Oracle9iAS Wireless

Developer’s Guide

Release 2 (9.0.2)

May 2002
Part No. A90485-02

ORACLE

Oracle9iAS Wireless Developer’s Guide, Release 2 (9.0.2)
Part No. A90485-02
Copyright © 2002 Oracle Corporation. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the US Government or anyone licensing or using the Programs on behalf
of the US Government, the following notice is applicable:

Resticted Rights Notice Programs delivered subject to the DOD FAR Supplement are “commercial
computer software” and use, duplication and disclosure of the Programs including documentation, shall
be subject to the licensing restrictions set forth in the applicable Oracle license agreement. Otherwise,
Programs delivered subject to the Federal Acquisition Regulations are “restricted computer software”
and use, duplication and disclosure of the Programs shall be subject to the restrictions in FAR 52.227-19,
Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500 Oracle
Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be licensee's responsibility to take all appropriate fail-safe, back up,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle disclaims liability for any damages caused by such use of the Programs.

Oracle is a registered trademark, and Oracle9i, OracleMobile, PL/SQL, SQL*Net, and SQL*Plus are
trademarks or registered trademarks of Oracle Corporation. Other names may be trademarks of their
respective owners.

Contents

SENA US YOUT COMMEBNTES ..ottt ettt e et et e et et eee et ee s s eeeenes XV
P I A C ...ttt ettt ettt ettt ettt ettt XVii
101 (=Yg [0 [=To I AN U o [1T a o1 J T TR XiX
Documentation ACCESSIDIIITYccoiiiiiiie bbb s XiX
LY E=Y (Lo B Lo Yot U L0 41T 01 €T XX

Part | Introduction

1 Introduction

1.1 L@ A =T Y T OSSPSR 1-1
1.2 Wireless INternet COMPONENTSci i 1-1
121 The WIreless NETWOTKccciiiiiiiiiiec e 1-2
1.3 Developing Mobile Internet APPlCAtIONSccceiiiiiiiiiince s 1-3
13.1 User INPUt LIMITATIONSo.voviiiiiiice e 1-3
1.3.2 Myriad Wireless Device Standardscccecovvviviiiieeniie s 1-3
1.3.3 Heterogeneous SoUurces Of CONTENT ..ot 1-4
1.4 OracleiAS WireleSSATCRITECTUNE...........coiiiiiiiieee e 1-6
141 MODIIE SEIVICESottt 1-6
1.4.2 Processing a Request for a Wireless SErViCe........coov i 1-6
15 OracleiAS WireleSSCOre and SEIVICES ..ot 1-9
151 TRE COTE .o 1-9
15.2 Mobile PIM and EMail........ccccoooiiiiiieiicecss e 1-14
153 M-Commerce and BilliNgccooiiiiiie e 1-14

1.5.4 1Y/ o] o 11 [<I] (8 o 1 o J

155

Part Il

SBOUTTLY ettt ettt b e bbbt bbb s b e s e et et e n et e et beebesbesae e

Oracle9iAS Wireless XML Developer’s Guide

XML Overview

21
2.2
2.3
2.4

WAL IS XIMIL? ...ttt ettt teea e st e st e st e e e e sbeereesaesnnesreeneens
Relationship between Oracle9iAS Wireless XML and HTMLcccooceiveveiniinncninnnene
Why use OracleQiAS WIreless XIMIL?........coi ittt e
How Does Oracle9iAS Wireless XML Work with Oracle9iAS Wireless?

Displaying and Formatting Content

3.1
3.11
3.1.2
3.1.3
3.2
3.2.1
3.2.2
3.3
3.3.1
3.3.2
3.4
34.1
3.4.2

Hello WOrId EXaMPIEooiiiiie ettt e
[T2 1 0140 T g [5 o | S
DOCTYPE DECIAratioNceoviviiiiiieitisieie sttt
SIMPIERESUIT ...ttt bbb e

FOrmatting the DiISPIaY ..ot bbb
SimpleBreak, SimpleStrong and SIMPIEEM ...
Tables and Basic Formatting EXample ...

WITEIESS GFaPNICS . .cviiiiiiie ettt sttt
STMPIEIMAGE. ... bbb ettt sb e
IMAageDiSPIaY XMcoiiiiiiieeee bbb e

Enhancing with Audio fOr VOICE ACCESS......c.cieiiriiireiree e
SimpleAudio and SIMPIESPEECN ..o
Recommendation for Voice Navigation..........cc.cccccevieiieiecicic e

Application Navigation

4.1
4.2
42.1
42.2
4.3
43.1
4.3.2

INEFOTUCTION ... bbb e ettt be b b e
BaSIC NAVIGALIONviiieiiiece ettt ettt e ebe e
SimpleMenu, SIMPIEMENUITEMcooiieieeece e
NaVvigating DY VOICE........oci i
DOCUMENT LINKING ..ottt bbb
SimpleHref, SIMPIETIME ..o e
ENhancing With VOICE ...t

2-1
2-2
2-2
2-3

5 Filling Out Forms for Data Entry and Navigation

5.1 INEFOAUCTION. ..ot bbbt se et sr bt sn b ne b srene s 5-1
5.2 BasiC USEr INTEFACTION ..ot 5-2
5.2.1 STMPIEFOIM .. bbb et eb e et sr et neere e 5-2
5.2.2 SIMPIEFOIMITEM ...ttt s 5-2
5.3 COMPIELE USEI FOIMIS ..ottt bbbttt 5-4
53.1 SimpleFormSelect, SimpleFormOption, and SimpleOptGroup........cccccoverererennee 5-4
5.3.2 Profile.Xml ..o e 5-4
5.4 ENNANCING VOICEooviiiciee et bbb bbb 5-6
54.1 SimpleGrammer, SimpleValue and SImMpIeEDTMF ... 5-6
5.4.2 Recommendation for VOICE FOIMSccviiiiiiiseeses e 5-7

6 Advanced User Interactions and Channel Optimization

6.1 INEFOTUCTION.......eiie bbbt st a ettt sbesb et snn 6-1
6.2 Events and Tasks Using SIMPIEBINd ... e 6-1
6.2.1 SIMPIEBINA.XMI ..o e e 6-2
6.2.2 Device Specific SIMPIEBINGccccoiiiiiieec e 6-3
6.3 Device Headers and DeViCe ClaSS........ccuviiiiiiiiriiiniisisiesieee et 6-4
6.3.1 F N (o3 1= 1] o OO USROS PR SUR PP 6-5
6.3.2 PageNaVIgatioN.JAVAcccoiiiiieieie et e 6-7

7 Mobile Modules

7.1 g1 oo [U] o1 { o] o 1SS 7-1
7.2 Wireless XML Attributes for Mobile Modules............cccoooiiiiiiiiiccccecce e, 7-2
7.3 Shipped MOoDbile MOAUIEScoiieiie e s sreenes 7-3
7.4 Using Shipped Mobile MOAUIES.............ccoiiieiiec e s 7-4
7.4.1 COMMEBICE SEIVICESeciiiteeiie ettt ettt et et st et beebe e st e et e e s beets et e et b e beereesreens 7-4
7.4.2 L 1A BT Vo= SRS 7-4
7.4.3 (o Tor: LR To] g ST T V(o= SRS 7-4
7.5 Developing Custom Mobile MOAUIESccoeiiiiiiiiee s 7-5
75.1 “Hello World” Mobile MOAUIEcccooveiiieice e 7-5
7.5.2 Sending Parameters to a Mobile Module ... 7-7

XML Tag Glossary

8.1 DY | I To LSOO TSPV O PP 8-2
8.2 Using Mobile Context Information in XML.........cccooviiiiiiniiieecesee e 8-89
8.3 Using Mobile Context Information from HTTP Headers.........cccocevvvevvnivnvnene e, 8-92
8.3.1 Encoding and Escaping Locale String from Requestccoocveininincnene e, 8-94

Part Il Oracle9iAS Wireless Platform and Services

9

Vi

Mobile Service Developer’s Tools

9.1 MODIIE STUAIO ...ttt b b bbb b e saeneene e 9-1
9.1.1 IN-hoUSE MODIIE STUAIOoveie et 9-1
9.1.2 Oracle Online Mobile STUAIOccocoiiiiiiii e 9-3
9.2 OracleiAS WIEIESS SDIKcuo ittt s 9-4
9.2.1 L@ AT Y T SRS 9-4
9.2.2 INSTAITATION ... bbb 9-4
9.2.3 SEFUCTULE ...ttt b bbb et e ettt e bt e b e et e bn e ereennenbeane s 9-4
9.24 CONTIGUIALION ...ttt 9-6
9.25 SDK IMESSAGING ...ttt sttt ettt ettt bbb e b s e bbb e bt bbb b e 9-8
9.2.6 DEVICE DESCIIPLION ..ottt et b et et ebe s 9-10
9.2.7 Deploy the HelloWorld Application ... 9-13
9.2.8 DEVICE DELECTION......cuiitiitiie ittt ettt bbb e se ettt ebenes 9-13
9.2.9 Default Main Wireless APPlICAtiONcccoiieiiieiiniic e 9-14
9.3 Overview of JDeveloper with Oracle9iAS WIrelesscccivviiiiieiinienienne e 9-14
9.3.1 JDeveloper and Oracle9iAS Wireless SDK ... 9-15
9.3.2 The Addin and the WIZards ..o 9-16
9.3.3 Instructions to use the Addin and Wizards............ccocvvvieienieneneiene e 9-20
9.34 RUNNING INSIIUCLIONS ...ttt 9-21
9.4 Third-party Mobile SIMUIALOIS..........cccoviii e 9-21
9.4.1 [0T 1SS 9-22
9.4.2 P A ettt E et E e b bbb e b b a et et et e ere e 9-23
9.4.3 0] [OSSOSO OO TUTPTUPRURPRVRTPN 9-23
9.5 Deploying Your APPLICATIONS ..ot e e 9-24

10 Core Technologies

10.1
10.11
10.1.2
10.2
10.2.1
10.2.2
10.2.3
10.2.4
10.2.5
10.2.6
10.2.7
10.2.8
10.2.9
10.2.10
10.2.11
10.2.12
10.2.13
10.2.14
10.2.15
10.2.16
10.3
10.3.1
10.3.2
10.4
10.4.1
10.4.2
10.4.3
10.4.4
10.4.5
10.5
10.5.1
10.5.2
10.5.3
10.5.4

Oracle9iAS Wireless Components and Process ArchiteCture...........ccococvvevencicnnienn 10-2
Core Platform ArChItECIUIEoovoveeece e 10-2
Core Process ArChItECUIE.covoiiiiee e 10-5

Integration with other COMPONENTScooiiiiii s 10-13
Scenario 1: User Authentication by Oracle9iAS Wireless (device portal) 10-13
Scenario 2: User Authentication by an External Applicationcc.ccoceeennee. 10-15
Scenario 3: User Authentication by mod_0SS0cccceeiininininiie e 10-16
Scenario 4: Voice based authentication............ccoceovernninninneee e 10-17
GlODAI LOGOUL ...t ettt nae s 10-17
Oracle9iAS Wireless-OID INtegrationccoooueeeieinieninine e 10-18
Oracle9iAS Wireless Repository Synchronization after User Authentication.. 10-19
PL/SQL based asynchronous synchronizationcccoviiiinniciniecc s 10-20
Oracle9iAS Wireless Programmatic Model API Interfaceccccocviveinincne 10-21
Oracle9iAS Wireless User Management Integrated with DAS ... 10-22
WebCache INTEgrationcoooiiiiiiiii e 10-22
Oracle Portal and Oracle9iAS WIreless..........cccvviiiininninn e 10-30
Oracle Portal as a WIreless SEIVICEcccviiiiiiiiicnsse e 10-31
Developing Wireless POFTIELS ... 10-32
OraclePortal, Oracle9iAS Wireless and Single SignOnN (SSO)ccccceevevevvvennene, 10-34
Portlets for Services Deployed on Wireless SErver ... 10-35

WVITEIESS SEIVICES ...ttt 10-36
Wireless SErviceS OVEIVIBW.ccoeiieiiriiiene et 10-36
ACCESS CONTIOL ...t e e s e e e enenns 10-38

Device and Network Adaptationccccoveiiiieiie i 10-38
(o To T or= 1 I LV o= TSP 10-38
1Sy Tot= N 1= =T od 1 [o SRS 10-39
gt (o [-I] U] o] 010] o APPSR PRSI 10-40
TEANSTOIIET ..ttt 10-40
D] I B I - T 1S (0] =T SRR 10-44

ASYNCRTONOUS SEIVET ...ttt sttt re e beeneesaeenes 10-47
Asynchronous Server ArChiteCtUIEccocvcceeiiiie i 10-47
Key Technical Challenges ... 10-48
Technical Solutions anNd FEATUIEScccverieriercee e 10-49
Examples 0n Service INVOCALIONccccceceeiiiic i 10-52

vii

11

viii

10.5.5 Writing Asynchronous APPlICAtIONS.ccccvviviiiirie i 10-58

10.6 Runtime and Data MOdel APIS.........ccooiiiiiiii e e 10-62
10.6.1 OracleQiAS Wireless RUNTIME. ... 10-62
10.6.2 REFEIENCE MOAEL ... et nens 10-89
10.6.3 Repository Data Model APl ... 10-114
10.6.4 Sample Code that Uses the Data Model APl ..o 10-121
O A o -1 o]] TP UPTRPR 10-126
10.7.1 HTTP AGAPLIET ..ottt sn st enesbane b s 10-126
10.7.2 Other AQAPLEIS ... ettt 10-130
10.7.3 Creating YOour OWN AdAPTEN ..ot e 10-131

Advanced Customization

11.1 Overview of Advanced CUSTOMIZAtION...........ccoiiiiiiiiieeee e e 11-2
N (1= PSP T TS U P UPTOTTURO 11-4
11.21 Presets Concept and ArChiteCtUre. 11-5
11.2.2 SAMPIE APPHICALIONS ...t et 11-6
11.2.3 Regular Expressions Syntax for the Presets Attribute Formats..............ccccoceeee. 11-16
5 R o Tor LA o] o 1V F- U SRS 11-18
11.4 User Device ManagemeNnTccooiiiiiiiiie et e e 11-19
11.5 Multiple Customization Profiles ...t 11-19
1151 (0] 0 [63=T o KT TP PSP S PR PSPPI 11-20
11.5.2 SaMPIE APPHICALIONS ...t e et 11-22
11.6 User and Group Mana@gemMENTccucuiiiieiniire et 11-24
11.7 Service MaNAgEIMENTcociriiiiiie ettt et ettt 11-24
11.8 Rebranding the Customization Portal...........c..cccoeoiiiiiiii e 11-24
11.8.1 OVEIVIBW ..otttk se et r et r et sr b ar et n et nn s 11-24
11.8.2 Page Naming CONVENTIONSc.ciiiiiienee e 11-25
11.8.3 JAVASErVEr PAges STIUCTUIEciiii it 11-26
11.8.4 D TT=Tox (0] V] U o1 (U] - 11-30
11.8.5 CUSTOMIZALION LEVEIS ...t 11-31
11.8.6 Customization COMPONENTScceeiiiiiieiicee e sre s 11-32
11.8.7 Setting the Multi-Byte Encoding for the Customization Portal........................... 11-34
11.9 Using the Customization POrtal APl ... 11-34
11.9.1 OVEIVIBW ..ottt ettt ek se et r et r et ar b ar et an et nn e nes 11-34
11.9.2 Customization Portal APT CIASSESccuiiriririeiiieeee et 11-35

12

13

11.9.3 RSYEEXSy o] 1 [0, 2 11-37

Alert Engine and Data Feeds
121 ALEBIEENQGINE oot bbbttt bbbttt 12-1
12.11 Alert ENging AFCHITECTUIEcc.iiiiiiiiie e e 12-1
12.1.2 Creating a Master AlEIrt SEIVICEcoovviiieicee e 12-3
12.1.3 Using the Content Manager to Create and Manager an Alert Service................ 12-7
12.1.4 Managing Alert SUDSCIIPTIONS........coiiiiiieiee e 12-8
12.15 Managing Alert Subscription Using Customization............ccocecvevreinnnnineenn 12-8
12.1.6 Manage Alert Subscription Using Java APl ... 12-8
12.1.7 Creating a Device Address for AlEIT ... 12-10
12.1.8 Starting Alert ENQINE PrOCESScvvuiiriiiiiiieieieises et 12-10
12.1.9 Notifying the Alert Engine for Content Arrival ..o, 12-11
12.2 DAt8 FERUERIS ..ot 12-11
12.21 BUIlAing @ Data FEEET ..ot 12-13
12.2.2 Creating a Passthrough DataFeedercooeeiiiiiiieieiie e 12-14
12.2.3 SaMPIe APPHICATIONS ..o e 12-14
Push Service and SMS
13.1 Push Service and SMS OVEIVIEWcocviiiiiiniinienie e 13-2
13.2 PUSN SEIVICES AP ..o bbbttt 13-4
13.2.1 Building a PUsh APPlICAtioN ... 13-5
13.3 Oracle9iAS Wireless Messaging SYSIEMcccvcvviveiiie e 13-12
13.31 TransPOrt RUNTIME PrOCESSESciviiiierieierieenieie ettt sttt st 13-14
13.3.2 (070 o) i To LU = 1 (o] o 1SS 13-15
13.3.3 TraNSPOIT AP ..o 13-15
13.34 L@ TSRS 13-19
13.3.5 T L g] o] T3 oT oo =T a [USSP 13-19
13.3.6 Driver INTErface APIS ..o 13-21
13.4 Oracle9iAS Wireless Pre-bDUilt DIIVEIS ... 13-36
134.1 PUSNCTIENT DIIVET ..ottt 13-37
13.4.2 EMAI DEIVET ..ot 13-38
13.4.3 WOICE DIFIVET ..ottt bbb bbb e 13-40
13.4.4 UCP DIIVET ..ttt ettt bbbt 13-41
13.45 SIMPP DFIVET ..ottt bbbt 13-43

14

15

13.4.6 Fax Driver (RIGNTFAX)cccveeeeece st e era e snees 13-44

Transcoding
141 TranSCOAING OVEIVIEWcoiuiiiiiiiiiiiieiite ettt sttt sttt eb e ebe ettt neebeneans 14-1
14.2 Web Content Adaptation.........cccooiiiiiiiiiiiee e e e 14-2
14.2.1 WV IDL SEIVICES. ...t viivtiteieesiesieseee et e e sttt e e e e e e nesbesrestesaetesee e e e eneereaneerenren 14-3
14.2.2 WeEDINTEGration BEANS.........c.coiiiieiieiiieete sttt e e sne 14-3
14.2.3 Using WebINtegration BEANSccociieiiniie ettt 14-4
I YAV I I = g 1 - L (o SRS 14-11
14.31 Deploying and Configuring WML Translatorccccccoviinineieneieencnesee 14-12
14.3.2 UsiNg the WML TranSIator ..o 14-12
Using Location Services
15.1 Introduction t0 LOCAtION SEIVICESccccoiiiriiiiiiiiieeinie ettt 15-1
1511 GELHING STAMTE ..ottt b e enas 15-2
15.1.2 LOCALION SEIVICESiviieiieiieecieeete ettt bbb e et et e e ebenes 15-3
15.1.3 SEIVICE PrOVIAEIS ...ttt bbbt sne s 15-4
15.1.4 GEOCOAING SEIVICESvivitiiiitiiecte ittt ettt ettt eb e e nr e nre e 15-11
15.15 LOCALION IMAIKS ...t ene s 15-12
15.1.6 LOCATIONMARK TaBIE....c.ciiiiiiiiieisese s 15-13
15.1.7 MEPPING SEIVICESoviiiiieiiieiei et bbb bbbt 15-14
15.1.8 ROULING SEIVICESoieiiieiicie sttt sttt et sbeane e s re e sreeaesreeeens 15-15
15.1.9 Business Directory (Yellow Page) SErVICES........cccveveieiieveee e 15-18
15.1.10 QLI U LT 1= Y L= SRS 15-22
15.2 Developing Location-Based APPLICatioNS..........ccccciviieiiiiieiiseese s 15-28
15.2.1 Creating Java SErVEN PAgESc.coviieiieiccieie ettt e ste e sve e sreanees 15-28
15.2.2 Creating a Location-Based Application Adapter..........ccoovviriiiniinieneieneenens 15-44
15.3 Enabling Mobile POSItIONING.........cccc it 15-54
15.3.1 Manual POSITIONINGccviiieiiiccc et sne e 15-55
15.3.2 AULOMALIC POSTLIONINGvcviiiiiiiiiiieiec s 15-56
15.4 Using the Region Modeling TOO!cooiiiiiiic it 15-68
154.1 Service and Folder Visibility Using Region Modeling........c.cccccovvveiiiceiecnenen, 15-68
15.4.2 Folders and Hierarchies of REgiONS.........cccoiiiiriiiniiiiiece e 15-69
15.4.3 Region Modeling Tool Web INterface........ccccooviv i 15-69
15.4.4 Associating a Region With @ SEIrVICe ..o 15-71

16

17

15.4.5 Loading and Updating Region Dataccccvreveieneiieiesiese e 15-72

15.4.6 RegioN MOAEIING AP ... e e 15-77
Offline Management
16.1 Oracle9i Lite: The Internet Platform for Mobile Computingc.ccococieiiniicnnnn 16-1
Mobile Studio
17.1 Oracle9iAS Wireless Mobile Studio OVEIVIEWccccveiiriieiienee e 17-2
17.2 GELHING STAMTEA ...ttt ettt e 17-3
17.21 Login and RegiStratioNcoiiiiiiiiiieiecc e 17-3
17.3 Studio CONFIQUIALION ..o et 17-6
17.31 Sample Applications ConfiguIration..........c.cccoeiiiiniinnee e, 17-6
17.4 AAMINISIFATIONot bbbt et ebe e 17-44
17.4.1 OGN ettt b bbbttt eb e 17-44
17.4.2 R3] L ST ST ST TS TRPTO 17-45
17.4.3 CONTFIGUIALION......ceitie bbb bbb et sbe s 17-45
17.4.4 LLOCAIES .ttt bbbt 17-46
17.45 SAMPIE SEIVICES ...eieeciiciee ettt bbb eb e ebe e 17-49
17.4.6 RESOUICES ..ottt 17-50
17.5 Advanced Customization (Studio Tag Library)cccccovieiiiiiiciie e, 17-51
17.5.1 RESOUICES ... ere e 17-51
17.5.2 LI 1o T T o] = SRRSO 17-51

Part IV Oracle9iAS Wireless Modules

18

Mobile PIM and eMail
18.1 Mobile PIM and eMail OVEIVIEW.ccouiiiiiiiiiiiieiieene e 18-2
18.11 MODITE EMAIL.....ooiii e 18-2
18.1.2 MODIIE DIFECIONY ..ottt 18-6
18.1.3 MoDbile AAAress BOOK ..o e 18-10
18.1.4 CAIBNAAY ...t bbbttt re 18-18
18.1.5 INSTANT IMESSAGINGveveeviieieee bbb 18-25
18.1.6] 0T i (=TT Vo | o USSP 18-29
18.1.7 Document ManagemMeNT.......ccoociiiiiiiiiiee et s 18-31

Xi

19

20

Xii

18.1.8 L=\ [0 Yo [0] = 18-35

18.1.9 TASKS .ttt ettt 18-41
m-Commerce
19.1 M=COMIMEITE SEIVICE ...ttt ettt sttt ettt b b bbb s e et e s et et ebeebe b b nn s 19-2
19.2 M-COMMEICE APIS ..ottt sttt er e sre s e sreensenneeneenneas 19-2
19.2.1 BEefOre YOU BEOIN ...uoiiiiiiiiie et e et 19-2
19.3 Mobile Wallet (M-WAIIEL) ..o e e 19-3
19.31 Configuring the M-Wallet ... 19-3
19.3.2 Linking t0 the M-Wallt ..o 19-8
19.3.3 Output Parameters for the m-Wallet ... 19-9
R I - 1 1 - | (o) RS 19-16
19.4.1 Configuring the Translator Module ... 19-16
19.4.2 Linking to the Translator Module............cccocoiiiin s 19-17
195 TPAYMENT ..ottt b et b bbbt b e bbb et 19-19
19.51 Configuring the iPayment Service Module...........coccoeiiiiniiiine e 19-19
19.6 FOIMITIIIEE ..o e 19-22
19.6.1 Configuring the Formfiller Module..........ccoooiiiiiiiiic e 19-22
19.7 Creating a Billing MechaniSm............ocoiiiiiii e 19-31
Location-Based Module
20.1 LOCAtION MOAUIEScooiiiiiiiee e 20-1
20.1.1 LOCALION PICKET ...ttt 20-1
20.1.2 Configuring the Location Picker Module ... 20-2
b4 I B] ¢ V4T oV B 1T =Tox £ o] LSRR 20-6
20.2.1 Configuring the Driving Dir€CliONS.........cccccciiieiiii e 20-6
20.3 The Business DIreCtory MOAUIEcccooiiiiiiniiicce e 20-9
20.3.1 Configuring the Business Directory Input Parametercccccevevveienecnevennnn, 20-9
20.4 MAPS MOAUIE ... e sttt bt e e e s aeeae e nrearen 20-11
204.1 Configuring the Maps INpuUt Parametersc.coovereerneieenee e 20-11
20.4.2 Configuring the INPUt Parameters.........ccocvveviiieie e 20-12
20.4.3 Linking to the Maps MOAUIEcco i 20-12
20.5 Extending the Mobile MOAUIES ...t 20-13
20.5.1 The oracle.panama.model.LocationMark Class............ccccccvevevveieeiinie s 20-14
20.5.2 The oracle.panama.spatial.geocoder.Geocoder Class...........cccccvvvvevceiieeiciiiniennens 20-15

20.5.3 The oracle.panama.module.location.LocationHistoryManager class 20-16

20.5.4 The oracle.panama.spatial.router.Router class..........ccccociiniiniiinincieee, 20-17
20.5.5 The oracle.panama.spatial.mapper.Mapper Classc.ccocoverrienrienniinniensieneeen, 20-18
Index

Xiii

Xiv

Send Us Your Comments

Oracle9iAS Wireless Developer’s Guide, Release 2 (9.0.2)
Part No. A90485-02

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

Did you find any errors?

Is the information clearly presented?

Do you need more information? If so, where?

Are the examples correct? Do you need more examples?
What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send
comments to us in the following ways:

Electronic mail: iasdocs_us@oracle.com
Postal service:

Oracle Corporation

Oracle Mobile and Wireless Products
500 Oracle Parkway, Mailstop 40P6
Redwood Shores, California 94065
USA

If you would like a reply, please give your name, address, telephone number, and (optionally)
electronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.

XV

XVi

Preface

This guide discusses how you can use Oracle9iAS Wireless to develop and deliver
mobile services to any mobile device. The structure of this document follows the
architecture of Oracle9iAS Wireless.

Figure 1. Oracle9iAS Wireless Architecture

Oracle AS Wireless 2.0

"1 - .
- - SEVICES
(6) (7) (8]

=~ Location Based - Mobile PIM - —mCommerce Mabile
Services & Email & Billing Studio

= Advanced . Push Service |- Tronecoding Offline

Customization & SMS Management

Device, Voice, XML Protocol
Network Adaptation Application Model Adaplters

XVii

This Guide includes the following Parts and Chapters:

Section

Content

Part I, "Introduction”

Chapter 1, "Introduction”

Overview of Oracle9iAS Wireless

Part 11, "Oracle9iAS Wireless XML Developer’s Guide”

Chapter 2, "XML Overview"

Chapter 3, "Displaying and Formatting

Content"

Chapter 4, "Application Navigation"

Chapter 5, "Filling Out Forms for Data

Entry and Navigation"

Chapter 6, "Advanced User Interactions

and Channel Optimization"
Chapter 7, "Mobile Modules"
Chapter 8, "XML Tag Glossary"

Overview of XML.

Sample applications and methods for formatting and displaying
XML content.

Navigating and linking among XML content.

Using forms to simplify filling out and navigating XML content.
Advanced user interactions with XML content.

Using XML to develop and deploy mobile modules.

Abstract device markup language used in the OracleMobile
Online Studio application framework.

Part I11, "Oracle9iAS Wireless Platform and Services"

Chapter 9, "Mobile Service Developer’s

Tools"

Chapter 10,

Chapter 11, "Advanced Customization™

Chapter 12,

Feeds"

Chapter 13,

Chapter 14,

Chapter 15,

Chapter 16,
Chapter 17,

Xviii

"Core Technologies"

"Alert Engine and Data
"Push Service and SMS"
"Transcoding"

"Using Location Services

"Offline Management"

"Mobile Studio”

Building applications using Oracle9iAS Wireless.

Core technologies used by Oracle9iAS Wireless.

Adapting applications to increase mobile application
efficiency.

Publish timely information for subscribers from a variety of
data sources.

Push and SMS Services architectures, and how to use these
services to create and deploy mobile applications.

Reformatting device/markup language for use on any
web-enabled device.

Specialized services for developing location-based
applications.

Using Oracle9i Lite for offline management of content.

Using Oracle Mobile Studio to develop wireless applications.

Section

Content

Part 1V, "Oracle9iAS Wireless Modules"

Chapter 18, "Mobile PIM and eMail"

Chapter 19, "m-Commerce"

Chapter 20, "Location-Based Module"

"Index"

Integrating PIM and e-mail services into your mobile applications.

Integrating m-Commerce and Billing services into your mobile
applications.

Integrating Location-Based services into your mobile applications.

Index.

Intended Audience

This Guide is intended for developers of wireless applications.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains

markup to facilitate access by the disabled community. Standards will continue to

evolve over time, and Oracle Corporation is actively engaged with other

market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional information,
visit the Oracle Accessibility Program Web site at
http://ww. oracl e.com accessibility/.

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations
that Oracle Corporation does not own or control. Oracle Corporation neither

evaluates nor makes any representations regarding the accessibility of these Web

sites.

XiX

Related Documents

XX

Here is a partial list of related documents that will provide you with important
information concerning Oracle9iAS Wireless and related products/components:

« Oracle9iAS Wireless Getting Started and System Guide—all the information you
need to be up and running in the shortest possible time.

« Oracle9iAS Wireless Release Notes—final notes about the products, since the
Documentation and Help were produced.

« Oracle9iAS Wireless online Help (included in the product)
« Javadoc with sample code included in product directory structure
« Oracle9iAS documentation (HTML and PDF library)
« Oracle Technology Network
http://otn.oracle.com

Oracle Technology Network is your main resource for information, samples,
updates, and other downloads for your products. Stylesheets, drivers,
documentation updates, sample code, demonstration software, and other
valuable resources are available to you on OTN. Sign-up (if you haven’t already
done so; it’s free!) with OTN to gain access and receive up-to-the-minute
information about Oracle products and practices.

Part |

Introduction

Part | contains introductory information about Oracle9iAS Wireless.

« Chapter 1, "Introduction”

1

Introduction

This document provides an overview of Oracle9iAS Wireless. Each section of this
document presents a different topic. These sections include:

1.1 Overview

Section 1.1, "Overview"

Section 1.2, "Wireless Internet Components"

Section 1.3, "Developing Mobile Internet Applications”
Section 1.4, "Oracle9iAS WirelessArchitecture”

Section 1.5, "Oracle9iAS WirelessCore and Services"

Oracle9iAS Wirelessenables enterprises to deliver any content or application to any
device with any protocol across any wireless network.

Using Wireless, you need only write an application once to have it run on any type
of device. Wireless adapts information from any content source into an open XML
format and then transforms the content into any markup language supported by
any wireless device. Additionally, Wireless includes many advanced services such
as location-based services, secure mobile commerce, and push services via SMS,
WAP-Push and e-mail.

1.2 Wireless Internet Components

There are many infrastructure components that work together to make the wireless
Internet function. The components include:

Introduction 1-1

Wireless Internet Components

Wireless Devices and Microbrowsers

The user accesses the Internet using a Wireless Internet device - this device typically
runs a microbrowser. (This is analogous in the fixed Internet world to a personal
computer running a standard Internet browser). Wireless devices also include in-car
systems and voice technology to access information from a traditional phone.

Wireless Markup Language
Each Wireless Device also speaks a language called a markup language - the

markup language specifies how information should be presented on the device.
Common Markup Languages include VoiceXML, WML, and HDML.

Protocols
Protocol is the method that is used to deliver the content data to the devices.

1.2.1 The Wireless Network

Wireless separates the concerns of the wireless network from developers, greatly
simplifying the development and management of wireless applications.

1.2.1.1 Networks

Networks are the underlying infrastructure that is used by the wireless carriers. A
large factor of networks is the bandwidth and the connection type. For example,
2.5G and third generation networks will provide high-speed access and always-on
capabilities.

1.2.1.2 Wireless Gateways

Wireless Devices speak a variety of protocols such as WAP (Wireless Access
Protocol), SMS (Short Messaging Service), Voice and others. The Wireless Gateway
translates the wireless protocol request to the standard HTTP protocol. Note that
Wireless Protocols are more efficient over the Wireless Networks than the standard
HTTP protocol - this is one of the primary reasons that Wireless Internet clients do
not speak HTTP directly.

1.2.1.3 Wireless Services

Wireless Services have a wide variety of forms including database information,
personalization, alerts, and location services. The large number of content sources
adds to the complexity of having a manageable way to deliver each application to
every type of device in the most optimized fashion.

1-2 Oracle9iAS Wireless Developer’s Guide

Developing Mobile Internet Applications

1.2.1.4 Application Servers

Application servers have come into play to increase the efficiency of application
development, deployment, and management. The Wireless Application Server
connects the wireless content source over the wireless network to the wireless
Gateway or Device. To do so, it adapts the content from the content source,
personalizes it for individual users, and converts (or transforms) it to the specific
markup language spoken by the wireless device being used.

1.3 Developing Mobile Internet Applications

Wireless application development is typically constrained by limitations in user
input, device display form factor, and the several different wireless device
standards currently in use.

1.3.1 User Input Limitations

The keypads of cellular phones limit the user’s ability to enter lengthy
alphanumeric strings. The limited data entry capability makes cellular phones and
other hand-held devices better suited to carry out specific inquiries and transactions
rather than for Internet surfing.

1.3.1.1 Device Display Form Factor

The screen size and display capability of devices vary tremendously - since the
Internet is likely to be accessed from a variety of different devices, it is not practical
to optimize every application for every single device available. The requirements
that these two limitations place on a Wireless Platform are twofold: first, the
platform must be able to exploit device-specific functionality such as voice
browsing which make it easier to navigate through Internet services from a wireless
device; and second, the platform must provide ways to find and execute Internet
services quickly and effectively by personalizing services and content to make them
relevant to individual users. The user experience is far richer and more effective
when the Wireless Platform supports a variety of personalization facilities such as
allowing users to personalize which services they see, to see different information
based on the device they are using, and to see different information based on the
geographic location they are accessing the Internet from.

1.3.2 Myriad Wireless Device Standards

Even though wireless Internet standards are emerging, there are still diverse
standards supported by wireless devices. Each device speaks a different wireless

Introduction 1-3

Developing Mobile Internet Applications

protocol and supports a variety of different Wireless Markup Languages — these
different standards preclude a developer from writing every application to
individually support every single device available. As a result, as companies must
choose a software platform that will radically simplify how they develop and
deploy mobile portals and Internet applications.

To enable cross-platform support, a wireless Internet software platform must meet
two requirements:

1.3.2.1 Support a Broad Variety of Devices and Protocols

First, the wireless software platform should be able to support a broad variety of
wireless devices, each of which supports a different markup language, a different
microbrowser, and a different communication protocol. Most Wireless Platforms
support only the WAP Protocol and as a result, applications built to such a platform
cannot be accessed from an i-Mode, Voice, SMS or a Blackberry device.

1.3.2.2 Write Applications Once and Deliver Them Anywhere

Web site developers must develop a Web site for each wireless type of device.
Because of the increasing variety of wireless devices, such an application
development paradigm does not scale; a developer must be able to develop a Web
site once and have the software platform deliver it to any wireless device.

1.3.3 Heterogeneous Sources of Content

In addition to wireless devices, application development and deployment can also
be complicated by the fact that the wireless Internet does not require that content or
applications be specific to it.

1.3.3.1 Leveraging Existing Content

To leverage existing Internet content and e-Business applications for the wireless
environment, the software platforrm must be able to easily re-use any Internet
content or application, no matter how it was originally built to a wireless device.
This requires the platform to be able to "adapt” content from a variety of
repositories whether it comes from an Internet web site, from an e-Mail server, or
from a database. Additionally, the wireless platform must also be able to adapt any
Internet content whether the application has been built using Java, Visual Basic,
PERL, PL/SQL, PHP, server-side scripting, or any other web site development
language.

The wireless software platforrm must be able to support web sites or Internet
applications that are developed specifically for the wireless Internet. It must

1-4 Oracle9iAS Wireless Developer’'s Guide

Developing Mobile Internet Applications

provide a seamless set of facilities to develop such web sites using open standards
such as Java and XML.

1.3.3.2 Application Performance and Scalability Requirements

A Wireless Internet Platform must also be able to meet scalability requirements in
three ways:

1.3.3.2.1 Support a Large Numbers of Users Since Wireless Carriers and Portals
support Millions of subscribers, the Wireless Internet Platform must provide
facilities to centrally manage these users, their security and access control
privileges, and their ability to personalize services.

1.3.3.2.2 Support a Large Number of Concurrent Sessions Additionally, users who
access the Internet from wireless devices typically have relatively long- lived
conversational interactions with a number of different web services, in addition
users desire always-on capabilities for fast notification of messages. Due to the
limited bandwidth on the wireless network and the lack of support for "cookies" in
most wireless gateways, it is not possible to push the user's session state from the
server to the client. As a result, a wireless Internet platform must be able to manage
user sessions and maintain session state in a highly scalable fashion.

1.3.3.2.3 Support a Large Volumes of Content Finally, since wireless users access large
volumes of content which needs to be delivered very efficiently to their client, the
Wireless platform must be able to use caching and share data facilities to serve large
volumes of content efficiently.

1.3.3.3 Evolving Wireless Internet Market Requirements

Wireless Internet users want to send messages, browse information and services,
carry out wireless commerce transactions and run complicated business
applications. Most wireless software platforms only address a small set of
requirements requiring users to choose one wireless software infrastructure for
messaging, another to browse content, and yet another for mobile commerce. It is
critical that a wireless platform must seamlessly integrate facilities for wireless
messaging, content browsing, voice access, mobile commerce and business
applications to allow developers to combine these facilities in building
state-of-the-art applications and portals.

Introduction 1-5

Oracle9iAS WirelessArchitecture

1.3.3.4 Evolving Wireless Standards

Wireless standards are evolving rapidly. At the network level standards such as
CDMA, GSM, TDMA, iDEN, SMS, i-Mode, GPRS, and UMTS are all evolving; at the
device level, standards such as VoxML and VoiceXML promise to change how the
wireless Internet is used. As a result of these differences, a wireless Internet
Platform must meet two requirements: first, it must be current with wireless
standards such as i- Mode, WAP, SMS, GPRS, 3G and others; and second, it must
support open industry standards such as XML, XHTML, Java Servlets, Java Server
Pages for application development. Wireless address these issues making a
complete wireless solution for businesses.

1.4 Oracle9iAS WirelessArchitecture

Wireless is the mobile component of the Oracle9iApplication Server, an integrated
suite for internet-enabling your applications and portals. Oracle9iAS sits on the
Oracle9i Database, which is used as the secure repository for all the components.
Oracle9iAS runs the Oracle e-Business suite as well as partner applications.

The Oracle9iAS is Oracle's comprehensive and integrated application server. It runs
any Web site, portal, or Internet application and makes your Web site and all your
applications accessible from any browser or mobile device. You can deliver tailored
1:1 customer experiences through real-time personalization and satisfy demands for
current business information using Oracle9iAS integrated business intelligence
services. You can simplify your management tasks by using the single management
console provided with Oracle9iAS.

Wireless simplifies wireless development and deployment by providing the ability
to deliver any content with any device, any protocol and across any Wireless
Network with the core. Wireless leverages open standards such as XML, Apache
and J2EE, to deliver a high performance, scalable wireless infrastructure.

1.4.1 Mobile Services

Built on Wireless are Mobile Services such as PIM (Personal Information
Management), Email, and Location Based Services that simplify wireless enabling
applications and portals. These are reusable application components that increase
the time to market of mobile applications. The services can be configured out of the
box or extended for custom abilities.

1.4.2 Processing a Request for a Wireless Service
Wireless processes a request for a wireless service as follows:

1-6 Oracle9iAS Wireless Developer’'s Guide

Oracle9iAS WirelessArchitecture

Sending a Wireless Request

Recognizing and Authenticating the Wireless Device
Establishing the Wireless Session

Translating the request over the Internet

Connecting to the Application Server

Recognizing the User's Information

N o o M w N oR

Processing the Wireless Request

1.4.2.1 Sending a Wireless Request

A user invokes a Wireless service from a wireless Internet device by dialing the
telephone number for the appropriate service provider. The microbrowser on the
wireless device sends a request to the wireless network base station. The request can
be sent over a variety of different protocols, such as SMS or WAP, depending on the
kind of device being used. These protocols are packet-based protocols that have
been optimized to function over a wireless network with limited bandwidth and
intermittent connectivity. These make these protocols more efficient over the
existing wireless network than the standard Internet HTTP protocol.

1.4.2.2 Recognizing and Authenticating the Wireless Device

When the wireless network's base station receives the request, it requests the mobile
device to identify itself in order to proceed with authentication. Once the WAP
Gateway and Wireless Application Server have established a session, the WAP
Gateway passes information about the specific web request to the Wireless
Application Server. The message header encodes information such as the user’s
identity, the device the user is accessing the Internet with, the geographical location
of the user, and the specific web address or service that the user is accessing. This
information is used by the Wireless Application Server to personalize the
interaction with the customer.

1.4.2.3 Establishing the Wireless Session

Once authentication is successful, the service provider accepts the call and
establishes a connection with the mobile device. The request is sent from the base
station over the wireless network using the Wireless Transport Protocol (WTP). The
wireless operator’s Gateway receives the request.

Introduction 1-7

Oracle9iAS WirelessArchitecture

1.4.2.4 Translating the request over the Internet

A gateway converts the request from the cellular network protocol into the standard
Internet HTTP protocol before the request is passed from the Wireless network to
the traditional Internet. (The cellular network protocol is not the standard Internet
protocol). For WAP- enabled devices, a WAP gateway converts WTP to HTTP. The
gateway not only maps the message from one protocol to another, but also knows
how to pass the message from the Wireless network to the traditional Internet
infrastructure. Other gateways include Voice gateways and SMS gateways.

1.4.2.5 Connecting to the Application Server

After the Gateway converts the wireless request (which is defined by a specific
phone number) to a URL for a specific web site, the message is sent as a standard
Internet request to the Wireless Application Server that sits at the specific URL or
web address being accessed. The Application Server and Gateway then authenticate
to each other and establish a session.

1.4.2.6 Recognizing the User's Information

Once the Gateway and Wireless Application Server have established a session, the
Gateway passes information about the specific Web request to the Wireless
Application Server. The message header encodes such information as the user's
identity, the device with which the user is accesses the Internet, the geographical
location of the user, and the specific Web address or service that the user accesses.
This information is used by the Wireless Application Server to personalize the
interaction with the user.

1.4.2.7 Processing the Wireless Request

When the Wireless Application Server receives the content request it processes it in
three steps in which the content request is adapted to the content from the wireless
application being accessed, customized for the user, and transformed to the specific
device being used

« Step 1. Adapting

Content adaptation essentially involves aggregating the content from the
application being accessed in an XML format. Any application, that outputs
XML, will be automatically delivered to any device, over any network, with any
protocol by Oracle9iAS Wireless.

1-8 Oracle9iAS Wireless Developer’'s Guide

Oracle9iAS WirelessCore and Services

« Step 2: Customizing the Content for Every User

Oracle9iAS Wireless also recognizes the user's session context and customizes
the services being rendered to the individual user. Oracle9iAS Wireless allows
users to configure their own customized portal choosing which services they
would like to see, setting up notification services, and personalizing services
based on the device they are accessing the Internet from and their geographical
location (Location-based Services).

« Step 3: Adapting the Content to the Appropriate Device and Network

Finally, since each user has the ability to use one or more different devices to
access the Internet and each device speaks a different markup language,
Wireless transforms the content, rendering it to the markup language
appropriate to the device being used.

Many wireless application servers are limited both in the range of content they can
adapt and in the variety of devices to which they can render content. Typically,
wireless application servers render content only to devices that speak WAP, WML
and HDML. Not only can Wireless be a WAP server, but, through its usage of XML,
it can translate any source content to any format for any device.

1.5 Oracle9iAS WirelessCore and Services

Wireless simplifies wireless development and deployment by providing the ability
to deliver any content to any device, with any protocol and across any wireless
network with the Oracle9iAS Wireless core. Oracle9iAS Wireless includes a set of
wireless services such as PIM (and Email), Push, and Location Based Services that
enhance application abilities and leverage traits. Wireless leverages open standards
such as XML, Apache and J2EE, to deliver a high performance and scalable wireless
infrastructure.

1.5.1 The Core

The Wireless core is the framework that gives application developers independence
from the underlying networks, protocols, devices, gateways and other wireless
complexities. The core normalizes the wireless complexities to one protocol and one
language, HTTP and XML. Wireless is based on open J2EE, Apache, and XML
standards for easy integration with existing and future technologies.

To render an application to any device, a developer needs to create any application,
which outputs XML, and then point the Wireless core to the application with a URL.
The core automatically eliminates the complexities associated wireless technologies.

Introduction 1-9

Oracle9iAS WirelessCore and Services

The application can then be accessed by any device or voice, at the same time taking
advantage of individual device's features.

1.5.1.1 Adapters

Wireless uses only one main protocol adapter, the HTTP Adapter, to create a mobile
application from any HTTP and XML server. Wireless ships with HTTP and OC4)J
(J2EE) Protocol Adapters. The core, using the protocol adapters, fetches the
application XML content and prepares it for device adaptation. The HTTP adapter
supports the HTTP protocol and retrieves content from applications over HTTP. The
OC4J (J2EE) adapter fetches content from Java Servlet and JSP based applications
running within the same J2EE container (OC4J) as Wireless.

1.5.1.2 XML Application Framework

The XML application framework is based on XML and HTTP. This provides
simplicity and power to application developers. Advanced HTTP/XML APIs,
service linking, location awareness, and context information give developers the
ability to quickly develop applications with maximum efficiency. Each application
created in the XML application framework is be multi-channel to be accessed
wirelessly through push, offline, and voice.

1.5.1.3 Device and Network Adaptation

Device and network adaptation automatically transform and optimize the
application content to any device and network. As a result, devices that access the
content retrieve optimized data. Supported devices include two-way pagers for
asynchronous services (SMTP/SMS), all WAP devices, Voice access through regular
phone lines, PDA devices.

1.5.1.4 Runtime APIs

The Wireless runtime uses the Oracle9i database as the repository for storing
persistent application objects. Runtime APIs provide the functionality to
manipulate the platform's persistent data objects stored in the Oracle9i Database
repository. The Wireless APIs can customize the runtime behavior of the server. For
example, the APIs can provide a different authentication scheme or a customized
device identification mechanism. Wireless also provides an extension framework,
which allows for plug-in of additional logic, such as logging or system monitoring
that does not change the runtime behavior.

1-10 Oracle9iAS Wireless Developer’s Guide

Oracle9iAS WirelessCore and Services

1.5.1.5 Wireless Webtools

Wireless provides a complete web-based tool to manage your wireless business. The
Service Designer is used by developers to manage the applications, the Content
Manager is used to manage the end user's view, the User Manager controls the
users, groups and access control and the System Manager monitors the servers and
performance.

1.5.1.6 Customization

Customization and personalization make applications manageable by
understanding visitors' needs based on their roles and preferences. For example,
customization enables information to be presented specifically to the needs of a
user, whether the user is a customer, supplier, or an employee.

The advanced customization service includes alerts and data feeds. Alerts are in a
publish-subscribe model and can be event-based or time-based. Event-based alerts
can be based on changing events: a change in a stock price, a change in a time of a
meeting, or a decrease in inventory. Time-based alerts can be based on a timed
event. For example, reoccurring meetings, and appointments.

The alerts monitor and retrieve content through data feeds. Data feed content can be
in multiple formats, including delimited files (CSV), HTML, or XML. The data feed
can be transferred through HTTP, Local File, FTP, SQL and other applications

1.5.1.7 Push/SMS Service

Push/SMS Service provides comprehensive support for messaging. The push/SMS
Service is built on a scalable message delivery architecture that can handle large
volumes of messages to many different types of devices. It also provides several
ways to manage and track your messages, including status of message delivered.
The Push/SMS Service allows you to add your own business logic to it, to allow
generating billing and routing of messages. The open architecture allows
integrating into the user and device preferences of the Wireless platform. You can
create distribution lists of recipients of push messages. Recipients receive messages
on the device of their choice, without having to write device-specific applications.

Transport

The transport system offers a unified messaging interface to send and receive
messages using any communication protocol, such as SMTP and SMS. It also
features an open protocol architecture so that the system can be easily extended to
support any other existing or new protocols in the future. The APIs to access the
transport system are in the Java programming language.

Introduction 1-11

Oracle9iAS WirelessCore and Services

The Push Web Service offers similar functionality to the messaging capability of the
transport system. However it is set up as a SOAP-based Web Service, hence it is
accessible over the network instead of requiring coding against the Java APIs that
come with Wireless. By using Wireless, messaging applications can be built
independently of locale relative to the Wireless installation itself. The transport
system is available to anyone with an Wireless instance that the Push Web Service
can access remotely. The Push/SMS Service offers a comprehensive, powerful and
flexible mechanism for building messaging applications.

1.5.1.8 Transcoding

The Wireless transcoding service allows applications developed for a particular
device or markup to be reformatted for other devices, including voice. Wireless
supports a content adaptation service and a translator service. These services
increase time to market and decrease development efforts with code reuse.

The Web Content adaptation service allows to you to quickly extend your existing
legacy Web application to any wireless device. Wireless can connect any Web
resource, like an HTML page, and acquire content for reformatting. The content is
transformed to the Wireless XML format and then rendered to the requesting
device’ markup language. Web integration beans provides an abstraction and masks
the complex nature of input and output elements involved in Web service
transactions.

The WML translator delivers existing WML (WAP) applications to non-wWML
devices. The goal of the WML transcoding service is to provide a simple way for
companies with existing WAP services to break the barrier of device-specific
applications. The most commonly used wireless language is WML. It follows XML
standards, having a Document Type Definition (DTD) that all WML documents
follow. WML has different syntax and behavior from other device specific
languages such as HDML. Wireless translates the WML into XML as a common
language for wireless devices that hide the device-dependent complexity. The
Wireless XML schema defines the basic structures that exist in WML. The structures
are then rendered into any mobile device and even in voice. The translation process
retains all formatting from original application.

1.5.1.9 Offline Management

Offline Management is used in cases where mobile connectivity is nonexistent or
low. This gives your users the ability to use applications without any network
access. When Internet connection is available again, the device user can synchronize
to update the server with the new information. Oracle9iLite provides this ability.

1-12 Oracle9iAS Wireless Developer’s Guide

Oracle9iAS WirelessCore and Services

OracleQiL.ite is an integrated set of technologies that provide critical infrastructure
for developing, deploying, and managing offline mobile applications. Oracle9iL.ite
provides necessary framework businesses need to extend the enterprise
applications to all of today's popular mobile platforms: Palm OS, Symbian EPOC,
Microsoft Windows CE, and Microsoft Windows 95/98/NT/2000.

1.5.1.10 Location Based Services

Location-based services greatly improve mobile applications by making them easier
to use and providing quick access to timely and critical information. Companies
that take advantage of location-based technologies can greatly enhance the value of
their applications. Wireless location-based Service not only reduces the number of
inputs and lowers the time required to obtain information, but also derives
improved efficiencies, enabling access to information that is immediately relevant to
users, such as maps, driving directions, traffic reports, or nearby businesses and
services.

The performance and capability requirements expected for wireless location-based
service can easily approach that of a top internet portal—that is, millions of queries
on a daily basis, hundreds of concurrent transactions, and millisecond
guery-response times. When you build on Oracle9i, Oracle Spatial, and Wireless,
you have the assurance that your location-based services solution will be scalable,
reliable, and secure. In particular, it will be able to handle the unique storage and
CPU-intensive processing inherent in location queries (street routing, proximity
searches, and map rendering).

Wireless location services include:

Geo-coding
Automatic and Manual Mobile Positioning, Routing and Navigation

Mapping
Users can input their location or have their location automatically detected. In order
to be automatically detected, Oracle9iAS Wireless easily integrates with vendors.

Privacy and the security of privacy-related information are important concerns in a
location acquisition system. The location services provide a privacy management
component that allows users to view and edit their privacy settings, to enable and
disable the positioning operation on themselves, and to authorize one or more
people (a mobile community) to obtain positioning information on them within
certain time frames. All capabilities are accessible through public APIs.

Introduction 1-13

Oracle9iAS WirelessCore and Services

1.5.2 Mobile PIM and Email

The Personal Information Management (PIM) Service modules are based on
standard protocols, allowing a simple integration into existing environments. The
Mobile Email client gives access, from any mobile devices, to any IMAP or POP3
server. This includes such servers as Microsoft Exchange and Lotus Domino. The
Mobile Directory client connects to any LDAP directory server. The Mobile
Calendar client integrates natively with Exchange and Lotus Servers, and through
published interfaces, they enable customization to support any calendar server.

The PIM solution has a single "Universal UI", used across all back-ends. The idea is
to have PIM business objects between the Ul and the backend implementation, so
that the same Ul can be used for different backends. The same "Universal UI" can be
reused or any new backends that may hit the market.

1.5.3 m-Commerce and Billing

The Wireless m-Commerce Service is a set of modules that securely stores user
profiles, supplies information authorized by users for third party applications, and
interfaces with on-line payment mechanisms to complete transactions. It also
translates existing WML applications into Mobile-XML, and uses Formfiller to map
forms and spare your customers from the frustration of typing in mobile devices.

The m-Commerce Service is automatically installed along with Oracle9iAS Wireless.
No extra installation is necessary.

1.5.4 Mobile Studio

The Mobile Studio is an online environment for quickly building, testing and
deploying wireless applications. It lets any developer, systems integrator or
independent software vendor quickly develop mobile applications that are
immediately accessible from all devices. This unique, next generation development
environment allows companies to benefit from faster time to market, increased
productivity, and a dramatically simplified testing cycle, while providing access to
the latest mobile applications and tools. The Studio enables you to focus on your
business logic, which is your core competency, rather than on device complexity.

The Studio's build-test-deploy model presents a hosted approach to developing
dynamic content. You do not download any software or tools to start using the
Studio; instead you access the Studio Web site, register, and log in. Once
authenticated, you can access the reusable modules, examples, documentation,
runtime information, and other resources.

1-14 Oracle9iAS Wireless Developer’s Guide

Oracle9iAS WirelessCore and Services

You can customize the Studio by rebranding and by moving functions around to the
desired positions.

1.5.5 Security

Secure wireless access to banks, enterprises, m-Commerce applications, or any other
source of sensitive data is a primary concern for enterprises, carriers and
application developers. However, with an ever-expanding and evolving labyrinth
of wireless infrastructure (mobile devices, protocols, carriers, providers, and
accompanying hardware) the problem of security simply cannot be solved in one
homogeneous way. Depending on your applications, Wireless supports many
techniques to satisfy your end-to-end security requirements. Wireless is built on
open standards that support integration with standard security technology and
third-party systems.

Oracle builds security models designed to meet the sophisticated security needs for
applications such as banking, e-commerce, self-service, and CRM as well as those
extending enterprise office applications to a mobile work force. Wireless utilizes
such encryption technology as Wireless Transport Layer Security (WTLS), Secure
Sockets Layer (SSL), Virtual Private Networks (VPN), and Public Key Infrastructure
(PKI) to deliver solid end-to-end security across the Internet and the wireless
network. All information, such as mWallet data and user profile data, is encrypted
and stored in the secure Oracle9i Database.

Security-related issues may be generally classified into the following categories:

Table 1-1 Security-related Issues

Issue Description

Privacy Ensures that only the sender and the intended recipient can read the
contents of a message (such as credit card numbers, account
numbers).

Encryption and Allows two communicating parties to scramble and unscramble

decryption information they send to each other via special keys only they

possess. In transit, this information is scrambled and unintelligible to
any eavesdropper.

Integrity Ensures that information is not tampered with in transit to the
recipient.

Digital Signatures Using an encrypted one-way hash algorithm, it is possible to detect
at the receiving end, even if a single character has been changed. The
values of the hash are unique for the hashed message, and the hash
values will not expose the message since the hash is one way only.

Introduction 1-15

Oracle9iAS WirelessCore and Services

Table 1-1 Security-related Issues

Issue Description

Authentication Ensures that all parties are who they claim to be such that there is no
spoofing (no party masquerades as a legitimate entity) and
misrepresentation (misleading purpose)

Digital Certificates =~ The process of confidently confirming the identity of one party by
another party. Typically, a client communicates with a server and
both client and server can be authenticated through passwords
(name and password pairs) or certificates (proof of ID from an
authorized source)

Non-repudiation Ensures that a party to a genuine transaction cannot falsely deny
their participation

Digital Certificates These are either password based or certificate based and act as proof
and Signatures that a designated party commissioned the transaction.

Wireless security can be illustrated by a WAP network’s enforcing end-to-end
security. The issues underlying WAP network security are:

Wireless Network Security: From the wireless device to the WAP gateway, a WAP
1.2 compliant network speaks the WTLS (Wireless Transport Layer Security)
protocol. WTLS is a close relative of SSL and uses two kinds of certificates to
manage encryption and authentication - WTLS server certificates (defined as part of
WAP 1.1) are used to authenticate a WTLS server to a WTLS client and to provide a
basis for establishing a key to encrypt (a handset); and WTLS client certificates
(defined as part of WAP 1.2) are used to authenticate a WTLS client to a WTLS
server. Both types of certificates are like standard SSL certificates except that two
different certificate formats are defined - X.509 certificates (as in SSL) and WTLS
mini-certificates which are functionally similar but are smaller and simpler than
X.509 to facilitate processing in a resource constrained handset environment.
Additionally, the mini-certificates also implement certification revocation methods
that are more efficient over the wireless network than the traditional OCSP protocol.

Gateway to Wireless Application Server Security: A wireless gateway typically
performs a security intermediary function such as bridging a WAP/WTLS
protection environment on the wireless side with a HTTP/SSL protection
environment on the wired side.

Encryption and User Authentication: When a wireless request is sent over the
Wireless Network, the following steps occur:

1. The Carrier authenticates that the user is a valid wireless network user before
completing the call and letting the user access the network.

1-16 Oracle9iAS Wireless Developer’s Guide

Oracle9iAS WirelessCore and Services

2. Ifthe user is a valid user, the call is completed and the WAP Gateway receives
the WAP request. The gateway and the client then perform a standard WTLS
handshake that both encrypts the communication and authenticates the
gateway to the handset and vice versa.

3. The Gateway opens a HTTP session to the Oracle9iAS Wireless and conducts a
standard SSL handshake with it - this authenticates the Gateway to the
Oracle9iAS Wireless server and vice versa.

4. The user then accesses his or her personal portal and carries out a standard
username and password based login; note that if both communication over the
wireless network and between the wireless gateway and Oracle9iAS Wireless
are secure (i.e. if the wireless network supports WTLS) then the username and
password combination is not passed in the clear.

5. The user then accesses a web service. The wireless service either accepts the
user’s identity passed to it through the Wireless adapter as a bind variable or
can ask the user to re-authenticate them again using a username and password.

In addition to network security, application security is necessary to ensure that the
wireless applications protect the integrity of the user’s information and the data
center’s information. Wireless supports application-level security with SSL and
WTLS. In addition, Wireless uses a secure ACL (Access Control List) to ensure that
the appropriate user is mapped to the desired information. Wireless is built on open
standards that allow for easy integration with existing security systems to offer
end-to-end mobile security.

Introduction 1-17

Oracle9iAS WirelessCore and Services

1-18 Oracle9iAS Wireless Developer’s Guide

Part Il

Oracle9iAS Wireless XML Developer’s

Guide

Part Il contains information about Oracle9iAS Wireless XML development.

Chapter 2,

Chapter 4, "
Chapter 5, "
Chapter 6, "
Chapter 7, "
Chapter 8, "

"XML Overview"
Chapter 3, "

Displaying and Formatting Content"”

Application Navigation"

Filling Out Forms for Data Entry and Navigation"
Advanced User Interactions and Channel Optimization"
Mobile Modules"

XML Tag Glossary"

2

XML Overview

Each section of this document presents a different topic. These sections include:
« Section 2.1, "What is XML?"

« Section 2.2, "Relationship between Oracle9iAS Wireless XML and HTML"

« Section 2.3, "Why use Oracle9iAS Wireless XML?"

« Section 2.4, "How Does Oracle9iAS Wireless XML Work with Oracle9iAS
Wireless?"

2.1 What is XML?

XML stands for eXtensible Markup Language. It can be best described as portable
data. XML was recommended by the World Wide Web Consortium (W3C) in 1998.
Since then, XML has quickly become the standard way to identify and describe data
on the Web. Namespaces were added to XML in 1999. Namespaces describe a way
to distinguish between two XML elements with the same name in different
documents. This prevents the possibility of collision between element names among
documents.

XML is a subset of SGML (Standard Generalized Markup Language), optimized for
delivery over the Web. An XML document consists of a single root element. Every
start-element must have a matching end-element (this property of XML documents is
called well-formedness). Additionally, attributes of an element must be guarded by
quotes.

XML documents can also be subjected to structural and global constraints, which
are described by schema languages (such as document type definition [DTD] and
XML Schema). An XML document is said to be valid if it satisfies the constraints
described by a schema language. DTD is a weak schema language defined as part of
the XML 1.0 specification and does not follow XML syntax. XML schema was

XML Overview 2-1

Relationship between Oracle9iAS Wireless XML and HTML

recommended by W3C in 2001. XML schema is a powerful schema language that
specifies a rich set of constraints. The XML schema itself is an XML document.

2.2 Relationship between Oracle9iAS Wireless XML and HTML

HTML tags elements in Web pages for presentation by a browser
(for example, <bol d>Or acl e</ bol d>).

XML tags elements as data
(for example, <conpany>Cr acl e</ conpany>).

You can use XML to give context to words and values in Web pages, identifying
them as data instead of simple textual or numeric elements. Well formedness of
XML documents makes XML processing easier and more efficient.

