrictForm], [WeakForm] rules, together
with the following one, which substitutes [StrictWeakSub] and [Transitivity].

`alg 〈R′, [(R′
i, l

′
i) : B′

i
i∈I′

]〉 ♦
`alg 〈R, [(Ri, li) : Bi

i∈I]〉+ ♦
R′ ≤ R

∀i∈I. ∃i′∈I ′. (R′
i′ , l

′
i′) = (Ri, li) ∧ `alg B′

i′ ≤ Bi
[AlgStrictWeakSub]

`alg 〈R′, [(R′
i, l

′
i) : B′

i
i∈I′

]〉 ≤ 〈R, [(Ri, li) : Bi
i∈I]〉+

This set of rules is syntax-directed. Moreover, if we measure a subtyping or good
formation problem by the sum of the sizes of the involved types, these rules always reduce

16 GIORGIO GHELLI

a problem to a set of strictly smaller problems. Hence, the`alg A ≤ B and`alg A ♦
problems are decidable.

Rule [AlgStrictWeakSub] is admissible in our system, hence`alg A ≤ B ⇒` A ≤ B.
Lemma 5.5 (together with Lemma 5.2, when two strict types are compared) implies that
` A ≤ B ⇒ `alg A ≤ B. Hence, the following corollary holds.

Corollary 5.1 (Decidability of Subtyping). The subtype problem is decidable.

We may now use Lemma 5.4 to define a set of syntax-directed rules for the type-checking
problem too, and prove the following corollary.

Corollary 5.2 (Decidability of Type-Checking). Type-checking is decidable.

Lemma 5.6 (Weakening). LetE,E′′ ` c : C andE,E′, E′′ ` ♦, thenE,E′, E′′ `
c : C.

Proof. By induction on the proof ofE,E′′ ` c : C. Notice that we reason moduloα re-
naming, hence we can rename all the bound variables insidec so that they are different from

those defined inE′ (see [23] for an alternative approach).

Lemma 5.7 (Substitution). Let E, x:A,E′ ` c : C andE ` a : A, thenE,E′ `
c{x←a} : C.

Proof. By induction on the proof ofE, x :A,E′ ` c : C and by cases on the last

applied rule. The only interesting case is rule [Var], where we conclude by Lemma 5.6.

Lemma 5.8 (Subject Reduction). If ` c : C andc → v then` v : C.

Proof. By induction on the size of the proof ofc → v, and by cases on the last
rule applied. For the sake of brevity, we will often use Lemma 5.2 (Subproof) and the
subsumption rule without mentioning them.

• [RMeth]: In this case,c = a.l anda → 〈R, [(Ri, li) = ς(xi:A) bi
i∈I]〉 = o (a),

∃h ∈ I. (Rh, lh) = (R, l) (b), andbh{xh ← o} → v (c).

By Lemma 5.4(4.),̀ a : 〈R, [(R, l) : C]〉+.

By (a) and induction hypothesis,

` 〈R, [(Ri, li) = ς(xi:A) bi
i∈I]〉 : 〈R, [(R, l) : C]〉+.

By Lemma 5.4(1.):

– A = 〈R, [(Ri, li) : Bi
i∈I]〉+, for some{Bi} i∈I (d);

– ∀j ∈ I. xj:〈Rj , [(Ri, li) : Bi
i∈I]〉+ ` bj : Bj (e);

– ` A− ≤ 〈R, [(R, l) : C]〉+ (f).

By (f), (b), and Lemma 5.5(2.),̀ Bh ≤ C (g).

FOUNDATIONS FOR EXTENSIBLE OBJECTS WITH ROLES 17

By (d), (e), rule [ObjIntro],` o : A−, hencè o : A (h).

By (e), sinceR = Rh, xh:〈R, [(Ri, li) : Bi
i∈I]〉+ ` bh : Bh, hence by(h), and Lemma 5.7,

` bh{xh ← o} : Bh.

By induction hypothesis,̀ v : Bh, hence, by(g), ` v : C.

• [RExt]: In this case,̀ c = a + [(R,mj) = ς(xj:A) bj
j∈J] : C (a),

v = 〈R, [(Ri, li) = ς(xi:A) b′i
i∈I ; (R,mj) = ς(xj:A) bj

j∈J]〉 and

a → 〈R′, [(Ri, li) = ς(xi:A′) b′i
i∈I]〉 (b),

¬∃i ∈ I, j ∈ J. (Ri, li) = (R,mj) (c).

By (a) and Lemma 5.4(2.):

– A = 〈R, [(R′
k, l′k) : B′

k
k∈K ; (R,mj) : Cj

j∈J]〉+,
for some{R′

k, l′k, B′
k} k∈K , {Cj} j∈J (d);

– ` a : 〈R′′, [(R′
k, l′k) : B′

k
k∈K]〉, for someR′′ (e);

– ∀j∈J. xj:A ` bj : Cj (f);

– ` A− ≤ C (g).

By (b), (e), and by the inductive hypothesis,

` 〈R′, [(Ri, li) = ς(xi:A′) b′i
i∈I]〉 : 〈R′′, [(R′

k, l′k) : B′
k

k∈K]〉.
By Lemma 5.4(1.):

– A′ = 〈R′, [(Ri, li) : B′′
i

i∈I]〉+, for some{B′′
i } i∈I (h);

– ∀j ∈ I. xi:〈Rj , [(Ri, li) : B′′
i

i∈I]〉+ ` b′j : B′′
j (i);

– ` (A′)− = 〈R′, [(Ri, li) : B′′
i

i∈I]〉 ≤ 〈R′′, [(R′
k, l′k) : B′

k
k∈K]〉 (j).

By (j) and Lemma 5.5(1.),

〈R′, [(Ri, li) : B′′
i

i∈I]〉 = 〈R′′, [(R′
k, l′k) : B′

k
k∈K]〉.

HenceA = 〈R, [(Ri, li) : B′′
i

i∈I ; (R,mj) : Cj
j∈J]〉+.

Hereafter, forj ∈ I, let Aj = 〈Rj , [(Ri, li) : B′′
i

i∈I ; (R,mj) : Cj
j∈J]〉+. Aj is well

formed by Lemma 5.1.

By rule [WeakDepthSub],∀j ∈ I, ` Aj ≤ 〈Rj , [(Ri, li) : B′′
i

i∈I]〉+.

Hence, by Lemma 5.3 and by(i), ∀j ∈ J. xj:Aj ` b′j : B′′
j (k).

