
Oracle9iAS Wireless

Developer’s Guide

Release 2 (9.0.2)

May 2002

Part No. A90485-02

 Oracle9iAS Wireless Developer’s Guide, Release 2 (9.0.2)

Part No. A90485-02

Copyright © 2002 Oracle Corporation. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the US Government or anyone licensing or using the Programs on behalf
of the US Government, the following notice is applicable:

Resticted Rights Notice Programs delivered subject to the DOD FAR Supplement are “commercial
computer software” and use, duplication and disclosure of the Programs including documentation, shall
be subject to the licensing restrictions set forth in the applicable Oracle license agreement. Otherwise,
Programs delivered subject to the Federal Acquisition Regulations are “restricted computer software”
and use, duplication and disclosure of the Programs shall be subject to the restrictions in FAR 52.227-19,
Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500 Oracle
Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be licensee's responsibility to take all appropriate fail-safe, back up,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle disclaims liability for any damages caused by such use of the Programs.

Oracle is a registered trademark, and Oracle9i, OracleMobile, PL/SQL, SQL*Net, and SQL*Plus are
trademarks or registered trademarks of Oracle Corporation. Other names may be trademarks of their
respective owners.

iii

Contents

Send Us Your Comments .. xv

Preface... xvii

Intended Audience .. xix
Documentation Accessibility ... xix
Related Documents... xx

Part I Introduction

1 Introduction

1.1 Overview .. 1-1
1.2 Wireless Internet Components .. 1-1
1.2.1 The Wireless Network ... 1-2
1.3 Developing Mobile Internet Applications ... 1-3
1.3.1 User Input Limitations .. 1-3
1.3.2 Myriad Wireless Device Standards ... 1-3
1.3.3 Heterogeneous Sources of Content ... 1-4
1.4 Oracle9iAS WirelessArchitecture.. 1-6
1.4.1 Mobile Services... 1-6
1.4.2 Processing a Request for a Wireless Service... 1-6
1.5 Oracle9iAS WirelessCore and Services .. 1-9
1.5.1 The Core .. 1-9
1.5.2 Mobile PIM and Email... 1-14
1.5.3 m-Commerce and Billing .. 1-14

iv

1.5.4 Mobile Studio.. 1-14
1.5.5 Security .. 1-15

Part II Oracle9iAS Wireless XML Developer’s Guide

2 XML Overview

2.1 What is XML?... 2-1
2.2 Relationship between Oracle9iAS Wireless XML and HTML .. 2-2
2.3 Why use Oracle9iAS Wireless XML?.. 2-2
2.4 How Does Oracle9iAS Wireless XML Work with Oracle9iAS Wireless? 2-3

3 Displaying and Formatting Content

3.1 Hello World Example ... 3-1
3.1.1 HelloWorld.xml .. 3-1
3.1.2 DOCTYPE Declaration .. 3-2
3.1.3 SimpleResult ... 3-3
3.2 Formatting the Display ... 3-5
3.2.1 SimpleBreak, SimpleStrong and SimpleEm ... 3-5
3.2.2 Tables and Basic Formatting Example .. 3-6
3.3 Wireless Graphics .. 3-8
3.3.1 SimpleImage.. 3-8
3.3.2 ImageDisplay.xml .. 3-9
3.4 Enhancing with Audio for Voice Access.. 3-10
3.4.1 SimpleAudio and SimpleSpeech.. 3-10
3.4.2 Recommendation for Voice Navigation.. 3-11

4 Application Navigation

4.1 Introduction.. 4-1
4.2 Basic Navigation .. 4-2
4.2.1 SimpleMenu, SimpleMenuItem .. 4-2
4.2.2 Navigating by Voice... 4-3
4.3 Document Linking... 4-5
4.3.1 SimpleHref, SimpleTimer.. 4-5
4.3.2 Enhancing with Voice.. 4-9

v

5 Filling Out Forms for Data Entry and Navigation

5.1 Introduction.. 5-1
5.2 Basic User Interaction ... 5-2
5.2.1 SimpleForm... 5-2
5.2.2 SimpleFormItem... 5-2
5.3 Complete User Forms ... 5-4
5.3.1 SimpleFormSelect, SimpleFormOption, and SimpleOptGroup.............................. 5-4
5.3.2 Profile.xml ... 5-4
5.4 Enhancing Voice .. 5-6
5.4.1 SimpleGrammer, SimpleValue and SimpleDTMF.. 5-6
5.4.2 Recommendation for Voice Forms .. 5-7

6 Advanced User Interactions and Channel Optimization

6.1 Introduction.. 6-1
6.2 Events and Tasks Using SimpleBind.. 6-1
6.2.1 SimpleBind.xml .. 6-2
6.2.2 Device Specific SimpleBind .. 6-3
6.3 Device Headers and Device Class... 6-4
6.3.1 Article.jsp... 6-5
6.3.2 PageNavigation.java .. 6-7

7 Mobile Modules

7.1 Introduction.. 7-1
7.2 Wireless XML Attributes for Mobile Modules.. 7-2
7.3 Shipped Mobile Modules ... 7-3
7.4 Using Shipped Mobile Modules.. 7-4
7.4.1 Commerce Services .. 7-4
7.4.2 PIM Services.. 7-4
7.4.3 Location Services.. 7-4
7.5 Developing Custom Mobile Modules .. 7-5
7.5.1 “Hello World” Mobile Module .. 7-5
7.5.2 Sending Parameters to a Mobile Module ... 7-7

vi

8 XML Tag Glossary

8.1 XML Tags.. 8-2
8.2 Using Mobile Context Information in XML.. 8-89
8.3 Using Mobile Context Information from HTTP Headers.. 8-92
8.3.1 Encoding and Escaping Locale String from Request .. 8-94

Part III Oracle9iAS Wireless Platform and Services

9 Mobile Service Developer’s Tools

9.1 Mobile Studio ... 9-1
9.1.1 In-house Mobile Studio ... 9-1
9.1.2 Oracle Online Mobile Studio .. 9-3
9.2 Oracle9iAS Wireless SDK... 9-4
9.2.1 Overview ... 9-4
9.2.2 Installation... 9-4
9.2.3 Structure .. 9-4
9.2.4 Configuration.. 9-6
9.2.5 SDK Messaging... 9-8
9.2.6 Device Description ... 9-10
9.2.7 Deploy the HelloWorld Application ... 9-13
9.2.8 Device Detection... 9-13
9.2.9 Default Main Wireless Application ... 9-14
9.3 Overview of JDeveloper with Oracle9iAS Wireless ... 9-14
9.3.1 JDeveloper and Oracle9iAS Wireless SDK ... 9-15
9.3.2 The Addin and the Wizards ... 9-16
9.3.3 Instructions to use the Addin and Wizards.. 9-20
9.3.4 Running Instructions ... 9-21
9.4 Third-party Mobile Simulators.. 9-21
9.4.1 Phones .. 9-22
9.4.2 PDA .. 9-23
9.4.3 Voice ... 9-23
9.5 Deploying Your Applications.. 9-24

vii

10 Core Technologies

10.1 Oracle9iAS Wireless Components and Process Architecture 10-2
10.1.1 Core Platform Architecture .. 10-2
10.1.2 Core Process Architecture... 10-5
10.2 Integration with other Components ... 10-13
10.2.1 Scenario 1: User Authentication by Oracle9iAS Wireless (device portal) 10-13
10.2.2 Scenario 2: User Authentication by an External Application 10-15
10.2.3 Scenario 3: User Authentication by mod_osso .. 10-16
10.2.4 Scenario 4: Voice based authentication... 10-17
10.2.5 Global Logout ... 10-17
10.2.6 Oracle9iAS Wireless-OID Integration ... 10-18
10.2.7 Oracle9iAS Wireless Repository Synchronization after User Authentication .. 10-19
10.2.8 PL/SQL based asynchronous synchronization ... 10-20
10.2.9 Oracle9iAS Wireless Programmatic Model API Interface 10-21
10.2.10 Oracle9iAS Wireless User Management Integrated with DAS 10-22
10.2.11 WebCache Integration ... 10-22
10.2.12 Oracle Portal and Oracle9iAS Wireless... 10-30
10.2.13 Oracle Portal as a Wireless Service .. 10-31
10.2.14 Developing Wireless Portlets ... 10-32
10.2.15 OraclePortal, Oracle9iAS Wireless and Single SignOn (SSO) 10-34
10.2.16 Portlets for Services Deployed on Wireless Server ... 10-35
10.3 Wireless Services ... 10-36
10.3.1 Wireless Services Overview.. 10-36
10.3.2 Access Control .. 10-38
10.4 Device and Network Adaptation.. 10-38
10.4.1 Logical Device... 10-38
10.4.2 Device Detection... 10-39
10.4.3 Image Support .. 10-40
10.4.4 Transformer .. 10-40
10.4.5 XSLT Transformers .. 10-44
10.5 Asynchronous Server.. 10-47
10.5.1 Asynchronous Server Architecture ... 10-47
10.5.2 Key Technical Challenges ... 10-48
10.5.3 Technical Solutions and Features .. 10-49
10.5.4 Examples on Service Invocation .. 10-52

viii

10.5.5 Writing Asynchronous Applications... 10-58
10.6 Runtime and Data Model APIs.. 10-62
10.6.1 Oracle9iAS Wireless Runtime... 10-62
10.6.2 Reference Model ... 10-89
10.6.3 Repository Data Model API.. 10-114
10.6.4 Sample Code that Uses the Data Model API.. 10-121
10.7 Adapters.. 10-126
10.7.1 HTTP Adapter .. 10-126
10.7.2 Other Adapters ... 10-130
10.7.3 Creating Your Own Adapter .. 10-131

11 Advanced Customization

11.1 Overview of Advanced Customization.. 11-2
11.2 Presets.. 11-4
11.2.1 Presets Concept and Architecture.. 11-5
11.2.2 Sample Applications .. 11-6
11.2.3 Regular Expressions Syntax for the Presets Attribute Formats........................... 11-16
11.3 Location Marks .. 11-18
11.4 User Device Management .. 11-19
11.5 Multiple Customization Profiles ... 11-19
11.5.1 Concepts .. 11-20
11.5.2 Sample Applications .. 11-22
11.6 User and Group Management ... 11-24
11.7 Service Management ... 11-24
11.8 Rebranding the Customization Portal .. 11-24
11.8.1 Overview ... 11-24
11.8.2 Page Naming Conventions ... 11-25
11.8.3 JavaServer Pages Structure ... 11-26
11.8.4 Directory Structure... 11-30
11.8.5 Customization Levels .. 11-31
11.8.6 Customization Components ... 11-32
11.8.7 Setting the Multi-Byte Encoding for the Customization Portal........................... 11-34
11.9 Using the Customization Portal API .. 11-34
11.9.1 Overview ... 11-34
11.9.2 Customization Portal API Classes ... 11-35

ix

11.9.3 Session Flow.. 11-37

12 Alert Engine and Data Feeds

12.1 Alert Engine ... 12-1
12.1.1 Alert Engine Architecture ... 12-1
12.1.2 Creating a Master Alert Service ... 12-3
12.1.3 Using the Content Manager to Create and Manager an Alert Service................. 12-7
12.1.4 Managing Alert Subscriptions.. 12-8
12.1.5 Managing Alert Subscription Using Customization... 12-8
12.1.6 Manage Alert Subscription Using Java API ... 12-8
12.1.7 Creating a Device Address for Alert ... 12-10
12.1.8 Starting Alert Engine Process ... 12-10
12.1.9 Notifying the Alert Engine for Content Arrival .. 12-11
12.2 Data Feeders... 12-11
12.2.1 Building a Data Feeder .. 12-13
12.2.2 Creating a Passthrough DataFeeder.. 12-14
12.2.3 Sample Applications.. 12-14

13 Push Service and SMS

13.1 Push Service and SMS Overview.. 13-2
13.2 Push Services API.. 13-4
13.2.1 Building a Push Application .. 13-5
13.3 Oracle9iAS Wireless Messaging System .. 13-12
13.3.1 Transport Runtime Processes ... 13-14
13.3.2 Configuration.. 13-15
13.3.3 Transport API ... 13-15
13.3.4 OTA .. 13-19
13.3.5 Sample programs ... 13-19
13.3.6 Driver Interface APIs ... 13-21
13.4 Oracle9iAS Wireless Pre-built Drivers ... 13-36
13.4.1 PushClient Driver... 13-37
13.4.2 Email Driver.. 13-38
13.4.3 Voice Driver .. 13-40
13.4.4 UCP Driver.. 13-41
13.4.5 SMPP Driver ... 13-43

x

13.4.6 Fax Driver (RightFax) .. 13-44

14 Transcoding

14.1 Transcoding Overview ... 14-1
14.2 Web Content Adaptation.. 14-2
14.2.1 WIDL Services... 14-3
14.2.2 WebIntegration Beans.. 14-3
14.2.3 Using WebIntegration Beans .. 14-4
14.3 WML Translator... 14-11
14.3.1 Deploying and Configuring WML Translator ... 14-12
14.3.2 Using the WML Translator ... 14-12

15 Using Location Services

15.1 Introduction to Location Services ... 15-1
15.1.1 Getting Started.. 15-2
15.1.2 Location Services .. 15-3
15.1.3 Service Providers .. 15-4
15.1.4 Geocoding Services .. 15-11
15.1.5 Location Marks ... 15-12
15.1.6 LOCATIONMARK Table.. 15-13
15.1.7 Mapping Services ... 15-14
15.1.8 Routing Services ... 15-15
15.1.9 Business Directory (Yellow Page) Services... 15-18
15.1.10 Traffic Services.. 15-22
15.2 Developing Location-Based Applications.. 15-28
15.2.1 Creating Java Server Pages ... 15-28
15.2.2 Creating a Location-Based Application Adapter... 15-44
15.3 Enabling Mobile Positioning.. 15-54
15.3.1 Manual Positioning .. 15-55
15.3.2 Automatic Positioning ... 15-56
15.4 Using the Region Modeling Tool .. 15-68
15.4.1 Service and Folder Visibility Using Region Modeling.. 15-68
15.4.2 Folders and Hierarchies of Regions... 15-69
15.4.3 Region Modeling Tool Web Interface.. 15-69
15.4.4 Associating a Region with a Service .. 15-71

xi

15.4.5 Loading and Updating Region Data ... 15-72
15.4.6 Region Modeling API .. 15-77

16 Offline Management

16.1 Oracle9i Lite: The Internet Platform for Mobile Computing 16-1

17 Mobile Studio

17.1 Oracle9iAS Wireless Mobile Studio Overview ... 17-2
17.2 Getting Started.. 17-3
17.2.1 Login and Registration .. 17-3
17.3 Studio Configuration .. 17-6
17.3.1 Sample Applications Configuration.. 17-6
17.4 Administration... 17-44
17.4.1 Login .. 17-44
17.4.2 Site .. 17-45
17.4.3 Configuration.. 17-45
17.4.4 Locales ... 17-46
17.4.5 Sample Services ... 17-49
17.4.6 Resources... 17-50
17.5 Advanced Customization (Studio Tag Library) ... 17-51
17.5.1 Resources... 17-51
17.5.2 Tag Library.. 17-51

Part IV Oracle9iAS Wireless Modules

18 Mobile PIM and eMail

18.1 Mobile PIM and eMail Overview.. 18-2
18.1.1 Mobile Email ... 18-2
18.1.2 Mobile Directory .. 18-6
18.1.3 Mobile Address Book .. 18-10
18.1.4 Calendar .. 18-18
18.1.5 Instant Messaging .. 18-25
18.1.6 Short Messaging ... 18-29
18.1.7 Document Management.. 18-31

xii

18.1.8 Fax Module.. 18-35
18.1.9 Tasks... 18-41

19 m-Commerce

19.1 m-Commerce Service ... 19-2
19.2 m-Commerce APIs .. 19-2
19.2.1 Before You Begin .. 19-2
19.3 Mobile Wallet (m-Wallet) ... 19-3
19.3.1 Configuring the m-Wallet ... 19-3
19.3.2 Linking to the M-Wallet .. 19-8
19.3.3 Output Parameters for the m-Wallet ... 19-9
19.4 Translator.. 19-16
19.4.1 Configuring the Translator Module .. 19-16
19.4.2 Linking to the Translator Module.. 19-17
19.5 iPayment ... 19-19
19.5.1 Configuring the iPayment Service Module .. 19-19
19.6 Formfiller .. 19-22
19.6.1 Configuring the Formfiller Module... 19-22
19.7 Creating a Billing Mechanism.. 19-31

20 Location-Based Module

20.1 Location Modules .. 20-1
20.1.1 Location Picker ... 20-1
20.1.2 Configuring the Location Picker Module ... 20-2
20.2 Driving Directions ... 20-6
20.2.1 Configuring the Driving Directions... 20-6
20.3 The Business Directory Module .. 20-9
20.3.1 Configuring the Business Directory Input Parameter .. 20-9
20.4 Maps Module ... 20-11
20.4.1 Configuring the Maps Input Parameters .. 20-11
20.4.2 Configuring the Input Parameters... 20-12
20.4.3 Linking to the Maps Module ... 20-12
20.5 Extending the Mobile Modules ... 20-13
20.5.1 The oracle.panama.model.LocationMark class.. 20-14
20.5.2 The oracle.panama.spatial.geocoder.Geocoder class .. 20-15

xiii

20.5.3 The oracle.panama.module.location.LocationHistoryManager class 20-16
20.5.4 The oracle.panama.spatial.router.Router class .. 20-17
20.5.5 The oracle.panama.spatial.mapper.Mapper class ... 20-18

Index

xiv

xv

Send Us Your Comments

Oracle9iAS Wireless Developer’s Guide, Release 2 (9.0.2)

Part No. A90485-02

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

■ Did you find any errors?
■ Is the information clearly presented?
■ Do you need more information? If so, where?
■ Are the examples correct? Do you need more examples?
■ What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send
comments to us in the following ways:

■ Electronic mail: iasdocs_us@oracle.com
■ Postal service:

Oracle Corporation
Oracle Mobile and Wireless Products
500 Oracle Parkway, Mailstop 4OP6
Redwood Shores, California 94065
USA

If you would like a reply, please give your name, address, telephone number, and (optionally)
electronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.

xvi

xvii

Preface

This guide discusses how you can use Oracle9iAS Wireless to develop and deliver
mobile services to any mobile device. The structure of this document follows the
architecture of Oracle9iAS Wireless.

Figure 1. Oracle9iAS Wireless Architecture

xviii

 This Guide includes the following Parts and Chapters:

Section Content

Part I, "Introduction"

Chapter 1, "Introduction" Overview of Oracle9iAS Wireless

Part II, "Oracle9iAS Wireless XML Developer’s Guide"

Chapter 2, "XML Overview" Overview of XML.

Chapter 3, "Displaying and Formatting
Content"

Sample applications and methods for formatting and displaying
XML content.

Chapter 4, "Application Navigation" Navigating and linking among XML content.

Chapter 5, "Filling Out Forms for Data
Entry and Navigation"

Using forms to simplify filling out and navigating XML content.

Chapter 6, "Advanced User Interactions
and Channel Optimization"

Advanced user interactions with XML content.

Chapter 7, "Mobile Modules" Using XML to develop and deploy mobile modules.

Chapter 8, "XML Tag Glossary" Abstract device markup language used in the OracleMobile
Online Studio application framework.

Part III, "Oracle9iAS Wireless Platform and Services"

Chapter 9, "Mobile Service Developer’s
Tools"

Building applications using Oracle9iAS Wireless.

Chapter 10, "Core Technologies" Core technologies used by Oracle9iAS Wireless.

Chapter 11, "Advanced Customization" Adapting applications to increase mobile application
efficiency.

Chapter 12, "Alert Engine and Data
Feeds"

Publish timely information for subscribers from a variety of
data sources.

Chapter 13, "Push Service and SMS" Push and SMS Services architectures, and how to use these
services to create and deploy mobile applications.

Chapter 14, "Transcoding" Reformatting device/markup language for use on any
web-enabled device.

Chapter 15, "Using Location Services" Specialized services for developing location-based
applications.

Chapter 16, "Offline Management" Using Oracle9i Lite for offline management of content.

Chapter 17, "Mobile Studio" Using Oracle Mobile Studio to develop wireless applications.

xix

Intended Audience
This Guide is intended for developers of wireless applications.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle Corporation is actively engaged with other
market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional information,
visit the Oracle Accessibility Program Web site at
http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations
that Oracle Corporation does not own or control. Oracle Corporation neither
evaluates nor makes any representations regarding the accessibility of these Web
sites.

Part IV, "Oracle9iAS Wireless Modules"

Chapter 18, "Mobile PIM and eMail" Integrating PIM and e-mail services into your mobile applications.

Chapter 19, "m-Commerce" Integrating m-Commerce and Billing services into your mobile
applications.

Chapter 20, "Location-Based Module" Integrating Location-Based services into your mobile applications.

"Index" Index.

Section Content

xx

Related Documents
Here is a partial list of related documents that will provide you with important
information concerning Oracle9iAS Wireless and related products/components:

■ Oracle9iAS Wireless Getting Started and System Guide—all the information you
need to be up and running in the shortest possible time.

■ Oracle9iAS Wireless Release Notes—final notes about the products, since the
Documentation and Help were produced.

■ Oracle9iAS Wireless online Help (included in the product)

■ Javadoc with sample code included in product directory structure

■ Oracle9iAS documentation (HTML and PDF library)

■ Oracle Technology Network

http://otn.oracle.com

Oracle Technology Network is your main resource for information, samples,
updates, and other downloads for your products. Stylesheets, drivers,
documentation updates, sample code, demonstration software, and other
valuable resources are available to you on OTN. Sign-up (if you haven’t already
done so; it’s free!) with OTN to gain access and receive up-to-the-minute
information about Oracle products and practices.

Part I
Introduction

Part I contains introductory information about Oracle9iAS Wireless.

■ Chapter 1, "Introduction"

Introduction 1-1

1
Introduction

This document provides an overview of Oracle9iAS Wireless. Each section of this
document presents a different topic. These sections include:

■ Section 1.1, "Overview"

■ Section 1.2, "Wireless Internet Components"

■ Section 1.3, "Developing Mobile Internet Applications"

■ Section 1.4, "Oracle9iAS WirelessArchitecture"

■ Section 1.5, "Oracle9iAS WirelessCore and Services"

1.1 Overview
Oracle9iAS Wirelessenables enterprises to deliver any content or application to any
device with any protocol across any wireless network.

Using Wireless, you need only write an application once to have it run on any type
of device. Wireless adapts information from any content source into an open XML
format and then transforms the content into any markup language supported by
any wireless device. Additionally, Wireless includes many advanced services such
as location-based services, secure mobile commerce, and push services via SMS,
WAP-Push and e-mail.

1.2 Wireless Internet Components
There are many infrastructure components that work together to make the wireless
Internet function. The components include:

Wireless Internet Components

1-2 Oracle9iAS Wireless Developer’s Guide

Wireless Devices and Microbrowsers
The user accesses the Internet using a Wireless Internet device - this device typically
runs a microbrowser. (This is analogous in the fixed Internet world to a personal
computer running a standard Internet browser). Wireless devices also include in-car
systems and voice technology to access information from a traditional phone.

Wireless Markup Language
Each Wireless Device also speaks a language called a markup language - the
markup language specifies how information should be presented on the device.
Common Markup Languages include VoiceXML, WML, and HDML.

Protocols
Protocol is the method that is used to deliver the content data to the devices.

1.2.1 The Wireless Network
Wireless separates the concerns of the wireless network from developers, greatly
simplifying the development and management of wireless applications.

1.2.1.1 Networks
Networks are the underlying infrastructure that is used by the wireless carriers. A
large factor of networks is the bandwidth and the connection type. For example,
2.5G and third generation networks will provide high-speed access and always-on
capabilities.

1.2.1.2 Wireless Gateways
Wireless Devices speak a variety of protocols such as WAP (Wireless Access
Protocol), SMS (Short Messaging Service), Voice and others. The Wireless Gateway
translates the wireless protocol request to the standard HTTP protocol. Note that
Wireless Protocols are more efficient over the Wireless Networks than the standard
HTTP protocol - this is one of the primary reasons that Wireless Internet clients do
not speak HTTP directly.

1.2.1.3 Wireless Services
Wireless Services have a wide variety of forms including database information,
personalization, alerts, and location services. The large number of content sources
adds to the complexity of having a manageable way to deliver each application to
every type of device in the most optimized fashion.

Developing Mobile Internet Applications

Introduction 1-3

1.2.1.4 Application Servers
Application servers have come into play to increase the efficiency of application
development, deployment, and management. The Wireless Application Server
connects the wireless content source over the wireless network to the wireless
Gateway or Device. To do so, it adapts the content from the content source,
personalizes it for individual users, and converts (or transforms) it to the specific
markup language spoken by the wireless device being used.

1.3 Developing Mobile Internet Applications
Wireless application development is typically constrained by limitations in user
input, device display form factor, and the several different wireless device
standards currently in use.

1.3.1 User Input Limitations
The keypads of cellular phones limit the user’s ability to enter lengthy
alphanumeric strings. The limited data entry capability makes cellular phones and
other hand-held devices better suited to carry out specific inquiries and transactions
rather than for Internet surfing.

1.3.1.1 Device Display Form Factor
The screen size and display capability of devices vary tremendously - since the
Internet is likely to be accessed from a variety of different devices, it is not practical
to optimize every application for every single device available. The requirements
that these two limitations place on a Wireless Platform are twofold: first, the
platform must be able to exploit device-specific functionality such as voice
browsing which make it easier to navigate through Internet services from a wireless
device; and second, the platform must provide ways to find and execute Internet
services quickly and effectively by personalizing services and content to make them
relevant to individual users. The user experience is far richer and more effective
when the Wireless Platform supports a variety of personalization facilities such as
allowing users to personalize which services they see, to see different information
based on the device they are using, and to see different information based on the
geographic location they are accessing the Internet from.

1.3.2 Myriad Wireless Device Standards
Even though wireless Internet standards are emerging, there are still diverse
standards supported by wireless devices. Each device speaks a different wireless

Developing Mobile Internet Applications

1-4 Oracle9iAS Wireless Developer’s Guide

protocol and supports a variety of different Wireless Markup Languages – these
different standards preclude a developer from writing every application to
individually support every single device available. As a result, as companies must
choose a software platform that will radically simplify how they develop and
deploy mobile portals and Internet applications.

To enable cross-platform support, a wireless Internet software platform must meet
two requirements:

1.3.2.1 Support a Broad Variety of Devices and Protocols
First, the wireless software platform should be able to support a broad variety of
wireless devices, each of which supports a different markup language, a different
microbrowser, and a different communication protocol. Most Wireless Platforms
support only the WAP Protocol and as a result, applications built to such a platform
cannot be accessed from an i-Mode, Voice, SMS or a Blackberry device.

1.3.2.2 Write Applications Once and Deliver Them Anywhere
Web site developers must develop a Web site for each wireless type of device.
Because of the increasing variety of wireless devices, such an application
development paradigm does not scale; a developer must be able to develop a Web
site once and have the software platform deliver it to any wireless device.

1.3.3 Heterogeneous Sources of Content
In addition to wireless devices, application development and deployment can also
be complicated by the fact that the wireless Internet does not require that content or
applications be specific to it.

1.3.3.1 Leveraging Existing Content
To leverage existing Internet content and e-Business applications for the wireless
environment, the software platform must be able to easily re-use any Internet
content or application, no matter how it was originally built to a wireless device.
This requires the platform to be able to "adapt" content from a variety of
repositories whether it comes from an Internet web site, from an e-Mail server, or
from a database. Additionally, the wireless platform must also be able to adapt any
Internet content whether the application has been built using Java, Visual Basic,
PERL, PL/SQL, PHP, server-side scripting, or any other web site development
language.