2.3 Why use Oracle9iAS Wireless XML?

Consider the following XML document:

<addr ess>
<first-name>Chandra</first-nanme>

<l ast - nanme>Pat ni </ | ast - name>
<street>400 Oracle Parkway</street>
<zi p>94065</ zi p>

</ addr ess>

In this example, the element names self-describe the data they encapsulate. This
XML document can be transformed into HTML using another XML document
called an XSL stylesheet. This same XML document can be transformed into WML
using another XSL stylesheet. The document can then be displayed on a WAP
device. This ability of XML makes it suitable for representing and delivering
portable data to various devices. XML content are also future-proof; another
stylesheet can be used to deliver the content to any future device. Therefore, XML
transformation can be done programmatically on-the-fly. Oracle9iAS Wireless
provides a framework to do exactly the same thing. It allows content represented by
XML format defined by an Oracle9iAS Wireless schema to deliver content to any
device at any time.

2-2 Oracle9iAS Wireless Developer’s Guide

How Does Oracle9iAS Wireless XML Work with Oracle9iAS Wireless?

Figure 2-1 Delivering content to different devices

Markup J Frotocaol § Network M
________\
Bl 0ocicoias Y e
= Wireless Application
L —
| /
/ Amy Gateway
Any Metwork

Any Pratocal
arkup

2.4 How Does Oracle9iAS Wireless XML Work with Oracle9iAS

Wireless?

At the core of Oracle9iAS Wireless, XML from an application is transformed to
device-specific markup languages using XSL transformation. Oracle9iAS Wireless
provides a framework for interacting with applications and transforming XML to
device-specific markup languages. Oracle9iAS Wireless provides an XML schema,
elements of which can be used to build user interfaces to render application content
to any device.

XML Overview 2-3

How Does Oracle9iAS Wireless XML Work with Oracle9iAS Wireless?

2-4 Oracle9iAS Wireless Developer’s Guide

3

Displaying and Formatting Content

Each section of this document presents a different topic. These sections include:
« Section 3.1, "Hello World Example"

« Section 3.2, "Formatting the Display"

« Section 3.3, "Wireless Graphics"

3.1 Hello World Example

The first example shows how to display the traditional "Hello World" content on a
mobile device.

3.1.1 HelloWorld.xml

<?xm version = "1.0" encoding = "UTF-8" standal one="yes" ?>
<I DOCTYPE Si npl eResult PUBLIC "-//ORACLE// DTD Si npl eResult 1.1//EN'
"http://xmns.oracle.confias/dtds/SinpleResult_1 1 0.dtd">
<Si npl eResul t >
<Si npl eCont ai ner >
<Si npl eText >
<Sinpl eText | tenrHel | 0 Worl d</ Si npl eText | tenw
</ Si npl eText >
</ Si npl eCont ai ner >
</ Si npl eResul t >

Displaying and Formatting Content 3-1

Hello World Example

Figure 3-1 Hello World content on mobile devices

E;] Internet Explorer

bttp: ffcpathi-lap,us.oracle.com: 900 -

Helo Warld

¥iew Tools <= [3] {o}

In this example, XML is transformed into the device-specific markup language to
render on the displays of a pocket PC and a telephone. This example demonstrates
the power of XML, application programmers need not have any knowledge of the
target device. Oracle9iAS Wireless takes care of rendering XML into the various
device screens. The following section explains the XML elements, tags and
attributes used in the above example. Additionally, other tags will be discussed
which can be used to display and format content on device screens or voice

browsers.

3.1.2 DOCTYPE Declaration

It is recommended that the XML documents authored for Oracle9iAS Wireless
should have DOCTYPE declaration specifying the schema version. For backward
compatibility (in the absence of DOCTYPE declaration), the stylesheet for
Oracle9iAS Wireless Edition 1.0 will be applied. However, if 1.0 stylesheets are not
available to Oracle9iAS Wireless runtime, then Oracle9iAS Wireless 1.x stylesheets

3-2 Oracle9iAS Wireless Developer’s Guide

Hello World Example

will be used regardless of DOCTYPE declaration. If no 1.x stylesheets are not found,
an error will result.

3.1.3 SimpleResult

SimpleResult is the root element of the Oracle9iAS Wireless XML schema. Every
valid Oracle9iAS Wireless XML document must have SimpleResult as its root
element. SimpleResult can contain multiple SimpleContainer blocks to allow for
multi-card decks.

3.1.3.1 SimpleContainer

SimpleContainer is the root of all major block constructs such as Form, Menu and
Text. Elements such as menu, text and form items can act as cards in the deck.
DeckExample.xml demonstrates the usage of SimpleText as a placeholder for cards.
Considering the limitation of target devices and deck size restrictions on devices,
judgment should be exercised in the number of cards per deck and the total content
size in a single request.

3.1.3.2 DeckExample.xml

<?xm version = "1.0" encoding = "UTF-8" standal one="yes" ?>
<! DOCTYPE Si npl eResult PUBLIC "-//ORACLE//DTD Si npl eResult 1.1//EN'
"http://xmns.oracle.confias/dtds/SinpleResult_1 1 0.dtd">
<Si npl eResul t >
<Si npl eCont ai ner >
<Sinpl eText id="cardl">
<Sinpl eTextltenpThis is Card 1
<Si npl eBr eak/ >
<Si npl eHref target="#card2">Co to Card2</Sinpl eHr ef >
</ Sinpl eText|tenm
</ Si npl eText >
<Si npl eText id="card2">
<Si npl eText |t eVl cone to Card2</Si npl eText | ten>
</ Si npl eText >
</ Si npl eCont ai ner >
</ Si npl eResul t >

Displaying and Formatting Content 3-3

Hello World Example

Figure 3-2 Cards displayed on mobile telephones

S opENwAvE > (55 openwave

This is Card 1
Go to Card?

3.1.3.3 SimpleText, SimpleTextltem

Content of SimpleTextltem are usually translated into paragraphs. SimpleTextltem
can be grouped using SimpleText element. SimpleText element contains one or more
SimpleTextltem. The id attribute of SimpleText tag can be used to refer to
SimpleText elements as a deck. SimpleText is rendered on a separate card on WML
and HDML devices. SimpleHref can be used as a child of SimpleTextltem similar to
HTML anchor. See Section 4.3.1, "SimpleHref, SimpleTimer" for more information
on SimpleHref. The deviceclass attribute of SimpleText and SimpleTextltem take
values “pdabrowser", "pcbrowser", "voice", "microbrowser", "micromessenger", and
"messenger"” which directs processing for either small screen clients or voice clients.
In the absence of the deviceclass attribute, the content will be rendered to both
small screen devices and voice enabled devices. By default, text-to-speech (TTS)
synthesis is used to represent the text enclosed in these tags. SimpleAudio tag in
conjunction with deviceclass attribute can be specified to override the default
behavior. For a better user experience, do not use TTS whenever voice feed is
available. For voice interfaces SimpleAudio may be used. Refer to the following
snippet of code for usage.

<Si npl eText >
<Si npl eText | tem>
<Si npl eAudi 0 src="http://ww. donai n. conf fil enane. wav" devi cecl ass="voi ce">Al t
text for TTSif the wave file is not found.
</ Si npl eAudi 0>

3-4 Oracle9iAS Wireless Developer’s Guide

Formatting the Display

</ Si npl eText It em>
<Si npl eText | t em devi cecl ass="ni crobrowser"> Text for small screen devices
</ Sinpl eText|tem

</ Si npl eText >

Note: The .wav file specified must be in CCITT mu-law, 8 bit,
8kHz.

3.2 Formatting the Display

3.2.1 SimpleBreak, SimpleStrong and SimpleEm

These elements are used for fine-tuning the display of text content on a screen.
SimpleStrong displays enclosed text in a stronger representation, usually bold.
SimpleEm displays the enclosed text with emphasis, usually displayed as italicized
text. For voice-enabled applications, level attribute can be used to specify the level
of emphasis. Permissible values for level attribute are: strong, moderate, none and
reduced.

SimpleBreak creates a new line on the page on which the tag is placed. The rule
attribute can be used to display a line <hr >, for HTML output. Deviceclass can be
used for directive processing of small screen or voice enabled devices, or both. For
voice-enabled applications, SimpleBreak enables you to specify msecs and size
attributes to control the break while delivering text. See the following example for
details.

3.2.1.1 FormattingExample.xml

<?xm version = "1.0" encoding = "UTF-8" standal one="yes" ?>
<I DOCTYPE Si npl eResult PUBLIC "-//ORACLE// DTD Si npl eResult 1.1//EN'
"http://xmns.oracle.confias/dtds/SinpleResult_1 1 0.dtd">
<Si npl eResul t bgcol or ="99ff 99" >
<Si npl eCont ai ner >
<Si npl eText >
<Si npl eTi t| e>Seach Resul t</ Sinpl eTitle>
<Si npl eText | tenp
<Si npl eEm | evel ="strong">1 Entry found</Si npl eEn>
<Si npl eBreak nsecs="500"/>
<Sinpl eStrong | evel ="strong">Chandra Pat ni </ Si npl eSt rong>
<Si npl eBr eak/ >400 Oracl e Pkwy
<Si npl eBr eak/ >Redwood Shor es
<Si npl eBr eak/ >CA, 94065

Displaying and Formatting Content 3-5

Formatting the Display

</ Sinpl eText It enp
</ Si npl eText >
</ Si npl eCont ai ner >
</ Si npl eResul t >

Figure 3-3 Results of formatting example

5> oPENWAVE Ell Internet Explorer

httpeffopathi-lap.us, oracle, com: 00 - |E|

Seach Result | Seach Result
T Entry found 1 Entry found

. Chandra Patni
Chandra Patni 400 Oracle Pkuwy

400 Oracle Phuwy Redwood Shores
Redwood Shores CA, 94065
CA, 94065

3.2.2 Tables and Basic Formatting Example

3.2.2.1 SimpleTable, SimpleTableHeader, SimpleTableBody, SimpleRow and
SimpleCol

SimpleTable displays a table. A table consists of a header and body which are
abstracted by SimpleTableHeader and SimpleTableBody, respectively. The body of a
table consists of SimpleRow and SimpleCol elements. Images can be used in tables
cells. TableExample.xml provides an example of the table elements.

3.2.2.2 TableExample.xml
<?xm version = "1.0" encoding = "UTF-8" standal one="yes" ?>
<! DOCTYPE Si npl eResult PUBLIC "-//ORACLE// DTD Si npl eResult 1.1//EN'
"http://xmns.oracle.confias/dtds/SinpleResult_1 1 0.dtd">
<Si npl eResul t >
<Si npl eCont ai ner >

3-6 Oracle9iAS Wireless Developer’s Guide

Formatting the Display

<Si npl eTabl e >
<SinpleTitle> My Portfolio </SinpleTitle>
<Si npl eTabl eHeader >
<Si npl eCol >Synhol </ Si npl eCol >
<Si npl eCol >Pri ce</ Si npl eCol >
<Si npl eCol >Del t a</ Si npl eCol >
</ Si npl eTabl eHeader >
<Si npl eTabl eBody>
<Si npl eRow>
<Si npl eCol >ORCL</ Si npl eCol >
<Si npl eCol >18. 32</ Si npl eCol >
<Si npl eCol >+0. 24</ Si npl eCol >
</ Si npl eRow>
<Si npl eRow>
<Si npl eCol >SUNW/ Si npl eCol >
<Si npl eCol >17. 35</ Si npl eCol >
<Si npl eCol >+1. 06</ Si npl eCol >
</ Si npl eRow>
<Si npl eRow>
<Si npl eCol >CSCO</ Si npl eCol >
<Si npl eCol >20. 30</ Si npl eCol >
<Si npl eCol >+0. 24</ Si npl eCol >
</ Si npl eRow>
<Si npl eRow>
<Si npl eCol >MSFT</ Si npl eCol >
<Si npl eCol >6647</ Si npl eCol >
<Si npl eCol >+0. 28</ Si npl eCol >
</ Si npl eRow>
</ Si npl eTabl eBody>
</ Si npl eTabl e>
</ Si npl eCont ai ner >
</ Si npl eResul t >

Displaying and Formatting Content

3-7

Wireless Graphics

Figure 3-4 Results of tables and basic formatting example

i

Eﬂ Internet Explorer

http:ffcpathi-lap.us.orace.corm:900 - |E|

V>, OPENWAVE
-

My Portfolio
Symbol Price Delta
ORCL 1832 +0.24
SUNYWY 1735 +1.06
CSCO 2030 +0.24
MSFT BB47 +0.28

My Portfolio
Syrmbol Price Delta
ORCL 18,32 +0.24
SUNW 17,35 +1.06
CSCO 20,30 +0.24
MSFT 6647 +0.28

3.3 Wireless Graphics

3.3.1 Simplelmage

This element is used for displaying a WBMP or BMP graphic on small screen
devices. GIF is also supported for HTML clients. The image resolution supported is
2-bits. src is a compulsory attribute of the Simplelmage element. Unlike HTML, the
extension of the image is not specified for Oracle9iAS Wireless. Appropriate
extension will be appended for the target mark up language. All the images with
appropriate extension ((wbmp, .bmp) should be provided in the target directory. See
the following example for usage.

Devices do not support a single format of an image. As of Release 2.0, Oracle9iAS
Wireless does not support dynamic image extension conversion. Application
developers can suggest the available formats of the image by specifying available
attribute. The available attribute is the list of whitespace-separated values of jpg, gif,
g2.gif, bmp and wbmp formats. g2.gif is grayscale/depth 2 image format, typically
used for Palm. Transformers apply the following rules to determine the format.

The transformer checks the available format with the list of supported Images
formats provided by the server. The server has a preferred Image formats property

3-8 Oracle9iAS Wireless Developer’s Guide

Wireless Graphics

for each logical device. This list can contain one or all of the formats supported by
the available attribute.

« ifthere is a match the image is rendered
« ifthere is no match and alt attribute exists, alt text is rendered

« else the image is ignored

3.3.2 ImageDisplay.xml

<?xm version = "1.0" encoding = "UTF-8" standal one="yes" ?>
<! DOCTYPE Si npl eResult PUBLIC "-//ORACLE//DTD Si npl eResult 1.1//EN'
"http://xmns.oracle.confias/dtds/SinpleResult_1 1 0.dtd">
<Si npl eResul t >
<Si npl eCont ai ner >
<Si npl eText >
<Sinpl el mage src="http://portal.oracl emobile. cont ot her/ oow or anobi | "
al t="\Wel cone To Oracl eMobile"/>
</ Si npl eText >
</ Si npl eCont ai ner >
</ Si npl eResul t >

Figure 3-5 Results of image example

e @‘”ENW-WE Fil] Internet Explorer

http:/fcpatni-lap.us.oracle.com: 200 -

Yiew Tools = fat

Displaying and Formatting Content 3-9

Enhancing with Audio for Voice Access

3.4 Enhancing with Audio for Voice Access

3.4.1 SimpleAudio and SimpleSpeech

The SimpleAudio element can be used for playing audio. The file specified by the
src attribute must be in 8-bit mulaw format. The SimpleSpeech element may be used
to control prosody pitch and other VoiceXML text-to-speech engine parameters. For
example, the class attribute can be used to specify the sayas text-to-speech output as
phone, date, digits, literal, currency, number or time. See the following example for
usage.

<?xm version = "1.0" encoding = "UTF-8" standal one="yes" ?>
<! DOCTYPE Si npl eResult PUBLIC "-//ORACLE//DTD Si npl eResult 1.1//EN'
"http://xmns.oracle.confias/dtds/SinpleResult_1 1 0.dtd">
<Si npl eResul t >
<Si npl eCont ai ner >
<Si npl eText >
<Si npl eText | tenp
<Si npl eAudi 0 src="wel conel. wav" >\l come to Oracle Mbile, India Devel opment
Cent er </ Si mpl eAudi 0>
<Si npl eBr eak/ >
<Si npl eAudi o src="wel come2. wav">You can contact us at phone nunber
</ Si npl eAudi 0>
<Si npl eBr eak/ >
<Si npl eSpeech cl ass="phone" >
<Si npl eAudi 0 src="phone.wav">91 080 552 8335</ Si npl eAudi 0>
</ Si npl eSpeech>
</ Si npl eText I t enp
</ Si npl eText >
</ Si npl eCont ai ner >
</ Si npl eResul t >

3-10 Oracle9iAS Wireless Developer’s Guide

Enhancing with Audio for Voice Access

Figure 3-6 Results of SimpleAudio and SimpleSpeech example

i

@ Internet Explorer

http:ffopathi-lap.us.oracle.com:900 - |E|

Welcome to Oracle Mohbile, India
Development Center
You can contact us at phone number

(S5 openwave
&
Welcome to Oracle

Mobile, India
Developrnent Center |

You can contact us at
phone number
91 080 552 5335

Yiew Tools = 1ot

3.4.2 Recommendation for Voice Navigation

While writing applications for Oracle9iAS Wireless, developers should consider
voice navigation at design time. Well-designed voice applications tend to have
different semantics than small screen devices and desktop applications. Although
Oracle9iAS Wireless automatically provides an audio interface for service, the
system is not intended to be a speech-controlled small-screen device browser, where
speech is added as an afterthought. Application developers should develop services
that have appropriate small-screen and speech interfaces in their own right, and the
respective strengths of these different devices can be used to advantage.

The development path for beginners should follow this model:

1. Write a basic version of the service using exactly the same flow and markup for
small-screen devices and audio interfaces.

2. Test on small-screen devices and voice telephones. If it is acceptable, you are
done.

For a large class of services, particularly menu-driven services that provide
information, the method works surprisingly well. If one or another interface seems
clumsy, there are several things that can be done to improve it.

Displaying and Formatting Content 3-11

Enhancing with Audio for Voice Access

1. First, there are a number of attribute values that can be adjusted to enhance the
interface for one of the device classes.

2. Second, if that is insufficient, one can selectively include or exclude certain
elements from the user interface depending on the deviceclass.

3. Finally, one can alter the user interface flow by selectively following different
paths through a service, again, depending on the deviceclass.

3-12 Oracle9iAS Wireless Developer’s Guide

A

Application Navigation

Each section of this document presents a different topic. These sections include:
« Section 4.1, "Introduction”
« Section 4.2, "Basic Navigation"

« Section 4.3, "Document Linking"

4.1 Introduction

Before examining the properties of writing mobile XML to handle text formatting
from a small device and voice perspective, this chapter will help you gain the skills
to write effective user interfaces to capture the required business logic with the least
amount of effort by mobile users. We will examine the details of creating
Oracle9iAS Wireless XML pages containing navigation elements such as menus,
hyperlinks, email, help, and cover forms. The elements necessary to build a form
are different from a menu as these will be the core elements needed for a wireless
developer to build an effective mobile application that simplifies user input without
compromising a rich feature set across different devices.

Because voice navigation is inherently more complicated than in small screen
devices, this chapter focuses on the fundamentals of Oracle9iAS Wireless XML for
small devices and highlights the required voice additions.

Menus allow consumers of services to simply navigate to a predefined choice and
enable different URLSs to be invoked for a given choice. Forms, on the other hand,
typically differ from Menus in that there is one target which dictates the user’s next
page based on user input.

Application Navigation 4-1

Basic Navigation

4.2 Basic Navigation

4.2.1 SimpleMenu, SimpleMenultem

The SimpleMenu element represents a single menu with selectable menu items
defined by SimpleMenultem elements. It is possible to add Images to the top of
each Menu. However, one needs to avoid using large titles and images. See

Si npl eMenuExanpl e. xm for an example.

4.2.1.1 SimpleMenuExample.xml

<?xm version = "1.0" encoding = "UTF-8" standal one="yes" ?>
<! DOCTYPE Si npl eResult PUBLIC " = //ORACLE//DTD Si npl eResult 1.1//EN'
"http://xmns.oracle.confias/dtds/SinpleResult_1 1 0.dtd">
<Si npl eResul t >
<Si npl eCont ai ner >
<Si npl eMenu>
<Si npl eTi t| e>Or acl eMobi | e Services
<Si npl el nage src="
http://portal.oracl enobile.con ot her/oow oranpbile"alt="0Oacle Software
Powers the Internet"/>
</SinpleTitle>
<Si npl eMenul tem t arget =" ni ssi on. xm " >COr acl eMbbi | e
M ssi onSt at ement </ Si npl eMenul t enw
<Si npl eMenul temtarget="timer.xm ">0racl e Server</Sinpl eMenul tenp
<Sinpl eMenul temtarget="emai | . xm ">Emai | the authors</Si npl eMenul t en>
</ Si npl eMenu>
</ Si npl eCont ai ner >
</ Si npl eResul t >

4-2 Oracle9iAS Wireless Developer’s Guide

Basic Navigation

Figure 4-1 Results of simple navigation example

e :,i! Eﬂ Internet Explorer

hittpef fopatniHapaus.oracle,corm: 900 -

e

OracleMobile Services

m
GﬂﬂﬂJ!IDEdLE
OracleMobile MissionStaternent

Oracle Server
Ernail the authors

OracleMobile Services

i
cnmnaaﬂtﬂJLE
1 CracleMohile Mis=sio

Z Oracle Zerwver
3}Email the authors

QF

4.2.2 Navigating by Voice

The system reads the items of menu elements and concurrently listens for the
values of the SimpleMenultem element. If one of these values is recognized, then the
target URL is fetched. If the user says nothing, the system will prompt the user with
a system default noinput message. If the user says something and the system is
unable to recognize it, the system default nomatch message is played. However,
application programmer may control such messages. Such fail-over logic is critical
for making robust voice applications. Application developers should make
extensive use of such features. For menus with large number of items, voice
interfaces should not read out the entire menu items to the user by setting the
autoprompt attribute to false. Instead, applications should wait for user input and
should only present an options list as help if requested by user. See
EnhancedSimpleMenuExample.xml for example. Some of the tags and elements
used in the application are covered later in this chapter.

Application Navigation 4-3

Basic Navigation

4.2.2.1 EnhancedSimpleMenuExample.xml

<?xm version = "1.0" encoding = "UTF-8" standal one="yes" ?>
<! DOCTYPE Sinpl eResult PUBLIC " = //CRACLE//DTD Si npl eResul t 1.1//EN'
"http://xmns.oracle.conlias/dtds/SinmpleResult_1 1 0.dtd">
<Si npl eResul t >
<Si npl eCont ai ner >
<Si npl eMenu devi cecl ass="m crobr owser pdabrowser pchrowser nicromessager
messanger ">
<Sinpl eTi t| e>0Oracl eMbbi | e Services
<Sinpl el mage src="http://portal.oracl emobil e. cont ot her/ oow or anobi | "
alt="Cacle Software Powers the Internet"/></SinpleTitle>
<Si npl eTi t1 e>Or acl eMbbil e Services</SinpleTitle>
<Si npl eMenul tem t ar get ="ni ssi on. xm " >Or acl eMobi | e
M ssi onSt at enent </ Si npl eMenul t enp
<Si npl eMenul temtarget="timer.xm ">Cracl e Server</Sinpl eMenul ten»
<SinpleMenultemtarget="emil.xm ">Emai | the authors</Sinpl eMenul t en>
</ Si npl eMenu>
<Si npl eMenu devi cecl ass="voi ce" autopronpt="fal se">
<SinpleTitle>
<Si npl eAudi o src="title.wav">oracle nobile services
</ Si npl eAudi 0>
</SinpleTitle>
<Si npl eMenul tem t ar get ="ni ssi on. xm ">Cr acl eMbbi | e M ssi onSt at ement
<Si npl eG ammer >mi ssion statement{}| oracle mission statenent{}
</ Si npl eG anmer >
</ Si npl eMenul t enp
<Si npl eMenul temtarget="tinmer.xm ">0racl e Server
<Si npl eG amrer >or acl e server{}| server{}
</ Si npl eG anmer >
</ Si npl eMenul t en
<Sinpl eMenultemtarget="email.xm ">Emai | the authors
<Si npl eGrammer >enai | the authors{}| email{} | email authors{}
</ Si npl eG anmer >
</ Si npl eMenul t enp
<Si npl eCat ch type="nospeech">
<Si npl eAudi o src="nmenulOptions.wav" >Pl ease speak up. You may al so say hel p.
</ Si npl eAudi 0>
</ Si npl eCat ch>
<Si npl eCat ch type="nomatch">
<Si npl eAudi 0 src="nomatch.wav">l"'msorry, | did not understand you. Please
say that again or say hel p.</Si npl eAudi 0>
</ Si npl eCatch type="hel p">
<Si npl eAudi 0 src="nmenuHel p. wav"> Hel p. Oracle Mbile. You may say mission
statenment, oracle server or emil the authors.
</ Si npl eAudi 0>

4-4 Oracle9iAS Wireless Developer’s Guide

Document Linking

</ Si npl eMenu>
</ Si npl eCont ai ner >
</ Si npl eResul t >

The output of this application on small screen devices is the same as shown above,
while a typical voice session may be as follows:

System oracl e nobile services

User: help

System Help. Oracle Mbile. You may say mission statenment, oracle server or
emai | the authors.

User: | amgoing to trick you.

System |'msorry, | did not understand you. Please say that again or say help.
User: email authors

Generally, voice gateways provide a text-to-speech (TTS) engine that reads out
SimpleTitle, SimpleTextltem, SimpleMenu options, SimpleFormOptions etc. For the
TTS to sound intelligible, proper spacing and punctuation is required.
SimpleFormOption or SimpleMenultem should never have text punctuation unless
the deviceclass has been set to a value other than “voice”. This is because the text in
these tags is used to produce speech recognition grammars, and most grammars are
foiled by non-alphabetic characters. If a developer wishes to avoid using the
synthesized message, then he may specify a prerecorded audio file to be played.
The location of the audio file can be specified through the <SimpleAudio> tag. End
user experience of TTS is often considered unpleasant, So as much as possible,
prerecorded human sounds should be used instead of TTS.

4.3 Document Linking

4.3.1 SimpleHref, SimpleTimer

For linking documents, SimpleHref can be used as a hyperlink. It can also be used
to send email using the mai | t 0: handler as shown in the ContactAuthors.xml and
PhoneCallDemo.xml examples. Similarly, the cal | t o: handler can be used for
devices that are capable of making phone calls. Application developers should
specify deviceclass attributes which support the call or mail feature.

Note: static_target attribute should be used instead of target
whenever callto: or mailto: handlers are used which signals
Oracle9iAS Wireless runtime not to rewrite the URLSs.

Application Navigation 4-5

Document Linking

SimpleTimer can be used to invoke a goto target task after a specified delay. It can
be used for navigation to display a showcase promotion, sponsor information, or
system-wide critical messages.

4.3.1.1 ContactAuthors.xml

<?xm version = "1.0" encoding = "UTF-8" standal one="yes" ?>
<! DOCTYPE Si npl eResult PUBLIC "-//ORACLE//DTD Si npl eResult 1.1//EN'
"http://xmns.oracle.confias/dtds/SinpleResult_1 1 0.dtd">
<Si npl eResul t >
<Si npl eCont ai ner >
<Si npl eText >
<Si npl eText | t em devi cecl ass="pdabr owser pcbrowser m cromessenger
messenger">Emai | the Authors only on clients with default mail clients |ike
Pocket PC and deskt ops
<Si npl eBr eak/ >
<Si npl eHref staic_target="nailto:chandra. patni @racl e. cont >Chandra "duke"
Pat ni
</ Si npl eHr ef >
<Si npl eBr eak/ >
<SinpleHref static_target="mailto: peter.feng@racle.com >Peter "ptg" Feng
</ Si npl eHr ef >
</ Sinpl eText |t enmp
<Si npl eText |t em devi cecl ass="voi ce ni crobrowser">Call the Authors on clients
wi th phone facility
<Si npl eBr eak/ >
<Sinpl eHref static_target="callto:1234567890">Chandra "duke" Patni
</ Si npl eHr ef >
<Si npl eBr eak/ >
<Sinpl eHref static_target="callto:1234567890">Peter "ptg" Feng
</ Si npl eHr ef >
</ Sinpl eText I t enp
</ Si npl eText >
</ Si npl eCont ai ner >
</ Si npl eResul t >

4-6 Oracle9iAS Wireless Developer’s Guide

Document Linking

Figure 4-2 Results of the Email demo example

Ex Internet Explorer

bttpef fopathi-lap.us.oracle,.corm: 900«

Ernail the Authors only on clients with
default mal clients ke PocketPC and
1 desktops

Call the Authors on Chandra "duke" Patri

clients with phone i Peter "ptq" Feng
facility [

[Chandra "duke®
Patni]

}[Peter "heg'™ Feng]

Link

4.3.1.2 PhoneCallDemo.xml

<?xm version = "1.0" encoding = "UTF-8" standal one="yes" ?>
<! DOCTYPE Si npl eResult PUBLIC "-//ORACLE//DTD Si npl eResult 1.1//EN'
"http://xmns.oracle.confias/dtds/SinpleResult_1 1 0.dtd">
<Si npl eResul t >
<Si npl eCont ai ner >
<Si npl eText devi cecl ass="mi crobrowser voice">
<Si npl eText | t en><Si npl eEn>Cr acl e</ Si npl eEn> Support </ Si npl eText | ten>
<Si npl eText | t enrPhone Book<Si npl eBr eak/ >
<Sinpl eHref static_target="callto:14155551212" >Bob</ Si npl eHr ef >
<Sinpl eHref static_target="callto:16505551212">Chri s</ Si npl eHr ef >
<Sinpl eHref static_target="callto:14085551212">Di na</ Si npl eHr ef >
<Sinpl eHref static_target="callto:17075551212">Jer e</ Si npl eHr ef >
</ Sinpl eText|tem
</ Si npl eText >
</ Si npl eCont ai ner>
</ Si npl eResul t >

Application Navigation 4-7

Document Linking

Figure 4-3 Results of the Phone Call Demo example

Oracle Support
FPhone Book

} [Eob]
[Chris]

[Dina]
[Jere]

Link

4.3.1.3 SimpleAction

SimpleAction provides the ability to define a submit action, that navigates users to a
new context. Mobile devices can associate a submit action to a number of input
methods of the device, such as pressing a key on a WAP device or speaking a
command on a voice-enabled device. SimpleAction can also be used for navigation
to different pages and different cards within a deck, and overriding default
behavior on voice browsers. For mobile phones, the main usage would be to
override the buttons (left and right) on a wireless phone and PDASs to provide a
similar navigation functionality as SimpleHref.

Like many programming languages, SimpleAction, for a given type, conforms to
scoping rules. For example, if SimpleAction is defined as a child of SimpleMenu
and also as a child of the enclosing SimpleContainer for a given type, the
SimpleAction tag within the SimpleMenu overrides the SimpleAction of the
SimpleContainer. If the value for type attribute is different, then the two
SimpleActions will be active within the context. The behavior of SimpleAction is

4-8 Oracle9iAS Wireless Developer’s Guide

Document Linking

unspecified if two elements are defined with the same type and same deviceclass
values in the same context. See the following example for usage.

4.3.1.4 SimpleCache

SimpleCache enables you to specify caching policy of content either by the WAP
gateway, by client browser, or both.

« Caching policy is said to be public if the WAP gateway is allowed to cache the
content of a URL.

« Caching policy is said to be private if the content is only allowed to cache by the
device.

SimpleCache can be specified as the child of SimpleHref, SimpleGo,
SimpleMenultem, SimpleAction etc. SimpleCache also allows users to specify the
prefetch policy (if supported by browser), where a URL must be prefetched while
still showing the current content. However, if the SimpleAction specifies a submit
task, then caching policies are not applicable. Time to live for the cached data is
specified by the t t | attribute, which takes milliseconds as an argument.

SimpleCache should be used when the data is sensitive or becomes stale after a
specified amount of time.

4.3.1.5 SimpleMeta

SimpleMeta allows applications to specify meta information via the device browser,
and pass that information to the transformers.

4.3.2 Enhancing with Voice

4.3.2.1 SimpleDTMF

SimpleDTMF specifies a VoiceXML DTMF grammar. In the voice application
example the user may select menu item ‘testl’ either by saying ‘testl’ or by selecting
‘3’ on the device.

4.3.2.2 SimpleDTMF.xml
<?xm version = "1.0" encoding = "UTF-8" standal one="yes" ?>
<! DOCTYPE Si npl eResult PUBLIC "-//ORACLE//DTD Si npl eResult 1.1//EN'
"http://xmns.oracle.confias/dtds/SinpleResult_1 1 0.dtd">
<Si npl eResul t public="true">
<Si npl eCache ttl="0"/>
<Si npl eCont ai ner >

Application Navigation 4-9

Document Linking

<Si npl eMenu mar kabl e="true" wapnode="now ap" autopronpt="fal se" dtnf="true">
<Si npl eTi t| e>Voi ce deno</SinpleTitle>
<Si npl eMenul tem t arget ="deposi t. | sp">Deposi t
<Si npl eAction task="go" nethod="get"/>
<Si npl eGrammar > deposi t{} </ Si npl eG anmar >
<Si npl eDTMF>1</ Si npl eDTM>
</ Si npl eMenul t en»
<Si npl eMenul tem target ="Hel | oWr | d. j sp">W't hdr aw
<Si npl eAction task="go" nethod="get"/>
<Si npl eG-ammar >wi t hdr aw{ } </ Si npl eG anmar >
<Si npl eDTMF>2</ Si npl eDTM>
</ Si npl eMenul t en»
<Si npl eCat ch type="cancel ">
<Si npl eAction target="cancel.jsp"/>
</ Si npl eCat ch>
<Sinpl eCatch type="hel p">
<Si npl eAudi o src="hel p. wav">Hel p. For deposit, you may say deposit or press
1. For withdraw, you
may say withdraw or press 2.</Sinpl eAudi 0>
</ Si npl eCat ch>
<Si npl eCat ch type="hel p" count="2">
<Si npl eAudi o src="hel p. wav">Hel p. For deposit, you may say deposit or press
1. For withdraw, you
may say withdraw or press 2. You may al so say cancel to return to account
menu. </ Si npl eAudi 0>
</ Si npl eCat ch>
</ Si npl eMenu>
</ Si npl eCont ai ner >
</ Si npl eResul t >

4.3.2.3 SimpleCatch

SimpleCatch catches an event; it is a voice-only tag. This can be used to capture
predefined voice events or error conditions such as "noinput”, “nomatch”, "exit",
“cancel”, “error”, “help”, “telephone.disconnect”, etc. and perform actions on them.
For example on a "noinput" event the user can be given some help instructions and
be reprompted for their input. The event types are specified by type attribute which
is mandatory for SimpleCatch. Also, count attribute may be used for occurrences of
the event. The default value is 1. It allows handling of multiple occurrences of an
event in multiple ways. For example the n occurrence of an event can be handled
in a different manner than the previous occurrence. In a frequently occurring
scenario, it may be used for increasing details of help as count increases. See
SimpleDTMF.xml for usage.

4-10 Oracle9iAS Wireless Developer’s Guide

Document Linking

4.3.2.4 SimpleGrammar

The SimpleGrammar tag provides a customized speech recognition grammar. Using
this grammar, developers can not only provide the vocabulary to listen for, but also
the mapping from, utterances to data values. If the rules for such mappings are in a
remote location, then the src attribute may be used to specify the name of the file.
The following example illustrates the use of SimpleGrammar.

<?xm version = "1.0" encoding = "UTF-8" standal one="yes" ?>
<! DOCTYPE Si npl eResult PUBLIC "-//ORACLE//DTD Si npl eResult 1.1//EN'
"http://xmns.oracle.confias/dtds/SinpleResult_1 1 0.dtd">
<Si npl eResul t >
<Si npl eCont ai ner >
<Si npl eMenu devi cecl ass="voi ce" >

<SinpleTitle src="title. wav">Pl ease select a freeway</SinpleTitle>

<Sinpl eMenul temtarget="./traffic.jsp? ndex=5"> 5

<SinpleGamar>i five{} | interstate five{} | five{} | route five{} | san
di ego{}

</ Si npl eG anmar >

</ Si npl eMenul t enp

<Sinpl eMenul temtarget="./traffic.jsp?i ndex=8 ">l 8

<Sinpl eGammar>i eight{} | interstate eight{} | eight{} | route eight{} |
al varado freeway{} |

m ssion valley freeway{} | ocean beach freeway{}

</ Si npl eG anmar >

</ Si npl eMenul t enp

<SinpleMenultemtarget="./traffic.jsp?index=15 ">l 15

<SinpleGamar>i fifteen{} | fifteen{} |interstate fifteen{} | escondido
freeway{}| escondido{}

</ Si npl eG anmar >

</ Si npl eMenul t enp

<SinpleMenultemtarget="./traffic.jsp?index=805 ">l 805

<Sinpl eG ammar>i eight zero five{} | i eight hundred five{} | eight zero
five{} | eight hundred five{} |

interstate eight zero five{} | interstate eight hundred five{} | route eight
zero five{} |

route eight hundred five{}
</ Si npl eG anmar >
</ Si npl eMenul t enp
</ Si npl eMenu>
</ Si npl eCont ai ner >
</ Si npl eResul t >

In the above example, even though the last menu option is “i eight hundred five”,

Application Navigation 4-11

Document Linking

the user may say any one of the commands as specified by a ‘]’ separated list.
SimpleGrammer is a very useful construct for building user-friendly and smart
voice applications. It also allows application developers to incorporate some of their
localization issues. For example, “sure”, “ok”, “yes”, “please” and “yes please” all
are used to refer to “yes” (in America region) in different parts of world. Such

speech diversity can be incorporated into an application using SimpleGrammer.

Note: Only lowercase ASCII characters are allowed in
SimpleGrammer.

4.3.2.5 DocumentLinkingDemo.xml

<?xm version = "1.0" encoding = "UTF-8" standal one="yes" ?>
<! DOCTYPE Si npl eResult PUBLIC "-//ORACLE//DTD Si npl eResult 1.1//EN'
"http://xmns.oracle.confias/dtds/SinpleResult_1 1 0.dtd">
<Si npl eResul t >
<Si npl eCont ai ner id="nessage” >
<Si npl eTi mer target="#enpl oyeePortal " timer="30"/>
<Si npl eText >
<Sinpl eTextIten> There will be ice creambars in every |obby at Headquarters
to pronmote the use of the new enpl oyee wireless portal.
</ Sinpl eText|tenm
</ Si npl eText >
</ Si npl eCont ai ner >
<Si npl eCont ai ner >
<Si npl eText id="enpl oyeePortal ">
<Si npl el mage val i gn="top" src=
http://portal.oracl enobile.com ot her/oow oracl enobile alt="oracl emobile icon"/>
<Si npl eText | t en>\Wél come to <Si npl eEn>COr acl eMobi | e</ Si npl eEn» Enpl oyee Portal
<Si npl eBreak/ >
</ Sinpl eText It enp
<Si npl eAction type="SOFT1" | abel =" Support” target="phone.xn"/>
<Sinpl eHref | abel =" PORTAL" id="portal” name="ToPortal " target="formxm ">
ent er Port al
</ Si mpl eHr ef >
</ Si npl eText >
</ Si npl eCont ai ner >
</ Si npl eResul t >

4-12 Oracle9iAS Wireless Developer’s Guide

Document Linking

Figure 4-4 Results of the Document Linking demo example

Eﬂ Internet Explorer

http: ffcpathi-lap.us.oracle.com: 900 |E|

There wil be ice cream bars in every
lobby at Headguarters to promote the
use of the new employes wireless portal.

(5 openwave

5> openwave

-

There will be ice cream

m
oma.ml:lBILE
Welcome to

OraclefMobile
Employee Portal

bars in every lobby at
Headguarters to
promote the use of the
new employee wireless
portal.

m
OHM:I.MDBILE

wWelcome to Sracketidie Employes
Portal

enterPortal

4.3.2.6 Mobile XML Voice Navigation Elements
Basic Voice Commands

The following basic commands are available to users at all times. The response of
the system to help and cancel will generally need to be tailored to each individual
service.

Main menu: Can be uttered at any time, and by default takes the user to the
Oracle9iAS Wireless main menu.

Goodbye: To end the session with one Oracle9iAS Wireless instance or user may just
hang up the telephone.

Exit: Same as Goodbye.

Help: For context-sensitive help>

Cancel: For aborting or restarting a dialog, as when the system has misrecognized a
command or input.

4.3.2.7 Help

Help is used by voice applications to provide context-sensitive help when users
invoke “help” commands. Voice interfaces should make use of Help as much
possible. Unlike small screen application help, voice help is vital to the navigation
of voice interfaces and therefore should be incorporated at development time. See
EnhancedSimpleMenuExample.xml for usage.

Application Navigation 4-13

Document Linking

4-14 Oracle9iAS Wireless Developer’s Guide

D

Filling Out Forms for Data Entry and
Navigation

Each section of this document presents a different topic. These sections include:
« Section 5.1, "Introduction”

« Section 5.2, "Basic User Interaction"

« Section 5.3, "Complete User Forms"

« Section 5.4, "Enhancing Voice"

5.1 Introduction

Forms provide the basic building blocks for user interactions. Forms for phones and
PDAs are fairly similar, except in form factor. Like HTML forms, forms in mobile
devices are used for passing name-value parameters to the server. Multiple form
items can be laid out on the device screen, if supported. Therefore, a user may
populate a form item in an arbitrary order. Certain format restrictions can be
specified on a form item to ensure the type safety and validity of form fields. For
example, it is possible to specify a restriction of five digits for US postal codes.
However, most of the validation should occur on the server side. This constraint is
due to the limited resources on the devices. On a voice browser, every thing must be
processed by the voice gateway, which enables rich validation and exception
handling at the markup language level.

Filling Out Forms for Data Entry and Navigation 5-1

Basic User Interaction

5.2 Basic User Interaction

5.2.1 SimpleForm

SimpleForm is similar to HTML form, which provides an arbitrary collection of
SimpleFormltem and SimpleFormSelect as a single entity. SimpleFormSelect may be
used to display list, radio buttons or checkbox controls. Form has SimpleTitle as its
child, and if specified, will appear as the Title of the form. SimpleForm along with
SimpleBind can trigger form processing in several ways; multiple tasks can be
executed upon form submission.

5.2.2 SimpleFormlitem

SimpleFormltem is the equivalent of a text field, text area, password field and
hidden field for desktop browsers. The type of item may be specified using the
display mode attribute. It may take text field, text area, noecho or hidden.
SimpleFormltem can be used to obtain input from a user. This element presents a
prompt, and waits for input from the user. The content of this element, which is in
parsable character format, specifies default values for the form item. For example, a
login screen and guest book screen may appear as in the following example.

5.2.2.1 FormExample.xml

<?xm version = "1.0" encoding = "UTF-8" standal one="yes" ?>
<! DOCTYPE Si npl eResult PUBLIC "-//ORACLE//DTD Si npl eResult 1.1//EN'
"http://xmns.oracle.confias/dtds/SinpleResult_1 1 0.dtd">
<Si npl eResul t >
<Si npl eCont ai ner >
<Si npl eFor m t arget ="l ogi n. j sp" net hod="post " >
<Si npl eFor M t em nane="user Nane" >User Nane: </ Si npl eFor m t en
<Si npl eFor m t em nanme="passwor d"
di spl aynmode="noecho" >Passwor d: </ Si npl eFor ni t en
</ Si npl eFor n»
</ Si npl eCont ai ner >
</ Si npl eResul t >

5-2 Oracle9iAS Wireless Developer’s Guide

Basic User Interaction

Figure 5-1 Results of FormExample.xml example

Eﬂ Internet Explorer

http:f{cpathi-lap.us.oracle.com: 900 |E|

User Mame:
[Duke

User Marne:

IDuke ll

Pasgword: ‘

I—w

Pazsword:
| sk

\ | '

Yiew Tools & fat

5.2.2.2 GuestBook.xml

<?xm version = "1.0" encoding = "UTF-8" standal one="yes" ?>
<! DOCTYPE Si npl eResult PUBLIC "-//ORACLE//DTD Si npl eResult 1.1//EN'
"http://xmns.oracle.confias/dtds/SinpleResult_1 1 0.dtd">
<Si npl eResul t >
<Si npl eCont ai ner >
<Si npl eForm t ar get ="sendMai | . j sp" net hod="post" >
<Si npl eTi tI e>Thanks for signing ny guestbook.</SinmpleTitle>
<Si npl eFor m t em nanme="Nane" >Nane: </ Si npl eForm t en»
<Si npl eFor M t em nane="nessage"
di spl aynode="t ext ar ea" >Message: </ Si npl eForn t em>
</ Si npl eFor m»
</ Si npl eCont ai ner >
</ Si npl eResul t >

Filling Out Forms for Data Entry and Navigation 5-3

Complete User Forms

Figure 5-2 Results of GuestBook.xml example

[OPENWAVE Ell Internet Explorer

B -| =4 http:ffcpatnilap.us.oracle.com: 900 » |E|

Thanks for signing my Thanks for signing my guestbook,

guestbook. MName:
Mame: | |

I . Message:

hWlessage:

Yiew Tools = fof

5.3 Complete User Forms

5.3.1 SimpleFormSelect, SimpleFormOption, and SimpleOptGroup

These elements display a selected option list. It can display drop down list,
checkbox and radio button, using the display mode attribute. Checkboxes or option
lists may allow single selection or multiple selections using the multiple attribute.
The items to be displayed are abstracted by the SimpleFormOption element.
SimpleOptGroup groups SimpleFormOption elements into a hierarchy. It is useful
for small screen devices, where long list of options cannot be esthetically presented
in the user interfaces. The content of SimpleFormOption element is parsable
character data, which specifies default values for the form item. See the following
example for usage.

5.3.2 Profile.xml

5-4

<?xm version = "1.0" encoding = "UTF-8" standal one="yes" ?>
<! DOCTYPE Si npl eResult PUBLIC "-//ORACLE// DTD Si npl eResult 1.1//EN'
"http://xmns.oracle.confias/dtds/SinpleResult_1 1 0.dtd">
<Si npl eResul t >
<Si npl eCont ai ner >

Oracle9iAS Wireless Developer’s Guide

Complete User Forms

<Si npl eFor m name="enpl oyeei nf 0" target="process.jsp">
<Sinpl eTi tl e>Your Profile</SinpleTitle>
<Si npl eFor m t em nane="honepage" defaul t="http://">Honepage</ Si npl eFormi t en»
<Si npl eFor nSel ect name="skills" displ aymode="checkbox" nultiple="true">
<Sinpl eTitle>Skills</SinpleTitle>
<Si npl eFormpt i on val ue="j ava">Java</ Si npl eFor mOpt i on>
<Si npl eFor mpt i on val ue="xm " >XM.</ Si npl eFor nOpt i on>
<Si npl eFor mOpt i on val ue="sql ">SQL</ Si npl eFor nOpt i on>
</ Si npl eFor nBel ect >
<Si npl eFor nSel ect name="nerd" di spl aynode="checkbox" >
<Sinpl eTitl e>Addi cted to Java?</SinpleTitle>
<Si npl eFor mpt i on val ue="yes" >Yes</ Si npl eFor mOpt i on>
<Si npl eFor mpt i on val ue="no">No</ Si npl eFor nOpt i on>
</ Si npl eFor ntel ect >
<Si npl eFor nSel ect name="|ocati on" displaymode="1ist">
<Si npl eTi tl e>Location</ Sinpl eTitl e>
<Si npl eFor mpt i on val ue="Redwood Shor es_CA">HQ Redwood
Shor es, CA</ Si npl eFor mpt i on>
<Si npl eFor mOpt i on val ue="Nashua_NH'>NEDC Nashua, NH/ Si npl eFor mOpti on>
<Si npl eFor mpt i on val ue="SanFranci sco_CA" >SanFr anci sco,
CA</ Si npl eFor nOpt i on>
<Si npl eFor mOpt i on val ue="NewYor k, NY" >NewYor k, NY</ Si npl eFor mOpti on>
</ Si npl eFor nBel ect >
</ Si npl eFor n»
</ Si npl eCont ai ner >
</ Si npl eResul t >

Filling Out Forms for Data Entry and Navigation 5-5

Enhancing Voice

Figure 5-3 Results of Profile.xml example

5> openwave

~ Soorenwave
- — L

Eﬂ Internet Explorer

http:ffcpathi-lap.us.oracle.com:900 - |E|

Your Profile
Hornepage
[http:fy

skils [¥1ava [Wlxral Csqu
addicted to Java? @ves Ono
Location[HQ Redwood Shares,Ca ~|

Addicted to Java¥

E Yes

= Mo

Location

& HQ Redwood Shore#
C MEDC Nashua, NH
C SanFrancisco, CA

Your Prafile
Homepage

|.
Ihttp:ﬂ {
Skills |
E Java
B ML
O saL

© New‘r’ork MY

Yiew Tools <= fat

5.4 Enhancing Voice

5.4.1 SimpleGrammer, SimpleValue and SimpleDTMF

SimpleGrammar— The SimpleGrammar tag provides a customized speech
recognition grammar. For further details on the use of SimpleGrammar see
Section 4.3.2.4, "SimpleGrammar".

SimpleValue—The SimpleValue tag is a placeholder for dynamic information that
is not known until runtime. This element is valuable for processing multiple cards
within one deck and capturing client-side data validation.

SimpleDTMF—This is a keyboard binding number that is used to process input. In
the example below, the formltem Ziplnput would pass only 232 to the target and
nothing else unless there was an error or long pause.

<?xm version = "1.0" encoding = "UTF-8" standal one="yes" ?>
<! DOCTYPE Si npl eResult PUBLIC "-//ORACLE//DTD Si npl eResult 1.1//EN'
"http://xmns.oracle.confias/dtds/SinpleResult_1 1 0.dtd">
<Si npl eResul t >
<Si npl eCont ai ner >
<Si npl eForm nane="Starting" target="test2a.jsp">
<Si npl eFor nl t em nanme="addr | nput ">

5-6 Oracle9iAS Wireless Developer’s Guide

Enhancing Voice

sinple grammar test, please say oracle or san mateo
<Si npl eG amar >
oracle {bridge}|san nateo{foster city}
</ Si npl eG anmar >
</ Si npl eForm t en»
<Si npl eFor M t em nanme="zi pl nput ">
<Si npl eDTM~> 95 {232} </ Si npl eDTM->
Simpl e DTMF test, please press 95
</ Si npl eForm t en»
</ Si npl eFor n»
</ Si npl eCont ai ner >
</ Si npl eResul t >

5.4.2 Recommendation for Voice Forms

So far we have written the form for the small screen devices which are similar to the
following form.<?xml version = "1.0" encoding = "UTF-8" standalone="yes" ?>

<! DOCTYPE Si npl eResult PUBLIC "-//ORACLE//DTD Si npl eResult 1.1//EN'
"http://xmns.oracle.confias/dtds/SinpleResult_1 1 0.dtd">
<Si npl eResul t >
<Si npl eCont ai ner >
<Si npl eFor m t ar get =" guess. j sp" >
<Si npl eFor m t em nane="guess" >
<SinpleTitle>
| amthinking of a nunber between 1 and 100.
What is your first guess?
</SinpleTitle>
</ Si npl eForm t en»
</ Si npl eFor n»
</ Si npl eCont ai ner >
</ Si npl eResul t >

This example would work well for a small screen device. However, this is not
sufficient for spoken input. Speech recognition works only when there is a very
narrowly prescribed vocabulary to listen for. Descriptions of such vocabularies are
called speech-recognition grammars. <SimpleMenu>s and <SimpleFormSelect>s
provide such grammars with their lists of <SimpleMenultem>s and
<SimpleFormOption>s. However, in examples such as the one above, the system
should be listening for an arbitrary number. This is indicated by the type attribute
of <SimpleFormltem>, as follows.

<?xm version = "1.0" encoding = "UTF-8" standal one="yes" ?>
<! DOCTYPE Si npl eResult PUBLIC "-//ORACLE// DTD Si npl eResult 1.1//EN'
"http://xmns.oracle.confias/dtds/SinpleResult_1 1 0.dtd">

Filling Out Forms for Data Entry and Navigation 5-7

Enhancing Voice

<Si npl eResul t >
<Si npl eCont ai ner >
<Si npl eFor m t ar get =" guess. j sp">
<Si npl eFor M t em nanme="guess" type="nunber">
<SinpleTitle>
| am thi nking of a number between 1 and 100.
What is your first guess?
</SinpleTitle>
</ Si npl eForm t en»
</ Si npl eFor n»
</ Si npl eCont ai ner >
</ Si npl eResul t >

Setting type="number" tells the system to listen for any utterance that corresponds
to a spoken number, if such an utterance is heard, then assigns the corresponding
number to the identifier "guess”. In addition to number, the values boolean, digits,
date, time, currency, and phone also specify vocabularies to listen for. Besides
specifying the type attribute, the developer can enhance the voice features by
observing the following guidelines:

« The voice experience can be enhanced with prerecorded audio using the
<SimpleAudio> element.

« Asconfirmation, echo the recognized utterance and allow the user to cancel if
an input has been misrecognized.

« Always provide context-sensitive help.

= As necessary, use the deviceclass attribute to tailor audio and text messages to
voice (but use this attribute sparingly, as it tends to obfuscate the markup).

« Always provide the user the option of continuing in a service by "moving
forward" -- providing an appropriate command leading to the place the user
wants to go -- rather than forcing them to "back out" using cancel.

« Provide special event handlers for recognition failures (noinput, nomatch) and
Internet fetch failures (error.badfetch) where appropriate.

The following example improves the user experience through the implementation
of these guidelines.

<?xm version = "1.0" encoding = "UTF-8" standal one="yes" ?>
<! DOCTYPE Si npl eResult PUBLIC "-//ORACLE// DTD Si npl eResult 1.1//EN'
"http://xmns.oracle.confias/dtds/SinpleResult_1 1 0.dtd">
<Si npl eResul t >
<Si npl eCont ai ner >
<Si mpl eForm target ="t i pcal c.jsp">

5-8 Oracle9iAS Wireless Developer’s Guide

Enhancing Voice

<Si npl eFor M t em name="hownuch" type="currency">How nuch is the bill?
</ Si npl eForm t en»
<Si npl eFor M t em nanme="howrany" format="N" type="nunber">
How many are in your party?
<Si npl eCat ch type="cancel ">Cancel i ng.
<Si npl eC ear name="howruch"/ >
</ Si npl eCat ch>
</ Si npl eForm t en»
<Si npl eFor nBel ect name="howbi g" devi cecl ass="ni crobrowser pdabrowser
pcbrowser ni cromessenger nessenger” >
<Si npl eTi tl e>How bi g do you want your tip to be?</SinpleTitle>
<Si npl eFormpt i on val ue="10">smal | (10% </ Si npl eFor mpt i on>
<Si npl eFor mpt i on val ue="15">nedi um (15% </ Si npl eFor nOpt i on>
<Si npl eFor mpt i on val ue="20">l arge (20% </ Si npl eFor mpt i on>
</ Si npl eFor nBel ect >
<Si npl eFor nSel ect name="howbi g" devi cecl ass="voi ce" aut opronpt="fal se">
<SinpleTitle>
How bi g do you want your tip to be?
For 'ten percent' say 'small',
for "fifteen percent' say 'medium,
for '"twenty percent' say 'large'.
</SinpleTitle>
<Si npl eFor mOpt i on val ue="10">smal | </ Si npl eFor mOpt i on>
<Si npl eFor mOpt i on val ue="15">nedi unx/ Si npl eFor nOpt i on>
<Si npl eFor mOpt i on val ue="20">| ar ge</ Si npl eFor mOpt i on>
<Si npl eCat ch type="nomat ch">Pl ease say that agai n</Si npl eCat ch>
<Si npl eCat ch type="cancel ">Cancel i ng.
<Si npl eC ear name="howruch"/ >
<Si npl eCl ear name="howrany"/ >
<Si npl eCl ear name="howbi g"/>
</ Si npl eCat ch>
</ Si npl eFor ntel ect >
</ Si npl eFor n»
</ Si npl eCont ai ner >
</ Si npl eResul t >

Filling Out Forms for Data Entry and Navigation 5-9

Enhancing Voice

5-10 Oracle9iAS Wireless Developer’s Guide

S

Advanced User Interactions and Channel
Optimization

Each section of this document presents a different topic. These sections include:
« Section 6.1, "Introduction”
« Section 6.2, "Events and Tasks Using SimpleBind"

« Section 6.3, "Device Headers and Device Class"

6.1 Introduction

In this chapter, we will discuss some of the advanced user interaction techniques
provided by Oracle9iAS Wireless. So far, we have seen how Oracle9iAS Wireless
allows users to specify a task when a user performs an action (for example, pressing
a soft key on the phone or uttering a command on a voice enabled device).
Advanced User Interactions provide the ability to perform many tasks in response
to an action triggered by a user whenever supported by the device. And, the ability
to perform tasks based on the value input by users is highly desirable.

Oracle9iAS Wireless provides an elaborate scheme to facilitate very sophisticated
binding of tasks and actions. This is performed by the SimpleBind element which
may appear in the context of SimpleText, SimpleForm, SimpleFormitem,
SimpleFormSelect, SimpleMenu, SimpleResult or SimpleContainer.

6.2 Events and Tasks Using SimpleBind

SimpleBind lets you specify SimpleTask which is performed in response to an action
specified as the child of SimpleMatch element. SimpleMatch may specify primaryl,
primary? etc. keys, nospeech, noinput, or an item of SimpleMenu conditions, etc.

Only one task may be specified in SimpleMatch and when this action is performed,

Advanced User Interactions and Channel Optimization 6-1

Events and Tasks Using SimpleBind

all the tasks specified in SimpleTask are performed. SimpleTask may also perform
tasks selectively by using SimpleSwitch, SimpleCase and SimpleDefault elements
which are analogous to the switch and case constructs of many programming
languages.

In SimpleSwitch, a value of a particular user input is compared to the values
enumerated by SimpleCase elements. SimpleTask may specify to:

go to a remote location using SimpleGo

display a text item using SimpleTextltem

refresh the device screen (if supported) using SimpleRefresh

clear the specified device form fields using SimpleClear and SimpleName
allow voice users to reprompt input using SimpleReprompt

exit the application using SimpleExit

disconnect the device from connected state (such as a voice browser) using
SimpleDisconnect

define back operation using SimplePrev and SimpleGo

submit a form using SimpleSubmit.

The rendering characteristics of the SimpleBind element are specified by the
SimplDisplay element. SimpleDisplay supports SimpleTextltem as child elements
that contain the actual render and display content. This allows you to play an audio
or render the text for a Menultem. See example SimpleBindExample.xml.

6.2.1 SimpleBind.xml

<Si npl eBi nd devi cecl ass="voi ce m crobrowser">

6-2

<Si npl eMat ch>
<Si npl eFi ni sh/ >
<Si npl eG anmar >
yes {}| correct {}| true {} | one {}
</ Si npl eG anmar >
<Si npl eDTMF>1</ Si npl eDTMF>
<Si npl eKey type="primry"/>
</ Si npl eMat ch>

<Si npl eTask>
<Si npl eSubni t
t ar get ="changepi n. j sp"
nane="Subni t"

Oracle9iAS Wireless Developer’s Guide

Events and Tasks Using SimpleBind

met hod="post " >
<Si npl eNane nanme="p_ol d_pin" />
<Si npl eNane nane="p_new pin" />
</ Si npl eSubmi t>
</ Si npl eTask>

<Si npl eDi spl ay>
<Si npl eText | t em devi cecl ass="voi ce">
<Si npl eAudi 0 src="sayYesOr PressOne. wav" >
say yes, or press one, to submt
</ Si npl eAudi 0>
</ Sinpl eText|ten>

<Si npl eText | t em devi cecl ass="ni cr obr owser ">
Submi t

</ Sinpl eText|ten>
</ Si npl eDi spl ay>
</ Si npl eBi nd>

Figure 6-1 Results of SimpleBind, SimpleMatch and SimpleDisplay

@opmw&vi
@Internet Explorer 115:
hittp: ffcpatri-lap.us, oracle. com: 900 - |E|
Menu

Please Helo

Continental Chinese
Chinese Mexican ;
Mexican Please Help

view Tools = [3] o}

6.2.2 Device Specific SimpleBind

SimpleBind is primarily useful while writing voice applications. However, an
application may use SimpleBind based on a particular device by the use of the

Advanced User Interactions and Channel Optimization 6-3

Device Headers and Device Class

‘deviceclass’ attribute. This attribute can take the values ‘pdabrowser’,
‘pcabrowser’, ‘voice’, ‘microbrowser’, ‘micromessenger’ and ‘messenger’.

6.3 Device Headers and Device Class

Devices are classified based on two criteria in Oracle9iAS Wireless. The
classification is based on:

« form factor of the device

« communication channel of the device (synchronous request/response or async
mode)

See the following document for more information:
http://mobile.us.oracle.com/ompm/site/internal/api/iaswheaders/dheaders.jsp

Developers may develop value added services, which make use of device specific
properties. For example, Oracle9iAS Wireless does not support server side
management of large response. A service may use the maximum size of response
for a device to provide navigation dynamically. The following headers are
supported:

» X-Oracle-Device.Class: Indicates the channel mode and the form factor of a
device. Each value of the Device.Class indicates a unique communication
channel mode and the unique form factor. The value set for the attribute
“deviceclass” is same as the header X-Oracle-Device.class. Note that device.class
does not represent target device markup language.

« X-Oracle-Device.Orientation: Indicates the orientation of a device. May be
used by an application to change the rendering style for certain devices.
Possible values are “landscape” “portrait”. Default value is “portrait”.

« X-Oracle-Device.MaxDocSize: Approximate value of maximum number of
bytes of content that can be handled by the device in question. The
approximation arises due to fact that Oracle9iAS Wireless XML size may not be
the same as transformed device-specific markup language. If the service returns
a Oracle9iAS Wireless XML document greater than the MaxDocSize, the
response for such a request is unspecified. It is not guaranteed that a document
size bounded by MaxDocSize will result in the content size, which can be
pushed to the device. The value of the parameter is set by the administration
tool of Oracle9iAS Wireless for the deviceclass. The default value is 0.

6-4 Oracle9iAS Wireless Developer’s Guide

Device Headers and Device Class

« X-Oracle.Device.Secure: Indicates if the connection between the Oracle9iAS
Wireless server and the device was secure when the current request for the
resource was made. Possible values are “true” or “false”.

The following jsp uses a PageNavigation bean to deliver news content in multiple
trips.