By (k), (f), and by rule [ObjIntro],

` v = 〈R, [(Ri, li) = ς(xi:A) b′i
i∈I ; (R,mj) = ς(xj:A) bj

j∈J]〉 : A−.

By (g) and subsumption,̀ v : C.

• [RUpd]: In this case,̀ c = a.l← ς(x:A) b : C (a),

v = 〈R, [(Ri, li) = ς(xi:A) bi
i∈I\{h}; (Rh, lh) = ς(x:A) b]〉 for someh ∈ I (b), and

a → 〈R, [(Ri, li) = ς(xi:A′) bi
i∈I]〉 (c), and(Rh, lh) = (R, l) (d).

By (a) and Lemma 5.4(3.):

– A = 〈R′, [(R′
k, l′k) : B′

k
k∈K〉+, for some{R′

k, l′k, B′
k} k∈K , R′ (e);

– ` a : 〈R′, [(R′
k, l′k) : B′

k
k∈K]〉 (f);

18 GIORGIO GHELLI

– ∃g∈K. (R′
g, l

′
g) = (R′, l), x:A ` b : B′

g (g);

– ` A− ≤ C (h).

By (f), (c), and by the induction hypothesis:

` 〈R, [(Ri, li) = ς(xi:A′) bi
i∈I] : 〈R′, [(R′

k, l′k) : B′
k

k∈K]〉〉 (i).

By (i) and Lemma 5.4(1.):

– A′ = 〈R, [(Ri, li) : Bi
i∈I]〉+, for some{Bi} i∈I (j);

– ∀j ∈ I. xj:〈Rj , [(Ri, li) : Bi
i∈I]〉+ ` bj : Bj , (k);

– ` (A′)− ≤ 〈R′, [(R′
k, l′k) : B′

k
k∈K]〉 = A− (l).

By (l) and Lemma 5.5(1.),(A′)− = A−,

i.e.: 〈R, [(Ri, li) : Bi
i∈I]〉 = 〈R′, [(R′

k, l′k) : B′
k

k∈K]〉, R = R′, hence, by(g) and(d),
the following equalities hold:(R′

g, l
′
g) = (R′, l) = (R, l) = (Rh, lh).

By unicity of (R, l) pairs in well formed types, and from(A′)− = A−, we can conclude
thatB′

g = Bh, hence(g) becomes:

x:〈Rh, [(Ri, li) : Bi
i∈I]〉+ ` b : Bh (m).

By (k), (m), and rule [ObjIntro],

` v = 〈R, [(Ri, li) = ς(xi:A) bi
i∈I\{h}; (Rh, lh) = ς(x:A) b]〉 : A−.

The thesis follows by(h).

• [RAs]: In this case,c = a asR′ (a),

a → 〈R, [(Ri, li) = ς(xi:A) bi
i∈I]〉 (b),

R′ ∈ {Ri} i∈I (c),

v = 〈R′, [(Ri, li) = ς(xi:A′) bi
i∈I]〉 (d),

whereA′ = 〈R′, [(Ri, li) : Bi
i∈I]〉 (e);

by Lemma 5.1` A′ ♦ (f).

By (a) and Lemma 5.4(5.),

∃{R′
k, l′k, B′

k} k∈K . ` 〈R′, [(R′
k, l′k) : B′

k
k∈K]〉+ ≤ C (g)

and` a : 〈R′′, [(R′
k, l′k) : B′

k
k∈K〉+ for someR′′ (h).

By (b), (h), and induction hypothesis:

` 〈R, [(Ri, li) = ς(xi:A) bi
i∈I]〉 : 〈R′′, [(R′

k, l′k) : B′
k

k∈K]〉+ (i).

By Lemma 5.2:̀ A ♦ (j).

By Lemma 5.4(1.):

– A = 〈R, [(Ri, li) : Bi
i∈I]〉+, for some{Bi} i∈I (k);

– ∀j ∈ I. xj:〈Rj , [(Ri, li) : Bi
i∈I]〉+ ` bj : Bj (l);

– ` A− ≤ 〈R′′, [(R′
k, l′k) : B′

k
k∈K]〉+, hence` A ≤ 〈R′′, [(R′

k, l′k) : B′
k

k∈K]〉+
(m).

FOUNDATIONS FOR EXTENSIBLE OBJECTS WITH ROLES 19

By (e) (A′ = 〈R′, [(Ri, li) : Bi
i∈I]〉+), (f), (l), and rule [ObjIntro],

` 〈R′, [(Ri, li) = ς(xi:A′) bi
i∈I]〉 : 〈R′, [(Ri, li) : Bi

i∈I]〉,

i.e.` v : A′ (n).

By Lemma 5.5(2.) and rule [WeakDepthSub],(m) implies

` A′ ≤ 〈R′, [(R′
k, l′k) : B′

k
k∈K]〉+,

hence the thesis follows from(n), (g), and subsumption.

• [RIsT], [RIsF]: In this case,C can only bebool, which is also the type oftrue and
false.

• [RCheck]: In this case,c = check(a : A′),

v = 〈R, [(Ri, li) = ς(xi:A) bi
i∈I]〉,

` A− ≤ A′ (a),

a → 〈R, [(Ri, li) = ς(xi:A) bi
i∈I]〉.

By Lemma 5.4(7.),̀ A′ ≤ C (b), anda is well-typed(c).

By (c), 〈R, [(Ri, li) = ς(xi:A) bi
i∈I]〉 is well-typed by induction, hence, by Lemma 5.4(1.)

and rule [ObjIntro], its type isA−. The thesis follows by(a), (b), and by subsumption.

• [RCheckErr], [RError] Immediate, sincecheckerrbelongs to every well-formed type.

5.3. Term evaluation
To state the strong typing property, we first have to define an evaluation algorithmeval,

which receives a terma and applies (backwards) all the rules which match it. We only
report here the most significant cases of the algorithm, in an ML-like language; the other
cases would not add anything interesting (Figure 2).
For any terma, eval(a)is either a value (maybecheckerr), or iscrash, or, if the evaluation
of eval(a)loops forever, is undefined. By construction,evalenjoys the following property.

Proposition 5.1 (Eval).

a → v ⇒ eval(a) = v

eval(a) = v ⇒ a → v

Moreover,eval(a)captures the distinction between infinite looping and crashing, hence we
can now state the strong typing theorem.

Theorem 5.1 (Strong Typing). Let c be a closed term. If̀ c : C theneval(c) 6=
crash.