The wireless software platform must be able to support web sites or Internet
applications that are developed specifically for the wireless Internet. It must

Developing Mobile Internet Applications

Introduction 1-5

provide a seamless set of facilities to develop such web sites using open standards
such as Java and XML.

1.3.3.2 Application Performance and Scalability Requirements
A Wireless Internet Platform must also be able to meet scalability requirements in
three ways:

1.3.3.2.1 Support a Large Numbers of Users Since Wireless Carriers and Portals
support Millions of subscribers, the Wireless Internet Platform must provide
facilities to centrally manage these users, their security and access control
privileges, and their ability to personalize services.

1.3.3.2.2 Support a Large Number of Concurrent Sessions Additionally, users who
access the Internet from wireless devices typically have relatively long- lived
conversational interactions with a number of different web services, in addition
users desire always-on capabilities for fast notification of messages. Due to the
limited bandwidth on the wireless network and the lack of support for "cookies" in
most wireless gateways, it is not possible to push the user's session state from the
server to the client. As a result, a wireless Internet platform must be able to manage
user sessions and maintain session state in a highly scalable fashion.

1.3.3.2.3 Support a Large Volumes of Content Finally, since wireless users access large
volumes of content which needs to be delivered very efficiently to their client, the
Wireless platform must be able to use caching and share data facilities to serve large
volumes of content efficiently.

1.3.3.3 Evolving Wireless Internet Market Requirements
Wireless Internet users want to send messages, browse information and services,
carry out wireless commerce transactions and run complicated business
applications. Most wireless software platforms only address a small set of
requirements requiring users to choose one wireless software infrastructure for
messaging, another to browse content, and yet another for mobile commerce. It is
critical that a wireless platform must seamlessly integrate facilities for wireless
messaging, content browsing, voice access, mobile commerce and business
applications to allow developers to combine these facilities in building
state-of-the-art applications and portals.

Oracle9iAS WirelessArchitecture

1-6 Oracle9iAS Wireless Developer’s Guide

1.3.3.4 Evolving Wireless Standards
Wireless standards are evolving rapidly. At the network level standards such as
CDMA, GSM, TDMA, iDEN, SMS, i-Mode, GPRS, and UMTS are all evolving; at the
device level, standards such as VoxML and VoiceXML promise to change how the
wireless Internet is used. As a result of these differences, a wireless Internet
Platform must meet two requirements: first, it must be current with wireless
standards such as i- Mode, WAP, SMS, GPRS, 3G and others; and second, it must
support open industry standards such as XML, XHTML, Java Servlets, Java Server
Pages for application development. Wireless address these issues making a
complete wireless solution for businesses.

1.4 Oracle9iAS WirelessArchitecture
Wireless is the mobile component of the Oracle9iApplication Server, an integrated
suite for internet-enabling your applications and portals. Oracle9iAS sits on the
Oracle9i Database, which is used as the secure repository for all the components.
Oracle9iAS runs the Oracle e-Business suite as well as partner applications.

The Oracle9iAS is Oracle's comprehensive and integrated application server. It runs
any Web site, portal, or Internet application and makes your Web site and all your
applications accessible from any browser or mobile device. You can deliver tailored
1:1 customer experiences through real-time personalization and satisfy demands for
current business information using Oracle9iAS integrated business intelligence
services. You can simplify your management tasks by using the single management
console provided with Oracle9iAS.

Wireless simplifies wireless development and deployment by providing the ability
to deliver any content with any device, any protocol and across any Wireless
Network with the core. Wireless leverages open standards such as XML, Apache
and J2EE, to deliver a high performance, scalable wireless infrastructure.

1.4.1 Mobile Services
Built on Wireless are Mobile Services such as PIM (Personal Information
Management), Email, and Location Based Services that simplify wireless enabling
applications and portals. These are reusable application components that increase
the time to market of mobile applications. The services can be configured out of the
box or extended for custom abilities.

1.4.2 Processing a Request for a Wireless Service
Wireless processes a request for a wireless service as follows:

Oracle9iAS WirelessArchitecture

Introduction 1-7

1. Sending a Wireless Request

2. Recognizing and Authenticating the Wireless Device

3. Establishing the Wireless Session

4. Translating the request over the Internet

5. Connecting to the Application Server

6. Recognizing the User's Information

7. Processing the Wireless Request

1.4.2.1 Sending a Wireless Request
A user invokes a Wireless service from a wireless Internet device by dialing the
telephone number for the appropriate service provider. The microbrowser on the
wireless device sends a request to the wireless network base station. The request can
be sent over a variety of different protocols, such as SMS or WAP, depending on the
kind of device being used. These protocols are packet-based protocols that have
been optimized to function over a wireless network with limited bandwidth and
intermittent connectivity. These make these protocols more efficient over the
existing wireless network than the standard Internet HTTP protocol.

1.4.2.2 Recognizing and Authenticating the Wireless Device
When the wireless network's base station receives the request, it requests the mobile
device to identify itself in order to proceed with authentication. Once the WAP
Gateway and Wireless Application Server have established a session, the WAP
Gateway passes information about the specific web request to the Wireless
Application Server. The message header encodes information such as the user’s
identity, the device the user is accessing the Internet with, the geographical location
of the user, and the specific web address or service that the user is accessing. This
information is used by the Wireless Application Server to personalize the
interaction with the customer.

1.4.2.3 Establishing the Wireless Session
Once authentication is successful, the service provider accepts the call and
establishes a connection with the mobile device. The request is sent from the base
station over the wireless network using the Wireless Transport Protocol (WTP). The
wireless operator’s Gateway receives the request.

Oracle9iAS WirelessArchitecture

1-8 Oracle9iAS Wireless Developer’s Guide

1.4.2.4 Translating the request over the Internet
A gateway converts the request from the cellular network protocol into the standard
Internet HTTP protocol before the request is passed from the Wireless network to
the traditional Internet. (The cellular network protocol is not the standard Internet
protocol). For WAP- enabled devices, a WAP gateway converts WTP to HTTP. The
gateway not only maps the message from one protocol to another, but also knows
how to pass the message from the Wireless network to the traditional Internet
infrastructure. Other gateways include Voice gateways and SMS gateways.

1.4.2.5 Connecting to the Application Server
After the Gateway converts the wireless request (which is defined by a specific
phone number) to a URL for a specific web site, the message is sent as a standard
Internet request to the Wireless Application Server that sits at the specific URL or
web address being accessed. The Application Server and Gateway then authenticate
to each other and establish a session.

1.4.2.6 Recognizing the User's Information
Once the Gateway and Wireless Application Server have established a session, the
Gateway passes information about the specific Web request to the Wireless
Application Server. The message header encodes such information as the user's
identity, the device with which the user is accesses the Internet, the geographical
location of the user, and the specific Web address or service that the user accesses.
This information is used by the Wireless Application Server to personalize the
interaction with the user.

1.4.2.7 Processing the Wireless Request
When the Wireless Application Server receives the content request it processes it in
three steps in which the content request is adapted to the content from the wireless
application being accessed, customized for the user, and transformed to the specific
device being used

■ Step 1: Adapting

Content adaptation essentially involves aggregating the content from the
application being accessed in an XML format. Any application, that outputs
XML, will be automatically delivered to any device, over any network, with any
protocol by Oracle9iAS Wireless.

Oracle9iAS WirelessCore and Services

Introduction 1-9

■ Step 2: Customizing the Content for Every User

Oracle9iAS Wireless also recognizes the user's session context and customizes
the services being rendered to the individual user. Oracle9iAS Wireless allows
users to configure their own customized portal choosing which services they
would like to see, setting up notification services, and personalizing services
based on the device they are accessing the Internet from and their geographical
location (Location-based Services).

■ Step 3: Adapting the Content to the Appropriate Device and Network

Finally, since each user has the ability to use one or more different devices to
access the Internet and each device speaks a different markup language,
Wireless transforms the content, rendering it to the markup language
appropriate to the device being used.

Many wireless application servers are limited both in the range of content they can
adapt and in the variety of devices to which they can render content. Typically,
wireless application servers render content only to devices that speak WAP, WML
and HDML. Not only can Wireless be a WAP server, but, through its usage of XML,
it can translate any source content to any format for any device.

1.5 Oracle9iAS WirelessCore and Services
Wireless simplifies wireless development and deployment by providing the ability
to deliver any content to any device, with any protocol and across any wireless
network with the Oracle9iAS Wireless core. Oracle9iAS Wireless includes a set of
wireless services such as PIM (and Email), Push, and Location Based Services that
enhance application abilities and leverage traits. Wireless leverages open standards
such as XML, Apache and J2EE, to deliver a high performance and scalable wireless
infrastructure.

1.5.1 The Core
The Wireless core is the framework that gives application developers independence
from the underlying networks, protocols, devices, gateways and other wireless
complexities. The core normalizes the wireless complexities to one protocol and one
language, HTTP and XML. Wireless is based on open J2EE, Apache, and XML
standards for easy integration with existing and future technologies.

To render an application to any device, a developer needs to create any application,
which outputs XML, and then point the Wireless core to the application with a URL.
The core automatically eliminates the complexities associated wireless technologies.

Oracle9iAS WirelessCore and Services

1-10 Oracle9iAS Wireless Developer’s Guide

The application can then be accessed by any device or voice, at the same time taking
advantage of individual device's features.

1.5.1.1 Adapters
Wireless uses only one main protocol adapter, the HTTP Adapter, to create a mobile
application from any HTTP and XML server. Wireless ships with HTTP and OC4J
(J2EE) Protocol Adapters. The core, using the protocol adapters, fetches the
application XML content and prepares it for device adaptation. The HTTP adapter
supports the HTTP protocol and retrieves content from applications over HTTP. The
OC4J (J2EE) adapter fetches content from Java Servlet and JSP based applications
running within the same J2EE container (OC4J) as Wireless.

1.5.1.2 XML Application Framework
The XML application framework is based on XML and HTTP. This provides
simplicity and power to application developers. Advanced HTTP/XML APIs,
service linking, location awareness, and context information give developers the
ability to quickly develop applications with maximum efficiency. Each application
created in the XML application framework is be multi-channel to be accessed
wirelessly through push, offline, and voice.

1.5.1.3 Device and Network Adaptation
Device and network adaptation automatically transform and optimize the
application content to any device and network. As a result, devices that access the
content retrieve optimized data. Supported devices include two-way pagers for
asynchronous services (SMTP/SMS), all WAP devices, Voice access through regular
phone lines, PDA devices.

1.5.1.4 Runtime APIs
The Wireless runtime uses the Oracle9i database as the repository for storing
persistent application objects. Runtime APIs provide the functionality to
manipulate the platform's persistent data objects stored in the Oracle9i Database
repository. The Wireless APIs can customize the runtime behavior of the server. For
example, the APIs can provide a different authentication scheme or a customized
device identification mechanism. Wireless also provides an extension framework,
which allows for plug-in of additional logic, such as logging or system monitoring
that does not change the runtime behavior.

Oracle9iAS WirelessCore and Services

Introduction 1-11

1.5.1.5 Wireless Webtools
Wireless provides a complete web-based tool to manage your wireless business. The
Service Designer is used by developers to manage the applications, the Content
Manager is used to manage the end user's view, the User Manager controls the
users, groups and access control and the System Manager monitors the servers and
performance.

1.5.1.6 Customization
Customization and personalization make applications manageable by
understanding visitors' needs based on their roles and preferences. For example,
customization enables information to be presented specifically to the needs of a
user, whether the user is a customer, supplier, or an employee.

The advanced customization service includes alerts and data feeds. Alerts are in a
publish-subscribe model and can be event-based or time-based. Event-based alerts
can be based on changing events: a change in a stock price, a change in a time of a
meeting, or a decrease in inventory. Time-based alerts can be based on a timed
event. For example, reoccurring meetings, and appointments.

The alerts monitor and retrieve content through data feeds. Data feed content can be
in multiple formats, including delimited files (CSV), HTML, or XML. The data feed
can be transferred through HTTP, Local File, FTP, SQL and other applications

1.5.1.7 Push/SMS Service
Push/SMS Service provides comprehensive support for messaging. The push/SMS
Service is built on a scalable message delivery architecture that can handle large
volumes of messages to many different types of devices. It also provides several
ways to manage and track your messages, including status of message delivered.
The Push/SMS Service allows you to add your own business logic to it, to allow
generating billing and routing of messages. The open architecture allows
integrating into the user and device preferences of the Wireless platform. You can
create distribution lists of recipients of push messages. Recipients receive messages
on the device of their choice, without having to write device-specific applications.

Transport
The transport system offers a unified messaging interface to send and receive
messages using any communication protocol, such as SMTP and SMS. It also
features an open protocol architecture so that the system can be easily extended to
support any other existing or new protocols in the future. The APIs to access the
transport system are in the Java programming language.

Oracle9iAS WirelessCore and Services

1-12 Oracle9iAS Wireless Developer’s Guide

The Push Web Service offers similar functionality to the messaging capability of the
transport system. However it is set up as a SOAP-based Web Service, hence it is
accessible over the network instead of requiring coding against the Java APIs that
come with Wireless. By using Wireless, messaging applications can be built
independently of locale relative to the Wireless installation itself. The transport
system is available to anyone with an Wireless instance that the Push Web Service
can access remotely. The Push/SMS Service offers a comprehensive, powerful and
flexible mechanism for building messaging applications.

1.5.1.8 Transcoding
The Wireless transcoding service allows applications developed for a particular
device or markup to be reformatted for other devices, including voice. Wireless
supports a content adaptation service and a translator service. These services
increase time to market and decrease development efforts with code reuse.

The Web Content adaptation service allows to you to quickly extend your existing
legacy Web application to any wireless device. Wireless can connect any Web
resource, like an HTML page, and acquire content for reformatting. The content is
transformed to the Wireless XML format and then rendered to the requesting
device’ markup language. Web integration beans provides an abstraction and masks
the complex nature of input and output elements involved in Web service
transactions.

The WML translator delivers existing WML (WAP) applications to non-WML
devices. The goal of the WML transcoding service is to provide a simple way for
companies with existing WAP services to break the barrier of device-specific
applications. The most commonly used wireless language is WML. It follows XML
standards, having a Document Type Definition (DTD) that all WML documents
follow. WML has different syntax and behavior from other device specific
languages such as HDML. Wireless translates the WML into XML as a common
language for wireless devices that hide the device-dependent complexity. The
Wireless XML schema defines the basic structures that exist in WML. The structures
are then rendered into any mobile device and even in voice. The translation process
retains all formatting from original application.

1.5.1.9 Offline Management
Offline Management is used in cases where mobile connectivity is nonexistent or
low. This gives your users the ability to use applications without any network
access. When Internet connection is available again, the device user can synchronize
to update the server with the new information. Oracle9iLite provides this ability.

Oracle9iAS WirelessCore and Services

Introduction 1-13

Oracle9iLite is an integrated set of technologies that provide critical infrastructure
for developing, deploying, and managing offline mobile applications. Oracle9iLite
provides necessary framework businesses need to extend the enterprise
applications to all of today's popular mobile platforms: Palm OS, Symbian EPOC,
Microsoft Windows CE, and Microsoft Windows 95/98/NT/2000.

1.5.1.10 Location Based Services
Location-based services greatly improve mobile applications by making them easier
to use and providing quick access to timely and critical information. Companies
that take advantage of location-based technologies can greatly enhance the value of
their applications. Wireless location-based Service not only reduces the number of
inputs and lowers the time required to obtain information, but also derives
improved efficiencies, enabling access to information that is immediately relevant to
users, such as maps, driving directions, traffic reports, or nearby businesses and
services.

The performance and capability requirements expected for wireless location-based
service can easily approach that of a top internet portal—that is, millions of queries
on a daily basis, hundreds of concurrent transactions, and millisecond
query-response times. When you build on Oracle9i, Oracle Spatial, and Wireless,
you have the assurance that your location-based services solution will be scalable,
reliable, and secure. In particular, it will be able to handle the unique storage and
CPU-intensive processing inherent in location queries (street routing, proximity
searches, and map rendering).

Wireless location services include:

Geo-coding
Automatic and Manual Mobile Positioning, Routing and Navigation

Mapping
Users can input their location or have their location automatically detected. In order
to be automatically detected, Oracle9iAS Wireless easily integrates with vendors.

Privacy and the security of privacy-related information are important concerns in a
location acquisition system. The location services provide a privacy management
component that allows users to view and edit their privacy settings, to enable and
disable the positioning operation on themselves, and to authorize one or more
people (a mobile community) to obtain positioning information on them within
certain time frames. All capabilities are accessible through public APIs.

Oracle9iAS WirelessCore and Services

1-14 Oracle9iAS Wireless Developer’s Guide

1.5.2 Mobile PIM and Email
The Personal Information Management (PIM) Service modules are based on
standard protocols, allowing a simple integration into existing environments. The
Mobile Email client gives access, from any mobile devices, to any IMAP or POP3
server. This includes such servers as Microsoft Exchange and Lotus Domino. The
Mobile Directory client connects to any LDAP directory server. The Mobile
Calendar client integrates natively with Exchange and Lotus Servers, and through
published interfaces, they enable customization to support any calendar server.

The PIM solution has a single "Universal UI", used across all back-ends. The idea is
to have PIM business objects between the UI and the backend implementation, so
that the same UI can be used for different backends. The same "Universal UI" can be
reused or any new backends that may hit the market.

1.5.3 m-Commerce and Billing
The Wireless m-Commerce Service is a set of modules that securely stores user
profiles, supplies information authorized by users for third party applications, and
interfaces with on-line payment mechanisms to complete transactions. It also
translates existing WML applications into Mobile-XML, and uses Formfiller to map
forms and spare your customers from the frustration of typing in mobile devices.

The m-Commerce Service is automatically installed along with Oracle9iAS Wireless.
No extra installation is necessary.

1.5.4 Mobile Studio
The Mobile Studio is an online environment for quickly building, testing and
deploying wireless applications. It lets any developer, systems integrator or
independent software vendor quickly develop mobile applications that are
immediately accessible from all devices. This unique, next generation development
environment allows companies to benefit from faster time to market, increased
productivity, and a dramatically simplified testing cycle, while providing access to
the latest mobile applications and tools. The Studio enables you to focus on your
business logic, which is your core competency, rather than on device complexity.

The Studio's build-test-deploy model presents a hosted approach to developing
dynamic content. You do not download any software or tools to start using the
Studio; instead you access the Studio Web site, register, and log in. Once
authenticated, you can access the reusable modules, examples, documentation,
runtime information, and other resources.

Oracle9iAS WirelessCore and Services

Introduction 1-15

You can customize the Studio by rebranding and by moving functions around to the
desired positions.

1.5.5 Security
Secure wireless access to banks, enterprises, m-Commerce applications, or any other
source of sensitive data is a primary concern for enterprises, carriers and
application developers. However, with an ever-expanding and evolving labyrinth
of wireless infrastructure (mobile devices, protocols, carriers, providers, and
accompanying hardware) the problem of security simply cannot be solved in one
homogeneous way. Depending on your applications, Wireless supports many
techniques to satisfy your end-to-end security requirements. Wireless is built on
open standards that support integration with standard security technology and
third-party systems.

Oracle builds security models designed to meet the sophisticated security needs for
applications such as banking, e-commerce, self-service, and CRM as well as those
extending enterprise office applications to a mobile work force. Wireless utilizes
such encryption technology as Wireless Transport Layer Security (WTLS), Secure
Sockets Layer (SSL), Virtual Private Networks (VPN), and Public Key Infrastructure
(PKI) to deliver solid end-to-end security across the Internet and the wireless
network. All information, such as mWallet data and user profile data, is encrypted
and stored in the secure Oracle9i Database.

Security-related issues may be generally classified into the following categories:

Table 1–1 Security-related Issues

Issue Description

Privacy Ensures that only the sender and the intended recipient can read the
contents of a message (such as credit card numbers, account
numbers).

Encryption and
decryption

Allows two communicating parties to scramble and unscramble
information they send to each other via special keys only they
possess. In transit, this information is scrambled and unintelligible to
any eavesdropper.

Integrity Ensures that information is not tampered with in transit to the
recipient.

Digital Signatures Using an encrypted one-way hash algorithm, it is possible to detect
at the receiving end, even if a single character has been changed. The
values of the hash are unique for the hashed message, and the hash
values will not expose the message since the hash is one way only.

Oracle9iAS WirelessCore and Services

1-16 Oracle9iAS Wireless Developer’s Guide

Wireless security can be illustrated by a WAP network’s enforcing end-to-end
security. The issues underlying WAP network security are:

Wireless Network Security: From the wireless device to the WAP gateway, a WAP
1.2 compliant network speaks the WTLS (Wireless Transport Layer Security)
protocol. WTLS is a close relative of SSL and uses two kinds of certificates to
manage encryption and authentication - WTLS server certificates (defined as part of
WAP 1.1) are used to authenticate a WTLS server to a WTLS client and to provide a
basis for establishing a key to encrypt (a handset); and WTLS client certificates
(defined as part of WAP 1.2) are used to authenticate a WTLS client to a WTLS
server. Both types of certificates are like standard SSL certificates except that two
different certificate formats are defined - X.509 certificates (as in SSL) and WTLS
mini-certificates which are functionally similar but are smaller and simpler than
X.509 to facilitate processing in a resource constrained handset environment.
Additionally, the mini-certificates also implement certification revocation methods
that are more efficient over the wireless network than the traditional OCSP protocol.

Gateway to Wireless Application Server Security: A wireless gateway typically
performs a security intermediary function such as bridging a WAP/WTLS
protection environment on the wireless side with a HTTP/SSL protection
environment on the wired side.

Encryption and User Authentication: When a wireless request is sent over the
Wireless Network, the following steps occur:

1. The Carrier authenticates that the user is a valid wireless network user before
completing the call and letting the user access the network.

Authentication Ensures that all parties are who they claim to be such that there is no
spoofing (no party masquerades as a legitimate entity) and
misrepresentation (misleading purpose)

Digital Certificates The process of confidently confirming the identity of one party by
another party. Typically, a client communicates with a server and
both client and server can be authenticated through passwords
(name and password pairs) or certificates (proof of ID from an
authorized source)

Non-repudiation Ensures that a party to a genuine transaction cannot falsely deny
their participation

Digital Certificates
and Signatures

These are either password based or certificate based and act as proof
that a designated party commissioned the transaction.

Table 1–1 Security-related Issues

Issue Description

Oracle9iAS WirelessCore and Services

Introduction 1-17

2. If the user is a valid user, the call is completed and the WAP Gateway receives
the WAP request. The gateway and the client then perform a standard WTLS
handshake that both encrypts the communication and authenticates the
gateway to the handset and vice versa.

3. The Gateway opens a HTTP session to the Oracle9iAS Wireless and conducts a
standard SSL handshake with it - this authenticates the Gateway to the
Oracle9iAS Wireless server and vice versa.

4. The user then accesses his or her personal portal and carries out a standard
username and password based login; note that if both communication over the
wireless network and between the wireless gateway and Oracle9iAS Wireless
are secure (i.e. if the wireless network supports WTLS) then the username and
password combination is not passed in the clear.

5. The user then accesses a web service. The wireless service either accepts the
user’s identity passed to it through the Wireless adapter as a bind variable or
can ask the user to re-authenticate them again using a username and password.

In addition to network security, application security is necessary to ensure that the
wireless applications protect the integrity of the user’s information and the data
center’s information. Wireless supports application-level security with SSL and
WTLS. In addition, Wireless uses a secure ACL (Access Control List) to ensure that
the appropriate user is mapped to the desired information. Wireless is built on open
standards that allow for easy integration with existing security systems to offer
end-to-end mobile security.

Oracle9iAS WirelessCore and Services

1-18 Oracle9iAS Wireless Developer’s Guide

Part II
Oracle9iAS Wireless XML Developer’s

Guide

Part II contains information about Oracle9iAS Wireless XML development.

■ Chapter 2, "XML Overview"

■ Chapter 3, "Displaying and Formatting Content"

■ Chapter 4, "Application Navigation"

■ Chapter 5, "Filling Out Forms for Data Entry and Navigation"

■ Chapter 6, "Advanced User Interactions and Channel Optimization"

■ Chapter 7, "Mobile Modules"

■ Chapter 8, "XML Tag Glossary"

XML Overview 2-1

2
XML Overview

Each section of this document presents a different topic. These sections include:

■ Section 2.1, "What is XML?"

■ Section 2.2, "Relationship between Oracle9iAS Wireless XML and HTML"

■ Section 2.3, "Why use Oracle9iAS Wireless XML?"

■ Section 2.4, "How Does Oracle9iAS Wireless XML Work with Oracle9iAS
Wireless?"

2.1 What is XML?
XML stands for eXtensible Markup Language. It can be best described as portable
data. XML was recommended by the World Wide Web Consortium (W3C) in 1998.
Since then, XML has quickly become the standard way to identify and describe data
on the Web. Namespaces were added to XML in 1999. Namespaces describe a way
to distinguish between two XML elements with the same name in different
documents. This prevents the possibility of collision between element names among
documents.

XML is a subset of SGML (Standard Generalized Markup Language), optimized for
delivery over the Web. An XML document consists of a single root element. Every
start-element must have a matching end-element (this property of XML documents is
called well-formedness). Additionally, attributes of an element must be guarded by
quotes.

XML documents can also be subjected to structural and global constraints, which
are described by schema languages (such as document type definition [DTD] and
XML Schema). An XML document is said to be valid if it satisfies the constraints
described by a schema language. DTD is a weak schema language defined as part of
the XML 1.0 specification and does not follow XML syntax. XML schema was

Relationship between Oracle9iAS Wireless XML and HTML

2-2 Oracle9iAS Wireless Developer’s Guide

recommended by W3C in 2001. XML schema is a powerful schema language that
specifies a rich set of constraints. The XML schema itself is an XML document.

2.2 Relationship between Oracle9iAS Wireless XML and HTML
HTML tags elements in Web pages for presentation by a browser
(for example, <bold>Oracle</bold>).

XML tags elements as data
(for example, <company>Oracle</company>).

You can use XML to give context to words and values in Web pages, identifying
them as data instead of simple textual or numeric elements. Well formedness of
XML documents makes XML processing easier and more efficient.

2.3 Why use Oracle9iAS Wireless XML?
Consider the following XML document:

<address>
<first-name>Chandra</first-name>
<last-name>Patni</last-name>
<street>400 Oracle Parkway</street>
<zip>94065</zip>
</address>

In this example, the element names self-describe the data they encapsulate. This
XML document can be transformed into HTML using another XML document
called an XSL stylesheet. This same XML document can be transformed into WML
using another XSL stylesheet. The document can then be displayed on a WAP
device. This ability of XML makes it suitable for representing and delivering
portable data to various devices. XML content are also future-proof; another
stylesheet can be used to deliver the content to any future device. Therefore, XML
transformation can be done programmatically on-the-fly. Oracle9iAS Wireless
provides a framework to do exactly the same thing. It allows content represented by
XML format defined by an Oracle9iAS Wireless schema to deliver content to any
device at any time.

How Does Oracle9iAS Wireless XML Work with Oracle9iAS Wireless?

XML Overview 2-3

Figure 2–1 Delivering content to different devices

2.4 How Does Oracle9iAS Wireless XML Work with Oracle9iAS
Wireless?

At the core of Oracle9iAS Wireless, XML from an application is transformed to
device-specific markup languages using XSL transformation. Oracle9iAS Wireless
provides a framework for interacting with applications and transforming XML to
device-specific markup languages. Oracle9iAS Wireless provides an XML schema,
elements of which can be used to build user interfaces to render application content
to any device.