6.3.1 Article.jsp

<?xm version = "1.0" encoding = "UTF-8" standal one="yes" ?>

<! DOCTYPE Si npl eResult PUBLIC "-//ORACLE// DTD Si npl eResul t 1.1//EN'

“http://xm ns.oracl e.conias/dtds/SinpleResult_1 1 0.dtd">

<%@ page inport="oracl e.wirel ess. xn devgui de. PageNavi gati on" %

<%

bool ean | oopback = Bool ean. val ueCf (request . get Paranet er ("1 oopback")). bool eanVal ue();
int pagel ndex = 0;

try {
pagel ndex = I nteger. parsel nt(request.getParaneter("pagel ndex"));
}
cat ch(Exception ex){}
%

<Si npl eResul t>
<Si npl eCont ai ner >
<j sp: useBean i d="content Handl er" cl ass="oracl e. wi rel ess. xn devgui de. PageNavi gati on"
scope="session"/>
<%
i f(!loopback) {
String size = request. get Header (" X- Oracl e- Devi ce. MaxDocSi ze") ;
if(size I'=null && !("0".equals(size))) {
cont ent Handl er . set DeckSi ze(| nt eger. parsel nt (si ze));

}

pagel ndex = 0;

Il get the article content froma source.

String articleContent = "OracleMbile Online Studio is an online "+

"devel oper portal for quickly building, testing and deploying "+

"wireless applications. It lets any devel oper, systens integrator "+

"or independent software vendor quickly devel op a mobile application "+

“that is imediately accessible fromall devices. This unique, next "+
“generation environnent allows conpanies to benefit fromfaster tine "+

"to market, increased productivity, and a dramatically sinplified "+

"testing cycle, while providing access to the latest nobile applications "+
"and tools. It enables you to focus on your business |ogic which is your "+
"core conpetency, while we focus on the device conplexity, our core "+

"conpet ency. <Sinpl eBr eak/ ><Si npl eBreak/>"+

"Oracl eMobile Online Studio's build, test, and depl oy nodel is new and "+

"uni que to software developnent. It presents a hosted approach to devel oping "+
"dynam ¢ content. You do not need to downl oad any software or tools to start "+
"using it. All you need to do is access the OracleMbile Online Studio, "+

Advanced User Interactions and Channel Optimization 6-5

Device Headers and Device Class

"register, and login. Once authenticated, you will have access to "+

"reusabl e nodul es, exanpl es, docunentation, runtinme information, and other "+
"useful resources. <Sinpl eBreak/><Si npl eBreak/>"+

"Now you can even use OracleMbile Online Studio to wite a single application "+
"that can be accessed via both wireless and voice interfaces. Listen to your "+
"Oracl eMobile Online Studio applications by calling: "+

" 888-226- 4854. <Si npl eBr eak/ ><Si npl eBr eak/ >" +

"Sinplify the devel opment of your OracleMbile Online Studio application "+

"with Where2Net's daVinci Studio.";

cont ent Handl er. set Content (articleContent);
}
String next URL = null;
String previousURL = nul |;
int nunPages = cont ent Handl er. get Avai | abl ePages();
i f (nunPages > 1) {
next URL = (pagel ndex < nunPages - 1) ?
"article.jsp?l oopback=t rue&anp; pagel ndex="+(pagel ndex + 1) : null;
previ ousURL = (pagelndex > 0) ? "article.jsp?l oopback=true&anp; pagel ndex="+
(pagelndex - 1) : null;

}
String articleTitle = (pagel ndex == 0) ? "Oracl eMobile online studio" : "contd...";
%
<Si npl eText >
<SinpleTitle><%articleTitle¥%</SinpleTitle>
<%

String s = (nextURL == null) ? "articlelndex.jsp" : nextURL;

i f (pagel ndex != nunPages - 1) {
%
<Si npl eAction type="prinary2" |abel ="C ose" target="articlelndex.jsp"/>
<Si npl eAction type="primaryl" |abel ="Next" target="<%s%"/>

<%
}
el se {
%
<Si npl eAction type="prinaryl" |abel ="C ose" target="<%s%"/>
<%
}
%
<Si npl eText | t enp<%-cont ent Handl er . get Page(pagel ndex) %</ Si npl eText | t en>
<%
if(previousURL !'= null) {
%

<Si npl eText | t en><Si npl eHr ef
tar get =" <%pr evi ousURL%" >Pr evi ous</ Si npl eHr ef ></ Si npl eText | ten>
<%
}
if(nextURL !'= null){
%
<Si npl eText | t en»<Si npl eH ef

6-6 Oracle9iAS Wireless Developer’s Guide

Device Headers and Device Class

tar get =" <%next URLY%" >Next </ Si npl eHr ef ></ Si npl eText | t en>
<%
}
%
</ Si npl eText >
</ Si npl eCont ai ner >
</ Si npl eResul t >

6.3.2 PageNavigation.java
package oracle.wireless.xm devgui de;

inport java.io.StringReader;
inport java.io.StringWiter;
inport java.io.Serializable;
inport java.io.|COException;

inport java.util.ArraylList;

/**

* The bean breaks a text content into nutiple deck of a defined size. Content
* deck do not include any formatting information of the content which should
* be provided by the content view

*

* @ut hor Chandra Pat ni

* @ersion 1.0

*/

public class PageNavigation inplements Serializable {

/**
* To keep the location of a page
*/
private class Page {
/**
* starting index of the page, inclusive of start
*/
public int start;
/**
* end index of the page, exclusive
*/
public int end;
/**
* returns the length of the page
*/
public int length() {

Advanced User Interactions and Channel Optimization 6-7

Device Headers and Device Class

return end - start;

}

/**
* retruns the content of the page
*/
public String toString() {
return content.substring(start, end);
}
}

/**

* Default size of a deck in characters. The actual deck size will be
adj ust ed

* so that a word is not split. However, an orphan, end of paragraph etc

* conditions are not checked for.

x|

public static final int DECK Sl ZE = 900;

/**

* size of a deck. default value is 900 chars
*/

private int deckSize = DECK S| ZE;

/**
* Sets the size of one deck. Should be called before setContent()
*/
public void setDeckSize(int value) {
deckSi ze = val ue;

}

/**

* Returns the size of one deck.

*/

public int getDeckSize() {
return deckSi ze;

}

/**

* Conent to be decked
*/
private String content;

/**

* Pages in the content

6-8 Oracle9iAS Wireless Developer’s Guide

Device Headers and Device Class

*/
private Page pages[];

/**

* The total number of pages by the content
*/

private int total Pages;

/**

* Default constructor
*/

public PageNavigation() {
}

/**
* Default constructor
*/
public PageNavigation(String content) {
set Cont ent (content);

}

/**
* get the page content at the given index
*
/
public String getPage(int index) {
return pages[index].toString();

}

/**

* Returns the total nunber of pages

*/

public int getAvail abl ePages() {
if(pages == null) return O;
return pages. | ength;

}

/**
* initializes the bean
*/
private void init() {
/1 get the rough estimte of pages
total Pages = content.length() / deckSize + 1;
Il initialize the array
int lastlndex = 0;
ArrayList list = new ArraylLi st (total Pages);

Advanced User Interactions and Channel Optimization 6-9

Device Headers and Device Class

Page p = null;
while((p = getNext Page(lastlndex)) != null) {
list.add(p);
| ast I ndex = p.end;
}
pages = (Page []) list.toArray(new Page[list.size()]);
}

private Page get NextPage(int l|astlndex) {
if(lastlndex >= content.length()) return null;
char ¢ = content. char At (| ast | ndex);
whi | e(Character. isWitespace(c)) {
i f(++l astlndex >= content.length()) return null;
c = content.char At (| astlndex);

}
Page p = new Page();
p.start = |astlndex;

/1 again [ook for whitespaces while trimmng the content.
p.end = p.start + deckSize;
if(p.end >= content.length()) {

p.end = content.length();

return p;
}
/1 if not then we need to figure out the previous white space
do {
c = content.char At (p.end);
i f(Character. isWitespace(c)) {
return p;
}
p. end--;
if(p.end == 0) {
p.end = p.start + deckSi ze;
return p;
}
}while(true);
}
/**

* sets the content to the specified value. default MME type is text/plain

*/

public void setContent(String s) {
content = s;
init();

}

6-10 Oracle9iAS Wireless Developer’s Guide

v

Mobile Modules

Each section of this document presents a different topic. These sections include:
« Section 7.1, "Introduction”

« Section 7.2, "Wireless XML Attributes for Mobile Modules"

« Section 7.3, "Shipped Mobile Modules"

« Section 7.4, "Using Shipped Mobile Modules"

« Section 7.5, "Developing Custom Mobile Modules"

7.1 Introduction

Mobile Modules are wireless services with well-known virtual URL (OMP URL, i.e.
omp://my.module). Mobile Modules provide an analogous mechanism to data
abstraction and interfaces. They allow a component-based programming model for
building mobile applications within the Oracle9iAS Wireless framework.
Component-based programming provides rapid application development, reusable
components and easy-to-maintain code which are essential to timely, successful
deployment of web applications.

Mobile Modules can be called from any application or module and may be
instructed to return control to another application or module. Calls may be nested
to any level. This mechanism of bi-directional linking allows quick applications
assembly.

Important difference between a module and a regular service is that the module
receives information about the service it needs to return to after it is done. This is
not always the caller of the module (the module caller may want the module to
return to a different service).

Mobile Modules 7-1

Wireless XML Attributes for Mobile Modules

An example of an application that leverages Mobile Modules could be a store
locator application for a retail company. A developer writing this application could
improve the interface by linking to the Location Mobile Module, which enables a
user to store frequently accessed locations as landmarks. The application would
then offer to find the nearest store based on one of those locations, saving the user
the time and effort of entering an address. The next logical step would be to link to
the Driving Directions Mobile Module, so that a customer could easily get
directions to the store they have selected. This would enable the user to get
directions without typing in any additional information, since both the starting
location and the destination address (store) would intelligently populate the
corresponding fields in the application.

7.2 Wireless XML Attributes for Mobile Modules

The target attribute of SimpleMenultem, SimpleAction, SimpleHref, and SimpleForm
may be used for linking to a Mobile Module. The value of the target attribute starts
with omp:// for accessing modules.

Note: The value of the omp:// URL is not important. There are
only two important things that you need to keep in mind:

The value must start with omp://

The value must be unique (just like an http:// URL)

These are the XML attributes that are used for linking to Mobile Modules:

« target - is the only mandatory attribute. Its value is the virtual (omp://) URL
for the Mobile Module.
For example:

<Si npl eMenul tem t arget =" onp: // oracl e. com nodul e"
cal | backur| =" %al ue service. hone.url % >Call My Mbile
Modul e</ Si nmpl eMenul t enw

= secure - an optional attribute. The value is either "true" or "false". This attribute
is used to switch between HTTP (secure="false") and HTTPS (secure="true")
protocol for the connection between the end user device and Oracle9iAS
Wireless server when calling the module. If you do not set this attribute then
the current protocol will be used.
For example:

7-2 Oracle9iAS Wireless Developer’s Guide

Shipped Mobile Modules

<Si nmpl eMenul tem t ar get =" onp: // or acl e. conf nodul e"
cal | backurl ="%al ue service. hone.url % secure="fal se">Cal |
My Mobi | e Modul e</ Si npl eMenul t en»

« callbackurl - This is the URL of the service where the mobile module should
return after it is done. The default value is the current caller service. You can use
Mobile Context (see Chapter 8, "XML Tag Glossary") to specify values for the
attribute.

For example:

<Si nmpl eMenul tem t ar get =" onp: // or acl e. conf nodul e"
cal | backur| ="%val ue service.horme.url %> Call My Mbile
Modul e</ Si npl eMenul t enr

« callbacksecure - an optional attribute. The value is either "true" or "false". This
attribute is used to switch between HTTP (callbacksecure="false") and HTTPS
(callbacksecure="true") protocol for the connection between the end user device
and Oracle9iAS Wireless server when the module calls back.

For example:

<Si nmpl eMenul tem t ar get =" onp: // or acl e. conf nodul e"
secure="true" call backurl ="%al ue service. honme. url %
cal | backsecure="fal se”> Call My Mbile

Modul e</ Si npl eMenul t en®

« callbackparam - an optional attribute that sets parameters to be passed to the
caller after the module is done.
For example:

<Si nmpl eMenul t em t ar get =" onp: / / host nane/ nodul e"

cal | backurl| ="%al ue service. honme. url %

cal | backpar am="f oo=bar &anp; t est =TEST&anp; a=z ">My Mbbil e
Modul e</ Si npl eMenul t en®

7.3 Shipped Mobile Modules

Oracle9iAS Wireless contains a set of 17 ready-to-use modules subdivided in the
following areas: mobile commerce, PIM and location-based services. Application
developers may reuse these modules as the jumpstart of their wireless development
work, or develop their own modules, by following the instructions in this
document. For a complete reference on the shipped Mobile Modules, see

Chapter 18, "Mobile PIM and eMail" and Chapter 19, "m-Commerce"

Mobile Modules 7-3

Using Shipped Mobile Modules

7.4 Using Shipped Mobile Modules

7.4.1 Commerce Services

To use the Payment Module in order to make an credit card payment of US$ 90.00
you will use:

<Si npl eMenul t em

target="onp://oracl e/ servi ces/ comrer ce/ paynment 2AMOUNT=90&ner ch
ant i d=bookshop&MODE=ONL| NE&TYPE=AUTH&I NSTRTYPE=CC"

cal | backur| ="%val ue service. hone. ur| % >Pay

anmount </ Si npl eMenul t en

The payment module will take the action after the user chooses this menu, and will
present a flow of cards that will lead to the payment itself. In the end the Payment
Module will return the transaction id in the HTTP request.

7.4.2 PIM Services

To use the Mail Module you will need to inform the action and the email to whom
you want to sent the message:

<Si nmpl eMenul t em

target="onp://oracl e/ services/pi mf mai | ?acti on=nessaget o&mailto
=j smi t h@onpany. coni' cal | backur| =" %al ue

servi ce. hone. url % >Send eMi | </ Si npl eMenul t en>

7.4.3 Location Services
To use the Maps Module you will need to inform the address you want to map:

<Si npl eMenul t em

target="onp://oracl e/ services/|ocation/ maps?FL=500 Oracle
Par kway &Cl =Redwood Shor es&ST=CA" cal | backur| =" %val ue
servi ce. hone. url % >Map O acl e</ Si npl eMenul t en>

Note: These are just small examples on how to call the shipped
Mobile Modules. For a more complete reference of the Modules
OMP URLs, input and output values please see Chapter 18, "Mobile
PIM and eMail" and Chapter 19, "m-Commerce".

7-4 Oracle9iAS Wireless Developer’s Guide

Developing Custom Mobile Modules

7.5 Developing Custom Mobile Modules

Developing Mobile Modules is not very different than developing your own
services. For more details about how to develop service see Chapter 15, "Using
Location Services", Chapter 18, "Mobile PIM and eMail", and Chapter 19,
"m-Commerce". In our examples we are going to use the HttpAdapter. The mobile
modules will use simple JSP pages.

7.5.1 “Hello World” Mobile Module

Our first mobile module does not do much. It will just display “Hello World” on the
end user device and a link to go back to the module caller service.

7.5.1.1 Create and publish the JSP pages for the module and the caller services
Here is the JSP code for the module:

<?xm version = "1.0" encoding = "UTF-8" standal one="yes" ?>
<I DOCTYPE Si npl eResult PUBLIC "-//ORACLE// DTD Si npl eResult 1.1.0//EN'
“http://xmns.oracle.conlias/dtds/SinmpleResult_1 1 0.dtd">
<%@ page cont ent Type="t ext/vnd. oracl e. nobi | exn ; charset =UTF-8" %
<%@ page | anguage="java" %
<Y%@ page session="fal se" %
<Si npl eResul t >
<Si npl eCont ai ner >
<Si npl eMenu>
<SimpleTitle>Hello World</SinpleTitle>
<Si npl eMenul tem t ar get =" %val ue nodul e. cal | back. url % >Go Back To The
Cal | er</ Si npl eMenul t en»
</ Si npl eMenu>
</ Si npl eCont ai ner >
</ Si npl eResul t >

Please save this code in HelloWorldModule.jsp and publish it at let say
http://localhost/jsp/HelloWorldModule.jsp.

And the JSP code for the caller service:

<?xm version = "1.0" encoding = "UTF-8" standal one="yes" ?>

<! DOCTYPE Si npl eResult PUBLIC "-//ORACLE// DTD Si npl eResult 1.1.0//EN'
"http://xmns.oracle.confias/dtds/SinpleResult_1 1 0.dtd">

<Y%@ page cont ent Type="t ext/vnd. oracl e. mobi | exnl ; charset =UTF-8" %
<%@ page | anguage="java" %

<%@ page session="fal se" %

<Si npl eResul t >

Mobile Modules 7-5

Developing Custom Mobile Modules

<Si npl eCont ai ner >
<Si npl eMenu>
<SinpleTitle>Hello World Caller</SinpleTitle>
<Sinpl eMenul tem target="onp://Hel | ovorl d" cal | backur| =" %al ue
servi ce. hone. url % >Cal|l Hello Wrld Mdul e</ Si npl eMenul t en»
</ Si npl eMenu>
</ Si npl eCont ai ner >
</ Si npl eResul t >

Please save this code in HellowWorldCaller.jsp and publish it at (for instance):
http://localhost/jsp/HelloWorldCaller.jsp

7.5.1.2 Create HelloWorldModuleMS and HelloWorldCallerMS MasterServices

After we publish the JSP pages we need to create two HttpAdapter based
MasterServices. Use the Service Designer web tool to do that. See Oracle9iAS
Wireless Getting Started and System Guide for more details about creating
MasterServices

IMPORTANT: Please mark the HelloWorldModuleMS
MasterService as “Modulable”.

7.5.1.3 Create the caller and the module services

After you are done with the MasterServices you need create two services:
HelloWorldModule and HelloWorldCaller. Use the Content Manager web tool to do
that. See Oracle9iAS Getting Started and System Guide for more details about creating
MasterServices.

IMPORTANT: The type of the HelloWorldCaller service should be
“Normal Service”. The type of the HelloWorldModule service
should be “Module”. Set the OMP URL for the HelloWorldModule
service to omp://HellowWorld.

Before you can test the newly created services you need to assign
them to a Group so the users in that group can invoke those
services.

That is it. Now you can test the two services from your device.

7-6 Oracle9iAS Wireless Developer’s Guide

Developing Custom Mobile Modules

7.5.2 Sending Parameters to a Mobile Module

The Mobile Modules that you want to develop will most likely take some input
from its caller and then return something back after there are done. Below are the
JSP pages that show how a caller service can send an input parameter to a module.
Publishing those two JSP pages on Oracle9iAS Wireless is the same as publishing
the previous JSP pages.

Here is the code for the HelloNameModule.jsp

<?xm version = "1.0" encoding = "ISO 8859-1" standal one="yes" ?>
<! DOCTYPE Si npl eResult PUBLIC "-//ORACLE//DTD Si npl eResult 1.1.0//EN'
"http://xmns.oracle.confias/dtds/SinpleResult_1 1 0.dtd">
<%@ page cont ent Type="t ext/vnd. oracl e. nobi | exnl; charset=I SO 8859-1" %
<%@ page | anguage="java" %
<%@ page session="fal se" %
<%
String uname = request.get Paraneter("unanme");
%
<Si npl eResul t >
<Si npl eCont ai ner >
<Si npl eMenu>
<SinpleTitle>Hell o Mdul e Says Hel |l o <% unanme%</SinpleTitle>
<Si npl eMenul tem t ar get =" %al ue nodul e. cal | back. url % >Go Back To The
Cal | er</ Si npl eMenul t en»
</ Si npl eMenu>
</ Si npl eCont ai ner >
</ Si npl eResul t >
And the JSP code for the Hel |l oNaneCaller.jsp:
<?xm version = "1.0" encoding = "ISO 8859-1" standal one="yes" ?>
<I DOCTYPE Si npl eResult PUBLIC "-//ORACLE// DTD Si npl eResult 1.1.0//EN'
"http://xmns.oracle.confias/dtds/SinpleResult_1 1 0.dtd">
<Y%@ page cont ent Type="t ext/vnd. oracl e. nobi | exnl; charset=I SO 8859-1" %
<%@ page | anguage="j ava" %
<Y%@ page session="fal se" %
<Si npl eResul t >
<Si npl eCont ai ner >
<Si npl eForm t ar get =" onp: / / Hel | oNare" >
<Sinpl eTi tl e>Pl ease Enter User Name</SinpleTitle>
<Si npl eFor M t em name="unane" />
</ Si npl eFor n»
</ Si npl eCont ai ner >
</ Si npl eResul t >

Mobile Modules 7-7

Developing Custom Mobile Modules

IMPORTANT: When you create the Oracle9iAS Wireless
MasterService and service objects remember to:

mark the HelloNameModuleMS MasterService as “Modulable”

set the type of HelloNameCaller service to be “Normal Service” and
the type of the HelloNameModule service to “Module”

Set the OMP URL for the HelloWorldModule service to
omp://HelloName

Note: Before you can test the newly created services you need to
assign them to a Group so the users in that group can invoke those
services.

That is it. Now you can test the two services from your device.

7-8 Oracle9iAS Wireless Developer’s Guide

8

XML Tag Glossary

This document present the following topic:

« Section 8.1, "XML Tags"

« Section 8.2, "Using Mobile Context Information in XML"

« Section 8.3, "Using Mobile Context Information from HTTP Headers"

The XML DTD defines the abstract device markup language used in the
OracleMobile Online Studio application framework. The goal of the definitions is to
be a superset of the markup languages for a variety of devices. Elements in the DTD
represent elements of an abstract user interface which translate to device-specific
formats. The following is a list of tag elements in the XML DTD. See Oracle
Technology Network for more details, and to view the tag element tree. The XML is
derived from the DTD of Oracle9iAS Wireless with hosting extensions added. Note
that the tag names are case-sensitive as below.

XML Tag Glossary 8-1

XML Tags

8.1 XML Tags

SimpleAction

This tag provides the ability to define a link or submit action that navigates the user
to a new context. Mobile devices can associate a submit action to a number of input
methods (of the device), like pressing a Key on wap devices or saying a command
on voice enabled devices. Action can have SimpleTextltem as child, this is used for
rendering of Action tag in voice.

Table 8-1 SimpleAction Tag

Name Description Value(s) Default Value
name Name identifier for the element instance. CDATA OPTIONAL
callbackurl ASW Module Support. Indicates the URL to CDATA OPTIONAL

callbackparam

callbacksecure

target

mimetype

return back if the current action leads the user
into a different application (application
implementing Wireless Module functionary).

ASW Module Support. Indicates the return CDATA OPTIONAL
parameters of the callbackurl. When Module

returns the context back to the callee

application, the callbackparam is passed back

for the callee to construct its application state.

Indicates the mode of communication, when (true | false) OPTIONAL
callback occurs, between Wireless server and

the device. Setting callbacksecure="true" will

enable a secure connect mode between

Wireless and the device when the module

performs a callback (to the callbackurl). If not

specified, the connect mode will be based on

the current request mode.

URI to navigate to when action is activated. CDATA OPTIONAL
This URL is always rewritten by the Server to

point back to Wireless Server, except when

mimetype attribute not

"text/vnd.oracle.mobilexml". Also supports

“callto:" for Phone call and "mailto:" for email

support.
mime-type of target URI. Lets the Wireless CDATA ext/vnd.oracle.mo
server know the target resources mime-type. If bilexml

the target mime-type is not
text/vnd.oracle.mobilexml, the Wireless

server will not rewrite the URL. OFTIONAL

8-2 Oracle9iAS Wireless Developer’s Guide

XML Tags

Table 8-1 SimpleAction Tag

Name

Description Value(s)

Default Value

static_target

secure

fetchaudio

type

deviceclass

icon

URI to navigate to when action is activated. CDATA
This URL is never rewritten by server. If

exists, this will override the "target" attribute.

Also supports "callto:" for Phone call and

"mailto:" for email support.

Indicates the mode of communication (true | false)
between Wireless server and the device.
Setting secure="true" will enable a secure
connect mode between Wireless and the
device for the specified target. If not specified,
the connect mode will be based on the current
request mode. This DOES NOT indicate mode
of connection between Wireless and the
remote content source (the service), Wireless
will connect to the remote service based on the
protocol specified in the target attribute

("http" vs. "https")

Voice only attribute. The URI of an audio clip CDATA
to play while the "target” is being fetched.

Defines the type of Binding in the target (continue |
device. Can take any string value. Continue, primary |
primary, secondary are special types. secondary)

"primary" and "secondary" map to the
primary and secondary keys resp. Continue is
a special Primary key, tells the Voice service to
continue without waiting for the user. If both
continue and primary are defined both of
them will map to the primary key. The
following type will also be support by the
transformers for backward compatibility
"accept” | "softl" | "optionl" | "option2".

This tag is interpreted only for the specified CDATA
deviceclass (conditional transform). The

server will transform this element only for

certain devices (all devices that belong to the

specified deviceclass). Values can be any

combination of following "pdabrowser”,

"pcbrowser"”, "voice", "microbrowser",

"micromessenger”, "messenger"”. If not
specified, the tag is interpreted for all devices.

Built-in icon name for HDML/WML. Will be CDATA
used if specified.

OPTIONAL

OPTIONAL

OPTIONAL

REQUIRED

OPTIONAL

OPTIONAL

XML Tag Glossary 8-3

SimpleAction

Table 8-1 SimpleAction Tag

Name Description Value(s) Default Value

src The URL to an image. Image from will be CDATA OPTIONAL
displayed. (In SimpleAction/Href this images
needs to be used instead of the label.

addimageExtension Allows the server to use the right image (true | false) true
format from a list of available formats. Based
on the available images from the app
(specified by the "available" attribute) and
based on the device browser capability the
server will pick the right image to be used. For
example: If image is "oracle" and available is
set to "jpg gif wbmp", server will use
"oracle.wbmp" in WML (Phone.com) browser,
"oracle.gif" for a HTML browser.

available Application can specify a list of available CDATA OPTIONAL
image formats, for example: available = "jpg
gif g2.gif wbmp bmp" (92.gif indicates a
grayscale depth 2 image, for devices like
Palm). This allows the server to use the correct
image format supported by device (based on
device browser properties).

OPTIONAL

label Label for action button, displayed when action CDATA OPTIONAL
is bound to a button on a visual device
dtmf digit to be pressed on phone or DTMF tone. CDATA OPTIONAL

dtmf attribute just takes one value (a
simplified form of voice SimpleDTMF tag).
Will work on wap devices, if supported by the
device.

deviceclass This tag is interpreted only for the specified CDATA OPTIONAL
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). Values can be any
combination of following "pdabrowser",
"pcbrowser", "voice", "microbrowser",

"micromessenger”, "messenger”. If not
specified, the tag is interpreted for all devices.

Usage

SimpleAction, for a given type, conforms to scopings rule (like the programming
languages do).

8-4 Oracle9iAS Wireless Developer’s Guide

XML Tags

Related Tags

If SimpleAction is defined as a child of SimpleMenu and also as an child of the
enclosing SimpleContainer for a given "type" of SimpleAction, the SimpleAction tag
within the Menu overrides the SimpleAction of the SimpleContainer. (Note: If the
value for "type" attribute is different then the two SimpleAction's will active within
the context. Also if two SimpleActions are defined with same "type" value within
same context, then the action is undefined).

The "type" attribute can be used to define device specific actions, along with the
deviceclass attribute.

Table 8-2 SimpleAction Related Tags

Parents Children
SimpleText SimpleCache
SimpleForm SimpleTextltem
SimpleFormlitem SimpleGrammar
SimpleFormSelect SimpleDTMF

SimpleContainer
SimpleResult

SimpleMenu

XML Tag Glossary 8-5

SimpleAudio

SimpleAudio
Plays an audio file on voice devices.
Table 8-3 SimpleAudio Tag
Name Description Value(s) Default Value
src The URL to an audio source file. Used in to CDATA OPTIONAL
play audio (Voice).
deviceclass This tag is interpreted only for the specified CDATA OPTIONAL
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). This tag is applicable
for Voice devices only. Will not be supported
on other devices even if specified.
Related Tags
Table 8-4 SimpleAudio Related Tags
Parents Children
SimpleTextltem [PCDATA]
SimpleSpan SimpleCache
SimpleUnderline SimpleBreak
Simplelmage SimpleEm
SimpleHref SimpleStrong
SimpleStrong SimpleSpan
SimpleEm SimpleUnderline
SimpleAudio SimpleAudio
SimpleSpeech SimpleSpeech
SimpleTitle Simplelmage
SimpleValue

8-6 Oracle9iAS Wireless Developer’s Guide

XML Tags

SimpleBind

Bind is an extended action tag that can be invoked by multiple events and perform
multiple tasks. A task/action can be triggered by events like by device keys (touch
tone), by voice commands or by selecting a Menultem. The action in turn may
comprise of set of tasks to perform on match of the event. For e.g. Submit a form
can happen when user clicks submit button, or when the user presses a key on the
device or just says "submit" on the voice devices. SimpleBind tag defines all these
events that needs to matched. SimpleBind tag also defines to set of actions that are
mapped to event matches (SimpleMatch). The action can include displaying a flash
screen to inform the user of the submit action and then actually submitting the form
(2 actions for one set of events). SimpleBind also encloses the SimpleDisplay tag.
SimpleDisplay tag is the rendering component of the SimpleBind, Indicates how the
Bind action is rendered on the device. This rendering is used to render binding of
type menu item and actions. For example: SimpleDisplay can include a
SimpleTextltem saying "press or say 1 to submit".

Table 8-5 SimpleBind Tag

Name

Description Value(s) Default Value

deviceclass

This tag is interpreted only for the specified CDATA OPTIONAL
deviceclass (conditional transform). The

server will transform this element only for

certain devices (all devices that belong to the

specified deviceclass). Values can be any

combination of following "pdabrowser",

"pcbrowser"”, "voice", "microbrowser",

"micromessenger”, "messenger”. If not

specified, the tag is interpreted for all devices.

Related Tags

Table 8-6 SimpleBind Related Tags

Parents Children
SimpleText SimpleMatch
SimpleForm SimpleTask
SimpleFormitem SimpleDisplay

SimpleFormSelect

SimpleContainer

XML Tag Glossary 8-7

SimpleBind

Table 86 SimpleBind Related Tags

Parents Children

SimpleResult

SimpleMenu

8-8 Oracle9iAS Wireless Developer’s Guide

XML Tags

SimpleBreak

Creates a break, new line on text devices and pause on voice devices.

Table 8-7 SimpleBreak Tag

Name Description Value(s) Default Value
msecs milliseconds in duration of the break for voice xsd:nonNegativeln OPTIONAL
devices. teger
rule Generate an HR with this break (HTML) (true | false) false
OPTIONAL
size size of the break (VoiceXML) (none | small | medium
medium | large)
OPTIONAL
deviceclass This tag is interpreted only for the specified CDATA OPTIONAL

deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). Values can be any
combination of following "pdabrowser”,
"pcbrowser"”, "voice", "microbrowser",

"micromessenger”, "messenger"”. If not
specified, the tag is interpreted for all devices.

Related Tags
Table 8-8 SimpleBreak Related Tags

Parents Children

SimpleTextltem none
SimpleSpan
SimpleUnderline
Simplelmage

SimpleHref

SimpleStrong

SimpleEm

SimpleAudio

XML Tag Glossary 8-9

SimpleBreak

Table 8-8 SimpleBreak Related Tags

Parents Children

SimpleSpeech
SimpleTitle
SimpleHelp

8-10 Oracle9iAS Wireless Developer’s Guide

XML Tags

SimpleCache

An URL can be cache on the gateway (like WAP gateway), client or both of them.
Also used when a URL needs to be prefetched while still showing the current
content (only supported devices in certain devices). SimpleCache defines all these
policies.

Table 8-9 SimpleCache Tag

Name Description Value(s) Default Value
timeout Time, in milliseconds, to wait while fetchinga xsd:nonNegativeln OPTIONAL
resource before failing. teger
policy Cache on gateway, client, both or none. Value public | private | private
of "public" indicates cache can on the Gateway both | none)
(like the WAP), "private" indicates client only OPTIONAL
cache.
prefetch prefetch policy. Certain devices can prefetcha (onload | safe | safe
"target" resources, before the user requests for streamed)
the resources. The attribute controls the policy
of such a prefetch-able resource. OPTIONAL
ttl Time to live for cached data in milliseconds xsd:nonNegativeln OPTIONAL
teger
deviceclass This tag is interpreted only for the specified CDATA OPTIONAL
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). Values can be any
combination of following "pdabrowser”,
"pcbrowser”, "voice", "microbrowser",
"micromessenger”, "messenger”. If not
specified, the tag is interpreted for all devices.
Related Tags

Table 8-10 SimpleCache Related Tags

Parents Children
Simplelmage none
SimpleHref

SimpleAction

XML Tag Glossary 8-11

SimpleCache

Table 8-10 SimpleCache Related Tags

Parents Children

SimpleAudio
SimpleGrammar
SimpleDTMF
SimpleGo
SimpleMenultem

SimpleResult

8-12 Oracle9iAS Wireless Developer’s Guide

XML Tags

SimpleCase

Tag to write case statements within a SimpleSwitch tag. This allows the developer
to perform client side "actions" on devices. Support for Switch/Case is not
universal. Is Supported only in Wap (HDML/WML) and Voice (VoiceXML) devices.

Table 8-11 SimpleCase Tag

Name

Description Value(s) Default Value

value

deviceclass

The value of for the Case statement (to be CDATA REQUIRED
compared with the value of form field,

identified by the name attribute of

SwitchCase)

This tag is interpreted only for the specified CDATA OPTIONAL
deviceclass (conditional transform). The

server will transform this element only for

certain devices (all devices that belong to the

specified deviceclass). Values can be any

combination of following "pdabrowser",

"pcbrowser"”, "voice", "microbrowser",

"micromessenger”, "messenger"”. If not

specified, the tag is interpreted for all devices.

Related Tags

Table 8-12 SimpleCase Related Tags

Parents Children

SimpleSwitch SimpleGo
SimpleTextltem
SimpleRefresh
SimpleClear
SimpleReprompt
SimpleExit
SimpleDisconnect
SimplePrev

SimpleSubmit

XML Tag Glossary 8-13

SimpleCatch

SimpleCatch

Catches an event. Voice only tag. This can be used to capture predefined voice

events like "noinput

exit" etc. and perform actions on it. For example: on "noinput

(formitem) event the user can be given some help instructions and be reprompted
for the input. Events include errors generated (Errors are also an instance of event)

Table 8-13 SimpleCatch Tag

Name

Description Value(s)

Default Value

count

type

deviceclass

The occurrence of the event (default is 1). The Positive Int
count allows you to handle different

occurrences of the same event differently For

example:. Need to give extra help messages if

the user says "help" twice for the same form

item. The form/formitem/menu etc. (where

ever SimpleCatch can occur) maintain a

counter for each event that occurs while it is

being visited, these counters are reset each

time the form is re-entered.

Predefined Voice events. Possible values CDATA
include cancel, error, exit, help, noinput,
nomatch, telephone.disconnect.

This tag is interpreted only for the specified CDATA
deviceclass (conditional transform). The

server will transform this element only for

certain devices (all devices that belong to the

specified deviceclass). Values can be any

combination of following "pdabrowser",

"pcbrowser”, "voice", "microbrowser",

"micromessenger”, "messenger”. If not
specified, the tag is interpreted for all devices.

1

OPTIONAL

REQUIRED

OPTIONAL

Related Tags

Table 8-14 SimpleCatch Related Tags

Parents Children
SimpleText [PCDATA]
SimpleForm SimpleGo
SimpleFormitem SimpleTextltem
SimpleFormSelect SimpleRefresh

8-14 Oracle9iAS Wireless Developer’s Guide

XML Tags

Table 8-14 SimpleCatch Related Tags

Parents Children

SimpleResult SimpleClear

SimpleMenu SimpleReprompt
SimpleExit
SimpleDisconnect
SimplePrev

SimpleSubmit

XML Tag Glossary 8-15

SimpleClear

SimpleClear

Clears a list of client side form fields identified by the Name list (SimpleName).
Works on WML/ Voice (Voice) device only. Useful in voice applications e.g. Clearing
a form field in voice will allow the Voice engine to reprompt the User for the form
field again.

Table 8-15 SimpleClear Tag

Name Description Value(s) Default Value

deviceclass This tag is interpreted only for the specified CDATA OPTIONAL
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). Values can be any
combination of following "pdabrowser",
"pcbrowser"”, "voice", "microbrowser",
"micromessenger”, "messenger”. If not
specified, the tag is interpreted for all devices.

Related Tags
Table 8-16 SimpleClear Related Tags

Parents Children

SimpleCatch SimpleName
SimpleCase

SimpleTask

8-16 Oracle9iAS Wireless Developer’s Guide

XML Tags

SimpleCol
Defines a column of a table.
Table 8-17 SimpleCol Tag
Name Description Value(s) Default Value
bgcolor background color CDATA OPTIONAL
rowspan from HTML table spec CDATA OPTIONAL
colspan from HTML table spec CDATA OPTIONAL
bordercolor from HTML table spec CDATA OPTIONAL
height cell height CDATA OPTIONAL
width cell width CDATA OPTIONAL
deviceclass This tag is interpreted only for the specified CDATA OPTIONAL
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). Values can be any
combination of following "pdabrowser",
"pcbrowser”, "voice", "microbrowser",
"micromessenger”, "messenger”. If not
specified, the tag is interpreted for all devices.
valign vertical alignment (top | middle | top
bottom)
OPTIONAL
halign horizontal alignment (left | center | left
right)
OPTIONAL
wrapmode text wrap mode (wrap | nowrap) wrap
OPTIONAL
Related Tags

Table 8-18 SimpleCol Related Tags

Parents Children

SimpleTableHeader SimpleTextltem

XML Tag Glossary 8-17

SimpleCol

Table 8-18 SimpleCol Related Tags

Parents Children

SimpleRow

8-18 Oracle9iAS Wireless Developer’s Guide

XML Tags

SimpleContainer

The root element that contains all major block constructs like form, menu and Text.
Table 8-19 SimpleContainer Tag

Name Description Value(s) Default Value

deviceclass This tag is interpreted only for the specified CDATA OPTIONAL
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). Values can be any
combination of following "pdabrowser",
"pcbrowser"”, "voice", "microbrowser",

"micromessenger”, "messenger”. If not
specified, the tag is interpreted for all devices.

id ID attribute of the element. Used for xsd:1D OPTIONAL
Navigation within a XML response
(target="#1D")

Related Tags
Table 8-20 SimpleContainer Related Tags

Parents Children

SimpleResult SimpleText
SimpleMenu
SimpleForm
SimpleTable
SimpleAction
SimpleBind

XML Tag Glossary 8-19

SimpleDisconnect

SimpleDisconnect

Disconnect's a connection oriented device like the Voice browser.

Table 8-21 SimpleDisconnect Tag

Name Description

Value(s)

Default Value

deviceclass This tag is interpreted only for the specified
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). Values can be any
combination of following "pdabrowser",
"pcbrowser"”, "voice", "microbrowser",

"micromessenger”, "messenger”. If not

specified, the tag is interpreted for all devices.

CDATA

OPTIONAL

Related Tags
Table 8-22 SimpleDisconnect Related Tags
Parents Children
SimpleCatch none
SimpleCase
SimpleTask

8-20 Oracle9iAS Wireless Developer’s Guide

XML Tags

SimpleDisplay

Supports all rendering characteristics of an SimpleBind (using SImpleTextltem).
SimpleTextltem, a child SimpleDisplay, contains the actual render/display content.
Useful in two cases i) Allows provides an audio (child of textitem), ii) Render the
text for a Menultem, when Bind is displayed a Menultem (A Bind can be displayed
as Menultem if the SimpleMatch contains the SimpleMItem element and the
SimpleBind occurs as child of SimpleMenu).

Table 8-23 SimpleDisplay Tag

Name Description Value(s) Default Value

deviceclass This tag is interpreted only for the specified CDATA OPTIONAL
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). Values can be any
combination of following "pdabrowser",
"pcbrowser"”, "voice", "microbrowser",
"micromessenger”, "messenger”. If not
specified, the tag is interpreted for all devices.

Usage
Si npl eDi spl ay as the rendering container of SinpleBind.
<Si npl eBi nd>
</ Si npl eMat ch>
<Si npl eTask>
</ Si npl eTask>
<Si npl eDi spl ay>
<Si npl eText It em devi cecl ass=".."><Si npl eAudi 0 .../></Sinpl eText!|ten
<Si npl eText It em devi cecl ass="..">Hel | o wel come</ Si npl eText|tenp
</ Si npl eDi spl ay>
Related Tags
Table 8-24 SimpleDisplay Related Tags
Parents Children
SimpleBind SimpleTextltem

XML Tag Glossary 8-21

SimpleDTMF

SimpleDTMF
Specify a VoiceXML DTMF grammar. DTMF grammar can be used to indicate a
syntax like 1 {San Francisco} | 2 {Wash. DC} | 3 {New York} etc. If the syntax
information stored in a remote server, the "src" attribute can be used to specify the
URI of the DTMF syntax resource/file.
Table 8-25 SimpleDTMF Tag
Name Description Value(s) Default Value
src URI to the resource file where the CDATA OPTIONAL
DTMF's/Grammars are stored
type The MIME type of the grammar. Represents CDATA OPTIONAL
the Grammar Format (applicable to both the
remote URI Grammar file or inline Grammar
text). There are different ways of representing
a Grammar/DTMF format. Example:
"application/x-jsgf",
scope VoiceXML scope. Can take (document | dialog

"document"/"dialog" possible values. Default dialog)
scope of grammar in
Form/Menu/Text/Grammar/DTMF. If the

scope is set to "document”, then the grammar

is active in the entire document. This allows

for e.g. the user to submit a "Form" (in the
SimpleResult) from inside a "SimpleMenu".

OPTIONAL

deviceclass This tag is interpreted only for the specified CDATA OPTIONAL
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). This tag is applicable
for Voice devices only. Will not be supported
on other devices even if specified.

Related Tags
Table 8-26 SimpleDTMF Related Tags
Parents Children
SimpleHref [PCDATA]
SimpleAction SimpleCache
SimpleForm

8-22 Oracle9iAS Wireless Developer’s Guide

XML Tags

Table 8-26 SimpleDTMF Related Tags

Parents Children

SimpleFormltem
SimpleFormSelect

SimpleMatch

XML Tag Glossary 8-23

SimpleEm

SimpleEm
Displays the enclosed text(audio) with emphasis. Text enclosed usually displayed as
italicized text.
Table 8-27 SimpleEm Tag
Name Description Value(s) Default Value
level Voice only attribute. Indicates Level of (strong | moderate moderate
emphasis. | none | reduced) OPTIONAL
deviceclass This tag is interpreted only for the specified CDATA OPTIONAL
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). Values can be any
combination of following "pdabrowser",
"pcbrowser"”, "voice", "microbrowser",
"micromessenger”, "messenger”. If not
specified, the tag is interpreted for all devices.
Related Tags
Table 8-28 SimpleEm Related Tags
Parents Children
SimpleTextltem [PCDATA]
SimpleSpan SimpleBreak
SimpleUnderline SimpleEm
Simplelmage SimpleStrong
SimpleHref SimpleSpan
SimpleStrong SimpleUnderline
SimpleEm SimpleAudio
SimpleAudio SimpleSpeech
SimpleSpeech Simplelmage
SimpleTitle SimpleValue
SimpleHelp

8-24 Oracle9iAS Wireless Developer’s Guide

XML Tags

SimpleExit

Perform a application exit
Table 8-29 SimpleExit Tag

Name Description Value(s)

Default Value

deviceclass This tag is interpreted only for the specified CDATA
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). Values can be any
combination of following "pdabrowser",

"pcbrowser"”, "voice", "microbrowser",

"micromessenger”, "messenger”. If not
specified, the tag is interpreted for all devices.

OPTIONAL

Related Tags
Table 8-30 SimpleExit Related Tags

Parents Children

SimpleCatch none
SimpleCase

SimpleTask

XML Tag Glossary 8-25

SimpleFinish

SimpleFinish

SimpleFinish indicates the Finish event. This is a tag is supported only in Voice.
This can be any event that completes an user task. For example, reaching the end of
the form field input on Voice devices.

Table 8-31 SimpleFinish Tag

Name Description Value(s) Default Value

deviceclass This tag is interpreted only for the specified CDATA OPTIONAL
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). Values can be any
combination of following "pdabrowser",
"pcbrowser"”, "voice", "microbrowser",
"micromessenger”, "messenger”. If not
specified, the tag is interpreted for all devices.

Related Tags
Table 8-32 SimpleFinish Related Tags

Parents Children

SimpleMatch none

8-26 Oracle9iAS Wireless Developer’s Guide

XML Tags

SimpleForm

This element is used for displaying one or more input fields. The fields are
presented using the SimpleFormltem and SimpleFormsSelect elements. Form has
SimpleTitle as child, if specified will appear as the Title of the form.

Table 8-33 SimpleForm Tag

Name

Description Value(s) Default Value

layout

scope

callbackurl

callbackparam

callbacksecure

Control Layout of a form in small screen (linear | tabular) linear
devices. Indicates if the form input fields

should be displayed in a sequence of fields OPTIONAL
(cards) and should there be an enclosing page

with all input field listed, allowing the user to

select the field in an arbitrary fashion.

VoiceXML scope. Can take (document | dialog
"document"/"dialog" possible values. Default dialog)
scope of grammar in
Form/Menu/Text/Grammar/DTMF. If the

scope is set to "document”, then the grammar

is active in the entire document. This allows

for e.g. the user to submit a "Form" (in the
SimpleResult) from inside a "SimpleMenu".

OPTIONAL

Wireless Module Support. Indicates the URL ~ CDATA OPTIONAL
to return back if the current action leads the

user into a different application (application

implementing Wireless Module functionality).

Wireless Module Support. Indicates the return CDATA OPTIONAL
parameters of the callbackurl. When Module

returns the context back to the callee

application, the callbackparam is passed back

for the callee to construct its application state.

Indicates the mode of communication, when (true | false) OPTIONAL
callback occurs, between Wireless server and

the device. Setting callbacksecure="true" will

enable a secure connect mode between

Wireless and the device when the module

performs a callback (to the callbackurl). If not

specified, the connect mode will be based on

the current request mode.

XML Tag Glossary 8-27

SimpleForm

Table 8-33 SimpleForm Tag

Name

Description Value(s)

Default Value

target

mimetype

static_target

secure

fetchaudio

URI to navigate to when action is activated. CDATA
This URL is always rewritten by the Server to

point back to Wireless Server, except when

mimetype attribute not

"text/vnd.oracle.mobilexml". Also supports

"callto:" for Phone call and "mailto:" for email

support.

mime-type of target URI. Lets the Wireless CDATA
server know the target resources mime-type. If

the target mime-type is not

text/vnd.oracle.mobilexml, the Wireless

server will not rewrite the URL.

URI to navigate to when action is activated. CDATA
This URL is never rewritten by server. If

exists, this will override the "target" attribute.

Also supports "callto:" for Phone call and

"mailto:" for email support.

Indicates the mode of communication (true | false)

between Wireless server and the device.
Setting secure="true" will enable a secure
connect mode between Wireless and the
device for the specified target. If not specified,
the connect mode will be based on the current
request mode. This DOES NOT indicate mode
of connection between Wireless and the
remote content source (the service), Wireless
will connect to the remote service based on the
protocol specified in the target attribute ("http"
vs. "https™)

Voice only attribute. The URI of an audio clip CDATA
to play while the "target" is being fetched.

8-28 Oracle9iAS Wireless Developer’s Guide

OPTIONAL

text/vnd.oracle.mo
bilexml

OPTIONAL

OPTIONAL

OPTIONAL

OPTIONAL

XML Tags

Table 8-33 SimpleForm Tag

Name

Description Value(s)

Default Value

method

deviceclass

ID attribute of the element. Used for xsd:1D
Navigation within a XML response
(target="#I1D")

HTTP Method get or post (get | post)

This tag is interpreted only for the specified CDATA
deviceclass (conditional transform). The

server will transform this element only for

certain devices (all devices that belong to the

specified deviceclass). Values can be any

combination of following "pdabrowser",

"pcbrowser"”, "voice", "microbrowser",
"micromessenger”, "messenger”. If not

specified, the tag is interpreted for all devices.

OPTIONAL

get

OPTIONAL
OPTIONAL

Related Tags

Table 8-34 SimpleForm Related Tags
Children

Parents

SimpleContainer SimpleTitle
SimpleProperty
SimpleTextltem
SimpleTextField
SimpleFormitem
SimpleFormSelect
SimpleCatch
SimpleAction
SimpleBind
SimpleGrammar
SimpleDTMF

XML Tag Glossary 8-29

SimpleFormlitem

SimpleFormlitem

Specified if Input is mandatory. This attribute is supported only if the target device
supports such an functionality. The application must always validate the field on
the server side

Table 8-35 SimpleFormltem Tag

Name Description Value(s) Default Value
mandatory Specified if Input is mandatory. This attribute (yes | no) no
is supported only if the target device supports
such an functionality. The application must OPTIONAL
always validate the field on the server side
maxlength Max length of the field Positive Int OPTIONAL
type Indicates the data type, like boolean, digits etc. (none | audio | REQUIRED
For backward compatibility will also accept boolean | currency
displaymode attribute values | date | digits |
(text] textarea | password etc). number | phone |
time | transfer)
format WML/HDML format attribute. Supported CDATA OPTIONAL
only in WML/HDML devices
value default value ("defaultvalue” attribute also CDATA OPTIONAL
supported for backward compatibility).
size display size of the input field Positive Int OPTIONAL
name Input Field name CDATA REQUIRED
displaymode To Specify the display characteristics of the (text | textarea | text
field like noecho (password), textarea etc. noecho | hidden) OPTIONAL
rows Number of rows if displaymode is textArea. Positive Int OPTIONAL
cols Number of rows if displaymode is textArea. Positive Int OPTIONAL
deviceclass This tag is interpreted only for the specified CDATA OPTIONAL

deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). Values can be any
combination of following "pdabrowser",
"pcbrowser”, "voice", "microbrowser",

"micromessenger”, "messenger”. If not
specified, the tag is interpreted for all devices.

8-30 Oracle9iAS Wireless Developer’s Guide

XML Tags

Table 8-35 SimpleFormltem Tag

Name Description Value(s) Default Value

modal VoiceXML modal. If this is true (the default) (true | false) true
all higher level speech and DTMF grammars
are turned off while making the transcription.
If false, the grammar is scoped to the form
item/select.

slot VoiceXML slot. Slot exist part of a Voice CDATA OPTIONAL
Grammar syntax. The input's grammar slot
values are assigned to the corresponding field
item variables. This allows the user to say one
sentence an fill-in more than form field.

OPTIONAL

dest VoiceXML dest. Valid only when the CDATA OPTIONAL
type="transfer". Specifies the phone number to
transfer the call to.

bridge VoiceXML bridge. Valid only when the (true | false) false
type="transfer". If "true" allows the original
caller to resume the current session, once the

transfer/third party call is complete. OPTIONAL

connecttimeout VoiceXML connect timeout in milliseconds. xsd:nonNegativeln OPTIONAL
Valid only when the type="transfer". The time teger
to wait while trying to connect the call before
returning the noanswer condition (Default is
specific a Voice Gateway platform).

maxtime VoiceXML maxtime in milli seconds. Valid xsd:nonNegativeln OPTIONAL
only when the type="transfer" and teger
brige="true". The time that the call is allowed
to last, or O if it can last arbitrarily long.
Default is 0.

beep VoiceXML beep. If true, a tone is emitted just (true | false) true
prior to trailnscrlptllc'm. Defaults to false. Used OPTIONAL
when type="audio".

finalsilence VoiceXML finalsilence milliseconds. The xsd:nonNegativeln OPTIONAL
interval of silence that indicates end of speech. teger

enctype VoiceXML enctype. The MIME encoding type CDATA OPTIONAL
of the submitted document. Used when
type="audio" to indicate the format of the
recording requested.

dtmfterm VoiceXML dtmfterm. If true, a DTMF keypress (true | false) false
terminates transcription. OPTIONAL

XML Tag Glossary 8-31

SimpleFormlitem

Related Tags
Table 8-36 SimpleFormltem Related Tags

Parents Children

SimpleForm [PCDATA]
SimpleTitle
SimpleAction
SimpleBind
SimpleCatch
SimpleProperty
SimpleHelp
SimpleGrammar

SimpleDTMF

8-32 Oracle9iAS Wireless Developer’s Guide

XML Tags

SimpleFormOption

Provides value for a formitem as a predefined list of values. Element is an item in a
selectable menu. "FormOption" takes PCDATA and SimpleTextltem as child.
SimpleTextltem is used to render the an Rich Text (useful when using Radio buttons
and Checkboxes). Certain devices do not allow RichText as part of Menultem, in
such cases the text inside SimpleTextltem are collected and rendered. If
SimpleTextltem does not exist, then the PCDATA is rendered. PCDATA is required,
because in Voice the user select's the option by uttering the "PCDATA".
"PCDATA",parsable character format, specifies default values for the form item.

Table 8-37 SimpleFormOption Tag

Name

Description Value(s)

Default Value

selected

value

dtmf

deviceclass

is this option selected by default (same (true | false)
semantics as HTML SELECTED)

value of select variable when this is selected CDATA

digit to be pressed on phone or DTMF tone. CDATA
dtmf attribute just takes one value (a

simplified form of voice SimpleDTMF tag).

Will work on wap devices, if supported by the

device.

This tag is interpreted only for the specified CDATA
deviceclass (conditional transform). The

server will transform this element only for

certain devices (all devices that belong to the

specified deviceclass). Values can be any

combination of following "pdabrowser”,

"pcbrowser", "voice", "microbrowser",
"micromessenger”, "messenger”. If not

specified, the tag is interpreted for all devices.

false

OPTIONAL
REQUIRED
OPTIONAL

OPTIONAL

Related Tags

Table 8-38 SimpleFormOption Related Tags

Parents Children
SimpleFormSelect [PCDATA]
SimpleOptGroup SimpleTextltem

XML Tag Glossary 8-33

SimpleFormSelect

SimpleFormSelect

This element displays a select and option list. Can display option list, checkbox or
radio box.

Table 8-39 SimpleFormSelect Tag

Name Description Value(s) Default Value
displaymode To Specify the display characteristics of the (list | checkbox) list

select like drop down, check box etc. Radio

button if multiple is false and displaymode is OPTIONAL

checkbox. For backward compatibility should

support the "type" attribute (values checkbox,

radio).
multiple Supports multiple options to be selected for (true | false) false

the Select. Bot Supported in Voice

OPTIONAL

name Name of the select field CDATA REQUIRED
size display size of the select list (if displaymode is Positive Int 1

list OPTIONAL
modal VoiceXML modal. If this is true (the default) (true | false) true

all higher level speech and DTMF grammars

are turned off while making the transcription. OPTIONAL

If false, the grammar is scoped to the form
item/select.

8-34 Oracle9iAS Wireless Developer’s Guide

XML Tags

Table 8-39 SimpleFormSelect Tag

Name Description Value(s) Default Value

slot VoiceXML slot. Slot exist part of a Voice CDATA OPTIONAL
Grammar syntax. The input's grammar slot
values are assigned to the corresponding field
item variables. This allows the user to say one
sentence an fill-in more than form field.

autoprompt VoiceXML auto prompt. Tells the Voice (true | false) true
browsers not to perform an auto prompt.
Valid in menu's and formselect's. If set to false, OPTIONAL
the voice browser will not list the items in the
menu/select. Typically set to false if need to
use a audio file (listing all the menus, rather
than using the TTS of the Voice gateway).

deviceclass This tag is interpreted only for the specified CDATA OPTIONAL
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). Values can be any
combination of following "pdabrowser",
"pcbrowser"”, "voice", "microbrowser",
"micromessenger”, "messenger"”. If not
specified, the tag is interpreted for all devices.

Related Tags
Table 8-40 SimpleFormSelect Related Tags
Parents Children
SimpleForm SimpleTitle

SimpleFormOption
SimpleOptGroup
SimpleCatch
SimpleAction
SimpleBind
SimpleHelp
SimpleGrammar
SimpleDTMF

XML Tag Glossary 8-35

SimpleGo

SimpleGo

Defines the "Go" task. Go is one the many possible tasks of a Bind operation
(SimpleBind) and is defined as is child of SimpleTask. SimpleGo is an empty tag (no
child tags).

Table 8-41 SimpleGo Tag

Name Description Value(s) Default Value

callbackurl Wireless Module Support. Indicates the URL ~ CDATA OPTIONAL
to return back if the current action leads the
user into a different application (application
implementing Wireless Module functionary).

callbackparam Wireless Module Support. Indicates the return CDATA OPTIONAL
parameters of the callbackurl. When Module
returns the context back to the callee
application, the callbackparam is passed back
for the callee to construct its application state.

callbacksecure Indicates the mode of communication, when (true | false) OPTIONAL
callback occurs, between Wireless server and
the device. Setting callbacksecure="true" will
enable a secure connect mode between
Wireless and the device when the module
performs a callback (to the callbackurl). If not
specified, the connect mode will be based on
the current request mode.

target URI to navigate to when action is activated. CDATA OPTIONAL
This URL is always rewritten by the Server to
point back to Wireless Server, except when
mimetype attribute not
"text/vnd.oracle.mobilexml". Also supports
“callto:" for Phone call and "mailto:" for email
support.

mimetype mime-type of target URI. Lets the Wireless CDATA text/vnd.oracle.mo
server know the target resources mime-type. If bilexml
the target mime-type is not
text/vnd.oracle.mobilexml, the Wireless
server will not rewrite the URL. OPTIONAL

static_target URI to navigate to when action is activated. CDATA OPTIONAL
This URL is never rewritten by server. If
exists, this will override the "target" attribute.
Also supports "callto:" for Phone call and
"mailto:" for email support.

8-36 Oracle9iAS Wireless Developer’s Guide

XML Tags

Table 8-41 SimpleGo Tag

Name

Description Value(s)

Default Value

secure

fetchaudio

deviceclass

Indicates the mode of communication (true | false)
between Wireless server and the device.
Setting secure="true" will enable a secure
connect mode between Wireless and the
device for the specified target. If not specified,
the connect mode will be based on the current
request mode. This DOES NOT indicate mode
of connection between Wireless and the
remote content source (the service), Wireless
will connect to the remote service based on the
protocol specified in the target attribute ("http"
vs. "https")

Voice only attribute. The URI of an audio clip CDATA
to play while the "target" is being fetched.

This tag is interpreted only for the specified CDATA
deviceclass (conditional transform). The

server will transform this element only for

certain devices (all devices that belong to the

specified deviceclass). Values can be any

combination of following "pdabrowser",

"pcbrowser", "voice", "microbrowser",
"micromessenger”, "messenger”. If not

specified, the tag is interpreted for all devices.

OPTIONAL

OPTIONAL

OPTIONAL

Related Tags

Table 8-42 SimpleGo Related Tags

Parents Children
SimplePrev SimpleCache
SimpleCatch

SimpleCase

SimpleTask

XML Tag Glossary 8-37

SimpleGrammar

SimpleGrammar

Provides the voice grammar for the enclosing item like SimpleMenultem. For
example: for SimpleMenultem with enclosing text like "Oracle9iAS Wireless.", the
\oice Engine would say "your options are Oracle9iAS Wireless.". Use
SimpleGrammar for voice if you want to invoke this Menultem when the user says

"Oracle" | "Oracle9i" | "9i" | "Wireless"
Table 8-43 SimpleGrammar Tag

Name

Description

Value(s)

Default Value

Src

type

scope

deviceclass

URI to the resource file where the
DTMF's/Grammar's are stored

The MIME type of the grammar. Represents

the Grammar Format (applicable to both the
remote URI Grammar file or inline Grammar
text). There are different ways of representing

a Grammar/DTMF format. Example:
"application/x-jsgf",

VoiceXML scope. Can take

"document"/"dialog" possible values. Default

scope of grammar in
Form/Menu/Text/Grammar/DTMF. If the

scope is set to "document”, then the grammar

is active in the entire document. This allows
for e.g. the user to submit a "Form" (in the
SimpleResult) from inside a "SimpleMenu".

This tag is interpreted only for the specified
deviceclass (conditional transform). The
server will transform this element only for

certain devices (all devices that belong to the

specified deviceclass). This tag is applicable

for Voice devices only. Will not be supported

on other devices even if specified.

CDATA

CDATA

(document |
dialog)

CDATA

OPTIONAL

OPTIONAL

dialog
OPTIONAL

OPTIONAL

Related Tags

Table 8-44 SimpleGrammar Related Tags

Parents Children
SimpleHref [PCDATA]
SimpleAction SimpleCache

8-38 Oracle9iAS Wireless Developer’s Guide

XML Tags

Table 8-44 SimpleGrammar Related Tags

Parents Children

SimpleMenultem
SimpleForm
SimpleFormltem
SimpleFormSelect

SimpleMatch

XML Tag Glossary 8-39

SimpleHelp

SimpleHelp

Used to display Help text for a field. Used by SSD/PDA style devices to display
help text for the FormItem/Select (In voice SimpleCatch "type="help" is used).

Table 8-45 SimpleHelp Tag

Name Description Value(s) Default Value

color color CDATA OPTIONAL
font font CDATA OPTIONAL
size size CDATA OPTIONAL

wrapmode Text wrap mode. (wrap | nowrap) wrap
OPTIONAL

deviceclass This tag is interpreted only for the specified CDATA OPTIONAL
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). Values can be any
combination of following "pdabrowser",
"pcbrowser”, "voice", "microbrowser",

"micromessenger”, "messenger”. If not
specified, the tag is interpreted for all devices.

Related Tags
Table 8-46 SimpleHelp Related Tags

Parents Children

SimpleFormltem [PCDATA]

SimpleFormSelect SimpleHref
SimpleBreak
SimpleEm
SimpleStrong

Simplelmage

8-40 Oracle9iAS Wireless Developer’s Guide

XML Tags

SimpleHref

Specifies a hyperlink.
Table 8-47 SimpleHref Tag

Name

Description

Value(s)

Default Value

callbackurl

callbackparam

callbacksecure

target

mimetype

static_target

Wireless Module Support. Indicates the URL
to return back if the current action leads the
user into a different application (application
implementing Wireless Module functionary).

Wireless Module Support. Indicates the return
parameters of the callbackurl. When Module
returns the context back to the callee
application, the callbackparam is passed back
for the callee to construct its application state.

Indicates the mode of communication, when
callback occurs, between Wireless server and
the device. Setting callbacksecure="true" will
enable a secure connect mode between
Wireless and the device when the module
performs a callback (to the callbackurl). If not
specified, the connect mode will be based on
the current request mode.