Proof. If eval(c) is undefined, the thesis holds. Otherwise, we can reason by induction
on the number of recursive calls that are needed to evaluateeval(c), and by cases on the
shape ofc. The crucial case isa.l, while the other ones follow easily from the subject
reduction property. We only report here the proof for thea.l and extension cases.

20 GIORGIO GHELLI

fun eval(term) =
case term of
v => v

| a.l => let valv = eval(a)
in casev of
〈R, [(Ri, li) = ς(xi:A) bi

i∈I]〉
=> if ∃h ∈ I. (Rh, lh) = (R, l)

then eval(bh{xh ← v}))
elsecrash

checkerr => checkerr
default => crash
end case

| a + [R,mj = ς(xj:A) bj
j∈J]

=> let valv = eval(a)
in casev of
〈R′, [(Ri, li) = ς(xi:A′) b′i

i∈I]〉
=> if ¬∃i ∈ I, j ∈ J. (Ri, li) = (R,mj)

then〈R, [(Ri, li) = ς(xi:A) b′i
i∈I ; (R,mj) = ς(xj:A) bj

j∈J]〉
elsecrash

checkerr => checkerr
default => crash
end case

| a asR′

=> let valv = eval(a)
in casev of
〈R, [(Ri, li) = ς(xi:A) bi

i∈I]〉
=> if R′ ∈ {Ri} i∈I

then〈R′, [(Ri, li) = ς(xi:A) bi
i∈I]〉

elsecrash
checkerr => checkerr
default => crash
end case

. . .

FIG. 2. The evaluation procedure.

FOUNDATIONS FOR EXTENSIBLE OBJECTS WITH ROLES 21

• c = a.l : By Lemma 5.4(4.):

` a : 〈R, [(R, l) : C]〉+ (a)

By Proposition 5.1 and subject reduction:

` v (= eval(a)) : 〈R, [(R, l) : C]〉+ (b)

Since v is well-typed in an empty environment, it is eitherv = checkerr, or v =
〈R′, [(Ri, li) = ς(xi:A) bi

i∈I]〉 (c), for some{Ri, li, bi} i∈I . The first case is trivial.
In the second case, by Lemma 5.4(1.):

A = 〈R′, [(Ri, li) : Bi
i∈I]〉+, for some{Bi} i∈I (d)

∀j ∈ I. xj:〈Rj , [(Ri, li) : Bi
i∈I]〉+ ` bj : Bj (e)

` A− ≤ 〈R, [(R, l) : C]〉+ (f)

By rule [ObjIntro],` v : A− (g).

By (f) and Lemma 5.5(2.):

R′ ≤ R (h)

∃h ∈ I. (Rh, lh) = (R, l) (i)

By (i), eval(a.l) = eval(bh{xh ← v}) (j).

By (e)andRh = R,

xh:〈R, [(Ri, li) : Bi
i∈I]〉+ ` bh : Bh (k)

By (h), [WeakDepthSub], [StrictWeakSub], and transitivity,

` A− = 〈R′, [(Ri, li) : Bi
i∈I]〉 ≤ 〈R, [(Ri, li) : Bi

i∈I]〉+(l)

By Lemma 5.3,

xh:A− ` bh : Bh (m)

By (g), and Lemma 5.7,

` bh{xh ← v} : Bh

Hence, by induction,eval(bh{xh ← v}) 6= crash. The thesis follows by(j).

• c = a + [(R,mj) = ς(xj:A) bj
j∈J] : By Lemma 5.4(2.):

A = 〈R, [(R′
k, l′k) : B′

k
k∈K ;R,mj : Cj

j∈J]〉+

for some{R′
k, l′k, B′

k} k∈K , {Cj} j∈J (a)

` a : 〈R′′, [(R′
k, l′k) : B′

k
k∈K]〉 for someR′′ (b)

22 GIORGIO GHELLI

By subject reduction,

` v (= eval(a)) : 〈R′′, [(R′
k, l′k) : B′

k
k∈K]〉 (c)

Reasoning as above, eitherv = checkerr or

v = 〈R′, [(Ri, li) = ς(xi:A′) bi
i∈I]〉 for someR′, A′, {Ri, li, bi} i∈I

In the first case, the result is immediate. In the second case, by the same reasoning as in
the corresponding case of the subject reduction proof, we prove that:

〈R′′, [(R′
k, l′k) : B′

k
k∈K]〉 = 〈R′, [(Ri, li) : Bi

i∈I]〉, for some{Bi} i∈I (d)

By (a) and(d), ¬∃i ∈ I, j ∈ J. (Ri, li) = (R,mj) is a consequence of the good formation
of A.

6. THE HIERARCHICAL CALCULUS
6.1. The calculus

In the basic calculus method invocation is interpreted as a field access plus self substitu-
tion, as in [2]. This is the most elementary solution, but it forces a lot of code replication,
and it introduces the “downward closure” constraint in the object type formation rule. We
introduce here a variant where, if no(Stud, Name) method is present, the(Pers, Name)
method is used instead.

We first define the lookup function

[(Ri, li) = ς(xi:A) bi
i∈I]R,l

which either finds the minimum super-role ofR associated withl in [(Ri, li) = ς(xi:A) bi
i∈I],

or is not defined (↑). The function is defined as follows:

[(Ri, li) = ς(xi:A) bi
i∈I]R,l =


〈Rj , lj , bj〉 if Rj = min{Ri | Ri ≥ R, li = l}

↑ if {Ri | Ri ≥ R, li = l} is empty
or has several minimal elements

The corresponding lookup function on object types:

[(Ri, li) : Bi
i∈I]R,l

is defined in the same way:

[(Ri, li) : Bi
i∈I]R,l =


〈Rj , lj , Bj〉 if Rj = min{Ri | Ri ≥ R, li = l}

↑ if {Ri | Ri ≥ R, li = l} is empty
or has several minimal elements

These lookup functions are then used to define the semantics of method invocation:
when a messagel is sent to an object with current roleR and method suite[(Ri, li) =