How Does Oracle9iAS Wireless XML Work with Oracle9iAS Wireless?

2-4 Oracle9iAS Wireless Developer’s Guide

Displaying and Formatting Content 3-1

3
Displaying and Formatting Content

Each section of this document presents a different topic. These sections include:

■ Section 3.1, "Hello World Example"

■ Section 3.2, "Formatting the Display"

■ Section 3.3, "Wireless Graphics"

3.1 Hello World Example
The first example shows how to display the traditional "Hello World" content on a
mobile device.

3.1.1 HelloWorld.xml
<?xml version = "1.0" encoding = "UTF-8" standalone="yes" ?>
<!DOCTYPE SimpleResult PUBLIC "-//ORACLE//DTD SimpleResult 1.1//EN"
"http://xmlns.oracle.com/ias/dtds/SimpleResult_1_1_0.dtd">
<SimpleResult>
<SimpleContainer>
<SimpleText>
<SimpleTextItem>Hello World</SimpleTextItem>

</SimpleText>
</SimpleContainer>
</SimpleResult>

Hello World Example

3-2 Oracle9iAS Wireless Developer’s Guide

Figure 3–1 Hello World content on mobile devices

In this example, XML is transformed into the device-specific markup language to
render on the displays of a pocket PC and a telephone. This example demonstrates
the power of XML; application programmers need not have any knowledge of the
target device. Oracle9iAS Wireless takes care of rendering XML into the various
device screens. The following section explains the XML elements, tags and
attributes used in the above example. Additionally, other tags will be discussed
which can be used to display and format content on device screens or voice
browsers.

3.1.2 DOCTYPE Declaration
It is recommended that the XML documents authored for Oracle9iAS Wireless
should have DOCTYPE declaration specifying the schema version. For backward
compatibility (in the absence of DOCTYPE declaration), the stylesheet for
Oracle9iAS Wireless Edition 1.0 will be applied. However, if 1.0 stylesheets are not
available to Oracle9iAS Wireless runtime, then Oracle9iAS Wireless 1.x stylesheets

Hello World Example

Displaying and Formatting Content 3-3

will be used regardless of DOCTYPE declaration. If no 1.x stylesheets are not found,
an error will result.

3.1.3 SimpleResult
SimpleResult is the root element of the Oracle9iAS Wireless XML schema. Every
valid Oracle9iAS Wireless XML document must have SimpleResult as its root
element. SimpleResult can contain multiple SimpleContainer blocks to allow for
multi-card decks.

3.1.3.1 SimpleContainer
SimpleContainer is the root of all major block constructs such as Form, Menu and
Text. Elements such as menu, text and form items can act as cards in the deck.
DeckExample.xml demonstrates the usage of SimpleText as a placeholder for cards.
Considering the limitation of target devices and deck size restrictions on devices,
judgment should be exercised in the number of cards per deck and the total content
size in a single request.

3.1.3.2 DeckExample.xml
<?xml version = "1.0" encoding = "UTF-8" standalone="yes" ?>
<!DOCTYPE SimpleResult PUBLIC "-//ORACLE//DTD SimpleResult 1.1//EN"
"http://xmlns.oracle.com/ias/dtds/SimpleResult_1_1_0.dtd">
<SimpleResult>
<SimpleContainer>
<SimpleText id="card1">
<SimpleTextItem>This is Card 1
<SimpleBreak/>
<SimpleHref target="#card2">Go to Card2</SimpleHref>
</SimpleTextItem>

</SimpleText>
<SimpleText id="card2">
<SimpleTextItem>Welcome to Card2</SimpleTextItem>

</SimpleText>
</SimpleContainer>
</SimpleResult>

Hello World Example

3-4 Oracle9iAS Wireless Developer’s Guide

Figure 3–2 Cards displayed on mobile telephones

3.1.3.3 SimpleText, SimpleTextItem
Content of SimpleTextItem are usually translated into paragraphs. SimpleTextItem
can be grouped using SimpleText element. SimpleText element contains one or more
SimpleTextItem. The id attribute of SimpleText tag can be used to refer to
SimpleText elements as a deck. SimpleText is rendered on a separate card on WML
and HDML devices. SimpleHref can be used as a child of SimpleTextItem similar to
HTML anchor. See Section 4.3.1, "SimpleHref, SimpleTimer" for more information
on SimpleHref. The deviceclass attribute of SimpleText and SimpleTextItem take
values “pdabrowser", "pcbrowser", "voice", "microbrowser", "micromessenger", and
"messenger" which directs processing for either small screen clients or voice clients.
In the absence of the deviceclass attribute, the content will be rendered to both
small screen devices and voice enabled devices. By default, text-to-speech (TTS)
synthesis is used to represent the text enclosed in these tags. SimpleAudio tag in
conjunction with deviceclass attribute can be specified to override the default
behavior. For a better user experience, do not use TTS whenever voice feed is
available. For voice interfaces SimpleAudio may be used. Refer to the following
snippet of code for usage.

<SimpleText>
<SimpleTextItem>
<SimpleAudio src="http://www.domain.com/filename.wav" deviceclass="voice">Alt

text for TTS if the wave file is not found.
</SimpleAudio>

Formatting the Display

Displaying and Formatting Content 3-5

</SimpleTextItem>
<SimpleTextItem deviceclass="microbrowser"> Text for small screen devices
</SimpleTextItem>
</SimpleText>

3.2 Formatting the Display

3.2.1 SimpleBreak, SimpleStrong and SimpleEm
These elements are used for fine-tuning the display of text content on a screen.
SimpleStrong displays enclosed text in a stronger representation, usually bold.
SimpleEm displays the enclosed text with emphasis, usually displayed as italicized
text. For voice-enabled applications, level attribute can be used to specify the level
of emphasis. Permissible values for level attribute are: strong, moderate, none and
reduced.

SimpleBreak creates a new line on the page on which the tag is placed. The rule
attribute can be used to display a line <hr>, for HTML output. Deviceclass can be
used for directive processing of small screen or voice enabled devices, or both. For
voice-enabled applications, SimpleBreak enables you to specify msecs and size
attributes to control the break while delivering text. See the following example for
details.

3.2.1.1 FormattingExample.xml
<?xml version = "1.0" encoding = "UTF-8" standalone="yes" ?>
<!DOCTYPE SimpleResult PUBLIC "-//ORACLE//DTD SimpleResult 1.1//EN"
"http://xmlns.oracle.com/ias/dtds/SimpleResult_1_1_0.dtd">
<SimpleResult bgcolor="99ff99">
<SimpleContainer>
<SimpleText>
<SimpleTitle>Seach Result</SimpleTitle>
<SimpleTextItem>
<SimpleEm level="strong">1 Entry found</SimpleEm>
<SimpleBreak msecs="500"/>
<SimpleStrong level="strong">Chandra Patni</SimpleStrong>
<SimpleBreak/>400 Oracle Pkwy
<SimpleBreak/>Redwood Shores
<SimpleBreak/>CA, 94065

Note: The .wav file specified must be in CCITT mu-law, 8 bit,
8kHz.

Formatting the Display

3-6 Oracle9iAS Wireless Developer’s Guide

</SimpleTextItem>
</SimpleText>

</SimpleContainer>
</SimpleResult>

Figure 3–3 Results of formatting example

3.2.2 Tables and Basic Formatting Example

3.2.2.1 SimpleTable, SimpleTableHeader, SimpleTableBody, SimpleRow and
SimpleCol
SimpleTable displays a table. A table consists of a header and body which are
abstracted by SimpleTableHeader and SimpleTableBody, respectively. The body of a
table consists of SimpleRow and SimpleCol elements. Images can be used in tables
cells. TableExample.xml provides an example of the table elements.

3.2.2.2 TableExample.xml
<?xml version = "1.0" encoding = "UTF-8" standalone="yes" ?>
<!DOCTYPE SimpleResult PUBLIC "-//ORACLE//DTD SimpleResult 1.1//EN"
"http://xmlns.oracle.com/ias/dtds/SimpleResult_1_1_0.dtd">
<SimpleResult>
<SimpleContainer>

Formatting the Display

Displaying and Formatting Content 3-7

<SimpleTable >
<SimpleTitle> My Portfolio </SimpleTitle>
<SimpleTableHeader>
<SimpleCol>Symbol</SimpleCol>
<SimpleCol>Price</SimpleCol>
<SimpleCol>Delta</SimpleCol>
</SimpleTableHeader>
<SimpleTableBody>
<SimpleRow>
<SimpleCol>ORCL</SimpleCol>
<SimpleCol>18.32</SimpleCol>
<SimpleCol>+0.24</SimpleCol>

</SimpleRow>
<SimpleRow>
<SimpleCol>SUNW</SimpleCol>
<SimpleCol>17.35</SimpleCol>
<SimpleCol>+1.06</SimpleCol>

</SimpleRow>
<SimpleRow>
<SimpleCol>CSCO</SimpleCol>
<SimpleCol>20.30</SimpleCol>
<SimpleCol>+0.24</SimpleCol>

</SimpleRow>
<SimpleRow>
<SimpleCol>MSFT</SimpleCol>
<SimpleCol>6647</SimpleCol>
<SimpleCol>+0.28</SimpleCol>

</SimpleRow>
</SimpleTableBody>

</SimpleTable>
</SimpleContainer>
</SimpleResult>

Wireless Graphics

3-8 Oracle9iAS Wireless Developer’s Guide

Figure 3–4 Results of tables and basic formatting example

3.3 Wireless Graphics

3.3.1 SimpleImage
This element is used for displaying a WBMP or BMP graphic on small screen
devices. GIF is also supported for HTML clients. The image resolution supported is
2-bits. src is a compulsory attribute of the SimpleImage element. Unlike HTML, the
extension of the image is not specified for Oracle9iAS Wireless. Appropriate
extension will be appended for the target mark up language. All the images with
appropriate extension (.wbmp, .bmp) should be provided in the target directory. See
the following example for usage.

Devices do not support a single format of an image. As of Release 2.0, Oracle9iAS
Wireless does not support dynamic image extension conversion. Application
developers can suggest the available formats of the image by specifying available
attribute. The available attribute is the list of whitespace-separated values of jpg, gif,
g2.gif, bmp and wbmp formats. g2.gif is grayscale/depth 2 image format, typically
used for Palm. Transformers apply the following rules to determine the format.

The transformer checks the available format with the list of supported Images
formats provided by the server. The server has a preferred Image formats property

Wireless Graphics

Displaying and Formatting Content 3-9

for each logical device. This list can contain one or all of the formats supported by
the available attribute.

■ if there is a match the image is rendered

■ if there is no match and alt attribute exists, alt text is rendered

■ else the image is ignored

3.3.2 ImageDisplay.xml
<?xml version = "1.0" encoding = "UTF-8" standalone="yes" ?>
<!DOCTYPE SimpleResult PUBLIC "-//ORACLE//DTD SimpleResult 1.1//EN"
"http://xmlns.oracle.com/ias/dtds/SimpleResult_1_1_0.dtd">
<SimpleResult>
<SimpleContainer>
<SimpleText>
<SimpleImage src="http://portal.oraclemobile.com/other/oow/oramobile"

alt="Welcome To OracleMobile"/>
</SimpleText>

</SimpleContainer>
</SimpleResult>

Figure 3–5 Results of image example

Enhancing with Audio for Voice Access

3-10 Oracle9iAS Wireless Developer’s Guide

3.4 Enhancing with Audio for Voice Access

3.4.1 SimpleAudio and SimpleSpeech
The SimpleAudio element can be used for playing audio. The file specified by the
src attribute must be in 8-bit mulaw format. The SimpleSpeech element may be used
to control prosody pitch and other VoiceXML text-to-speech engine parameters. For
example, the class attribute can be used to specify the sayas text-to-speech output as
phone, date, digits, literal, currency, number or time. See the following example for
usage.

<?xml version = "1.0" encoding = "UTF-8" standalone="yes" ?>
<!DOCTYPE SimpleResult PUBLIC "-//ORACLE//DTD SimpleResult 1.1//EN"
"http://xmlns.oracle.com/ias/dtds/SimpleResult_1_1_0.dtd">
<SimpleResult>
<SimpleContainer>
<SimpleText>
<SimpleTextItem>
<SimpleAudio src="welcome1.wav">Welcome to Oracle Mobile, India Development

Center</SimpleAudio>
<SimpleBreak/>
<SimpleAudio src="welcome2.wav">You can contact us at phone number

</SimpleAudio>
<SimpleBreak/>
<SimpleSpeech class="phone">
<SimpleAudio src="phone.wav">91 080 552 8335</SimpleAudio>

</SimpleSpeech>
</SimpleTextItem>

</SimpleText>
</SimpleContainer>
</SimpleResult>

Enhancing with Audio for Voice Access

Displaying and Formatting Content 3-11

Figure 3–6 Results of SimpleAudio and SimpleSpeech example

3.4.2 Recommendation for Voice Navigation
While writing applications for Oracle9iAS Wireless, developers should consider
voice navigation at design time. Well-designed voice applications tend to have
different semantics than small screen devices and desktop applications. Although
Oracle9iAS Wireless automatically provides an audio interface for service, the
system is not intended to be a speech-controlled small-screen device browser, where
speech is added as an afterthought. Application developers should develop services
that have appropriate small-screen and speech interfaces in their own right, and the
respective strengths of these different devices can be used to advantage.

The development path for beginners should follow this model:

1. Write a basic version of the service using exactly the same flow and markup for
small-screen devices and audio interfaces.

2. Test on small-screen devices and voice telephones. If it is acceptable, you are
done.

For a large class of services, particularly menu-driven services that provide
information, the method works surprisingly well. If one or another interface seems
clumsy, there are several things that can be done to improve it.

Enhancing with Audio for Voice Access

3-12 Oracle9iAS Wireless Developer’s Guide

1. First, there are a number of attribute values that can be adjusted to enhance the
interface for one of the device classes.

2. Second, if that is insufficient, one can selectively include or exclude certain
elements from the user interface depending on the deviceclass.

3. Finally, one can alter the user interface flow by selectively following different
paths through a service, again, depending on the deviceclass.

Application Navigation 4-1

4
Application Navigation

Each section of this document presents a different topic. These sections include:

■ Section 4.1, "Introduction"

■ Section 4.2, "Basic Navigation"

■ Section 4.3, "Document Linking"

4.1 Introduction
Before examining the properties of writing mobile XML to handle text formatting
from a small device and voice perspective, this chapter will help you gain the skills
to write effective user interfaces to capture the required business logic with the least
amount of effort by mobile users. We will examine the details of creating
Oracle9iAS Wireless XML pages containing navigation elements such as menus,
hyperlinks, email, help, and cover forms. The elements necessary to build a form
are different from a menu as these will be the core elements needed for a wireless
developer to build an effective mobile application that simplifies user input without
compromising a rich feature set across different devices.

Because voice navigation is inherently more complicated than in small screen
devices, this chapter focuses on the fundamentals of Oracle9iAS Wireless XML for
small devices and highlights the required voice additions.

Menus allow consumers of services to simply navigate to a predefined choice and
enable different URLs to be invoked for a given choice. Forms, on the other hand,
typically differ from Menus in that there is one target which dictates the user’s next
page based on user input.

Basic Navigation

4-2 Oracle9iAS Wireless Developer’s Guide

4.2 Basic Navigation

4.2.1 SimpleMenu, SimpleMenuItem
The SimpleMenu element represents a single menu with selectable menu items
defined by SimpleMenuItem elements. It is possible to add Images to the top of
each Menu. However, one needs to avoid using large titles and images. See
SimpleMenuExample.xml for an example.

4.2.1.1 SimpleMenuExample.xml
<?xml version = "1.0" encoding = "UTF-8" standalone="yes" ?>
<!DOCTYPE SimpleResult PUBLIC " = //ORACLE//DTD SimpleResult 1.1//EN"
"http://xmlns.oracle.com/ias/dtds/SimpleResult_1_1_0.dtd">
<SimpleResult>
<SimpleContainer>
<SimpleMenu>
<SimpleTitle>OracleMobile Services
<SimpleImage src="

http://portal.oraclemobile.com/other/oow/oramobile"alt="Oracle Software
Powers the Internet"/>

</SimpleTitle>
<SimpleMenuItem target="mission.xml">OracleMobile

MissionStatement</SimpleMenuItem>
<SimpleMenuItem target="timer.xml">Oracle Server</SimpleMenuItem>
<SimpleMenuItem target="email.xml">Email the authors</SimpleMenuItem>
</SimpleMenu>

</SimpleContainer>
</SimpleResult>

Basic Navigation

Application Navigation 4-3

Figure 4–1 Results of simple navigation example

4.2.2 Navigating by Voice
The system reads the items of menu elements and concurrently listens for the
values of the SimpleMenuItem element. If one of these values is recognized, then the
target URL is fetched. If the user says nothing, the system will prompt the user with
a system default noinput message. If the user says something and the system is
unable to recognize it, the system default nomatch message is played. However,
application programmer may control such messages. Such fail-over logic is critical
for making robust voice applications. Application developers should make
extensive use of such features. For menus with large number of items, voice
interfaces should not read out the entire menu items to the user by setting the
autoprompt attribute to false. Instead, applications should wait for user input and
should only present an options list as help if requested by user. See
EnhancedSimpleMenuExample.xml for example. Some of the tags and elements
used in the application are covered later in this chapter.

Basic Navigation

4-4 Oracle9iAS Wireless Developer’s Guide

4.2.2.1 EnhancedSimpleMenuExample.xml
<?xml version = "1.0" encoding = "UTF-8" standalone="yes" ?>
<!DOCTYPE SimpleResult PUBLIC " = //ORACLE//DTD SimpleResult 1.1//EN"
"http://xmlns.oracle.com/ias/dtds/SimpleResult_1_1_0.dtd">
<SimpleResult>
<SimpleContainer>
<SimpleMenu deviceclass="microbrowser pdabrowser pcbrowser micromessager

messanger">
<SimpleTitle>OracleMobile Services
<SimpleImage src="http://portal.oraclemobile.com/other/oow/oramobile"

alt="Oracle Software Powers the Internet"/></SimpleTitle>
<SimpleTitle>OracleMobile Services</SimpleTitle>
<SimpleMenuItem target="mission.xml">OracleMobile

MissionStatement</SimpleMenuItem>
<SimpleMenuItem target="timer.xml">Oracle Server</SimpleMenuItem>
<SimpleMenuItem target="email.xml">Email the authors</SimpleMenuItem>

</SimpleMenu>
<SimpleMenu deviceclass="voice" autoprompt="false">
<SimpleTitle>
<SimpleAudio src="title.wav">oracle mobile services
</SimpleAudio>
</SimpleTitle>
<SimpleMenuItem target="mission.xml">OracleMobile MissionStatement
<SimpleGrammer>mission statement{}| oracle mission statement{}
</SimpleGrammer>
</SimpleMenuItem>
<SimpleMenuItem target="timer.xml">Oracle Server
<SimpleGrammer>oracle server{}| server{}
</SimpleGrammer>
</SimpleMenuItem>
<SimpleMenuItem target="email.xml">Email the authors
<SimpleGrammer>email the authors{}| email{} | email authors{}
</SimpleGrammer>
</SimpleMenuItem>
<SimpleCatch type="nospeech">
<SimpleAudio src="menuOptions.wav">Please speak up. You may also say help.
</SimpleAudio>
</SimpleCatch>
<SimpleCatch type="nomatch">
<SimpleAudio src="nomatch.wav">I'm sorry, I did not understand you. Please

say that again or say help.</SimpleAudio>
</SimpleCatch type="help">
<SimpleAudio src="menuHelp.wav"> Help. Oracle Mobile. You may say mission

statement, oracle server or email the authors.
</SimpleAudio>

Document Linking

Application Navigation 4-5

</SimpleMenu>
</SimpleContainer>
</SimpleResult>

The output of this application on small screen devices is the same as shown above,
while a typical voice session may be as follows:

System: oracle mobile services
User: help
System: Help. Oracle Mobile. You may say mission statement, oracle server or
email the authors.
User: I am going to trick you.
System: I'm sorry, I did not understand you. Please say that again or say help.
User: email authors
...

Generally, voice gateways provide a text-to-speech (TTS) engine that reads out
SimpleTitle, SimpleTextItem, SimpleMenu options, SimpleFormOptions etc. For the
TTS to sound intelligible, proper spacing and punctuation is required.
SimpleFormOption or SimpleMenuItem should never have text punctuation unless
the deviceclass has been set to a value other than “voice”. This is because the text in
these tags is used to produce speech recognition grammars, and most grammars are
foiled by non-alphabetic characters. If a developer wishes to avoid using the
synthesized message, then he may specify a prerecorded audio file to be played.
The location of the audio file can be specified through the <SimpleAudio> tag. End
user experience of TTS is often considered unpleasant, So as much as possible,
prerecorded human sounds should be used instead of TTS.

4.3 Document Linking

4.3.1 SimpleHref, SimpleTimer
For linking documents, SimpleHref can be used as a hyperlink. It can also be used
to send email using the mailto: handler as shown in the ContactAuthors.xml and
PhoneCallDemo.xml examples. Similarly, the callto:handler can be used for
devices that are capable of making phone calls. Application developers should
specify deviceclass attributes which support the call or mail feature.

Note: static_target attribute should be used instead of target
whenever callto: or mailto: handlers are used which signals
Oracle9iAS Wireless runtime not to rewrite the URLs.

Document Linking

4-6 Oracle9iAS Wireless Developer’s Guide

SimpleTimer can be used to invoke a goto target task after a specified delay. It can
be used for navigation to display a showcase promotion, sponsor information, or
system-wide critical messages.

4.3.1.1 ContactAuthors.xml

<?xml version = "1.0" encoding = "UTF-8" standalone="yes" ?>
<!DOCTYPE SimpleResult PUBLIC "-//ORACLE//DTD SimpleResult 1.1//EN"
"http://xmlns.oracle.com/ias/dtds/SimpleResult_1_1_0.dtd">
<SimpleResult>
<SimpleContainer>
<SimpleText>
<SimpleTextItem deviceclass="pdabrowser pcbrowser micromessenger

messenger">Email the Authors only on clients with default mail clients like
PocketPC and desktops

<SimpleBreak/>
<SimpleHref staic_target="mailto:chandra.patni@oracle.com">Chandra "duke"

Patni
</SimpleHref>
<SimpleBreak/>
<SimpleHref static_target="mailto:peter.feng@oracle.com">Peter "ptg" Feng
</SimpleHref>
</SimpleTextItem>
<SimpleTextItem deviceclass="voice microbrowser">Call the Authors on clients

with phone facility
<SimpleBreak/>
<SimpleHref static_target="callto:1234567890">Chandra "duke" Patni
</SimpleHref>
<SimpleBreak/>
<SimpleHref static_target="callto:1234567890">Peter "ptg" Feng
</SimpleHref>
</SimpleTextItem>

</SimpleText>
</SimpleContainer>
</SimpleResult>

Document Linking

Application Navigation 4-7

Figure 4–2 Results of the Email demo example

4.3.1.2 PhoneCallDemo.xml
<?xml version = "1.0" encoding = "UTF-8" standalone="yes" ?>
<!DOCTYPE SimpleResult PUBLIC "-//ORACLE//DTD SimpleResult 1.1//EN"
"http://xmlns.oracle.com/ias/dtds/SimpleResult_1_1_0.dtd">
<SimpleResult>
<SimpleContainer>
<SimpleText deviceclass="microbrowser voice">
<SimpleTextItem><SimpleEm>Oracle</SimpleEm> Support </SimpleTextItem>
<SimpleTextItem>Phone Book<SimpleBreak/>
<SimpleHref static_target="callto:14155551212">Bob</SimpleHref>
<SimpleHref static_target="callto:16505551212">Chris</SimpleHref>
<SimpleHref static_target="callto:14085551212">Dina</SimpleHref>
<SimpleHref static_target="callto:17075551212">Jere</SimpleHref>
</SimpleTextItem>

</SimpleText>
</SimpleContainer>
</SimpleResult>

Document Linking

4-8 Oracle9iAS Wireless Developer’s Guide

Figure 4–3 Results of the Phone Call Demo example

4.3.1.3 SimpleAction
SimpleAction provides the ability to define a submit action, that navigates users to a
new context. Mobile devices can associate a submit action to a number of input
methods of the device, such as pressing a key on a WAP device or speaking a
command on a voice-enabled device. SimpleAction can also be used for navigation
to different pages and different cards within a deck, and overriding default
behavior on voice browsers. For mobile phones, the main usage would be to
override the buttons (left and right) on a wireless phone and PDAs to provide a
similar navigation functionality as SimpleHref.

Like many programming languages, SimpleAction, for a given type, conforms to
scoping rules. For example, if SimpleAction is defined as a child of SimpleMenu
and also as a child of the enclosing SimpleContainer for a given type, the
SimpleAction tag within the SimpleMenu overrides the SimpleAction of the
SimpleContainer. If the value for type attribute is different, then the two
SimpleActions will be active within the context. The behavior of SimpleAction is

Document Linking

Application Navigation 4-9

unspecified if two elements are defined with the same type and same deviceclass
values in the same context. See the following example for usage.

4.3.1.4 SimpleCache
SimpleCache enables you to specify caching policy of content either by the WAP
gateway, by client browser, or both.

■ Caching policy is said to be public if the WAP gateway is allowed to cache the
content of a URL.

■ Caching policy is said to be private if the content is only allowed to cache by the
device.

SimpleCache can be specified as the child of SimpleHref, SimpleGo,
SimpleMenuItem, SimpleAction etc. SimpleCache also allows users to specify the
prefetch policy (if supported by browser), where a URL must be prefetched while
still showing the current content. However, if the SimpleAction specifies a submit
task, then caching policies are not applicable. Time to live for the cached data is
specified by the ttl attribute, which takes milliseconds as an argument.

SimpleCache should be used when the data is sensitive or becomes stale after a
specified amount of time.

4.3.1.5 SimpleMeta
SimpleMeta allows applications to specify meta information via the device browser,
and pass that information to the transformers.

4.3.2 Enhancing with Voice

4.3.2.1 SimpleDTMF
SimpleDTMF specifies a VoiceXML DTMF grammar. In the voice application
example the user may select menu item ‘test1’ either by saying ‘test1’ or by selecting
‘3’ on the device.