URI to navigate to when action is activated.
This URL is always rewritten by the Server to
point back to Wireless Server, except when
mimetype attribute not
"text/vnd.oracle.mobilexml". Also supports
“callto:" for Phone call and "mailto:" for email
support.

mime-type of target URI. Lets the Wireless
server know the target resources mime-type. If
the target mime-type is not
text/vnd.oracle.mobilexml, the Wireless
server will not rewrite the URL.

URI to navigate to when action is activated.
This URL is never rewritten by server. If
exists, this will override the "target" attribute.
Also supports "callto:" for Phone call and
"mailto:" for email support.

CDATA

CDATA

(true | false)

CDATA

CDATA

CDATA

OPTIONAL

OPTIONAL

OPTIONAL

OPTIONAL

text/vnd.oracle.mo
bilexml

OPTIONAL

OPTIONAL

XML Tag Glossary 8-41

SimpleHref

Table 8-47 SimpleHref Tag

Name

Description

Value(s)

Default Value

secure

fetchaudio

label

dtmf

Src

Indicates the mode of communication
between Wireless server and the device.
Setting secure="true" will enable a secure
connect mode between Wireless and the
device for the specified target. If not specified,
the connect mode will be based on the current
request mode. This DOES NOT indicate mode
of connection between Wireless and the
remote content source (the service), Wireless
will connect to the remote service based on the
protocol specified in the target attribute ("http"
vs. "https")

\oice only attribute. The URI of an audio clip
to play while the "target" is being fetched.

Label for action button, displayed when action
is bound to a button on a visual device

digit to be pressed on phone or DTMF tone.
dtmf attribute just takes one value (a
simplified form of voice SimpleDTMF tag).
Will work on wap devices, if supported by the
device.

The URL to an image. Image from will be
displayed. (In SimpleAction/Href this images
needs to be used instead of the label.

8-42 Oracle9iAS Wireless Developer’s Guide

(true | false)

CDATA

CDATA

CDATA

CDATA

OPTIONAL

OPTIONAL

OPTIONAL

OPTIONAL

OPTIONAL

XML Tags

Table 8-47 SimpleHref Tag

Name

Description Value(s)

Default Value

addImageExtension

available

deviceclass

Allows the server to use the right image (true | false)
format from a list of available formats. Based

on the available images from the app

(specified by the "available" attribute) and

based on the device browser capability the

server will pick the right image to be used.

Example: if image is "oracle" and available is

set to "jpg gif wbmp", server will use

"oracle.wbmp" in WML (Phone.com) browser,

"oracle.gif" for a HTML browser.

Application can specify a list of available CDATA
image formats, for example: available = "jpg

gif g2.gif wbmp bmp" (g2.gif indicates a

grayscale depth 2 image, for devices like

Palm). This allows the server to use the correct

image format supported by device (based on

device browser properties).

This tag is interpreted only for the specified CDATA
deviceclass (conditional transform). The

server will transform this element only for

certain devices (all devices that belong to the

specified deviceclass). Values can be any

combination of following "pdabrowser",

"pcbrowser", "voice", "microbrowser",
"micromessenger”, "messenger”. If not

specified, the tag is interpreted for all devices.

true
OPTIONAL

OPTIONAL

OPTIONAL

Related Tags

Table 8-48 SimpleHref Related Tags

Parents Children

SimpleTextltem [PCDATA]

SimpleHelp SimpleCache
SimpleGrammar
SimpleDTMF
SimpleBreak
SimpleEm

XML Tag Glossary 8-43

SimpleHref

Table 8-48 SimpleHref Related Tags

Parents

Children

SimpleStrong
SimpleSpan
SimpleUnderline
SimpleAudio
SimpleSpeech
Simplelmage

SimpleValue

8-44 Oracle9iAS Wireless Developer’s Guide

XML Tags

Simplelmage

Table 8-49 Simplelmage Tag

Name Description Value(s) Default Value
alt alt string if Image not found CDATA OPTIONAL
border Width of border CDATA OPTIONAL
width Image width CDATA OPTIONAL
height Image height CDATA OPTIONAL
vspace Vertical space (from HTML) CDATA OPTIONAL
hspace Horizontal space (from HTML) CDATA OPTIONAL
src The URL to an image. Image from will be CDATA OPTIONAL

displayed. (In SimpleAction/Href this images

needs to be used instead of the label.
addImageExtension Allows the server to use the right image (true | false) true

format fror_n a I|s_t of available formats. Based OPTIONAL

on the available images from the app

(specified by the "available" attribute) and

based on the device browser capability the

server will pick the right image to be used.

Example: if image is "oracle" and available is

set to "jpg gif wbmp", server will use

"oracle.wbmp" in WML (Phone.com) browser,

"oracle.gif" for a HTML browser.
available Application can specify a list of available CDATA OPTIONAL

image formats for example: available = "jpg gif
g2.gif wbmp bmp" (g2.gif indicates a grayscale
depth 2 image, for devices like Palm). This
allows the server to use the correct image
format supported by device (based on device
browser properties).

XML Tag Glossary 8-45

Simplelmage

Table 8-49 Simplelmage Tag

Name Description Value(s) Default Value
valign Vertical alignment (top | middle | top

bottom) OPTIONAL
halign Horizontal alignment (left | center | left

right) OPTIONAL
deviceclass This tag is interpreted only for the specified CDATA OPTIONAL

deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). Values can be any
combination of following "pdabrowser",
"pcbrowser", "voice", "microbrowser",
"micromessenger”, "messenger”. If not
specified, the tag is interpreted for all devices.

Related Tags
Table 8-50 Simplelmage Related Tags
Parents Children
SimpleTextltem [PCDATA]
SimpleSpan SimpleCache
SimpleUnderline SimpleBreak
Simplelmage SimpleEm
SimpleHref SimpleStrong
SimpleStrong SimpleSpan
SimpleEm SimpleUnderline
SimpleAudio SimpleAudio
SimpleSpeech SimpleSpeech
SimpleTitle Simplelmage
SimpleHelp SimpleValue

8-46 Oracle9iAS Wireless Developer’s Guide

XML Tags

SimpleKey

SimpleKey defines the device key for the Bind operation. SimpleKey, like
SimpleAction has a type attribute that identified the Key on device for the Bind
operation.

Table 8-51 SimpleKey Tag

Name

Description Value(s) Default Value

type

deviceclass

Defines the type of Binding in the target (primary | REQUIRED
device. Can take any string value. Types secondary)

primary, secondary are special values and

map to the primary and secondary keys

respectively. Also transformers will support

"accept” | "softl" | "optionl"]"option2" (for

backward compatibility).

This tag is interpreted only for the specified CDATA OPTIONAL
deviceclass (conditional transform). The

server will transform this element only for

certain devices (all devices that belong to the

specified deviceclass). Values can be any

combination of following "pdabrowser",

"pcbrowser”, "voice", "microbrowser",

"micromessenger”, "messenger"”. If not

specified, the tag is interpreted for all devices.

Related Tags

Table 8-52 SimpleKey Related Tags

Parents Children

SimpleMatch none

XML Tag Glossary 8-47

SimpleMatch

SimpleMatch

A Bind (SimpleBind) can be triggered by various actions like pressing a key, event
or saying a key word (voice). Each of these actions are indicated by separate tags.
SimpleMatch is the container tag for all such possible Bind Invocation tags.

Table 8-53 SimpleMatch Tag

Name Description Value(s)

Default Value

deviceclass This tag is interpreted only for the specified CDATA
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). Values can be any
combination of following "pdabrowser",
"pcbrowser"”, "voice", "microbrowser",
"micromessenger”, "messenger”. If not
specified, the tag is interpreted for all devices.

Related Tags
Table 8-54 SimpleMatch Related Tags

Parents Children

SimpleBind SimpleFinish
SimpleKey
SimpleGrammar
SimpleDTMF
SimpleMltem

SimpleEvent

8-48 Oracle9iAS Wireless Developer’s Guide

XML Tags

SimpleMenu
This element represents a single menu with selectable links which are defined by
the children SimpleMenultem elements.
Table 8-55 SimpleMenu Tag
Name Description Value(s) Default Value
scope VoiceXML scope. Can take (document | dialog
document"/ dlalo_g possible values. Default dialog) OPTIONAL
scope of grammar in
Form/Menu/Text/Grammar/DTMF. If the
scope is set to "document”, then the grammar
is active in the entire document. This allows
for e.g. the user to submit a "Form" (in the
SimpleResult) from inside a "SimpleMenu".
id ID attribute of the element. Used for xsd:1D OPTIONAL
Navigation within a XML response
(target="#ID")
autoprompt VoiceXML auto prompt. Tells the Voice (true | false) true
browsers not to perform an auto prompt.
Valid in menu's and formselect's. If set to false, OPTIONAL
the voice browser will not list the items in the
menu/select. Typically set to false if need to
use a audio file (listing all the menus, rather
than using the TTS of the Voice gateway).
wrapmode Text wrap mode. (wrap | nowrap) wrap
OPTIONAL
deviceclass This tag is interpreted only for the specified CDATA OPTIONAL

deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). Values can be any
combination of following "pdabrowser",
"pcbrowser”, "voice", "microbrowser",
"micromessenger”, "messenger"”. If not
specified, the tag is interpreted for all devices.

XML Tag Glossary 8-49

SimpleMenu

Related Tags
Table 8-56 SimpleMenu Related Tags
Parents Children
SimpleContainer SimpleTitle

SimpleProperty
SimpleCatch
SimpleMenultem
SimpleBind
SimpleAction

8-50 Oracle9iAS Wireless Developer’s Guide

XML Tags

SimpleMenultem

This element represents a single, selectable option in a menu defined by
SimpleMenu.

Table 8-57 SimpleMenultem Tag

Name

Description

Value(s)

Default Value

separator

callbackurl

callbackparam

callbacksecure

target

mimetype

If defined this adds visual separator after or
before the menuitem (like the windows
"Menu").

Wireless Module Support. Indicates the URL
to return back if the current action leads the
user into a different application (application
implementing Wireless Module functionary).

Wireless Module Support. Indicates the return
parameters of the callbackurl. When Module
returns the context back to the callee
application, the callbackparam is passed back
for the callee to construct its application state.

Indicates the mode of communication, when
callback occurs, between Wireless server and
the device. Setting callbacksecure="true" will
enable a secure connect mode between
Wireless and the device when the module
performs a callback (to the callbackurl). If not
specified, the connect mode will be based on
the current request mode.

URI to navigate to when action is activated.
This URL is always rewritten by the Server to
point back to Wireless Server, except when
mimetype attribute not
"text/vnd.oracle.mobilexml". Also supports
“callto:" for Phone call and "mailto:" for email
support.

mime-type of target URI. Lets the Wireless
server know the target resources mime-type. If
the target mime-type is not
text/vnd.oracle.mobilexml, the Wireless
server will not rewrite the URL.

(before | after |
none)

CDATA

CDATA

(true | false)

CDATA

CDATA

none
OPTIONAL

OPTIONAL

OPTIONAL

OPTIONAL

OPTIONAL

text/vnd.oracle.mo
bilexml

OPTIONAL

XML Tag Glossary 8-51

SimpleMenultem

Table 8-57 SimpleMenultem Tag

Name

Description

Value(s)

Default Value

static_target

secure

fetchaudio

label

dtmf

wrapmode

deviceclass

URI to navigate to when action is activated.
This URL is never rewritten by server. If
exists, this will override the "target" attribute.
Also supports "callto:" for Phone call and
"mailto:" for email support.

Indicates the mode of communication
between Wireless server and the device.
Setting secure="true" will enable a secure
connect mode between Wireless and the
device for the specified target. If not specified,
the connect mode will be based on the current
request mode. This DOES NOT indicate mode
of connection between Wireless and the
remote content source (the service), Wireless
will connect to the remote service based on the
protocol specified in the target attribute ("http"
vs. "https")

Voice only attribute. The URI of an audio clip
to play while the "target" is being fetched.

Label for action button, displayed when action
is bound to a button on a visual device

digit to be pressed on phone or DTMF tone.
dtmf attribute just takes one value (a
simplified form of voice SimpleDTMF tag).
Will work on wap devices, if supported by the
device.

Text wrap mode.

This tag is interpreted only for the specified
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). Values can be any
combination of following "pdabrowser",
"pcbrowser”, "voice", "microbrowser",

"micromessenger”, "messenger”. If not
specified, the tag is interpreted for all devices.

CDATA

(true | false)

CDATA

CDATA

CDATA

(wrap | nowrap)

CDATA

OPTIONAL

OPTIONAL

OPTIONAL

OPTIONAL

OPTIONAL

wrap
OPTIONAL

OPTIONAL

8-52 Oracle9iAS Wireless Developer’s Guide

XML Tags

Related Tags

Table 8-58 SimpleMenultem Related Tags

Parents Children
SimpleMenu [PCDATA]
SimpleCache

SimpleTextltem

SimpleGrammar

XML Tag Glossary 8-53

SimpleMeta

SimpleMeta

Defines all WML/HDML/HTML meta tags (pass through)

Table 8-59 SimpleMeta Tag

Name Description

Value(s)

Default Value

content The content of the emulated HTTP header or
associated content of Meta NAME

http-equiv The equivalent HTTP header you are

emulating

name a descriptive name of the meta attribute

deviceclass This tag is interpreted only for the specified

deviceclass (conditional
server will transform thi

transform). The
s element only for

certain devices (all devices that belong to the
specified deviceclass). Values can be any
combination of following "pdabrowser",

"pcbrowser”, "voice", "m

icrobrowser",

"micromessenger”, "messenger”. If not

specified, the tag is interpreted for all devices.

CDATA

CDATA

CDATA
CDATA

REQUIRED

REQUIRED

OPTIONAL
OPTIONAL

Related Tags

Table 8-60 SimpleMeta Related Tags

Parents

Children

SimpleResult

none

8-54 Oracle9iAS Wireless Developer’s Guide

XML Tags

SimpleMItem

Empty tag to indicate the Bind needs to rendered as a Menultem. This is allowed
only when SimpleBind is a child of SimpleMenu. Use SimpleTextltem, as a child of
SimpleDisplay, to display for the actual text of a menu item text. Defines all
WML/HDML/HTML meta tags (pass through)

Table 8-61 SimpleMItem Tag

Name

Description Value(s) Default Value

deviceclass

This tag is interpreted only for the specified CDATA OPTIONAL
deviceclass (conditional transform). The

server will transform this element only for

certain devices (all devices that belong to the

specified deviceclass). Values can be any

combination of following "pdabrowser",

"pcbrowser"”, "voice", "microbrowser",

"micromessenger”, "messenger”. If not

specified, the tag is interpreted for all devices.

Related Tags

Table 8-62 SimpleMItem Related Tags

Parents Children

SimpleMatch none

XML Tag Glossary 8-55

SimpleName

SimpleName

Identifies Client side form field names. Used to specify a list of client side form
fields, that need to cleared. Useful in voice, as clearing of form fields allows for

reprompt by the VoiceXML browser.

Table 8-63 SimpleName Tag

Name

Description Value(s)

Default Value

name

deviceclass

Name of Client side form field CDATA

This tag is interpreted only for the specified CDATA
deviceclass (conditional transform). The

server will transform this element only for

certain devices (all devices that belong to the

specified deviceclass). Values can be any

combination of following "pdabrowser",

"pcbrowser”, "voice", "microbrowser",
"micromessenger”, "messenger"”. If not

specified, the tag is interpreted for all devices.

REQUIRED
OPTIONAL

Related Tags

Table 8-64 SimpleName Related Tags

Parents Children

SimpleClear none

SimpleSubmit

8-56 Oracle9iAS Wireless Developer’s Guide

XML Tags

SimpleOptGroup

Group SimpleFormOptions into a hierarchy. To support Small screen devices, where
long lists of options cannot not deliver good Uls. On devices where optgroup is not
supported the display strings of options, inside the optgroups, are concatenated
with label defined in the optgroup.

Table 8-65 SimpleOptGroup Tag

Name

Description Value(s) Default Value

label

deviceclass

For platforms that support hierarchical option CDATA REQUIRED
lists, the label is displayed when navigating
non-leaf nodes

This tag is interpreted only for the specified CDATA OPTIONAL
deviceclass (conditional transform). The

server will transform this element only for

certain devices (all devices that belong to the

specified deviceclass). Values can be any

combination of following "pdabrowser",

"pcbrowser", "voice", "microbrowser",

"micromessenger”, "messenger”. If not

specified, the tag is interpreted for all devices.

Related Tags

Table 8-66 SimpleOptGroup Related Tags

Parents Children

SimpleFormSelect [PCDATA]

SimpleFormOption

XML Tag Glossary 8-57

SimplePhone

SimplePhone

A Bind (SimpleBind) can be triggered by any event and also these can be device
specific events. The SimpleEvent element describes the possible events that would
trigger the Bind action. This Element allows you to take advantage of device
specific event handlers and define actions that can be triggered on such events. The
attribute "type" identifies the device specific events. For Voice applications you can

use events like "noinput", "cancel” etc. For WML it can be events like

"onenterforward", "onpick" etc.
Table 8-67 SimplePhone Tag

Name

Description Value(s) Default Value

count

type

deviceclass

Applicable to Voice events only. The Positive Int 1
occurrence of the event (default is 1). The

count allows you to handle different OPTIONAL
occurrences of the same event differently for
example. If need to give extra help messages if
the user says "help" twice for the same form
item. The form/formitem/menu etc (where
ever SimpleCatch can occur) maintains a
counter for each event that occurs while it is
being visited, these counters are reset each
time the form is re-entered.

Predefined device level events. Possible values CDATA REQUIRED
for voice include for cancel, error, exit, help,

noinput, nomatch, telephone.disconnect etc.

Possible values for WML devices include

"onpick", "onenterforward" etc.

This tag is interpreted only for the specified CDATA OPTIONAL
deviceclass (conditional transform). The

server will transform this element only for

certain devices (all devices that belong to the

specified deviceclass). Values can be any

combination of following "pdabrowser",

"pcbrowser”, "voice", "microbrowser",

"micromessenger”, "messenger”. If not
specified, the tag is interpreted for all devices.

8-58 Oracle9iAS Wireless Developer’s Guide

XML Tags

Related Tags
Table 8-68 SimplePhone Related Tags
Parents Children
SimpleMatch none

XML Tag Glossary 8-59

SimplePrev

SimplePrev

Tag for the "PREV" (previous) functionality. Has SimpleGo as child and the target of
the SimpleGo is the destination URL if "PREV" is not supported natively by the
browser.

Table 8-69 SimplePrev Tag

Name

Description Value(s) Default Value

deviceclass

This tag is interpreted only for the specified CDATA OPTIONAL
deviceclass (conditional transform). The

server will transform this element only for

certain devices (all devices that belong to the

specified deviceclass). Values can be any

combination of following "pdabrowser",

"pcbrowser"”, "voice", "microbrowser",

"micromessenger”, "messenger”. If not

specified, the tag is interpreted for all devices.

Related Tags

Table 8-70 SimplePrev Related Tags

Parents Children
SimpleCatch SimpleGo
SimpleCase

SimpleTask

8-60 Oracle9iAS Wireless Developer’s Guide

XML Tags

SimpleProperty

Set VoiceXML engine properties
Table 8-71 SimpleProperty Tag

Name

Description Value(s)

Default Value

name
value

deviceclass

The name of a property. CDATA
The name of a property. CDATA

This tag is interpreted only for the specified CDATA
deviceclass (conditional transform). The

server will transform this element only for

certain devices (all devices that belong to the

specified deviceclass). Values can be any

combination of following "pdabrowser",

"pcbrowser"”, "voice", "microbrowser",
"micromessenger”, "messenger”. If not

specified, the tag is interpreted for all devices.

REQUIRED
REQUIRED
OPTIONAL

Related Tags

Table 8-72 SimpleProperty Related Tags

Parents Children

SimpleForm none
SimpleFormltem
SimpleResult

SimpleMenu

XML Tag Glossary 8-61

SimpleRefresh

SimpleRefresh

Perform a refresh of the device if supported by the device

Table 8-73 SimpleRefresh Tag

Name Description

Value(s)

Default Value

deviceclass This tag is interpreted only for the specified
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). Values can be any
combination of following "pdabrowser",
"pcbrowser"”, "voice", "microbrowser",
"micromessenger”, "messenger”. If not

specified, the tag is interpreted for all devices.

CDATA

OPTIONAL

Related Tags
Table 8-74 SimpleProperty Related Tags
Parents Children
SimpleCatch none
SimpleCase
SimpleTask

8-62 Oracle9iAS Wireless Developer’s Guide

XML Tags

SimpleReprompt

This task will reprompt the user for the field input. Valid in Voice apps only and

used for reprompting the form fields/inputs.
Table 8-75 SimpleReprompt Tag

Name Description

Default Value

deviceclass This tag is interpreted only for the specified
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). Values can be any
combination of following "pdabrowser",
"pcbrowser"”, "voice", "microbrowser",
"micromessenger”, "messenger”. If not
specified, the tag is interpreted for all devices.

OPTIONAL

Related Tags
Table 8-76 SimpleReprompt Related Tags
Parents Children
SimpleCatch none
SimpleCase
SimpleTask

XML Tag Glossary 8-63

SimpleResult

SimpleResult
The root tag of Wireless XML. SimpleResult encloses the complete response for a
request
Table 8-77 SimpleResult Tag
Name Description Value(s) Default Value
application VoiceXML application. Attribute used in voice CDATA OPTIONAL
(MoiceXML). This is an URL, which points to
"root" document for the VoiceXML generated.
bgcolor Sets the Background color in supported CDATA OPTIONAL
devices
lang language of this document. Used for Voice, CDATA OPTIONAL
indicates the language of the XML document
Related Tags

Table 8-78 SimpleResult Related Tags

Parents Children

none SimpleMeta
SimpleCatch
SimpleProperty
SimpleCache
SimpleAction
SimpleBind
SimpleContainer

SimpleTimer

8-64 Oracle9iAS Wireless Developer’s Guide

XML Tags

SimpleRow
Defines row of a table.
Table 8-79 SimpleRow Tag
Name Description Value(s) Default Value
bgcolor Sets the Background color in supported CDATA OPTIONAL
devices
bordercolor from HTML table spec CDATA OPTIONAL
valign Vertical alignment (top | middle | top
bottom) OPTIONAL
halign Horizontal alignment (left | center | left
right) OPTIONAL
wrapmode Text wrap mode (wrap | nowrap) wrap
OPTIONAL
deviceclass This tag is interpreted only for the specified CDATA OPTIONAL
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). Values can be any
combination of following "pdabrowser”,
"pcbrowser", "voice", "microbrowser",
"micromessenger”, "messenger”. If not
specified, the tag is interpreted for all devices.
Related Tags

Table 8-80 SimpleRow Related Tags

Parents Children

SimpleTableBody SimpleCol

XML Tag Glossary 8-65

SimpleSpan

SimpleSpan
Element to control Style of Text. Control for font, color and size of text.
Table 8-81 SimpleSpan Tag
Name Description Value(s) Default Value
color Color CDATA OPTIONAL
font Font CDATA OPTIONAL
size Font size CDATA OPTIONAL
deviceclass This tag is interpreted only for the specified CDATA OPTIONAL
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). Values can be any
combination of following "pdabrowser",
"pcbrowser", "voice", "microbrowser",
"micromessenger”, "messenger”. If not
specified, the tag is interpreted for all devices.
Related Tags
Table 8-82 SimpleSpan Related Tags
Parents Children
SimpleTextltem [PCDATA]
SimpleSpan SimpleBreak
SimpleUnderline SimpleEm
Simplelmage SimpleStrong
SimpleHref SimpleSpan
SimpleStrong SimpleUnderline
SimpleEm SimpleAudio
SimpleAudio SimpleSpeech
SimpleSpeech Simplelmage
SimpleTitle SimpleValue

8-66 Oracle9iAS Wireless Developer’s Guide

XML Tags

SimpleSpeech

Control prosody, class, and other VoiceXML text-to-speech engine parameters.
Table 8-83 SimpleSpeech Tag

Name Description Value(s) Default Value
class VoiceXML 'sayas' class. Allows the Voice (phone | date | OPTIONAL
browser to say something like "6505067000" as digits | literal |
phone number, when class="phone"(rather currency | number
than saying this as number which would 6 | time
million ...).
phon VoiceXML 'sayas' phonetics. The CDATA OPTIONAL

representation of the Unicode International
Phonetic Alphabet (IPA) characters that are to
be spoken instead of the contained text.

pitch VoiceXML prosody pitch. numeric attribute CDATA OPTIONAL
that sets the baseline pitch in Hertz. Values
can be "n" (set volume to n) or +n or -n. Also
can be +n% , -n% or reset.

range VoiceXML prosody range. numeric attribute CDATA OPTIONAL
that sets the pitch range in Hertz. Values can
be "n" (set volume to n) or +n or -n. Also can
be +n% , -n% or reset. The pitch range
represents the amount of variation in pitch
above the baseline.

rate numeric attribute that sets the speaking rate in CDATA OPTIONAL
words per minute. Value Can be an exact
number like "150" (sets the speaking rate of
150 words per minute) or can be +n (or -n)
(increase or decrease the rate by n from the
current level). Also can be +n% , -n% or reset

XML Tag Glossary 8-67

SimpleSpeech

Table 8-83 SimpleSpeech Tag

Name Description Value(s) Default Value

sub VoiceXML 'sayas' sub. Defines substitute text CDATA OPTIONAL
to be spoken instead of the contained text.

vol VoiceXML prosody volume. Numeric attribute CDATA OPTIONAL
that sets the output volume on a scale of 0.0 to
1.0 where 0.0 is silence and 1.0 is maximum
loudness. Values can be "n" (set volume to n)
or +n or -n. Also can be +n% , -n% or reset

deviceclass This tag is interpreted only for the specified CDATA OPTIONAL
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). This tag is applicable
for Voice devices only. Will not be supported
on other devices even if specified.

Related Tags
Table 8-84 SimpleSpeech Related Tags
Parents Children
SimpleTextltem [PCDATA]
SimpleSpan SimpleBreak
SimpleUnderline SimpleEm
Simplelmage SimpleStrong
SimpleHref SimpleSpan
SimpleStrong SimpleUnderline
SimpleEm SimpleAudio
SimpleAudio SimpleSpeech
SimpleSpeech Simplelmage
SimpleTitle SimpleValue

8-68 Oracle9iAS Wireless Developer’s Guide

XML Tags

SimpleStrong
Displays enclosed text in a stronger representation, usually bold
Table 8-85 SimpleStrong Tag
Name Description Value(s) Default Value
deviceclass This tag is interpreted only for the specified CDATA OPTIONAL
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). Values can be any
combination of following "pdabrowser",
"pcbrowser"”, "voice", "microbrowser",
"micromessenger”, "messenger”. If not
specified, the tag is interpreted for all devices.
Related Tags
Table 8-86 SimpleStrong Related Tags
Parents Children
SimpleTextltem [PCDATA]
SimpleSpan SimpleBreak
SimpleUnderline SimpleEm
Simplelmage SimpleStrong
SimpleHref SimpleSpan
SimpleStrong SimpleUnderline
SimpleEm SimpleAudio
SimpleAudio SimpleSpeech
SimpleSpeech Simplelmage
SimpleTitle SimpleValue
SimpleHelp

XML Tag Glossary 8-69

SimpleSubmit

SimpleSubmit

Defines the Submit task of a Bind. SimpleSubmit is child of SimpleTask.
SimpleSubmit bind performs a submit action. You may provide a list of Form item
names that has to be submitted. If provide a name list is provided then only those
form item will be submitted. An Empty SimpleSubmit will Submit all the form
items.

Table 8-87 SimpleSubmit Tag

Name Description Value(s) Default Value

name Name of the Submit button/action (just like CDATA REQUIRED
HTML). The Submit "name" and "Value" will
be submitted back to the app as parameters.

value Value of the Submit button/action (just like CDATA OPTIONAL
HTML). The Submit "name" and "value" will
be submitted back to the app as parameters.

deviceclass This tag is interpreted only for the specified CDATA OPTIONAL
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). Values can be any
combination of following "pdabrowser",
"pcbrowser"”, "voice", "microbrowser",

"micromessenger”, "messenger”. If not
specified, the tag is interpreted for all devices.

method HTTP Method get or post (get | post) get
OPTIONAL
callbackurl Wireless Module Support. Indicates the URL ~ CDATA OPTIONAL

to return back if the current action leads the
user into a different application (application
implementing Wireless Module functionary).

callbackparam Wireless Module Support. Indicates the return CDATA OPTIONAL
parameters of the callbackurl. When Module
returns the context back to the callee
application, the callbackparam is passed back
for the callee to construct its application state.

8-70 Oracle9iAS Wireless Developer’s Guide

XML Tags

Table 8-87 SimpleSubmit Tag

Name

Description Value(s)

Default Value

callbacksecure

target

mimetype

static_target

secure

fetchaudio

Indicates the mode of communication, when (true | false)

callback occurs, between Wireless server and
the device. Setting callbacksecure="true" will
enable a secure connect mode between
Wireless and the device when the module
performs a callback (to the callbackurl). If not
specified, the connect mode will be based on
the current request mode.

URI to navigate to when action is activated. CDATA
This URL is always rewritten by the Server to

point back to Wireless Server, except when

mimetype attribute not

"text/vnd.oracle.mobilexml". Also supports

“callto:" for Phone call and "mailto:" for email

support.

mime-type of target URI. Lets the Wireless CDATA
server know the target resources mime-type. If

the target mime-type is not

text/vnd.oracle.mobilexml, the Wireless

server will not rewrite the URL.

URI to navigate to when action is activated. CDATA
This URL is never rewritten by server. If

exists, this will override the "target" attribute.

Also supports "callto:" for Phone call and

"mailto:" for email support.

Indicates the mode of communication
between Wireless server and the device.
Setting secure="true" will enable a secure
connect mode between Wireless and the
device for the specified target. If not specified,
the connect mode will be based on the current
request mode. This DOES NOT indicate mode
of connection between Wireless and the
remote content source (the service), Wireless
will connect to the remote service based on the
protocol specified in the target attribute ("http"
vs. "https")

Voice only attribute. The URI of an audio clip CDATA
to play while the "target” is being fetched.

(true | false)

OPTIONAL

OPTIONAL

text/vnd.oracle.mo
bilexml

OPTIONAL

OPTIONAL

OPTIONAL

OPTIONAL

XML Tag Glossary 8-71

SimpleSubmit

Related Tags
Table 8-88 SimpleSubmit Related Tags
Parents Children
SimpleCatch SimpleName
SimpleCase
SimpleTask

8-72 Oracle9iAS Wireless Developer’s Guide

XML Tags

SimpleSwitch

Tag to write switch statements on form field name/value. Allows to compare the
Value of the form field input on the client side and can branch to perform different
Tasks.

Table 8-89 SimpleSwitch Tag

Name

Description Value(s) Default Value

name

deviceclass

Name of the form field the switch is based on. CDATA REQUIRED

This tag is interpreted only for the specified CDATA OPTIONAL
deviceclass (conditional transform). The

server will transform this element only for

certain devices (all devices that belong to the

specified deviceclass). Values can be any

combination of following "pdabrowser",

"pcbrowser"”, "voice", "microbrowser",

"micromessenger”, "messenger"”. If not

specified, the tag is interpreted for all devices.

Related Tags

Table 8-90 SimpleSwitch Related Tags

Parents Children

SimpleTask SimpleCase

XML Tag Glossary 8-73

SimpleTable

SimpleTable
Table 8-91 SimpleTable Tag

Name Description Value(s) Default Value
separator Used when table is not supported by the CDATA none

target device. If defined add a separator

between column values where table cannot be OPTIONAL

supported.
id ID attribute of the element. Used for xsd:1D OPTIONAL

Navigation within a XML response

(target="#1D")
bgcolor background color CDATA OPTIONAL
border Width of Border. CDATA OPTIONAL
bordercolor Table bordercolor CDATA OPTIONAL
cellpadding Cellpadding. As in HTML table CDATA OPTIONAL
cellspacing Cellspacing. As in HTML table CDATA OPTIONAL
width table Width CDATA OPTIONAL
height table Height CDATA OPTIONAL
deviceclass This tag is interpreted only for the specified CDATA OPTIONAL

deviceclass (conditional transform). The

server will transform this element only for

certain devices (all devices that belong to the

specified deviceclass). Values can be any

combination of following "pdabrowser",

"pcbrowser”, "voice", "microbrowser",

"micromessenger”, "messenger”. If not

specified, the tag is interpreted for all devices.
Related Tags

Table 8-92 SimpleTable Related Tags

Parents Children

SimpleContainer SimpleTableHeader

SimpleTableBody

8-74 Oracle9iAS Wireless Developer’s Guide

XML Tags

SimpleTableBody

Table 8-93 SimpleTableBody Tag

Name Description

Value(s)

Default Value

deviceclass This tag is interpreted only for the specified
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). Values can be any
combination of following "pdabrowser",
"pcbrowser", "voice", "microbrowser",

"micromessenger”, "messenger”. If not

specified, the tag is interpreted for all devices.

CDATA

OPTIONAL

Related Tags
Table 8-94 SimpleTableBody Related Tags
Parents Children
SimpleTable SimpleRow

XML Tag Glossary 8-75

SimpleTableHeader

SimpleTableHeader

Table 8-95 SimpleTableHeader Tag

Name

Description Value(s)

Default Value

deviceclass

This tag is interpreted only for the specified CDATA
deviceclass (conditional transform). The

server will transform this element only for

certain devices (all devices that belong to the

specified deviceclass). Values can be any

combination of following "pdabrowser",

"pcbrowser"”, "voice", "microbrowser",
"micromessenger”, "messenger”. If not

specified, the tag is interpreted for all devices.

OPTIONAL

Related Tags

Table 8-96 SimpleTableHeader Related Tags

Parents Children

SimpleTable SimpleCol

8-76 Oracle9iAS Wireless Developer’s Guide

XML Tags

SimpleTask

Container tag for all task items of a Bind (SimpleBind). Tag encloses all the possible
tasks like go, submit, exit etc. Task also includes Textltem as a child, this allows
rendering of an audio or text (speech) before performing an action (useful in voice
applications)

Table 8-97 SimpleTask Tag

Name

Description Value(s) Default Value

deviceclass

This tag is interpreted only for the specified CDATA OPTIONAL
deviceclass (conditional transform). The

server will transform this element only for

certain devices (all devices that belong to the

specified deviceclass). Values can be any

combination of following "pdabrowser",

"pcbrowser"”, "voice", "microbrowser",

"micromessenger”, "messenger”. If not

specified, the tag is interpreted for all devices.

Related Tags

Table 8-98 SimpleTask Related Tags

Parents Children
SimpleBind SimpleSwitch
SimpleGo

SimpleTextltem
SimpleRefresh
SimpleClear
SimpleReprompt
SimpleExit
SimpleDisconnect
SimplePrev

SimpleSubmit

XML Tag Glossary 8-77

SimpleText

SimpleText

Container for block of Texts (SimpleTextltem's)
Table 899 SimpleText Tag

Name Description Value(s)

Default Value

wait VoiceXML Wait. Tells The voice browser if a (true | false)
wait has to happen before proceeding to the
next construct in the SimpleResult.

wrapmode Text wrap mode. (wrap | nowrap)

scope VoiceXML scope. Can take (document |
"document"/"dialog" possible values. Default dialog)
scope of grammar in
Form/Menu/Text/Grammar/DTMF. If the
scope is set to "document”, then the grammar
is active in the entire document. This allows
for e.g. the user to submit a "Form" (in the
SimpleResult) from inside a "SimpleMenu".

id ID attribute of the element. Used for xsd:1D
Navigation within a XML response
(target="#1D")

deviceclass This tag is interpreted only for the specified CDATA
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). Values can be any
combination of following "pdabrowser",
"pcbrowser"”, "voice", "microbrowser",

"micromessenger”, "messenger”. If not
specified, the tag is interpreted for all devices.

true
OPTIONAL

wrap
OPTIONAL

dialog
OPTIONAL

OPTIONAL

OPTIONAL

Related Tags
Table 8-100 SimpleText Related Tags

Parents Children

SimpleContainer SimpleTitle
SimpleCatch

SimpleTextltem

8-78 Oracle9iAS Wireless Developer’s Guide

XML Tags

Table 8-100 SimpleText Related Tags

Parents Children

SimpleAction
SimpleBind

XML Tag Glossary 8-79

SimpleTextField

SimpleTextField

Used to display non-editable field inside a form. For example, changing an
password, where the userid is an non-editable field.

Table 8-101 SimpleTextField Tag

Name

Description Value(s)

Default Value

deviceclass

This tag is interpreted only for the specified CDATA
deviceclass (conditional transform). The

server will transform this element only for

certain devices (all devices that belong to the

specified deviceclass). Values can be any

combination of following "pdabrowser",

"pcbrowser"”, "voice", "microbrowser",
"micromessenger”, "messenger”. If not

specified, the tag is interpreted for all devices.

OPTIONAL

Related Tags

Table 8-102 SimpleTextField Related Tags

Parents Children

SimpleForm SimpleTitle

SimpleTextltem

8-80 Oracle9iAS Wireless Developer’s Guide

XML Tags

SimpleTextltem

This element contains one block of plain text, typically a single paragraph.
Table 8-103 SimpleTextltem Tag

Name Description Value(s) Default Value
timeout VoiceXML timeout. The the interval of silence xsd:nonNegativeln OPTIONAL
before the next construct is played teger
color color CDATA OPTIONAL
font font CDATA OPTIONAL
size font size CDATA OPTIONAL
wrapmode Text wrap mode (wrap | nowrap) wrap
OPTIONAL
bargein _VoiceXML bargein. Contrgl Wr_lether ausercan (true | false) true
vgﬁ:rg;ﬂf l\al\rlg\?\?s;:e text is being read by the OPTIONAL
count VoiceXML count. A number that allows you to Positive Int 1
§§;‘é§’ﬁ?§5ﬁ2@2&?£?§.ﬂ'JSEE#ZST £ dofauits to OPTIONL
deviceclass This tag is interpreted only for the specified CDATA OPTIONAL

deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). Values can be any
combination of following "pdabrowser”,
"pcbrowser", "voice", "microbrowser",

"micromessenger”, "messenger”. If not
specified, the tag is interpreted for all devices.

Related Tags
Table 8-104 SimpleTextltem Related Tags
Parents Children
SimpleText [PCDATA]
SimpleForm SimpleHref
SimpleTextField SimpleBreak

XML Tag Glossary 8-81

SimpleTextltem

Table 8-104 SimpleTextltem Related Tags

Parents Children

SimpleFormOption SimpleEm

SimpleCol SimpleStrong
SimpleAction SimpleSpan
SimpleDisplay SimpleUnderline
SimpleMenultem SimpleAudio
SimpleCatch SimpleSpeech
SimpleCase Simplelmage
SimpleTask SimpleValue

8-82 Oracle9iAS Wireless Developer’s Guide

XML Tags

SimpleTimer

Invokes a "goto" target task after a specified delay time.
Table 8-105 SimpleTimer Tag

Name Description Value(s) Default Value

timer Invokes a "goto" target task after a specified xsd:nonNegativeln REQUIRED
delay time. Time in milliseconds teger

target URI to navigate to when action is activated. CDATA OPTIONAL
This URL is always rewritten by the Server to
point back to Wireless Server, except when
mimetype attribute not
"text/vnd.oracle.mobilexml". Also supports
“callto:" for Phone call and "mailto:" for email
support.

mimetype mime-type of target URI. Lets the Wireless CDATA text/vnd.oracle.mo
server know the target resources mime-type. If bilexml
the target mime-type is not
text/vnd.oracle.mobilexml, the Wireless OPTIONAL
server will not rewrite the URL.

static_target URI to navigate to when action is activated. CDATA OPTIONAL
This URL is never rewritten by server. If
exists, this will override the "target" attribute.
Also supports "callto:" for Phone call and
"mailto:" for email support.

XML Tag Glossary 8-83

SimpleTimer

Table 8-105 SimpleTimer Tag

Name

Description Value(s)

Default Value

secure

fetchaudio

deviceclass

Indicates the mode of communication (true | false)

between Wireless server and the device.
Setting secure="true" will enable a secure
connect mode between Wireless and the
device for the specified target. If not specified,
the connect mode will be based on the current
request mode. This DOES NOT indicate mode
of connection between Wireless and the
remote content source (the service), Wireless
will connect to the remote service based on the
protocol specified in the target attribute ("http"
vs. "https")

Voice only attribute. The URI of an audio clip CDATA
to play while the "target" is being fetched.

This tag is interpreted only for the specified CDATA
deviceclass (conditional transform). The

server will transform this element only for

certain devices (all devices that belong to the

specified deviceclass). Values can be any

combination of following "pdabrowser",

"pcbrowser"”, "voice", "microbrowser",

"micromessenger”, "messenger”. If not
specified, the tag is interpreted for all devices.

OPTIONAL

OPTIONAL

OPTIONAL

Related Tags

Table 8-106 SimpleTimer Related Tags

Parents Children

SimpleResult none

8-84 Oracle9iAS Wireless Developer’s Guide

XML Tags

SimpleTitle
Title element for form Field and Menu container (SimpleMenu)
Table 8-107 SimpleTitle Tag

Name Description Value(s) Default Value
timeout VoiceXML timeout. The the interval of silence xsd:nonNegativeln OPTIONAL

allowed while waiting for user input in a form teger

input (after prompting the user for input).
color Color CDATA OPTIONAL
font Font CDATA OPTIONAL
size Font size CDATA OPTIONAL
bargein VoiceXML bargein. Control whether a user can (true | false) true

interrupt a when the text is being read by the

VoiceXML browser. OPTIONAL
count VoiceXML count. A number that allows you to Positive Int 1

emit different prompts if the user is doing

something repeatedly. If omitted, it defaults to OPTIONAL

"1n,
wrapmode Text wrap mode. (wrap | nowrap) wrap

OPTIONAL

deviceclass This tag is interpreted only for the specified CDATA OPTIONAL

deviceclass (conditional transform). The

server will transform this element only for

certain devices (all devices that belong to the

specified deviceclass). Values can be any

combination of following "pdabrowser",

"pcbrowser”, "voice", "microbrowser",

"micromessenger”, "messenger”. If not

specified, the tag is interpreted for all devices.
Related Tags

Table 8-108 SimpleTitle Related Tags

Parents Children
SimpleText [PCDATA]
SimpleMenu SimpleBreak

XML Tag Glossary 8-85

SimpleTitle

Table 8-108 SimpleTitle Related Tags

Parents Children
SimpleForm SimpleEm
SimpleTextField SimpleStrong
SimpleFormltem SimpleSpan
SimpleFormSelect SimpleUnderline
SimpleAudio
SimpleSpeech
Simplelmage
SimpleValue

8-86 Oracle9iAS Wireless Developer’s Guide

XML Tags

SimpleUnderline

Underline a text.
Table 8-109 SimpleUnderline Tag

Name Description Value(s)

Default Value

deviceclass This tag is interpreted only for the specified CDATA
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). Values can be any
combination of following "pdabrowser",
"pcbrowser"”, "voice", "microbrowser",
"micromessenger”, "messenger”. If not
specified, the tag is interpreted for all devices.

OPTIONAL

Related Tags
Table 8-110 SimpleUnderline Related Tags
Parents Children
SimpleTextltem [PCDATA]
SimpleSpan SimpleBreak
SimpleUnderline SimpleEm
Simplelmage SimpleStrong
SimpleHref SimpleSpan
SimpleStrong SimpleUnderline
SimpleEm SimpleAudio
SimpleAudio SimpleSpeech
SimpleSpeech Simplelmage
SimpleTitle SimpleValue

XML Tag Glossary 8-87

SimpleValue

SimpleValue

Substitute the value of the client side form field variable, just like a macro. Possible
with WML, VoiceXML etc. Can be used to provide a client side confirmation
display/screen like "you entered 5, do you want continue" (Where the value 5 is the

value of a form item).
Table 8-111 SimpleValue Tag

Name Description Value(s) Default Value
audiobase VoiceXML base from value element CDATA OPTIONAL
class VoiceXML ‘class’ from value element. Can take (none | audio | OPTIONAL

any value on the enumerated list (or can be boolean | currency

any string). | date | digits |

number | phone |
time | transfer)

mode VoiceXML mode. The type of rendering: tts CDATA OPTIONAL

(the default), or recorded. Can use the

audiobase attribute to specify base directory of

the audio files
name Name of the client variable to substitute CDATA OPTIONAL
deviceclass This tag is interpreted only for the specified CDATA OPTIONAL

deviceclass (conditional transform). The

server will transform this element only for

certain devices (all devices that belong to the

specified deviceclass). Values can be any

combination of following "pdabrowser",

"pcbrowser”, "voice", "microbrowser",

"micromessenger”, "messenger”. If not

specified, the tag is interpreted for all devices.
Related Tags

Table 8-112 SimpleValue Related Tags

Parents Children
SimpleTextltem none
SimpleSpan

SimpleUnderline

Simplelmage

8-88 Oracle9iAS Wireless Developer’s Guide

Using Mobile Context Information in XML

Table 8-112 SimpleValue Related Tags

Parents Children

SimpleHref
SimpleStrong
SimpleEm
SimpleAudio
SimpleSpeech
SimpleTitle

8.2 Using Mobile Context Information in XML

Mobile Contexts are equivalent to scriptlets in many scripting languages like JSP,
ASP etc. Mobile Scripting is primarily a context variable substitution. In other
words, Mobile Contexts are placeholder for properties substituted by Oracle9iAS
Wireless core at the runtime. Though, embedded Mobile Context are not literal to
Oracle9iAS Wireless runtime, nonetheless, they do not violate rules of XML
document. Oracle9iAS Wireless predefines a set of Mobile Contexts for application
developers to use.

Oracle9iAS Wireless also sends all the Mobile Context information as HTTP
Headers while invoking a request. It allows application developers to retrieve the
Mobile Context information as HTTP Headers. Mobile Contexts as HTTP may be
used to make any application-level decisions, or may be used for generating
responses while embedded Mobile Contexts may only be used for generating
responses.

Mobile Contexts are primarily divided into following four categories.
« User Context

« User Location Context

« Service Context

« Module Context
Table 8-113 User Context

Variable Name DataType Description

user.name String Login name of the User. If anonymous
user, this should not be set.

XML Tag Glossary 8-89

Using Mobile Context Information in XML

Table 8-113 User Context

Variable Name DataType Description

user.displayname String Display name of the User.

Table 8-114 User Location Context

Variable Name DataType Description
user.location.addresslinel String Address linel of the location
user.location.addressline2 String Address line2 of the location
user.location.companyname String Company name of the address
user.location.addresslastline String Address line3 of the location
user.location.block String Location Block
user.location.city String Location City
user.location.county String Location county
user.location.state String Location state
user.location.postalcode String Location zip/postal code
user.location.postalcodeext String Extended zip/postal code
user.location.country String Country

user.location.type String Values are "profile"/"auto"

Table 8-115 Service Context

Variable Name DataType Description

service.home.url String URL_ to the Home Page of the current
service.

home.url String URL to the User’s Wireless home Page

service.parent.Url String URL to folder container

Table 8-116 Module Context

Variable Name DataType Description
module.callback.url String The callback URL for Module return
statement.

8-90 Oracle9iAS Wireless Developer’s Guide

Using Mobile Context Information in XML

Table 8-116 Module Context

Variable Name DataType Description

module.callback.label String Display Label for the Module, calling
back the caller.

XML Tag Glossary 8-91

Using Mobile Context Information from HTTP Headers

8.3 Using Mobile Context Information from HTTP Headers
Table 8-117 User Context

Header Name DataType Description

X-Oracle-User.Locale String User Locale Information

Table 8-118 User Locale

Header Name DataType Description

X-Oracle-User.name String Login name of the User. If anonymous
user, this should not be set. (Value
Encoded based on InputEncoding Setting.
See Section on Encoding)

X-Oracle-User.DisplayName String Display name of the User. (Value Encoded
based on InputEncoding Setting. See
Section on Encoding)

X-Oracle-User.userkind String Indicates if user is "anonymous",
"virtual" (implicit Identity) or
"registered".

X-Oracle-User.authkind String Indicates current session's auth mode,

values are "unauthenticated", "weak"
(weak authentication, implicit identity)
or "authenticated"

Table 8-119 User Location Context

Header Name DataType Description

X-Oracle-User.Location.AddressLinel String Address linel of the location. (Value
Encoded based on InputEncoding Setting.
See Section on Encoding)

X-Oracle-User.Location.AddressLine2 String Address line2 of the location. (Value
Encoded based on InputEncoding Setting.
See Section on Encoding)

X-Oracle-User.Location.Companyname String Company name at the address.(Value
Encoded based on InputEncoding Setting.
See Section on Encoding)

X-Oracle-User.Location.AddressLastLine String Address line3 of the location. (Value
Encoded based on InputEncoding Setting.
See Section on Encoding)

8-92 Oracle9iAS Wireless Developer’s Guide

Using Mobile Context Information from HTTP Headers

Table 8-119 User Location Context

Header Name

DataType

Description

X-Oracle-User.Location.Block

X-Oracle-User.Location.City

X-Oracle-User.Location.County

X-Oracle-User.Location.State

X-Oracle-User.Location.PostalCode

X-Oracle-User.Location.PostalCodeExt

X-Oracle-User.Location.Country

X-Oracle-User.Location.Type
X-Oracle-User.Location.X

X-Oracle-User.Location.Y

String

String

String

String

String

String

String

String
String
String

Location Block. (Value Encoded based on
InputEncoding Setting. See Section on
Encoding)

Location City. (Value Encoded based on
InputEncoding Setting. See Section on
Encoding)

Location county. (Value Encoded based
on InputEncoding Setting. See Section on
Encoding)

Location state. (Value Encoded based on
InputEncoding Setting. See Section on
Encoding)

Location zip/postal code. (Value Encoded
based on InputEncoding Setting. See
Section on Encoding)

Extended zip/postal code. (Value
Encoded based on InputEncoding Setting.
See Section on Encoding)

Country. (Value Encoded based on
InputEncoding Setting. See Section on
Encoding)

Values are "profile" or "auto”
X Cord of the location (float)
Y Cord of the location (float)

Table 8-120 Service Context

Header Name DataType Description

X-Oracle-Service.Home.Url String URL_ to the Home deck of the current
service.

X-Oracle-Service.Parent.Url String URL to folder container.

X-Oracle-Home.Url String URL to the User’s Wireless home deck.

XML Tag Glossary 8-93

Using Mobile Context Information from HTTP Headers

Table 8-121 Module Context

Header Name DataType Description

X-Oracle-Module.CallBack.Url String The callback URL for Module return
statement.

X-Oracle-Module.CallBack.Label String Display Label for the Module, calling

back the caller.

8.3.1 Encoding and Escaping Locale String from Request
Headers are encoded in 1ISO8859-1 character set according to HTTP 1.1 specification.
All request parameters and certain Headers as specified above (location, user etc.)

are encoded as described by encoding parameter of service definition. Further the
values are URL encoded as per HTTP 1.1 specification.

Application may retrieve these requests values by performing the following steps.
1. Use URL decoding to undo base64 encoding.
2. Construct the new string using service specific encoding.

For example a typical jsp scriptlet for Big5 (traditional Chinese) may look as follows
for Java Programming Language.

<%

/I let the encoding of service be Big5

String userNane = request. get Header (" X- Or acl e- User. Di spl ayNange") ;
userNane = java. net. URLDecoder. decode(user Nane);

userNane = new String(userName. get Bytes(), “Big5");

%

8-94 Oracle9iAS Wireless Developer’s Guide

Using Mobile Context Information from HTTP Headers

8.3.1.1 User Location Context
Table 8-122 User Location Context

Variable Name DataType Description
user.location.addresslinel String Address linel of the location
user.location.addressline2 String Address line2 of the location
user.location.companyname String Company name of the address
user.location.addresslastline String Address line3 of the location
user.location.block String Location Block
user.location.city String Location City
user.location.county String Location county
user.location.state String Location state
user.location.postalcode String Location zip/postalcode
user.location.postalcodeext String Extended zip/postal code
user.location.country String Country

user.location.type String Values are "profile"/"auto"

8.3.1.2 Service Context
Table 8-123 Service Context

Variable Name DataType Description

service.home.url String URL to the Home Page of the current service.
home.url String URL to the User’s Wireless home Page
service.parent.Url String URL to folder container.

8.3.1.3 Module Context
Table 8-124 Module Context

Variable Name DataType Description
module.callback.url String The callback URL for Module return statement.
module.callback.label String Display Label for the Module, calling back the caller.

For example, the following two applications can be used to greet the user.

XML Tag Glossary 8-95

Using Mobile Context Information from HTTP Headers

8.3.1.4 HelloUserMobileScript.xml

<?xm version = "1.0" encoding = "UTF-8" standal one="yes" ?>
<! DOCTYPE Si npl eResult PUBLIC "-//ORACLE//DTD Si npl eResult 1.1//EN'
"http://xmns.oracle.conlias/dtds/SinmpleResult_1 1 0.dtd">
<Si npl eResul t >
<Si npl eCont ai ner >
<Si npl eText >
<Si npl eText | tenp
<Si npl eStrong>Hel | 0 %al ue user. di spl ayname%/ Si npl eSt r ong>
</ Sinpl eText It enp
</ Si npl eText >
</ Si npl eCont ai ner >
</ Si npl eResul t >

8.3.1.5 HelloUserMobileScriptHTTP.jsp

<?xm version = "1.0" encoding = "UTF-8" standal one="yes" ?>
<! DOCTYPE Si npl eResult PUBLIC "-//ORACLE//DTD Si npl eResult 1.1//EN'
"http://xmns.oracle.confias/dtds/SinpleResult_1 1 0.dtd">
<%
String userNanme = request. get Header (" X- Oracl e- User. Di spl ayNane") ;
userNane = (userNanme == null) ? request. get Header (" X- Oracl e- User. name") :
user Nane;
userNane = (userNanme == null) ? "Visitor" : userNane;
userNane = java. net. URLDecoder. decode(user Nane);
%
<Si npl eResul t >
<Si npl eCont ai ner >
<Si npl eText >
<Si npl eText I tem hal i gn="center">Hel | 0 <% user Nane%</ Si npl eText | t en>
</ Si npl eText >
</ Si npl eCont ai ner >
</ Si npl eResul t >

8-96 Oracle9iAS Wireless Developer’s Guide

Using Mobile Context Information from HTTP Headers

Figure 8-1 Output of HelloUserMobileScript.xml and HelloUserMobileScriptHTTP.jsp

@.opmw.wg " Eii] Internet Explorer

http:ffcpatni-lap.us.oracle.com:900 »
e n:/jcpatni-lap

Hello Java Duke

Hello Java Duke

Yiew Tools ¢ ot

XML Tag Glossary 8-97

Using Mobile Context Information from HTTP Headers

8-98 Oracle9iAS Wireless Developer’s Guide

Part |l

Oracle9iAS Wireless Platform and
Services

Part 1l contains information about the Oracle9iAS Wireless platform and services.

Chapter 9, "Mobile Service Developer’s Tools"
Chapter 10, "Core Technologies"

Chapter 11, "Advanced Customization"
Chapter 12, "Alert Engine and Data Feeds"
Chapter 13, "Push Service and SMS"

Chapter 14, "Transcoding"

Chapter 15, "Using Location Services"
Chapter 16, "Offline Management"

Chapter 17, "Mobile Studio"

9

Mobile Service Developer’s Tools

Each section of this document presents a different topic. These sections include:
« Section 9.1, "Mobile Studio”

« Section 9.2, "Oracle9iAS Wireless SDK"

« Section 9.3, "Overview of JDeveloper with Oracle9iAS Wireless"

« Section 9.4, "Third-party Mobile Simulators"

« Section 9.5, "Deploying Your Applications”

9.1 Mobile Studio

9.1.1 In-house Mobile Studio

Mobile Studio is an online environment for quickly building, testing and deploying
wireless applications. It lets any developer quickly develop mobile applications that
are immediately accessible from all devices.

As a developer, you do not need to download or install any software to start using
the Studio; provides a completely web-based development and testing
environment. To access Mobile Studio on your Oracle9iAS Wireless instance, go to:
http://oracle9iasw-host:port/studio.

9.1.1.1 Register with Mobile Studio

As a developer, you must register with your instance of Studio to access the Studio
web site. To register, click on the register button on the Studio home page and
provide the required details to register. Once you register, Studio provides you with
a personal application area to test your applications and also provides links to
sample applications.

Mobile Service Developer’s Tools 9-1

Mobile Studio

9.1.1.2 Develop HelloWorld Application
In this walkthrough you will create a HelloWorld mobile application.

1. First you will create simple static page that outputs Oracle9iAS Wireless XML
when accessed through a web server.

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<! DOCTYPE Si npl eResult PUBLIC "-//ORACLE//DTD Si npl eResult 1.1//EN'
“http://xmns.oracle.conlias/dtds/SinmpleResult_1 1 0.dtd">
<Si npl eResul t >
<Si npl eCont ai ner >
<Si npl eText >
<Si npl eTitl e>Hel | oWorl d Page</Si npleTitle>
<Sinpl eText I tenpHel | o Worl d</ Si npl eText I t en»
</ Si npl eText >
</ Si npl eCont ai ner >
</ Si npl eResul t >

2. Host the above helloworld.xml sample page on you web server.
3. Log into the Studio and select the CreateNew application button.
4. Inthe Create Application page fill in the following:
Name: MyHelloWorld
URL: URL to the helloworls.xml file (such as http://server:port/....)
Deviceclass: Select “all devices”
Description: My First Studio Sample
5. Click Create.

9.1.1.3 Test and Debug HelloWorld Application

In this walkthrough you will test and debug the HelloWorld application created in
the previous walkthrough.

1. Start the Mobile Simulator.

2. Enter the following URL in the Go window:
http://91ASWEServer.domain/ptg/rm
This is the URL of the device portal for your Oracle9iAS Wireless Server
installation.

3. Login into the Oracle9iAS Wireless Portal with your studio username and
password.

9-2 Oracle9iAS Wireless Developer’s Guide

Mobile Studio

4. Select the MyHelloWorld application.
The Oracle9iAS Wireless Server retrieves the helloworld.xml page and displays
it.

5. You can debug the MyHelloWorld application by looking at the log file from
you Studio web page. To view the log:

« go to the Studio web site and login with you studio username and
password

« Select the Log icon for the MyHelloWorld application. The system pops up
the log viewer on the web site. The log viewer displays the content
retrieved.

9.1.1.4 Deploy the HelloWorld Application

To deploy an application you will must be part of a Domain. In this walkthrough
you will create a Domain and then deploy the MyHelloWorld application to an
Oracle9iAS Wireless Server.

1. From the Studio Menu select MyDomains.
2. Enter the following in the Create Domain Window

Name: SampleDomain
Enter a password and confirm the password selection.
Set as Default should be checked.

3. Click on MyStudio on the Studio Menu.
4. Select the MyHelloWorld application and select deploy.

5. On the Deploy Application Page, click the Deploy button. This will deploy the
application on to the Domain Host defined by your administrator.

9.1.2 Oracle Online Mobile Studio

You can also use OracleMobile’s hosted Online Studio (a developer portal) to quickly
and easily build, test and deploy your mobile applications.

OracleMobile’s hosted Online Studio enables any developer, systems integrator or
independent software vendor to quickly develop a mobile application that is
immediately accessible from any device. This unique, next generation environment
allows companies to benefit from faster time to market, increased productivity, and
a dramatically simplified testing cycle, while providing access to the latest mobile
applications and tools. It enables you to focus on your business logic which is your
core competency, while we focus on the device complexity, our core competency.

Mobile Service Developer’s Tools 9-3

Oracle9iAS Wireless SDK

For more information on Oracle Online Mobile Studio, and to use
OracleMobileOnline Studio, see Oracle Technology Network (OTN) at:
http://otn.oracle.com.

9.2 Oracle9iAS Wireless SDK

9.2.1 Overview

Oracle9iAS Wireless SDK is a light development version of Oracle9iAS Wireless. It
is an off-line environment that enables developers to create and test MobileXML
applications. With Oracle9iAS Wireless SDK, application developers can test and
simulate applications without needing to support a complete Oracle9iAS Wireless
installation.

The SDK can be separated into two sub-components: transcoder and messaging.

Oracle9iAS Wireless SDK transcoder can be used to test Mobile XML applications,
new XSL stylesheet transformers and new device descriptions. It provides most of
the functionality available in Oracle9iAS Wireless device portal.

Oracle9iAS Wireless SDK messaging API is the same as PushAPI, which delivers all
kinds of messages through Push server or Push Messaging gateway. Push
Messaging gateway is based on SOAP technology. Push server is build on top of
Oracle9iAS Wireless. The implementation of Push Server has been simplified in
Mobile SDK so that SDK does not have dependencies on SOAP or Oracle9iAS
Wireless. Only a Push Server simulator is shipped with SDK, which can send out
emails only. All messages with other transports will be converted to email and send
to an email address called 'default email'. Therefore, a SMTP email server and a
valid email address are needed.

9.2.2 Installation

Oracle9iAS Wireless SDK is a J2EE application. It should be deployed on Oracle9i
Application Server using the OC4J deployment tool. For more details please refer to
the OC4J documentation.

9.2.3 Structure

Oracle9iAS Wireless SDK contains the following important files and directories:

9-4 Oracle9iAS Wireless Developer’s Guide

Oracle9iAS Wireless SDK

index.jsp - this is the single entry point to the SDK from all devices. Depending
on the device capabilities, i.e. PC- on non-PC-browser, it redirects the request to
the appropriate URL.

index.html - this is the SDK main page when accessed from a PC-browser. It
contains useful links to the SDK test transcoder, the readme document (this file),
the admin page, JavaDoc, and the Mobile XML documentation.

Home.jsp - this is the SDK default main wireless application (configurable in
WEB-INF/web.xml). See Default Main Wireless Application for details.

apps - this directory contains the default entry points for all example
applications (configurable in WEB-INF/web.xml). See Default Main Wireless
Application for details.

docs -Wireless SDK developer documentation.

« javadoc - JavaDoc for the Oracle9iAS Wireless SDK messaging API.

« mxml - mobile XML documentation.

examples - example applications using the messaging API.

logs - this is the default SDK log directory (configurable in WEB-INF/web.xml).

« omsdk.log - the default SDK log file (configurable in WEB-INF/web.xml).
The SDK uses a single log file, without overriding it. If you want to remove
the old log file and start using a new one, you must delete the old file
manually.

repository - this directory (including all subdirectories) is the SDK repository
(configurable in WEB-INF/web.xml. NOTE: If you want to move this directory
somewhere else you have to preserve the subdirectories structure). Every .xml
file in this directory is considered a separate device description. If you want to
add support for a new device simply add a new XML-file with the description
of the new device.