FOUNDATIONS FOR EXTENSIBLE OBJECTS WITH ROLES 23

ς(xi:A) bi
i∈I], the method selected is the third component of[(Ri, li) = ς(xi:A) bi

i∈I]R,l

(see Section 6.3).
This form of inheritance is very useful. For example, if you consider the representation

of the johnAsEmployeeobject given in Section 3.2, now the(Stud,Name)and(Emp,Name)
methods can be avoided, since the corresponding messages while be answered in the same
way by the(Pers,Name)method. However, this form of inheritance creates a “diamond
closure” problem, which resembles the classical multiple-inheritance problems of object-
oriented languages. Consider a latticeTop, R, S, Bot, whereTopandBotare the maximum
and minimum elements, and consider an objecto with type 〈R, [(Top, l) : T ; (R, l) :
A; (S, l) : B]〉+. Considering that the actual current role ofo may beBot, how can we
typeo.l? With our lookup technique,o.l would fail if no method for(Bot, l) were defined,
hence the simplest solution is to put a “diamond closure” condition in the good formation
rule, which forces us to have a method for(Bot, l) in situations like this one (the same
technique has been used in theλ-& calculus [11]). This condition may be expressed by
stating that a type〈R, [(Ri, li) : Bi

i∈I]〉 can be well formed only if, whenever a method
for a messagel is defined for two different rolesRi Rj with a common subroleR, then a
method forl is defined forR as well (hereafter,[(Ri, li) = ς(xi:A) bi

i∈I]R,l ↓ means that
the lookup result is defined):

∀i, j∈I. ∀R∈R. (i 6= j ∧ li = lj ∧ (R ≤ Ri ∧R ≤ Rj)) ⇒ [(Ri, li) : Bi
i∈I]R,li ↓ 1

However, this solution is not acceptable here, since, in the presence of a common subtype
T of students and employees, it would force any object which is both a student and an em-
ployee to belong to typeT as well, which is too restrictive for our purposes. Moreover, this
solution breaks a hidden assumption of our calculus, which we call “downward openness”
ofR. We want every term that is well-typed with a givenR to remain well-typed if a new
element has been added toR, provided that this new element is not a super-role of any old
R in R. This weakening-like property allows this calculus to be easily extended with an
operation to define new role-tags at the bottom of the current hierarchy, hence to be the
foundation of incremental type-checking techniques. This property is enjoyed by all our
rules, but would be broken by this diamond closure condition: the type

〈R, [(Top, l) : T ; (R, l) : A; (S, l) : B]〉

is well formed whenBot is not inR, but would become ill-formed afterBot is added.
Hence we adopt a different solution. Every object in the hierarchical calculus carries

both a current roleR and a set of “roles it belongs to”,{Sk} k∈K ; the syntax of an object
is now 〈R, {Sk} k∈K , [(Ri, li) = ς(xi:A) bi

i∈I]〉. An object can only assume one of its
{Sk} k∈K roles. Hence, going back to the previous example, when we build an object
whose type is

〈R, {Top, R, S}, [(Top, l) : T ; (R, l) : A; (S, l) : B]〉,

1Due to our definition of the lookup function, this condition is equivalent to the following one:∀i∈I. ∀R ≤
Ri. [(Ri, li) : Bi

i∈I]R,li ↓, which shows that diamond closure is strictly related to the downward closure
problem.

24 GIORGIO GHELLI

there is no need to define a method for theBot, l pair, since the operationo asBot is
prevented by this type. If we putBot into the{Sk} k∈K roles, then we also have to define
a method forBot, l; this is enforced by the fifth premise of the [ObjFormH] rule.

(1) R∈{Sk} k∈K

(2) {Ri} i∈I ⊆ {Sk} k∈K

(3) ∀i 6= j. (Ri, li) 6= (Rj , lj)
(4) ∀i, j∈I. Ri ≤ Rj , li = lj ⇒ `h Bi ≤ Bj

(5) ∀k∈K. ∀i ∈ I. Sk ≤ Ri ⇒ [(Ri, li) : Bi
i∈I]Sk,li ↓ [ObjFormH]

`h 〈R, {Sk} k∈K , [(Ri, li) : Bi
i∈I]〉 ♦

The rules of the hierarchical system are reported in the Appendix. We only present here
the rules which change; all the other rules are essentially the same as in the basic system.
The [WeakDepthSubH] rules can be read as follows. The weak object typeA′ is a subtype
of A if:

• both types are well formed;

• the current role ofA′ is a subrole of the one ofA, (as in the non-hierarchical calculus);

• A′ belongs to every role to whichA belongs: objects in the subtype may play any role
which is played by an object in the supertype;

• for every message(Ri, li) which is answered by an object inA, there is a method with
index(R′

i′ , l
′
i′) which can answer the same message, and which returns a value whose type

B′
i′ is compatible with the expected typeBi.

`h 〈R′, {S′
k} k∈K′

, [(R′
i, l

′
i) : B′

i
i∈I′

]〉+ ♦
`h 〈R, {Sk} k∈K , [(Ri, li) : Bi

i∈I]〉+ ♦
R′ ≤ R {Sk} k∈K ⊆ {S′

k} k∈K′

∀i∈I. ∃i′∈I ′. R′
i′ ≥ Ri, l

′
i′ = li,`h B′

i′ ≤ Bi
[WeakDepthSubH]

`h 〈R′, {S′
k} k∈K′

, [(R′
i, l

′
i) : B′

i
i∈I′

]〉+
≤ 〈R, {Sk} k∈K , [(Ri, li) : Bi

i∈I]〉+

let A = 〈R, {Sk} k∈K ∪ {R}, [(Ri, li) : Bi
i∈I ; (R,mj) : Cj

j∈J]〉
E `h a : 〈R′, {Sk} k∈K , [(Ri, li) : Bi

i∈I]〉 `h A ♦
∀j∈J. E, xj:A+ `h bj : Cj

[ExtH]
E `h a + [(R,mj) = ς(xj:A+) bj

j∈J] : A

6.2. The translation
Most of the hierarchical calculus can be faithfully translated into the base calculus, by

exploiting the set of roles to which an object belongs. However, a problem arises with the
extension operation, as we will discuss later.

The translation of an object type contains the signature of every message that the object
type understands. It is defined as follows, for weak and strict object types (the construction
is similar to the completion construction used in [10] to define a denotational semantics for
a version of theλ-& calculus).