4.3.2.2 SimpleDTMF.xml
<?xml version = "1.0" encoding = "UTF-8" standalone="yes" ?>
<!DOCTYPE SimpleResult PUBLIC "-//ORACLE//DTD SimpleResult 1.1//EN"
"http://xmlns.oracle.com/ias/dtds/SimpleResult_1_1_0.dtd">
<SimpleResult public="true">
<SimpleCache ttl="0"/>
<SimpleContainer>

Document Linking

4-10 Oracle9iAS Wireless Developer’s Guide

<SimpleMenu markable="true" wrapmode="nowrap" autoprompt="false" dtmf="true">
<SimpleTitle>Voice demo</SimpleTitle>
<SimpleMenuItem target="deposit.jsp">Deposit
<SimpleAction task="go" method="get"/>
<SimpleGrammar> deposit{} </SimpleGrammar>
<SimpleDTMF>1</SimpleDTMF>
</SimpleMenuItem>
<SimpleMenuItem target="HelloWorld.jsp">Withdraw
<SimpleAction task="go" method="get"/>
<SimpleGrammar>withdraw{}</SimpleGrammar>
<SimpleDTMF>2</SimpleDTMF>
</SimpleMenuItem>
<SimpleCatch type="cancel">
<SimpleAction target="cancel.jsp"/>
</SimpleCatch>
<SimpleCatch type="help">
<SimpleAudio src="help.wav">Help. For deposit, you may say deposit or press

1. For withdraw, you
may say withdraw or press 2.</SimpleAudio>
</SimpleCatch>
<SimpleCatch type="help" count="2">
<SimpleAudio src="help.wav">Help. For deposit, you may say deposit or press

1. For withdraw, you
may say withdraw or press 2. You may also say cancel to return to account

menu.</SimpleAudio>
</SimpleCatch>

</SimpleMenu>
</SimpleContainer>
</SimpleResult>

4.3.2.3 SimpleCatch
SimpleCatch catches an event; it is a voice-only tag. This can be used to capture
predefined voice events or error conditions such as "noinput", “nomatch”, "exit",
“cancel”, “error”, “help”, “telephone.disconnect”, etc. and perform actions on them.
For example on a "noinput" event the user can be given some help instructions and
be reprompted for their input. The event types are specified by type attribute which
is mandatory for SimpleCatch. Also, count attribute may be used for occurrences of
the event. The default value is 1. It allows handling of multiple occurrences of an
event in multiple ways. For example the nth occurrence of an event can be handled
in a different manner than the previous occurrence. In a frequently occurring
scenario, it may be used for increasing details of help as count increases. See
SimpleDTMF.xml for usage.

Document Linking

Application Navigation 4-11

4.3.2.4 SimpleGrammar
The SimpleGrammar tag provides a customized speech recognition grammar. Using
this grammar, developers can not only provide the vocabulary to listen for, but also
the mapping from, utterances to data values. If the rules for such mappings are in a
remote location, then the src attribute may be used to specify the name of the file.
The following example illustrates the use of SimpleGrammar.

<?xml version = "1.0" encoding = "UTF-8" standalone="yes" ?>
<!DOCTYPE SimpleResult PUBLIC "-//ORACLE//DTD SimpleResult 1.1//EN"
"http://xmlns.oracle.com/ias/dtds/SimpleResult_1_1_0.dtd">
<SimpleResult>
<SimpleContainer>
<SimpleMenu deviceclass="voice">
<SimpleTitle src="title.wav">Please select a freeway</SimpleTitle>
<SimpleMenuItem target="./traffic.jsp?index=5">I 5
<SimpleGrammar>i five{} | interstate five{} | five{} | route five{} | san

diego{}
</SimpleGrammar>
</SimpleMenuItem>
<SimpleMenuItem target="./traffic.jsp?index=8 ">I 8
<SimpleGrammar>i eight{} | interstate eight{} | eight{} | route eight{} |

alvarado freeway{} |
mission valley freeway{} | ocean beach freeway{}
</SimpleGrammar>
</SimpleMenuItem>
<SimpleMenuItem target="./traffic.jsp?index=15 ">I 15
<SimpleGrammar>i fifteen{} | fifteen{} |interstate fifteen{} | escondido

freeway{}| escondido{}
</SimpleGrammar>
</SimpleMenuItem>
<SimpleMenuItem target="./traffic.jsp?index=805 ">I 805
<SimpleGrammar>i eight zero five{} | i eight hundred five{} | eight zero

five{} | eight hundred five{} |
interstate eight zero five{} | interstate eight hundred five{} | route eight

zero five{} |
route eight hundred five{}
</SimpleGrammar>
</SimpleMenuItem>

</SimpleMenu>
</SimpleContainer>
</SimpleResult>

In the above example, even though the last menu option is “i eight hundred five”,

Document Linking

4-12 Oracle9iAS Wireless Developer’s Guide

the user may say any one of the commands as specified by a ‘|’ separated list.
SimpleGrammer is a very useful construct for building user-friendly and smart
voice applications. It also allows application developers to incorporate some of their
localization issues. For example, “sure”, “ok”, “yes”, “please” and “yes please” all
are used to refer to “yes” (in America region) in different parts of world. Such
speech diversity can be incorporated into an application using SimpleGrammer.

4.3.2.5 DocumentLinkingDemo.xml
<?xml version = "1.0" encoding = "UTF-8" standalone="yes" ?>
<!DOCTYPE SimpleResult PUBLIC "-//ORACLE//DTD SimpleResult 1.1//EN"
"http://xmlns.oracle.com/ias/dtds/SimpleResult_1_1_0.dtd">
<SimpleResult>
<SimpleContainer id=”message”>
<SimpleTimer target=”#employeePortal” timer=”30”/>
<SimpleText>
<SimpleTextItem> There will be ice cream bars in every lobby at Headquarters

to promote the use of the new employee wireless portal.
</SimpleTextItem>

</SimpleText>
</SimpleContainer>
<SimpleContainer>
<SimpleText id=”employeePortal”>
<SimpleImage valign=”top” src=

http://portal.oraclemobile.com/other/oow/oraclemobile alt=”oraclemobile icon”/>
<SimpleTextItem>Welcome to <SimpleEm>OracleMobile</SimpleEm> Employee Portal

<SimpleBreak/>
</SimpleTextItem>
<SimpleAction type=”SOFT1” label=”Support” target=”phone.xml”/>
<SimpleHref label=”PORTAL” id=”portal” name=”ToPortal” target=”form.xml”>

enterPortal
</SimpleHref>

</SimpleText>
</SimpleContainer>
</SimpleResult>

Note: Only lowercase ASCII characters are allowed in
SimpleGrammer.

Document Linking

Application Navigation 4-13

Figure 4–4 Results of the Document Linking demo example

4.3.2.6 Mobile XML Voice Navigation Elements
Basic Voice Commands

The following basic commands are available to users at all times. The response of
the system to help and cancel will generally need to be tailored to each individual
service.

Main menu: Can be uttered at any time, and by default takes the user to the
Oracle9iAS Wireless main menu.
Goodbye: To end the session with one Oracle9iAS Wireless instance or user may just
hang up the telephone.
Exit: Same as Goodbye.
Help: For context-sensitive help>
Cancel: For aborting or restarting a dialog, as when the system has misrecognized a
command or input.

4.3.2.7 Help
Help is used by voice applications to provide context-sensitive help when users
invoke “help” commands. Voice interfaces should make use of Help as much
possible. Unlike small screen application help, voice help is vital to the navigation
of voice interfaces and therefore should be incorporated at development time. See
EnhancedSimpleMenuExample.xml for usage.

Document Linking

4-14 Oracle9iAS Wireless Developer’s Guide

Filling Out Forms for Data Entry and Navigation 5-1

5
Filling Out Forms for Data Entry and

Navigation

Each section of this document presents a different topic. These sections include:

■ Section 5.1, "Introduction"

■ Section 5.2, "Basic User Interaction"

■ Section 5.3, "Complete User Forms"

■ Section 5.4, "Enhancing Voice"

5.1 Introduction
Forms provide the basic building blocks for user interactions. Forms for phones and
PDAs are fairly similar, except in form factor. Like HTML forms, forms in mobile
devices are used for passing name-value parameters to the server. Multiple form
items can be laid out on the device screen, if supported. Therefore, a user may
populate a form item in an arbitrary order. Certain format restrictions can be
specified on a form item to ensure the type safety and validity of form fields. For
example, it is possible to specify a restriction of five digits for US postal codes.
However, most of the validation should occur on the server side. This constraint is
due to the limited resources on the devices. On a voice browser, every thing must be
processed by the voice gateway, which enables rich validation and exception
handling at the markup language level.

Basic User Interaction

5-2 Oracle9iAS Wireless Developer’s Guide

5.2 Basic User Interaction

5.2.1 SimpleForm
SimpleForm is similar to HTML form, which provides an arbitrary collection of
SimpleFormItem and SimpleFormSelect as a single entity. SimpleFormSelect may be
used to display list, radio buttons or checkbox controls. Form has SimpleTitle as its
child, and if specified, will appear as the Title of the form. SimpleForm along with
SimpleBind can trigger form processing in several ways; multiple tasks can be
executed upon form submission.

5.2.2 SimpleFormItem
SimpleFormItem is the equivalent of a text field, text area, password field and
hidden field for desktop browsers. The type of item may be specified using the
display mode attribute. It may take text field, text area, noecho or hidden.
SimpleFormItem can be used to obtain input from a user. This element presents a
prompt, and waits for input from the user. The content of this element, which is in
parsable character format, specifies default values for the form item. For example, a
login screen and guest book screen may appear as in the following example.

5.2.2.1 FormExample.xml
<?xml version = "1.0" encoding = "UTF-8" standalone="yes" ?>
<!DOCTYPE SimpleResult PUBLIC "-//ORACLE//DTD SimpleResult 1.1//EN"
"http://xmlns.oracle.com/ias/dtds/SimpleResult_1_1_0.dtd">
<SimpleResult>
<SimpleContainer>
<SimpleForm target="login.jsp" method="post">
<SimpleFormItem name="userName">User Name:</SimpleFormItem>
<SimpleFormItem name="password"

displaymode="noecho">Password:</SimpleFormItem>
</SimpleForm>

</SimpleContainer>
</SimpleResult>

Basic User Interaction

Filling Out Forms for Data Entry and Navigation 5-3

Figure 5–1 Results of FormExample.xml example

5.2.2.2 GuestBook.xml
<?xml version = "1.0" encoding = "UTF-8" standalone="yes" ?>
<!DOCTYPE SimpleResult PUBLIC "-//ORACLE//DTD SimpleResult 1.1//EN"
"http://xmlns.oracle.com/ias/dtds/SimpleResult_1_1_0.dtd">
<SimpleResult>
<SimpleContainer>
<SimpleForm target="sendMail.jsp" method="post">
<SimpleTitle>Thanks for signing my guestbook.</SimpleTitle>
<SimpleFormItem name="Name">Name:</SimpleFormItem>
<SimpleFormItem name="message"

displaymode="textarea">Message:</SimpleFormItem>
</SimpleForm>

</SimpleContainer>
</SimpleResult>

Complete User Forms

5-4 Oracle9iAS Wireless Developer’s Guide

Figure 5–2 Results of GuestBook.xml example

5.3 Complete User Forms

5.3.1 SimpleFormSelect, SimpleFormOption, and SimpleOptGroup
These elements display a selected option list. It can display drop down list,
checkbox and radio button, using the display mode attribute. Checkboxes or option
lists may allow single selection or multiple selections using the multiple attribute.
The items to be displayed are abstracted by the SimpleFormOption element.
SimpleOptGroup groups SimpleFormOption elements into a hierarchy. It is useful
for small screen devices, where long list of options cannot be esthetically presented
in the user interfaces. The content of SimpleFormOption element is parsable
character data, which specifies default values for the form item. See the following
example for usage.

5.3.2 Profile.xml
<?xml version = "1.0" encoding = "UTF-8" standalone="yes" ?>
<!DOCTYPE SimpleResult PUBLIC "-//ORACLE//DTD SimpleResult 1.1//EN"
"http://xmlns.oracle.com/ias/dtds/SimpleResult_1_1_0.dtd">
<SimpleResult>
<SimpleContainer>

Complete User Forms

Filling Out Forms for Data Entry and Navigation 5-5

<SimpleForm name="employeeinfo" target="process.jsp">
<SimpleTitle>Your Profile</SimpleTitle>
<SimpleFormItem name="homepage" default="http://">Homepage</SimpleFormItem>
<SimpleFormSelect name="skills" displaymode="checkbox" multiple="true">
<SimpleTitle>Skills</SimpleTitle>
<SimpleFormOption value="java">Java</SimpleFormOption>
<SimpleFormOption value="xml">XML</SimpleFormOption>
<SimpleFormOption value="sql">SQL</SimpleFormOption>
</SimpleFormSelect>
<SimpleFormSelect name="nerd" displaymode="checkbox">
<SimpleTitle>Addicted to Java?</SimpleTitle>
<SimpleFormOption value="yes">Yes</SimpleFormOption>
<SimpleFormOption value="no">No</SimpleFormOption>
</SimpleFormSelect>
<SimpleFormSelect name="location" displaymode="list">
<SimpleTitle>Location</SimpleTitle>
<SimpleFormOption value="Redwood Shores_CA">HQ Redwood

Shores,CA</SimpleFormOption>
<SimpleFormOption value="Nashua_NH">NEDC Nashua, NH</SimpleFormOption>
<SimpleFormOption value="SanFrancisco_CA">SanFrancisco,

CA</SimpleFormOption>
<SimpleFormOption value="NewYork,NY">NewYork, NY</SimpleFormOption>
</SimpleFormSelect>
</SimpleForm>

</SimpleContainer>
</SimpleResult>

Enhancing Voice

5-6 Oracle9iAS Wireless Developer’s Guide

Figure 5–3 Results of Profile.xml example

5.4 Enhancing Voice

5.4.1 SimpleGrammer, SimpleValue and SimpleDTMF
SimpleGrammar— The SimpleGrammar tag provides a customized speech
recognition grammar. For further details on the use of SimpleGrammar see
Section 4.3.2.4, "SimpleGrammar".

SimpleValue—The SimpleValue tag is a placeholder for dynamic information that
is not known until runtime. This element is valuable for processing multiple cards
within one deck and capturing client-side data validation.

SimpleDTMF—This is a keyboard binding number that is used to process input. In
the example below, the formItem ZipInput would pass only 232 to the target and
nothing else unless there was an error or long pause.

<?xml version = "1.0" encoding = "UTF-8" standalone="yes" ?>
<!DOCTYPE SimpleResult PUBLIC "-//ORACLE//DTD SimpleResult 1.1//EN"
"http://xmlns.oracle.com/ias/dtds/SimpleResult_1_1_0.dtd">
<SimpleResult>
<SimpleContainer>
<SimpleForm name="Starting" target="test2a.jsp">
<SimpleFormItem name="addrInput">

Enhancing Voice

Filling Out Forms for Data Entry and Navigation 5-7

simple grammar test, please say oracle or san mateo
<SimpleGrammar>
oracle {bridge}|san mateo{foster city}
</SimpleGrammar>
</SimpleFormItem>
<SimpleFormItem name="zipInput">
<SimpleDTMF> 95 {232} </SimpleDTMF>
Simple DTMF test, please press 95

</SimpleFormItem>
</SimpleForm>

</SimpleContainer>
</SimpleResult>

5.4.2 Recommendation for Voice Forms
So far we have written the form for the small screen devices which are similar to the
following form.<?xml version = "1.0" encoding = "UTF-8" standalone="yes" ?>

<!DOCTYPE SimpleResult PUBLIC "-//ORACLE//DTD SimpleResult 1.1//EN"
"http://xmlns.oracle.com/ias/dtds/SimpleResult_1_1_0.dtd">
<SimpleResult>
<SimpleContainer>
<SimpleForm target="guess.jsp">
<SimpleFormItem name="guess">
<SimpleTitle>
I am thinking of a number between 1 and 100.
What is your first guess?
</SimpleTitle>
</SimpleFormItem>

</SimpleForm>
</SimpleContainer>
</SimpleResult>

This example would work well for a small screen device. However, this is not
sufficient for spoken input. Speech recognition works only when there is a very
narrowly prescribed vocabulary to listen for. Descriptions of such vocabularies are
called speech-recognition grammars. <SimpleMenu>s and <SimpleFormSelect>s
provide such grammars with their lists of <SimpleMenuItem>s and
<SimpleFormOption>s. However, in examples such as the one above, the system
should be listening for an arbitrary number. This is indicated by the type attribute
of <SimpleFormItem>, as follows.

<?xml version = "1.0" encoding = "UTF-8" standalone="yes" ?>
<!DOCTYPE SimpleResult PUBLIC "-//ORACLE//DTD SimpleResult 1.1//EN"
"http://xmlns.oracle.com/ias/dtds/SimpleResult_1_1_0.dtd">

Enhancing Voice

5-8 Oracle9iAS Wireless Developer’s Guide

<SimpleResult>
<SimpleContainer>
<SimpleForm target="guess.jsp">
<SimpleFormItem name="guess" type="number">
<SimpleTitle>
I am thinking of a number between 1 and 100.
What is your first guess?
</SimpleTitle>
</SimpleFormItem>

</SimpleForm>
</SimpleContainer>
</SimpleResult>

Setting type="number" tells the system to listen for any utterance that corresponds
to a spoken number, if such an utterance is heard, then assigns the corresponding
number to the identifier "guess". In addition to number, the values boolean, digits,
date, time, currency, and phone also specify vocabularies to listen for. Besides
specifying the type attribute, the developer can enhance the voice features by
observing the following guidelines:

■ The voice experience can be enhanced with prerecorded audio using the
<SimpleAudio> element.

■ As confirmation, echo the recognized utterance and allow the user to cancel if
an input has been misrecognized.

■ Always provide context-sensitive help.

■ As necessary, use the deviceclass attribute to tailor audio and text messages to
voice (but use this attribute sparingly, as it tends to obfuscate the markup).

■ Always provide the user the option of continuing in a service by "moving
forward" -- providing an appropriate command leading to the place the user
wants to go -- rather than forcing them to "back out" using cancel.

■ Provide special event handlers for recognition failures (noinput, nomatch) and
Internet fetch failures (error.badfetch) where appropriate.

The following example improves the user experience through the implementation
of these guidelines.

<?xml version = "1.0" encoding = "UTF-8" standalone="yes" ?>
<!DOCTYPE SimpleResult PUBLIC "-//ORACLE//DTD SimpleResult 1.1//EN"
"http://xmlns.oracle.com/ias/dtds/SimpleResult_1_1_0.dtd">
<SimpleResult>
<SimpleContainer>
<SimpleForm target="tipcalc.jsp">

Enhancing Voice

Filling Out Forms for Data Entry and Navigation 5-9

<SimpleFormItem name="howmuch" type="currency">How much is the bill?
</SimpleFormItem>
<SimpleFormItem name="howmany" format="N*" type="number">
How many are in your party?
<SimpleCatch type="cancel">Canceling.
<SimpleClear name="howmuch"/>

</SimpleCatch>
</SimpleFormItem>
<SimpleFormSelect name="howbig" deviceclass="microbrowser pdabrowser

pcbrowser micromessenger messenger">
<SimpleTitle>How big do you want your tip to be?</SimpleTitle>
<SimpleFormOption value="10">small (10%)</SimpleFormOption>
<SimpleFormOption value="15">medium (15%)</SimpleFormOption>
<SimpleFormOption value="20">large (20%)</SimpleFormOption>
</SimpleFormSelect>
<SimpleFormSelect name="howbig" deviceclass="voice" autoprompt="false">
<SimpleTitle>
How big do you want your tip to be?
For 'ten percent' say 'small',
for 'fifteen percent' say 'medium',
for 'twenty percent' say 'large'.

</SimpleTitle>
<SimpleFormOption value="10">small</SimpleFormOption>
<SimpleFormOption value="15">medium</SimpleFormOption>
<SimpleFormOption value="20">large</SimpleFormOption>
<SimpleCatch type="nomatch">Please say that again</SimpleCatch>
<SimpleCatch type="cancel">Canceling.
<SimpleClear name="howmuch"/>
<SimpleClear name="howmany"/>
<SimpleClear name="howbig"/>

</SimpleCatch>
</SimpleFormSelect>

</SimpleForm>
</SimpleContainer>
</SimpleResult>

Enhancing Voice

5-10 Oracle9iAS Wireless Developer’s Guide

Advanced User Interactions and Channel Optimization 6-1

6
Advanced User Interactions and Channel

Optimization

Each section of this document presents a different topic. These sections include:

■ Section 6.1, "Introduction"

■ Section 6.2, "Events and Tasks Using SimpleBind"

■ Section 6.3, "Device Headers and Device Class"

6.1 Introduction
In this chapter, we will discuss some of the advanced user interaction techniques
provided by Oracle9iAS Wireless. So far, we have seen how Oracle9iAS Wireless
allows users to specify a task when a user performs an action (for example, pressing
a soft key on the phone or uttering a command on a voice enabled device).
Advanced User Interactions provide the ability to perform many tasks in response
to an action triggered by a user whenever supported by the device. And, the ability
to perform tasks based on the value input by users is highly desirable.

Oracle9iAS Wireless provides an elaborate scheme to facilitate very sophisticated
binding of tasks and actions. This is performed by the SimpleBind element which
may appear in the context of SimpleText, SimpleForm, SimpleFormItem,
SimpleFormSelect, SimpleMenu, SimpleResult or SimpleContainer.

6.2 Events and Tasks Using SimpleBind
SimpleBind lets you specify SimpleTask which is performed in response to an action
specified as the child of SimpleMatch element. SimpleMatch may specify primary1,
primary2 etc. keys, nospeech, noinput, or an item of SimpleMenu conditions, etc.
Only one task may be specified in SimpleMatch and when this action is performed,

Events and Tasks Using SimpleBind

6-2 Oracle9iAS Wireless Developer’s Guide

all the tasks specified in SimpleTask are performed. SimpleTask may also perform
tasks selectively by using SimpleSwitch, SimpleCase and SimpleDefault elements
which are analogous to the switch and case constructs of many programming
languages.

In SimpleSwitch, a value of a particular user input is compared to the values
enumerated by SimpleCase elements. SimpleTask may specify to:

■ go to a remote location using SimpleGo

■ display a text item using SimpleTextItem

■ refresh the device screen (if supported) using SimpleRefresh

■ clear the specified device form fields using SimpleClear and SimpleName

■ allow voice users to reprompt input using SimpleReprompt

■ exit the application using SimpleExit

■ disconnect the device from connected state (such as a voice browser) using
SimpleDisconnect

■ define back operation using SimplePrev and SimpleGo

■ submit a form using SimpleSubmit.

The rendering characteristics of the SimpleBind element are specified by the
SimplDisplay element. SimpleDisplay supports SimpleTextItem as child elements
that contain the actual render and display content. This allows you to play an audio
or render the text for a MenuItem. See example SimpleBindExample.xml.

6.2.1 SimpleBind.xml
<SimpleBind deviceclass="voice microbrowser">

<SimpleMatch>
<SimpleFinish/>
<SimpleGrammar>
yes {}| correct {}| true {} | one {}

</SimpleGrammar>
<SimpleDTMF>1</SimpleDTMF>

<SimpleKey type="primary"/>
</SimpleMatch>

<SimpleTask>
<SimpleSubmit
target="changepin.jsp"
name="Submit"

Events and Tasks Using SimpleBind

Advanced User Interactions and Channel Optimization 6-3

method="post">
<SimpleName name="p_old_pin" />
<SimpleName name="p_new_pin" />

</SimpleSubmit>
</SimpleTask>

<SimpleDisplay>
<SimpleTextItem deviceclass="voice">
<SimpleAudio src="sayYesOrPressOne.wav">
say yes, or press one, to submit

</SimpleAudio>
</SimpleTextItem>

<SimpleTextItem deviceclass="microbrowser">
Submit

</SimpleTextItem>
</SimpleDisplay>

</SimpleBind>

Figure 6–1 Results of SimpleBind, SimpleMatch and SimpleDisplay

6.2.2 Device Specific SimpleBind
SimpleBind is primarily useful while writing voice applications. However, an
application may use SimpleBind based on a particular device by the use of the

Device Headers and Device Class

6-4 Oracle9iAS Wireless Developer’s Guide

‘deviceclass’ attribute. This attribute can take the values ‘pdabrowser’,
‘pcabrowser’, ‘voice’, ‘microbrowser’, ‘micromessenger’ and ‘messenger’.

6.3 Device Headers and Device Class
Devices are classified based on two criteria in Oracle9iAS Wireless. The
classification is based on:

■ form factor of the device

■ communication channel of the device (synchronous request/response or async
mode)

See the following document for more information:

http://mobile.us.oracle.com/ompm/site/internal/api/iaswheaders/dheaders.jsp

Developers may develop value added services, which make use of device specific
properties. For example, Oracle9iAS Wireless does not support server side
management of large response. A service may use the maximum size of response
for a device to provide navigation dynamically. The following headers are
supported:

■ X-Oracle-Device.Class: Indicates the channel mode and the form factor of a
device. Each value of the Device.Class indicates a unique communication
channel mode and the unique form factor. The value set for the attribute
“deviceclass” is same as the header X-Oracle-Device.class. Note that device.class
does not represent target device markup language.

■ X-Oracle-Device.Orientation: Indicates the orientation of a device. May be
used by an application to change the rendering style for certain devices.
Possible values are “landscape” “portrait”. Default value is “portrait”.

■ X-Oracle-Device.MaxDocSize: Approximate value of maximum number of
bytes of content that can be handled by the device in question. The
approximation arises due to fact that Oracle9iAS Wireless XML size may not be
the same as transformed device-specific markup language. If the service returns
a Oracle9iAS Wireless XML document greater than the MaxDocSize, the
response for such a request is unspecified. It is not guaranteed that a document
size bounded by MaxDocSize will result in the content size, which can be
pushed to the device. The value of the parameter is set by the administration
tool of Oracle9iAS Wireless for the deviceclass. The default value is 0.

Device Headers and Device Class

Advanced User Interactions and Channel Optimization 6-5

■ X-Oracle.Device.Secure: Indicates if the connection between the Oracle9iAS
Wireless server and the device was secure when the current request for the
resource was made. Possible values are “true” or “false”.

The following jsp uses a PageNavigation bean to deliver news content in multiple
trips.