« XFORM - this directory contains subdirectories with XSL device
transformers. The name of the subdirectories must be in this format m.n
where m is the major version number and n is the minor version number of
the mobile XML schema that the XSL transformers support

1.1 - XSL device transformers for version 1.1 of the mobile XML
schema. Every .xsl file in this directory is considered a separate trans-
former. The name of the file is the name of the transformer (the names
are case sensitive). There are two special files in this directory:

Mobile Service Developer’s Tools 9-5

Oracle9iAS Wireless SDK

SimpleResult 1 1 0.xsd - this is the XML schema describing Mobile
XML version 1.1

SimpleResult 1 1 0.dtd - this is the XML DTD describing Mobile XML
version 1.1

« WEB-INF

« web.xml - this is the main configuration file for the Oracle9iAS Wireless
SDK. Some of the entries in this file can be modified to change the default
behavior of the SDK.

« classes/messages - this directory contains localized messages used by the
XSL transformers.

« classes/oracle/panama/core/admin

EncodingSets.properties - mappings between IANA and Java character
encoding names. Normally you should not have to modify this file.

ProxyFirewall.properties - proxy firewall settings for the SDK. By
default the SDK is not configured to use a firewall. You should modify
this file only if you need to access an application that is outside your
firewall.

« lib
« omsdk.jar - Oracle9iAS Wireless SDK run-time engine implementation.

This file includes also the messaging API. You will need to include it in the
CLASSPATH if you build applications using the SDK messaging API.

9.2.4 Configuration

9-6

9.2.4.1 SDK Transcoder

Oracle9iAS Wireless SDK transcoder is a J2EE web application. The configuration
file for the application is WEB-INF/web.xml. Some of the configuration properties
can be modified at run-time using the SDK administration page.

Note: The changes made from the SDK administration page do
not get persisted in web.xml. You will have to modify web.xml
manually if you want to use the new settings permanently.

Here is the list of user configurable settings:

Oracle9iAS Wireless Developer’s Guide

Oracle9iAS Wireless SDK

omsdk.repository.dir - absolute path to the SDK repository directory (use either
"/" or "\\" as file separator on Windows). By default the value for this context
parameter is not set. The SDK will assume that the repository is in
[SDK-context-root-directory]/repository.

omsdk.apps.dir - absolute path to the default applications directory (use either
"/" or "\\" as file separator on Windows). By default the value for this context
parameter is not set. The SDK will assume that the applications directory is
[SDK-context-root-directory]/apps.

omsdk.log.file - absolute path to the SDK log file (use either "/" or "\\" as file
separator on Windows). By default the value for this context parameter is not
set. The SDK will create a new file omsdk.log in
[SDK-context-root-directory]/logs directory. The log file can be viewed from the
SDK administration page. You can redirect the log information to the system
output or error (in this case you cannot see the log data from the administration
page). The SDK does not delete the log every time it is written. It continues to
use the same log file. If you want to start with an empty log file, delete the old
one or change this value to use a different file name.

omsdk.log.level - log level (can be modified from the administration page).
There are four log levels: debug, info, warn and error. Levels are inclusive, that
is, warn level displays any log message marked as warning or error. Default
level is info.

xml.validation.mode - used to validate the mobile XML received from the
application (can be modified from the administration page).

Sets the validation mode of the XML parser to one of these four types:
[schema] dtd | partial | none]. Default value is schema.

Note: Inorder to use XML parser validation, you must provide an
XSD file (for schema) and a DTD file (for DTD) validation. These
files must reside in the same directory as the corresponding XSL
files. The SDK comes with SimpleResult_1 1 0.xsd and
SimpleResult_1 1 0.dtd files.

autoreload.transformers - this flag enables/disables autoreloading of the
transformers. If autoreloading is enabled, the SDK checks the timestamp of the
transformer XSL file and automatically reloads the file if it was modified. The
values for this setting are true and false. Default value is true.

Mobile Service Developer’s Tools 9-7

Oracle9iAS Wireless SDK

autoreload.devices - this flag enables/disables autoreloading of the device
descriptions. It has the same meaning for the devices as
autoreload.transformers does for the transformers. Default value is true.

home.page.url - URL to the main wireless application. This is the application
that will be invoked when a device sends a request to the transcoder. The value
could be either absolute or relative URL. If a relative URL is used it must be
relative to the Oracle9iAS Wireless SDK context.

WARNING: Do not modify the remaining settings in
WEB-INF/web.xml.

9.2.4.2 Properties Files

The SDK transcoder uses two properties files for additional configuration. Normally
you should not need to modify those files.

EncodingSets.properties - mappings between IANA and Java character
encoding names. You will have to modify this file only if you have problems
with some locale-specific characters. The file contains a brief explanation how to
add new entries.

« The IANA character set names are published here:
http://www.iana.org/assignments/character-sets

« ThisJava encoding names are published here:
http://javasoft.com/j2se/1.3/docs/guide/intl/encoding.doc.html

ProxyFirewall.properties - proxy firewall configuration parameters. You will
need to modify this file only if you need to access Mobile XML applications that
are outside your firewall. The file contains explanation about every entry.

9.2.5 SDK Messaging

9.2.5.1 Prerequisites

JDK 1.2 or above
SMTP email server
Valid email address as default email address

Java mail jars from JavaSoft: mail.jar, activation.jar

9-8 Oracle9iAS Wireless Developer’s Guide

Oracle9iAS Wireless SDK

9.2.5.2 Configuration Parameters
Required Parameters

The SDK reads SMTP mail server and default email from the Java VM System
properties. Property name for SMTP server is mobile-sdk.email.server.host and
property name for default email is mobile-sdk.default_email. These two parameters
are required to run SDK.

There are two ways to set those parameter:
1. Programatically

« Inyour application that you need to call

« System.setProperty("mobile-sdk.email.server.host","smtp.company.com");

« System.setProperty("mobile-sdk.default_

email","default-email@company.com"); before the first call to the messaging
API

2. Passing command line parameters to the Java VM

« java-Dmobile-sdk.email.server.host=smtp.company.com
-Dmobile-sdk.default_email=default-email@company.com.

Not Required Parameters

MessagingGatewayURL, username and password of the constructors of Push and
PushL.ite classes are not going to be used. But, you have to pass something to
construct the instance. Passing three nulls will be permissible.

9.2.5.3 Push and PushLite

Push and PushLite have the same functionality: deliver messages to Push server
(Push Server simulator in SDK). But, why do we need them both?

Push takes an instance of Packet as parameter. Packet has a message object, senders,
recipients and additional information, which helps to deliver the message. For
example: priority, speed of delivery, delay etc.

PushLite can send out text messages only. It's very easy to use. The users don't need
to know any other classes like Packet, Message, and AddressData etc.

The reason that they co-exist in the same API is because Push and PushLite give
developers an opportunity to choose the APl to meet their needs. If you want to
send text messages fast, use PushLite. If you need more control over the message,
use Push.

Mobile Service Developer’s Tools 9-9

Oracle9iAS Wireless SDK

The source files for both classes are in the examples directory.

9.2.6 Device Description

Oracle9iAS Wireless SDK stores the device description as XML files in its repository
directory. Each XML file stores the description of one device. The XML root element
is <LDEV>. All element attributes and subelements are exactly the same as in the
Oracle9iAS Wireless repository XML representation (there are a few exceptions that
will be explained below). The advantage of that is that you can download the
Oracle9iAS Wireless repository, save all <LDEV> elements from the repository XML
file as separate files, copy them into the SDK repository directory (or modify
web.xml file), and the SDK will use exactly the same device descriptions as your
real server. Or, you can add a new device description to the SDK repository, fully
test it, and then deploy it on your real Oracle9iAS Wireless server. In order to
upload a new device to the real Oracle9iAS Wireless server you will need to create a
new XML file with the following format:

<?xm version ="'1.0" encoding = 'UTF-8 ?>
<PanamaQbj ect s>
<LDEV_LI ST>
<LDEV ...>
The new device description goes here
</ LDEV>
</ LDEV_LI ST>
</ Panama(hj ect s>

Where the <LDEV> element is the one stored in the XML file in the SDK repository
directory.

Here is the complete list of attributes and subelements that comprises the LDEV
element. Please keep in mind that all String values are case sensitive.

9.2.6.1 Attributes

name - a String - the name of the device. The value of this attribute must be the
same as the name of the XML file (without the .xml extension) in which the device
description is stored. The value must be unique.

mimeType - a String - the MIME type that the device expects, for example:
"text/vnd.wap.wml" or "text/htmi"

encoding - a String - the content encoding. The IANA character set names are
published at:

http://www.iana.org/assignments/character-sets

9-10 Oracle9iAS Wireless Developer’s Guide

Oracle9iAS Wireless SDK

The "mimeType" and the "encoding" attributes are used to create the Content-Type
HTTP header that is sent back to the end user device. For more details please see
the HTTP 1.1 specification at:

http://www.rfc.net/rfc2616.html

9.2.6.2 Example
Cont ent - Type: text/vnd.wap.wr ; charset=l SO 8859-1

deviceCategory - a String - the device category. Oracle9iAS Wireless groups all
devices in the following six categories:

« pcbrowser

« pdabrowser

« Mmicrobrowser

« messenger

« Mmicromessenger

« Voice

See Chapter 10, "Core Technologies" for more details of the different device classes.

manufacturer - a String - the company name. For example: Nokia, Ericsson, Palm,
Motorola, etc.

model - a String - the device model.
softKeys - an Integer - the number of soft keys that the device has.

screenCols - an Integer - the number of characters (per row) that the device can
display.

screenRows - an Integer - the number of rows text data that the device can display.
screenWidth - an Integer - the screen width in pixels.

screenHeight - an Integer - the screen height in pixels.

imageCapable - a Boolean - whether the device supports images or not.
colorCapable - a Boolean - whether the device supports colors or not.

bitsPerPixel - an Integer - the number of bits per pixel used to represent either the
color or the gray scale.

videoCapable - a Boolean - whether the device supports streaming video or not.

Mobile Service Developer’s Tools 9-11

Oracle9iAS Wireless SDK

voiceCapable - a Boolean - whether the device supports voice or not.
system - a Boolean - whether this is a "system" device or not.
maxDocSize - size of document (in bytes) that a device can accept.

supportsAmpersandEntity - ampersand character can be used in XML-friendly
devices.

supportsRelativeURL - a Boolean - whether the device supports relative URLs or
not. In general all browsers should resolve relative URLs but of them do not do it.

prolog - xml prolog at the start of the content sent to a device. Specifies content
type.
description - a String - a short description of the device.

needsURLCaching - a Boolean - whether the URLSs for this device should be cached
or not.

Note: This attribute has been deprecated. Both, the Oracle9iAS
Wireless SDK and the Oracle9iAS Wireless server will always cache
the URLs for all devices.

supportsCookie - a Boolean - whether the device supports "cookies" or not.

defaultTransformer - a String - the name of the XSL transformer to be used for this
device.

Note: This attribute has been deprecated in the Oracle9iAS
Wireless server. It has been replaced by the "Transformers"
subelement which contains the list of transformers to be used for
the different versions of the Mobile XML. In the current version the
SDK supports only a single version of the Mobile XML language.
And it reads the default Transformer attribute for the transformer
to be used.

9.2.6.3 Subelements:

« UserAgents - the list of HTTP User-Agent headers that should be mapped to
this device.

« UserAgent - its "value" attribute stores individual User-Agents. You can use
"*" wildcard to map zero or more characters.

9-12 Oracle9iAS Wireless Developer’s Guide

Oracle9iAS Wireless SDK

« ImageFormatPreferences - the list of image formats that the device supports.

« ImageFormatPreference - its "mimeType" attribute stores individual MIME
type value and the file extension. For more information about Internet
media types, please read RFC 2045, 2046, 2047, 2048, and 2077. The Internet
media type registry is at
ftp://ftp.iana.org/in-notes/iana/assignments/media-types/

« VideoFormatPreferences
« VideoFormatPreference

« Transformers - the list of transformers to be used with this device

Note: This subelement is not used by the SDK.

« Transformer - its "name" attribute stores the name of a single transformer.

« EXT_ATTR - deprecated subelement that used to store the device login and
error pages. Not used by the SDK.

9.2.7 Deploy the HelloWorld Application

To deploy an application you will must be part of a Domain. In this walkthrough
you will create a Domain and then deploy the MyHelloWorld application to an
Oracle9iAS Wireless Server.

1. From the Studio Menu select MyDomains.
2. Enter the following in the Create Domain Window

Name: SampleDomain
Enter a password and confirm the password selection.
Set as Default should be checked.

3. Click on MyStudio on the Studio Menu.
4. Select the MyHelloWorld application and select deploy.

5. On the Deploy Application Page, click the Deploy button. This will deploy the
application on to the Domain Host defined by your administrator.

9.2.8 Device Detection

Oracle9iAS Wireless SDK uses the same device detection mechanism as Oracle9iAS
Wireless server. See Chapter 10, "Core Technologies" for more details.

Mobile Service Developer’s Tools 9-13

Overview of JDeveloper with Oracle9iAS Wireless

9.2.9 Default Main Wireless Application

Oracle9iAS Wireless SDK comes with a default demo wireless application. This
application is a single JSP page: Home.jsp. This JSP page looks in the apps directory
to find user-specific applications. A user application can be a .jsp, .xml or .mxml file.
The main wireless application displays a link to every one of the files it finds in the
apps directory. If you want to test your application, copy its main page into the
apps directory. If your application contains more than one file, then only the first
page must be copied into the apps directory. All other pages should be in a separate
directory (it could be a subdirectory of the apps directory). See the sample
applications for more details.

9.3 Overview of JDeveloper with Oracle9iAS Wireless

JDeveloper provides a mechanism to develop, debug and test Oracle9iAS Wireless
XML JSPs and XML pages in a single tool by providing an Oracle9iAS Wireless
addin for JDeveloper. Developers can create JSP pages with embedded BC4J data
tags with Oracle9iAS Wireless XML tags and by invoking these servlets through
OC4J, they can run any BC4J application on a wireless device emulator. By using the
power of the schema-driven editor, developers can create Oracle9iAS Wireless XML
pages that they can further call from their JSP pages. Based on the source of the
device request, the correct device stylesheet is applied to the XML document.
Figure 9-1, "Simplified Request Path" shows how the servlet works (and could use
BC4J as a data source for example).

To maximize developer productivity, JDeveloper provides a comprehensive set of
integrated tools to support the complete development lifecycle, from source control,
modeling, and coding through debugging, testing, profiling, and deploying.
JDeveloper simplifies J2EE development by providing wizards, editors, visual
design tools, and deployment tools to create high-quality, standard J2EE
components including applets, JavaBeans, JavaServer Pages (JSP), servlets, and
Enterprise JavaBeans (EJB). JDeveloper also provides a public Addin API to extend
and customize the development environment and to seamlessly integrate with
external products.

To simplify the development of scalable, high-performance J2EE applications,
JDeveloper offers an open and extensible J2EE framework called Business
Components for Java (BC4J). BC4J is an object-relational mapping tool that
implements Sun's J2EE design patterns, allowing developers to quickly build
sophisticated J2EE applications.

9-14 Oracle9iAS Wireless Developer’s Guide

Overview of JDeveloper with Oracle9iAS Wireless

9.3.1 JDeveloper and Oracle9iAS Wireless SDK

The SDK primarily consists of a Java servlet which links to a repository of
stylesheets. Based on the source of the HTTP request, the correct stylesheet is
applied by the servlet to transform the data to the target markup language for that
device. By providing an addin for integrating the SDK into JDeveloper, we provide
the developer a mechanism to develop, debug and test Oracle9iAS Wireless XML
JSPs and XML pages in a single tool. The developer can create JSP pages with
embedded BC4J data tags and Oracle9iAS Wireless XML tags and by invoking these
servlets through OC4J, they can run any BC4J application on a wireless device
emulator. By using the power of the schema-driven editor they can create
Oracle9iAS Wireless XML pages that they can further call from their JSP pages.
Figure 9-1, "Simplified Request Path" demonstrates how the servlet works (and
could use BC4J as a data source for example):

Figure 9-1 Simplified Request Path

31, 4 s T
JsP BC4) DB
BE 7 6 _

REPOSITORY

10

1. Arrequest is received from a wireless client (which is routed from the gateway
to the application server) for an Oracle9iAS Wireless JSP page. The structure of
such a JSP is as follows:

<%@ page | anguage="j ava" inport="oracle.jbo.*" contentType="text/vnd.oracle.iAS
Wrel ess XM ; char set =W NDO\G- 1252" %

<Y@taglib uri="/webapp/DataTags.tld" prefix="jbo" %

<Si npl eResul t >

<Si npl eCont ai ner >

<Si npl eText >

<Si npl eText | t en>Br owse For nx/ Si npl eText | ten>

</ Si npl eText >

<j bo: Appl i cati onhModul e id="ant

confi gname="nypackage. MypackageMdul e. MypackageMdul eLocal "
rel easemode="Stateful " />

Mobile Service Developer’s Tools 9-15

Overview of JDeveloper with Oracle9iAS Wireless

<j bo: Dat aSour ce i d="ds" appi d="ant vi ewobj ect ="Dept Vi ew' rangesi ze="3"/>
<j bo: Dat aHandl er appi d="ant" />

<Si npl eText >

<Si npl eText | t en>Dept Vi ew Browse Fornx/ Si npl eText |t enp

</ Si npl eText >

<Si npl eTabl e>

<Si npl eTabl eBody>

<Si npl eRow>

<Si npl eCol ><j bo: Dat aScrol | er datasource="ds" /></Si npl eCol >
<Si npl eRow>

<Si npl eRow>

<Si npl eCol ><j bo: Dat aTabl e datasource="ds" /></Si npl eCol >

</ Si npl eRow>

</ Si npl eTabl eBody>

</ Si npl eTabl e>

<Si npl eCont ai ner >

<j bo: Rel easePageResources />

</ Si npl eResul t >

2. The application server then launches the REQUEST MANAGER (RM) servlet
which then handles the requests coming from the client. As a part of its init()
process, the RM servlet looks for the repository containing the XSLT stylesheets
and loads it up into memory.

3. The servlet then executes the JSP page (the JSP page may have BC4J data tags)
that are then interpreted and executed. The data is populated in the page with
SimpleResult tags.

4. The RM servlet now received this XML page.

5. It then applies the correct transformation to the data received based upon the
content type and the source of the HTTP request.

6. Finally the correct markup is sent back to the client where the request
originated.

9.3.2 The Addin and the Wizards

There are two simple wizards which allow a user to create an Oracle9iAS Wireless
JSP and an Oracle9iAS Wireless XML document respectively.

The execution flow is as follows:

1. Create a new Oracle9iAS Wireless JSP by going through the following steps:

9-16 Oracle9iAS Wireless Developer’s Guide

Overview of JDeveloper with Oracle9iAS Wireless

a. Choose File] New | Web Objects | 9iAS Wireless JSP Wizard. The Oracle9iAS

JSP Wizard is launched.
b. Specify a name for the JSP (or choose the default)

c. Select if you want to generate code for a form or menu (or both) and click
OK. A new Oracle9iAS WE JSP is created. In addition this automatically

performs the following actions:

— Updates the web. xnl file with the relevant servlet information (servlet
name, class, parameters, etc.) and adds it to the current project. Here is

the web.xml file:

<?xm version = "'1.0" encoding = 'w ndows-1252' ?>

<! DOCTYPE web-app PUBLIC "-//Sun M crosystens, Inc.//DTD Wb Application
2.2/ EN" "http://java.sun. conlj 2ee/ dtds/ web-app_2_2.dtd">

<web- app>

<di spl ay-nane>Oracl e 9i AS App</di spl ay- name><descri pti on>Cracle 9i Application

Server Wreless SDK Application</description>
<cont ext - par an»

<par am nanme>onsdk. r eposi t ory. pat h</ par am name>
<param val ue>D: \ OVBDK\ r eposi t or y</ par am val ue>
</ cont ext - par an>

<cont ext - par anp

<par am nane>onsdk. apps. pat h</ par am nane>

<par am val ue>D: \ OVBDK\ apps</ par am val ue>

</ cont ext - par an»

<cont ext - par an»

<par am nane>onsdk. | og. pat h</ par am nane>

<par am val ue>D: \ OVBDK\ | ogs</ par am val ue>

</ cont ext - par an»

<servlet>

<servl et - name>sdk</ ser vl et - name>

<servl et-cl ass>oracl e. panana. sdk. SdkSer vl et </ servl et - cl ass>
<i nit-paranp

<par am nane>xni . val i dat i on. node</ par am name>
<par am val ue>none</ par am val ue>

<linit-paranp

<init-paranr

<par am nane>| og. | evel </ par am nane>

<par am val ue>debug</ par am val ue>

</init-paranmp

<init-paranr

<par am nane>aut or el oad. t r ansf or mer s</ par am name>
<par am val ue>tr ue</ param val ue>

</init-paranmp

Mobile Service Developer’s Tools

9-17

Overview of JDeveloper with Oracle9iAS Wireless

<init-paran>

<par am nane>aut or el oad. devi ces</ par am nane>
<param val ue>t r ue</ param val ue>
</init-paranmp

<init-paranp

<par am nanme>hone. page. url </ par am nanme>

<par am val ue>Hone. j sp</ par am val ue>
<linit-paranp

<l oad- on-startup>1</| oad- on-start up>

</ servlet>

<servlet>

<servl et - nane>| fv</ servl et - nane>

<servl et-class>oracl e. panama. sdk. util. LogFi | eVi ewer </ servl et -cl ass>
</servlet>

<servl et - mappi ng>

<servl et - name>sdk</ servl et - name>
<url-pattern>/rnx/url-pattern>

</ servl et - mappi ng>

<servl et - mappi ng>

<servl et - nane>| fv</servl et - nane>
<url-pattern>/|og</url-pattern>

</ servl et - mappi ng>

<sessi on-confi g>

<sessi on-ti meout >30</ sessi on-ti meout >

</ sessi on-confi g>

<ni me- mappi ng>

<ext ensi on>nxni </ ext ensi on>

<nmi ne-type>text/vnd. oracl e.i AS Wrel ess XM.</ ni nme-type>
</ mi me- mappi ng>

<ni nme- mappi ng>

<ext ensi on>l og</ ext ensi on>

<nmi me-t ype>t ext/ pl ai n</ m ne-type>

</ m me- mappi ng>

<wel cone-file-list>

<wel cone-fil e>i ndex. j sp</wel corme-file>

<wel cone-fil e>i ndex. htm </ wel cone-file> </welcome-file-list>
</ web- app>

— Adds the relevant libraries to the classpath as shown below:

9-18 Oracle9iAS Wireless Developer’s Guide

Overview of JDeveloper with Oracle9iAS Wireless

Figure 9-2 Classpath

D:devSiBgsdeyiliblomsdk jar
D:yjdewSiGasdeyilibtranspott jar
D:yjdewSiBasdeyilibxschema jar

=
=

Addd Entry... | [EEmOVE: |

Help | Ok I Cancel |

— Creates the following JSP file as shown below (with the relevant
content-type):

<?xm version="1.0" encodi ng="W NDOAS- 1252" st andal one="yes" ?>

<! DOCTYPE Si npl eResult PUBLIC "-//ORACLE// DTD Si npl eResult 1.1.0//EN'
"http://xmns.oracle.confias/dtds/SinpleResult_1 1 0.dtd">

<%@ page content Type="text/vnd.oracle.i AS Wreless XM.; charset =W NDOAB- 1252"
%

<%@ page | anguage="java" %

<@ page inmport="java.util.*" %

<Sinpl eresul t>

<Si npl econt ai ner >

<Si npl et ext >

<Sinpl etextitenp

The current time is <%out.println((new java.util.Date()).toString()); %
</Sinpletextitenp

</ Si npl et ext >

<menu>

<choi ce next="choi cel. | sp">Choi ce 1</choice>

<choi ce next="choi ce2. | sp">Choi ce 2</choi ce>

<choi ce next ="choi ce3.j sp">Choi ce 3</choi ce>

</ menu>

</ Si npl econt ai ner >

</ Sinpleresult>

Note: The content-type of this page is text/vnd.oracle.iAS
Wireless XML, NOT html.

Mobile Service Developer’s Tools 9-19

Overview of JDeveloper with Oracle9iAS Wireless

2. Since this is a JSP page, you can include BC4J data tags in the page that means
you can data enable it. However, instead of having HTML tags like a typical JSP
would have, this page would have Oracle9iAS Wireless XML tags (which
makes it akin to a data-bound UIX page). Assuming that the page is
syntactically correct, when you run this page by right-clicking on it, the
following steps occur:

= It launches the embedded OC4J,
« Invoke the correct servlet(s) and

« Launches the user's default browser and pass the URL based on the
application's root context.

The difference between a typical JSP and the Oracle9iAS Wireless JSP is that the
former is automatically run-able by any servlet engine, where as the latter is more
like an XML document which needs to be processed by a servlet. In this case, its
behavior is similar to a UIX page.

9.3.3 Instructions to use the Addin and Wizards

9.3.3.1 Installation Steps

Here are the instructions for installing Oracle9iAS Wireless Wizards and
configuring the JDeveloper properties file to run the addin and the wizards.

1. Download the addin zip file from http://otn.oracle.com (in the “products”,
then “Jdeveloper” section) and unzip it to a directory (for example:
D:\omsdkAddin).

2. Add the project's output path to the $[JDEV_HOME]\bin\jdev.conf file (for
example: AddJavaLibFile ../../../../classes)

Note: This (AddJavaLibFile) needs to be at the very end of the file,
not anywhere else!

3. Add this project's main Addin to the ${JDEV_HOME]\bin\addins.properties
file. For example:

« AddinCount=100
« Addin99=oracle.iaswe.iasWEAddin
4. Add the iAS Gallery elements to $(JD9i)\lib\gallery.xml file.

9-20 Oracle9iAS Wireless Developer’s Guide

Third-party Mobile Simulators

5. Find the element called Web Objects and update it to read as follows:

<Itemclass="oracl e.ide.gallery. Gal | eryEl enent">
<name>9i AS WVE XML W zar d</ nanme>

<wi zardC ass>oracl e. i aswe. i asWVEXMLW zar d</wi zar ddl ass>
<wi zar dPar anet ers/ >

<[ltenp

<Itemclass="oracl e.ide.gall ery. Gal | eryEl enent">
<nane>9i AS Ve JSP W zar d</ name>

<wi zardC ass>or acl e. i aswe. i asWEJSPW zar d</ wi zar dCl ass>
<wi zar dPar anet er s/ >

<ltenp

9.3.4 Running Instructions
1. RunJDeveloper

2. Create a New Project for Testing

3. Select Menu File | New ...

4. Click on the Web Objects | iAS WE JSP Wizard and create the JSP file
« Notice Web.xml was added to project
« Double click on the Project to see the libraries added to project
« Look at the contents for correctness

5. Click on the Oracle9iAS XML Wizard and create the xml file similarly.
« Look at the contents for correctness
« Right click on these nodes to notice the option
« Click on the Run menu to see the options

6. Now you can add the BC4J data tags in your JSP pages to access the data in the
application logic tier.

9.4 Third-party Mobile Simulators

Although you will be able to test you mobile applications using a regular Web
Browser on your personal computer, it is recommended that you perform testing
using various device emulators with different form factors. This will allow you to
understand the constructs on Oracle9iAS Wireless XML with respect to rendition on
varying device form factors.

Mobile Service Developer’s Tools 9-21

Third-party Mobile Simulators

Various mobile browser vendors have emulators available that can run on a typical
desktop environment. This section lists mobile browser emulators available,
categorized into different form factors. The list below is a sample, and provides an
introduction to various mobile simulators available; it is not an exhaustive list of all
emulators available.

9.4.1 Phones

The typical phone device is considered to have a small form factor, although there
are phones in the market that support form factor and functionality similar to a
PDA device. The browser simulators that support relatively small form factors
include Nokia6210, and Phone.com’s HDML and WML simulators. Below is a list of
phone browser simulators that can be used to test you Oracle9iAS Wireless
applications. These simulators run on your Personal computer, and connect to the
Oracle9iAS Wireless server over HTTP protocol.

9.4.1.1 Openwave SDK 3.2

This is an HDML (HandHeld Markup Language) simulator provided by
Openwave. You can simulate application behavior on phones that support HDML
browsers. HDML is a proprietary markup language supported by Openwave
browsers only.

Note: This version of SDK can support both WML and HDML. Ensure
that Oracle9iAS Wireless is generating HDML for requests from this
simulator. You can use the web tool and configure Oracle9iAS Wireless to
generate HDML for requests from this simulator. Openwave SDK is
provided by Openwave Systems Inc. For more information go to
http://developer.openwave.com.

9.4.1.2 Openwave SDK 4.1 and 5.0

You can use SDK 4.1 to simulate your application with WML 1.1 Openwave
browsers and SDK 5.0 to simulate with WML 1.3 Openwave browsers. Openwave
SDK is provided by Openwave Systems Inc.For more information go to
http://developer.openwave.com.

9.4.1.3 Nokia Mobile Internet Toolkit

This toolkit is provided by Nokia and has a simulator for Nokia’s WML browser.
You can simulate your application on different Nokia phones. The Mobile Internet

9-22 Oracle9iAS Wireless Developer’s Guide

Third-party Mobile Simulators

9.4.2 PDA

9.4.3 Voice

Tool Kit is provided by Nokia Corporation. For more information go to
http://www.forum.nokia.com.

9.4.1.4 Ericsson’s WaplIDE 3.1.1 SDK

This SDK is provided by Ericsson and allows you to simulate WML applications on
various Ericsson phones. The WapIDE 3.1.1 SDK is provided by Telefonaktiebolaget
LM Ericsson. For more information see www.ericsson.com.

9.4.1.5 Yospace Simulator

Yospace provides various WAP simulators that can used to test your application
experience on various WML browsers. Yospace simulator is provided by Yospace
Holdings Ltd. For more information go to http://www.yospace.com.

The typical PDA device is considered to have a medium form factor. The form
factor of PDA is higher than that of a typical phone. The simulators that support
PDA-style devices are PocketPC and PalmOS simulators. There are other simulators
that support PDA style form factor and also other phone devices with a PDA form
factor.

9.4.2.1 Palm OS Simulator

Simulates the Palm OS on your personal computer. You can typically install on to
the Palm OS simulator a PQA or browsers such as Eudora. This enables you to test
and simulate you application behavior on a PalmOS. Palm, Inc. provides this
simulator. For more information see www.palmos.com.

9.4.2.2 PocketPC SDK

The PocketPC SDK is a desktop application and contains a PocketPC simulator that
runs on your personal computer. You can use a browser application on PocketPC
such as Pocket Internet Explorer, or similar, to test your application on a PocketPC
device. Microsoft Corporation provides PocketPC SDK. For more information go to
http://www.microsoft.com.

Voice device are classified as a separate form factor. This is because voice devices,
unlike other data devices, do not allow the user to scan the entire document. On

Mobile Service Developer’s Tools 9-23

Deploying Your Applications

voice devices, the user must wait until the voice browser reads the entire document;
it is also difficult for users to “scroll” the document.

9.4.3.1 IBM Voice Server SDK

IBM provides a Voice Server SDK running on a personal computer, and supports
VoiceXML technology. You can use IBM’s Voice Server SDK to test your VoiceXML
applications. The Voice Server SDK is provided by IBM Corporation. For more
information see www.ibm.com.

9.4.3.2 VoiceGenie

VoiceGenie hosts a developer Voice Gateway that allows you to test your
applications over voice. Also VoiceGenie provides Genie IDE that simulates the
Voice platform to test your applications. VoiceGenie Technologies Inc. provides both
the developer voice gateway and the Genie IDE. For more information see
developer.voicegenie.com.

9.5 Deploying Your Applications

Oracle9iAS Wireless provides Web-based, role-specific tools to create, manage, and
deploy mobile services. These webtools include wizards for developing and
managing repository objects, and utilities for managing the server and deploying
Oracle9iAS Wireless.

After creating your applications, use Oracle9iAS Wireless webtools to deploy them
to your customers using your Wireless instance.

For more information on these web-based tools, see Oracle9i Wireless Getting Started
and System Guide.

9-24 Oracle9iAS Wireless Developer’s Guide

10

Core Technologies

This chapter discusses how you can use the Oracle9iAS Wireless to develop and
deliver mobile services. It explains how to create adapters and transformers,
customize your mobile portals at various levels (JavaServer Pages, Portal API, Data
Model API, and Runtime API), extend and customize the functional components in
the Oracle9iAS Wireless, and work with the XML formats that the Oracle9iAS
Wireless uses. Sections include:

« Section 10.1, "Oracle9iAS Wireless Components and Process Architecture"
« Section 10.2, "Integration with other Components”

« Section 10.3, "Wireless Services"

« Section 10.4, "Device and Network Adaptation”

« Section 10.5, "Asynchronous Server"

« Section 10.6, "Runtime and Data Model APIs"

« Section 10.7, "Adapters"

Core Technologies 10-1

Oracle9iAS Wireless Components and Process Architecture

Figure 10-1 Core technologies

Oracle' 'AS Wireless

Lore

ML & pplication
Model

Dewice and Met work
Bdapt ation

10.1 Oracle9iAS Wireless Components and Process Architecture

10.1.1 Core Platform Architecture

Oracle9iAS Wireless provides a powerful, complete and integrated platform for
developing, testing and deploying mobile applications. The Oracle9iAS Wireless
core, runtime, tools are built top of proven Oracle technologies including OC4J
Container, Distributed Configuration Management (DCM), Enterprise Management
Daemon (EMD), XML, Oracle Internet Directory (OID), Single Sign-On Server (),
Oracle Process Manager (OPMN), WebCache, and Oracle9i. Oracle9iAS Wireless
in-house and community development and testing tools make the mobile
application development easier. Oracle9iAS Wireless Server can take mobile
applications to be deployed to any mobile network, and accessible from any device
through any gateway.

10-2 Oracle9iAS Wireless Developer’s Guide

Oracle9iAS Wireless Components and Process Architecture

Figure 10-2 Oracle9iAS Wireless Platform Architecture

ASYNC
Sergser
Fush DCMD | Weh =50/ Sarnver
Module

Serder Oracledi Databasze

Wireless Tool Sets y——
Wb . Systarm
o

Wireless OraclefisAs Wireless Alert
Serser

Whieh Core/Runtime
Serser

Data
Feeder

hessaging

Performance
Logger

Wireless Servers as Wireless Servers as
DC4d Applications Standalone Processes

As depicted in the above diagram, Oracle9iAS Wireless provides the following
wireless development/deployment tool sets:

WebTool — provides an advanced in-house device and transformers
management, mobile application development, testing, management and
deployment, and mobile user management.

See Oracle9iAS Wireless System Guide and Getting Started for more detail on how
to use the webtools.

Studio — provides simple mobile application testing and deployment in a
developer community fashion.

See Chapter 9, "Mobile Service Developer’s Tools" for more detail on how to use
it.

Customization — provides an out-of-the-box testing and demonstration for
mobile application customization through WEB. See Oracle9iAS Wireless Getting
Started and System Guide, and Chapter 11, "Advanced Customization” for more
detail on customization.

Core Technologies 10-3

Oracle9iAS Wireless Components and Process Architecture

« Mobile SDK - provides a simple testing and debugging environment for mobile
applications for developers without installing the entire Oracle9iAS Wireless
software. The MobileSDK does not depend on Oracle9i database. JDeveloper
add-ins can be downloaded from Oracle Technology Network so that
MobileSDK can be integrated into the jDeveloper. Developing, debugging and
testing a mobile application have been made easier.

See Chapter 9, "Mobile Service Developer’s Tools" for more detail on how to use
it.

« Wireless System Manager — provides configuration management and
performance monitoring for various wireless servers. It is packaged with
Oracle9iAS Enterprise Manager, and launched through the Oracle9iAS
Enterprise Manager console.

See Oracle9iAS Wireless Getting Started and System Guide for more detail on how
to use it.
« Wireless Servers deployed as OC4J applications:
« Wireless Web Server — serves wireless requests through HTTP.
« Async Server — servers wireless requests through non-HTTP, i.e. through
email, SMS, and etc.
See Section 10.5, "Asynchronous Server" in this chapter for more details.
« Push Server — provides the capability to push a message to any device
through any protocol.
See Section 13, "Push Service and SMS" for more details.
« Module Server - provides the built-in mobile applications in the areas of
Personal Information Management (PIM), Mobile Commerce, and etc.
See Chapter 18, "Mobile PIM and eMail" and Chapter 19, "m-Commerce" for
more details.
« Other Wireless Servers deployed as standalone Java applications:

« Alert Engine — provides alert services to subscribers.

See Section 12.1, "Alert Engine" for more details.

« Data Feeder — enables you to fetch content from content providers through
any protocol in any format. The fetched content can be used as data source

10-4 Oracle9iAS Wireless Developer’s Guide

Oracle9iAS Wireless Components and Process Architecture

for the alert engine or mobile applications.

See Section 12.2, "Data Feeders" for more details.

« Messaging Server — enable to deliver message in any protocol.

See Section 10.1.2.1, "Key Execution Flows" for more details.

« Performance Logger — writes usage logging data of Wireless Web Server,
Async Server, Messaging, Alert Engine and Data Feeder asynchronously to
the database for performance monitoring purposes. Furthermore, the
information stored in these tables can be utilized for business intelligence
analysis.

10.1.2 Core Process Architecture

The following figure (divided into halves for easier viewing) shows how the above
Wireless Platform and Tools are deployed physically in terms of processes and
relationships with key components of a complete mobile application solution. The
wireless-specific components are within the dark-blue rectangle. As the wireless
component is an integral part of Oracle9iAS, it seamlessly integrates with other
Oracle9iAS components including WebCache, Oracle Http Server, SSO, OID, EM,
and Oracle Portal (highlighted with light-blue background color).

Core Technologies 10-5

Oracle9iAS Wireless Components and Process Architecture

Figure 10-3 Oracle9iAS Wireless Process Architecture (part 1)

Wk Cache Oracle Hitp

WAP
Gateway
Web Cache
Mod osso
Load
Balaticer
HTTF Reqguest
Web Cache
.
Gateway
Email
Server
AhIEC
Cithers

Asyne Reqguest Flow

10-6 Oracle9iAS Wireless Developer’s Guide

Oracle9iAS Wireless Components and Process Architecture

Figure 104 Oracle9iAS Wireless Process Architecture (part 2)

Weh Cache Oracle 9iA3S
Repositony

L TS P

Orac] Wireless
racle

s Fortlet
CPLIN

Wiiiteless
T e
CPMN Wiiiteless BT et

| | Worker || |Funtime Servers Ml:.'hﬂ?
— Application
Frovider

Ciracle
Mohile

Messaging Push Reguesi —
Hetv

et

Email
Server

Alert
Engine
AhIEC
Diata Feeder Ferformance
Logger

Woice Gateway

Fax Jerver

Core Technologies 10-7

Oracle9iAS Wireless Components and Process Architecture

Oracle9iAS Wireless components contribute maximally 7 process groups on any
machine on which the wireless component is installed and configured.

Oracle Enterprise Manager (EM) Console — server that provides configuration
management and performance monitoring for all Oracle9iAS components
including Oracle9iAS Wireless. The wireless system manager is deployed on
this server. There is one and only one EM server process allowed on any
installed machine.

Wireless ToolSet — All the wireless tools including WebTool, Studio, and
Customization are deployed in this process group. This process group can be
started or stopped through the OC4J manager in the EM console. Default
installation will assign a single process to this process group. To increase
scalability, additional processes can be assigned to this group by modifying the
opmn.xml (REVISIT for the location and example). In this case, processes
assigned to this group have the same configuration settings. By default, these
OC4)J applications are deployed, but are not auto-started until the first received
request.

Wireless Runtime Servers — All OC4J application-based wireless runtime
servers including wireless web server, async server, push server, and module
servers are deployed in this process group. This process group can also be
started or stopped through OC4J manager in the EM console. The default
installation will assign a single process to this process group. To increase
scalability, additional processes can be assigned to this process by modifying
the opmn.xml file (REVISIT for the location and example). In this case,
processes assigned to this group have the same configuration settings. By
default, these OC4J applications are deployed; only the wireless web server and
async server are configured to be auto started; other applications are started
upon the first received request.

Wireless Standalone Java Processes — Alert Engine, DataFeeder, Performance
Logger and Messaging Server are standalone Java Processes that can be started,
stopped and configured through the wireless system manager (accessible
through the EM console). The default installation only enables the performance
logger. Ensure that Performance Logger has been started so that the
performance of various wireless servers on this machine can be monitored
through the wireless system manager. Other processes should only be started
manually if their respective functionality is desired.

10-8 Oracle9iAS Wireless Developer’s Guide

Oracle9iAS Wireless Components and Process Architecture

10.1.2.1 Key Execution Flows

Oracle9iAS Wireless platform can receive requests from any device via any protocol
and deliver content to any device via any protocol. The key request execution flows
are:

« Http Request Flow
« Async Request Execution Flow
« Push Request Execution Flow

Http Request Flow—Many devices with certain gateway support can request
service through HTTP protocol. These devices include WAP phones with WAP
gateways, fixed voice lines with VoiceXML gateways, and others. As illustrated in
the above process architecture diagram:

1. Load Balancer dispatches a request sent from the external gateways to Oracle
Http Server. Generally, Load Balancer supports sticky session; this means that
the loader balancer will only load-balance these requests from a new session,
otherwise the requests of an existing session will be delivered to the same
Oracle HTTP Server. Load Balancer provides the hardware load-balancing
solution.

2. Oracle HTTP Server dispatches the received request to OPMN Worker, or to the
Wireless Web Server directly (based on the configuration). Requests are routed
to OPMN worker (if OC4J-based software load balancing is desired and
configured). Otherwise, the request is dispatched to the wireless web server
directly.

3. OPMN worker dispatches the request to the appropriate process based on the
process load (if the request is the first one of the current session). Otherwise, the
OPMN worker dispatches the request to the wireless web server process to
which the request session has been assigned.

4. The wireless web server processes receive the request. If the response for the
request from this particular requesting device is cached by the WebCache, the
response is returned immediately. If the request is to access a privileged service,
then the wireless web server redirects the request to SSO. Otherwise it proceeds
to step b below.

a. SSO perform the sign-on process via the wireless web server process. After
the sign-on succeeds, the original request resumes.

b. Wireless web server dispatches the original request to the mobile
application provider to request the mobile content in mobile XML.

Core Technologies 10-9

Oracle9iAS Wireless Components and Process Architecture

5. The mobile application provide (which are the external mobile applications)
process the request and return the mobile XML to the wireless web server
process. Oracle Portal is just another mobile application provider.

6. Wireless web server adapts the received content to the network and device and
returns to the request device.

7. The mobile content is visible on the requesting mobile device in its most native
form.

Async Request Execution Flow—Wireless server can also process requests from
non-HTTP based devices, such as SMS device, Pager, Email and etc. Here is the
request execution flow:

1. Messaging Server receives a service invocation request message and dispatches
it to the Async Server that runs insides the Wireless Runtime Server process.

2. Async Server preprocesses the request. The response is returned immediately. If
the request is to access a privileged service, the wireless web server will redirect
the request to SSO. Otherwise it proceeds to step b below.

a. SSO performs the sign-on process via the wireless web server process. After
the sign-on succeeds, the original request resumes.

b. Wireless web server dispatches the original request to the mobile
application provider to request the mobile content in mobile XML.

3. Async Server adapts the received response to the requesting device native
format and sends the adapted response to Messaging Server.

4. Messaging Server dispatches the response to the requesting device.

Push Request Execution Flow—Wireless platform can also push any message to
any device via different protocols. Out-of-the-box, any message can be pushed out
as a SMS message, an email, a voice mail, a fax or to Oracle Mobile Message
Gateway. The push request execution flow is as follows:

1. Push applications including Push Server, Alert Engine, or external applications
can compose a message and send the message through calling push APIs.

2. Messaging Server asynchronously delivers the received message to the delivery
provider through the specified protocol.

3. Messaging Server also asynchronously queries the delivery status (if supported
by the provider).

4. Push applications can either pull the delivery status or be notified.

10-10 Oracle9iAS Wireless Developer’s Guide

Oracle9iAS Wireless Components and Process Architecture

10.1.2.2 Default Configuration

The default installation configures the installed wireless component to work with
the Oracle HTTP Server, WebCache on the local machine. The following mount
points are added in the configuration file of the Oracle HTTP Server on the local
machine:

/ptg -- for wireless web server

/async -- for async server

/modules - for module server

/webtool - for accessing webtools

/studio - for mobile studio

/customization — for accessing customization portal
/push -- for publishing the push message

If using an Oracle HTTP Server on a different machine (instead of on the local
machine), you must manually configure the Oracle HTTP Server. For instructions
on configuration, see Oracle9iAS Wireless Getting Started and System Guide.

By default, all the above mounting points are exposed. Comment out these
mounting points (so you are not publishing the configuration file from the Oracle
HTTP Server).

By default, the Wireless ToolSet and Wireless Runtime Server process groups are
configured with single process only. See Oracle9iAS Wireless Getting Started and
System Guide to learn how to configure them in load balancing mode.

10.1.2.3 Dependency
Files under ORACLE_HOME/wireless/lib belong to Oracle9iAS Wireless. They are:

« panama_modules.zip

« panama_modules_commerce.zip
« panama_modules_common.zip

« panama_modules_infra.zip

« panama_modules_location.zip

« panama_modules_pim.zip

« studio.jar

Core Technologies 10-11

Oracle9iAS Wireless Components and Process Architecture

« wireless.jarclient.zip
« server.zip
« ss0sdk902.jar

Oracle9iAS Wireless depends upon the following jar/zip files included in the
Oracle9iAS Wireless common technology stack:

Table 10-1 Oracle9iAS Wireless Dependent Files

Depending jar/zip files Description Location
uix2.jar, share.jar Uix ORACLE_HOME/jlib/uix2.jar
ORACLE_ classes12.zip JDBC driver
HOME/share/share.jar
ORACLE_HOME/jdbc/lib jndi.jar
ORACLE_HOME/jlib xmlparserv2.jar Xml parser
ORACLE_HOME/Ilib sax2.jar, regexp.jar
ORACLE_HOME/jlib jai_codec.jar, jai_core.jar, jpeg_ sdoapi.jar, sdovis.jar
codec.jar, ordimimg.jar
Advanced imaging ORACLE_HOME/ord/jlib OH/Ibs/mapviewer/web/WEB-INF/lib

OH/Ibs/mapviewer/web/ providerutil.jar
WEB-INF/lib/sdovis.jar

ORACLE_HOME/jlib mail.jar, activiation.jar, pop3.jar

ORACLE_HOME/Ilib xschema.jar

ORACLE_HOME/Ilib http_client.jar, javax-ssl-1_2.jar, jssl-1_
2.jar

OH/j2ee/home/lib/javax-s OH/j2ee/home/lib/jssl-1_2 jar
sl-1_2.jar

dcm.jar, emd.jar, emPID.jar, ORACLE_HOME/lib/libnmuk.so
log4j-core.jar

EM OH/dcm/lib/dcm.jar

OH/sysman/webapps/em $ORACLE_HOME/lib/emPid.jar
d/WEB-INF/lib/log4-core.j
ar

OID client OH/jlib/1dapjcInt9.jar

10-12 Oracle9iAS Wireless Developer’s Guide

/sdoapi.jar
LDAP provider

EMail client

http/ssl/https

OH/lib/http_client.jar
ORACLE_HOME/bin/nmuk.dll
OH/sysman/webapps/emd/WEB-INF/I

ib/emd.jar
Idapjcint9.jar

soap.jar

Integration with other Components

Table 10-1 Oracle9iAS Wireless Dependent Files

Depending jar/zip files Description Location

Soap
Repository api

OH/soap/lib/soap.jar repository.jar
OH/jlib/repository.jar ohw.jar

Oracle Help for Web

10.2 Integration with other Components

This section describes Oracle9iAS Wireless integration with Single Sign-On (SSO)
and Oracle Internet Directory (OID) server. The IAS v902 SSO is used by all IAS
v902 components for user authentication, and OID is the single place for storing all
the User related information.

This integration provides:

« aframework for secure SSO from browser clients to web-based applications,
including Oracle Applications and Tools, through standard protocols.

« support for partner applications, which take full advantage of the SSO
framework, as well external applications for support of legacy and third-party
products.

« seamless integration with Oracle’s middle tier web portal product, iPortal, and
allows management of user information in an external directory, allowing
integration with SSO technologies for other, non-Oracle applications.

Users authenticate only once, and can access any SSO partner application. For
example, a user authenticated by the Oracle9iAS Wireless server can access any
SSO-enabled Partner Application (such as Oracle Portal) without authenticating
again.

The following scenarios illustrate interactions between Oracle9iAS Wireless server
and the SSO server.

10.2.1 Scenario 1: User Authentication by Oracle9iAS Wireless (device portal)

The Oracle9iAS Wireless server authenticates a user when the user sends an explicit
Login Request (identified by URL parameter PAlogin=true), or tries to access a
private service.

Core Technologies 10-13

Integration with other Components

Figure 10-5 Interactions between Oracle9iAS Wireless and the Login Server

8. Oracle3it5 Wireless sends the home page of
the user of the private service result bo the browser,
5. User enters the usemame/passwaord and submits the form.
Erowser 4. OracleSids \Wireless sends the devicehdL login form ta the broviser Wireless
— - - - Instance
1. Explicit Login Reguest invokes a Private Service.
E 7550
Oraclegias | Server
2. DracleSits 3. 550 Server \r;?jegs authent-
wirgless sends sends the | fonwards inates
request to the rmobile $kL request to | UEEr and
550 Server Login form, 550 zends
Server redirect
farm,
S50
Server

1. The user sends a Login Request or accesses a private service.

2. Oracle9iAS Wireless sends the Login request (without username/ password) to
the SSO Server.

3. The SSO Server checks the SSO cookie. If one is present, the login server
identifies the user from the encrypted cookie and sends the SSO redirect form
(step 7). This happens if the user is already authenticated by an external partner
application (Section 10.2.2, "Scenario 2: User Authentication by an External
Application"). If the SSO Cookie is not present, the SSO server sends the mobile
xml login form to the Oracle9iAS Wireless server.

4. Oracle9iAS Wireless transforms the mobile xml login page to the appropriate
device markup language and sends the device markup login page (such as
WML) to the device browser.

5. The user enters the username/password and submits the Login Form.

6. Oracle9iAS Wireless forwards the Login Request (with user credentials) to the
SSO Server.

7. SSO Server authenticates the user. If the authentication is successful, the SSO
Server sends the SSO Redirect Form (if unsuccessful, the Login Form is sent
[step 3 above]) to Oracle9iAS Wireless.

10-14 Oracle9iAS Wireless Developer’s Guide

Integration with other Components

8. Oracle9iAS Wireless Server sends the home page of the user (or the private
service result) to the device browser.

10.2.2 Scenario 2: User Authentication by an External Application

In Oracle9iAS Wireless-v902, the first request to the device portal
(http://Oracle9iAS WirelessServer:port/ptg/rm) returns the home page of the
anonymous user (Guest), or the home page of the identified virtual User. From that
point, the user can access public services or can do an explicit login to access their
private services. The unauthenticated user can execute HTTP Adapter-based public
services, which points to an SSO-based partner application (such as Oracle Portal).
The partner application may complete the SSO-based user authentication.

Figure 10-6 Interactions Between Oracle9iAS Wireless, Login Server and the External

Application
2 HTTP Request ta
1. External Service exteinal application
Request. 3. HTTP redirect
E. Send Device pointing to 550 Server
ML Login Page. OracleSiAS Partner
Browser 7. Login Request, Wire|eSS 10 Follow 550 redirect Applicalion
12 Partner &pplication 11. Partrer application =
Content. ends content in mobils <ML,
9,550 P-Send 4 Send
Redirect Farm 2 Lagin |Moble | Rediect
poirting to request. FML Request to
partrer application. I,':DE,%'Z 550 Server.
1
SS0 Server

1. Anunauthenticated user executes an HTTP adapter-based service pointing to
an SSO-based external application.

2. Oracle9iAS Wireless sends an HTTP request to the external application.

3. The partner application sends an HTTP Redirect pointing to the SSO Server.

Core Technologies 10-15

Integration with other Components

4. Oracle9iAS Wireless follows the redirected URL.

5. SSO Server checks the SSO cookie. If one is present, the login server identifies
the user from the encrypted cookie and sends the SSO redirect form (step 9
below). This happens if the user is an authenticated user. If the SSO Cookie is
not present, the Login Server sends the mobile xml login form to the Oracle9iAS
Wireless server.

6. Oracle9iAS Wireless transforms the mobile xml login page to the appropriate
device markup language and sends the device markup login page (such as
WML) to the device browser.

7. The user enters the username/password and submits the Login Form.

8. Oracle9iAS Wireless forwards the Login Request (with user credentials) to the
SSO Server.

9. SSO Server authenticates the user. If the authentication is successful, SSO Server
sends the SSO Redirect Form (if unsuccessful, the Login Form is sent [as in step
5 above]) to Oracle9iAS Wireless. After successful authentication, the
Oracle9iAS Wireless session of the user is upgraded.

10. Oracle9iAS Wireless follows the SSO Redirect form. The redirect form points to
the external partner application.

11. The partner application returns the service content in mobile XML.

12. Oracle9iAS Wireless transforms the mobile xml content to the appropriate
device markup language, and sends the device markup content to the device
browser.

10.2.3 Scenario 3: User Authentication by mod_osso

All Web-based Oracle9iAS Wireless applications (such as Customization) will
authenticate users using mod_osso, which is a module plugged into Oracle HTTP
Server. All of the Web-based Oracle9iAS Wireless applications running behind
Oracle HTTP Server are treated as a single partner application. Users can access any
of the applications after single sign-on.

10-16 Oracle9iAS Wireless Developer’s Guide

Integration with other Components

The device portal uses the value of the HTTP header OssoUser_Guid to identify the
mod_sso authenticated user.

Note: When executing HTTP Adapter-based services pointing to
external partner applications, the mod_sso authenticated user will
have to be authenticated again. The reason for this is that for mod_
sso authenticated users, the SSO cookies are stored in the PC
browser.

10.2.4 Scenario 4: \oice based authentication

Voice authentication is accomplished by Oracle9iAS Wireless (locally) using the
account number and the PIN of the user. Note that an authenticated user accessing
external SSO partner applications from a voice device must re-authenticate (using
username and password).

10.2.5 Global Logout

Oracle9iAS Wireless server participates in the SSO Global Logout. The following
steps detail the interactions between Oracle9iAS Wireless, SSO Server and Partner
Applications.

10.2.5.1 Scenario 1: Logout from Oracle9iAS Wireless
The user can click Oracle9iAS Wireless Logout to sign off.

1.

The user sends a an Oracle9iAS Wireless Logout request (identified by URL
parameter PAlogoff=true).

The Sign Off implementation of Oracle9iAS Wireless sends an HTTP request to
the SSO Sign-Off URL.

The SSO server returns the mobile XML global logout page and a special HTTP
header (X-Oracle-SSO-logout with value = true). The global logout page
contains one image for each partner application that has the user session.

Oracle9iAS Wireless sends HTTP requests to each image link. This is done so
that the user’s session gets cleaned up in all the partner applications.

Oracle9iAS Wireless terminates the user’s session.

If Logout is accomplished through Oracle9iAS Wireless link, then the home
page of the “Guest” user is returned.

Core Technologies 10-17

Integration with other Components

10.2.5.2 Scenario 2: Logout Link

The authenticated user can click on the logout link on the page returned by the
SSO-based partner application. In this case, the logout link will point to the SSO
sign-off URL.

1. The user clicks on the logout link which points to the SSO sign-off URL.

2. The SSO server returns the mobile XML global logout page and a special HTTP
header (X-Oracle-SSO-logout with value = true). The global logout page
contains one image for each partner application that has the user session.

3. Oracle9iAS Wireless sends HTTP requests to each image link. This is done so
that the user’s session gets cleaned up in all the partner applications.

4. Oracle9iAS Wireless terminates the user’s session.
5. Oracle9iAS Wireless follows the done_URL of the global logout page.

6. The content returned by the done_URL is returned to the device.

10.2.5.3 Scenario 3: Logout from Web-based Oracle9iAS application

Since all Web-based Oracle9iAS applications are authenticated through mod_osso,
and are treated as a single partner application, logout from any application triggers
global sign-off and none of the applications will be accessible until the user signs on
through mod_osso again.

10.2.6 Oracle9iAS Wireless-OID Integration

In this release, user information is stored centrally in OID. The SSO server uses an
OID repository to authenticate users. The following table shows the attribute
mapping between PanamaUser (stored in Oracle9iAS Wireless repository) and
orclUserV2 user attributes (stored in OID).

Table 10-2 Attribute Mapping between PanamaUser and orclUserV2 user

PanamaUser OID User

Name orclcommonnicknameattribute (by default cn) specified in OID
configuration

DisplayName DisplayName

Enabled orclisEnabled

PasswordHint orclPasswordHint

PasswordHintAnswer orclPasswordHintAnswer

10-18 Oracle9iAS Wireless Developer’s Guide

Integration with other Components

Table 10-2 Attribute Mapping between PanamaUser and orclUserV2 user

PanamaUser OID User

Language and Country preferredLanguage

TimeZone TimeZone

DateofBirth orclDateOfBirth

Globaluid orclguid (orclguid attribute uniquely identifies OID Users)
Password user password

Password Confirm Confirms user password.

Gender orcl header

iASv902 administrators can use tools (such as Delegated Administrative Services
[DAS]), to create a new User in OID or to modify attributes of an existing user.
Alternatively, Oracle9iAS Wireless customers can implement their own user
administrator tool to create/modify/delete users using Oracle9iAS Wireless model
APIs.

The user information is synchronized between Oracle9iAS Wireless and OID
repositories using the following mechanisms:

« Oracle9iAS Wireless repository synchronization after user authentication
« PL/SQL based asynchronous synchronization

=« Oracle9iAS Wireless model API interface

10.2.7 Oracle9iAS Wireless Repository Synchronization after User Authentication

Oracle9iAS Wireless synchronizes user information (stored in the Wireless
repository) with OID after SSO authentication.

Core Technologies 10-19

Integration with other Components

Figure 10-7 Interactions between Oracle9iAS Wireless, SSO and OID

10 explict

logfind private .
serdce 2: 550 Authentication

—teauest OracleSias Wielsss 550 Server

3 Createf Update User Information in
Oracleia5 wireless Repository

Ctace Intemet Directory

1. User sends an explicit login request or tries to access a private Service, or an
external SSO partner application. The SSO server challenges user credentials
and the user is authenticated.

2. If the authenticated user does not exist in the Oracle9iAS Wireless repository,
Oracle9iAS Wireless retrieves the user information from OID and creates a new
user in the Oracle9iAS Wireless repository. Otherwise, the User attributes in the
local repository are synchronized with the attributes stored in the OID.

Note: Thereason for synchronizing User attributes with OID isthat the
PL/SQL natification mechanism does not guarantee real time
notifications.

10.2.8 PL/SQL based asynchronous synchronization

The Oracle9iAS Wireless installation registers a PL/SQL procedure with OID. The
PL/SQL procedure is invoked when a user is modified or deleted in OID.

10-20 Oracle9iAS Wireless Developer’s Guide

Integration with other Components

Figure 10-8 Interactions between PL/SQL and OID

Oracle Intemnet
L Directony

Wwireless Wireless Wwireless
instancel instance 2 ihstance 3
‘\ F
¥ Advanced OQueue
Call Regigtered PLISGL
Provisioning procedure PLASEL
Syne Agent Frocedure
F

BroadCast
Refresh Cache
message

modify /delete
user entry

Panama
User
Table

Oracle9iAS Wireless Repository

1. User attribute is modified, or the user is deleted in OID.

2. The Provisioning Synchronization agent picks up the modifications and calls
the registered PL/SQL package.

3. The PL/SQL package accomplishes appropriate changes in the PanamaUser
table (if required).

4. The trigger on the PanamaUser table broadcasts a RefreshCache message to all
running instances of Oracle9iAS Wireless.

5. If the modified PanamaUser is cached by the running instances, the
PanamaUser object is reloaded from the Oracle9iAS Wireless repository.

10.2.9 Oracle9iAS Wireless Programmatic Model API Interface

The ModelFactory.createUser() method creates a corresponding User in the OID
repository.

The User.set methods update the corresponding User entry in OID for all the
attributes. The following table shows the attribute mapping between PanamaUser
(stored in Oracle9iAS Wireless repository) and orclUserV2 user attributes (stored in

Core Technologies 10-21

Integration with other Components

OID). The User.delete() method removes the corresponding User from the OID
repository. The current semantics of commit is preserved for the User modifications.

10.2.10 Oracle9iAS Wireless User Management Integrated with DAS

In Oracle9iAS Wireless integration mode, when you create a user through Webtool
User Management, the request is first redirected to OID DAS (Delegated
Administration Service), for entering Oracle9iAS User Common Attribute Values.
After that, the request is redirected back to the Webtool User Management page for
entering Wireless-specific attribute values.

The same applies for editing a registered Wireless user. The user is first edited
through DAS and then through Webtool User Management.

10.2.11 WebCache Integration

Oracle9iAS Wireless is integrated with Oracle WebCache to improve page rendering
performance and scalability. It must be clarified at the outset that WebCache is not
deployed in the traditional sense with Oracle9iAS Wireless. WebCache is usually
deployed in front of web-servers serving HTML content, and interacting with
HTML clients and the web-server to cache dynamic content. However, with
Oracle9iAS Wireless, the wireless runtime determines what content needs to be
inserted into WebCache and when to expire content in the cache. WebCache, in this
case, acts as a device adaptation cache rather than a reverse-proxy cache.

10.2.11.1 How Does this Work?

Since markup content is cached using WebCache, the performance and scalability
benefits are due to two factors: reduced device adaptation costs, and significantly
reduced adapter invocation costs. The savings in terms of device adaptation costs
are due to the fact that content that can be shared across users and sessions is
essentially transformed only once (per logical device) from its Mobile XML format.
Secondly, since the content is not generated every time by an adapter, the total
adapter invocation cost is significantly reduced for a site that has a large subset of
cacheable pages.

10.2.11.2 A Cache Miss Scenario

1. Anincoming request is received by the wireless runtime, which requests the
cache for a page corresponding to the request and the device that made the
request.