FOUNDATIONS FOR EXTENSIBLE OBJECTS WITH ROLES 25

[[〈R, {Sk} k∈K , [(Ri, li) : Bi
i∈I]〉]]

= 〈R, [{(R, l) : [[B]] | ∃k∈K, i∈I

such that[(Ri, li) : Bi
i∈I]Sk,li ↓

and[(Ri, li) : Bi
i∈I]Sk,li = 〈R, l, B〉}]〉

[[A+]] = [[A]]+

The translation of an object is defined in the same way:

[[〈R, {Sk} k∈K , [(Ri, li) = ς(xi:A) bi
i∈I]〉]]

= 〈R, [{(R, l) =ς(x:[[A]]) [[b]]
| ∃k∈K, i∈I

such that[(Ri, li) = ς(xi:A) bi
i∈I]Sk,li ↓

and[(Ri, li) = ς(xi:A) bi
i∈I]Sk,li = 〈R, l, ς(x:A) b〉}]〉

The rest of the language is translated in the obvious way:

[[x]] = x

[[k]] = k

[[o.l]] = [[o]].l
[[o.l← ς(x:A) b]] = [[o]].l← ς(x:[[A]]) [[b]]
[[o asR]] = [[o]] asR

[[o is R]] = [[o]] is R

[[check(a : A)]] = check([[a]] : [[A]])
[[checkerr]] = checkerr
[[o + [(R, li) = ς(xi:A) bi

i∈I]]] = [[o]] + [(R, li) = ς(xi:[[A]]) [[bi]] i∈I]

The idea behind the translation is that the set of methods in an object, or in an object type,
is completedwith respect to the set{Sk} k∈K , where the completion adds a method, or a
method type, for each pairR, l such that the object, while playing the roleR, would be
able to answer the messagel by inheritance.

The translation we have presented, if extended in the obvious way to environments, and
if the object extension operation is not used, satisfies the following property, where`h

means that the corresponding judgment has been proved in the hierarchical system:

E `h ♦ ⇒ [[E]] ` ♦
`h A ♦ ⇒ ` [[A]] ♦
`h A ≤ B ⇒ ` [[A]] ≤ [[B]]
E `h a : A ⇒ [[E]] ` [[a]] : [[A]]

Extension does not enjoy this property since, when an object is extended to a new role
R, the hierarchical rule does not force all the new methods forR to be specified, since
they can be inherited. Hence, the translation of a termo + [(R, li) = ς(xi:A) bi

i∈I] may
not contain some methods whose explicit specification is required, in the basic system,
because of the lack of inheritance (formally, these methods are needed in the basic system
because of thè A ♦ premise of rule [Ext], and of the downward closure condition (4) of
rule [StrictForm]). When an object is created we overcome the same problem by copying
the body of the inherited methods during the translation, but when an objecto is extended
the bodies of the inherited methods are not necessarily part of the termo (consider, for
example, the translation of “x + . . .”). Hence, the translation above always produces well

26 GIORGIO GHELLI

typed terms only if the source term respects the following stronger rule for extension, where
we have added a downward closure condition as the last premise.

let A = 〈R, {Sk} k∈K ∪ {R}, [(Ri, li) : Bi
i∈I ; (R,mj) : Cj

j∈J]〉
E `h a : 〈R′, {Sk} k∈K , [(Ri, li) : Bi

i∈I]〉 `h A ♦
∀j∈J. E, xj:A+ `h bj : Cj

∀i∈I. R ≤ Ri ⇒ ∃j∈J. li = mj
[ModExtH]

E `h a + [(R,mj) = ς(xj:A+) bj
j∈J] : A

This rule is equivalent to the standard one whenever{Sk} k∈K contains two distinct
immediate superroles ofR, since in this case all methods forR have to be explicitly
specified in both versions of the calculus (because of the diamond closure condition (5) in
rule [ObjFormH]). Hence, only “single inheritance extensions” create translation problems,
while “multiple inheritance extensions” do not.

To sum up, we claim that the hierarchical calculus with the modified extension rule
can be faithfully translated into the basic calculus, in a way which preserves typing. The
restriction on the extension rule is not pleasant but is not a major drawback, since the main
issues we are trying to face are the coexistence of different methods for the same message,
the good formation conditions, the semantics of message passing, and the modeling of
generative types through role-tags, while we are less interested here in the details of the
object extension operation.

6.3. Operational semantics
The operational semantics for the hierarchical calculus is defined as for the basic system.

The main differences are the new shape of object values, which now contain the set
{Sk} k∈K of allowed roles, and the new form of the crucial [RMeth] rule, which specifies
how methods are searched for inside objects. We only report here this last rule.

a →h 〈R, {Sk} k∈K , [(Ri, li) = ς(xi:A) bi
i∈I]〉 = o

[(Ri, li) = ς(xi:A) bi
i∈I]R,l = 〈Rh, lh, bh〉 bh{xh ← o} →h v

[RMethH]
a.l →h v

Although we believe that reduction in the hierarchical and in the basic system correspond,
we leave the following property as an open issue.

Conjecture 1.

∀a, v, C. `h a : C ⇒ (a →h v ⇔ [[a]] → [[v]])

7. ROLE-TAGS
7.1. Role-tags and generative types

We mentioned above that role-tags are meant to be a model for Fibonacci generative types.
In Fibonacci, a generative type definition (IsA T with Σ) denotes an object type which is
characterized by its supertypeT , its signatureΣ, and a unique time-stamp generated when
the definition is processed.

FOUNDATIONS FOR EXTENSIBLE OBJECTS WITH ROLES 27

For example, the Fibonacci definitions of Section 3.1, are compiled into something which
may be represented as follows, where 101, 102, and 103 are three time-stamps, and the
LetSub declaration define the order relation on the time-stamps set.

Let Person = <101, [(101,Name): String]>;

LetSub 102 LessThen 101;

Let Student = <102, [(101,Name): String;

(102,IdCode): Int]>;

LetSub 103 LessThen 101;

Let Employee = <103, [(101,Name): String;

(103,IdCode): String]>;

let john = <101, {101}, [(101,Name)="John"]>;

let johnAsStudent = john + <102, [(102,IdCode)=100]>;

let johnAsEmployee = john + <103, [(103,IdCode)="I1"]>;

At run-time, the type time-stamp is recorded in each role value, and is used to implement
operations such asIs T andAs T (method lookup is implemented in a more efficient way,
which makes no use of the time-stamp at method lookup time; see [1, 4]). Because of
these time-stamps, types are not always erased at run time; for example, if a polymorphic
function or a module is parametrized over an object type, it actually receives the timestamp
of that type as a parameter.

A role-tagR represents the following features of the hidden time-stamp:

• two types are the same only if they have both the same signature and the same time-
stamp;

• time-stamps are the only components of a type which are also needed at run-time, to
implement theIs T andAs T operations; for this reason, the time-stamp belongs both to
the type and to the value level.