6.3.1 Article.jsp
<?xml version = "1.0" encoding = "UTF-8" standalone="yes" ?>
<!DOCTYPE SimpleResult PUBLIC "-//ORACLE//DTD SimpleResult 1.1//EN"
"http://xmlns.oracle.com/ias/dtds/SimpleResult_1_1_0.dtd">
<%@ page import="oracle.wireless.xmldevguide.PageNavigation"%>
<%
boolean loopback = Boolean.valueOf(request.getParameter("loopback")).booleanValue();
int pageIndex = 0;
try {

pageIndex = Integer.parseInt(request.getParameter("pageIndex"));
}
catch(Exception ex){}
%>
<SimpleResult>
<SimpleContainer>

<jsp:useBean id="contentHandler" class="oracle.wireless.xmldevguide.PageNavigation"
scope="session"/>

<%
if(!loopback) {

String size = request.getHeader("X-Oracle-Device.MaxDocSize");
if(size != null && !("0".equals(size))) {

contentHandler.setDeckSize(Integer.parseInt(size));
}
pageIndex = 0;
// get the article content from a source.
String articleContent = "OracleMobile Online Studio is an online "+
"developer portal for quickly building, testing and deploying "+
"wireless applications. It lets any developer, systems integrator "+
"or independent software vendor quickly develop a mobile application "+
"that is immediately accessible from all devices. This unique, next "+
"generation environment allows companies to benefit from faster time "+
"to market, increased productivity, and a dramatically simplified "+
"testing cycle, while providing access to the latest mobile applications "+
"and tools. It enables you to focus on your business logic which is your "+
"core competency, while we focus on the device complexity, our core "+
"competency. <SimpleBreak/><SimpleBreak/>"+
"OracleMobile Online Studio's build, test, and deploy model is new and "+
"unique to software development. It presents a hosted approach to developing "+
"dynamic content. You do not need to download any software or tools to start "+
"using it. All you need to do is access the OracleMobile Online Studio, "+

Device Headers and Device Class

6-6 Oracle9iAS Wireless Developer’s Guide

"register, and login. Once authenticated, you will have access to "+
"reusable modules, examples, documentation, runtime information, and other "+
"useful resources. <SimpleBreak/><SimpleBreak/>"+
"Now you can even use OracleMobile Online Studio to write a single application "+
"that can be accessed via both wireless and voice interfaces. Listen to your "+
"OracleMobile Online Studio applications by calling: "+
"888-226-4854. <SimpleBreak/><SimpleBreak/>"+
"Simplify the development of your OracleMobile Online Studio application "+
"with Where2Net's daVinci Studio.";

contentHandler.setContent(articleContent);
}
String nextURL = null;
String previousURL = null;
int numPages = contentHandler.getAvailablePages();
if(numPages > 1) {

nextURL = (pageIndex < numPages - 1) ?
"article.jsp?loopback=true&pageIndex="+(pageIndex + 1) : null;

previousURL = (pageIndex > 0) ? "article.jsp?loopback=true&pageIndex="+
(pageIndex - 1) : null;

}
String articleTitle = (pageIndex == 0) ? "OracleMobile online studio" : "contd...";
%>
<SimpleText>
<SimpleTitle><%=articleTitle%></SimpleTitle>
<%

String s = (nextURL == null) ? "articleIndex.jsp" : nextURL;
if(pageIndex != numPages - 1) {

%>
<SimpleAction type="primary2" label="Close" target="articleIndex.jsp"/>
<SimpleAction type="primary1" label="Next" target="<%=s%>"/>
<%

}
else {

%>
<SimpleAction type="primary1" label="Close" target="<%=s%>"/>
<%

}
%>
<SimpleTextItem><%=contentHandler.getPage(pageIndex)%></SimpleTextItem>
<%
if(previousURL != null) {

%>
<SimpleTextItem><SimpleHref

target="<%=previousURL%>">Previous</SimpleHref></SimpleTextItem>
<%
}
if(nextURL != null){

%>
<SimpleTextItem><SimpleHref

Device Headers and Device Class

Advanced User Interactions and Channel Optimization 6-7

target="<%=nextURL%>">Next</SimpleHref></SimpleTextItem>
<%

}
%>

</SimpleText>
</SimpleContainer>

</SimpleResult>

6.3.2 PageNavigation.java
package oracle.wireless.xmldevguide;

import java.io.StringReader;
import java.io.StringWriter;
import java.io.Serializable;
import java.io.IOException;

import java.util.ArrayList;

/**
* The bean breaks a text content into mutiple deck of a defined size. Content
* deck do not include any formatting information of the content which should
* be provided by the content view.
*
* @author Chandra Patni
* @version 1.0
*/
public class PageNavigation implements Serializable {

/**
* To keep the location of a page
*/
private class Page {

/**
* starting index of the page, inclusive of start
*/
public int start;
/**
* end index of the page, exclusive
*/
public int end;
/**
* returns the length of the page
*/
public int length() {

Device Headers and Device Class

6-8 Oracle9iAS Wireless Developer’s Guide

return end - start;
}

/**
* retruns the content of the page
*/
public String toString() {

return content.substring(start, end);
}

}

/**
* Default size of a deck in characters. The actual deck size will be

adjusted
* so that a word is not split. However, an orphan, end of paragraph etc
* conditions are not checked for.
*/

public static final int DECK_SIZE = 900;

/**
* size of a deck. default value is 900 chars
*/

private int deckSize = DECK_SIZE;

/**
* Sets the size of one deck. Should be called before setContent()
*/

public void setDeckSize(int value) {
deckSize = value;

}

/**
* Returns the size of one deck.
*/

public int getDeckSize() {
return deckSize;

}

/**
* Conent to be decked
*/

private String content;

/**
* Pages in the content

Device Headers and Device Class

Advanced User Interactions and Channel Optimization 6-9

*/
private Page pages[];

/**
* The total number of pages by the content
*/

private int totalPages;

/**
* Default constructor
*/

public PageNavigation() {
}

/**
* Default constructor
*/

public PageNavigation(String content) {
setContent(content);

}

/**
* get the page content at the given index
*/

public String getPage(int index) {
return pages[index].toString();

}

/**
* Returns the total number of pages
*/

public int getAvailablePages() {
if(pages == null) return 0;
return pages.length;

}

/**
* initializes the bean
*/

private void init() {
// get the rough estimate of pages
totalPages = content.length() / deckSize + 1;
// initialize the array
int lastIndex = 0;
ArrayList list = new ArrayList(totalPages);

Device Headers and Device Class

6-10 Oracle9iAS Wireless Developer’s Guide

Page p = null;
while((p = getNextPage(lastIndex)) != null) {

list.add(p);
lastIndex = p.end;

}
pages = (Page []) list.toArray(new Page[list.size()]);

}

private Page getNextPage(int lastIndex) {
if(lastIndex >= content.length()) return null;
char c = content.charAt(lastIndex);
while(Character. isWhitespace(c)) {

if(++lastIndex >= content.length()) return null;
c = content.charAt(lastIndex);

}
Page p = new Page();
p.start = lastIndex;
// again look for whitespaces while trimming the content.
p.end = p.start + deckSize;
if(p.end >= content.length()) {

p.end = content.length();
return p;

}
// if not then we need to figure out the previous white space
do {

c = content.charAt(p.end);
if(Character. isWhitespace(c)) {

return p;
}
p.end--;
if(p.end == 0) {

p.end = p.start + deckSize;
return p;

}
}while(true);

}

/**
* sets the content to the specified value. default MIME type is text/plain
*/

public void setContent(String s) {
content = s;
init();

}
}

Mobile Modules 7-1

7
Mobile Modules

Each section of this document presents a different topic. These sections include:

■ Section 7.1, "Introduction"

■ Section 7.2, "Wireless XML Attributes for Mobile Modules"

■ Section 7.3, "Shipped Mobile Modules"

■ Section 7.4, "Using Shipped Mobile Modules"

■ Section 7.5, "Developing Custom Mobile Modules"

7.1 Introduction
Mobile Modules are wireless services with well-known virtual URL (OMP URL, i.e.
omp://my.module). Mobile Modules provide an analogous mechanism to data
abstraction and interfaces. They allow a component-based programming model for
building mobile applications within the Oracle9iAS Wireless framework.
Component-based programming provides rapid application development, reusable
components and easy-to-maintain code which are essential to timely, successful
deployment of web applications.

Mobile Modules can be called from any application or module and may be
instructed to return control to another application or module. Calls may be nested
to any level. This mechanism of bi-directional linking allows quick applications
assembly.

Important difference between a module and a regular service is that the module
receives information about the service it needs to return to after it is done. This is
not always the caller of the module (the module caller may want the module to
return to a different service).

Wireless XML Attributes for Mobile Modules

7-2 Oracle9iAS Wireless Developer’s Guide

An example of an application that leverages Mobile Modules could be a store
locator application for a retail company. A developer writing this application could
improve the interface by linking to the Location Mobile Module, which enables a
user to store frequently accessed locations as landmarks. The application would
then offer to find the nearest store based on one of those locations, saving the user
the time and effort of entering an address. The next logical step would be to link to
the Driving Directions Mobile Module, so that a customer could easily get
directions to the store they have selected. This would enable the user to get
directions without typing in any additional information, since both the starting
location and the destination address (store) would intelligently populate the
corresponding fields in the application.

7.2 Wireless XML Attributes for Mobile Modules
The target attribute of SimpleMenuItem, SimpleAction, SimpleHref, and SimpleForm
may be used for linking to a Mobile Module. The value of the target attribute starts
with omp:// for accessing modules.

These are the XML attributes that are used for linking to Mobile Modules:

■ target - is the only mandatory attribute. Its value is the virtual (omp://) URL
for the Mobile Module.
For example:

<SimpleMenuItem target="omp://oracle.com/module"
callbackurl="%value service.home.url%">Call My Mobile
Module</SimpleMenuItem>

■ secure - an optional attribute. The value is either "true" or "false". This attribute
is used to switch between HTTP (secure="false") and HTTPS (secure="true")
protocol for the connection between the end user device and Oracle9iAS
Wireless server when calling the module. If you do not set this attribute then
the current protocol will be used.
For example:

Note: The value of the omp:// URL is not important. There are
only two important things that you need to keep in mind:

The value must start with omp://

The value must be unique (just like an http:// URL)

Shipped Mobile Modules

Mobile Modules 7-3

<SimpleMenuItem target="omp://oracle.com/module"
callbackurl="%value service.home.url%" secure="false">Call
My Mobile Module</SimpleMenuItem>

■ callbackurl - This is the URL of the service where the mobile module should
return after it is done. The default value is the current caller service. You can use
Mobile Context (see Chapter 8, "XML Tag Glossary") to specify values for the
attribute.
For example:

<SimpleMenuItem target="omp://oracle.com/module"
callbackurl="%value service.home.url%"> Call My Mobile
Module</SimpleMenuItem>

■ callbacksecure - an optional attribute. The value is either "true" or "false". This
attribute is used to switch between HTTP (callbacksecure="false") and HTTPS
(callbacksecure="true") protocol for the connection between the end user device
and Oracle9iAS Wireless server when the module calls back.
For example:

<SimpleMenuItem target="omp://oracle.com/module"
secure="true" callbackurl="%value service.home.url%"
callbacksecure=”false”> Call My Mobile
Module</SimpleMenuItem>

■ callbackparam - an optional attribute that sets parameters to be passed to the
caller after the module is done.
For example:

<SimpleMenuItem target="omp://hostname/module"
callbackurl="%value service.home.url%"
callbackparam="foo=bar&test=TEST&a=z ">My Mobile
Module</SimpleMenuItem>

7.3 Shipped Mobile Modules
Oracle9iAS Wireless contains a set of 17 ready-to-use modules subdivided in the
following areas: mobile commerce, PIM and location-based services. Application
developers may reuse these modules as the jumpstart of their wireless development
work, or develop their own modules, by following the instructions in this
document. For a complete reference on the shipped Mobile Modules, see
Chapter 18, "Mobile PIM and eMail" and Chapter 19, "m-Commerce"

Using Shipped Mobile Modules

7-4 Oracle9iAS Wireless Developer’s Guide

7.4 Using Shipped Mobile Modules

7.4.1 Commerce Services
To use the Payment Module in order to make an credit card payment of US$ 90.00
you will use:

<SimpleMenuItem
target="omp://oracle/services/commerce/payment?AMOUNT=90&merch
antid=bookshop&MODE=ONLINE&TYPE=AUTH&INSTRTYPE=CC"
callbackurl="%value service.home.url%">Pay
amount</SimpleMenuItem>

The payment module will take the action after the user chooses this menu, and will
present a flow of cards that will lead to the payment itself. In the end the Payment
Module will return the transaction id in the HTTP request.

7.4.2 PIM Services
To use the Mail Module you will need to inform the action and the email to whom
you want to sent the message:

<SimpleMenuItem
target="omp://oracle/services/pim/mail?action=messageto&mailto
=jsmith@company.com" callbackurl="%value
service.home.url%">Send eMail</SimpleMenuItem>

7.4.3 Location Services
To use the Maps Module you will need to inform the address you want to map:

<SimpleMenuItem
target="omp://oracle/services/location/maps?FL=500 Oracle
Parkway&CI=Redwood Shores&ST=CA" callbackurl="%value
service.home.url%">Map Oracle</SimpleMenuItem>

Note: These are just small examples on how to call the shipped
Mobile Modules. For a more complete reference of the Modules
OMP URLs, input and output values please see Chapter 18, "Mobile
PIM and eMail" and Chapter 19, "m-Commerce".

Developing Custom Mobile Modules

Mobile Modules 7-5

7.5 Developing Custom Mobile Modules
Developing Mobile Modules is not very different than developing your own
services. For more details about how to develop service see Chapter 15, "Using
Location Services", Chapter 18, "Mobile PIM and eMail", and Chapter 19,
"m-Commerce". In our examples we are going to use the HttpAdapter. The mobile
modules will use simple JSP pages.

7.5.1 “Hello World” Mobile Module
Our first mobile module does not do much. It will just display “Hello World” on the
end user device and a link to go back to the module caller service.

7.5.1.1 Create and publish the JSP pages for the module and the caller services
Here is the JSP code for the module:

<?xml version = "1.0" encoding = "UTF-8" standalone="yes" ?>
<!DOCTYPE SimpleResult PUBLIC "-//ORACLE//DTD SimpleResult 1.1.0//EN"
"http://xmlns.oracle.com/ias/dtds/SimpleResult_1_1_0.dtd">
<%@ page contentType="text/vnd.oracle.mobilexml; charset=UTF-8" %>
<%@ page language="java" %>
<%@ page session="false" %>
<SimpleResult>
<SimpleContainer>
<SimpleMenu>
<SimpleTitle>Hello World</SimpleTitle>
<SimpleMenuItem target="%value module.callback.url%">Go Back To The

Caller</SimpleMenuItem>
</SimpleMenu>

</SimpleContainer>
</SimpleResult>

Please save this code in HelloWorldModule.jsp and publish it at let say
http://localhost/jsp/HelloWorldModule.jsp.

And the JSP code for the caller service:

<?xml version = "1.0" encoding = "UTF-8" standalone="yes" ?>
<!DOCTYPE SimpleResult PUBLIC "-//ORACLE//DTD SimpleResult 1.1.0//EN"
"http://xmlns.oracle.com/ias/dtds/SimpleResult_1_1_0.dtd">
<%@ page contentType="text/vnd.oracle.mobilexml; charset=UTF-8" %>
<%@ page language="java" %>
<%@ page session="false" %>
<SimpleResult>

Developing Custom Mobile Modules

7-6 Oracle9iAS Wireless Developer’s Guide

<SimpleContainer>
<SimpleMenu>
<SimpleTitle>Hello World Caller</SimpleTitle>
<SimpleMenuItem target="omp://HelloWorld" callbackurl="%value

service.home.url%">Call Hello World Module</SimpleMenuItem>
</SimpleMenu>

</SimpleContainer>
</SimpleResult>

Please save this code in HelloWorldCaller.jsp and publish it at (for instance):
http://localhost/jsp/HelloWorldCaller.jsp

7.5.1.2 Create HelloWorldModuleMS and HelloWorldCallerMS MasterServices
After we publish the JSP pages we need to create two HttpAdapter based
MasterServices. Use the Service Designer web tool to do that. See Oracle9iAS
Wireless Getting Started and System Guide for more details about creating
MasterServices

.

7.5.1.3 Create the caller and the module services
After you are done with the MasterServices you need create two services:
HelloWorldModule and HelloWorldCaller. Use the Content Manager web tool to do
that. See Oracle9iAS Getting Started and System Guide for more details about creating
MasterServices.

That is it. Now you can test the two services from your device.

IMPORTANT: Please mark the HelloWorldModuleMS
MasterService as “Modulable”.

IMPORTANT: The type of the HelloWorldCaller service should be
“Normal Service”. The type of the HelloWorldModule service
should be “Module”. Set the OMP URL for the HelloWorldModule
service to omp://HelloWorld.

Before you can test the newly created services you need to assign
them to a Group so the users in that group can invoke those
services.

Developing Custom Mobile Modules

Mobile Modules 7-7

7.5.2 Sending Parameters to a Mobile Module
The Mobile Modules that you want to develop will most likely take some input
from its caller and then return something back after there are done. Below are the
JSP pages that show how a caller service can send an input parameter to a module.
Publishing those two JSP pages on Oracle9iAS Wireless is the same as publishing
the previous JSP pages.

Here is the code for the HelloNameModule.jsp

<?xml version = "1.0" encoding = "ISO-8859-1" standalone="yes" ?>
<!DOCTYPE SimpleResult PUBLIC "-//ORACLE//DTD SimpleResult 1.1.0//EN"
"http://xmlns.oracle.com/ias/dtds/SimpleResult_1_1_0.dtd">
<%@ page contentType="text/vnd.oracle.mobilexml; charset=ISO-8859-1" %>
<%@ page language="java" %>
<%@ page session="false" %>
<%

String uname = request.getParameter("uname");
%>
<SimpleResult>

<SimpleContainer>
<SimpleMenu>
<SimpleTitle>Hello Module Says Hello <%=uname%></SimpleTitle>
<SimpleMenuItem target="%value module.callback.url%">Go Back To The

Caller</SimpleMenuItem>
</SimpleMenu>
</SimpleContainer>

</SimpleResult>
And the JSP code for the HelloNameCaller.jsp:
<?xml version = "1.0" encoding = "ISO-8859-1" standalone="yes" ?>
<!DOCTYPE SimpleResult PUBLIC "-//ORACLE//DTD SimpleResult 1.1.0//EN"
"http://xmlns.oracle.com/ias/dtds/SimpleResult_1_1_0.dtd">
<%@ page contentType="text/vnd.oracle.mobilexml; charset=ISO-8859-1" %>
<%@ page language="java" %>
<%@ page session="false" %>
<SimpleResult>

<SimpleContainer>
<SimpleForm target="omp://HelloName">

<SimpleTitle>Please Enter User Name</SimpleTitle>
<SimpleFormItem name="uname" />

</SimpleForm>
</SimpleContainer>

</SimpleResult>

Developing Custom Mobile Modules

7-8 Oracle9iAS Wireless Developer’s Guide

That is it. Now you can test the two services from your device.

IMPORTANT: When you create the Oracle9iAS Wireless
MasterService and service objects remember to:

mark the HelloNameModuleMS MasterService as “Modulable”

set the type of HelloNameCaller service to be “Normal Service” and
the type of the HelloNameModule service to “Module”

Set the OMP URL for the HelloWorldModule service to
omp://HelloName

Note: Before you can test the newly created services you need to
assign them to a Group so the users in that group can invoke those
services.

XML Tag Glossary 8-1

8
XML Tag Glossary

This document present the following topic:

■ Section 8.1, "XML Tags"

■ Section 8.2, "Using Mobile Context Information in XML"

■ Section 8.3, "Using Mobile Context Information from HTTP Headers"

The XML DTD defines the abstract device markup language used in the
OracleMobile Online Studio application framework. The goal of the definitions is to
be a superset of the markup languages for a variety of devices. Elements in the DTD
represent elements of an abstract user interface which translate to device-specific
formats. The following is a list of tag elements in the XML DTD. See Oracle
Technology Network for more details, and to view the tag element tree. The XML is
derived from the DTD of Oracle9iAS Wireless with hosting extensions added. Note
that the tag names are case-sensitive as below.

XML Tags

8-2 Oracle9iAS Wireless Developer’s Guide

8.1 XML Tags
SimpleAction

This tag provides the ability to define a link or submit action that navigates the user
to a new context. Mobile devices can associate a submit action to a number of input
methods (of the device), like pressing a Key on wap devices or saying a command
on voice enabled devices. Action can have SimpleTextItem as child, this is used for
rendering of Action tag in voice.

Table 8–1 SimpleAction Tag

Name Description Value(s) Default Value

name Name identifier for the element instance. CDATA OPTIONAL

callbackurl ASW Module Support. Indicates the URL to
return back if the current action leads the user
into a different application (application
implementing Wireless Module functionary).

CDATA OPTIONAL

callbackparam ASW Module Support. Indicates the return
parameters of the callbackurl. When Module
returns the context back to the callee
application, the callbackparam is passed back
for the callee to construct its application state.

CDATA OPTIONAL

callbacksecure Indicates the mode of communication, when
callback occurs, between Wireless server and
the device. Setting callbacksecure="true" will
enable a secure connect mode between
Wireless and the device when the module
performs a callback (to the callbackurl). If not
specified, the connect mode will be based on
the current request mode.

(true | false) OPTIONAL

target URI to navigate to when action is activated.
This URL is always rewritten by the Server to
point back to Wireless Server, except when
mimetype attribute not
"text/vnd.oracle.mobilexml". Also supports
"callto:" for Phone call and "mailto:" for email
support.

CDATA OPTIONAL

mimetype mime-type of target URI. Lets the Wireless
server know the target resources mime-type. If
the target mime-type is not
text/vnd.oracle.mobilexml, the Wireless
server will not rewrite the URL.

CDATA ext/vnd.oracle.mo
bilexml

OPTIONAL

XML Tags

XML Tag Glossary 8-3

static_target URI to navigate to when action is activated.
This URL is never rewritten by server. If
exists, this will override the "target" attribute.
Also supports "callto:" for Phone call and
"mailto:" for email support.

CDATA OPTIONAL

secure Indicates the mode of communication
between Wireless server and the device.
Setting secure="true" will enable a secure
connect mode between Wireless and the
device for the specified target. If not specified,
the connect mode will be based on the current
request mode. This DOES NOT indicate mode
of connection between Wireless and the
remote content source (the service), Wireless
will connect to the remote service based on the
protocol specified in the target attribute

 ("http" vs. "https")

(true | false) OPTIONAL

fetchaudio Voice only attribute. The URI of an audio clip
to play while the "target" is being fetched.

CDATA OPTIONAL

type Defines the type of Binding in the target
device. Can take any string value. Continue,
primary, secondary are special types.
"primary" and "secondary" map to the
primary and secondary keys resp. Continue is
a special Primary key, tells the Voice service to
continue without waiting for the user. If both
continue and primary are defined both of
them will map to the primary key. The
following type will also be support by the
transformers for backward compatibility
"accept"|"soft1"|"option1"|"option2".

(continue |
primary |
secondary)

REQUIRED

deviceclass This tag is interpreted only for the specified
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). Values can be any
combination of following "pdabrowser",
"pcbrowser", "voice", "microbrowser",
"micromessenger", "messenger". If not
specified, the tag is interpreted for all devices.

CDATA OPTIONAL

icon Built-in icon name for HDML/WML. Will be
used if specified.

CDATA OPTIONAL

Table 8–1 SimpleAction Tag

Name Description Value(s) Default Value

SimpleAction

8-4 Oracle9iAS Wireless Developer’s Guide

Usage
SimpleAction, for a given type, conforms to scopings rule (like the programming
languages do).

src The URL to an image. Image from will be
displayed. (In SimpleAction/Href this images
needs to be used instead of the label.

CDATA OPTIONAL

addImageExtension Allows the server to use the right image
format from a list of available formats. Based
on the available images from the app
(specified by the "available" attribute) and
based on the device browser capability the
server will pick the right image to be used. For
example: If image is "oracle" and available is
set to "jpg gif wbmp", server will use
"oracle.wbmp" in WML (Phone.com) browser,
"oracle.gif" for a HTML browser.

(true | false) true

OPTIONAL

available Application can specify a list of available
image formats, for example: available = "jpg
gif g2.gif wbmp bmp" (g2.gif indicates a
grayscale depth 2 image, for devices like
Palm). This allows the server to use the correct
image format supported by device (based on
device browser properties).

CDATA OPTIONAL

label Label for action button, displayed when action
is bound to a button on a visual device

CDATA OPTIONAL

dtmf digit to be pressed on phone or DTMF tone.
dtmf attribute just takes one value (a
simplified form of voice SimpleDTMF tag).
Will work on wap devices, if supported by the
device.

CDATA OPTIONAL

deviceclass This tag is interpreted only for the specified
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). Values can be any
combination of following "pdabrowser",
"pcbrowser", "voice", "microbrowser",
"micromessenger", "messenger". If not
specified, the tag is interpreted for all devices.

CDATA OPTIONAL

Table 8–1 SimpleAction Tag

Name Description Value(s) Default Value

XML Tags

XML Tag Glossary 8-5

If SimpleAction is defined as a child of SimpleMenu and also as an child of the
enclosing SimpleContainer for a given "type" of SimpleAction, the SimpleAction tag
within the Menu overrides the SimpleAction of the SimpleContainer. (Note: If the
value for "type" attribute is different then the two SimpleAction's will active within
the context. Also if two SimpleActions are defined with same "type" value within
same context, then the action is undefined).

The "type" attribute can be used to define device specific actions, along with the
deviceclass attribute.

Related Tags

Table 8–2 SimpleAction Related Tags

Parents Children

SimpleText SimpleCache

SimpleForm SimpleTextItem

SimpleFormItem SimpleGrammar

SimpleFormSelect SimpleDTMF

SimpleContainer

SimpleResult

SimpleMenu

SimpleAudio

8-6 Oracle9iAS Wireless Developer’s Guide

SimpleAudio

Plays an audio file on voice devices.

Related Tags

Table 8–3 SimpleAudio Tag

Name Description Value(s) Default Value

src The URL to an audio source file. Used in to
play audio (Voice).

CDATA OPTIONAL

deviceclass This tag is interpreted only for the specified
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). This tag is applicable
for Voice devices only. Will not be supported
on other devices even if specified.

CDATA OPTIONAL

Table 8–4 SimpleAudio Related Tags

Parents Children

SimpleTextItem [PCDATA]

SimpleSpan SimpleCache

SimpleUnderline SimpleBreak

SimpleImage SimpleEm

SimpleHref SimpleStrong

SimpleStrong SimpleSpan

SimpleEm SimpleUnderline

SimpleAudio SimpleAudio

SimpleSpeech SimpleSpeech

SimpleTitle SimpleImage

SimpleValue

XML Tags

XML Tag Glossary 8-7

SimpleBind

Bind is an extended action tag that can be invoked by multiple events and perform
multiple tasks. A task/action can be triggered by events like by device keys (touch
tone), by voice commands or by selecting a MenuItem. The action in turn may
comprise of set of tasks to perform on match of the event. For e.g. Submit a form
can happen when user clicks submit button, or when the user presses a key on the
device or just says "submit" on the voice devices. SimpleBind tag defines all these
events that needs to matched. SimpleBind tag also defines to set of actions that are
mapped to event matches (SimpleMatch). The action can include displaying a flash
screen to inform the user of the submit action and then actually submitting the form
(2 actions for one set of events). SimpleBind also encloses the SimpleDisplay tag.
SimpleDisplay tag is the rendering component of the SimpleBind, Indicates how the
Bind action is rendered on the device. This rendering is used to render binding of
type menu item and actions. For example: SimpleDisplay can include a
SimpleTextItem saying "press or say 1 to submit".

Related Tags

Table 8–5 SimpleBind Tag

Name Description Value(s) Default Value

deviceclass This tag is interpreted only for the specified
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). Values can be any
combination of following "pdabrowser",
"pcbrowser", "voice", "microbrowser",
"micromessenger", "messenger". If not
specified, the tag is interpreted for all devices.

CDATA OPTIONAL

Table 8–6 SimpleBind Related Tags

Parents Children

SimpleText SimpleMatch

SimpleForm SimpleTask

SimpleFormItem SimpleDisplay

SimpleFormSelect

SimpleContainer

SimpleBind

8-8 Oracle9iAS Wireless Developer’s Guide

SimpleResult

SimpleMenu

Table 8–6 SimpleBind Related Tags

Parents Children

XML Tags

XML Tag Glossary 8-9

SimpleBreak

Creates a break, new line on text devices and pause on voice devices.

Related Tags

Table 8–7 SimpleBreak Tag

Name Description Value(s) Default Value

msecs milliseconds in duration of the break for voice
devices.

xsd:nonNegativeIn
teger

OPTIONAL

rule Generate an HR with this break (HTML) (true | false) false

OPTIONAL

size size of the break (VoiceXML) (none | small |
medium | large)

medium

OPTIONAL

deviceclass This tag is interpreted only for the specified
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). Values can be any
combination of following "pdabrowser",
"pcbrowser", "voice", "microbrowser",
"micromessenger", "messenger". If not
specified, the tag is interpreted for all devices.

CDATA OPTIONAL

Table 8–8 SimpleBreak Related Tags

Parents Children

SimpleTextItem none

SimpleSpan

SimpleUnderline

SimpleImage

SimpleHref

SimpleStrong

SimpleEm

SimpleAudio

SimpleBreak

8-10 Oracle9iAS Wireless Developer’s Guide

SimpleSpeech

SimpleTitle

SimpleHelp

Table 8–8 SimpleBreak Related Tags

Parents Children

XML Tags

XML Tag Glossary 8-11

SimpleCache

An URL can be cache on the gateway (like WAP gateway), client or both of them.
Also used when a URL needs to be prefetched while still showing the current
content (only supported devices in certain devices). SimpleCache defines all these
policies.