10-22 Oracle9iAS Wireless Developer’s Guide

Integration with other Components

2. In this case, the page does not exist in the cache, causing WebCache to send a
request back to the wireless runtime, requesting for the page.

3. This time, the runtime recognizes this request to be from WebCache, rather than
from a client.

4. The runtime processes the requests following the traditional code-path of
invoking the service corresponding to the request and transforming the content.

5. The transformed content is now returned as a response to the WebCache
request.

6. WebCache examines the response to determine if the page is cacheable or not,
and if it is, cacheable for what period of time.

7. Assuming that this particular page is cacheable, WebCache inserts the page into
the cache with an expiration limit set to the page.

8. WebCache then serves this page out as a response to the original request from
the runtime, which in turn uses this page as a response to the client request.

Figure 109 A Cache Miss Scenario

4. Runtime invokes service
Content Source

Client
1. Client
reguestiresponse

)

Wireless Runtime

2. Runtime 3. Cache miss results
consults cache in request to runtime
\)
Webcache

Core Technologies 10-23

Integration with other Components

10.2.11.3 A Cache Hit Scenario

In this case, an incoming request from a client is for a page that has been cached by
webcache.

1. The wireless runtime sends a request to webcache, which examines the cache to
see if the page is cached or not.

2. Ifcached, it checks to see if the page has expired. If the page has not expired, it
serves it out of the cache to the runtime, which in turn uses this page as a
response to the client request.

3. However, if the page has expired, it once again follows the same routine as it
would in the event of a cache miss.

Figure 10-10 Cache Hit Scenario

Client
1. Client
requestiresponse

)

Wireless Runtime Content Source

2. Runtime consults
cache — sUccess

N

Webcache

10.2.11.4 Configuration

10.2.11.4.1 Enabling Caching for the Site To cache dynamic content, it is necessary to
enable WebCache in the first place. From the System Manager, click on the Site tab.
Under the Administration section, in the Configuration sub-section, click on
WebCache Configuration.

10-24 Oracle9iAS Wireless Developer’s Guide

Integration with other Components

« Toenable webcache, check the Enable WebCache checkbox.

« Next, enter the complete URL that corresponds to the webcache installation. Be
sure to include the port number at which WebCache listens (default port is
1100) and the servlet path to the wireless runtime (default is /ptg/rm).

« Supply an invalidation password (default is Administrator). This should be the
same as the WebCache invalidation password that is set from the WebCache
administration console. See the WebCache Configuration Guide for details on
how to perform this task.

« Provide an invalidation port (default is 4001). This should be the same as the
invalidation port specified from the WebCache administration console. See the
WebCache Configuration Guide for details on how to perform this task.

« Enter a timeout value for requests made to WebCache (default is 20 seconds).
Ensure that this is at least 5 seconds less than the request timeout value from the
WebCache administration console. See the WebCache Configuration Guide for
details on how to perform this task.

« Click OK after the changes have been made.

10.2.11.4.2 Cache-enabling a Service The steps detailed above described how to
enable caching for a site. For the cache to be of use, it is necessary to enable services
to be cacheable.

« While creating a master service, the second step in the service creation wizard is
the Caching step. To cache-enable a service, check the Cacheable checkbox.
Once this is done, an Invalidation Frequency section appears. In this section,
specify the frequency at which pages corresponding to the service must be
removed from the cache.

=« When aservice is published from Content Manager, if the master service
specified is cacheable, then the published service automatically becomes
cacheable.

10.2.11.4.3 Invalidating Cache Content For any caching mechanism to be effective, it is
necessary to perform invalidation of the cache contents at appropriate intervals.
Invalidation of wireless content residing in webcache can be either policy-based or
asynchronous.

Policy-based Invalidation—It is possible to specify in advance if a page should be
cacheable or not. One of the ways to do this is by specifying the invalidation
frequency of a service (as in the previous section). When a page is inserted into the

Core Technologies 10-25

Integration with other Components

cache, the invalidation frequency of the service it belongs to is taken into account
while determining how long the page should live in the cache.

It is also possible to dynamically specify the cacheability of a page. This is done at
the content-source. If the page is to be specified as cacheable, the SimpleResult
element should have a SimpleMeta child element. This element has a required
attribute ‘cache’, which when set to ‘yes’, enables caching for the page and when set
to ‘no’ disables caching. An optional attribute to be used in conjunction with a ‘yes’
value for the ‘cache’ attribute is ‘ttl’. This can be used to specify in seconds the
number of seconds the page should be cached before expiring it. For example:

<Si npl eResul t >
<Si npl eMet a cache="no"/>

</ Si npl eResul t >

results in the page being non-cacheable, as below:

<Si npl eResul t >
<Si npl eMet a cache="yes” ttl="300"/>

</ Si npl eResul t >

results in the page being cached for 300 seconds.

Apart from using the SimpleMeta tag to specify cacheability, it is possible to use
standard HTTP cache-control headers and ESI headers to specify cacheability for a
page. Refer to your documentation on WebCache on how to specify cacheability
using ESI headers.

The order in which cacheability for a given page is evaluated is as follows:

« Check for HTTP or ESI cacheability headers. These override SimpleMeta tags if
any are present.

« SimpleMeta tags for a given page override the invalidation frequency for the
service it belongs to.

« If neither the HTTP/ESI headers nor the SimpleMeta headers are present, the
default cacheability policy for the service is applied to the page.

Asynchronous Invalidation—Despite specifying the cacheability policy for a page
at the time of service creation or during the generation of the page, it may be
necessary to explicitly invalidate content in the cache. It is possible to invalidate and
refresh content in the cache based on a master service or a device.

10-26 Oracle9iAS Wireless Developer’s Guide

Integration with other Components

From System Manager, click on the Site tab. Under the Administration section, in
the Configuration sub-section, click on either ‘Refresh webcache — Master service’ or
‘Refresh webcache — Device’.

« Toinvalidate all pages belonging to a master service, click on ‘Refresh webcache
— Master service’, select a master service by clicking a radio button
corresponding to the master service and click Refresh.

« Toinvalidate all pages with a given device markup, click on ‘Refresh webcache
— Device’, select a device by clicking a radio button corresponding to the device
and click Refresh.

10.2.11.5 Administration

If webcache is reinstalled on a different machine/port the WebCache settings must
be reconfigured as detailed in the configuration section above.

If the wireless instance is reinstalled on a different machine, the location of the
wireless instance should be modified in the ‘Application Servers’ of WebCache’s
administration console. See the WebCache Configuration Guide for details on how
to perform this task.

10.2.11.6 Building a cacheable service

In this section we shall build a sample service that is cacheable using webcache. We
shall also explore the means to control the cacheability of such a service
dynamically.

The sample service displays the current time and therefore immediately
demonstrates the cached status of the page. We follow the steps detailed below to
create the service:

1. Create an external content source that can be invoked from an HTTP adapter.
(As an aside, there is no requirement that a cacheable service need to be HTTP
adapter based, any other adapter would do just as fine). We designate the
content source as a simple JSP page which displays the current time in Mobile
XML. For example:

<Y%@ page | anguage="j ava" %
<%@ page inmport="j ava. text. Si npl eDat eFor mat " %
<Y%@ page inmport="java.util.Date"%

<Y@ page session="fal se" %

<Y%@ page content Type="text/htm ; charset=iso-8859-1" %
<Si npl eResul t >
<Si npl eCont ai ner >

Core Technologies 10-27

Integration with other Components

<Si npl eText >
<Si npl eText | t enp
<%
Date date = new Date();
Si npl eDat eFormat formatter =

new Si npl eDat eFormat ("yyyy.MMdd G 'at' hh:mmss a zzz");

%
<%formatter.fornat(date)%

</ Si npl eText | ten>
</ Si npl eText >

</ Si npl eCont ai ner >
</ Si npl eResul t >

Let us assume that this page is deployed at the URL.:
http://mycontent-server.oracle.com/dateserv.jsp

2.

We need to create a master service that uses this as the content source.

From the System Manager Ul, clicking on the Master Services tab we
create a new master service by clicking the Create Master Service button. In
the mandatory fields (marked by an asterisk), we enter the value Date Serv
for the Name of the master service and choose HTTPAdapter as the Adapter
and ensure that the Valid checkbox is checked.

In the subsequent screen, we check the Cacheable checkbox and choose the
Invalidation Frequency by specifying the Cardinal as 40 and Unit as
Seconds, causing all pages corresponding to the service (in this case just one
page) to be cached for 40 seconds.

In the next screen since our sample service does not have any Init
Parameters, we click the Next button.

In the subsequent Input Parameters screen, we select the URL column and
check the Mandatory field and enter the Default Value as the URL to our
content source, i.e. http://mycontent-server.oracle.com/dateserv.jsp

We can skip the next couple of screens (by clicking Next) and create the
master service by clicking the Finish button on the last screen.

Now, we need to publish the service from the Content Manager.

We click the Add Service button to add a link to the master service that was
created earlier.

10-28 Oracle9iAS Wireless Developer’s Guide

Integration with other Components

« We name the new service as DateService in the subsequent screen by
entering DateService in the Name field. We also ensure that at least the
Visible checkbox is checked and the Type is chosen as Normal Service.

« Inthe next screen we choose Date Serv as the master, drilling down to the
folder it was created in and click on Next.

= We accept the default values in the next screen by clicking Next
« We publish the service by clicking Submit on the next screen.

4. We need to associate the service with an available Group for which we choose
the Groups tab in the next screen.

« We choose a Group, say Guests and click on the Assign Services button.

« Inthe next screen under the list of Available Services, we choose DateService
and click on the Add To Group button.

« Inthe subsequent screen DateService should now be listed under Group
Accessible Services. We click the Finish button to complete the service
association.

The service is now accessible from the device portal. We can see that the time-stamp
displayed as a result of invoking the DateService service does not change for 40
seconds, indicating that the service has been cached for 40 seconds and invalidated
after. Please note that after a page in the cache has expired, the content is fetched
from the content source only on a demand basis, i.e. after 40 seconds elapse
Webcache will not refresh the content immediately, but will do so only after a new
request for the page is received.

10.2.11.7 Dynamic specification of page invalidation

The time for which the cache can retain the page without refreshing it has been set
to 40 seconds during the service creation. However, this value can be changed
dynamically at the time of generation of the Mobile XML. This can be done in two
ways:

10.2.11.8 Mobile XML markup

In this case the generated Mobile XML can have a SimpleMeta tag to attain this.
Please see the Policy-base Invalidation sub-section in the previous section on how to
do this. For our sample service, to ensure that the page is expired after 10 seconds
(rather than the default of 40 seconds), the JSP page would be:

<%@ page | anguage="j ava" %
<%@ page inmport="j ava. text. Si npl eDat eFor mat " %

Core Technologies 10-29

Integration with other Components

<Y%@ page inmport="java.util.Date"%

<%@ page session="fal se" %
<Y@ page content Type="text/htm ; charset=iso-8859-1" %
<Si npl eResul t >
<Si npl eMeta cache="yes” ttl="300"/>
<Si npl eCont ai ner >
<Si npl eText >
<Si npl eText | t enp
<%
Date date = new Date();
Si npl eDat eFormat formatter =
new Si npl eDat eFormat ("yyyy.MMdd G 'at' hh:mmss a zzz");
%
<%formatter.fornat(date)%

</ Si npl eText | ten>
</ Si npl eText >

</ Si npl eCont ai ner >
</ Si npl eResul t >

10.2.11.9 ESI headers

Responses from the content source may contain ESI headers as part of HTTP
headers that can dictate cache expiration behavior. Using ESI headers entail no
changes to the Mobile XML. The following ESI header expires the page is 30
seconds.

Surrogate-Control : nmax-age=30+60, content="ESI/1.0"

For more information on ESI headers, please refer to the Webcache Developer’s
Guide.

10.2.12 Oracle Portal and Oracle9iAS Wireless

Oracle9iAS Portal is a web-based application model for building and deploying
e-business portals. It provides a environment for accessing and interacting with
enterprise software services and information resources. Portal provides a
framework that integrates web-based resources such as web pages, applications,
business intelligence reports, and syndicated content feeds, within standardized,
reusable information components called portlets.

A portlet is an area of HTML/XML located within a defined area of a Web page.
Portlets communicate with the portal through an entity called a provider. Portlets
form the fundamental building blocks of a Oracle9iAS Portal page. Each portal page

10-30 Oracle9iAS Wireless Developer’s Guide

Integration with other Components

consists of content presented through one or more portlets and links that allow the
user to navigate to another page to take some action.

Portlets summarize, promote or provide basic access to an information resource.
The portlets allow information resources to be personalized and managed as a
service of Oracle9iAS Portal. The portal framework provides additional services
including single sign-on, content classification, enterprise search, directory
integration, and access control. OraclePortal traditionally has been supporting
Desktop/PC Web browsers. Starting in Orcale9iAS releas2.0 OraclePortal, besides
support standard web browsers, will enable Oracle9iAS Portal pages to be accessed
from wireless devices. OraclePortal, working in conjunction with Oracle9iAS
Wireless, automatically transforms the portal page structure that is appropriate for
the wireless devices. Portal generates the Page structure in Oracle9iAS Wireless
XML, for all request from wireless device, and rendered to the device by Oracle9iAS
Wireless. This allows portlets to provide wireless interface using OraclePortal,
through Oracle9iAS Wireless.

10.2.13 Oracle Portal as a Wireless Service

To enable Oracle9iAS Wireless access to Portal, the Portal must be deployed as a
Wireless service in the Oracle9iAS Wireless repository. Each Portal installation is
deployed as an HTTP Adapter service in Oracle9iAS Wireless. Multiple Portals may
be deployed on a single Wireless instance. The HTTP adapter service accepts a URL
as a configuration parameter and must be set to the URL of the Portal's home page.
To create a Wireless service, a Master Service definition based on an HTTP adapter
must be created using the Oracle9iAS Wireless Webtool. Also, you must create an
OraclePortal Service based on the HTTP adapter Master Service.

OraclePortal redirects requests from a Wireless device to an Oracle9iAS Wireless
server. The Oracle9iAS Wireless Server accepts the request and invokes the
OraclePortal home page over HTTP and accepts the response generated (in
Oracle9iAS Wireless XML), from OraclePortal. The XML response, generated by
OraclePortal, is then adapted to the native device markup by the Oracle9iAS
Wireless server. All further requests and responses between Wireless device and
OraclePortal is mediated by the Oracle9iAS Wireless Server.

Core Technologies 10-31

Integration with other Components

Figure 10-11 Oracle Portal Integration

Wireless devices make the first request to OraclePortal server and Portal redirects
the device request to Wireless Server. The Portal appends two parameters to the
redirected URL, the two query parameters appended are "PAoid" and "PAhome".
Both PAoid and PAhome contain the value of the object id (service-id in the
Wireless repository) of the Portal’s HTTP adapter service. The syntax of the
redirected URL is:

http://9i ASWserrver: port/ptg/rnPAoi d=<Oracl ePortal object
i d>&PAhone=<Cracl ePortal object id>

The PAoid parameter allows the Wireless server to directly launch the Portal home
page, without having to navigate through the Wireless server's folder and service
hierarchy. The PAhome sets the Portals Home Page as the home page for the current
wireless session.

10.2.14 Developing Wireless Portlets

Portlets are owned by entities called Providers, and one Provider can manage one
or many portlets. Providers are the backbone behind the Portlets being displayed on
each page. Portal supports a Web Provider framework that is written as a web
application. It is installed and hosted on a web server and is remote from the Portal.

10-32 Oracle9iAS Wireless Developer’s Guide

Integration with other Components

A portlet exposed as a Web Provider can be developed in any web language. A Web
Provider communicates with Oracle9iAS Portal using SOAP(XML).

OraclePortal supports a Java based Portal Developer Kit (PDK) framework to
develop portlets and services. The Java PDK Framework is a set of services that
enable Java programmers to easily create portlets from existing Java-based
applications (Java, Java Servlets, and JSPs). It provides an abstraction to handle
communication with Oracle9iAS Portal, default classes to simplify portlet creation,
and exposes APIs for end-user customization, session storage, security, and logging.

For Wireless devices, OraclePortal will support Portlets that generate Oracle9iAS
Wireless XML. To enable wireless access Portlets must generate Oracle9iAS Wireless
XML and indicate such capability using the Java PDK framework. The Java PDK
framework uses a Provider.xml file to discover the capabilities of the Portlets
supported by a Provider. Refer to OraclePortal's PDK-Java User's Guide for more
information.

Following is a overview of tags (in the Provider.xml file) that indicates the wireless
capabilities of a Portlet.

1. <accept Cont ent Type>
Usage:
<accept Cont ent Type>t ext/ vnd. or acl e. nobi | exnl </ accept Cont ent Type>

This value "text/vnd.oracle.mobilexml” indicates that the portlet is capable of
generating Oracle9iAS Wireless XML required for Wireless access. A portlet can be
enabled for both HTML (PC Desktop) and Wireless Access by indicating it can
accept both the content types such as:

<accept Cont ent Type>t ext / vnd. or acl e. nobi | exnl </ accept Cont ent Type>
<accept Cont ent Type>t ext / ht mi </ accept Cont ent Type>

If the Portlet is capable of generating only Oracle9iAS Wireless XML
(text/vnd.oracle.mobilexml), then (unless otherwise indicated) the Portlet will
transform the Oracle9iAS Wireless XML to HTML for PC Desktop clients.

2. <nobi | eFl ags>
Usage: <nobi | eFl ags>MBI LE_ONLY</ nobi | eFl ags>

Portlets can set this value to MOBILE_ONLY and hence indicate that this Portlet
must be rendered in wireless devices only. This will prevent the default behavior of
a Portal to transform Oracle9iAS Wireless XML, generated by the Portlet and
rendered to PC Desktop clients.

3. <showLi nk>
Usage: <showLi nk>t r ue</ showLi nk>

Core Technologies 10-33

Integration with other Components

Portal renders all the Portlets on Wireless devices as links. Portlets must set this
value to True to be rendered on a wireless device. A value of True allows the Portal
to generate a Link, pointing to the Portlet content, on the wireless device.

4. <li nkPage>
Usage: <l i nkPage
class="oracl e. portal . provi der.v2.render. http. Resour ceRender er" >
<r esour cePat h>/ mypat h/ mypage. j sp</ r esour cePat h>
<cont ent Type>t ext / vnd. or acl e. nobi | exm </ cont ent Type>
</l'i nkPage>

This tags holds the pointer to the resource which generates the required link that is
rendered on a wireless device. This resource must generate Oracle9iAS Wireless
XML. Below is a sample link page implemented in JSP.

<%@ page session="fal se" content Type="text/vnd. oracl e. mobi | exm " %
<Si npl eHref target="/nypath/ mywireless.jsp" |abel ="Go">
Wrel ess Hel | oWrld
</ Si npl eHr ef >

The new version JPDK has been updated to understand these wireless properties of
a Portlet. The JPDK also supports wireless specific request information like location
and device information, which can be accessed by the Portlets through the JPDK
APIs.

10.2.15 OraclePortal, Oracle9iAS Wireless and Single SignOn (SSO)

Both OraclePortal and Oracle9iAS Wireless depend on Oracle's SSO solution for
user authentication and login. This integration allows the user to invoke protected
applications defined on both systems and eliminates multiple login dialog boxes for
users.

Oracle9iAS Wireless Server upgrades the session context of a user to an
“authenticated” state when any service or application (HTTP Adapter services)
validates the user credentials with the SSO server. When OraclePortal, mobile
application, validates the credentials of a user with the SSO Server, the session
context in Oracle9iAS Wireless is also updated. This allows wireless Portlets
deployed on OraclePortal to uses services such as User Location Picker, Routing,
Mobile Positioning supported by the Oracle9iAS Wireless Server.

10-34 Oracle9iAS Wireless Developer’s Guide

Integration with other Components

10.2.16 Portlets for Services Deployed on Wireless Server

You can use OraclePortal’s services to provide a PC Desktop view of your
Oracle9iAS Wireless services. You can use Portal’s JPDK framework to provide a
“showPage" and "editPage", for web-based customizations.

Since the Portal itself can be accessed from a wireless device, you must also provide
a mobile Portlet. On a wireless device, the mobile Portlets are rendered as links and
can be made to point to a service deployed on the Oracle9iAS Wireless server. You
can use Portal’s JPDK framework to provide a “linkPage" that generates the
appropriate link for your wireless service. To point to a wireless service from a
mobile portlet you can use following URL syntax in your Oracle9iAS Wireless XML.:

target="__ REQUEST NAME _?__ SESSI ON__é&anp; PAoi d=<PAoid of Wrel ess Service>"

The Wireless server will replace all “__ <Nane>__ " to the correct values at runtime
and will invoke a service define in the Oracle9iAS Wireless repository.

The following is a sample link page:

<Y@ page session="fal se" content Type="text/vnd. oracle. mobilexm" %
<Sinpl eHref target="/__ REQUEST NAME_?PAoi d="+PAoid + "&anp;
SESSION__" | abel =" Go" >
My Wrel ess Service
</ Si npl eHr ef >

Mobile devices make the first request to OraclePortal server. Portal redirects the
device request to Oracle9iAS Wireless Server, over HTTP, and appends two
parameters to the redirected URL. The two query parameters are "PAoid" and
"PAhome". Both PAoid and PAhome contain the Portal’s object/service id. The
typical syntax of the redirected URL are:

http://0Oracle9iAS
WirelessSerrver:port/ptg/rm?PAoid=<OraclePortalServiceid>&PAhome=<OracleP
ortalService id>

The PAoid parameter allows the Wireless server to directly launch the Portal home
page, without having to navigate through the Wireless server's folder and service
hierarchy. The PAhome sets the Portals Home Page as the home page for the current
wireless session.

10.2.16.1 Webtool and Customization as Portal Providers

The post-installer automatically registers Webtool and Customization as two Oracle
Portal Providers. Thus, if an Oracle Portal user selects the two providers he/she will
see two portlets: one for Webtool, and one for Customization. If the URL for

Core Technologies 10-35

Wireless Services

Webtool or Customization is changed, the provider can be registered from Wireless
System Manager, part of Oracle Enterprise Manager. For more information, see
Oracle9iAS Wireless Getting Started and System Guide.

10.3 Wireless Services

10.3.1 Wireless Services Overview

Services enable end users to access the functionality of Oracle9iAS Wireless. They
represent the link between the content source and the delivery target. Services tie a
specific data source (through an adapter) to the different devices.

There are different types of services:

« MasterService—provides the actual implementation of the service.
MasterServices specify the adapter used for the service and any service-specific
parameters.

« Link—a pointer to a service. In most cases Links are used to publish
MasterServices to end users and to customize the MasterService parameters.

« Module—a pointer to a MasterService with a known URL.

« Folder—container for other services, including other Folders. Used to build
service trees.

« ExternalLink—a service that points to an external resource.

10.3.1.1 MasterService

MasterServices provide the basic wireless functionality. They are the actual
implementation of the service. Each MasterService is based on one adapter. A
MasterService sets values for the adapter init, input and output parameters. Each
MasterService creates its own instance of the adapter it uses. Therefore, several
services can use the same type of adapter, and each can pass its own service-specific
argument values.

It is recommended that you build all MasterServices using the HTTPAdapter. That
gives you the flexibility to implement the service business logic using JSPs or other
web technologies.

10.3.1.2 Link

Links are used to further customize existing services by overriding the values of
their parameters.

10-36 Oracle9iAS Wireless Developer’s Guide

Wireless Services

When a Link service is invoked the Wireless server will merge the parameters with
the parameters of the service the Link points to, and invoke that service.

Links are also used to better organize services into user service trees. They give you
the flexibility to publish the same service under different names and in different
folders (different levels in the service tree). If you do not override any parameter
values, then invoking the link is the same as invoking the service it points to.

10.3.1.3 Module

Modules are wireless services with well-known virtual URL (OMP URL, that is,
omp://my.module).

Modules can be called from any application or module and may be instructed to
return control to another application or module. Calls may be nested to any level.
This mechanism of bi-directional linking allows quick applications assembly.

An important difference between a module and a regular service is that the module
receives information about the service it needs to return to after it is done. This is
not always the caller of the module (the module caller may want the module to
return to a different service).

10.3.1.4 Folder

Folders are containers for other services. They are used to better organize
user-accessible services into a service tree. The content of a folder is displayed by
invoking its rendering service—a special service associated with each folder.

The system rendering service displays the folder child services ordered by the
specified sort rule.

Optionally, you can specify icons and audio files to be displayed/played when a
service link is displayed in the folder content or when the service is invoked.

10.3.1.5 ExternalLink

An ExternalLink is a wireless service that points to an external resource. The
external resource is typically a Web page that serves content in a format supported
by the target device.

Oracle9iAS Wireless does not process the content of the ExternalLink target. As a
result, ExternalLink services are not available to all targeted devices, as are other

Wireless services. In most cases, ExternalLinks are set in the Customization portal
by the end user, not in the Service Designer.

Core Technologies 10-37

Device and Network Adaptation

10.3.2 Access Control

There are two type of services in terms of accessibility:

« User Private Services—accessible by a single user.

« Shared Services—accessible by multiple users.

There are different rules that apply to those two type of services.

The user private services are services that reside in the user home service tree. The
user can access all of those services. No other user can access those services.

The shared services in contrast are accessed by multiple users. The access is
controlled by the User - Group - Service relationship. When you assign a service to a
group, all users from that group can access the service.

10.4 Device and Network Adaptation

This section describes how to create and manage Oracle9iAS Wireless transformers.

10.4.1 Logical Device

Logical Device in Oracle9iAS Wireless represents either a physical device, such as
an Ericsson mobile phone or an abstract device, such as ASYNC. The Logical Device
stores the attributes of the physical device/ browser and device transformers. The
Oracle9iAS Wireless server uses the device transformer of the Logical Device
associated with the request to transform mobile xml service result to device mark
up language.

Each request in Oracle9iAS Wireless is associated with a Logical Device. The Device
Detection process, i.e. finding out the Logical device corresponding to a request, is
done for each Oracle9iAS Wireless request. Device Detection mechanism is
discussed later in the chapter.

The following table lists the Logical Device attributes. These attributes can be
retrieved and modified using programmatic java api’s. Refer to the javadoc of
oracle.panama.model.Device interface.

Table 10-3 Logical Device attributes

Attribute Name Description
Name Name of the logical Device
Description Description of the Logical Device

10-38 Oracle9iAS Wireless Developer’s Guide

Device and Network Adaptation

Table 10-3 Logical Device attributes

Attribute Name Description

Encoding The Character Encoding to be used by the Device. This
attribute specifies the Character encoding used by the device
browser to send URL parameters. Also the content returned in
response to a request is encoded using the encoding of the
logical device.

Preferred Mime Type mime type supported by the device, for example text/html for
devices supporting HTML

The above mentioned attributes can be used by the Transformers, Adapters, Folder
Renderer hooks or external Http Adapter based Services to generate custom content
for the device. The Logical Device attributes are passed to the external Http Adapter
based services through HTTP headers. See Section 10.7, "Adapters" for more
information.

Oracle9iAS Wireless server is shipped with pre-built Logical Devices. Customers
can add additional logical devices or can modify existing Logical Devices if any of
their physical devices can not be mapped to an existing Oracle9iAS Wireless Logical
Device. Refer to Oracle9iAS Wireless Getting Started and System Guide for details on
how to add or modify Logical Devices.

10.4.2 Device Detection

The Device Detection in Oracle9iAS Wireless can be customized by specifying a
hook class that implements the interface
oracle.panama.rt.hook.DeviceldentificationHook. The default implementation of
the hook is provided in oracle.panma.rt.hook.DeviceldentificationPolicy class.

The default (built-in) implementation uses the User-Agent String to Logical device
mappings, stored in the LogicalDevice model object, to identify the logical device
from the request. Note that in previous releases of Oracle9iAS Wireless the
User-Agent String to logical device mapping was specified in
oracle/panama/core/admin/UserAgents properties file.

The User-Agent string can contain wild card character ‘*’. For example, the
User-Agent String “*DS*’ will match all the User-Agent values containing ‘DS’.

The Device Detection algorithm:

1. Match the User-Agent http header value with all the User-Agent Strings. If
there is a match then use the Logical Device corresponding to the matched
User-Agent String, else go to step 2. In case of multiple matches the Logical

Core Technologies 10-39

Device and Network Adaptation

Device corresponding to the User-Agent string with maximum number of
non-wild card characters is used.

2. Find all the Logical Devices whose mime type attribute matches the value of the
Accept http header. Go to step 3.

3. If the request contains x-up-devcap-screenpixels and x-up-devcap-screenchars
http headers then, find the closest matching logical device using ScreenWidth,
ScreenHeight, ScreenRows, ScreenColumns attributes of the Logical Device.
Else select any logical device.

10.4.3 Image Support

The devices and browsers available in the market today support different image
formats, for example, WML devices support wbmp image formats whereas Palm
supports gray scale depth 2 image formats. The “image Format Preferences”
attribute of Logical device stores all the image mimetype and corresponding file
extension supported by the device. This attribute of Logical Device is used by the
Transformers to transform the <Simplelmage> mobile xml element.

The mobile xml developer can use the “available” attribute of <Simplelmage>
element to specify the list of image file extensions available. The transformer
appends the file extension, supported by the device, to the “src” attribute of the
<Simplelmage> element. The “src” attribute of <SimpleResult> specifies the
location of the image file.

For example, the following <SimpleOracle9iAS Wireless element> specifies that the

image_file is available in “gif”, “wbmp”and “g2gif” formats.

<Sinpl el mage src="http://1ASWserver: port/imge_file" availabl e="gif wonp g2.gif"
/>

For devices supporting only g2.gif extension the above <Simplelmage> will get
transformed to:

<ing src="http://| ASWserver:port/imge_file.g2.gif">

10.4.4 Transformer
Oracle9iAS Wireless supports Device Transformers.

The Device Transformers transform mobile xml document to the device markup
language. The transformation logic can be implemented in an XSL stylesheet or in
Java.

10-40 Oracle9iAS Wireless Developer’s Guide

Device and Network Adaptation

The Result transformers convert content from AdapterResult format to Mobile XML
format. The Adapter Result format is an intermediary format layer that enables
efficient exchange of user interface independent data. You may use it, for example,
to link chained service. A chained service is an Oracle9iAS Wireless service that
invokes another service. Result Transformers are deprecated in Oracle9iAS Wireless
9.0.2 version.

The following table lists the attributes stored in the Device Transformer objects.
These attributes can be accesses by java programmatic apis’ — refer to javadoc of
oracle.panama.model.Transformer, oracle.panama.model.JavaTransformer and
oracle.panama.model. XSLTransformer interface.

Table 10-4 Device Transformer objects attributes

Attribute Name Description
Name Name of the transformer
Mime Type The mime type of the target device markup language. For

example, text/html
Mobile XML DTD version The mobile xml dtd version supported by the transformer.

XSL Stylesheet The XSL Stylesheet implementing the transformation logic.
This attribute is valid only for XSL based Transformers

Java Class The class path of the class implementing the transformation
logic. This attribute is valid only for Java based Transformers.

10.4.4.1 Java Transformers

Transformers can implement transformation logic in Java by implementing
oracle.panama.rt.xform.RtTransformer interface.
/*
* $Copyri ght:
* Copyright (c) 2000 Oracle Corporation all rights reserved
*
*/ $
package oracle.panana.rt.xform

inport java.io.Witer;
i nport org.w3c.dom El enent;
inport oracl e. panama. PanamaExcept i on;

/**

* Transformfroma XM structure to a device specific content.

*

Core Technologies 10-41

Device and Network Adaptation

* @ince Oracl e9i Application Server Wreless Edition
*/
public interface Rt Transforner {

/**

* Transformthe sinple result XM docunent into a device specific markup la
nguage.

* @aram el enent the <code>ServiceCont ext</code> XM. El enent to process.

* @aramout the output witer for the result

*/

public void transforn(El ement el ement, Witer out) throws PananaException;

}

Oracle9iAS Wireless run time calls the transform method of the Java transformer to
transform the mobile xml document to device markup. The parameter element
contains the ServiceContext, and the device markup result is written to the out
parameter of the method. The ServiceContext contains the input parameters of the
request, attributes of the logical device corresponding to the request and
SimpleResult (mobile xml document).

The class implementing oracle.panama.rt.xform.RtTransformer interface must provide
a default constructor (that is, constructor without arguments) and the transform()
method should be thread-safe.

The ServiceContext Element passed to the transform() method of RtTransformer class
is of the form.

<Servi ceRequest >
<Ar gunent s>
<l nput s>

All the input arguments passed to the Service - this includes the service arguments
and other arguments listed below

</ I nput s>
</ Argunent s>
<Resul t >
The nobile xm content

<Resul t >
</ Ser vi ceRequest >
The input argument is of the form

<nane ...>val ue</ nane>

10-42 Oracle9iAS Wireless Developer’s Guide

Device and Network Adaptation

where “name” is the name of the input argument and “value” is the value of the

input argument.

The following table lists the input arguments other than the service input
arguments, which are passed to the Service.

Table 10-5 Input arguments

Name of the Input
Argument

Description

_LOGICAL_DEVICE

_ScreenColumns

_ScreenRows

_ScreenWidth

_ScreenHeight

_DeviceCategory

_SoftKeys

_MaxDocSize

_ImagePreferences

_User
_UserLanguage

_FirstAcceptLanguage

USER-AGENT

COOKIE
CONNECTION

Name of the logical device corresponding to the request.

The value of screen columns attribute of the logical device
corresponding to the request

The value of screen rows attribute of the logical device
corresponding to the request

The value of screen width attribute of the logical device
corresponding to the request

The value of screen height attribute of the logical device
corresponding to the request

The value of device category attribute of the logical device
corresponding to the request

The value of soft keys attribute of the logical device
corresponding to the request

The value of max doc size attribute of the logical device
corresponding to the request

The value of image preferences attribute of the logical device
corresponding to the request

The name of the User.
The language preference of the User

The first language specified in the Accept-Language HTTP
header.

The User-Agent HTTP header value of the request Note: All
the HTTP headers of the Oracle9iAS Wireless request are
added to the Service Context

The Cookie HTTP header value of the request

The Connection HTTP header value of the request

Core Technologies 10-43

Device and Network Adaptation

Table 10-5 Input arguments

Name of the Input

Argument Description

ACCEPT The Accept HTTP header value of the request
HOST The Host HTTP header value of the request
REFERER The Referer HTTP header value of the request

ACCEPT-LANGUAGE
ACCEPT-ENCODING
_SERVICE_NAME
_SERVICE_NAME_ENC
_SERVICE_URL
_SERVICE_URL_ENC
PAoid

_REQUEST_NAME
_HTTP_REQUEST NAME

_ABS_REQUEST_NAME

_HTTPS_REQUEST_
NAME

PAsid
_SESSION
PAservlet
AMP_EXPLICIT

The Accept-Language HTTP header value of the request
The Accept-Encoding HTTP header value of the request
The name of the invoked Service.

The URL encoded name of the invoked Service.

The URL of the invoked Service

The URL encoded value of the URL of the invoked Service
The object id of the invoked service

The path component of the Servlet. For e.g. /ptg/rm

The URL path of the Servlet. For e.g.
http://lasServer:Port:7777/ptg/rm

The URL path of the Servlet. For e.g.
http://lasServer:Port:7777/ptg/rm

The HTTPS URL path of the Servlet. For e.g.
https://lasServer:Port:7778/ptg/rm

The session id of the request. For e.g. 100BoNrXdG
The session id name/value pair. For e.g PAsid=100BoNrXdG

The name of the Servlet. For e.g. rm

10.4.5 XSLT Transformers

Device transformer logic can be implemented in XSL stylesheet. XSL stylesheets are
XML documents that specifies the processing rules for other XML documents. An
XSLT stylesheet, like java transformers, is written for a particular mobile XML DTD.
When it finds the element in source document, it follows the rules defined for the
element to format its content. The ServiceContext element is passed as the source
document to the stylesheet.

10-44 Oracle9iAS Wireless Developer’s Guide

Device and Network Adaptation

10.4.5.1 Creating XSL Transformer

In this section we will implement a very simple XSL stylesheet which handles only
<SimpleTable> mobile xml element. It uses the value of screen width attribute of the
logical device, passed as _ScreenWidth element in the ServiceContext, as the width
of the generated HTML table. The Stylesheet converts source mobile xml
documents to HTML.

Example mobile xml document handled by our custom stylesheet.

<Si npl eResul t >
<Si npl eCont ai ner >
<Si npl eTabl e>
<Si npl eRow>
<Si npl eCol >Rowl col umi</ Si npl eCol >
<Si npl eCol >Rowl col um2</ Si npl eCol >
</ Si npl eRow>
<Si npl eRow>
<Si npl eCol >row2 col umi</ Si npl eCol >
<Si npl eCol >row2 col um2 </ Si npl eCol >
</ Si npl eRow>
</ Si npl eTabl e>
</ Si npl eCont ai ner >
</ Si npl eResul t >
The stylesheet implementation.

<xsl:styl esheet version="1.0" xm ns:xsl="http://ww.w3. org/ 1999/ XSL/ Tr ansf or n{
xm ns: p2g="http://wmv. oracl e. conf XSL/ Tr ansf or m j ava/ or acl e. panama. cor e. xf or m XSJ
ava" exclude-result-prefixes="p2g">
This tenplate matches the root of the docunent.

<xsl:tenplate match="/">

<xsl :appl y-tenpl ates sel ect="//Sinpl eResul t"/>

</xsl:tenpl ate>

Template for SimpleResult element.

<xsl:tenpl ate match="Si npl eResul t">
<HTM.>
<BODY>
<xsl:appl y-tenpl ates sel ect="Si npl eCont ai ner/ Si npl eTabl e" />
</ BODY>
</ HTM.>
</xsl:tenpl ate>
Template for <SimpleTable> element.

<xsl:tenpl ate mat ch="Si npl eTabl ">
<TABLE>
The width attribute of the table is set to the value of _ScreenWidth element.

Core Technologies 10-45

Device and Network Adaptation

<xsl:attribute name="width">
<xsl:val ue-of select="//_ScreenWdth" />
</xsl:attribute>
<xsl:for-each select="./Sinpl eRow'>
<xsl:apply-tenpl ates select="."/>
</xsl: for-each>
</ TABLE>
</xsl:tenpl ate>
Template for SimpleRow element

<xsl:tenpl ate mat ch="Si npl eRow' >

<TR>
<xsl:for-each sel ect="./Sinpl eCol ">
<xsl:apply-tenpl ates select="."/>
</xsl: for-each>
</ TR>

</ xsl:tenpl ate>
Template for SimpleCol element.

<xsl:tenpl ate mat ch="Si mpl eCol ">
<TD>

</ TD>
</xsl:tenpl ate>
</ xsl : styl esheet >

10.4.5.2 Transformer Version

Oracle9iAS Wireless server supports multiple transformers, one for each version of
the mobile XML DTD, for Logical Devices. The run time selects the transformer
depending on the DTD version specified in the mobile XML Document. All the
mobile xml documents should include the following DOCTYPE declaration

<IDOCTYPE SimpleResult PUBLIC "-//ORACLE//DTD SimpleResult x.y.z//EN"
"http://xmins.oracle.com/ias/dtds/SimpleResultxyz.dtd">

The DTD version is specified by the string "x.y.z", where x is incremented for every
major revision of DTD, y is incremented for minor revisions, and z can be
incremented by the customer for customer specific DTD enhancements.

For backward compatibility all the mobile xml documents, which do not contain the
DOCTYPE declaration, will be assumed to be confirming to 1.0.0 version (i.e pre
9.0.2 version of the DTD)

The algorithm to find the transformer for a mobile xmI document confirming with
DTD version x.y.z

10-46 Oracle9iAS Wireless Developer’s Guide

Asynchronous Server

1. Find all transformers with major number "x". If no transformers are found then
log an error message and return.

2. From the transformer set returned from step1, find all the transformers with
minor number 'y'. If a transformer is found then go to step4

3. From the transformer set (returned from stepl) choose the transformer with
minimum minor number which is greater than y. If no such transformer exists
then choose a transformer with maximum minor number which is less than y.

4. From the transformer set returned from step2, choose the transformer with
customer version number 'z'. If no such transformer is found then choose the
transformer with minimum customer version number which is greater than z. If
no such transformer exists then choose a transformer with maximum customer
version number which is less than z.

The following HelloWorld.xml confirms to DTD version 1.1.0 (which is the current
version of the DTD).

<?xm version = "1.0" encoding = "UTF-8" standal one="yes" ?>
<! DOCTYPE Si npl eResult PUBLIC "-//ORACLE//DTD Si npl eResult 1.1.0//EN'
"http://xmns.oracle.confias/dtds/SinpleResult_1 1 0.dtd">
<Si npl eResul t >
<Si npl eCont ai ner >

<Si npl eText >

<Sinpl eText I tenrHel o World </ Sinpl eText!tenp

</ Si npl eText >
</ Si npl eCont ai ner >
</ Si npl eResul t >

Note: For information on using Service Designer to create and
manage Transformers, and for all Service Designer functions, see
"Managing Transformers" in Oracle9iAS Wireless Getting Started and
System Guide.

10.5 Asynchronous Server

10.5.1 Asynchronous Server Architecture

Oracle9iAS Wireless presents a framework to develop mobile applications to be
accessed "from anywhere, from any device, using any protocol". The Asynchronous
Server Kernel, also known as ASK makes the "any protocol” promise possible.

Core Technologies 10-47

Asynchronous Server

Conventionally, the entry point into an application server is through the HTTP
protocol. This limits applications built on an application server to only clients with
Web capability. This server restriction is a problem for mobile market users because
the vast majority of mobile users do not have, or are not enabled with Web access.
These users are almost certain to have some kind of message capabilities though
(such as e-mail, SMS, etc.). Now the dilemma is whether one should build
applications for such users specifically, depending on their capability, or ignore
them because the application server just cannot deal with the mobile market.

With Oracle9iAS Wireless, the dilemma is solved for developers, without them
doing anything at all. With the introduction of ASK, mobile applications can be
accessed through the usual HTTP protocol, as well as any other messaging
protocols (such as e-mail, SMS, etc.). Developers can focus on building their
application logic, and Oracle9iAS Wireless will do the proper connection, session
management, and interpretation of user requests. A mobile service is invoked the
same way regardless of which protocol handles the incoming requests, offering
complete transparency to application developers to allow access to their services.

10.5.2 Key Technical Challenges

10.5.2.1 Multiple transport protocol support

One of the most obvious challenges is to be able to support multiple protocols. It is
not desirable to build the same functionality to work with e-mail, then SMS, then
some other protocols. Oracle9iAS Wireless offers access to the same application
regardless of the protocol used by clients. Hence the immediate challenge is to be
able to support multiple protocols uniformly.

10.5.2.2 The asynchronous nature of messaging protocols

In contrast to the HTTP protocol, (commonly referred to as the synchronous
protocol) messaging protocols such as SMS or e-mail are asynchronous. It is
asynchronous because unlike HTTP, they are not based on a "request and response"
model. A single atomic operation is typically one way. For example, when you use a
Web browser, you enter a URL and make the request, then you wait for the result to
come back. In messaging protocols (such as SMS) sending a message itself
completes one operation. Most applications respond to user requests so HTTP is
usually adequate. To enable the same application be accessed through
asynchronous protocols presents a challenge on how such behavior can be
mimicked with protocols such as SMS or e-mail.

10-48 Oracle9iAS Wireless Developer’s Guide

Asynchronous Server

10.5.2.3 Supporting Sessions

Another big challenge is that most applications are session based; multiple requests
and responses are typically required to complete a task. Applications are able to
maintain sessions in the Web world because the client, a Web browser, has built in
capabilities such as cookies to facilitate session semantics. This is not the case for an
e-mail or SMS client. They do not have any such ability built in to support
conversational applications.

10.5.2.4 User Navigation

A Web browser offers a User Interface for navigating through applications
(examples include clicking on a hyperlink and traversing through a menu or a
series of steps to complete certain functionality). Clients that work with other
protocols such as SMS or e-mail typically do not have similar navigation power.
The challenge here is to offer similar navigating capability to such clients so that
applications can be independent of the protocols.

10.5.2.5 Naming/Addressing an Application

In the Web world, applications are typically assigned a URL. The URL is how the
application can be identified and requested. Clients for messaging are typically
plain text devices; there is no convention on how to name a service, but consistency
across protocols is needed.

10.5.3 Technical Solutions and Features

ASK combines functionality of a HTTP server and portions of a Web browser to
provide its functionality.

10.5.3.1 Multiple transport protocol support

This challenge is a relatively easy one. Built on top of the Oracle9iAS Wireless
transport system, support for multiple transport protocols is achieved by the nature
of the transport system itself. ASK registers to be an application to the transport
system to send and receive messages. It further registers one address for each of the
protocols it is serving in order to interact with users on those protocols. For
example, it can register ask@yourcomany.com for e-mail and 1234567 for SMS. Then
ask@yourcompany.com and 1234567 become the URIs for their respective protocols
similar to http://yourcompany.com is to the Web world.

ASK itself does not consider the incoming protocols; it is designed to send and
receive messages by the means that it is registered to use. The payload (content) of
the messages are what ASK interprets and acts upon.

Core Technologies 10-49

Asynchronous Server

10.5.3.2 The asynchronous nature of messaging protocols

ASK builds logic similar to an HTTP listener to present synchronous semantics over
asynchronous protocols. It achieves this by acting as a client to the service the
device requested. ASK makes a request to the service on behalf of the user, waits
and processes the response from the service, then formats the response and presents
it back to the users. Users have the illusion of a response from an earlier request.

10.5.3.3 Supporting Sessions

Upon receiving requests from a user, ASK create a session for the user. This allows
conversational applications to function. Unlike in HTTP where session info is kept
by the browser (or cookie), all session states are kept in the backend by ASK.

10.5.3.4 User Navigation

ASK transforms elements such as forms or menus, and presents a navigation
command for end users. When elements such as forms are returned by a service,
ASK retains the format of the form in the backend, and determines the action to
take when the form is submitted with all other necessary information. When this
user (using the set of command specified by ASK) fills and submits the command,
ASK makes a request (based on the current user information stored in ASK) and
processes the result again on behalf of the user. You can think of it as if the
hyperlinks are stored in the backend when a user clicks on the "face" of the link.

10.5.3.5 Naming/Addressing an Application

Just as assigning a URL to a service in the Web world, to use ASK, a short name
must be assigned to services to be ASK enabled. For example, assume the stock
guote service has been assigned the path: /finance/quote and can be accessed as
http://mycompany.com/finance/stock. Through Content Manager, a short name
can be assigned to it (for example, st.). Now any messages ASK receives that begins
with st signals a request for the stock quote service. A user can send st orcl to a
site-wide address to which ASK is configured to listen, ask@mycompany.com for
e-mail or 1234567 for SMS, and get back the stock quote for Oracle Corporation.

It is also possible to specify service-level address to services. Through Content
Manager, one can also associate (e-mail) stock@mycompany.com and (SMS)
123FINANCE to the stock quote service. Once this is done, sending just orcl as an
email to stock@mycompany.com or as SMS to 123FINANCE would result in
receiving the stock quote of Oracle Corporation.

10-50 Oracle9iAS Wireless Developer’s Guide

Asynchronous Server

10.5.3.6 ASK Request Authorization

ASK differentiates the user of a request into two categories: guest or registered.
Upon receipt of a user request by ASK, the source address of the request message is
used to reverse-lookup a Oracle9iAS Wireless user for authentication. A user object
can be located if a user has a device address, registered under his profile, the same
as the source address of the request message. The located user object is then bound
to a newly authenticated session created by the request. Otherwise, a guest user
object is bound to the session. Whichever services are authorized to the user will be
accessible to requests issued from the device.

Only those services belonging to the guest group are accessible to a guest user.
Accessing a non-guest service triggers a returned form challenging the user for
name and password. A valid Oracle9iAS Wireless username/password supplied by
the user enables the previous session to be upgraded to an authenticated one with
the user object identified by the name to be bound. Alternately, a guest user can log
in explicitly through a login command, ’IL’, to avoid ever being challenged.

10.5.3.7 User interface and navigation commands

As discussed earlier, messaging clients typically only present plain text and do not
offer conversational navigation capabilities. Recall that ASK transforms and formats
responses from services to a certain presentation to enable such capabilities. ASK
includes a set of presentation formats and navigational commands similar to what a
Web browser has done for the Web world. Hence when a user invokes services
using ASK, he or she would see the response in the format transformed by ASK.
Further interactions with ASK would have to comply with the format expected by
ASK. In this section we will be discussing commands users can issue to ASK. To
issue a command is simply sending a message with the correct format. The
command text can be put into a subject line or message body.

10.5.3.7.1 System Commands
« !H: (Help command) provides general help on the command usage

« E: (Escape command) clears current form state.

« IS: marks the end of command sequence. A message may contain a sequence of
commands, each separated by a line feed or command delimiter. !S marks the
end of a command sequence. No interpretation will be done on text past the !S
mark.

« help: the service level help. If no parameter is provided, all the async service
help is provided. User can also provide a service short name as the parameters
to acquired the help on a particular async service.

Core Technologies 10-51

Asynchronous Server

« IL <username> <password>- to sign on to the system with the user name and
password.

« 1O -toterminate a session

10.5.3.7.2 Service invocation commands These are commands to do service
invocation, menu selection and parameters filling. There are no reserved command
symbols for the service invocation and form commands. Certain commands, such as
form command and menu item selection, can be invoked only when there is a
current form/menu state maintained in the user’s session. More details on
form/menu state will be discussed later in this chapter.

« [<shortname>|<menuitem] <parml><parm?2>...to invoke a service. The first
field provided could be a service short name or a menu item number. A
menuitem can be provided only when the user previously received a menu
message from a service result. The menu state is maintained in the user session
of ASK. A user can make a selection based on the menu to trigger further
actions. More detail on current menu state is explained later in this chapter.

« <parml><parm2>...to fill the parameter of a form. When a user invokes a
service without providing a required parameter, a form may be returned
requesting the user to fill in the parameter values. This creates a current form
state in the user session, expecting the user to send the parameter sequences in
the subsequent command. The parameter values should be supplied on the
command line in the same sequence as the parameters listed on the previously
returned form.

10.5.4 Examples on Service Invocation

10.5.4.1 Invoke by Service Short Name

All services that are ASK-enabled should be assigned short names to be accessed by
the end user. The short name should be able to uniquely identify a service on the
entire site. To invoke a service, a message should be sent to a site-wide address,
such as info@oraclemobile.com, to which the ASK is configured to listen. The
command line has the format:

<Svc Short Nanme> <parml> <parnR> .

In the following example, a message is sent to the site-wide address:
info@oraclemobile.com, to invoke a stock quote service whose short name is ST. The
service requires a stock symbol as its parameter (in this case, ORCL is provided).

10-52 Oracle9iAS Wireless Developer’s Guide

Asynchronous Server

Figure 10-12 Invoking by service short name

Toinfo@oraclemabile.com
| storcl ORCL
Tl 4550

10.5.4.2 Invoke by service associated device address

Each service may have some device address associated with it. For example, an e-mail
address stock@oraclemobile.com can be used to identified a stock service. Since the service has
been identified in the destination address of the request message, there is no need to specify
the service short name in the command line. Only the service parameters are required in the
command line, for example, the stock symbol.

All of the system commands (for example, "help’) can still be issued to the
service-associated address. They are interpreted by Async Server in the same way
they are sent to the site-wide address.

Figure 10-13 Invoking by service associated device address

To:stocki@araclemohile.com
| arcl -~ ORCL
4550

k.

10.5.4.3 Menu Capability

The way the features are presented is similar to the HTTP model. A service
invocation may trigger the return of a message with the menu. Each menu item is
prefixed with a number. Users are able to make selections by issuing another
message in which the message content contains the menu item number. This
extends the service capability for much better user interaction. A yellow pages
service having a short name of yp expects two user parameters, category and area.
Users invoke services by providing the values, for example, burger and home (a
landmark for the user). The application searches for all the Burger stores in the
home area. A returned message from the service result contains a name list of
Burger stores. The user then issues another message to get detailed information
about the stores in which he is interested.

Core Technologies 10-53

Asynchronous Server

Figure 10-14 Menu capability

To: info@oraclemaobile.com
vp burger home

To: info@oraclemobile.com

4

Yellow Page Yellow Page -

[Menu]

1 Burger King, FastBurger

2 Mc Donald GB0-516-3738

3 'Wendy 1212 Main

4 Fast Burger Town City,
CA 94065

10.5.4.4 Form Capability

A form is the result of a service invocation requesting user input. The ideal user
interaction for ASK is to have the user fill in the input parameters on the command
line instead of having to fill in the form, which requires more message round trips.

Figure 10-15, "Form capability" demonstrates the possible interaction of a phone book
service. The phonedit command enables users to search and edit the phone number
for a particular user. It expects a name as its parameter. jdoe is provided in the
example. The information of jdoe is returned with a menu, enabling the device user
to edit the phone number or remove the user. There are two options for editing the
phone number:

1. Make a selection without entering any parameter: This is represented in box 2a.
A form is returned prompting the user to enter the new phone number. The
device user creates a new message with the message body containing the new
phone number.

2. Enter the selection with the required parameters. Box 2b demonstrates the
scenario. The device user is aware that a form should returned in response to
their selection 1 (Change phone). Therefore, the parameter value (phone
number) is supplied together with the selection. This saves a message round
trip.

10-54 Oracle9iAS Wireless Developer’s Guide

Asynchronous Server

Figure 10-15 Form capability

1 2a

Toinfo@oraclemohile.com Toinfol@araclemobile.com
phoneditjdoe 1
User: jdos Enter

Mame: John Doe
Phone: 7654321 Fh .
[Menu] one:
1 Change phone
2 Remove user
2b
ToinfofEoraclemaobile. com
17654322 3]
Phone changed Tainfo@oraclemobile. com
successfully TER4T02

10.5.4.5 Current Menu State

Since a session is maintained for each user, menu navigation is made possible. The
term current menu identifies the latest menu a user received from the ASK. The state
of the current menu is kept in the user session on ASK. Whenever a menu selection
is made by a user, it applies to the current menu. If a menu has not yet been
received for the user, the ASK will attempt to locate a service whose short name is
the same as the number provided by the user. An error is returned when no such
service is found.

A service invocation through short name or device address automatically cancels
the menu state created by the previous service invocation. The figure below
demonstrates the situation. A menu returns as a response to invoking the phonedit
service. A message for requesting the stk service is subsequently issued. It clears the
menu state created by the invocation of the phonedit service. An attempt to make a
menu selection triggers an error message from the ASK.

Core Technologies 10-55

Asynchronous Server

Figure 10-16 Current Menu State

Tarinfoishoraclemaobile. com Toinfo@oraclemobile. com Toinfoi@oraclemobile. com
phonedit jdoe stk orcl 2
User id Stock Service ERROR
N;ﬁ:e! Jooehn Doe orcl Last 17.35 Mo service
Phone: 7654321 High 18.02 named 2"
[Menu] Liow 16.95
1 Change phone
2 Remave user

10.5.4.6 Current Form State

A current form state is created in the user session whenever the user receives a form
message. Subsequent form parameter values can be issued by the user to fill the
parameter requested from the previous form message. If the user decides not to fill
the form but to invoke another service, the Escape command can be issued to cancel
the current form state. Once the form state is clear, any form parameters issued by
the user are considered invalid. An error message should be returned in respond to
a form parameter without a current form state.

Figure 10-17, "Current Form State" illustrates a form state example. The device user
invokes the phonedit service without providing any parameters. A form message is
returned to the user expecting the user to fill in the search name. If the device user
changes his/her mind and decides to invoke another service (for example stk) the
first step is to clear the form state so that ASK will not treat the command stk as the
name value expected from the phonedit service. Then, a new stk command can be
issued. These two steps are combined into one message by separating the two
commands with the default command separator (;).

10-56 Oracle9iAS Wireless Developer’s Guide

Asynchronous Server

Figure 10-17 Current Form State

TainfadEoraclemobile. com

phioredit

Toinfol@oraclemobile. com

lec stk inte

ToinfolEoraclemobile. com

cawang

- Search User -
Enter Mame:

- jdoe -
INTC 21.35

ERROR

Mo zervice is

narned 'cawang'

10.5.4.7 Multiple commands in one message

Multiple commands can be issued from one message. They can be issued from the same line,
each command separated by the configurable command separator (default [;]). Or,
commands can be on different lines. The first blank line or stop command (!s) encountered,
marks the end of the command sequence. No command interpretation will be done on text
after the mark.

Figure 10-18 Multiple Commands in One Message

Tainfo@oraclemobile. com T acinfol@oraclemaobile. carm T acinfol@araclemaobile. carm

stk orclstk csoodsstk inte stk inbe stk arcl
stk ben stk csoozstkints
stk zurw stk mrk
ORCL INTC ORCL
17.85 30.20 17.85
> > >
Csco BEM C5COo
14.20 35.20 1420
*
INTC
30.20

10.5.4.8 Parameter separator

Multiple parameters may be required for an Async service.The default parameter
separator is a blank space. If a parameter value contains space within it, it can be
enclosed by double quote to represent a single parameter value. The parameter
separator is configurable at the service level.

The example below illustrates a direction service expecting both the from and
destination (the to) addresses. The from address is provided with double quotes to
enclose the whole value. The destination is supplied as a landmark, home from the

Core Technologies 10-57

Asynchronous Server

user profile. The second message sent from the user is to request traffic information
service. The service is configured to use a comma (,) as the parameter delimiter;
users provide the parameter values with (,) to separate them.

Figure 10-19 Parameter Separator

Toinfol@boraclemobile. com Toinfo@oraclemabile. com

dir "100 Oracle Parkway, traffic sf. 101n
Redwood Shores, CA" home

Start out going 101, Narthbound

West on Oracle Accident on the

Phuwy toward zide

lsland Py _

by turning left. north of SFO ik
Millbrae...2 car

Turn right anta crash is on the

M aring Pl shoulder [1847)

10.5.5 Writing Asynchronous Applications

The way to develop applications for ASK is basically the same as for the Device
Portal. Service Provider receives user parameter from the device, and responds with
the result (in Mobile XML format). The requirement on the ASK client is low; the
ability to send and receive text messages. Therefore, only a subset of the Mobile
XML tags are applicable to ASK, as shown in Table 10-6, "Summary of semantics for
MobileXML tags".

Developers may choose to have a different logic flow (for example, rendering the
results differently) for the ASK device. In this case, they would need to be able to
recognize if the request was coming from an ASK device class. This is accomplished
by checking the device class attribute of the user request. The request from ASK has
the device class attribute value of either messenger, or micromessenger. The
information can be acquired from the input arguments for a service written in
adapter form, or the HTTP header for services based on HTTP/OC4J adapter. The
input argument _DeviceCategory defined in the ServiceContext specifies the device
class value for adapter formed services. For HTTP/OC4] based services, the value
can be picked up through the HTTP header x-oracle-device.class.

Similarly, any section of the ASK specific Mobile XML result, created by the
application, binds the value of messenger or micromessenger to the element attribute
deviceclass. ASK processes elements common to all devices (with no value specified
in deviceclass), or elements with the attributes containing the value of messenger or
micromessenger.

10-58 Oracle9iAS Wireless Developer’s Guide

Asynchronous Server

10.5.5.1 ASK enabling MobileXML Application

All mobile XML service can be made ASK enabled from a technical standpoint. The
user experience while using ASK is worth considering when deciding how to build
an application or ASK enabling an existing application. This is the same practice
you might have been applying to decide how you want to render you application to
different types of devices (screen size, form factor and such). ASK assumes a client
with plain text input so it is even more appropriate to consider user experience.
Services that expect many user interactions or have a complicated Ul may not work
well.

In addition, some of the Mobile XML tags do not make sense for ASK and one
should be aware of the specific semantics ASK has for the set of XML tags. Since
ASK do not assume any sort of client side browsing capability, it is common that
tags which assumes certain keys or actions on the device are not appropriate for
ASK. The following table lists all the tags for MobileXML, as well as their semantics
in the context of ASK.

Table 10-6 Summary of semantics for MobileXML tags

Mobile XML Tag Semantics

SimpleAction (MobileXML) Treated the same as the SimpleMenultem and SimpleHref.
Each SimpleMenultem, SimpleHref or SimpleAction will be
prefixed with a number in the device result for async user to
make selection.

SimpleAudio (MobileXML) Ignored—not applicable to async devices.
SimpleBind (MobileXML) Ignored—not applicable to async devices.
SimpleBreak A new line is created on the page.
SimpleCache (MobileXML) Ignored—not applicable to async devices.
SimpleCase (MobileXML) Ignored —not applicable to async devices.
SimpleCatch (MobileXML) Ignored— not applicable to async devices.
SimpleCol Output the text.

SimpleContainer Processed—no output is generated.

SimpleDefault (MobileXML) Ignored—not applicable to async devices.

SimpleDisconnect Ignored—not applicable to async devices.
(MobileXML)
SimpleDisplay Ignored—not applicable to async devices.
(MobileXML)

Core Technologies 10-59

Asynchronous Server

Table 10-6 Summary of semantics for MobileXML tags

Mobile XML Tag

Semantics

SimpleDTMF (MobileXML)
SimpleEM (MobileXML)
SimpleEvent (MobileXML)
SimpleExit (MobileXML)
SimpleFinish (MobileXML)
SimpleFooter (MobileXML)

SimpleForm

SimpleFormlitem

SimpleFormOption

SimpleFormSelect
SimpleGo (MobileXML)

SimpleGrammar
(MobileXML)

SimpleHeader (MobileXML)
SimpleHelp
SimpleHref

Simplelmage
SimpleKey (MobileXML)
SimpleMatch(MobileXML)

10-60 Oracle9iAS Wireless Developer’s Guide

Ignored—not applicable to async devices.
Output the text.

Ignored—not applicable to async devices.
Ignored—not applicable to async devices.
Ignore—not applicable to async devices.
Ignored.

The form state is maintained in the server so the parameters
issued by the user can be paired with their corresponding
keys.

The item text is printed on the returned page. User fills the
corresponding item values in the same sequence as the item
presented on the page.

A list of form options is printed on the returned page with a
number prefixed each form option. The user can fill the select
item by giving either the prefix number or the option text. For
example, a select item of 'State' should contain the option, '1
AL, 2 CA, 3 UT...". The user can supply the value of '2' or 'CA’
to select the option 'CA". Only Radio box (single selection) is
supported on the version.

Output the text.
Ignored—not applicable to async devices.

Ignored

Ignored.
Output the text.

This is treated the same as SimpleMenultem. All the
SimpleMenultem is prefixed with a number so the user is
able to select the item by responding with the corresponding
number.