A Fibonacci time-stamp is always associated with a specific signature. In this study, we
decouple the tag from its signature, to keep the model simpler. We are currently studying
extensions to deal with modules and parametric polymorphism. In this context, the explicit
presence of the role-tags helps in understanding when types can be erased and when they
have to be passed around at run time; however, the decoupling of the role-tag from the
signature becomes much more problematic.

7.2. Role-tags and incremental compilation
A Fibonacci program can be translated into our model through a two phase process. In

the first phase, we collect the setR of all the object types which are defined in the program,
ordered by their subtyping relation. OnceR is known, we can translate the program into
our role calculus. This is a “whole program” approach: the program is not type-checked
incrementally, but type-checking starts only after all the program is known.

However, we can devise a different, incremental, approach. For the sake of simplicity,
we assume that all object types in the source program have different names. Then, we
assume thatR is the language generated by the following grammar:

L :: = ().Identifier | (L1, . . . , Ln).Identifier

28 GIORGIO GHELLI

The order relation overR is the reflexive and transitive closure of the relation defined as:

(L1, . . . , Ln).X ≤ Li (i ∈ {1, . . . , n})

ThisR allows a typeT with no supertype to be translated as().T, while a typeT with n

immediate supertypesT1,. . . ,Tn, is translated as(T∗1,. . . ,T∗n).T, whereT∗i is the translation
of Ti.

For example, if we consider the diamondPerson, Student, Employee, WorkingStudent,
with the order generated byS ≤ P , E ≤ P , WS ≤ S, WS ≤ E, the four role-tags would
be embedded intoR as follows:

[[P]] = ().P
[[S]] = (().P).S
[[E]] = (().P).E
[[WS]] = ((().P).S, (().P).S).WS

With this approach, there is no need to divide type checking into anR-definition phase
followed by the actual translation and type-checking. Hence, this interpretation technique
shows that the role calculus can be used to understand incremental type-checking.

8. RELATED WORK

Objects with roles and an extension operation have been studied in [29, 24, 19, 8, 28].
Most of these works focus on studying the best way of representing some aspects of a
piece of real world, rather than on formal foundations, with the notable exception of [8],
where a formal model is presented. The latter model follows the database tradition and
only describes the data aspects but does not formalize the computation. It also differs from
our approach since the role played by an object depends on the static type of the expression
which denotes the object itself, i.e. they do not have two different values, in the semantic
domain, to denote two different roles of the same object, but the message interpretation
mechanism is affected both by the dynamic and by the static type of the object. This
approach is interesting, but we find it less expressive, and more complex, than the one
described in the present paper.

In [1, 5] the role mechanism of Fibonacci is described, and its semantics is outlined
informally. This high-level mechanism underpins the basic calculus that we define here.

Many typed calculi supporting record or object extension have been studied (see, for
example, [25, 20, 15, 21, 6]). All these papers study how topreventwhat we called
“incompatible extensions” in the presence of subtyping. Indeed, in the presence of “width
subtyping”, the static type of an expression contains fewer fields than those in the denoted
record, which makes it impossible to be sure that a fieldf is not already present, maybe
with an incompatible type. The proposed solutions range from the assignment of two
types to a record, one of which is exact and the other where fields may be forgotten [15],
to richer type systems where both the presence and absence of fields may be reported
[12, 25, 13, 20, 26, 18], and to systems where the dependencies among different methods
are tracked [21]. Preventing incompatible updates is also a problem for us, but it is not our
central concern, hence we adopted the simple solution proposed in [16, 15].

The real focus of our research is a new semantics for object extension and message
passing whichallows, under some conditions, incompatible extensions. A very interesting

FOUNDATIONS FOR EXTENSIBLE OBJECTS WITH ROLES 29

work which goes in this direction is presented in [27]. In the first-order system presented in
that paper, an object is made of a method suite where every method is indexed by a number,
plus a dictionary which maps names to numbers; methods are accessed by name from the
outside and by their internal number fromself. For example, if a methodm1 = ς(s) s.m2

is added to an object whose dictionary mapsm2 to 2, thenm1 is stored asm1 = ς(s) s.2.
It is thus possible to forget the existence ofm2 by width subtyping, and then to add a new
field namedm2 with a different type without interfering with the future executions ofm1.
Indeed,m1 will still access the method indexed by 2, while the newm2 will get a different
internal number. A method update operation is also defined such that, when methodm2

mapped to 2 is updated using this operation, then it is really the method with an internal
index 2 which gets changed; in this way, the usual late-binding behavior ofself can be
obtained.

Their proposal is related to ours. In their system, if a studentjohnAsStudentwith an
integer code is built, its code is later forgotten by subsumption, and finally the student is
extended with a code "I1" and the result is bound tojohnAsEmployee, then two different
access paths to the same object are obtained, which are essentially two different dictionaries,
which are similar to our roles. However, there are some differences. First, roles made
through dictionaries have no name, hence there are noas or is operations. A subtler but
more important difference exists, which is better explained by an example. Consider an
objecto with roleP and with a method(P,m) whose body callsself.m′. In our calculus, if
we extend it to two different subrolesS1, S2 which both implement methodm′, then a call
to (o asSi).m will correctly invoke(o asSi).m′ for i = 1, 2; this is the usual late-binding
behavior ofself.

In Riecke and Stone’s approach, when we add the version ofm′ for S1 we can use the
update operation to obtain the late-binding behavior ofself. Afterwards, when we add the
version ofm′ for S2, we have to choose between extension and method update. If we use
extension, we obtain a new dictionary for the object butself.m′, insidem, remains bound to
the old version ofm′. If we use method update thenself.m′ gets bound to the new version
of m′, but there is no way to make the object use the old version: with extension we have
roles but static binding ofself, with method update we have dynamic binding but no roles.
This is not, of course, a fault of Riecke and Stone’s approach, but just a consequence of the
fact that their aim is different from ours.

9. CONCLUSIONS

Object extension and roles cannot be avoided in certain applications of object-oriented
languages, but these notions lack a solid foundation. We have presented such a foundation
and have commented on some of the key issues that arise in our setting: resolution of
ambiguous messages, covariance, downward or diamond closure, and extensibility of the
set of role-tags. Most of these issues are directly related to some of the hardest problems
we had to face during the design of the Fibonacci language.