Related Tags

Table 8–9 SimpleCache Tag

Name Description Value(s) Default Value

timeout Time, in milliseconds, to wait while fetching a
resource before failing.

xsd:nonNegativeIn
teger

OPTIONAL

policy Cache on gateway, client, both or none. Value
of "public" indicates cache can on the Gateway
(like the WAP), "private" indicates client only
cache.

public | private |
both | none)

private

OPTIONAL

prefetch prefetch policy. Certain devices can prefetch a
"target" resources, before the user requests for
the resources. The attribute controls the policy
of such a prefetch-able resource.

(onload | safe |
streamed)

safe

OPTIONAL

ttl Time to live for cached data in milliseconds xsd:nonNegativeIn
teger

OPTIONAL

deviceclass This tag is interpreted only for the specified
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). Values can be any
combination of following "pdabrowser",
"pcbrowser", "voice", "microbrowser",
"micromessenger", "messenger". If not
specified, the tag is interpreted for all devices.

CDATA OPTIONAL

Table 8–10 SimpleCache Related Tags

Parents Children

SimpleImage none

SimpleHref

SimpleAction

SimpleCache

8-12 Oracle9iAS Wireless Developer’s Guide

SimpleAudio

SimpleGrammar

SimpleDTMF

SimpleGo

SimpleMenuItem

SimpleResult

Table 8–10 SimpleCache Related Tags

Parents Children

XML Tags

XML Tag Glossary 8-13

SimpleCase

Tag to write case statements within a SimpleSwitch tag. This allows the developer
to perform client side "actions" on devices. Support for Switch/Case is not
universal. Is Supported only in Wap (HDML/WML) and Voice (VoiceXML) devices.

Related Tags

Table 8–11 SimpleCase Tag

Name Description Value(s) Default Value

value The value of for the Case statement (to be
compared with the value of form field,
identified by the name attribute of
SwitchCase)

CDATA REQUIRED

deviceclass This tag is interpreted only for the specified
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). Values can be any
combination of following "pdabrowser",
"pcbrowser", "voice", "microbrowser",
"micromessenger", "messenger". If not
specified, the tag is interpreted for all devices.

CDATA OPTIONAL

Table 8–12 SimpleCase Related Tags

Parents Children

SimpleSwitch SimpleGo

SimpleTextItem

SimpleRefresh

SimpleClear

SimpleReprompt

SimpleExit

SimpleDisconnect

SimplePrev

SimpleSubmit

SimpleCatch

8-14 Oracle9iAS Wireless Developer’s Guide

SimpleCatch

Catches an event. Voice only tag. This can be used to capture predefined voice
events like "noinput" "exit" etc. and perform actions on it. For example: on "noinput"
(formitem) event the user can be given some help instructions and be reprompted
for the input. Events include errors generated (Errors are also an instance of event)

Related Tags

Table 8–13 SimpleCatch Tag

Name Description Value(s) Default Value

count The occurrence of the event (default is 1). The
count allows you to handle different
occurrences of the same event differently For
example:. Need to give extra help messages if
the user says "help" twice for the same form
item. The form/formitem/menu etc. (where
ever SimpleCatch can occur) maintain a
counter for each event that occurs while it is
being visited, these counters are reset each
time the form is re-entered.

Positive Int 1

OPTIONAL

type Predefined Voice events. Possible values
include cancel, error, exit, help, noinput,
nomatch, telephone.disconnect.

CDATA REQUIRED

deviceclass This tag is interpreted only for the specified
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). Values can be any
combination of following "pdabrowser",
"pcbrowser", "voice", "microbrowser",
"micromessenger", "messenger". If not
specified, the tag is interpreted for all devices.

CDATA OPTIONAL

Table 8–14 SimpleCatch Related Tags

Parents Children

SimpleText [PCDATA]

SimpleForm SimpleGo

SimpleFormItem SimpleTextItem

SimpleFormSelect SimpleRefresh

XML Tags

XML Tag Glossary 8-15

SimpleResult SimpleClear

SimpleMenu SimpleReprompt

SimpleExit

SimpleDisconnect

SimplePrev

SimpleSubmit

Table 8–14 SimpleCatch Related Tags

Parents Children

SimpleClear

8-16 Oracle9iAS Wireless Developer’s Guide

SimpleClear

Clears a list of client side form fields identified by the Name list (SimpleName).
Works on WML/Voice (Voice) device only. Useful in voice applications e.g. Clearing
a form field in voice will allow the Voice engine to reprompt the User for the form
field again.

Related Tags

Table 8–15 SimpleClear Tag

Name Description Value(s) Default Value

deviceclass This tag is interpreted only for the specified
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). Values can be any
combination of following "pdabrowser",
"pcbrowser", "voice", "microbrowser",
"micromessenger", "messenger". If not
specified, the tag is interpreted for all devices.

CDATA OPTIONAL

Table 8–16 SimpleClear Related Tags

Parents Children

SimpleCatch SimpleName

SimpleCase

SimpleTask

XML Tags

XML Tag Glossary 8-17

SimpleCol

Defines a column of a table.

Related Tags

Table 8–17 SimpleCol Tag

Name Description Value(s) Default Value

bgcolor background color CDATA OPTIONAL

rowspan from HTML table spec CDATA OPTIONAL

colspan from HTML table spec CDATA OPTIONAL

bordercolor from HTML table spec CDATA OPTIONAL

height cell height CDATA OPTIONAL

width cell width CDATA OPTIONAL

deviceclass This tag is interpreted only for the specified
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). Values can be any
combination of following "pdabrowser",
"pcbrowser", "voice", "microbrowser",
"micromessenger", "messenger". If not
specified, the tag is interpreted for all devices.

CDATA OPTIONAL

valign vertical alignment (top | middle |
bottom)

top

OPTIONAL

halign horizontal alignment (left | center |
right)

left

OPTIONAL

wrapmode text wrap mode (wrap | nowrap) wrap

OPTIONAL

Table 8–18 SimpleCol Related Tags

Parents Children

SimpleTableHeader SimpleTextItem

SimpleCol

8-18 Oracle9iAS Wireless Developer’s Guide

SimpleRow

Table 8–18 SimpleCol Related Tags

Parents Children

XML Tags

XML Tag Glossary 8-19

SimpleContainer

The root element that contains all major block constructs like form, menu and Text.

Related Tags

Table 8–19 SimpleContainer Tag

Name Description Value(s) Default Value

deviceclass This tag is interpreted only for the specified
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). Values can be any
combination of following "pdabrowser",
"pcbrowser", "voice", "microbrowser",
"micromessenger", "messenger". If not
specified, the tag is interpreted for all devices.

CDATA OPTIONAL

id ID attribute of the element. Used for
Navigation within a XML response
(target="#ID")

xsd:ID OPTIONAL

Table 8–20 SimpleContainer Related Tags

Parents Children

SimpleResult SimpleText

SimpleMenu

SimpleForm

SimpleTable

SimpleAction

SimpleBind

SimpleDisconnect

8-20 Oracle9iAS Wireless Developer’s Guide

SimpleDisconnect

Disconnect's a connection oriented device like the Voice browser.

Related Tags

Table 8–21 SimpleDisconnect Tag

Name Description Value(s) Default Value

deviceclass This tag is interpreted only for the specified
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). Values can be any
combination of following "pdabrowser",
"pcbrowser", "voice", "microbrowser",
"micromessenger", "messenger". If not
specified, the tag is interpreted for all devices.

CDATA OPTIONAL

Table 8–22 SimpleDisconnect Related Tags

Parents Children

SimpleCatch none

SimpleCase

SimpleTask

XML Tags

XML Tag Glossary 8-21

SimpleDisplay

Supports all rendering characteristics of an SimpleBind (using SImpleTextItem).
SimpleTextItem, a child SimpleDisplay, contains the actual render/display content.
Useful in two cases i) Allows provides an audio (child of textitem), ii) Render the
text for a MenuItem, when Bind is displayed a MenuItem (A Bind can be displayed
as MenuItem if the SimpleMatch contains the SimpleMItem element and the
SimpleBind occurs as child of SimpleMenu).

Usage
SimpleDisplay as the rendering container of SimpleBind.
<SimpleBind>
</SimpleMatch>
<SimpleTask>
</SimpleTask>
<SimpleDisplay>
<SimpleTextItem deviceclass=".."><SimpleAudio .../></SimpleTextItem>
<SimpleTextItem deviceclass="..">Hello welcome</SimpleTextItem>
</SimpleDisplay>

Related Tags

Table 8–23 SimpleDisplay Tag

Name Description Value(s) Default Value

deviceclass This tag is interpreted only for the specified
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). Values can be any
combination of following "pdabrowser",
"pcbrowser", "voice", "microbrowser",
"micromessenger", "messenger". If not
specified, the tag is interpreted for all devices.

CDATA OPTIONAL

Table 8–24 SimpleDisplay Related Tags

Parents Children

SimpleBind SimpleTextItem

SimpleDTMF

8-22 Oracle9iAS Wireless Developer’s Guide

SimpleDTMF

Specify a VoiceXML DTMF grammar. DTMF grammar can be used to indicate a
syntax like 1 {San Francisco} | 2 {Wash. DC} | 3 {New York} etc. If the syntax
information stored in a remote server, the "src" attribute can be used to specify the
URI of the DTMF syntax resource/file.

Related Tags

Table 8–25 SimpleDTMF Tag

Name Description Value(s) Default Value

src URI to the resource file where the
DTMF's/Grammars are stored

CDATA OPTIONAL

type The MIME type of the grammar. Represents
the Grammar Format (applicable to both the
remote URI Grammar file or inline Grammar
text). There are different ways of representing
a Grammar/DTMF format. Example:
"application/x-jsgf",

CDATA OPTIONAL

scope VoiceXML scope. Can take
"document"/"dialog" possible values. Default
scope of grammar in
Form/Menu/Text/Grammar/DTMF. If the
scope is set to "document", then the grammar
is active in the entire document. This allows
for e.g. the user to submit a "Form" (in the
SimpleResult) from inside a "SimpleMenu".

(document |
dialog)

dialog

OPTIONAL

deviceclass This tag is interpreted only for the specified
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). This tag is applicable
for Voice devices only. Will not be supported
on other devices even if specified.

CDATA OPTIONAL

Table 8–26 SimpleDTMF Related Tags

Parents Children

SimpleHref [PCDATA]

SimpleAction SimpleCache

SimpleForm

XML Tags

XML Tag Glossary 8-23

SimpleFormItem

SimpleFormSelect

SimpleMatch

Table 8–26 SimpleDTMF Related Tags

Parents Children

SimpleEm

8-24 Oracle9iAS Wireless Developer’s Guide

SimpleEm

Displays the enclosed text(audio) with emphasis. Text enclosed usually displayed as
italicized text.

Related Tags

Table 8–27 SimpleEm Tag

Name Description Value(s) Default Value

level Voice only attribute. Indicates Level of
emphasis.

(strong | moderate
| none | reduced)

moderate

OPTIONAL

deviceclass This tag is interpreted only for the specified
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). Values can be any
combination of following "pdabrowser",
"pcbrowser", "voice", "microbrowser",
"micromessenger", "messenger". If not
specified, the tag is interpreted for all devices.

CDATA OPTIONAL

Table 8–28 SimpleEm Related Tags

Parents Children

SimpleTextItem [PCDATA]

SimpleSpan SimpleBreak

SimpleUnderline SimpleEm

SimpleImage SimpleStrong

SimpleHref SimpleSpan

SimpleStrong SimpleUnderline

SimpleEm SimpleAudio

SimpleAudio SimpleSpeech

SimpleSpeech SimpleImage

SimpleTitle SimpleValue

SimpleHelp

XML Tags

XML Tag Glossary 8-25

SimpleExit

Perform a application exit

Related Tags

Table 8–29 SimpleExit Tag

Name Description Value(s) Default Value

deviceclass This tag is interpreted only for the specified
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). Values can be any
combination of following "pdabrowser",
"pcbrowser", "voice", "microbrowser",
"micromessenger", "messenger". If not
specified, the tag is interpreted for all devices.

CDATA OPTIONAL

Table 8–30 SimpleExit Related Tags

Parents Children

SimpleCatch none

SimpleCase

SimpleTask

SimpleFinish

8-26 Oracle9iAS Wireless Developer’s Guide

SimpleFinish

SimpleFinish indicates the Finish event. This is a tag is supported only in Voice.
This can be any event that completes an user task. For example, reaching the end of
the form field input on Voice devices.

Related Tags

Table 8–31 SimpleFinish Tag

Name Description Value(s) Default Value

deviceclass This tag is interpreted only for the specified
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). Values can be any
combination of following "pdabrowser",
"pcbrowser", "voice", "microbrowser",
"micromessenger", "messenger". If not
specified, the tag is interpreted for all devices.

CDATA OPTIONAL

Table 8–32 SimpleFinish Related Tags

Parents Children

SimpleMatch none

XML Tags

XML Tag Glossary 8-27

SimpleForm

This element is used for displaying one or more input fields. The fields are
presented using the SimpleFormItem and SimpleFormSelect elements. Form has
SimpleTitle as child, if specified will appear as the Title of the form.

Table 8–33 SimpleForm Tag

Name Description Value(s) Default Value

layout Control Layout of a form in small screen
devices. Indicates if the form input fields
should be displayed in a sequence of fields
(cards) and should there be an enclosing page
with all input field listed, allowing the user to
select the field in an arbitrary fashion.

(linear | tabular) linear

OPTIONAL

scope VoiceXML scope. Can take
"document"/"dialog" possible values. Default
scope of grammar in
Form/Menu/Text/Grammar/DTMF. If the
scope is set to "document", then the grammar
is active in the entire document. This allows
for e.g. the user to submit a "Form" (in the
SimpleResult) from inside a "SimpleMenu".

(document |
dialog)

dialog

OPTIONAL

callbackurl Wireless Module Support. Indicates the URL
to return back if the current action leads the
user into a different application (application
implementing Wireless Module functionality).

CDATA OPTIONAL

callbackparam Wireless Module Support. Indicates the return
parameters of the callbackurl. When Module
returns the context back to the callee
application, the callbackparam is passed back
for the callee to construct its application state.

CDATA OPTIONAL

callbacksecure Indicates the mode of communication, when
callback occurs, between Wireless server and
the device. Setting callbacksecure="true" will
enable a secure connect mode between
Wireless and the device when the module
performs a callback (to the callbackurl). If not
specified, the connect mode will be based on
the current request mode.

(true | false) OPTIONAL

SimpleForm

8-28 Oracle9iAS Wireless Developer’s Guide

target URI to navigate to when action is activated.
This URL is always rewritten by the Server to
point back to Wireless Server, except when
mimetype attribute not
"text/vnd.oracle.mobilexml". Also supports
"callto:" for Phone call and "mailto:" for email
support.

CDATA OPTIONAL

mimetype mime-type of target URI. Lets the Wireless
server know the target resources mime-type. If
the target mime-type is not
text/vnd.oracle.mobilexml, the Wireless
server will not rewrite the URL.

CDATA text/vnd.oracle.mo
bilexml

OPTIONAL

static_target URI to navigate to when action is activated.
This URL is never rewritten by server. If
exists, this will override the "target" attribute.
Also supports "callto:" for Phone call and
"mailto:" for email support.

CDATA OPTIONAL

secure Indicates the mode of communication
between Wireless server and the device.
Setting secure="true" will enable a secure
connect mode between Wireless and the
device for the specified target. If not specified,
the connect mode will be based on the current
request mode. This DOES NOT indicate mode
of connection between Wireless and the
remote content source (the service), Wireless
will connect to the remote service based on the
protocol specified in the target attribute ("http"
vs. "https")

(true | false) OPTIONAL

fetchaudio Voice only attribute. The URI of an audio clip
to play while the "target" is being fetched.

CDATA OPTIONAL

Table 8–33 SimpleForm Tag

Name Description Value(s) Default Value

XML Tags

XML Tag Glossary 8-29

Related Tags

id ID attribute of the element. Used for
Navigation within a XML response
(target="#ID")

xsd:ID OPTIONAL

method HTTP Method get or post (get | post) get

OPTIONAL

deviceclass This tag is interpreted only for the specified
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). Values can be any
combination of following "pdabrowser",
"pcbrowser", "voice", "microbrowser",
"micromessenger", "messenger". If not
specified, the tag is interpreted for all devices.

CDATA OPTIONAL

Table 8–34 SimpleForm Related Tags

Parents Children

SimpleContainer SimpleTitle

SimpleProperty

SimpleTextItem

SimpleTextField

SimpleFormItem

SimpleFormSelect

SimpleCatch

SimpleAction

SimpleBind

SimpleGrammar

SimpleDTMF

Table 8–33 SimpleForm Tag

Name Description Value(s) Default Value

SimpleFormItem

8-30 Oracle9iAS Wireless Developer’s Guide

SimpleFormItem

Specified if Input is mandatory. This attribute is supported only if the target device
supports such an functionality. The application must always validate the field on
the server side

Table 8–35 SimpleFormItem Tag

Name Description Value(s) Default Value

mandatory Specified if Input is mandatory. This attribute
is supported only if the target device supports
such an functionality. The application must
always validate the field on the server side

(yes | no) no

OPTIONAL

maxlength Max length of the field Positive Int OPTIONAL

type Indicates the data type, like boolean, digits etc.
For backward compatibility will also accept
displaymode attribute values
(text|textarea|password etc).

(none | audio |
boolean | currency
| date | digits |
number | phone |
time | transfer)

REQUIRED

format WML/HDML format attribute. Supported
only in WML/HDML devices

CDATA OPTIONAL

value default value ("defaultvalue" attribute also
supported for backward compatibility).

CDATA OPTIONAL

size display size of the input field Positive Int OPTIONAL

name Input Field name CDATA REQUIRED

displaymode To Specify the display characteristics of the
field like noecho (password), textarea etc.

(text | textarea |
noecho | hidden)

text

OPTIONAL

rows Number of rows if displaymode is textArea. Positive Int OPTIONAL

cols Number of rows if displaymode is textArea. Positive Int OPTIONAL

deviceclass This tag is interpreted only for the specified
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). Values can be any
combination of following "pdabrowser",
"pcbrowser", "voice", "microbrowser",
"micromessenger", "messenger". If not
specified, the tag is interpreted for all devices.

CDATA OPTIONAL

XML Tags

XML Tag Glossary 8-31

modal VoiceXML modal. If this is true (the default)
all higher level speech and DTMF grammars
are turned off while making the transcription.
If false, the grammar is scoped to the form
item/select.

(true | false) true

OPTIONAL

slot VoiceXML slot. Slot exist part of a Voice
Grammar syntax. The input's grammar slot
values are assigned to the corresponding field
item variables. This allows the user to say one
sentence an fill-in more than form field.

CDATA OPTIONAL

dest VoiceXML dest. Valid only when the
type="transfer". Specifies the phone number to
transfer the call to.

CDATA OPTIONAL

bridge VoiceXML bridge. Valid only when the
type="transfer". If "true" allows the original
caller to resume the current session, once the
transfer/third party call is complete.

(true | false) false

OPTIONAL

connecttimeout VoiceXML connect timeout in milliseconds.
Valid only when the type="transfer". The time
to wait while trying to connect the call before
returning the noanswer condition (Default is
specific a Voice Gateway platform).

xsd:nonNegativeIn
teger

OPTIONAL

maxtime VoiceXML maxtime in milli seconds. Valid
only when the type="transfer" and
brige="true". The time that the call is allowed
to last, or 0 if it can last arbitrarily long.
Default is 0.

xsd:nonNegativeIn
teger

OPTIONAL

beep VoiceXML beep. If true, a tone is emitted just
prior to transcription. Defaults to false. Used
when type="audio".

(true | false) true

OPTIONAL

finalsilence VoiceXML finalsilence milliseconds. The
interval of silence that indicates end of speech.

xsd:nonNegativeIn
teger

OPTIONAL

enctype VoiceXML enctype. The MIME encoding type
of the submitted document. Used when
type="audio" to indicate the format of the
recording requested.

CDATA OPTIONAL

dtmfterm VoiceXML dtmfterm. If true, a DTMF keypress
terminates transcription.

(true | false) false

OPTIONAL

Table 8–35 SimpleFormItem Tag

Name Description Value(s) Default Value

SimpleFormItem

8-32 Oracle9iAS Wireless Developer’s Guide

Related Tags
Table 8–36 SimpleFormItem Related Tags

Parents Children

SimpleForm [PCDATA]

SimpleTitle

SimpleAction

SimpleBind

SimpleCatch

SimpleProperty

SimpleHelp

SimpleGrammar

SimpleDTMF

XML Tags

XML Tag Glossary 8-33

SimpleFormOption

Provides value for a formitem as a predefined list of values. Element is an item in a
selectable menu. "FormOption" takes PCDATA and SimpleTextItem as child.
SimpleTextItem is used to render the an Rich Text (useful when using Radio buttons
and Checkboxes). Certain devices do not allow RichText as part of MenuItem, in
such cases the text inside SimpleTextItem are collected and rendered. If
SimpleTextItem does not exist, then the PCDATA is rendered. PCDATA is required,
because in Voice the user select's the option by uttering the "PCDATA".
"PCDATA",parsable character format, specifies default values for the form item.

Related Tags

Table 8–37 SimpleFormOption Tag

Name Description Value(s) Default Value

selected is this option selected by default (same
semantics as HTML SELECTED)

(true | false) false

OPTIONAL

value value of select variable when this is selected CDATA REQUIRED

dtmf digit to be pressed on phone or DTMF tone.
dtmf attribute just takes one value (a
simplified form of voice SimpleDTMF tag).
Will work on wap devices, if supported by the
device.

CDATA OPTIONAL

deviceclass This tag is interpreted only for the specified
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). Values can be any
combination of following "pdabrowser",
"pcbrowser", "voice", "microbrowser",
"micromessenger", "messenger". If not
specified, the tag is interpreted for all devices.

CDATA OPTIONAL

Table 8–38 SimpleFormOption Related Tags

Parents Children

SimpleFormSelect [PCDATA]

SimpleOptGroup SimpleTextItem

SimpleFormSelect

8-34 Oracle9iAS Wireless Developer’s Guide

SimpleFormSelect

This element displays a select and option list. Can display option list, checkbox or
radio box.

Table 8–39 SimpleFormSelect Tag

Name Description Value(s) Default Value

displaymode To Specify the display characteristics of the
select like drop down, check box etc. Radio
button if multiple is false and displaymode is
checkbox. For backward compatibility should
support the "type" attribute (values checkbox,
radio).

(list | checkbox) list

OPTIONAL

multiple Supports multiple options to be selected for
the Select. Bot Supported in Voice

(true | false) false

OPTIONAL

name Name of the select field CDATA REQUIRED

size display size of the select list (if displaymode is
list)

Positive Int 1

OPTIONAL

modal VoiceXML modal. If this is true (the default)
all higher level speech and DTMF grammars
are turned off while making the transcription.
If false, the grammar is scoped to the form
item/select.

(true | false) true

OPTIONAL

XML Tags

XML Tag Glossary 8-35

Related Tags

slot VoiceXML slot. Slot exist part of a Voice
Grammar syntax. The input's grammar slot
values are assigned to the corresponding field
item variables. This allows the user to say one
sentence an fill-in more than form field.

CDATA OPTIONAL

autoprompt VoiceXML auto prompt. Tells the Voice
browsers not to perform an auto prompt.
Valid in menu's and formselect's. If set to false,
the voice browser will not list the items in the
menu/select. Typically set to false if need to
use a audio file (listing all the menus, rather
than using the TTS of the Voice gateway).

(true | false) true

OPTIONAL

deviceclass This tag is interpreted only for the specified
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). Values can be any
combination of following "pdabrowser",
"pcbrowser", "voice", "microbrowser",
"micromessenger", "messenger". If not
specified, the tag is interpreted for all devices.

CDATA OPTIONAL

Table 8–40 SimpleFormSelect Related Tags

Parents Children

SimpleForm SimpleTitle

SimpleFormOption

SimpleOptGroup

SimpleCatch

SimpleAction

SimpleBind

SimpleHelp

SimpleGrammar

SimpleDTMF

Table 8–39 SimpleFormSelect Tag

Name Description Value(s) Default Value

SimpleGo

8-36 Oracle9iAS Wireless Developer’s Guide

SimpleGo

Defines the "Go" task. Go is one the many possible tasks of a Bind operation
(SimpleBind) and is defined as is child of SimpleTask. SimpleGo is an empty tag (no
child tags).

Table 8–41 SimpleGo Tag

Name Description Value(s) Default Value

callbackurl Wireless Module Support. Indicates the URL
to return back if the current action leads the
user into a different application (application
implementing Wireless Module functionary).

CDATA OPTIONAL

callbackparam Wireless Module Support. Indicates the return
parameters of the callbackurl. When Module
returns the context back to the callee
application, the callbackparam is passed back
for the callee to construct its application state.

CDATA OPTIONAL

callbacksecure Indicates the mode of communication, when
callback occurs, between Wireless server and
the device. Setting callbacksecure="true" will
enable a secure connect mode between
Wireless and the device when the module
performs a callback (to the callbackurl). If not
specified, the connect mode will be based on
the current request mode.

(true | false) OPTIONAL

target URI to navigate to when action is activated.
This URL is always rewritten by the Server to
point back to Wireless Server, except when
mimetype attribute not
"text/vnd.oracle.mobilexml". Also supports
"callto:" for Phone call and "mailto:" for email
support.

CDATA OPTIONAL

mimetype mime-type of target URI. Lets the Wireless
server know the target resources mime-type. If
the target mime-type is not
text/vnd.oracle.mobilexml, the Wireless
server will not rewrite the URL.

CDATA text/vnd.oracle.mo
bilexml

OPTIONAL

static_target URI to navigate to when action is activated.
This URL is never rewritten by server. If
exists, this will override the "target" attribute.
Also supports "callto:" for Phone call and
"mailto:" for email support.

CDATA OPTIONAL

XML Tags

XML Tag Glossary 8-37

Related Tags

secure Indicates the mode of communication
between Wireless server and the device.
Setting secure="true" will enable a secure
connect mode between Wireless and the
device for the specified target. If not specified,
the connect mode will be based on the current
request mode. This DOES NOT indicate mode
of connection between Wireless and the
remote content source (the service), Wireless
will connect to the remote service based on the
protocol specified in the target attribute ("http"
vs. "https")

(true | false) OPTIONAL

fetchaudio Voice only attribute. The URI of an audio clip
to play while the "target" is being fetched.

CDATA OPTIONAL

deviceclass This tag is interpreted only for the specified
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). Values can be any
combination of following "pdabrowser",
"pcbrowser", "voice", "microbrowser",
"micromessenger", "messenger". If not
specified, the tag is interpreted for all devices.

CDATA OPTIONAL

Table 8–42 SimpleGo Related Tags

Parents Children

SimplePrev SimpleCache

SimpleCatch

SimpleCase

SimpleTask

Table 8–41 SimpleGo Tag

Name Description Value(s) Default Value

SimpleGrammar

8-38 Oracle9iAS Wireless Developer’s Guide

SimpleGrammar

Provides the voice grammar for the enclosing item like SimpleMenuItem. For
example: for SimpleMenuItem with enclosing text like "Oracle9iAS Wireless.", the
Voice Engine would say "your options are Oracle9iAS Wireless.". Use
SimpleGrammar for voice if you want to invoke this MenuItem when the user says
"Oracle" | "Oracle9i" | "9i" | "Wireless"

Related Tags

Table 8–43 SimpleGrammar Tag

Name Description Value(s) Default Value

src URI to the resource file where the
DTMF's/Grammar's are stored

CDATA OPTIONAL

type The MIME type of the grammar. Represents
the Grammar Format (applicable to both the
remote URI Grammar file or inline Grammar
text). There are different ways of representing
a Grammar/DTMF format. Example:
"application/x-jsgf",

CDATA OPTIONAL

scope VoiceXML scope. Can take
"document"/"dialog" possible values. Default
scope of grammar in
Form/Menu/Text/Grammar/DTMF. If the
scope is set to "document", then the grammar
is active in the entire document. This allows
for e.g. the user to submit a "Form" (in the
SimpleResult) from inside a "SimpleMenu".