Ignored; not applicable to ASK.
Ignored—not applicable to async devices.

Ignored—not applicable to async devices.

Asynchronous Server

Table 10-6 Summary of semantics for MobileXML tags

Mobile XML Tag Semantics

SimpleMenu A new line is created on the page. The menu state is
maintained in the server.

SimpleMenultem The value of the menu item is printed on the returned page
with a number prefix to identify the menu item. The target
url and the number prefix is stored in the server so the url can
be retrieved after the user makes the selection.

SimpleMenultemField Output the text.
(MobileXML)
SimpleMeta Ignored—not applicable to async devices.

SimpleMItem(MobileXML) Ignored—not applicable to async devices.
SimpleName (MobileXML) Ignored—not applicable to async devices.

SimpleOptGroup Ignored—not applicable to async devices.
(MobileXML)

SimplePrev (MobileXML) Ignored—not applicable to async devices.

SimpleProperty Ignored.

(MobileXML)

SimpleRefresh (MobileXML) Ignored—not applicable to async devices.
SimpleReprompt Ignored—not applicable to async devices.
(MobileXML)

SimpleResult Processed—no output is generated
SimpleRow Print a new line to the returned page.

SimpleSpeech (MobileXML) Ignored—not applicable to async devices.
SimpleStrong (MobileXML) Output the text

SimpleTable No op
SimpleTableBody Output new Line
SimpleTableHeader Output a new line.

SimpleTask (MobileXML) Ignored—not applicable to async devices.

SimpleText Print a new line on the returned page.
SimpleTextltem Output the text.
SimpleTimer Ignored—not applicable to async devices.

Core Technologies 10-61

Runtime and Data Model APIs

Table 10-6 Summary of semantics for MobileXML tags

Mobile XML Tag Semantics

SimpleTitle (MobileXML) Output the text.
SimpleValue (MobileXML) Ignored—not applicable to async devices.

10.6 Runtime and Data Model APIs

This section is for advanced users.

10.6.1 Oracle9iAS Wireless Runtime

Oracle9iAS Wireless runtime layer is a servlet in the OCA4J servlet container.
Oracle9iAS Wireless runtime processes requests from Hypertext Transaction
Protocol (HTTP) user agents, async user agents (such as SMS, e-mail, two-way
pagers), and autonomous mobile agents, and invokes the services in the repository
for these agents. It performs automatic session tracking and terminates the sessions
when they expire after the maximum interval of inactivity or when the sessions are
invalidated when the users log out from the Oracle9iAS Wireless.

10.6.1.1 Session Management

The Oracle9iAS Wireless runtime tracks the runtime session independently of the
Servlet session, by rewriting every URLs with an added parameter “PAsid,” which
specifies the session id. The session tracking identifies that a sequence of requests
are submitted by the same device. The runtime session contains the user
information, authentication contexts, adapter contexts, runtime contexts, URL
caches, and other states essential for the context sensitive services.

WAP 2.0 devices that implement the WAP HTTP State Management Specification
(http://www.wapforum.org/) can support cookies for session management. Most
of the commercial WAP gateways manage persistent cookies on behalf of the
devices. If the device or gateway does not support cookies, the OC4J servlet
container falls back to URL rewriting for session tracking. Since the Oracle9iAS
Wireless runtime also tracks the session, it is possible for more than one runtime
session to be bound to a single servlet session. For example, two Netscape browsers
on the same client PC can open two independent runtime sessions although the
browsers share the same servlet session because of the shared cookie repository.

By default, the binding to the Servlet session is enabled and is necessary for the
OC4J load balancing and fail over facility. The runtime session states are replicated
to other OC4J instances in the “island” so that the device requests can be redirected

10-62 Oracle9iAS Wireless Developer’s Guide

Runtime and Data Model APIs

to another OC4J instance in the island when the first instance fails. The runtime
sessions that are bound to the servlet sessions are invalidated when the servlet
sessions expire.

The session binding from the runtime session to Servlet session can be disabled by
the parameter setting “enable.http.session.binding=false” in the System.properties
file. Without binding to the servlet sessions, the runtime sessions are expired when
the sessions remain idle for more than what is specified by the
“wireless.session.expiration.time” parameter in the site configuration.

Every request from the device is serviced within the context of a valid runtime
session. The requests from anonymous devices are also tracked and assigned to
individual runtime sessions although the owners of the sessions are the same Guest
user, which is an anonymous user. The Oracle9iAS Wireless runtime automatically
provisions a “virtual” user in the Wireless repository for each device that can be
consistently identified, using the identifiers available in the devices. Runtime
sessions for virtual users are opened whenever the device identifiers are present in
the requests. The device identifiers may be based on native device identifiers such
as the Mobile Identification Number (MIN), Mobile Subscriber ISDN (MSISDN),
Ipv6 Address, Electronic Serial Number (ESN), etc. The device identifiers may be
also provisioned into the device by the WAP gateway. The WAP Client ID
Specification (http://www.wapforum.org/) defines a standard scheme for
supporting the device identifiers. If no device identifiers are supplied in the request,
the Oracle9iAS Wireless runtime provisions the device identifiers into the devices
using the persistent cookies whenever possible.

The Oracle9iAS Wireless runtime uses the device identifiers only to facilitate
personalization under the virtual user. The runtime sessions opened under the
virtual users have access to the information such as personalized presets and
customization profiles in the repository. The device identifier also enables the
device to reconnect to the same runtime session for the user, as long as the session
has not expired. The device identifiers add robustness to the session management
for Oracle9iAS Wireless, enabling continuity of the service in the face of intermittent
connection losses. The users may also make telephone calls in between connections
to the Oracle9iAS Wireless without losing their contexts.

Device identifiers are not a mean for authentication. Although the runtime sessions
for the virtual users are not authenticated, it does not prevent the users from
accessing their personalized portals. The users may establish authenticated sessions
only if they register with the Oracle9iAS Wireless. The user can supply the user
name and password during the registration. The user’s personalization profiles and
presets are still available to the user after the user becomes registered. The

Core Technologies 10-63

Runtime and Data Model APIs

advantages of the registration include the authentication process that gives access to
the secured services, such as the e-Wallets and financial transaction services.

The application programs for the services that require the authenticated sessions
must add the “PAlogin=true” parameter in the URLs. When the Oracle9iAS
Wireless runtime detects the PAlogin=true parameter among the URL parameters in
the request for a service, the runtime tries to authenticate the user if the runtime
session is not already authenticated. The authentication process, which typically
involves the user supplying the user name and password to the Oracle9iAS
Wireless Single Sign On (SSO) Server, is performed before the runtime invokes the
service being requested. See Section 10.6.2.15, "User-Defined Hooks Examples" for
how the folder renderer service can be used to prepare the URLs with “PAlogin”
parameter for the secured services in a folder. After the “PAlogin” parameter
invokes the authentication process, the application programs for secured services
still have the responsibility to check that the session is authenticated. The
applications that has direct access to the Oracle9iAS Wireless runtime objects can
use isUserAuthenticated() method in oracle.panama.rt.Session interface.
Applications written for the HttpAdapters can get the information from the Http
header attribute "x-oracle-user.authkind" which has the values "authenticated" or
"unauthenticated."

In addition, the applications can also check if the session is secured by the SSL, TLS,
or WTLS channels. The application that has direct access to the Oracle9iAS Wireless
runtime objects can use isSecure() method in the oracle.panama.rt.Request interface.
Applications written for the HttpAdapters can get the isSecure() condition through
the HTTP header attribute "x-oracle-device.secure,” which has the values "true"” or
"false.”

The authorization for access to a service is performed for each request for all
authenticated or unauthenticated sessions. The authorization makes sure that the
session user has the privilege to access the service. The default authorization policy
does not differentiate whether the session is authenticated or unauthenticated. The
unauthenticated sessions of a “virtual” or “registered” user has as much visibility as
the authenticated sessions. It is therefore critical for the applications to apply the
“PAlogin” parameter to enforce the authentication.

10.6.1.2 Virtual User Concept

The Oracle9iAS Wireless runtime automatically provisions “virtual” users in the
Wireless repository for the devices that can be consistently identified, using the
identifiers available in the devices. The virtual user option gives the device owners
immediate access to the personalization features of the portal, which enhance the

10-64 Oracle9iAS Wireless Developer’s Guide

Runtime and Data Model APIs

user experience. It automates the provisioning process for the carrier and enterprise
portal administrators using the emerging WAP Client ID standards.

The device owners can register with Oracle9iAS Wireless to gain access to secured
services through authentication. The registration can be done from the setup menus
by the device owner. This self-provisioning registration feature further simplifies
the administration tasks. The devices with the virtual user support let the registered
users connect to Oracle9iAS Wireless and access the personalized services without
signing on to the system until they are requested by the secured services to
authenticate. The virtual user feature not only improves the accessibility of the
portal but also enhances the data mining capability of portal operators since the
activities of the devices can be identified with virtual identities.

The virtual user feature can be disabled by the site wide configuration parameter
setting “wireless.virtualuser.enabled=false.” This property can be modified by the
Enable Virtual User option in System Manager>Site>User Provisioning control
panel. If the virtual user feature is disabled or if the device does not support device
identifier, then the session is opened under the “Guest” user, which must be
provisioned in the repository. The Oracle9iAS Wireless bootstrap repository
includes the anonymous user “Guest.”

Applications that have direct access to the Oracle9iAS runtime objects can check the
value of oracle.panama.model.UserType returned by the getUserType() method in
oracle.panama.model.User. The User of the runtime session can be retrieved from
the getUser() method in oracle.panama.rt.Session. Applications that are written for
the HttpAdapter can get the user type information from the HTTP header attribute
"x-oracle-user.userkind." The possible values of this attribute are "anonymous,"
"virtual,” or "registered."

10.6.1.3 Runtime API

During the request execution, the Oracle9iAS Wireless runtime dispatches the
authentication, authorization, device identification, location acquisition, data
logging and other business logics to the respective plug-in modules.

Oracle9iAS Wireless Runtime API provides the Java interfaces to examine the
runtime execution states, monitor the runtime execution behavior, and augment the
default execution semantics. The Runtime API consists of four Java packages:

« oracle.panama.rt provides the interfaces to the essential runtime objects for state
examination.

« oracle.panama.rt.event provides the interfaces to monitor the runtime execution
sequence based on the Java event model.

Core Technologies 10-65

Runtime and Data Model APIs

« oracle.panama.rt.nook provides the interfaces for the essential runtime
customizable components and the default implementation policies for these
interfaces.

« oracle.panama.rt.xform provides the interface for the customizable transformers
for plug in as the Device’s transformers.

These four packages are included in the wireless.jar file. Make sure you have
included wireless.jar in your Java classpath when you compile your Java
application or plug-in modules that depend on the Runtime API.

10.6.1.4 Hooks

One set of the interfaces in the Runtime API, which is contained in the package
oracle.panama.rt.hook, specifies the hooks that can be used by application
developers for their customized plug-in modules. For example, the
ListenerRegistrationHook registers listeners. Application developers can implement
this hook interface for a customized listener registration module that lets the
listeners selectively observe the event sources. A custom listener registration
module may subscribe the listeners only to the requests for the billable services.
Such a listener may add business rules to the runtime controllers.

The Runtime API consists of four public Java packages that provide interfaces for
the following functions:

« Examining and modifying the state of the runtime objects during the runtime
execution (Or acl e. panamnma. rt). The essential runtime objects are:

« Request: the service invocation specification

« Response: the result of a request execution

« Session: the durable context of a connection

« ServiceContext: the context in which the request is being executed
« ManagedContext: the application context of a particular service

« Monitoring the runtime execution sequence, based on the event model
(oracle.panama.rt.event)

« RequestListener observes the Request Events
« ResponseListener observes the Response Events
« SessionListener observes the Session Events

« Extending the customizable behavior of the runtime controllers using hooks
and policies (oracle.panama.rt.hook)

10-66 Oracle9iAS Wireless Developer’s Guide

Runtime and Data Model APIs

« Hooks are the main extension mechanisms.

« The default implementations of hooks are provided among the public API
as policies.

« Policies can be delegated to by the customized implementation of hooks, to
realize the chain of responsibility design patterns.

« The customized hooks must implement the static getinstance() method
according to the Oracle9iAS Wireless singleton pattern.

The new customized hook implementations, which implement the respective
interfaces and the singleton pattern, are registered in the appropriate entries
through System Manager>Site>Wireless Web Server>Hooks control panel in the
Webtool.

10.6.1.5 Runtime Objects

The oracle.panama.rt package defines the core of the Runtime API. Adapters that
conform to the runtime APl must implement the
oracle.panama.adapter.RuntimeAdapter interface. The classes that implement the
RuntimeAdapter interface can use the Request, Response, Session, and
ServiceContext interfaces in the oracle.panama.rt package.

The following sections describe the interfaces and classes in this package. The
interfaces are:

« Request

« Response

« Session

« ServiceContext

« ManagedContext

The classes in this package are:
« RequestFactory

« SessionHolder

10.6.1.6 Request

A request object is used to invoke services. Generally, it defines which service to
invoke and the particular parameters needed to invoke that service. It also defines
the user, device, and other runtime contexts.

Core Technologies 10-67

Runtime and Data Model APIs

A listener can subscribe to events from a request.

The following methods in the Request interface allow you to access, replace, add, or
remove the parameters that are associated with the request object:

hj ect getAttribute(AttributeCategory category, String nane)
bj ect setAttribute(AttributeCategory category, String nane,
hj ect attribute)

The methods access the name and value of the attributes, which can be user
parameters, system parameters, or the contexts for adapters, hooks, and listeners.

There are three categories of attributes:
« PARAMETERS

« RUNTIME

» CONTEXTS

The most important attribute category for Request is PARAMETERS, which
contains the query parameters submitted by the user. For HTTP user agents,
Oracle9iAS Wireless runtime parses the URL query string to retrieve the
parameters. The runtime agents or other internal clients can set these parameters
programmatically. Since Oracle9iAS Wireless runtime may cache and rewrite the
URL for HTTP user agents, some of the parameters are maintained in the URL
cache for the user. Oracle9iAS Wireless runtime may have to parse both the query
strings from the HTTP request and the URL cache to build a complete list of query
parameters.

Step 2 in Section 10.6.2.1, "Case: A Request Involving Session Establishment and
Authentication” shows that each time a new request object is created, Oracle9iAS
Wireless runtime passes the request object to the ListenerRegistrationHook to let the
hook register listeners.

The following table describes the names of the system-defined parameters which
are part of the PARAMETERS AttributeCategory in Request. The left column in the
table shows the Java constants that you can use to retrieve the value of the
parameter from the request object.

The Mobile XML results can contain the runtime variables, (composed from the
names of the parameters) by appending two underscore characters (__) before and
after the parameter name. These runtime variables in the Mobile XML results are
"place holders" which are replaced by the values of the parameters during the post
processing phase (Step 25 in Section 10.6.2.1, "Case: A Request Involving Session

10-68 Oracle9iAS Wireless Developer’s Guide

Runtime and Data Model APIs

Establishment and Authentication") before the final result is returned to the
requester.

Table 10-7 System Defined Request Parameters

Java Program Constants The Name of the

Representing the Name of the Parameter in the

Parameter in the Request Object Request Object Description

Request. USER_NAME "PAuserid" Deprecated

Request.PASSWORD "PApassword" Deprecated

Request. EFFECTIVE_USER_NAME "PAeffuserid" The name of the effective user.

Request.SERVICE_OID "PAoid" The object id of the requested service.

Request.SERVICE_PATH "PAservicepath” The path of the requested service in the
repository.

Request.SESSION_ID "PAsid" The session id for tracking user sessions.

Request. REQUEST_LANDMARK "PArimk" The landmark setting for the current request.

Request.SESSION_LANDMARK "PAsImk" The landmark setting for the current session.

Request. LOGOFF "PAlogoff" The request to log off and invalidate the session.

Request.LOGIN "PAlogin” The authentication request.

Request.SESSION_HOME “PAhome” The object id of the service to be set as the session
home.

Request. GO_SESSION_HOME "PAgoHome" A request parameter to invoke the session home
service.

Request. REQUEST_USER_PROFILE "PArprof" The parameter used to specify the user profile for
the request.

Request.SESSION_USER_PROFILE "PAsprof" The parameter used to specify the user profile for
the session.

Line [4] in the following code example shows how the value of the PArImk
parameter can be retrieved from the Request object. Line [5] shows a statement for
setting the Request parameter.

Example:
public void invoke(ServiceContext sc) {
Request request = sc.get Request();

String value = request. get Paranmet er (Request . REQUEST_LANDMARK) ; [4]
request . set Par amet er (Request . SESSI ON_LANDMARK, “Redwood City”); [5]

Core Technologies 10-69

Runtime and Data Model APIs

10.6.1.7 Response

This interface represents the Response objects in Oracle9iAS Wireless runtime. A
listener can subscribe to events from a Response. The Response object is the
execution result of the prior Request object.

10.6.1.8 Session

This interface represents the session objects in Oracle9iAS Wireless runtime. A valid
session is established after an anonymous user, virtual user, or registered user is
identified for the session (refer to the Session Management Section above for the
user identification process). Any request (or service invocation) can only be
executed in a valid session context. A session can either expire after the session
exceeds the maximum interval of inactivity or get invalidated when the user
requests an explicit log out. Developers can store the session-long information in
the corresponding session object.

A listener can subscribe to events from a session.

Step 7 in Section 10.6.2.1, "Case: A Request Involving Session Establishment and
Authentication” shows that each time a new session object is created, Oracle9iAS
Wireless runtime passes the session object to the ListenerRegistrationHook to let the
hook register listeners.

10.6.1.9 ServiceContext

A ServiceContext provides the service request context for a valid and authorized
request. A new ServiceContext object is created for each validated request. The
ServiceContext stores the input parameters, output parameters, and Mobile XML
results. The associated request and session can be accessed from the ServiceContext
object.

The Mobile XML result can contain the system defined ServiceContext parameters
using the runtime variables as "place holders," which are substituted with values
during the post processing phase (Step 25 in Section 10.6.2.1, "Case: A Request
Involving Session Establishment and Authentication™) before the final result is
returned to the requester.

Runtime variables are composed from the names of the parameters, by appending
two underscores (__) before and after the parameter name.

Example:

Mobile XML results can contain runtime variables as follows:

10-70 Oracle9iAS Wireless Developer’s Guide

Runtime and Data Model APIs

target="__ REQUEST NAME_?__ SESSION_&anp; PAoid=_PAoid_ "

Given the variables above and if the following three conditions exist in the
ServiceContext:

« thevalue of REQUEST _NAME is"/ptg/rm"
« the value of _SESSION is PAsid=ukAj6hH

« the value of PAoid is 254
Then after the substitution of the runtime variables, the result becomes:

target ="/ pt g/ r nPPAsi d=ukAj 6hH&anp; PAoi d=254"

All the input parameters, output parameters, and Mobile XML result in the
ServiceContext are externalized as an XML document.

This XML document is the input document for the transformers. The XSLT
stylesheets for the transformers must be written against the DTD for the
ServiceContext’s XML document.

The following table describes the system-defined ServiceContext parameters which
are found among the ServiceContext arguments. The left column in the table shows
the Java program constants that represent the names of the parameters in the
ServiceContext object.

Table 10-8 The System Defined ServiceContext Parameters

Java Program Constants Representing The Name of the

the Name of the Parameter in the Parameter in the

ServiceContext ServiceContext Object Description

ServiceContext.DEVICE " LOGICAL_DEVICE' The name of the device model.

ServiceContext. REQUEST _NAME " REQUEST_NAME" The URI of the servlet.

For example, if the URL is then the URI of the servlet /ptg/rm.

http://www.oracle.com/ptg/r m? is:

PA0id=100,

ServiceContext HTTP_REQUEST_NAME " _HTTP_REQUEST_ The absolute URL of the portal

NAME" servlet requested through the HTTP

protocol.

ServiceContext. HTTPS_REQUEST _ " HTTPS_REQUEST _ The absolute URL of the portal

NAME NAME" servlet requested through the

HTTPS protocol.

Core Technologies 10-71

Runtime and Data Model APIs

Table 10-8 The System Defined ServiceContext Parameters

Java Program Constants Representing
the Name of the Parameter in the
ServiceContext

The Name of the
Parameter in the
ServiceContext Object

Description

ServiceContext. ABS_REQUEST_NAME
ServiceContext.SESSION

For example, PAsid=ukAj6hH

The URL of the requested service in the
repository

" SERVICE_NAME"
ServiceContext.FIRST_ ACCEPT_LANG
ServiceContext.USER

ServiceContext. USER_ LANGUAGE
ServiceContext. LONGITUDE

ServiceContext.LATITUDE
ServiceContext. SCREEN_ COLS

ServiceContext. SCREEN_ ROWS

ServiceContext.SCREEN_WIDTH
ServiceContext. SCREEN_ HEIGHT
ServiceContext. USER_ AGENT

ServiceContext ACCEPT_ LANG

ServiceContext. COUNTRY

ServiceContext.STATE

" ABS_REQUEST NAME"

" SESSION"

ServiceContext.INP_
FIRST_ SERVICE_URL

For example,
/users/smith/news

The name of the requested
service in the repository

" FirstAcceptLanguage"
"_User"

" UserLanguage"

" Longitude”

" Latitude"

" ScreenColumns"

" ScreenRows"

" ScreenWidth"
" ScreenHeigth"
"User-Agent"

"Accept-Language”

" Country"

" State"

10-72 Oracle9iAS Wireless Developer’s Guide

The page-name of the portal servlet
requested, for example:
http://www.oracle.com/ptg/rm

The Sessionld URL
" SERVICE_URL"

ServiceContext.INP_FIRST _
SERVICE_NAME

For example, news

The first language in the list of
accepted languages.

The effective user, which may be
the authenticated user.

The user’s preferred language; it
should be one of the user agent’s
accepted languages.

The current longitude location.
The current latitude location.

The number of columns that are
displayed.

The number of rows that are
displayed.

The width of the display.
The height of the display.

The type of the user agent that is
obtained from the HTTP header.

The list of the languages that are
accepted by the user agent.

The country that contains the
current location.

The state that contains the current
location.

Runtime and Data Model APIs

Table 10-8 The System Defined ServiceContext Parameters

Java Program Constants Representing The Name of the

ServiceContext

the Name of the Parameter in the Parameter in the
ServiceContext Object Description
ServiceContext. POSTALCODE "_Postalcode" The postal area that contains the
current location.
ServiceContext. DEVICE_CATEGORY " DeviceCategory" The category of the device, possible
values are
"microbrowser" "pdabrowser"
"micromessenger" "messenger”
ServiceContext.SOFT_KEYS " SoftKeys" The softkeys supported by the
device.
ServiceContext.IMAGE_PREFERENCES " ImagePreferences"” The image preferences of the
device.
ServiceContext. MAX_DOC_SIZE " MaxDocSize" The maximum size of the document

handled by the device.

In the following code fragment example, line [5] shows that the Java program
constants can be used to refer to the parameters. Line [6] shows that the name of the
parameter can be spelled out (case sensitive). The parameter "Accept_encoding” is
not one of the parameters in the above table. Line [7] shows that the parameters
from the request object are also available among the ServiceContext arguments.
However, the ServiceContext parameters are not part of the PARAMETERS
attribute category in Request objects, and are not accessible from the Request
objects. They can be accessed only from the ServiceContext arguments as shown in
the following example.

Example:

public void invoke(ServiceContext sc) {
Argunents args = sc.get!|nput Argunents();
String | anguage

String encoding
String | andmark

args. get | nput Val ue(Servi ceCont ext . USER_LANGUAGE) ; [5]
args. get | nput Val ue(" Accept _encoding"); [6]
args. get | nput Val ue(Request . REQUEST_LANDVARK) ; [7]

}

The Java program constants represent the names of the tags in the XML documents
for the ServiceContext. The “ServiceRequest” tag is the root element of the

Core Technologies 10-73

Runtime and Data Model APIs

ServiceContext. The “Result” tag contains the Mobile XML result. The “Arguments”
tag is a sibling of the “Result” tag; it contains all input and output arguments.

Table 10-9 The XML Tag Names for ServiceContext and Results

Java Program Constants
Representing the Names of

the XML Tags in the The Name of the

ServiceContext XML Tag Description

ServiceContext.SERVICE_ "ServiceRequest" XML element containing service context
REQUEST

ServiceContext.RESULT "Result” XML element containing the Mobile

XML result.

The following example of the XML document for a ServiceContext shows the
“ServiceRequest” tag as the root element of the ServiceContext. Several of these
input arguments (tags 21 to 28) are obtained from the HTTP header attributes.

Example of the XML document for a ServiceContext:

1. <ServiceRequest >
a. <Argunents>
i. <lnputs>

1. <PAsid type="Singl eLine"
usage="t rue">BVl cv</ PAsi d>

2. <PAoid type="Singl eLi ne"
usage="true" >244</ PAoi d>

3. <PAservlet type="Singl eLine"
usage="t rue">rnx/ PAservl et >

4. <PAdebug type="Si ngl eLi ne"
usage="t rue">1</ PAdebug>

5. <_SERVI CE_NAME type="Si ngl eLi ne"
usage="true" >Enpl oyee</ _SERVI CE_NAME>

6. <_SERVI CE_NAME_ENC type="Si ngl eLi ne" usage="true">
Enpl oyees</ _SERVI CE_NAME_ENC>

7. <_SERVICE_URL type="Singl eLine" usage="true">
/ hore/ Enpl oyees</ _SERVI CE_URL>

8. <_SERVI CE_URL_ENC type="Si ngl eLi ne" usage="true">
/ home/ Enpl oyees</ _SERVI CE_URL_ENC>

9. <_LOG CAL_DEVI CE type="Si ngl eLi ne" usage="true">HTM.
</ _LOd CAL_DEVI CE>

10. <_SESSI ON type="Singl eLi ne" usage="true">PAsi d=BVI cv
</ _SESSI ON>

11. <_REQUEST_NAME type="Singl eLi ne" usage="true">/ p2g/rm

10-74 Oracle9iAS Wireless Developer’s Guide

Runtime and Data Model APIs

</ _REQUEST_NAVE>
12. <_ScreenCol ums type="Si ngl eLi ne" usage="true">0
</ _ScreenCol ums>
13. <_ScreenRows type="Si ngl eLi ne" usage="true">0
</ _ScreenRows>
14. < ScreenWdth type="Si ngl eLi ne" usage="true">0
</ _ScreenWdt h>
15. <_ScreenHei gth type="Singl eLi ne" usage="true">0
</ _ScreenHei gt h>
16. <_User type="Singl eLi ne"
usage="true">user 1</ _User>
17. <_UserLanguage type="Singl eLi ne"
usage="true"/>
18. <_FirstAcceptLanguage type="Singl eLi ne" usage="true">ja
</ _FirstAccept Language>
19. < _lLongitude type="Singl eLine"
usage="true"/>
20. < Latitude type="SingleLine"
usage="true"/>
21. <accept type="SingleLine" usage="true">i mage/gif,
i mage/ x- xbi t map, inmage/|jpeg,
i mage/ pj peg, image/png, */*</accept>
22. <accept-charset type="SingleLine" usage="true">
i s0-8859-1, *, utf-8</accept - charset >
23. <accept -encodi ng type="Si ngl eLi ne"
usage="t rue">gzi p</ accept - encodi ng>
24. <host type="Singl eLine"
usage="t rue">| ocal host </ host >
25. <cooki e type="Singl eLi ne" usage="true">
kur t =NTICMUI zNzcz QTA1Qz BFRDAXNz Y
30DdBNEYXNTcORKYWMDC 1Rj ¢ 1M FFU29ubnk=</ cooki e>
26. <accept -l anguage type="Singl eLi ne"
usage="true">j a, en</ accept - | anguage>
27. <connection type="Si ngl eLine"
usage="t rue">Keep- Al i ve</ connect i on>
28. <user-agent type="SingleLine"
usage="true">MWzilla/4.5
[en] (WnNT; U </user-agent>
ii. </lnputs>
b. </ Argunents>
C. <Result>

<Si npl eResul t >

1. <Sinpl eCont ai ner nane="Services">
a. <SinpleMenu name="alias" title="Enpl oyees">

Core Technologies 10-75

Runtime and Data Model APIs

b. <Sinpl eMenul tem
target ="/ p2g/ r n?PAsi d=BVI cv&
PAckey=6!">Scot t </ Si npl eMenul t e
c. <SinpleMenultem
target="/p2g/ r n?PAsi d=BVI cv&
PAckey=7!">Ti ger </ Si npl eMenul t enw
d. </ SinpleMenu>
2. </ Sinmpl eCont ai ner >
</ Si npl eResul t >
d. </Result>

2. </ Servi ceRequest >

10.6.1.10 ManagedContext

In many situations, the customized hooks, listeners, and adapters require
session-long, application-defined context information to be stored in the session
object, so that subsequent calls or requests can access the context information.
Furthermore, these application contexts may contain system resources that should
be freed when the session is closed.

The application-defined context must implement the ManagedContext interface and
provide customized implementation for the invalidate method. The customized
hooks, listeners, and adapters can register the session-long application context
object with the session through the setManagedContext method. The invalidate
method will be called by Oracle9iAS Wireless runtime when the session terminates.

10.6.1.11 RequestFactory

The RequestFactory class is defined in the oracle.panama.rt package. The
RequestFactory provides the APIs to programmatically create request objects to be
executed. The RequestFactory creates the request objects that, when executed,
initiate the runtime controllers to process the service requests by invoking the
necessary business processes, such as session management, authentication,
authorization, service invocation, and result transformation.

10.6.1.12 SessionHolder

The SessionHolder class is defined in the oracle.panama.rt. package. The
SessionHolder is the serializable representation of the runtime Session. It is used to
bind the runtime Session to the servlet session as required for the OC4J cluster
configuration. Only serializable objects placed in the runtime session and the servlet
session are replicated among other OC4J instances in the island. The portal

10-76 Oracle9iAS Wireless Developer’s Guide

Runtime and Data Model APIs

developers can get an instance of this serializable object using the
getSessionHolder() method in the Session.

10.6.1.13 Case 1: Application of the RequestFactory Pattern in the HTTP Servlet

This case uses the ParmImpl servlet to illustrate the RequestFactory pattern. The
following code example is the doGet() method of the ParmIimpl servlet:

public void doGet (Ht tpServl et Request request, Ht tpServletResponse response)
throws | CException, ServletException {
Request req = Request Fact ory. creat eRequest (request, response); [3]
if (req ==null) {
return;
}

try {
Response resp = req. execute(); [8]

} catch (Exception ex) {

} finally {
req.invalidate(); [11]
}

}

Line [3] in the above example illustrates the use of the static method
createRequest(HttpServletRequest request, HttpServletResponse response) of
RequestFactory to create a Request object.

When the Request object is executed in line [8], it returns a Response object.

The Java code in the above example does not include reading or writing of the
content in the Response object because the runtime controller directly transfers the
content to the HttpServletResponse object.

The execute()method of the Request object starts a control flow which performs the
following sequence of processes:

1. Assign a session to the request.
2. Parse the URL parameters in the HttpServietRequest.

3. Authenticate the user if the user credentials are provided among the
parameters.

4. Authorize the requested service.
5. Invoke the service.

6. Transform the XML result from the service invocation.

Core Technologies 10-77

Runtime and Data Model APIs

7. Convert the final XML result to a string.

8. Set the response string in the HttpServletResponse.

9. Return from the servlet.

Line [11] in the code example invalidates the completed Request, thereby freeing all
the resources associated with the request object.

10.6.1.14 Case 2: Application of the RequestFactory Pattern in the Runtime

Agent

The following case illustrates how a runtime agent uses the RequestFactory pattern
to request services through the Oracle9iAS Wireless runtime.

inport oracle.
inport oracle.
inport oracle.
inport oracle.
inport oracle.

i nport oracle.
inport oracle.
inport oracle.
inport oracle.
inport oracle.

panana.
panama.
panama.
panama.
panana.

panana.
panama.
panama.
panama.
panana.

rt.Request Factory;
rt.Request;
rt.Response;
rt.Session;

rt. ServiceCont ext;

model . Met aLocat or;
nodel . Model Ser vi ces;
nodel . Servi ce;

nodel . User;

model . Al ert Addr ess;

Session signon(String user, String password) throws PanamaException {
Request request = Request Factory. creat eRequest (user, password);
request.validate();[17]

Session session = request. get Session();[18]
request.invalidate();
return session;

}

String invokeService(Session session, Service service, User user,

A

Request req;

Response

resp;

ert Address address, String synbol) {

Servi ceCont ext sc;
String content = null;

try {

10-78 Oracle9iAS Wireless Developer’s Guide

Runtime and Data Model APIs

req = Request Factory. creat eRequest (session, service,
user, address);[28]
if (req == null) {
return null;
}

try {
req. set Paraneter (“Ti cker Symbol ”, synbol);

sc = req.validate();
resp = req. execute();
if (sc.isAnyResultPresent()) {
content = resp.getContent();
}
} catch (Exception ex) {
} finally {
req.invalidate();

}
}

return content;

}

String userNane = “orcladnmin”;

String password = “nanager”;

String effectiveUser Name = “CQuest”;

String synbols[] ={ “orcl”, “sunw’, “csco” };

void main() {
Model Services nodel s = Metalocator. get I nstance(). get Model Services();
User user = nodel s. | ookupUser (effectiveUser Nane);
Service service = nodel s. | ookupServi ce(“YahooQuote");
Al ert Address[] addresses = user.get Addresses();
Session session = signon(userNane, password);

for (int i =0; i < synbols.length(); i++) {
String content = invokeService(session, service, user, addresses[0],
symbol [i]);
}

}

The signon() method signs on the user to the Oracle9iAS Wireless runtime. When
the Request object is validated in line [17], the user name and password credentials

Core Technologies 10-79

Runtime and Data Model APIs

are used to authenticate the user. Since no service is invoked during the sign-on
request, the code example shows that the Request object is not executed.

If there is no exception after validation, the authenticated session is retrieved from
the Request object in line [18].

The Session object is used in the invokeService() method for subsequent requests to
the runtime. Line [28] in the invokeService() method creates a Request object for an
effective user and a specified service. For this operation to succeed, the
authenticated user must have administrative privileges over the effective user
account.

The address parameter identifies the target device model for the Oracle9iAS
Wireless runtime to format the content in the appropriate markup language.

The main routine in the above code example illustrates how it iteratively invokes
the service each time with a different input parameter. The contents returned by
each service request can be combined into a larger document and sent to the user.

10.6.1.15 Event, Listener

During the establishing of a session, the expiration of a session, or the processing of
a request, Runtime can generate a sequence of events to signal the execution
progress if any interested listener is registered with these objects. Generally,
listeners should not be intrusive to the runtime execution. They should monitor the
runtime progress instead of altering its execution behavior. The possible
applications for the event package can be a logger, a billing procedure, or a
performance monitor tool. The oracle.panama.rt.event package defines the Listener
and Event API.

Listeners listen to Events. Listener and Event form an important design pattern in
which the Listener is an observer. Three types of listeners are defined:

« RequestListener

= SessionListener

« ResponseListener

The ListenerRegistrationHook subscribes the listeners to receive events from the
subject, such as Request, Response, or Session.

10.6.1.16 Implementing the RequestListener Interface

The implementor of or acl e. panana. rt. event . Request Li st ener can receive
any of the following events:

« before request

10-80 Oracle9iAS Wireless Developer’s Guide

Runtime and Data Model APIs

« request begin

« request end

« Service begin

« service end

« transform begin
« transformend

« after request

« request error

The timing sequence regarding when the event is generated is discussed in Section
10.6.2, "Reference Model". However, not all the Request-related events will be
generated. Which specific Request-related event will be generated is controlled by
the enent mask in System Manager -> Site -> Wireless Web Server -> Event and
Listeners control panel in the Webtool.

For example, if you want to have your RequestListener receive the request begin
event, you should set the Enable 'request begin' Event to true in the System
Manager -> Site -> Wireless Web Server -> Event and Listeners control panel in
the Webtool. The site configuration property names are:

Wi rel ess. http. event. bef or eRequest
Wi rel ess. http. event.requestBegin
Wi rel ess. http. event.request End

wi rel ess. http. event. servi ceBegin
wi rel ess. http. event. servi ceEnd

Wi rel ess. http. event.transfornBegin
Wi rel ess. http. event.transfornEnd
Wi rel ess. http. event.requestError
wirel ess. http. event. aft er Request

Step 11 in Section 10.6.2.1, "Case: A Request Involving Session Establishment and
Authentication" indicates that the RequestListener can intercept the input
parameters during the requestBegin(RequestEvent) and apply additional business
rules to the request parameters before service invocation.

10.6.1.17 Implementing the ResponseListener Interface

The implementor of oracle.panama.rt.event.ResponseListener can receive the
Response-related event. The only possible Response-related event is response error.
If you want Oracle9iAS Wireless runtime to have your ResponseListener receive the

Core Technologies 10-81

Runtime and Data Model APIs

response error event, you should set the Enable 'response error' Event option to true
in System Manager -> Site -> Wireless Web Server -> Event and Listeners control
panel in the Webtool. The site configuration property name is:
wireless.http.event.responseError

10.6.1.18 Implementing the SessionListener Interface

The implementor of oracle.panama.rt.event.SessionListener can receive the Session
life cycle events. The possible Session events include:

« Dbefore session

« session begin

« Session authenticated

« Session end

« after session

The timing sequence regarding when the event is generated is discussed in Section
10.6.2, "Reference Model". However not all the Session events will be generated.
Which specific Session event will be generated is controlled by the event masks in
the System Manager -> Site -> Wireless Web Server -> Event and Listeners control
panel in the Webtool.

For example, if you want to have your SessionListener receive the session begin
event, you should set the Enable *session begin® Event option to true in the System
Manager -> Site -> Wireless Web Server -> Event and Listeners control panel in
the Webtool. The site configuration property names are:

Wi rel ess. http. event. bef or eSessi on

Wi rel ess. http. event. sessi onBegi n

Wi rel ess. http. event. sessi onAut henti cat ed
wi rel ess. http. event. sessi onEnd

wirel ess. http. event. after Sessi on

10.6.1.19 Guidelines
The following guidelines describe how to set up the customized Event Listener:

1. Implement the RequestListener, ResponseListener, or SessionListener interface.

2. Compile the new Java source files from Step 1 with the wireless.jar file in the
classpath.

10-82 Oracle9iAS Wireless Developer’s Guide

Runtime and Data Model APIs

3. Modify the event mask entries in the System Manager -> Site -> Wireless Web
Server -> Event and Listeners control panel to enable the generation of specific
events.

4. Specify the class names for the RequestListener, ResponseListener, and
SessionListener in the System Manager -> Site -> Wireless Web Server -> Event
and Listeners control panel of webtool. The site configuration property names
are:

wirel ess. http.l ocator.conbined.listener.classes
wirel ess. http.locator.session.listener.classes
wirel ess. http.locator.response.|listener.cl asses
wirel ess. http.locator.request.|istener.classes

5. Restart the Oracle9iAS Wireless instance.

Any of the event listeners may raise the AbortServiceException to signal the
runtime controller to reject the request, but this veto signal is effective only if it is
raised during one of the following events when the service is yet to be invoked:

« beforeRequest (Request Event)

« beforeSessi on(Sessi onEvent)

« sessionAut henti cat ed(Sessi onEvent)
« request Begi n(Request Event)

« sSessionBegi n(Sessi onEvent)

« servi ceBegi n(Request Event)

The listeners may raise the AbortServiceException during the serviceEnd(),
transformBegin(), and transformEnd() events to refuse the service’s content to the
user, although any durable effect of the service invocation cannot be rolled back.

The sessionEnd(), afterSession(), requesteEnd(), and afterRequest() methods should
not raise the AbortServiceException.

A listener that implements the Request, Response, and Session listener interfaces is
described in the code example in Section 10.6.1.16, "Implementing the
RequestListener Interface". The listener in this example listens to all Request,
Response, and Session events. This listener logs the response time, service time, and
transform time of the requests.

The values placed in the event object persist through the life cycle of the event
source and can be retrieved during subsequent events. Alternatively, the listener
may place the values in the RUNTIME attribute category of the Request or Session

Core Technologies 10-83

Runtime and Data Model APIs

objects. Both techniques allow the listeners to correlate and trace the events from
individual event sources.

10.6.1.20 Hooks

The Oracle9iAS Wireless runtime specifies the hook interfaces for standard plug-in
modules. The following sections describe the hooks in the order in which they are
invoked by the runtime.

In the Oracle9iAS Wireless Runtime API, Hook and Policy form a chain of
responsibility design pattern, within which Policy is the default implementation of
Hook that can be delegated by the custom implementation.

The following table lists the Hooks and the default Policies that correspond to the
hook interfaces:

Table 10-10 Classes that Implement the Default Policies

Hook Name

Policy Name

AuthenticationHook
AuthorizationHook
CallerLocationHook
DeviceldentificationHook
FolderRendererHook
HomeFolderSorterHook
ListenerRegistrationHook
LocationServiceVisibilityHook
MobileldHook
NormalizeAddressHook
PostProcessorHook
PreProcessorHook
ServiceVisibilityHook
SessionldHook
SignOffHook
SignOnPagesHook

AuthenticationPolicy
AuthorizationPolicy
CallerLocationPolicy
DeviceldentificationPolicy
FolderRendererPolicy
HomeFolderSorterPolicy
ListenerRegistrationPolicy
LocationServiceVisibilityPolicy
MobileldPolicy

NormalizeAddressPolicy

ServiceVisibilityPolicy
SessionldPolicy
SignOffPolicy
SignOnPagesPolicy

10-84 Oracle9iAS Wireless Developer’s Guide

Runtime and Data Model APIs

10.6.1.21 The ListenerRegistrationHook

Steps 2 and 7 in Section 10.6.2.1, "Case: A Request Involving Session Establishment
and Authentication" show that each time a new Session or Request object is created,
runtime passes the Session or Request object to the ListenerRegistrationHook to let
the hook register listeners. The listener registration module can be customized to let
the listeners selectively observe the event sources.

For example, a custom listener registration policy may subscribe the listeners only
to the requests for the billable services. Such a listener may add business rules to the
runtime controller.

10.6.1.22 The SessionIDHook

The Oracle9iAS Wireless runtime uses the SessionldHook to uniquely identify each
new session it creates with a Session id. This Session id is used in the URLSs for
session tracking. It is important for custom Session id modules to generate long
Session id strings. Longer Session id strings are less vulnerable to attack.

10.6.1.23 DeviceldentificationHook

Runtime uses the DeviceldentificationHook to determine the device model for the
user agent. For HTTP clients, the user-agent type is the value of the “User-Agent”
attribute in the HTTP header. The DeviceldentificationHook can implement robust
determination of the type of user agents for cases where the user-agent attribute is
not supplied in the request.

This hook provides a mapping of the user-agent type to the device model. Runtime
agents can specify the Device in the RequestFactory method. If the Device is
specified, the runtime controller will not invoke the DeviceldentificationHook.

Although customization and extensions are supported, the default device
identification policy is fully functional.

10.6.1.24 AuthenticationHook

The Oracle9iAS Wireless runtime dispatches the authentication operations to the
authentication module that implements the AuthenticationHook. The
AuthenticationPolicy provides a public interface to the default authentication policy
in Runtime. The default policy uses the user name and password credentials in the
Oracle9iAS Wireless Single Sign On (SSO) server.

A different implementation of the AuthenticationHook using an external module
may use any custom authentication scheme to validate the user. The external
authentication module may optionally fail over to the default authentication policy.

Core Technologies 10-85

Runtime and Data Model APIs

The AuthenticationHook returns the AuthenticationContext if the authentication
succeeds. Otherwise, the hook raises the AuthenticationException. The
AuthenticationContext that is returned by the authentication module specifies the
User object for the Session. This User object may be located in the Oracle9iAS
Wireless repository or provisioned by the authentication module on demand.

The AuthenticationContext is passed to the AuthorizationHook for service
authorization. The String getAuthenticationType() method in Request can provide
the name of the authentication scheme used by the plug-in authentication module,
which extends the "BASIC", "DIGEST", or "SSL" authentication schemes supported
by the javax.servlet.http package.

Runtime provides infrastructure support to mix and match different authentication,
authorization, and provisioning policies by delegating the authentication operation
to the AuthenticationHook and the authorization operation to the
AuthorizationHook.

Runtime places the AuthenticationContext, which is returned by the
AuthenticationHook, in the Session. The AuthenticationContext is passed only to
the AuthorizationHook and is not accessible through the public interface.

The AuthenticationHook may either create the user or look up the user in the
repository. If the user is provisioned by the external accounting system, the
AuthenticationHook will also provision the home folder and group for the user. The
user, which is returned through the AuthenticationContext, becomes the
authenticated user of the session. Although large-scale customization and extension
efforts are supported, the built-in authentication and authorization policies are fully
functional.

10.6.1.25 SignOnPagesHook

In the Oracle9iAS Wireless environment, the sign on pages are generated by the SSO
server. The SignOnPagesHook is used primarily for authentication against the stand
alone repository. This hook is not shown in the execution because it is invoked only
when the AuthenticationPolicy raises the AuthenticationFailOverException.

When the SignOnPagesHook generates the sign-on page, the Oracle9iAS Wireless
runtime sends that sign-on page to the user, who submits the user’s name and
password for authentication by the default authentication module in stand alone
mode (without SSO).

10.6.1.26 MobileIDHook
Runtime invokes the MobileIDHook to determine the mobile client ID.

10-86 Oracle9iAS Wireless Developer’s Guide

Runtime and Data Model APIs

The mobile identifier may be supplied by the external accounting system, by one of
the fields (such as, the mobile ID field or external ID field) of the user object in the
repository, or by one of the attributes in the HTTP header. The HTTP header
attribute names can be specified by the
“wireless.mobile.id.request.parameter.name” through the System Configuration
Webtool. This mobile id is placed in the authenticated session.

10.6.1.27 AuthorizationHook

The authentication operation is performed only one time to establish a session for
the user. The authorization operation is performed for each request to the
Oracle9iAS Wireless runtime.

The authorization module that implements the AuthorizationHook may use any
custom authorization scheme. It is probable for the same party to implement both
the AuthenticationHook and the AuthorizationHook. For example, in an
environment that uses a pre-billing scheme, the AuthenticationHook provides the
AuthenticationContext that indicates the user’s prepaid level or type of service to
the AuthorizationHook.

The external authorization module may optionally fail over to the default
authorization policy by delegating to the AuthorizationPolicy provided in the
public package. The default authorization policy authorizes the service using the
visibility, validity, ownership, and group membership configuration in the
repository.

10.6.1.28 CallerLocationHook

The CallerLocationHook provides the interface to acquire a caller’s physical
location in terms of latitude and longitude. The Oracle9iAS Wireless provides two
different default implementations of the CallerLocationHook interface.

The oracle.panama.rt.common.CallerLocator class provides the simple
implementation using the location marks. The location object is one way of
specifying the longitude and latitude position. The user can change the location
setting in the session through the URL parameter PAsImk. If the automatic location
acquisition is disabled, the location setting in the session supplies the current
position of the mobile device to the location-based services.

The oracle.panama.rt.common.LocAcq provides the automatic location acquisition
implementation if the user specifies the appropriate privacy directive. If the
automatic acquisition fails or is disabled through the Enable Mobile Positioning flag
in the System Manager -> Site -> Location Management control panel of the

Core Technologies 10-87

Runtime and Data Model APIs

webtool or by setting the “wireless.elocation.mp.enable” parameter in the Site
Configuration parameter table, the prior location mark semantics will be applied.

See the oracle.panama.mp section for details on how to specify which mobile
position server (either Ericsson or SignalSoft, or another customized server) is used
to acquire the caller’s location.

10.6.1.29 Service

Services are Oracle9iAS Wireless repository objects. A Master Service object
contains a RuntimeAdapter, which is chief among plug-in components. Folders are
a type of service used for organizing other folders and services in the repository.
The following two hooks control how the content of a folder gets rendered:

« FolderRendererHook
« LocationServiceVisibilityHook

The FolderRendererHook uses the LocationServiceVisibilityHook to render the
contents of the folder. When the user first signs on to the system, runtime invokes
the user’s home folder. The built-in FolderRendererHook, accessible through the
FolderRendererPolicy, combines the contents of the home folder with the folders
and services from one or more of the user’s groups. The
LocationServiceVisibilityHook selects from the location-based subfolders in the
folder for those whose regions intersect with the current position of the mobile
device.

Each folder can be associated with a folder rendering service which provides
customized view of the folder. The default folder rendering policy or the site wide
customized folder rendering hook is used only if the folder does not have an
associated rendering service, either assigned to it or inheritable from its parent
folders.

10.6.1.30 PreProcessorHook, Transformer, and PostPorcessorHook

If the PreProcessorHook is specified, the Runtime invokes the PreProcessorHook to
process the Mobile XML result from the service invocation. The Device’s
Transformer is applied to the result of the PreProcessorHook. If specified, the
PostProcessorHook is invoked to process the markup page that is generated by the
Device’s Transformer.

10-88 Oracle9iAS Wireless Developer’s Guide

Runtime and Data Model APIs

10.6.2 Reference Model

This section describes the Oracle9iAS Wireless runtime, showing how the hooks
and listeners participate in the processing of a service request — in this case, the
request involves authentication and session establishment.

The sequence in the model shows how a service in the repository is invoked after
authentication. If no service is specified in the request, as is the case for sign-on
pages, the service which is invoked is that of the user’s home folder.

10.6.2.1 Case: A Request Involving Session Establishment and Authentication

This is a description of the flow in how runtime processes the events in a request
that needs a new session and authentication. The numbers indicate the sequence of
the actions in the runtime.

1.

creat eRequest (Htt pSer vl et Request , Ht t pSer vl et Response)

ParmImpl submits an HTTP request containing input parameters to the
RequestFactory to create the Request object.

regi st er Request Li st ener s(Request)

Runtime passes the new request to the ListenerRegistrationHook to let it
register listeners.

bef or eRequest (Request Event)

The event source Request issues a notification to each of the RequestListeners,
passing the RequestEvent object.

execut e()

ParmImpl executes the newly created Request object, which starts the following
sequence of activities within the runtime.

createSessionl d()

Runtime dispatches to the SessionldHook to create a new session id for the
PAsid parameter.

creat eSession()
Runtime creates a new Session for the given session id.
regi st er Sessi onLi st ener s(Request, Sessi on)

Runtime passes the new Session to the ListenerRegistrationHook to let it
register the session listeners.

Core Technologies 10-89

Runtime and Data Model APIs

10.

11.

12.

13.

14.

15.

16.

17.

18.

bef or eSessi on(Sessi onEvent)

The event source Session issues a notification to each of the SessionListeners,
passing the SessionEvent object.

findDevi ceType(String)

Runtime dispatches to the DeviceldentificationHook to determine the device
model.

par sel nput Par amet er s()
Runtime parses the URL in the HTTP request and extracts the input parameters.
request Begi n(Request Event)

The event source Request issues a notification to each of the RequestListeners,
passing the RequestEvent object.

aut henticate(String, String, Request)
Runtime dispatches to the AuthenticationHook to authenticate the user.
get Mobi | el d(Request, Sessi on)

Runtime dispatches to the MobileldHook to obtain the mobile id of the user,
which can be used by the CallerLocationHook.

sessi onBegi n(Sessi onEvent)

The event source Session issues a notification to each of the SessionListeners,
passing the SessionEvent object.

sessi onAut henti cat ed(Sessi onEvent)

The event source Session issues a notification to each of the SessionListeners,
passing the SessionEvent object.

get Current Locat i on(Request)

Runtime dispatches to the CallerLocationHook to determine the location of the
caller (mobile device).

aut hori ze(User, Servi ce, Request, Aut heti cati onCont ext)

Runtime dispatches to the AuthorizationHook to authorize the requested
service.

servi ceBegi n(Request Event)

The event source Request issues a notification to each of the RequestListeners,
passing the RequestEvent object.

10-90 Oracle9iAS Wireless Developer’s Guide

Runtime and Data Model APIs

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

i nvoke(Servi ceCont ext)

Runtime invokes the service in the repository, passing the ServiceContext
object.

servi ceEnd(Request Event)

The event source Request issues a notification to each of the RequestListeners,
passing the RequestEvent object.

t ransf or mBegi n(Request Event)

The event source Request issues a notification to each of the RequestListeners,
passing the RequestEvent object.

process(Request, El enent)

Runtime dispatches to the PreProcessorHook to process the SimpleResult
output of the service.

rewiteResul t URLs(El enent)

Runtime replaces the original URL with an encoded URL that contains the
PAsid and PAckey parameters for the session id and the URL cache key,
respectively.

transform El enent, Logi cal Devi ce)

Runtime invokes the device ResultTransformer to transform the SimpleResult to
the device’s markup language.

process(String, Argunment s, Devi ce)

Runtime invokes the PostProcessor to parse the content of the device markup
page. The PostProcessor replaces the runtime variables (which are "place
holders") with the values of the variables. For example, "PAsid=xyzw" replaces
__ SESSION__.

process(Request, Response, String)

Runtime dispatches to the PostProcessorHook to process the device markup
page to produce the final result.

t ransf or mEnd(Request Event)

The event source Request issues a notification to each of the RequestListeners,
passing the RequestEvent object.

writeContent()

Runtime writes the content to the HTTPServletResponse.

Core Technologies 10-91

Runtime and Data Model APIs

29. request End(Request Event)

The event source Request issues a notification to each of the RequestListeners.
30. inval i date()

ParmImpl invalidates the Request object.
31. aft er Request (Request Event)

The event source Request issues a final notification to the RequestListeners,
passing the RequestEvent object.

10.6.2.2 System Parameters

There are two different kinds of system parameters: static and derived parameters.
The following sections discuss these two types of system parameters.

10.6.2.3 Static System Parameters

The Mobile XML results can contain the runtime variables, (composed from the
names of the parameters) by appending two underscore characters (__) before and
after the parameter name. These runtime variables in the Mobile XML results are
"place holders" which are replaced by the values of the parameters during the post
processing phase (Step 25 in Section 10.6.2.1, "Case: A Request Involving Session
Establishment and Authentication™) before the final result is returned to the
requester. The following table describes the system-defined ServiceContext
parameters which are found among the ServiceContext arguments. The left column
in the table shows the Java program constants that represent the names of the
parameters in the ServiceContext object. You can access them in one of two ways:

« Programmatically through the ServiceContext or the Request object:
Argunments args = sc.getlnput Argument s();
String | anguage = args. getlnput Val ue(X);
where X is the parameter name.

« Through the PostProcessor for the final result markup language as __ X__using
two underscores as the prefix and two underscores as the suffix around X.

The HTTP headers sent together with the HTTP service request invocation are also
considered static parameters. However which HTTP header is present depends on
the browser and the gateway. To find out which HTTP headers are present in a
request, use the following:

Enureration in_http_headers = Req.getHeader Attributes()

10-92 Oracle9iAS Wireless Developer’s Guide

Runtime and Data Model APIs

This returns an enumeration of present HTTP headers in the request.
You can retrieve the HTTP header’s value by enumerating:

whil e (in_http_headers. hashoreEl ements())

{
String arg = (String) in_http_headers.nextEl ement();
Systemout.println(arg+ = “+ Reg.getParaneter(arg));

10.6.2.4 Derived System Parameters

The second kind of system parameters is the derived parameters. A derived
parameter’s value is usually not present. To make its value present in the valid
request object, do the following:

« Add the derived parameter X to the master service and make the derived
parameter X mandatory.

« After each request has been validated, the runtime computes the values for the
mandatory derived parameters. Then the values of these derived parameters
can be accessed in the same way as the values of the static system parameters.
The runtime-defined derived system parameters are listed in the following
table.

Table 10-11 Derived System Parameters

Derived System

Parameter Name Description

_Longitude The longitude component of the geocoding of the current
requester’s location

_Latitude The latitude component of the geocoding of the current
requester’s location

_State The state from which the current requester is initiating the
request

_Postalcode The postal code of the current requester’s location

_Country The country in which the current requester is initiating the
request

Core Technologies 10-93

Runtime and Data Model APIs

10.6.2.5 General Guidelines for User-Defined Listeners and Hook
Implementation

Component developers can develop new types of runtime agents and adapters by
using only the classes and interfaces in the public packages provided in the
wireless.jar file.

The following steps describe how you provide your own implementation of
listeners and hooks.

10.6.2.6 Implementing the Respective Interface

The user-defined listeners and hooks should implement the respective listener
interface or the hook interface. For example, if you define your own
AuthenticationHook, your new AuthenticationHook Java class should implement
the oracle.panama.rt.hook.AuthenticationHook interface.

Furthermore, the new implementation should implement the following Singleton
pattern:

class yourdass inplement Xhook {
public static Xhook getlnstance() { .. }

10.6.2.7 Compile Your Java Source

Make sure you have included the wireless.jar in your Java classpath during
compilation.

10.6.2.8 Plug in Your Implementation through Property File

Set the corresponding entry in the System Manager -> Site -> Wireless Web Server
-> Event and Listeners control panel, or the System Manager -> Site -> Wireless
Web Server -> Hooks control panel to specify the name of the class that provides
the implementation.

The following table lists the property entry name in the System Manager -> Site ->
Wireless Web Server -> Hooks control panel for each hook.

Table 10-12 Property Entry Names for Hooks

Hook Name Property Name
AuthenticationHook wireless.http.locator.authentication.hook.class
AuthorizationHook wireless.http.locator.authorization.hook.class

10-94 Oracle9iAS Wireless Developer’s Guide

Runtime and Data Model APIs

Table 10-12 Property Entry Names for Hooks

Hook Name Property Name

CallerLocationHook wireless.http.locator.caller.location.hook.class
DeviceldentificationHook wireless.http.locator.device.identification.hook.class
FolderRendererHook wireless.http.locator.folder.render.hook.class
HomeFolderSorterHook wireless.http.locator.nome.folder.sorter.hook.class
ListenerRegistrationHook wireless.http.locator.listener.registration.hook.class

LocationServiceVisibilityHook wireless.http.locator.service.visibility.hook.class

PostProcessorHook wireless.http.locator.post.processor.hook.class
PreProcessorHook wireless.http.locator.pre.processor.hook.class
ServiceVisibilityHook wireless.http.locator.service.visibility.hook.class
SessionldHook wireless.http.locator.session.id.hook.class
SignOnPagesHook wireless.http.locator.signon.pages.hook.class
MobileldHook wireless.http.locator.mobile.id.hook.class
NormalizeAddressHook wireless.http.locator.normalizeaddress.hook.class

For example, if you provide your own implementation of the authentication hook,
you should set the wireless.http.locator.authentication.hook.class in the System
Manager -> Site -> Wireless Web Server -> Hooks control panel to <your class
name>.

10.6.2.9 Tips and Hints

When implementing the new listeners, hooks, and adapters, consider also the
following points:

10.6.2.10 Concurrent Requests

The Oracle9iAS Wireless runtime supports concurrent instances of requests from
user agents through an HTTP connection. Concurrent requests are not permitted for
the runtime agent that shares the same administrator session among different
effective users. For this type of agent, the runtime serializes the requests under the
same session. Concurrency is achieved by introducing more than one instance of the
runtime agents, each with its own authenticated session.

Core Technologies 10-95

Runtime and Data Model APIs

10.6.2.11 Recursive Instances of Requests

The Oracle9iAS Wireless runtime supports recursive instances of requests under the
same session. Recursive instances of requests may be issued by the plug-in
components, for example, to recursively invoke all services under a folder.

10.6.2.12 Query Parameters

The Oracle9iAS Wireless runtime parses the URL query strings from HTTP user
agents to retrieve query parameters. For other agents that do not use URL strings,
the runtime lets the agents set the query parameters programmatically. The runtime
allows the agents to specify the session, user, device, and service using objects
instead of names.

10.6.2.13 Runtime Object References

This design constraint requires that plug-in components do not retain references to
the runtime objects across invocations.

Plug-in components may execute under asynchronous threads; in this case, the
synchronous methods in the components should make snapshots of the runtime
objects before handing them to the asynchronous threads.

10.6.2.14 Thread-Safe and High-Concurrency

Since a single instance of the customized listeners and hooks is created according to
the Singleton design pattern, the Java class should provide a thread-safe but very
high concurrent implementation. Otherwise, the performance of the Oracle9iAS
Wireless runtime can be significantly degraded.

10.6.2.15 User-Defined Hooks Examples

The following examples are available in the respective subdirectories under
\sample.

The following examples illustrate how you can develop user-defined hooks:

10.6.2.16 Example 1

10.6.2.16.1 Changing the folder look and feel The look and feel of folders in Oracle9iAS
Wireless can be changed in the following ways:
« Through configuration parameters which modify the built-in renderer

« By specifying a FolderRendererHook

10-96 Oracle9iAS Wireless Developer’s Guide

Runtime and Data Model APIs

« By specifying a FolderRendererService

10.6.2.16.2 Configuration parameters The look and feel of the folder can be changed
by modifying the following configuration parameters:

Table 10-13 Configuration parameters

Name type default Effect Notes
wireless.device.login.enable boolean true Display ‘Login’ Only displayed when user is
link not fully authenticated (guest
or virtual user)
wireless.device.logout.enable boolean true Display ‘Logoff’ Only displayed when user is
link fully authenticated (explicitly
logged in)
wireless.device.userinfo.enable boolean true Display ‘Setup
/ User Info’ link
wireless.device.customizeservice.enable boolean true Display ‘Setup
/ Service’ link
wireless.device.globalpreset.enable boolean true Display ‘Setup
/ Presets’ link
wireless.device.userprofile.enable boolean true Display ‘Setup
/ User Profile’
link
wireless.device.register.enable boolean true Display Only displayed for guest or
‘Register’ link virtual user
wireless.device.help.enable boolean false Display ‘Help’ Help page can be configured
link using the
wireless.device.help.url
configuration parameter wireless. boolean true Display ‘Home’ link
device.h
ome.ena
ble

10.6.2.16.3 FolderRendererService Oracle9iAS Wireless also allows an arbitrary
service to be run when accessing a folder. This service is attached to the folder using
the service designer; please see the service designer documentation for details. The
service that renders the folder can either be active for that folder only, or for the
given folder and all its children subfolders. The latter is useful for cases such as
when one is customizing the folder look and feel for a subtree of folders.
Customizing all user home folders is a prime example. If you put all user home
folders beneath the folder /Users Home/, the FolderRendererService can then be

Core Technologies 10-97

Runtime and Data Model APIs

attached to the /Users Home/ folder, with recursive rendering turned on (see the
webtool documentation for details on how to do this). If you want to have different
folder rendering for different groups of users, you should group the users home
folder under different group folders and attach different folder rendering services to
each group folder, like this:

« /Portall -- attach folder render service 1
« /Portal2 -- attach folder render service 1

A folder service is written just like any other Oracle9iAS Wireless service, and will
get invoked with a regular ServiceContext. The folder to be rendered can be
retrieved using the ServiceContext method getCurrentFolder.