Although this research is still going on, we have already learned something about the
Fibonacci language. First of all, we found a strict correspondence between the pieces
of information that we decided to memorize inside the objects, such as the current role
and the set of “allowed role-tags” [4], and those which we need in the minimal model
that we developed here, which was not unexpected but was still a confirmation that our
previous choices were reasonable. Our basic aim, however, was to understand why we
were not able to avoid generative object types during the design of the Fibonacci language,

30 GIORGIO GHELLI

and whether we can remove them from the language, or we can make them interact with
modules, subtyping, and explicit polymorphism in a smooth way. We still need to extend
this basic model with type variables to be able to answer these questions, but the role-tags
model already helped us during the design of the implementation of type application as
time-stamp passing.

Another interesting issue is the formalization of an imperative version of this calculus,
to check whether the task is really so straightforward as we imagine.

APPENDIX A

Rules of the hierarchical system
Type formation

(1) R∈{Sk} k∈K

(2) {Ri} i∈I ⊆ {Sk} k∈K

(3) ∀i 6= j. (Ri, li) 6= (Rj , lj)
(4) ∀i, j∈I. Ri ≤ Rj , li = lj ⇒ `h Bi ≤ Bj

(5) ∀k∈K. ∀i ∈ I. Sk ≤ Ri ⇒ [(Ri, li) : Bi
i∈I]Sk,li ↓ [ObjFormH]

`h 〈R, {Sk} k∈K , [(Ri, li) : Bi
i∈I]〉 ♦

`h 〈R, {Sk} k∈K , [(Ri, li) : Bi
i∈I]〉 ♦

[WeakFormH]
`h 〈R, {Sk} k∈K , [(Ri, li) : Bi

i∈I]〉+ ♦

Subtyping

`h 〈R, {Sk} k∈K , [(Ri, li) : Bi
i∈I]〉 ♦

[StrictSubH]
`h 〈R, {Sk} k∈K , [(Ri, li) : Bi

i∈I]〉 ≤ 〈R, {Sk} k∈K , [(Ri, li) : Bi
i∈I]〉

`h 〈R′, {S′
k} k∈K′

, [(R′
i, l

′
i) : B′

i
i∈I′

]〉+ ♦
`h 〈R, {Sk} k∈K , [(Ri, li) : Bi

i∈I]〉+ ♦
R′ ≤ R {Sk} k∈K ⊆ {S′

k} k∈K′

∀i∈I. ∃i′∈I ′. R′
i′ ≥ Ri, l

′
i′ = li,`h B′

i′ ≤ Bi
[WeakDepthSubH]

`h 〈R′, {S′
k} k∈K′

, [(R′
i, l

′
i) : B′

i
i∈I′

]〉+
≤ 〈R, {Sk} k∈K , [(Ri, li) : Bi

i∈I]〉+

`h 〈R, {Sk} k∈K , [(Ri, li) : Bi
i∈I]〉 ♦

[StrictWeakSubH]
`h 〈R, {Sk} k∈K , [(Ri, li) : Bi

i∈I]〉
≤ 〈R, {Sk} k∈K , [(Ri, li) : Bi

i∈I]〉+

Term formation

let A = 〈R, {Sk} k∈K , [(Ri, li) : Bi
i∈I]〉

`h A ♦
∀j ∈ I. E, xj:〈Rj , {Sk} k∈K , [(Ri, li) : Bi

i∈I]〉+ `h bj : Bj
[ObjIntroH]

E `h 〈R, {Sk} k∈K , [(Ri, li) = ς(xi:A+) bi
i∈I]〉 : A

FOUNDATIONS FOR EXTENSIBLE OBJECTS WITH ROLES 31

let A = 〈R, {Sk} k∈K ∪ {R}, [(Ri, li) : Bi
i∈I ; (R,mj) : Cj

j∈J]〉
E `h a : 〈R′, {Sk} k∈K , [(Ri, li) : Bi

i∈I]〉 `h A ♦
∀j∈J. E, xj:A+ `h bj : Cj

[ExtH]
E `h a + [(R,mj) = ς(xj:A+) bj

j∈J] : A

E `h a : A = 〈R, {Sk} k∈K , [(Ri, li) : Bi
i∈I]〉

∃h∈I. (Rh, lh) = (R, l) E, x:A+ `h b : Bh
[UpdH]

E `h a.l← ς(x:A+) b : A

E `h a : A `h A ≤ B
[Subs]

E `h a : B

E `h a : 〈R, {Sk} k∈K , [(R, l) : B]〉+
[MethH]

E `h a.l : B

E `h a : 〈R, {Sk} k∈K , [(Ri, li) : Bi
i∈I]〉+ R′ ∈ {Sk} k∈K

[AsH]
E `h a asR′ : 〈R′, {Sk} k∈K , [(Ri, li) : Bi

i∈I]〉+

E `h a : 〈R, {}, []〉+
[IsH]

E `h a is R′ : bool

E `h a : 〈R, {}, []〉+
[CheckH]

E `h check(a : A) : A

ACKNOWLEDGMENT
A preliminary version of this paper was prepared together with Debora Palmerini. Discussions with Luca

Cardelli and John Riecke have been very helpful. We also thanks the anonymous referees for many useful
suggestions. This work has been supported in part by grants from the E.U., workgroups PASTEL and APPSEM,
and by “Ministero dell’Universit̀a e della Ricerca Scientifica e Tecnologica”, projects INTERDATA and DATA-X.

REFERENCES

1. A. Albano, R. Bergamini, G. Ghelli, and R. Orsini. An object data model with roles. InProceedings of the
International Conference on Very Large Data Bases (VLDB), pages 39–51, Dublin, Ireland, 1993.

2. M. Abadi and L. Cardelli.A Theory of Objects. Springer-Verlag, 1996.

3. A. Albano, L. Cardelli, and R. Orsini. Galileo: A strongly typed, interactive conceptual language.ACM
Transactions on Database Systems, 10(2):230–260, 1985. Also in S.B. Zdonik and D. Maier, editors,Readings
in Object-Oriented Database Systems, Morgan Kaufmann Publishers, Inc., San Mateo, California, 1990.

4. A. Albano, M. Diotallevi, and G. Ghelli. Extensible objects for database evolution: Language features and
implementation issues. InProc. of the 5th Intl. Workshop on Data Base Programming Languages (DBPL),
Gubbio, Italy, 1995.

5. A. Albano, G. Ghelli, and R. Orsini. Fibonacci: A programming language for object databases.The VLDB
Journal, 4(3):403–439, 1995.