(document |
dialog)

dialog

OPTIONAL

deviceclass This tag is interpreted only for the specified
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). This tag is applicable
for Voice devices only. Will not be supported
on other devices even if specified.

CDATA OPTIONAL

Table 8–44 SimpleGrammar Related Tags

Parents Children

SimpleHref [PCDATA]

SimpleAction SimpleCache

XML Tags

XML Tag Glossary 8-39

SimpleMenuItem

SimpleForm

SimpleFormItem

SimpleFormSelect

SimpleMatch

Table 8–44 SimpleGrammar Related Tags

Parents Children

SimpleHelp

8-40 Oracle9iAS Wireless Developer’s Guide

SimpleHelp

Used to display Help text for a field. Used by SSD/PDA style devices to display
help text for the FormItem/Select (In voice SimpleCatch "type="help" is used).

Related Tags

Table 8–45 SimpleHelp Tag

Name Description Value(s) Default Value

color color CDATA OPTIONAL

font font CDATA OPTIONAL

size size CDATA OPTIONAL

wrapmode Text wrap mode. (wrap | nowrap) wrap

OPTIONAL

deviceclass This tag is interpreted only for the specified
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). Values can be any
combination of following "pdabrowser",
"pcbrowser", "voice", "microbrowser",
"micromessenger", "messenger". If not
specified, the tag is interpreted for all devices.

CDATA OPTIONAL

Table 8–46 SimpleHelp Related Tags

Parents Children

SimpleFormItem [PCDATA]

SimpleFormSelect SimpleHref

SimpleBreak

SimpleEm

SimpleStrong

SimpleImage

XML Tags

XML Tag Glossary 8-41

SimpleHref

Specifies a hyperlink.

Table 8–47 SimpleHref Tag

Name Description Value(s) Default Value

callbackurl Wireless Module Support. Indicates the URL
to return back if the current action leads the
user into a different application (application
implementing Wireless Module functionary).

CDATA OPTIONAL

callbackparam Wireless Module Support. Indicates the return
parameters of the callbackurl. When Module
returns the context back to the callee
application, the callbackparam is passed back
for the callee to construct its application state.

CDATA OPTIONAL

callbacksecure Indicates the mode of communication, when
callback occurs, between Wireless server and
the device. Setting callbacksecure="true" will
enable a secure connect mode between
Wireless and the device when the module
performs a callback (to the callbackurl). If not
specified, the connect mode will be based on
the current request mode.

(true | false) OPTIONAL

target URI to navigate to when action is activated.
This URL is always rewritten by the Server to
point back to Wireless Server, except when
mimetype attribute not
"text/vnd.oracle.mobilexml". Also supports
"callto:" for Phone call and "mailto:" for email
support.

CDATA OPTIONAL

mimetype mime-type of target URI. Lets the Wireless
server know the target resources mime-type. If
the target mime-type is not
text/vnd.oracle.mobilexml, the Wireless
server will not rewrite the URL.

CDATA text/vnd.oracle.mo
bilexml

OPTIONAL

static_target URI to navigate to when action is activated.
This URL is never rewritten by server. If
exists, this will override the "target" attribute.
Also supports "callto:" for Phone call and
"mailto:" for email support.

CDATA OPTIONAL

SimpleHref

8-42 Oracle9iAS Wireless Developer’s Guide

secure Indicates the mode of communication
between Wireless server and the device.
Setting secure="true" will enable a secure
connect mode between Wireless and the
device for the specified target. If not specified,
the connect mode will be based on the current
request mode. This DOES NOT indicate mode
of connection between Wireless and the
remote content source (the service), Wireless
will connect to the remote service based on the
protocol specified in the target attribute ("http"
vs. "https")

(true | false) OPTIONAL

fetchaudio Voice only attribute. The URI of an audio clip
to play while the "target" is being fetched.

CDATA OPTIONAL

label Label for action button, displayed when action
is bound to a button on a visual device

CDATA OPTIONAL

dtmf digit to be pressed on phone or DTMF tone.
dtmf attribute just takes one value (a
simplified form of voice SimpleDTMF tag).
Will work on wap devices, if supported by the
device.

CDATA OPTIONAL

src The URL to an image. Image from will be
displayed. (In SimpleAction/Href this images
needs to be used instead of the label.

CDATA OPTIONAL

Table 8–47 SimpleHref Tag

Name Description Value(s) Default Value

XML Tags

XML Tag Glossary 8-43

Related Tags

addImageExtension Allows the server to use the right image
format from a list of available formats. Based
on the available images from the app
(specified by the "available" attribute) and
based on the device browser capability the
server will pick the right image to be used.
Example: if image is "oracle" and available is
set to "jpg gif wbmp", server will use
"oracle.wbmp" in WML (Phone.com) browser,
"oracle.gif" for a HTML browser.

(true | false) true

OPTIONAL

available Application can specify a list of available
image formats, for example: available = "jpg
gif g2.gif wbmp bmp" (g2.gif indicates a
grayscale depth 2 image, for devices like
Palm). This allows the server to use the correct
image format supported by device (based on
device browser properties).

CDATA OPTIONAL

deviceclass This tag is interpreted only for the specified
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). Values can be any
combination of following "pdabrowser",
"pcbrowser", "voice", "microbrowser",
"micromessenger", "messenger". If not
specified, the tag is interpreted for all devices.

CDATA OPTIONAL

Table 8–48 SimpleHref Related Tags

Parents Children

SimpleTextItem [PCDATA]

SimpleHelp SimpleCache

SimpleGrammar

SimpleDTMF

SimpleBreak

SimpleEm

Table 8–47 SimpleHref Tag

Name Description Value(s) Default Value

SimpleHref

8-44 Oracle9iAS Wireless Developer’s Guide

SimpleStrong

SimpleSpan

SimpleUnderline

SimpleAudio

SimpleSpeech

SimpleImage

SimpleValue

Table 8–48 SimpleHref Related Tags

Parents Children

XML Tags

XML Tag Glossary 8-45

SimpleImage

Table 8–49 SimpleImage Tag

Name Description Value(s) Default Value

alt alt string if Image not found CDATA OPTIONAL

border Width of border CDATA OPTIONAL

width Image width CDATA OPTIONAL

height Image height CDATA OPTIONAL

vspace Vertical space (from HTML) CDATA OPTIONAL

hspace Horizontal space (from HTML) CDATA OPTIONAL

src The URL to an image. Image from will be
displayed. (In SimpleAction/Href this images
needs to be used instead of the label.

CDATA OPTIONAL

addImageExtension Allows the server to use the right image
format from a list of available formats. Based
on the available images from the app
(specified by the "available" attribute) and
based on the device browser capability the
server will pick the right image to be used.
Example: if image is "oracle" and available is
set to "jpg gif wbmp", server will use
"oracle.wbmp" in WML (Phone.com) browser,
"oracle.gif" for a HTML browser.

(true | false) true

OPTIONAL

available Application can specify a list of available
image formats for example: available = "jpg gif
g2.gif wbmp bmp" (g2.gif indicates a grayscale
depth 2 image, for devices like Palm). This
allows the server to use the correct image
format supported by device (based on device
browser properties).

CDATA OPTIONAL

SimpleImage

8-46 Oracle9iAS Wireless Developer’s Guide

Related Tags

valign Vertical alignment (top | middle |
bottom)

top

OPTIONAL

halign Horizontal alignment (left | center |
right)

left

OPTIONAL

deviceclass This tag is interpreted only for the specified
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). Values can be any
combination of following "pdabrowser",
"pcbrowser", "voice", "microbrowser",
"micromessenger", "messenger". If not
specified, the tag is interpreted for all devices.

CDATA OPTIONAL

Table 8–50 SimpleImage Related Tags

Parents Children

SimpleTextItem [PCDATA]

SimpleSpan SimpleCache

SimpleUnderline SimpleBreak

SimpleImage SimpleEm

SimpleHref SimpleStrong

SimpleStrong SimpleSpan

SimpleEm SimpleUnderline

SimpleAudio SimpleAudio

SimpleSpeech SimpleSpeech

SimpleTitle SimpleImage

SimpleHelp SimpleValue

Table 8–49 SimpleImage Tag

Name Description Value(s) Default Value

XML Tags

XML Tag Glossary 8-47

SimpleKey

SimpleKey defines the device key for the Bind operation. SimpleKey, like
SimpleAction has a type attribute that identified the Key on device for the Bind
operation.

Related Tags

Table 8–51 SimpleKey Tag

Name Description Value(s) Default Value

type Defines the type of Binding in the target
device. Can take any string value. Types
primary, secondary are special values and
map to the primary and secondary keys
respectively. Also transformers will support
"accept"|"soft1"|"option1"|"option2" (for
backward compatibility).

(primary |
secondary)

REQUIRED

deviceclass This tag is interpreted only for the specified
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). Values can be any
combination of following "pdabrowser",
"pcbrowser", "voice", "microbrowser",
"micromessenger", "messenger". If not
specified, the tag is interpreted for all devices.

CDATA OPTIONAL

Table 8–52 SimpleKey Related Tags

Parents Children

SimpleMatch none

SimpleMatch

8-48 Oracle9iAS Wireless Developer’s Guide

SimpleMatch

A Bind (SimpleBind) can be triggered by various actions like pressing a key, event
or saying a key word (voice). Each of these actions are indicated by separate tags.
SimpleMatch is the container tag for all such possible Bind Invocation tags.

Related Tags

Table 8–53 SimpleMatch Tag

Name Description Value(s) Default Value

deviceclass This tag is interpreted only for the specified
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). Values can be any
combination of following "pdabrowser",
"pcbrowser", "voice", "microbrowser",
"micromessenger", "messenger". If not
specified, the tag is interpreted for all devices.

CDATA OPTIONAL

Table 8–54 SimpleMatch Related Tags

Parents Children

SimpleBind SimpleFinish

SimpleKey

SimpleGrammar

SimpleDTMF

SimpleMItem

SimpleEvent

XML Tags

XML Tag Glossary 8-49

SimpleMenu

This element represents a single menu with selectable links which are defined by
the children SimpleMenuItem elements.

Table 8–55 SimpleMenu Tag

Name Description Value(s) Default Value

scope VoiceXML scope. Can take
"document"/"dialog" possible values. Default
scope of grammar in
Form/Menu/Text/Grammar/DTMF. If the
scope is set to "document", then the grammar
is active in the entire document. This allows
for e.g. the user to submit a "Form" (in the
SimpleResult) from inside a "SimpleMenu".

(document |
dialog)

dialog

OPTIONAL

id ID attribute of the element. Used for
Navigation within a XML response
(target="#ID")

xsd:ID OPTIONAL

autoprompt VoiceXML auto prompt. Tells the Voice
browsers not to perform an auto prompt.
Valid in menu's and formselect's. If set to false,
the voice browser will not list the items in the
menu/select. Typically set to false if need to
use a audio file (listing all the menus, rather
than using the TTS of the Voice gateway).

(true | false) true

OPTIONAL

wrapmode Text wrap mode. (wrap | nowrap) wrap

OPTIONAL

deviceclass This tag is interpreted only for the specified
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). Values can be any
combination of following "pdabrowser",
"pcbrowser", "voice", "microbrowser",
"micromessenger", "messenger". If not
specified, the tag is interpreted for all devices.

CDATA OPTIONAL

SimpleMenu

8-50 Oracle9iAS Wireless Developer’s Guide

Related Tags
Table 8–56 SimpleMenu Related Tags

Parents Children

SimpleContainer SimpleTitle

SimpleProperty

SimpleCatch

SimpleMenuItem

SimpleBind

SimpleAction

XML Tags

XML Tag Glossary 8-51

SimpleMenuItem

This element represents a single, selectable option in a menu defined by
SimpleMenu.

Table 8–57 SimpleMenuItem Tag

Name Description Value(s) Default Value

separator If defined this adds visual separator after or
before the menuitem (like the windows
"Menu").

(before | after |
none)

none

OPTIONAL

callbackurl Wireless Module Support. Indicates the URL
to return back if the current action leads the
user into a different application (application
implementing Wireless Module functionary).

CDATA OPTIONAL

callbackparam Wireless Module Support. Indicates the return
parameters of the callbackurl. When Module
returns the context back to the callee
application, the callbackparam is passed back
for the callee to construct its application state.

CDATA OPTIONAL

callbacksecure Indicates the mode of communication, when
callback occurs, between Wireless server and
the device. Setting callbacksecure="true" will
enable a secure connect mode between
Wireless and the device when the module
performs a callback (to the callbackurl). If not
specified, the connect mode will be based on
the current request mode.

(true | false) OPTIONAL

target URI to navigate to when action is activated.
This URL is always rewritten by the Server to
point back to Wireless Server, except when
mimetype attribute not
"text/vnd.oracle.mobilexml". Also supports
"callto:" for Phone call and "mailto:" for email
support.

CDATA OPTIONAL

mimetype mime-type of target URI. Lets the Wireless
server know the target resources mime-type. If
the target mime-type is not
text/vnd.oracle.mobilexml, the Wireless
server will not rewrite the URL.

CDATA text/vnd.oracle.mo
bilexml

OPTIONAL

SimpleMenuItem

8-52 Oracle9iAS Wireless Developer’s Guide

static_target URI to navigate to when action is activated.
This URL is never rewritten by server. If
exists, this will override the "target" attribute.
Also supports "callto:" for Phone call and
"mailto:" for email support.

CDATA OPTIONAL

secure Indicates the mode of communication
between Wireless server and the device.
Setting secure="true" will enable a secure
connect mode between Wireless and the
device for the specified target. If not specified,
the connect mode will be based on the current
request mode. This DOES NOT indicate mode
of connection between Wireless and the
remote content source (the service), Wireless
will connect to the remote service based on the
protocol specified in the target attribute ("http"
vs. "https")

(true | false) OPTIONAL

fetchaudio Voice only attribute. The URI of an audio clip
to play while the "target" is being fetched.

CDATA OPTIONAL

label Label for action button, displayed when action
is bound to a button on a visual device

CDATA OPTIONAL

dtmf digit to be pressed on phone or DTMF tone.
dtmf attribute just takes one value (a
simplified form of voice SimpleDTMF tag).
Will work on wap devices, if supported by the
device.

CDATA OPTIONAL

wrapmode Text wrap mode. (wrap | nowrap) wrap

OPTIONAL

deviceclass This tag is interpreted only for the specified
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). Values can be any
combination of following "pdabrowser",
"pcbrowser", "voice", "microbrowser",
"micromessenger", "messenger". If not
specified, the tag is interpreted for all devices.

CDATA OPTIONAL

Table 8–57 SimpleMenuItem Tag

Name Description Value(s) Default Value

XML Tags

XML Tag Glossary 8-53

Related Tags
Table 8–58 SimpleMenuItem Related Tags

Parents Children

SimpleMenu [PCDATA]

SimpleCache

SimpleTextItem

SimpleGrammar

SimpleMeta

8-54 Oracle9iAS Wireless Developer’s Guide

SimpleMeta

Defines all WML/HDML/HTML meta tags (pass through)

Related Tags

Table 8–59 SimpleMeta Tag

Name Description Value(s) Default Value

content The content of the emulated HTTP header or
associated content of Meta NAME

CDATA REQUIRED

http-equiv The equivalent HTTP header you are
emulating

CDATA REQUIRED

name a descriptive name of the meta attribute CDATA OPTIONAL

deviceclass This tag is interpreted only for the specified
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). Values can be any
combination of following "pdabrowser",
"pcbrowser", "voice", "microbrowser",
"micromessenger", "messenger". If not
specified, the tag is interpreted for all devices.

CDATA OPTIONAL

Table 8–60 SimpleMeta Related Tags

Parents Children

SimpleResult none

XML Tags

XML Tag Glossary 8-55

SimpleMItem

Empty tag to indicate the Bind needs to rendered as a MenuItem. This is allowed
only when SimpleBind is a child of SimpleMenu. Use SimpleTextItem, as a child of
SimpleDisplay, to display for the actual text of a menu item text. Defines all
WML/HDML/HTML meta tags (pass through)

Related Tags

Table 8–61 SimpleMItem Tag

Name Description Value(s) Default Value

deviceclass This tag is interpreted only for the specified
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). Values can be any
combination of following "pdabrowser",
"pcbrowser", "voice", "microbrowser",
"micromessenger", "messenger". If not
specified, the tag is interpreted for all devices.

CDATA OPTIONAL

Table 8–62 SimpleMItem Related Tags

Parents Children

SimpleMatch none

SimpleName

8-56 Oracle9iAS Wireless Developer’s Guide

SimpleName

Identifies Client side form field names. Used to specify a list of client side form
fields, that need to cleared. Useful in voice, as clearing of form fields allows for
reprompt by the VoiceXML browser.

Related Tags

Table 8–63 SimpleName Tag

Name Description Value(s) Default Value

name Name of Client side form field CDATA REQUIRED

deviceclass This tag is interpreted only for the specified
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). Values can be any
combination of following "pdabrowser",
"pcbrowser", "voice", "microbrowser",
"micromessenger", "messenger". If not
specified, the tag is interpreted for all devices.

CDATA OPTIONAL

Table 8–64 SimpleName Related Tags

Parents Children

SimpleClear none

SimpleSubmit

XML Tags

XML Tag Glossary 8-57

SimpleOptGroup

Group SimpleFormOptions into a hierarchy. To support Small screen devices, where
long lists of options cannot not deliver good UIs. On devices where optgroup is not
supported the display strings of options, inside the optgroups, are concatenated
with label defined in the optgroup.

Related Tags

Table 8–65 SimpleOptGroup Tag

Name Description Value(s) Default Value

label For platforms that support hierarchical option
lists, the label is displayed when navigating
non-leaf nodes

CDATA REQUIRED

deviceclass This tag is interpreted only for the specified
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). Values can be any
combination of following "pdabrowser",
"pcbrowser", "voice", "microbrowser",
"micromessenger", "messenger". If not
specified, the tag is interpreted for all devices.

CDATA OPTIONAL

Table 8–66 SimpleOptGroup Related Tags

Parents Children

SimpleFormSelect [PCDATA]

SimpleFormOption

SimplePhone

8-58 Oracle9iAS Wireless Developer’s Guide

SimplePhone

A Bind (SimpleBind) can be triggered by any event and also these can be device
specific events. The SimpleEvent element describes the possible events that would
trigger the Bind action. This Element allows you to take advantage of device
specific event handlers and define actions that can be triggered on such events. The
attribute "type" identifies the device specific events. For Voice applications you can
use events like "noinput", "cancel" etc. For WML it can be events like
"onenterforward", "onpick" etc.

Table 8–67 SimplePhone Tag

Name Description Value(s) Default Value

count Applicable to Voice events only. The
occurrence of the event (default is 1). The
count allows you to handle different
occurrences of the same event differently for
example. If need to give extra help messages if
the user says "help" twice for the same form
item. The form/formitem/menu etc (where
ever SimpleCatch can occur) maintains a
counter for each event that occurs while it is
being visited, these counters are reset each
time the form is re-entered.

Positive Int 1

OPTIONAL

type Predefined device level events. Possible values
for voice include for cancel, error, exit, help,
noinput, nomatch, telephone.disconnect etc.
Possible values for WML devices include
"onpick", "onenterforward" etc.

CDATA REQUIRED

deviceclass This tag is interpreted only for the specified
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). Values can be any
combination of following "pdabrowser",
"pcbrowser", "voice", "microbrowser",
"micromessenger", "messenger". If not
specified, the tag is interpreted for all devices.

CDATA OPTIONAL

XML Tags

XML Tag Glossary 8-59

Related Tags
Table 8–68 SimplePhone Related Tags

Parents Children

SimpleMatch none

SimplePrev

8-60 Oracle9iAS Wireless Developer’s Guide

SimplePrev

Tag for the "PREV" (previous) functionality. Has SimpleGo as child and the target of
the SimpleGo is the destination URL if "PREV" is not supported natively by the
browser.

Related Tags

Table 8–69 SimplePrev Tag

Name Description Value(s) Default Value

deviceclass This tag is interpreted only for the specified
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). Values can be any
combination of following "pdabrowser",
"pcbrowser", "voice", "microbrowser",
"micromessenger", "messenger". If not
specified, the tag is interpreted for all devices.

CDATA OPTIONAL

Table 8–70 SimplePrev Related Tags

Parents Children

SimpleCatch SimpleGo

SimpleCase

SimpleTask

XML Tags

XML Tag Glossary 8-61

SimpleProperty

Set VoiceXML engine properties

Related Tags

Table 8–71 SimpleProperty Tag

Name Description Value(s) Default Value

name The name of a property. CDATA REQUIRED

value The name of a property. CDATA REQUIRED

deviceclass This tag is interpreted only for the specified
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). Values can be any
combination of following "pdabrowser",
"pcbrowser", "voice", "microbrowser",
"micromessenger", "messenger". If not
specified, the tag is interpreted for all devices.

CDATA OPTIONAL

Table 8–72 SimpleProperty Related Tags

Parents Children

SimpleForm none

SimpleFormItem

SimpleResult

SimpleMenu

SimpleRefresh

8-62 Oracle9iAS Wireless Developer’s Guide

SimpleRefresh

Perform a refresh of the device if supported by the device

Related Tags

Table 8–73 SimpleRefresh Tag

Name Description Value(s) Default Value

deviceclass This tag is interpreted only for the specified
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). Values can be any
combination of following "pdabrowser",
"pcbrowser", "voice", "microbrowser",
"micromessenger", "messenger". If not
specified, the tag is interpreted for all devices.

CDATA OPTIONAL

Table 8–74 SimpleProperty Related Tags

Parents Children

SimpleCatch none

SimpleCase

SimpleTask

XML Tags

XML Tag Glossary 8-63

SimpleReprompt

This task will reprompt the user for the field input. Valid in Voice apps only and
used for reprompting the form fields/inputs.

Related Tags

Table 8–75 SimpleReprompt Tag

Name Description Value(s) Default Value

deviceclass This tag is interpreted only for the specified
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). Values can be any
combination of following "pdabrowser",
"pcbrowser", "voice", "microbrowser",
"micromessenger", "messenger". If not
specified, the tag is interpreted for all devices.

CDATA OPTIONAL

Table 8–76 SimpleReprompt Related Tags

Parents Children

SimpleCatch none

SimpleCase

SimpleTask

SimpleResult

8-64 Oracle9iAS Wireless Developer’s Guide

SimpleResult

The root tag of Wireless XML. SimpleResult encloses the complete response for a
request

Related Tags

Table 8–77 SimpleResult Tag

Name Description Value(s) Default Value

application VoiceXML application. Attribute used in voice
(VoiceXML). This is an URL, which points to
"root" document for the VoiceXML generated.

CDATA OPTIONAL

bgcolor Sets the Background color in supported
devices

CDATA OPTIONAL

lang language of this document. Used for Voice,
indicates the language of the XML document

CDATA OPTIONAL

Table 8–78 SimpleResult Related Tags

Parents Children

none SimpleMeta

SimpleCatch

SimpleProperty

SimpleCache

SimpleAction

SimpleBind

SimpleContainer

SimpleTimer

XML Tags

XML Tag Glossary 8-65

SimpleRow

Defines row of a table.

Related Tags

Table 8–79 SimpleRow Tag

Name Description Value(s) Default Value

bgcolor Sets the Background color in supported
devices

CDATA OPTIONAL

bordercolor from HTML table spec CDATA OPTIONAL

valign Vertical alignment (top | middle |
bottom)

top

OPTIONAL

halign Horizontal alignment (left | center |
right)

left

OPTIONAL

wrapmode Text wrap mode (wrap | nowrap) wrap

OPTIONAL

deviceclass This tag is interpreted only for the specified
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). Values can be any
combination of following "pdabrowser",
"pcbrowser", "voice", "microbrowser",
"micromessenger", "messenger". If not
specified, the tag is interpreted for all devices.

CDATA OPTIONAL

Table 8–80 SimpleRow Related Tags

Parents Children

SimpleTableBody SimpleCol

SimpleSpan

8-66 Oracle9iAS Wireless Developer’s Guide

SimpleSpan

Element to control Style of Text. Control for font, color and size of text.

Related Tags

Table 8–81 SimpleSpan Tag

Name Description Value(s) Default Value

color Color CDATA OPTIONAL

font Font CDATA OPTIONAL

size Font size CDATA OPTIONAL

deviceclass This tag is interpreted only for the specified
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). Values can be any
combination of following "pdabrowser",
"pcbrowser", "voice", "microbrowser",
"micromessenger", "messenger". If not
specified, the tag is interpreted for all devices.

CDATA OPTIONAL

Table 8–82 SimpleSpan Related Tags

Parents Children

SimpleTextItem [PCDATA]

SimpleSpan SimpleBreak

SimpleUnderline SimpleEm

SimpleImage SimpleStrong

SimpleHref SimpleSpan

SimpleStrong SimpleUnderline

SimpleEm SimpleAudio

SimpleAudio SimpleSpeech

SimpleSpeech SimpleImage

SimpleTitle SimpleValue

XML Tags

XML Tag Glossary 8-67

SimpleSpeech

Control prosody, class, and other VoiceXML text-to-speech engine parameters.

Table 8–83 SimpleSpeech Tag

Name Description Value(s) Default Value

class VoiceXML 'sayas' class. Allows the Voice
browser to say something like "6505067000" as
phone number, when class="phone"(rather
than saying this as number which would 6
million ...).

(phone | date |
digits | literal |
currency | number
| time

OPTIONAL

phon VoiceXML 'sayas' phonetics. The
representation of the Unicode International
Phonetic Alphabet (IPA) characters that are to
be spoken instead of the contained text.

CDATA OPTIONAL

pitch VoiceXML prosody pitch. numeric attribute
that sets the baseline pitch in Hertz. Values
can be "n" (set volume to n) or +n or -n. Also
can be +n% , -n% or reset.

CDATA OPTIONAL

range VoiceXML prosody range. numeric attribute
that sets the pitch range in Hertz. Values can
be "n" (set volume to n) or +n or -n. Also can
be +n% , -n% or reset. The pitch range
represents the amount of variation in pitch
above the baseline.

CDATA OPTIONAL

rate numeric attribute that sets the speaking rate in
words per minute. Value Can be an exact
number like "150" (sets the speaking rate of
150 words per minute) or can be +n (or -n)
(increase or decrease the rate by n from the
current level). Also can be +n% , -n% or reset

CDATA OPTIONAL

SimpleSpeech

8-68 Oracle9iAS Wireless Developer’s Guide

Related Tags

sub VoiceXML 'sayas' sub. Defines substitute text
to be spoken instead of the contained text.

CDATA OPTIONAL

vol VoiceXML prosody volume. Numeric attribute
that sets the output volume on a scale of 0.0 to
1.0 where 0.0 is silence and 1.0 is maximum
loudness. Values can be "n" (set volume to n)
or +n or -n. Also can be +n% , -n% or reset

CDATA OPTIONAL

deviceclass This tag is interpreted only for the specified
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). This tag is applicable
for Voice devices only. Will not be supported
on other devices even if specified.