10.6.2.17 FolderRendererBean

The service used to render folders can be any Oracle9iAS Wireless service. It is
usually convenient to write this service as a JSP, using the OC4J Adapter. In order to
facilitate writing a FolderRenderer JSP service, the bean
oracle.panama.rt.hook.FolderRendererBean is provided. This class has a number
of methods for getting the content normally used by the built-in FolderRenderer:
the getHeader, getBody and getFooter methods retrieve the header, body (folder
content listing) and footer respectively. All methods in the FolderRenderBean takes
a single argument, namely the current ServiceContext. In addition to the methods
already mentioned, there are a number of utility methods (such as for getting the
current user name), please see the FolderRendererBean JavaDoc for details.

The following example shows how write JSP code that displays a custom header,
but reuses the built in folder renderer for displaying the folder content and footer:

<Y@page i nport="oracl e. panana.rt. Servi ceCont ext" %
<Y@page inport="oracl e. panans. rt. hook. Fol der Render er Bean" %

<%

Servi ceCont ext context = (ServiceContext)

request.getAttribute("oracle.wireless.rt.context");
Fol der Render er Bean renderer =
Fol der Render er Bean. get | nst ance() ;
response. set Header ("M nme-type", "text/xm");
%
<Si npl eResul t >
<Si npl eCont ai ner >
<Si npl eText >
<Simpl eText I tempMy cust om header </ Si npl eText | t en>

10-98 Oracle9iAS Wireless Developer’s Guide

Runtime and Data Model APIs

</ Si npl eText >
<% renderer. get Body(context) %
<% renderer.get Footer(context) %
</ Si npl eCont ai ner >
</ Si npl eResul t >

10.6.2.18 FolderRendererHook

The third way of customizing the folder is by specifying a hook class that
implements the interface oracle.panama.rt.hook.FolderRendererHook. This hook
has a single method invoke, which takes as its argument the current ServiceContext
and returns the DOM document containing the Mobile XML for the current folder.
The hook will be invoked whenever there is no assigned folder rendering service.

10.6.2.19 FolderRendererPolicy

The default (built-in) implementation of the FolderRenderer is provided in the class
oracle.panama.rt.hook.FolderRendererPolicy. This class can be subclassed,
allowing custom hooks to reuse parts of the built-in functionality.

The main entry point for the FolderRendererHook is the invoke method. In the
default FolderRendererPolicy implementation, the invoke method will create a
SimpleResult element and in turn call getHeader, getBody and getFooter methods
in order to append the header, body (folder content listing) and footer respectively.
All methods in the FolderRendererPolicy takes a single argument, namely the
current ServiceContext. If you need to add custom headers and footers, the Folder
Renderer Policy can be subclassed to override the methods for getHeader and
getFooter.

The following code is an example of a FolderRendererHook implementation that
inserts a custom header:

inport oracle.panama.rt. Servi ceCont ext;

inport oracl e. panama. rt. hook. Fol der Render er Hook;
inport oracl e. panama. rt. hook. Fol der Render er Pol i cy;
i nport org.w3c. dom Document ;

i nport org.w3c.dom El ement;

cl ass Cust onfol der Renderer extends Fol der Renderer Pol i cy
i npl ements Fol der Render er Hook {
public El ement getHeader (ServiceContext context) {
Docurment doc = context. get XM.Docunent () ;
Elenent ret = doc. createEl ement ("Sinpl eText");

Core Technologies 10-99

Runtime and Data Model APIs

El ement text = doc.createEl ement ("Sinpl eText|tent');
ret.appendChil d(text);
String str = "My cust om header";
t ext . appendChi | d(doc. creat eText Node(str));
return ret;
}
/'l inherit getBody
/'l inherit getFooter

}

10.6.2.19.1 Folder Setup Actions The default folder renderer in the runtime puts the
controls for setting up the end user’s preferences in the header and footer. The
actions that are added in the device header/footer is described by the
FolderSetupAction interface. When writing a folder rendering service or hook, it is
possible to get information about all actions, including the URL (String), the
localized label and whether the action should be displayed or not. Please see the
FolderRendererBean and FolderRendererPolicy JavaDoc for a complete list of
methods that retrieves FolderSetupActions.

Using the FolderSetupActions allows the user that extends the FolderRenderer to
duplicate the built-in setup button semantics and labels, but substitute their own
look and feel, for example by using SimpleHrefs instead of SimpleMenultems. The
following code is an example of a FolderRendererHook that does this:

inport oracl e. panana. rt. Servi ceCont ext;

inport oracl e. panama. rt. hook. Fol der Render er Hook;
inport oracl e. panama. rt. hook. Fol der Render er Pol i cy;
inport oracl e. panama. rt. hook. Fol der Set upActi on;

i nport org.w3c. dom Document ;
i nport org.w3c.dom El ement;
inport org.w3c.dom Text;

cl ass Cust onfol der Renderer extends Fol der RendererPolicy inplements
Fol der Render er Hook {
public El ement getHeader (ServiceContext context) {
Document doc cont ext . get XM.Docurment () ;
El ement ret doc. creat eEl enent (" Si npl eText");
Element text = doc.createEl enent("SinpleTextltent);
ret.appendChil d(text);
Fol der Set upAction[] actions = new Fol der Set upAction[] {
super . get Edi t Preset sActi on(context),
super . get Edi t Servi cesActi on(context),
super . get Edi t User | nf oActi on(context),

10-100 Oracle9iAS Wireless Developer’s Guide

Runtime and Data Model APIs

super . get Logi nActi on(cont ext),
super . get Logof f Acti on(context),
super . get Regi st er Acti on(cont ext),

b

for(int i =0; i <actions.length; i++) {
if(actions[i].isActive(context)) {
El ement href = doc.createE enent ("SinpleHref");
/'l set the URL of the href
href.setAttribute("target”, actions[i].getURL(context));
Il set the text to display for the href
Text |abel =
doc. creat eText Node(actions[i]. get Label (context))
href. appendChi | d(| abel);
t ext. appendChi | d(href);
}
}

return ret;

}

/] inherit getBody unchanged

/'l override getFooter with inplementation that creates footer
/'l without setup buttons.
public El ement get Footer(ServiceContext context) {

Docunent doc = context.get XM.Docunent () ;

Element ret = doc.createEl ement ("SinpleText");

Element text = doc.createElenent("SinpleTextltent);

text . appendChi | d(doc. creat eText Node(" My custom footer"));
return ret;

}

10.6.2.20 Example 2

The second example is also a hook example, but it takes advantage of the policy
concept. The MyAuthenticator first examines the "badguys" table to make sure the
login Oracle9iAS Wireless user is not in the table. If the user is in the table, then the
hook rejects the login request. Otherwise, it resumes the default policy
implementation in lines 42 and 44.

package hook;

i nport oracl e. panama. rt. hook. Aut henti cat i onHook;
inport oracl e. panama. rt. hook. Aut henti cati onPol i cy;

Core Technologies 10-101

Runtime and Data Model APIs

i nport
i nport
i nport
i nport
i nport
i nport
i nport

oracl e. panama. rt . hook. Aut henti cat i onCont ext ;

oracl e. panama. rt . hook. Aut hent i cati onExcepti on;

oracl e. panama. rt. hook. Aut henti cati onFai | Over Excepti on;
oracl e. panama. rt. Request ;

oracl e. pananma. rt. hook. Aut henti cati onCont ext ;

oracl e. panama. core. util. Locat or;

oracl e. panana. core. adni n. L;

inport java.sql.Connection;

inport java.sql.DriverMnager;
inport java.sql.Connection;

inport java.sql.PreparedStatenent;
inport java.sql.ResultSet;

public

private
private
private

private
try

Locat or

")

passwor

class M/Authenticator inplements AuthenticationHook {

static M/Aut henticator nyAuthenticator;
Connection conn;
PreparedSt at ement st ;

M/Aut henti cator () {

{

/1 1ookup the db.connect.string in the panama's System properties file
String connectString =
.getlnstance(). get Resource().get System(). getString("db.connect.string",

Il constrct the JDBC connect string, always use the THI N driver for
Il sinplicity

int i = connectString.indexCi('/");

String user = connectString.substring(0, i);

int j = connectString.indexOh ('@, i+1);

String password = connectString.substring(i+l, j);

String dbnane = connect String. substring(j+1);

StringBuffer connStrBuf = new StringBuffer("jdbc:oracle:thin:");

connSt r Buf . append(" @) ;

connSt r Buf . append(dbnane) ;

/1 1oad the Oracle's JDBC driver

A ass. forNane("oracl e.jdbc. driver.OracleDriver");

/1 connect to the database

conn = DriverManager . get Connecti on(connStrBuf.toString(), user,

d);

st = conn. prepareSt at enent ("sel ect nane from badguys where name = ?");

10-102 Oracle9iAS Wireless Developer’s Guide

Runtime and Data Model APIs

} catch (Exception e) {
L.e(e);
conn = null;

}

public static AuthenticationHook getlnstance() {
if (nmyAuthenticator == null) {
synchroni zed (MyAuthenticator.class) {
if (myAuthenticator == null) {
myAut henti cator = new MyAut henti cator();
}
}
}

return nmyAut henticator;

public AuthenticationContext authenticate(String name, String passwd,
Request request) throws AuthenticationException,
Aut hent i cati onFai | Over Exception {
bool ean badguy;

if (conn == null)
return AuthenticationPolicy.authenticateUser(nane, passwd, request);

try {
st.setString(1, nane);
Resul tSet rs = st.executeQuery();
badguy = rs.next();
} catch (Exception e) {
L.e(e);
return AuthenticationPolicy.authenticateUser(nang,
passwd, request); [42]

}
if (badguy) {

L.e(name+ " is an intruder!");

throw new Aut henti cationException(name+" is an intruder!");
} else {

return Aut henticationPolicy.authenticateUser (nane,

passwd, request); [44]

}

Core Technologies 10-103

Runtime and Data Model APIs

10.6.2.21 Register the Authentication Hook

You should also add the name of the class, in this case hook.MyAuthenticator, in the
System Manager > Site > Wireless Web Server > Hooks control panel in the Webtool
under the wireless.http.locator.authentication.hook.class property.

10.6.2.22 Event Listener Example

The following partial example (the complete "runable" example is under the
\sample\listener directory) illustrates how to implement a RequestListener. This
RequestListener simply writes the request related information to a log file.

10.6.2.23 Implementing the RequestListener Interface
The RequestListenerSample source file is as follows:

/*

*

$Copyri ght :

Copyright (c) 1999 Oracle Corporation all rights reserved
$

*/

package |istener;

i nport oracl e. panana. rt. Request;

i nport oracl e. panama. rt. Response;

i nport oracl e. panana. rt. Sessi on;

inport oracle.panama.rt.AttributeCategory;

import oracl e. panama. rt. event. Request Event;

import oracle.panana. rt.event. ResponseEvent ;

inport oracl e. panana. rt. event. Sessi onEvent;

inport oracle.panana. rt.event. RequestLi stener;
inport oracle.panama.rt.event. ResponseLi stener;
inport oracle.panama.rt.event. Sessi onLi st ener;
inport oracle.panama.rt.event. Abort Servi ceExcepti on;

public class RequestListenerSanple inplements RequestListener { [31]
private final static String BEFCRE REQUEST ="L_L1";
private final static String REQUEST_BEG N ="L_L2";
private final static String SERVI CE_BEG N ="L_L3";

10-104 Oracle9iAS Wireless Developer’s Guide

Runtime and Data Model APIs

private final static String SERVI CE_END ="L_ L4";
private final static String TRANSFORMBEGN ="L_L5";
private final static String TRANSFORM END ="L_L6";
private final static String REQUEST_END ="L_ L7,
private final static String AFTER REQUEST ="L_ L8";

/**

* The event notification before the start of request
* @aram an event

*/

public voi d beforeRequest (Request Event event) throws Abort Servi ceException {
Li st ener Regi strati onHookSanpl e. print|n("BEFORE REQUEST -- " +
event.toString() + "---" + event.getTi meStanp());
event . put (BEFORE_REQUEST, new Long(event.get Ti meStanmp()));
event. get Request ().setAttribute(AttributeCategory. RUNTI ME, BEFORE_REQUEST,
new Long(event. get Ti meStam()));

}

/**

* The event notification when request begins
* @aram an event

*/
public void requestBegi n(Request Event event) throws Abort ServiceException {
Li st ener Regi strati onHookSanpl e. printl n("REQUEST BEGAN -- " +
event.toString() + "---" + event.getTimeStanp());
event. put (REQUEST_BEG N, new Long(event. get Ti meStanp()));
event. get Request ().setAttribute(AttributeCategory. RUNTI ME, REQUEST_BEG N,
new Long(event. get Ti meStamp()));
}
/**

* The event notification when service begins
* @aram an event

*/
public void servi ceBegi n(Request Event event) throws Abort ServiceException {
Li st ener Regi strati onHookSanpl e. println("SERVICE BEGAN -- " +
event.toString() + "---" + event.getTimeStanp());
event. put (SERVI CE_BEG N, new Long(event. get Ti meStanp()));
event. get Request (). setAttribute(AttributeCategory. RUNTI ME, SERVI CE_BEG N,
new Long(event. get Ti meStam()));
}
/**

* The event notification when service end
* @aram an event

Core Technologies 10-105

Runtime and Data Model APIs

*/

public void servi ceEnd(Request Event event) throws Abort ServiceException {
Li st ener Regi strati onHookSanpl e. printIn("SERVICE END -- " +

event.toString() + "---" + event.getTimeStanp());
event. put (SERVI CE_END, new Long(event.get Ti meStam()));
event. get Request (). setAttribute(AttributeCategory. RUNTI ME, SERVI CE_END,
new Long(event.get Ti meStanmp()));
}
/**

* The event notification when transform begins
* @aram an event

*|

public void transfornBegi n(Request Event event) throws Abort ServiceException {
Li st ener Regi strati onHookSanpl e. println(" TRANSFORM BEG N -- " +

event.toString() + "---" + event.getTimeStamp());
event . put (TRANSFORM BEG N, new Long(event. get Ti neStanp()));
event. get Request ().setAttribute(AttributeCategory. RUNTI M,
TRANSFORM BEG N, new Long(event. get Ti meStanp()));
}
/**

* The event notification when transform end
* @aram an event

*/
public void transfornEnd(Request Event event) throws Abort ServiceException {
Li st ener Regi strationHookSanpl e. println(" TRANSFORM END -- " +
event.toString() + "---" + event.getTimeStamp());
event . put (TRANSFORM END, new Long(event. get Ti meStanp()));
event. get Request ().setAttribute(AttributeCategory. RUNTI M,
TRANSFORM END, new Long(event. get Ti meStanmp()));
}
/**

* The event notification when request ends
* @aram an event

*/
public void request End(Request Event event) throws Abort ServiceException {
Li st ener Regi strationHookSanpl e. println("REQUEST END -- " +
event.toString() + "---" + event.getTimeStanmp());
event . put (REQUEST_END, new Long(event. getTimeStanp()));
event. get Request ().setAttribute(AttributeCategory. RUNTI M,
REQUEST_END, new Long(event.getTimeStanp()));
}

10-106 Oracle9iAS Wireless Developer’s Guide

Runtime and Data Model APIs

/**

* The event notification when request error happens

* @aram an event

*|

public void requestError(RequestEvent event) throws Abort ServiceException {

Li st ener Regi strat i onHookSanpl e. print|n("REQUEST ERROR -- " +
event.toString() + "---" + event.getTimeStamp());

}

/**

* The event notification after the end of request
* @aram an event

*/
public void afterRequest (Request Event event) throws Abort ServiceException {
Li stener Regi strati onHookSanpl e. println("AFTER REQUEST -- " +
event.toString() + "---" + event.getTimeStanp());

event. put (AFTER_REQUEST, new Long(event.get Ti meStanmp()));
event. get Request (). setAttribute(AttributeCat egory. RUNTI MVE,
AFTER_REQUEST, new Long(event.get Ti meStanp()));

/1 start |ogging the object cached in the Request
Li st ener Regi st rati onHookSanpl e. println("l ogging the object cached in the
request”);

Long beforeRequest Time = (Long) event. getRequest().getAttribute(
AttributeCategory. RUNTI ME, BEFORE_REQUEST) ;
if (beforeRequestTine != null)
Li stener Regi strati onHookSanpl e. printl n("BEFORE REQUEST: " +
bef or eRequest Ti me. [ongVal ue());

Long requestBegi nTime = (Long) event.get Request().getAttribute(
AttributeCategory. RUNTI ME, REQUEST_BEG N);

if (requestBeginTime !'= null)
Li st ener Regi st rati onHookSanpl e. println("REQUEST BEGA N " +
request Begi nTi ne. | ongVal ue());

Long servi ceBegi nTine = (Long) event.get Request ().getAttribute(
AttributeCategory. RUNTI ME, SERVI CE_BEG N);

if (serviceBeginTinme != null)

Li st ener Regi strati onHookSanpl e. println("SERVICE BEGN. " +
servi ceBegi nTi ne. | ongVal ue());

Core Technologies 10-107

Runtime and Data Model APIs

Long servi ceEndTine = (Long) event.get Request().getAttribute(
AttributeCategory. RUNTI ME, SERVI CE_END);

if (serviceEndTine != null)
Li st ener Regi strati onHookSanpl e. println("SERVICE END: " +
servi ceEndTi me. | ongVal ue());

Long transfornBegi nTime = (Long) event.get Request().get Attribute(
AttributeCategory. RUNTI ME, TRANSFORM BEG N) ;

if (transfornBeginTine != null)
Li st ener Regi st rat i onHookSanpl e. printl n(" TRANSFORM BEG N: " +
transf or nBegi nTi ne. | ongVal ue());

Long transfornEndTi ne = (Long) event.get Request().getAttribute(
AttributeCategory. RUNTI ME, TRANSFORM END) ;

if (transfornEndTime != null)
Li st ener Regi strat i onHookSanpl e. printl n(" TRANSFORM END: " +
t ransf or rEndTi me. | ongVal ue());

Long request EndTi me = (Long) event. get Request (). getAttribute(
AttributeCategory. RUNTI ME, REQUEST_END);

if (requestEndTinme !'= null)
Li st ener Regi strati onHookSanpl e. printl n("REQUEST END: " +
request EndTi ne. | ongVal ue());

Long afterRequestTine = (Long) event.get Request().getAttribute(
Attribut eCategory. RUNTI ME, AFTER REQUEST);

if (afterRequestTime != null)
Li stener Regi strationHookSanpl e. println("AFTER REQUEST: " +
aft er Request Ti me. | ongVal ue());

if ((afterRequestTine !'= null) && (beforeRequestTine != null))
Li st ener Regi strati onHookSanpl e. printl n("REQUEST DURATION. " +
(aft er Request Ti me. | ongVal ue() -
bef or eRequest Ti me. | ongVal ue()));

/] start |ogging the object cached in the RequestEvent
Li st ener Regi st rati onHookSanpl e. println("logging the object cached in the
request event");

bef oreRequest Ti me = (Long) event. get (BEFORE_REQUEST) ;

10-108 Oracle9iAS Wireless Developer’s Guide

Runtime and Data Model APIs

if (beforeRequestTinme != null)
Li st ener Regi st rati onHookSanpl e. print| n("BEFORE REQUEST EVENT: " +
bef or eRequest Ti ne. | ongVal ue());

request Begi nTine = (Long) event. get (REQUEST_BEG N);
if (requestBeginTime != null)
Li st ener Regi strati onHookSanpl e. printl n("REQUEST BEG N EVENT: " +
request Begi nTi ne. | ongVal ue());

servi ceBegi nTime = (Long) event. get (SERVI CE_BEG N);
if (serviceBeginTinme !'= null)
Li st ener Regi strat i onHookSanpl e. printl n("SERVICE BEG N EVENT: " +
servi ceBegi nTi ne. | ongVal ue());

servi ceEndTi ne = (Long) event. get(SERVI CE_END);
if (serviceEndTime != null)
Li stener Regi strationHookSanpl e. println("SERVICE END EVENT: " +
servi ceEndTi me. | ongVal ue());

transfornmBegi nTime = (Long) event. get (TRANSFORM BEG N) ;
if (transfornBeginTine != null)
Li st ener Regi strationHookSanpl e. printl n(" TRANSFORM BEG N EVENT: " +
transf or mBegi nTi ne. | ongVal ue());

transfornEndTi me = (Long) event. get (TRANSFORM END) ;
if (transfornEndTime != null)
Li stener Regi strationHookSanpl e. printl n(" TRANSFORM END EVENT: " +
transf or nEndTi me. | ongVal ue());

request EndTi me = (Long) event. get (REQUEST_END);
if (requestEndTinme !'= null)
Li st ener Regi strati onHookSanpl e. printl n("REQUEST END EVENT: " +
request EndTi ne. | ongVal ue());

afterRequest Time = (Long) event. get (AFTER_REQUEST);
if (afterRequestTime != null)
Li st ener Regi strat i onHookSanpl e. printl n("AFTER REQUEST EVENT: " +
aft er Request Ti ne. | ongVal ue());

if ((afterRequestTine != null) && (beforeRequestTine != null))

Li st ener Regi st rati onHookSanpl e. print| n(" REQUEST DURATI ON EVENT: " +
(afterRequest Ti me. | ongVal ue() - beforeRequest Ti ne. | ongVal ue()));

Core Technologies 10-109

Runtime and Data Model APIs

}

Line [31] in the above code example declares the implementation of the
oracle.panama.rt.event.RequestListener interface.

10.6.2.24 Register the Request Listener

You should also add the name of the listener class, in this case
listener.RequestListenerSample, in the System Manager > Site > Wireless Web
Server > Event and Listeners control panel in the Webtool under the
wireless.http.locator.request.listener.classes property.

10.6.2.25 Register the RequestListener with Each Request Object

You should implement the ListenerRegistrationHook to register your request
listener object whenever a new request is created. See the code section between line
[62] and line [65] in the code example below.

Your new registration hook class has to implement the
oracle.panama.rt.event.ListenerRegistrationHook interface as in line [31] in the code
example below. The class also needs to implement the Singleton pattern. See the
code section between lines 37 and 39 in the code example below.

package |istener;
inport java.io.FileQutputStream
inport java.io.PrintStream

inport java.io.FileNotFoundException;
inport java.net.URL;

i nport oracl e. panana. rt. Request;

i nport oracl e. panama. rt. Response;

i nport oracl e. panana. rt. Sessi on;

inport oracle.pananma.rt.event. RequestLi stener;

inport oracle.panama.rt.event. ResponseLi stener;

inport oracle.panana.rt.event. Sessi onLi st ener;

i nport oracl e. panana. rt. hook. Li st ener Regi strati onHook;

inport oracl e. panama. rt. hook. Li st ener Regi strationPol i cy;

public final class ListenerRegistrationHookSanple inplenents [31]
Li st ener Regi strati onHook {

10-110 Oracle9iAS Wireless Developer’s Guide

Runtime and Data Model APIs

public final static String LISTENER LOG FILE = "ListenerSanple.log";
public static PrintStream|ogPrint = Systemout;

private SessionListener sessionListener = null;
private RequestListener requestListener = null;
private Responselistener responseListener = null;

private static ListenerRegistrationHookSanpl e singlelnstance = null;

public static ListenerRegistrationHookSanpl e getlnstance() { [37]
if (singlelnstance == null) {
singl el nstance = new Li st ener Regi strati onHookSanpl e();
}
return singlelnstance;
1 [39]

public void finalize() {
logPrint.println("RegistrationHook is deallocated -- " +
SystemcurrentTimeM | 1is());
[ogPrint.flush();
[ogPrint.close();

}

public static void println(String str) {
logPrint.println(str);
[ogPrint.flush();

}

private ListenerRegistrationHookSample() {
URL url = O assLoader. get Syst emResour ce(
"listener/ListenerRegistrationHookSanpl e. cl ass");
if (url !'=null) {
String filePath = url.getFile();
int lastSlash = filePath.|astlndexOf("/");
filePath = filePath.substring(l, |astSlash);

filePath = filePath + "/" + LI STENER LOG Fl LE;

try {
FileQutputStreamlogFile = new FileQutputStrean(filePath, true);
I ogPrint = new PrintStrean(logFile);

} catch (Exception fnfe) {
fnfe.printStackTrace();

}

Core Technologies 10-111

Runtime and Data Model APIs

logPrint.println("RegistrationHook is initialized -- " +
SystemcurrentTimeM | 1is());
[ogPrint.flush();

}

/**

* instantiate the sanple session listener class and register to sesson

* @aram request an incom ng request
* (@aram session a new session to register |isteners
*|

public void registerSessionListeners(Request request, Session session) {
sessionLi stener = new Sessi onLi st ener Sanpl e() ;
if (sessionListener !=null) {
sessi on. addSessi onLi st ener (sessi onLi st ener);

}

Il optional, register default session listeners
Li stener Regi strationPol icy. registerSessionLi steners(request, session);

}

/**

* instantiate the sanple request listener class and register to request

* @aram request a new request to register listeners

*/

public void registerRequestListeners(Request request) { [62]
request Li stener = new Request Li st ener Sanpl e() ;
if (requestListener !'=null) {

request . addRequest Li st ener (request Li stener);

}

/loptional, register default request |isteners
Li st enerRegi strationPolicy. registerRequest Li st eners(request);
} [65]

/**

* instantiate the sanple response |istener class and register to response

* @aram request an i ncom ng request

* @aram session an existing session

* @aram response a new response to register listeners
*/

public void registerResponseli steners(Request request, Response response) {
responseli st ener = new ResponselLi st ener Sanpl e();
if (responseListener !=null) {
response. addResponseLi st ener (r esponselLi stener);

}

10-112 Oracle9iAS Wireless Developer’s Guide

Runtime and Data Model APIs

/'l optional, register default response |isteners
Li stenerRegi strationPolicy. registerResponselLi st eners(request, response);

}

/**

* unregister the listeners from session.

* @aram session a session to unregister listeners

*|

public void unregisterSessionListeners(Session session) {
if (sessionListener !'=null) {

sessi on. renoveSessi onLi st ener (sessi onlLi st ener);

}

/loptional, unregister default session |isteners
Li st ener Regi strationPol i cy. unregi st er Sessi onLi st ener s(session);

}

/**

* unregister the listeners fromrequest.

* @aram request a request to unregister listeners

*/

public voi d unregi sterRequestLi steners(Request request) {
if (requestListener !'=null) {

request . renoveRequest Li st ener (request Li stener);

}

/loptional, unregister default request |isteners
Li st ener Regi strationPol i cy. unregi st er Request Li st ener s(request);

/**

* unregister the listeners fromresponse.
* @aram response a response to unregister |isteners

*|
public voi d unregisterResponselLi st eners(Response response) {

if (responseListener !=null) {

response. renoveResponselLi st ener (responseLi st ener);

}

/loptional, unregister default response |isteners

Li st ener Regi strationPol i cy. unregi st er ResponselLi st ener s(response) ;
}
}

Core Technologies 10-113

Runtime and Data Model APIs

10.6.2.26 Register the Listener Registration Hook

You should also add the name of the listener registration class, in this case
listener.ListenerRegistrationHookSample, in the System Manager > Site > Wireless
Web Server > Hooks control panel in the Webtool under the
wireless.http.locator.listener.registration.hook.class property.

10.6.2.27 Modify the Event Mask

Since the sample request is interested in all the request events, you should make
sure that the event mask for all the request-related events is set to true in the
System Manager -> Site -> Wireless Web Server -> Event and Listeners control
panel of webtool.

10.6.3 Repository Data Model API

The Oracle9iAS Wireless Repository comprises the models for the
Model-View-Control (MVC) architecture, while the Oracle9iAS Wireless runtime
layer comprises the controllers for the MVC. The repository Model APl in
oracle.panama.model package lets you develop applications that create, delete,
modify, and query the persistent objects in the Oracle9iAS Wireless Repository.
Developers of custom adapters and transformers can implement the corresponding
Model interfaces to develop the applications that supply the business processes and
contents for the Oracle9iAS Wireless portal. The developers can also implement the
“controller” applications, through the adapter, listener, or hook components, that
manipulate the repository objects to perform provisioning, registration,
personalization, accounting, and similar type of functions.

The Oracle9iAS Wireless repository imposes the organizational structure among the
objects. For example, a User can belong to multiple Group’s. The User is assigned
one or more Role’s. The user can access the Service’s that are accessible to the
groups to which the user belongs. However, the implementations of the User
interface can access external provisioning systems or repositories, such as the Oracle
Internet Directory (OID) and the Oracle Applications User Repository (AOL), to
manage the information for the enterprise users and specify the user’s roles, the
user’s group membership, and the particular services that are accessible to the user.

A Folder is a special kind of Service used as a container of the services to build the
service trees. A Service or Folder can be assigned to one or more groups. The User
can own a collection of DeviceAddresses, a collection of LocationMark’s, a
collection of customization Profile’s, and one or more collections of Presets’ which
are used in advanced personalization. A default LocationMark and a default Profile
can be assigned for each User. The Device interface in the Model API defines the

10-114 Oracle9iAS Wireless Developer’s Guide

Runtime and Data Model APIs

target device protocol (for example: WAP, SMS, or EMAIIL), as well as specifies the
physical characteristics of the target device that can be used by the adapters and the
transformers (for example, screen width and height, screen columns and rows, and
number of softkeys).

The intended users of the Model API are developers of customization portals,
portlets, custom hooks, listeners, adapters, transformers, and applications such as
JSPs, servlets, modules, and other (URL addressable) resources that are invoked
through the HttpAdapter. Developers can also develop stand-alone applications
which manipulate persistent objects using the Model API. Although these interfaces
preserve the data integrity in the repository, they do not enforce access control
security. The applications that access the repository through the Model API are not
authenticated or authorized by the same Authentication and Authorization
mechanisms in the Oracle9iAS Wireless runtime layer. In facts, the Model APIs are
used by trusted components to develop and customize the authentication and
authorization policies. The OracleMobile Online Studio, the System, Service, and
Content Management Webtools, and the Customization Portals provide
authentication and authorized access control to the repository. Developers should
apply extreme caution when developing services using the interfaces in the Model
API, and should take appropriate measures to prevent any undesired side effects
when these services are invoked by the end users.

10.6.3.1 Data Model Cache and Synchronization

The repository objects are cached in the Java instances main memory when they are
accessed from the Data Model API. These objects are removed from the main
memory cache only after they are not accessed through the API for a time-to-live
interval. This interval can be configured from "Cache Object Life Time" property in
System Manager -> Site -> Runtime Configuration control panel in the webtool. If
the repository object is modified and committed into the repository from one of the
Java instances; all other Java instances will automatically reload the modified object
from the repository. You can specify the number of cache synchronization threads
from the System Manager -> Site -> Object Cache Synchronization control panel
in the webtool.

10.6.3.2 Interfaces and Interface Hierarchy

The following sections describe the interfaces within the interface hierarchy in the
Model API. These interfaces are contained in the or acl e. panama. nodel
package. For a sample application that illustrates the use of some of the interfaces,
see Section 10.6.4.1, "Sample Code". The oracle.panama.model package also
provides the following three locator and factory objects to access the model objects.

Core Technologies 10-115

Runtime and Data Model APIs

10.6.3.3 Metalocator

MetaLocator, which is in the oracle.panama.model is used to access the
ModelFactory and ModelServices.

10.6.3.4 ModelFactory

ModelFactory, which is in the or acl e. pananma. nodel package, provides the
factory to create model objects.

10.6.3.5 ModelServices

ModelServices, which is in the or acl e. pananma. nodel package, provides the
locator or fagcade to access model objects.

10.6.3.6 ModelObject

The ModelObiject is the root interface that represents the common behavior and
properties of all repository objects. It is included in the or acl e. panana. nodel
package. The figure below illustrates the inheritance hierarchy among all of the
interfaces in the oracle.panama.model package.

Figure 10-20 Model API Inheritance Hierarchy.

Externallink

Falder

ModelFactory

MetaLocator

Link H Alett ‘

MasterService ‘

ModelServices

i

ModelObject }—

JawaTranstonmer

XL Transtormer

Lacationhtark

The subinterfaces in the ModelObject interface hierarchy are all persistent objects.
These subinterfaces are (in alphabetical order):

10-116 Oracle9iAS Wireless Developer’s Guide

Runtime and Data Model APIs

The following sections describe each subinterface.

Adapter

Alert
Community
Device
DeviceAddress
ExternalLink
Folder

Group
JavaTransformer
Link

Module
LocationMark
LocationPrivacyAuth
MasterService
Module
PresetCategory
PresetDescriptor
Presets

Profile

Role

Service
Transformer
User

XSLTransformer

Core Technologies 10-117

Runtime and Data Model APIs

10.6.3.7 Adapter

Adapter extends the ModelObiject interface. Adapter is the repository container for
the RuntimeAdapter, which is the interface that is to be implemented by all custom
adapters. The Adapter incorporates the RuntimeAdapter classes into the repository
and supports the loading and initialization of the RuntimeAdapter.

10.6.3.8 Device

Device extends the ModelObject interface. A Device is the definition of the target
logical device protocol. It can, for example, be WML11 for WML specific devices,
but also WML_Nokia7110 for Nokia specific WML. Other examples are SMS and
EMAIL. Device contains the Transformer objects.

Observe that the same physical device can support multiple logical devices; a
phone, for example, can support both the SMS and WAP protocols.

10.6.3.9 DeviceAddress

DeviceAddress extends the ModelObject interface. DeviceAddress contains the
device-specific address, such as a phone or an email address. The DeviceAddress
takes precedence over the AlertAddress, which is deprecated in this release.

10.6.3.10 Group

Group extends the ModelObiject interface. A Group is a collection of users. It is used
to publish specific services to the group members. A user can access those services
that are accessible to the group to which the user belongs.

10.6.3.11 LocationMark

LocationMark extends the ModelObject interface. It is a persistent object that
represents the named and geocoded physical address.

10.6.3.12 PresetCategory

The PresetCategory extends the ModelObject interface. PresetCategory defines the
structure and attributes of the Presets. Each PresetCategory contains a collection of
PresetDescriptors, which provides the meta information for the attributes in the
Presets relation.

10-118 Oracle9iAS Wireless Developer’s Guide

Runtime and Data Model APIs

10.6.3.13 PresetDescriptor

The PresetDescriptor extends the ModelObject interface. PresetDescriptor defines
the meta data for an attribute in the Presets relation. The meta data of an attribute
include the name, type, size, format, and description of the attribute.

10.6.3.14 Presets

The Presets interface extends the ModelObject interface. A Presets object contains a
set of preset values whose structure and relation is defined by a PresetCategory. The
Presets are owned by the User objects, and incorporates the personalized user
preferences and frequently used input parameters for the services into the
repository.

10.6.3.15 Profile

The Profile interface extends the ModelObiject interface. The User can have one or
more Profiles that encompass the user’s customizations of the service trees. The
Profile for a User can specify a preferred ordering of services in a folder.

10.6.3.16 Service

Service extends the ModelObject interface. Service is an "abstract” interface and
handles all generic aspects of a service.

It contains the following subinterfaces:

ExternalLink — ExternalLink extends Service. An ExternalLink is a reference to
an external URL.

Folder — Folder extends the Service interface. A Folder is like a directory in a
file system; it contains other services including other sub-folders.

Link — Link extends the Service interface. A Link is a pointer to any other
service "including" another Link. The Link is used to "customize" master
services or to create private tree structures of accessible master services. It can
override any accessible parameter kept by the service "chain" down to the final
master service. Link contains the subinterface Alert.

Alert — Alert extends the Link interface. An Alert (sometimes referred to as a
Job) is a service which is set to be automatically executed, given a particular
time interval specification. The Alert interface inherits methods from the
following interfaces:

or acl e. panana. nodel . Li nk
or acl e. panama. nodel . Servi ce

Core Technologies 10-119

Runtime and Data Model APIs

or acl e. panana. nodel . Model Obj ect

MasterService — MasterService extends the Service interface. The
MasterService is the "final" Service. It is the template for all other Services. It
always uses an Adapter to communicate with the external source.

Module - Module extends the Service interface. A Module is a pointer to a
"modulable"” service with well known name called "virtual” URL. The modules
could be local or remote.

Module - Module extends the Module interface. A Module is a pointer to a
"modulable" local MasterService. Local MasterService means that it is in the
same repository as the Module.

10.6.3.17 Transformer

Transformer extends the ModelObject interface. Transformer is the base interface for
all transformation sub-classes. It is the repository container for the real
transformation implementation (Java or XSL). It performs loading and initialization
of the custom transformer classes that implements the
oracle.panama.rt.xform.RtTransformer interface. It also provides the XSLT
transformers for the XSLT stylesheets.

It has the following subinterfaces:

« JavaTransformer — JavaTransformer extends the Transformer interface. A
JavaTransformer is a class that implements the Transformer interface and is
expected to handle the transformation from the SimpleResult DTD to the
device-specific markup language. It incorporates the
oracle.panama.xform.RtTransformer classes into the repository. It performs
loading and initialization of the custom transformer classes that implements the
oracle.panama.rt.xform.RtTransformer interface.

« XSLTransformer — XSLTransformer extends the Transformer interface. An
XSLTransformer uses XSLT stylesheet which is expected to handle the
transformation from the SimpleResult DTD to the device-specific markup
language. It incorporates the custom XSLT stylesheets into the repository. It also
provides the XSLT processors for the XSLT stylesheets.

10.6.3.18 User

The User interface extends the ModelObiject interface. The User represents the
identity of the user and facilitate personalization in the Oracle9iAS Wireless portals.

10-120 Oracle9iAS Wireless Developer’s Guide

Runtime and Data Model APIs

Each user can be assigned a private root folder to contain the user’s personal
quicklinks. The user can access the services in the groups to which the user belongs.
The implementation of the User interface may access external provisioning system
or enterprise repositories such as Oracle Internet Directory (OID) to manage the
information about the user.

10.6.4 Sample Code that Uses the Data Model API

The following sample code illustrates how you can provision new objects into the
Oracle9iAS Wireless repository using the interfaces in the Model API. We choose the
standalone class to introduce the sample codes, although other type of components,
such as adapters, hooks, listeners, and servlets can be used to illustrate the Model
API. The example only shows the search, create, delete, and commit operations in
the Model API but does not include the necessary business logics.

The numbers that appear in brackets next to a line of code in the listing are
referenced in the discussion to correlate the explanation with the corresponding
lines in the code itself.

« Use Metalocator to get the ModelFactory and ModelServices (line [1]).
« Use ModelFactory to create a new object.
« Use ModelServices to search for an object.

Met aLocat or netalLocator = Metalocator. getlnstance();
model Factory = metalocat or. get Model Factory();
model Servi ces = netalocat or. get Mbdel Services();

The Metalocator interface is used to lookup the ModelFactory and ModelServices.
The getinstance() method in this interface gets the singleton instance of this
MetaLocator. The methods getModelFactory and getModelServices look up the
ModelFactory and the ModelServices.

Typically, to create a new object, you should check first if the object already exists.
To look up any object, you use the ModelServices interface and the method
lookupX(java.lang.String name), where X is the interface name of the object. In this
sample code, to create a new user (the code section for creating a new user starts in
line [2]), you first look up the user by using the lookupUser(userName) method in
the ModelServices interface (line [3]), as the following line of code shows:

model Servi ces. | ookupUser (user Nane) ;

Lookup operation should be the first step before creating any new persistent object
in the Repository. The lookupUser(userName) method searches for the user by

Core Technologies 10-121

Runtime and Data Model APIs

name and, if the User by that name is found, returns the User object. If the user with
that name cannot be found, the method throws the PanamaRuntimeException.

Next, you check if the group to which the user belongs (or should belong) already
exists (line [4]). Following the convention for looking up any object, you use the
ModelServices interface and the lookupGroup(groupName) method to look up a
group by name. If the group is found, the method returns the Group object. If the
group is not found, the method throws the PanamaRuntimeException.

After checking if the user and the group already exist, you create the new user
object (line [5] to line [6]):

{

user = model Factory. creat eUser (user Nane, groups);
} else {
user

model Fact ory. creat eUser (user Nang) ;

}

user . set Passwor d(user Passwor d) ;
user. set Enabl ed(true);

You must save the newly created user. Each newly created object must be saved
after it is created (line [7]):

model Fact ory. save();

Save applies to all created or modified objects in the current thread. The objects are
saved to the persistent storage and the transaction is committed. The method
throws PanamaException if it is unable to save the work.

The searchUser() method in the sample code (line [8]) illustrates how to search a
User object. To enumerate over a set of users (for example, all the users whose
names start with the letter "B"), you use the ResultSetEnumeration (line [9])
returned by the method findUsers (line [10]). The method findUsers uses the
pattern matching on the names. See also lines [11] and [12] in the listing of the
complete sample code.

You should close the ResultSetEnumeration (line [13]) to release the database cursor,
which otherwise will remain open.

To delete a User, you use the deleteUser method following the sample code section
in line [14]. The user name must be exact in line [15]. ModelServices.lookupUser()
method rejects the pattern matching templates by throwing exceptions. The user
object is deleted in line [16].

10-122 Oracle9iAS Wireless Developer’s Guide

Runtime and Data Model APIs

10.6.4.1 Sample Code
inport java.util.Vector;

inport oracl e. panama. PanamaExcept i on;
i nport oracl e. panama. PanamaRunt i neExcepti on;

i nport oracl e. panana. nodel . Met aLocat or;

i nport oracl e. panama. nodel . Model Fact ory;

i nport oracl e. panana. nodel . Model Ser vi ces;

i nport oracl e. panama. nodel . Resul t Set Enumrer at i on;
i nport oracl e. panana. nodel . User;

i nport oracl e. panama. nodel . G oup;

/**

* This is a sanple program denonstrates the usage of the nodel API.
*/

public class Sanpl eMddel Cient {

private Mdel Factory nodel Factory;
private Mdel Services model Servi ces;

public Sanpl eModel Cient() {
Met aLocat or netalocator = Metalocator. getlnstance(); [1]
model Fact ory = met alLocat or. get Model Factory();
model Servi ces = metalocat or. get Model Servi ces();

}

/**
* CGet all group nanes
*/
private String[] getG oupNanes() throws PanamaExcepti on,
PanamaRunt i meException {
String[] nanes;
Resul t Set Enuneration result = null;
try {
[l Find all user groups - use a wildcard for the name expression
result = nodel Services. findGoups("*");
Vector buffer = new Vector();
while (result.hashoreEl ements()) {
Goup group = (Goup)result.next();
String name = group. get Nane();
buf f er. addEl enent (name) ;

}

names = new String[buffer.size()];

Core Technologies 10-123

Runtime and Data Model APIs

buf f er. copyl nt o(nanes) ;
} catch (PanamaRunti meException ex) {

throw ex;
} finally {
if (result !'=null) {
result.close();
result = null;
}
}
return nanes;
}
/**

* Create a new user.
*/
private void createUser(String userNane, String userPassword, String
groupNarre) [2]
t hrows PanamaException, PanamaRuntimeException {
try {
Il First check if the user does not already exists
model Servi ces. | ookupUser (user Nane) ; [3]
[l If we are here the user must already exists
return;
} catch (PanamaRunti meException ignore) {}
Goup group = null;

try {
/] Get the group to add the user
group = nodel Servi ces. | ookupG oup(gr oupNane) ; [4]

} catch (PanamaRunti neException ex) {
/1A PanamaRunti meException is thrown if the group is not found
group = null;
}
User user;
/'l model Factory.createUser() will autonmatically create a
/1 hone folder for the new user.
if (group !'=null) {
Goup[] groups = new Goup[1];
groups[0] = group;

user = nodel Factory. createUser (userNane, groups); [5]
} else {
user = nmodel Factory. createUser(userNane);
}
user . set Passwor d(user Passwor d) ;
user. set Enabl ed(true); [6]

10-124 Oracle9iAS Wireless Developer’s Guide

Runtime and Data Model APIs

/1 save the newly created object
model Fact ory. save(); [7]

}

/**

* Search for users.

*/
private User[] searchUser(String userNanePattern) [8]
t hrows PanamaException, PanamaRuntineException {
User[] users;
Resul t Set Enuneration result = null; [9]
try {
result = nodel Services. findUsers(userNanePattern); [10]
Vector buffer = new Vector();
while (result.hashreEl ements()) { [11]
User user = (User) result.next(); [12]
buf f er. addEl enent (user);
}
users = new User[buffer.size()];
buf f er. copyl nt o(users);
} catch (PanamaRunti meException ex) {
t hrow ex;
} finally {
if (result '=null) {
result.close(); [13]
result = null;
}
}
return users;
}
/**

* Del ete a user.

*/
private void del eteUser(String userNane) [14]
throws PanamaException, PanamaRuntimeException {
try {
if (userName != null && userNane.length() > 0) {
User user = nodel Servi ces. | ookupUser (user Nane) ; [15]
user. delete(); [16]
/'l Save the changes
model Fact ory. save();
}

} catch (PanamaRunti meException ex) {

Core Technologies 10-125

Adapters

throw ex;

10.7 Adapters

Adapters are used to securely fetch application content and prepare it for device
adaptation. Out-of-the-box, Oracle9iAS Wireless includes the HTTP Adapter. The
HTTP Adapter is used to retrieve content from any HTTP/XML/J2EE server and
application. The HTTP Adapter is compliant with HTTP 1.1. It supports HTTPS,
cookies, and redirecting.

The method for creating mobile applications has been simplified in this release.
Previously, it was common to create a Java Adapter for each mobile application.
This would embed some of the application logic in an Adapter and some of the
logic in the application itself. In order to leverage J2EE standards, the HTTP
Adapter is recommended for mobile development. The complete mobile application
can reside on any web server. The HTTP Adapter will point to the application URL
to retrieve Oracle9iAS Wireless XML output. See the XML Developer's Guide section
of this book for more information.

10.7.1 HTTP Adapter

The HTTP Adapter fetches the Mobile XML content from the external HTTP/
HTTPS URLSs. It acts as a proxy browser (which understands mobile xml) on behalf
on the mobile device. Init Argument:

INVOKE LISTNER: This argument specifies the class path of the HTTP Adapter
Listener. Refer to the javadoc of
oracle.panama.adapter.http.event.HttpAdapterEventListener for more details on
HttpAdapterEventListener Input Arguments.

Input Arguments:
1. URL: This argument specifies the URL to the data source

2. REPLACE_URL: This argument specifies whether the adapter should replace
the relative URLs inside the fetched mobile xml document with absolute ones

3. FORM_METHOD: This argument specifies the HTTP method that should be
used to open the data source URL

10-126 Oracle9iAS Wireless Developer’s Guide

Adapters

4. INPUT_ENCODING: This argument specifies the character encoding used by
the adapter to send form parameters to the data source URL.

The HTTP adapter supports all the standard browser features:

1. Cookie Support: The HTTP Adapter implements the version 0 of the Cookie
Specification by Netscape (http://www.netscape.com/newsref/std/cookie
spec.html). The HTTP Adapter stores the Cookies sent by the external URL’s in
the current session. And sends the relevant cookies (retrieved from the session)
with the external HTTP URL request. The cookies are valid only for a session
and are not stored persistently.

2. HTTPS Support: The HTTP Adapter can access https protocol based URL’s.
Before using https — the client certificates should be configured using the
System Management Tool. Refer to the System Management Tool’s
documentation for more details.

3. Relative URL support: The Mobile XML returned by the external URL can use
absolute or relative URL's as targets. The following mobile xml document uses
both relative and absolute URL.

Example XML Document, showing the usage of relative and absolute URLS.

<?xm version = "1.0" encoding = "UTF-8" standal one="yes" ?>
<! DOCTYPE Si npl eResult PUBLIC "-//ORACLE// DTD Si npl eResult 1.1.0//EN'

"http://xmns.oracle.confias/dtds/SinpleResult_1 1 0.dtd">

<Si npl eResul t >

<Si npl eCont ai ner >

<Sinpl eHref target="http://CO acle9i AS

Wrel ess.oracl e.com Hel | oWr | d. xm " >Absol ut e URL</ Si npl eHr ef >
<Sinpl eHref target="HelloWorld.xm">Relative URL </Sinpl eHref>
</ Si npl eCont ai ner >

</ Si npl eResul t >

4. HTTP Adapter URL Prefix Configuration Parameter: If the Input argument
URL doesn’t start with http or https, then the value of the site configuration
parameter “HTTP Adapter URL Prefix” is prepended to the value of input
argument URL. Refer to the “Site Configuration” document to find more details
on how to set the value of “HTTP Adapter URL Prefix” parameter.

5. HTTP Redirects: The HTTP Adapter honours the HTTP response code 301 to
305 and follows the redirected URL’s, specified by HTTP Location header.

6. Post Redirect Support: The HTTP Adapter support post based redirects. To send
a post based redirect the external application should send HTTP header

Core Technologies 10-127

Adapters

x-oracle-mobile-redirect with value true, and mobile xml form as the response
content.

The following jsp file sends a Post redirect to the URL http://Oracle9iAS
Wireless.oracle.com. The paraml=valuel is passed as post data to the URL

<%
response. set Header ("x-oracl e-nobi | e-redirect”, "true");
response. set Header (" Cont ent - Type", "tex/vnd.oracle. nmobilexm");
%
<?xm version = "1.0" encoding = "UTF-8" standal one="yes" ?>
<! DOCTYPE Si npl eResult PUBLIC "-//ORACLE// DTD Si npl eResult 1.1.0//EN'
“http://xmns.oracle.conlias/dtds/SinmpleResult_1 1 0.dtd">
<Si npl eResul t >
<Si npl eCont ai ner >
<Si npl eFor m name="ProcessSi gnOnFor nf' m net ype="t ext/vnd. or acl e. nmobi | exni "
target="http://Oacl e9i AS Wrel ess. oracl e. com MyApp" net hod="post" >
<Si npl eFor nl t em nane="paraml" val ue="val uel" type="hidden"/>
</ Si npl eFor np
</ Si npl eCont ai ner >
</ Si npl eResul t >

7. Proxy Server Support: HTTP Adapter can access external URL’s through a
HTTP proxy server. The proxy settings can be specified using the Site
Configuration Tool.

8. Referring to non mobile XML documents: The HTTP Adapter rewrites all the
targets specified in the mobile xml document so that they point to the HTTP
Adapter. The mobile xml attribute “mimetype” can be used be indicate that the
“target” points to a non-mobile xml document and should not be rewritten.

9. Support for GET and POST HTTP methods: HTTP Adapter uses the following
logic to find the HTTP Request method to be used:

« Ifthe device sent a request through HTTP listener, then the method used by
the device to send the Request to the Oracle9iAS Wireless server is used

« Else if the input argument method has a non-null value, then the value of
method is used

« Else by default GET method is used.

10. Referral support: HTTP Adapter sends the HTTP Header Referer to specify the
previous URL. This can be used by external applications to trace the context of
the current request. By default, the Referer header is not sent, the mobile xml
attribute “sendreferer” is used to indicate that the Referer header should be
sent.

10-128 Oracle9iAS Wireless Developer’s Guide

Adapters

The following mobile xml document shows the usage of the sendreferer attribute.

<?xm version="1.0" encodi ng="UTF-8"?>

<Si npl eResul t >

<Si npl eCont ai ner >

<Sinpl eHref target="HelloWrld.xm" sendreferer="true”>Send Referer</SinpleHref>
<Sinpl eHref target="HelloWrld.xm" sendreferer="false”>Don't Send Referer

</ Si npl eHr ef >

</ Si npl eCont ai ner >

</ Si npl eResul t >

11. Device Information such as type of device and user Information like location,
locale preferences etc. are passed as HTTP headers.

Following is the list of HTTP headers sent by the HTTP Headers.
Table 10-14 HTTP headers and their descriptions

Header Name Description

x-oracle-user.locale The locale preference of the User. For example, en-US

x-oracle-user.deviceid The device identifier of the device.

x-oracle-user.userkind The type of the User. Possible values are anonymous, virtual,
registered

x-oracle-user.authkind Whether is user is authenticated. Possible values are

authenticated, unauthenticated

x-oracle-user.name The name of the User. This header is sent only if the Disclose
Identity option is selected by the user.

x-oracle-user.displayname This display name of the User. This header is sent only if the
Disclose Location option is selected by the user.

x-oracle-user.location.x This header is sent only if the Disclose Location option is
selected by the user.

x-oracle-user.location.y This header is sent only if the Disclose Location option is
selected by the user.

x-oracle-user.location.addresslinel
x-oracle-user.location.addressline2
x-oracle-user.location.addresslastline
x-oracle-user.location.block
x-oracle-user.location.city
x-oracle-user.location.county

x-oracle-user.location.state

Core Technologies 10-129

Adapters

Table 10-14 HTTP headers and their descriptions

Header Name Description

x-oracle-user.location.postalcode
x-oracle-user.location.postalcodeext
x-oracle-user.location.country
x-oracle-user.location.time
x-oracle-user.location.type
x-oracle-user.location.timesincelastupdate

x-oracle-device.orientation The orientation of the device. Possible values are landscape
and portrait.

x-oracle-device.device The type of device. Possible values are voice, microbrowser,
pdabrowser, pcbrowser, micromessenger, messenger.

x-oracle-device.maxdocsize The maximum size of the document (in bytes) that can be
handled by the device.

The HTTP Adapter should be used to build mobile XML aware applications. The
application can be built using any web programming technology like Java Server
Pages (JSP), Servlet, Perl or Active Server Pages (ASP) and can be hosted on any
web server. In Oracle9iAS Wireless 2.0 HTTP Adapter is the preferred way to build
mobile xml applications.

10.7.2 Other Adapters

10.7.2.1 OC4J

The OC4J Adapter is used to fetch mobile xml content by invoking a JSP page in the
same Java VM. The JSP page can access the request context information. The OC4J
adapter is only for internal use of Oracle9iAS Wireless.

10.7.2.2 Web Integration

The Web Integration adapter retrieves and adapts Web content. The Web Integration
adapter works with Web Interface Definition Language (WIDL) files to map source
content to Portal-to-Go XML. Typically, the source format for the Web Integration
adapter is HTML, but you can also use the adapter to retrieve content in other
formats, such as XML. Portal-to-Go provides a visual tool for creating WIDL files,
the Web Integration Developer. To create a WIDL file, you identify the elements of a
Web page that you want to make accessible to a service. You then associate output

10-130 Oracle9iAS Wireless Developer’'s Guide

Adapters

and input parameters to the source elements that you want to access in a
Portal-to-Go service.

Note: The Web Integration adapter is deprecated in this release.

10.7.2.3 SQL Adapter

The SQL Adapter allows service designers to create services based on SQL
Statements on Stored Procedures. Any database with JDBC driver is supported. The
SQL Adapter uses pool of database connections. The connection pool parameters
can be specified as init arguments of the adapter.

Note: The SQL adapter is deprecated in this release.

10.7.3 Creating Your Own Adapter

Customers can implement their own adapters by implementing

oracl e. panana. adapt er. Runt i neAdapt er interface (refer to javadoc). In this
section we will implement a simple RMIAdapter, which fetches mobile xml content
by invoking RMI methods.

Lets look at the implementation of the adapter

package oracl e. panana. adapter.rm ;
inport java.io.StringReader;

inport java.util.Vector;

inport java.util.Hashtable;

inport java.util.Enumeration;

inport java.lang.reflect. Method;
inport java.lang.reflect.Menber;
inport java.lang.reflect.Mdifier;
inport java.lang.reflect.|nvocationTarget Exception;
inport java.net.MalformedURLExcepti on;
inport java.rni.Nam ng;

inport java.rni.RenoteException;

inport java.rm . Not BoundExcepti on;

i nport org.w3c.dom El ement;

Core Technologies 10-131

Adapters

i nport org.w3c. dom Docunent ;

i nport oracle. panama. PAPrimtive;

i nport oracl e. panana. Ar gunent ;

i nport oracl e. panana. Ar gunents;

i nport oracl e. panama. Ar gunment Type;

inport oracl e. panama. Qut put Argunent s;

inport oracl e. panama. adapt er . Runt i meAdapt er;

i nport oracl e. panana. adapt er . Runt i neAdapt er Hel per;;
i nport oracl e. panana. adapt er . Adapt er Excepti on;

inport oracle. panama. rt. Servi ceCont ext ;
i nport oracl e. panama. core. xm . XM.;

/**
* A Sinple RM Adapter - invokes RM nethods to fetch nobile xm content
*/

All the adapters implement RuntimeAdapter interface

public class RM Adapter inplenents RuntineAdapter {

[l init argunents
private Argunents initArgs = null;

[l input arguments
private Arguments inputArgs = null;

/1 output argunents
private Qutput Arguments outputArgs = null;

private boolean initialized = fal se;

/'l reference to renote object
private bject renmotehject = null;

/'l remote interface
private String renotelnterface;

/'l hash table containing the method nane to Method object mapping
private Hashtabl e accessibl eMet hods = nul | ;

/1 Init argument - specifies the rmi url of the renote object
private static final String RM_OBJECT_URL = "RM _OBJECT_URL";

10-132 Oracle9iAS Wireless Developer’s Guide

Adapters

/1 Init argument - specifies the renote interface
private static final String REMOTE | NTERFACE = "REMOTE | NTERFACE";

/'l I'nput argument - specifies the renmdte nethod name to i nvoke
private static final String METHOD NAME = "METHCD NAME";

The getlnitArguments() method returns the init arguments required to initialize the
adapter. The values of these arguments are specified during the creation of Master
Service. The Ul tools like Service Designer use this method of display the list of init
that are required for creating a master service.

The RMI Adapter has following init arguments

=« RMI Object URL: It specifies the URL of the remote object in the RMI name
space.

« Remote Interface: It specifies the classpath of the remote interface

/**
* Get the init arguments
* @eturn init argunents
*/
public Argunents getlnitArguments() throws AdapterException {

if (initArgs == null) {

synchroni zed (this) {
if (initArgs == null) {
initArgs = RuntineAdapt er Hel per. creat eArgunents();

Argunent arg = null;

arg = initArgs.createlnput (RM_OBJECT_URL);

arg. set Comment (" The RM OBJECT URL for eg.,
rm://rmserver.com 2008/ Hel | oWor [d");

arg. set Type(Argunent Type. SI NGLE_LI NE) ;

arg.setCaption("RM Server URL");

arg = initArgs.createl nput (REMOTE_ | NTERFACE) ;
arg. set Comment (" The Renote Interface");

arg. set Type(Argunent Type. SINGLE_LI NE) ;
arg.setCaption("Remote Interface");

}
}

return initArgs;

Core Technologies 10-133

Adapters

This method returns the Input Arguments expected by the Adapter.

/**

* CGet the input Argunents

* @eturn i nput arguments

*

/
public Argunents getlnputArgunents() throws AdapterException {
return inputArgs;

}

This method returns the Output Arguments
/**
* CGet the output Argunents
* @eturn an array of output argunents
*/
public QutputArgunments get Qut put Argunments() throws AdapterException {
return output Args;

}

The init method initializes the adapter. The init adapter of the method is called
once, when the master service pointing to the adapter is invoked or the
getMergedInputArguments() method of the MasterService is called. The content of
the init method must be synchronized to ensure that the class is not initialized by
another thread.

The init method of RMIAdapter does the following

« Gets the value of init arguments (RMI_OBJECT_URL or REMOTE_
INTERFACE)

« Gets reference to remote object

« Inserts public methods of the remote interface in accessibleMethods hash table.
The hash table is used later.

« Create input and output arguments of the adapter. The input arguments contain
only one input argument METHOD_NAME of type enumeration.

« Sets initialized flag to true.
/**
* |nitialize the adapter using the information fromthe init arguments.
* @aram args init argunents
*/
public void init(Argunents args) throws AdapterException {
if (initialized == false) {
synchroni zed (this) {

10-134 Oracle9iAS Wireless Developer’s Guide

Adapters

if (initialized == false) {

String rm QbjectUrl = args. getlnputVal ue(RM _OBJECT_URL);
renot el nterface = args. get | nput Val ue(REMOTE_I NTERFACE) ;

/1 check if both the init args are specified
if ((rmQojectUl == null) || (rm ojectUrl.equals("")) ||
(remotelnterface == null) ||

(remotel nterface. equal s(""))) {

met hods[i]);

t hrow new Adapt er Exception("lnit paranmeters nissing");

}

Il Get reference to renote object
Cass interfaceCass = null;
try {
renot eCbj ect = Naming. | ookup(rm QbjectUrl);
interfaced ass = O ass.forName(renotelnterface);
} catch (Exception ex) {
t hrow new Adapt er Excepti on(ex);

}

Met hod[] nmethods = interfaceC ass. get Met hods();
accessi bl eMet hods = new Hashtabl e();
for (int i=0; i<methods.length; i++) {
if (Mdifier.isPublic(methods[i].getMdifiers())) {
accessi bl eMet hods. put (et hods[i] . get Name(),

}

/1 Create |nput Argunents

i nput Args = Runti meAdapt er Hel per. creat eAr gument s() ;
Argument arg = input Args. creat el nput (METHOD_NAME) ;
arg. set Type(Argunent Type. ENUM ;

String[] accessibl eMet hodNames = get Accessi bl eMet hodNanes() ;
arg. set Opti ons(accessi bl eMet hodNanes) ;

/I Create Qutput Arguments

out put Args = Runti neAdapt er Hel per. cr eat eQut put Ar gunment s() ;
initialized = true;

Core Technologies 10-135

Adapters

The method returns an array of accessible method names

/] returns the array of accessible nethod names
private String[] getAccessibl eMet hodNames() {
Enurrerati on enum = accessi bl eMet hods. keys();
Vector v = new Vector();
whil e (enum hasMoreEl ements()) {
String methodName = (String)
v. add(met hodNare) ;

enum next El ement () ;

}

String[] methodNames = new String[v.size()];
met hodNames = (String []) v.toArray(methodNanes);
return net hodNanes;
}
The invoke method is called when a client invokes a master service pointing to this
adapter. The method executes the client request and returns the mobile xml result to
the master service.

The method takes one argument of type ServiceContext. For each end user request
received by the Oracle9iAS Wireless Server a ServiceContext object is created. The
ServiceContext object contains all the user input arguments and arguments
specified in Alias and Master Service.
/**

* | nvoke the adapter using the input and output parameters in the

* service context.

* @aram serviceContext the context that contains input paranmeters

*/

public El enment invoke(ServiceContext serviceContext) throws AdapterException

checkState();