6. V. Bono, M. Bugliesi, M. Dezani-Ciancaglini, and L. Liquori. Subtyping constraints for incomplete objects.
In Proceedings of TAPSOFT/CAAP 97, volume 1214 ofLNCS, pages 465–477, Berlin, 1997. Springer-Verlag.

7. V. Bono and K. Fisher. An imperative, first-order calculus with object extension. InProc. of 12th European
Conference on Object-Oriented Programming (ECOOP), Brussels, Belgium, volume 1445 ofLNCS, pages
462–497, Berlin, 1998. Springer-Verlag.

32 GIORGIO GHELLI

8. E. Bertino and G. Guerrini. Objects with multiple most specific classes. InProc. of the 9th European
Conference on Object-Oriented Programming (ECOOP),Åarhus, Denmark, volume 952 ofLNCS, pages
102–126, Berlin, 1995. Springer-Verlag.

9. G. Castagna. Covariance and contravariance: Conflict without a cause.ACM Transactions on Programming
Languages and Systems (TOPLAS), 17(3):431–447, 1995.

10. G. Castagna, G. Ghelli, and G. Longo. A semantics forλ&-early: A calculus with overloading and early
binding. In H. Barendregt, editor,Proc. of the first International Conference on Typed Lambda Calculi and
Applications (TLCA), Utrecht, Olanda, LNCS, Berlin, March 1993. Springer-Verlag.

11. G. Castagna, G. Ghelli, and G. Longo. A calculus for overloaded functions with subtyping.Information and
Computation, 117(1):115–135, 1995. a preliminary version appeared in LISP and Functional Programming,
July 1992 (pp. 182–192), and as Rapport de Recherche LIENS-92-4, Ecole Normale Supérieure, Paris.

12. L. Cardelli and J. Mitchell. Operations on records.Mathematical Structures in Computer Science (MFCS),
1:3–48, 1991. Also in Carl A. Gunter and John C. Mitchell, editors,Theoretical Aspects of Object-Oriented
Programming: Types, Semantics, and Language Design(MIT Press, 1994); available as DEC Systems
Research Center Research Report #48, August, 1989, and in the proc. of MFPS ’89, Springer LNCS volume
442.

13. K. Fisher, F. Honsell, and J. C. Mitchell. A lambda calculus of objects and method specialization.Nordic J.
Computing (formerly BIT), 1:3–37, 1994. Preliminary version appeared inProc. of IEEE Symp. on Logic in
Computer Science,1993, 26–38.

14. K. Fisher and J. Mitchell. A delegation-based object calculus with subtyping. InProc. of Intl. Symposium on
Fundamentals of Computation Theory (FCT), Dresden, Germany, volume 965 ofLNCS, pages 42–61, Berlin,
1995. Springer-Verlag.

15. K. Fisher and J. Mitchell. The development of type systems for object-oriented languages.Theory and
Practice of Object Systems (TAPOS), 1(3):189–220, 1995.

16. G. Ghelli. A class abstraction for a hierarchical type system. InProc. of Intl. Conference of Database Theory
(ICDT), volume 470 ofLNCS, pages 56–71, Berlin, 1990. Springer-Verlag.

17. G. Ghelli. A static type system for message passing. InProc. of Intl. Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA), Phoenix, Arizona, volume 26(11) ofACM
SIGPLAN Notices, pages 129–143. ACM, 1991.

18. P. Di Gianantonio, F. Honsell, and L. Liquori. A lambda calculus of objects with self-inflicted extension. In
Proc. of Intl. Conference on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA),
volume 33(10) ofACM SIGPLAN Notices, pages 166–178. ACM, 1998.

19. G. Gottlob, M. Schrefl, and B. Rock. Extending object-oriented systems with roles.ACM Transactions on
Information Systems, 14(3):268–296, 1996.

20. L.A. Jategaonkar and J.C. Mitchell. ML with extended pattern matching and subtypes (preliminary version).
In Proc. of ACM Conference on Lisp and Functional Programming (LFP), pages 198–211, Snowbird, Utah,
July 1988.

21. L. Liquori. An extended theory of primitive objects: First order system. InProceedings of ECOOP 97,
volume 1241 ofLNCS, pages 146–169, Berlin, 1997. Springer-Verlag.

22. F. Lang, P. Lescanne, and L. Liquori. A framework for defining object-calculi. InProc. of World Congress on
Formal Methods (FM) (Volume II), Toulouse, France, volume 1709 ofLNCS, pages 963–982, Berlin, 1999.
Springer-Verlag.

23. J. McKinna and R. Pollack. Pure type systems formalized. InProc. of the International Conference on Typed
Lambda Calculi and Applications (TLCA), Utrecht, The Netherlands, number 664 in LNCS, pages 289–305,
Berlin, 1993. Springer-Verlag.

24. M.P. Papazoglou and B.J. Krämer. A database model for object dynamics.The VLDB Journal, 6(2):73–96,
1997.

25. D. Ŕemy. Typechecking records and variants in a natural extension of ML. InProc. of the 17th ACM
Symposium on Principles of Programming Languages (POPL), Austin, pages 242–249. ACM, January 1989.
Also in Carl A. Gunter and John C. Mitchell, editors,Theoretical Aspects of Object-Oriented Programming:
Types, Semantics, and Language Design(MIT Press, 1994).

26. D. Ŕemy. From classes to objects via subtyping. InProc. of Programming Languages and Systems, 7th
European Symposium on Programming (ESOP), Lisbon, Portugal, volume 1381 ofLNCS, pages 200–220,
Berlin, 1998. Springer-Verlag.

27. J.C. Riecke and C.A. Stone. Privacy via subsumption. InFifth International Workshop on Foundations of
Object-Oriented Programming (FOOL 5), January 1998.

FOUNDATIONS FOR EXTENSIBLE OBJECTS WITH ROLES 33

28. E.A. Rundensteiner. MultiView: A Methodology for Supporting Multiple Views in Object-Oriented
Databases. InProc. of the Eighteenth Intl. Conf. on Very Large Data Bases (VLDB), Vancouver, British
Columbia, Canada, pages 187–198, San Mateo, California, 1992. Morgan Kaufmann Publishers.

29. M.H. Scholl and H.-J. Schek. Supporting Views in Object-Oriented Databases.IEEE Data Engineering
Bulletin, 14(2):43–47, 1991.

30. M. Wand. Complete type inference for simple objects. InProc. of the IEEE Symposium on Logic in Computer
Science (LICS), Ithaca, New York, pages 37–44, 1987.