CDATA OPTIONAL

Table 8–84 SimpleSpeech Related Tags

Parents Children

SimpleTextItem [PCDATA]

SimpleSpan SimpleBreak

SimpleUnderline SimpleEm

SimpleImage SimpleStrong

SimpleHref SimpleSpan

SimpleStrong SimpleUnderline

SimpleEm SimpleAudio

SimpleAudio SimpleSpeech

SimpleSpeech SimpleImage

SimpleTitle SimpleValue

Table 8–83 SimpleSpeech Tag

Name Description Value(s) Default Value

XML Tags

XML Tag Glossary 8-69

SimpleStrong

Displays enclosed text in a stronger representation, usually bold

Related Tags

Table 8–85 SimpleStrong Tag

Name Description Value(s) Default Value

deviceclass This tag is interpreted only for the specified
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). Values can be any
combination of following "pdabrowser",
"pcbrowser", "voice", "microbrowser",
"micromessenger", "messenger". If not
specified, the tag is interpreted for all devices.

CDATA OPTIONAL

Table 8–86 SimpleStrong Related Tags

Parents Children

SimpleTextItem [PCDATA]

SimpleSpan SimpleBreak

SimpleUnderline SimpleEm

SimpleImage SimpleStrong

SimpleHref SimpleSpan

SimpleStrong SimpleUnderline

SimpleEm SimpleAudio

SimpleAudio SimpleSpeech

SimpleSpeech SimpleImage

SimpleTitle SimpleValue

SimpleHelp

SimpleSubmit

8-70 Oracle9iAS Wireless Developer’s Guide

SimpleSubmit

Defines the Submit task of a Bind. SimpleSubmit is child of SimpleTask.
SimpleSubmit bind performs a submit action. You may provide a list of Form item
names that has to be submitted. If provide a name list is provided then only those
form item will be submitted. An Empty SimpleSubmit will Submit all the form
items.

Table 8–87 SimpleSubmit Tag

Name Description Value(s) Default Value

name Name of the Submit button/action (just like
HTML). The Submit "name" and "Value" will
be submitted back to the app as parameters.

CDATA REQUIRED

value Value of the Submit button/action (just like
HTML). The Submit "name" and "value" will
be submitted back to the app as parameters.

CDATA OPTIONAL

deviceclass This tag is interpreted only for the specified
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). Values can be any
combination of following "pdabrowser",
"pcbrowser", "voice", "microbrowser",
"micromessenger", "messenger". If not
specified, the tag is interpreted for all devices.

CDATA OPTIONAL

method HTTP Method get or post (get | post) get

OPTIONAL

callbackurl Wireless Module Support. Indicates the URL
to return back if the current action leads the
user into a different application (application
implementing Wireless Module functionary).

CDATA OPTIONAL

callbackparam Wireless Module Support. Indicates the return
parameters of the callbackurl. When Module
returns the context back to the callee
application, the callbackparam is passed back
for the callee to construct its application state.

CDATA OPTIONAL

XML Tags

XML Tag Glossary 8-71

callbacksecure Indicates the mode of communication, when
callback occurs, between Wireless server and
the device. Setting callbacksecure="true" will
enable a secure connect mode between
Wireless and the device when the module
performs a callback (to the callbackurl). If not
specified, the connect mode will be based on
the current request mode.

(true | false) OPTIONAL

target URI to navigate to when action is activated.
This URL is always rewritten by the Server to
point back to Wireless Server, except when
mimetype attribute not
"text/vnd.oracle.mobilexml". Also supports
"callto:" for Phone call and "mailto:" for email
support.

CDATA OPTIONAL

mimetype mime-type of target URI. Lets the Wireless
server know the target resources mime-type. If
the target mime-type is not
text/vnd.oracle.mobilexml, the Wireless
server will not rewrite the URL.

CDATA text/vnd.oracle.mo
bilexml

OPTIONAL

static_target URI to navigate to when action is activated.
This URL is never rewritten by server. If
exists, this will override the "target" attribute.
Also supports "callto:" for Phone call and
"mailto:" for email support.

CDATA OPTIONAL

secure Indicates the mode of communication
between Wireless server and the device.
Setting secure="true" will enable a secure
connect mode between Wireless and the
device for the specified target. If not specified,
the connect mode will be based on the current
request mode. This DOES NOT indicate mode
of connection between Wireless and the
remote content source (the service), Wireless
will connect to the remote service based on the
protocol specified in the target attribute ("http"
vs. "https")

(true | false) OPTIONAL

fetchaudio Voice only attribute. The URI of an audio clip
to play while the "target" is being fetched.

CDATA OPTIONAL

Table 8–87 SimpleSubmit Tag

Name Description Value(s) Default Value

SimpleSubmit

8-72 Oracle9iAS Wireless Developer’s Guide

Related Tags
Table 8–88 SimpleSubmit Related Tags

Parents Children

SimpleCatch SimpleName

SimpleCase

SimpleTask

XML Tags

XML Tag Glossary 8-73

SimpleSwitch

Tag to write switch statements on form field name/value. Allows to compare the
Value of the form field input on the client side and can branch to perform different
Tasks.

Related Tags

Table 8–89 SimpleSwitch Tag

Name Description Value(s) Default Value

name Name of the form field the switch is based on. CDATA REQUIRED

deviceclass This tag is interpreted only for the specified
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). Values can be any
combination of following "pdabrowser",
"pcbrowser", "voice", "microbrowser",
"micromessenger", "messenger". If not
specified, the tag is interpreted for all devices.

CDATA OPTIONAL

Table 8–90 SimpleSwitch Related Tags

Parents Children

SimpleTask SimpleCase

SimpleTable

8-74 Oracle9iAS Wireless Developer’s Guide

SimpleTable

Related Tags

Table 8–91 SimpleTable Tag

Name Description Value(s) Default Value

separator Used when table is not supported by the
target device. If defined add a separator
between column values where table cannot be
supported.

CDATA none

OPTIONAL

id ID attribute of the element. Used for
Navigation within a XML response
(target="#ID")

xsd:ID OPTIONAL

bgcolor background color CDATA OPTIONAL

border Width of Border. CDATA OPTIONAL

bordercolor Table bordercolor CDATA OPTIONAL

cellpadding Cellpadding. As in HTML table CDATA OPTIONAL

cellspacing Cellspacing. As in HTML table CDATA OPTIONAL

width table Width CDATA OPTIONAL

height table Height CDATA OPTIONAL

deviceclass This tag is interpreted only for the specified
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). Values can be any
combination of following "pdabrowser",
"pcbrowser", "voice", "microbrowser",
"micromessenger", "messenger". If not
specified, the tag is interpreted for all devices.

CDATA OPTIONAL

Table 8–92 SimpleTable Related Tags

Parents Children

SimpleContainer SimpleTableHeader

SimpleTableBody

XML Tags

XML Tag Glossary 8-75

SimpleTableBody

Related Tags

Table 8–93 SimpleTableBody Tag

Name Description Value(s) Default Value

deviceclass This tag is interpreted only for the specified
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). Values can be any
combination of following "pdabrowser",
"pcbrowser", "voice", "microbrowser",
"micromessenger", "messenger". If not
specified, the tag is interpreted for all devices.

CDATA OPTIONAL

Table 8–94 SimpleTableBody Related Tags

Parents Children

SimpleTable SimpleRow

SimpleTableHeader

8-76 Oracle9iAS Wireless Developer’s Guide

SimpleTableHeader

Related Tags

Table 8–95 SimpleTableHeader Tag

Name Description Value(s) Default Value

deviceclass This tag is interpreted only for the specified
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). Values can be any
combination of following "pdabrowser",
"pcbrowser", "voice", "microbrowser",
"micromessenger", "messenger". If not
specified, the tag is interpreted for all devices.

CDATA OPTIONAL

Table 8–96 SimpleTableHeader Related Tags

Parents Children

SimpleTable SimpleCol

XML Tags

XML Tag Glossary 8-77

SimpleTask

Container tag for all task items of a Bind (SimpleBind). Tag encloses all the possible
tasks like go, submit, exit etc. Task also includes TextItem as a child, this allows
rendering of an audio or text (speech) before performing an action (useful in voice
applications)

Related Tags

Table 8–97 SimpleTask Tag

Name Description Value(s) Default Value

deviceclass This tag is interpreted only for the specified
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). Values can be any
combination of following "pdabrowser",
"pcbrowser", "voice", "microbrowser",
"micromessenger", "messenger". If not
specified, the tag is interpreted for all devices.

CDATA OPTIONAL

Table 8–98 SimpleTask Related Tags

Parents Children

SimpleBind SimpleSwitch

SimpleGo

SimpleTextItem

SimpleRefresh

SimpleClear

SimpleReprompt

SimpleExit

SimpleDisconnect

SimplePrev

SimpleSubmit

SimpleText

8-78 Oracle9iAS Wireless Developer’s Guide

SimpleText

Container for block of Texts (SimpleTextItem's)

Related Tags

Table 8–99 SimpleText Tag

Name Description Value(s) Default Value

wait VoiceXML Wait. Tells The voice browser if a
wait has to happen before proceeding to the
next construct in the SimpleResult.

(true | false) true

OPTIONAL

wrapmode Text wrap mode. (wrap | nowrap) wrap

OPTIONAL

scope VoiceXML scope. Can take
"document"/"dialog" possible values. Default
scope of grammar in
Form/Menu/Text/Grammar/DTMF. If the
scope is set to "document", then the grammar
is active in the entire document. This allows
for e.g. the user to submit a "Form" (in the
SimpleResult) from inside a "SimpleMenu".

(document |
dialog)

dialog

OPTIONAL

id ID attribute of the element. Used for
Navigation within a XML response
(target="#ID")

xsd:ID OPTIONAL

deviceclass This tag is interpreted only for the specified
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). Values can be any
combination of following "pdabrowser",
"pcbrowser", "voice", "microbrowser",
"micromessenger", "messenger". If not
specified, the tag is interpreted for all devices.

CDATA OPTIONAL

Table 8–100 SimpleText Related Tags

Parents Children

SimpleContainer SimpleTitle

SimpleCatch

SimpleTextItem

XML Tags

XML Tag Glossary 8-79

SimpleAction

SimpleBind

Table 8–100 SimpleText Related Tags

Parents Children

SimpleTextField

8-80 Oracle9iAS Wireless Developer’s Guide

SimpleTextField

Used to display non-editable field inside a form. For example, changing an
password, where the userid is an non-editable field.

Related Tags

Table 8–101 SimpleTextField Tag

Name Description Value(s) Default Value

deviceclass This tag is interpreted only for the specified
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). Values can be any
combination of following "pdabrowser",
"pcbrowser", "voice", "microbrowser",
"micromessenger", "messenger". If not
specified, the tag is interpreted for all devices.

CDATA OPTIONAL

Table 8–102 SimpleTextField Related Tags

Parents Children

SimpleForm SimpleTitle

SimpleTextItem

XML Tags

XML Tag Glossary 8-81

SimpleTextItem

This element contains one block of plain text, typically a single paragraph.

Related Tags

Table 8–103 SimpleTextItem Tag

Name Description Value(s) Default Value

timeout VoiceXML timeout. The the interval of silence
before the next construct is played

xsd:nonNegativeIn
teger

OPTIONAL

color color CDATA OPTIONAL

font font CDATA OPTIONAL

size font size CDATA OPTIONAL

wrapmode Text wrap mode (wrap | nowrap) wrap

OPTIONAL

bargein VoiceXML bargein. Control whether a user can
interrupt a when the text is being read by the
VoiceXML browser.

(true | false) true

OPTIONAL

count VoiceXML count. A number that allows you to
emit different prompts if the user is doing
something repeatedly. If omitted, it defaults to
"1".

Positive Int 1

OPTIONL

deviceclass This tag is interpreted only for the specified
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). Values can be any
combination of following "pdabrowser",
"pcbrowser", "voice", "microbrowser",
"micromessenger", "messenger". If not
specified, the tag is interpreted for all devices.

CDATA OPTIONAL

Table 8–104 SimpleTextItem Related Tags

Parents Children

SimpleText [PCDATA]

SimpleForm SimpleHref

SimpleTextField SimpleBreak

SimpleTextItem

8-82 Oracle9iAS Wireless Developer’s Guide

SimpleFormOption SimpleEm

SimpleCol SimpleStrong

SimpleAction SimpleSpan

SimpleDisplay SimpleUnderline

SimpleMenuItem SimpleAudio

SimpleCatch SimpleSpeech

SimpleCase SimpleImage

SimpleTask SimpleValue

Table 8–104 SimpleTextItem Related Tags

Parents Children

XML Tags

XML Tag Glossary 8-83

SimpleTimer

Invokes a "goto" target task after a specified delay time.

Table 8–105 SimpleTimer Tag

Name Description Value(s) Default Value

timer Invokes a "goto" target task after a specified
delay time. Time in milliseconds

xsd:nonNegativeIn
teger

REQUIRED

target URI to navigate to when action is activated.
This URL is always rewritten by the Server to
point back to Wireless Server, except when
mimetype attribute not
"text/vnd.oracle.mobilexml". Also supports
"callto:" for Phone call and "mailto:" for email
support.

CDATA OPTIONAL

mimetype mime-type of target URI. Lets the Wireless
server know the target resources mime-type. If
the target mime-type is not
text/vnd.oracle.mobilexml, the Wireless
server will not rewrite the URL.

CDATA text/vnd.oracle.mo
bilexml

OPTIONAL

static_target URI to navigate to when action is activated.
This URL is never rewritten by server. If
exists, this will override the "target" attribute.
Also supports "callto:" for Phone call and
"mailto:" for email support.

CDATA OPTIONAL

SimpleTimer

8-84 Oracle9iAS Wireless Developer’s Guide

Related Tags

secure Indicates the mode of communication
between Wireless server and the device.
Setting secure="true" will enable a secure
connect mode between Wireless and the
device for the specified target. If not specified,
the connect mode will be based on the current
request mode. This DOES NOT indicate mode
of connection between Wireless and the
remote content source (the service), Wireless
will connect to the remote service based on the
protocol specified in the target attribute ("http"
vs. "https")

(true | false) OPTIONAL

fetchaudio Voice only attribute. The URI of an audio clip
to play while the "target" is being fetched.

CDATA OPTIONAL

deviceclass This tag is interpreted only for the specified
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). Values can be any
combination of following "pdabrowser",
"pcbrowser", "voice", "microbrowser",
"micromessenger", "messenger". If not
specified, the tag is interpreted for all devices.

CDATA OPTIONAL

Table 8–106 SimpleTimer Related Tags

Parents Children

SimpleResult none

Table 8–105 SimpleTimer Tag

Name Description Value(s) Default Value

XML Tags

XML Tag Glossary 8-85

SimpleTitle

Title element for form Field and Menu container (SimpleMenu)

Related Tags

Table 8–107 SimpleTitle Tag

Name Description Value(s) Default Value

timeout VoiceXML timeout. The the interval of silence
allowed while waiting for user input in a form
input (after prompting the user for input).

xsd:nonNegativeIn
teger

OPTIONAL

color Color CDATA OPTIONAL

font Font CDATA OPTIONAL

size Font size CDATA OPTIONAL

bargein VoiceXML bargein. Control whether a user can
interrupt a when the text is being read by the
VoiceXML browser.

(true | false) true

OPTIONAL

count VoiceXML count. A number that allows you to
emit different prompts if the user is doing
something repeatedly. If omitted, it defaults to
"1".

Positive Int 1

OPTIONAL

wrapmode Text wrap mode. (wrap | nowrap) wrap

OPTIONAL

deviceclass This tag is interpreted only for the specified
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). Values can be any
combination of following "pdabrowser",
"pcbrowser", "voice", "microbrowser",
"micromessenger", "messenger". If not
specified, the tag is interpreted for all devices.

CDATA OPTIONAL

Table 8–108 SimpleTitle Related Tags

Parents Children

SimpleText [PCDATA]

SimpleMenu SimpleBreak

SimpleTitle

8-86 Oracle9iAS Wireless Developer’s Guide

SimpleForm SimpleEm

SimpleTextField SimpleStrong

SimpleFormItem SimpleSpan

SimpleFormSelect SimpleUnderline

SimpleAudio

SimpleSpeech

SimpleImage

SimpleValue

Table 8–108 SimpleTitle Related Tags

Parents Children

XML Tags

XML Tag Glossary 8-87

SimpleUnderline

Underline a text.

Related Tags

Table 8–109 SimpleUnderline Tag

Name Description Value(s) Default Value

deviceclass This tag is interpreted only for the specified
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). Values can be any
combination of following "pdabrowser",
"pcbrowser", "voice", "microbrowser",
"micromessenger", "messenger". If not
specified, the tag is interpreted for all devices.

CDATA OPTIONAL

Table 8–110 SimpleUnderline Related Tags

Parents Children

SimpleTextItem [PCDATA]

SimpleSpan SimpleBreak

SimpleUnderline SimpleEm

SimpleImage SimpleStrong

SimpleHref SimpleSpan

SimpleStrong SimpleUnderline

SimpleEm SimpleAudio

SimpleAudio SimpleSpeech

SimpleSpeech SimpleImage

SimpleTitle SimpleValue

SimpleValue

8-88 Oracle9iAS Wireless Developer’s Guide

 SimpleValue

Substitute the value of the client side form field variable, just like a macro. Possible
with WML, VoiceXML etc. Can be used to provide a client side confirmation
display/screen like "you entered 5, do you want continue" (Where the value 5 is the
value of a form item).

Related Tags

Table 8–111 SimpleValue Tag

Name Description Value(s) Default Value

audiobase VoiceXML base from value element CDATA OPTIONAL

class VoiceXML 'class' from value element. Can take
any value on the enumerated list (or can be
any string).

(none | audio |
boolean | currency
| date | digits |
number | phone |
time | transfer)

OPTIONAL

mode VoiceXML mode. The type of rendering: tts
(the default), or recorded. Can use the
audiobase attribute to specify base directory of
the audio files

CDATA OPTIONAL

name Name of the client variable to substitute CDATA OPTIONAL

deviceclass This tag is interpreted only for the specified
deviceclass (conditional transform). The
server will transform this element only for
certain devices (all devices that belong to the
specified deviceclass). Values can be any
combination of following "pdabrowser",
"pcbrowser", "voice", "microbrowser",
"micromessenger", "messenger". If not
specified, the tag is interpreted for all devices.

CDATA OPTIONAL

Table 8–112 SimpleValue Related Tags

Parents Children

SimpleTextItem none

SimpleSpan

SimpleUnderline

SimpleImage

Using Mobile Context Information in XML

XML Tag Glossary 8-89

8.2 Using Mobile Context Information in XML
Mobile Contexts are equivalent to scriptlets in many scripting languages like JSP,
ASP etc. Mobile Scripting is primarily a context variable substitution. In other
words, Mobile Contexts are placeholder for properties substituted by Oracle9iAS
Wireless core at the runtime. Though, embedded Mobile Context are not literal to
Oracle9iAS Wireless runtime, nonetheless, they do not violate rules of XML
document. Oracle9iAS Wireless predefines a set of Mobile Contexts for application
developers to use.

Oracle9iAS Wireless also sends all the Mobile Context information as HTTP
Headers while invoking a request. It allows application developers to retrieve the
Mobile Context information as HTTP Headers. Mobile Contexts as HTTP may be
used to make any application-level decisions, or may be used for generating
responses while embedded Mobile Contexts may only be used for generating
responses.

Mobile Contexts are primarily divided into following four categories.

■ User Context

■ User Location Context

■ Service Context

■ Module Context

SimpleHref

SimpleStrong

SimpleEm

SimpleAudio

SimpleSpeech

SimpleTitle

Table 8–113 User Context

Variable Name DataType Description

user.name String Login name of the User. If anonymous
user, this should not be set.

Table 8–112 SimpleValue Related Tags

Parents Children

Using Mobile Context Information in XML

8-90 Oracle9iAS Wireless Developer’s Guide

user.displayname String Display name of the User.

Table 8–114 User Location Context

Variable Name DataType Description

user.location.addressline1 String Address line1 of the location

user.location.addressline2 String Address line2 of the location

user.location.companyname String Company name of the address

user.location.addresslastline String Address line3 of the location

user.location.block String Location Block

user.location.city String Location City

user.location.county String Location county

user.location.state String Location state

user.location.postalcode String Location zip/postal code

user.location.postalcodeext String Extended zip/postal code

user.location.country String Country

user.location.type String Values are "profile"/"auto"

Table 8–115 Service Context

Variable Name DataType Description

service.home.url String URL to the Home Page of the current
service.

home.url String URL to the User’s Wireless home Page

service.parent.Url String URL to folder container

Table 8–116 Module Context

Variable Name DataType Description

module.callback.url String The callback URL for Module return
statement.

Table 8–113 User Context

Variable Name DataType Description

Using Mobile Context Information in XML

XML Tag Glossary 8-91

module.callback.label String Display Label for the Module, calling
back the caller.

Table 8–116 Module Context

Variable Name DataType Description

Using Mobile Context Information from HTTP Headers

8-92 Oracle9iAS Wireless Developer’s Guide

8.3 Using Mobile Context Information from HTTP Headers
Table 8–117 User Context

Header Name DataType Description

X-Oracle-User.Locale String User Locale Information

Table 8–118 User Locale

Header Name DataType Description

X-Oracle-User.name String Login name of the User. If anonymous
user, this should not be set. (Value
Encoded based on InputEncoding Setting.
See Section on Encoding)

X-Oracle-User.DisplayName String Display name of the User. (Value Encoded
based on InputEncoding Setting. See
Section on Encoding)

X-Oracle-User.userkind String Indicates if user is "anonymous",
"virtual" (implicit Identity) or
"registered".

X-Oracle-User.authkind String Indicates current session's auth mode,
values are "unauthenticated", "weak"
(weak authentication, implicit identity)
or "authenticated"

Table 8–119 User Location Context

Header Name DataType Description

X-Oracle-User.Location.AddressLine1 String Address line1 of the location. (Value
Encoded based on InputEncoding Setting.
See Section on Encoding)

X-Oracle-User.Location.AddressLine2 String Address line2 of the location. (Value
Encoded based on InputEncoding Setting.
See Section on Encoding)

X-Oracle-User.Location.Companyname String Company name at the address.(Value
Encoded based on InputEncoding Setting.
See Section on Encoding)

X-Oracle-User.Location.AddressLastLine String Address line3 of the location. (Value
Encoded based on InputEncoding Setting.
See Section on Encoding)

Using Mobile Context Information from HTTP Headers

XML Tag Glossary 8-93

X-Oracle-User.Location.Block String Location Block. (Value Encoded based on
InputEncoding Setting. See Section on
Encoding)

X-Oracle-User.Location.City String Location City. (Value Encoded based on
InputEncoding Setting. See Section on
Encoding)

X-Oracle-User.Location.County String Location county. (Value Encoded based
on InputEncoding Setting. See Section on
Encoding)

X-Oracle-User.Location.State String Location state. (Value Encoded based on
InputEncoding Setting. See Section on
Encoding)

X-Oracle-User.Location.PostalCode String Location zip/postal code. (Value Encoded
based on InputEncoding Setting. See
Section on Encoding)

X-Oracle-User.Location.PostalCodeExt String Extended zip/postal code. (Value
Encoded based on InputEncoding Setting.
See Section on Encoding)

X-Oracle-User.Location.Country String Country. (Value Encoded based on
InputEncoding Setting. See Section on
Encoding)

X-Oracle-User.Location.Type String Values are "profile" or "auto"

X-Oracle-User.Location.X String X Cord of the location (float)

X-Oracle-User.Location.Y String Y Cord of the location (float)

Table 8–120 Service Context

Header Name DataType Description

X-Oracle-Service.Home.Url String URL to the Home deck of the current
service.

X-Oracle-Service.Parent.Url String URL to folder container.

X-Oracle-Home.Url String URL to the User’s Wireless home deck.

Table 8–119 User Location Context

Header Name DataType Description

Using Mobile Context Information from HTTP Headers

8-94 Oracle9iAS Wireless Developer’s Guide

8.3.1 Encoding and Escaping Locale String from Request
Headers are encoded in ISO8859-1 character set according to HTTP 1.1 specification.

All request parameters and certain Headers as specified above (location, user etc.)
are encoded as described by encoding parameter of service definition. Further the
values are URL encoded as per HTTP 1.1 specification.

Application may retrieve these requests values by performing the following steps.

1. Use URL decoding to undo base64 encoding.

2. Construct the new string using service specific encoding.

For example a typical jsp scriptlet for Big5 (traditional Chinese) may look as follows
for Java Programming Language.

<%
// let the encoding of service be Big5
String userName = request.getHeader("X-Oracle-User.DisplayName");
userName = java.net.URLDecoder.decode(userName);
userName = new String(userName.getBytes(), “Big5”);
%>

Table 8–121 Module Context

Header Name DataType Description

X-Oracle-Module.CallBack.Url String The callback URL for Module return
statement.

X-Oracle-Module.CallBack.Label String Display Label for the Module, calling
back the caller.

Using Mobile Context Information from HTTP Headers

XML Tag Glossary 8-95

8.3.1.1 User Location Context

8.3.1.2 Service Context

8.3.1.3 Module Context

For example, the following two applications can be used to greet the user.

Table 8–122 User Location Context

Variable Name DataType Description

user.location.addressline1 String Address line1 of the location

user.location.addressline2 String Address line2 of the location

user.location.companyname String Company name of the address

user.location.addresslastline String Address line3 of the location

user.location.block String Location Block

user.location.city String Location City

user.location.county String Location county

user.location.state String Location state

user.location.postalcode String Location zip/postalcode

user.location.postalcodeext String Extended zip/postal code

user.location.country String Country

user.location.type String Values are "profile"/"auto"

Table 8–123 Service Context

Variable Name DataType Description

service.home.url String URL to the Home Page of the current service.

home.url String URL to the User’s Wireless home Page

service.parent.Url String URL to folder container.

Table 8–124 Module Context

Variable Name DataType Description

module.callback.url String The callback URL for Module return statement.

module.callback.label String Display Label for the Module, calling back the caller.

Using Mobile Context Information from HTTP Headers

8-96 Oracle9iAS Wireless Developer’s Guide

8.3.1.4 HelloUserMobileScript.xml
<?xml version = "1.0" encoding = "UTF-8" standalone="yes" ?>
<!DOCTYPE SimpleResult PUBLIC "-//ORACLE//DTD SimpleResult 1.1//EN"
"http://xmlns.oracle.com/ias/dtds/SimpleResult_1_1_0.dtd">
<SimpleResult>
<SimpleContainer>
<SimpleText>
<SimpleTextItem>
<SimpleStrong>Hello %value user.displayname%</SimpleStrong>
</SimpleTextItem>

</SimpleText>
</SimpleContainer>
</SimpleResult>

8.3.1.5 HelloUserMobileScriptHTTP.jsp
<?xml version = "1.0" encoding = "UTF-8" standalone="yes" ?>
<!DOCTYPE SimpleResult PUBLIC "-//ORACLE//DTD SimpleResult 1.1//EN"
"http://xmlns.oracle.com/ias/dtds/SimpleResult_1_1_0.dtd">
<%
String userName = request.getHeader("X-Oracle-User.DisplayName");
userName = (userName == null) ? request.getHeader("X-Oracle-User.name") :
userName;
userName = (userName == null) ? "Visitor" : userName;
userName = java.net.URLDecoder.decode(userName);
%>
<SimpleResult>
<SimpleContainer>
<SimpleText>
<SimpleTextItem halign="center">Hello <%=userName%></SimpleTextItem>

</SimpleText>
</SimpleContainer>
</SimpleResult>

Using Mobile Context Information from HTTP Headers

XML Tag Glossary 8-97

Figure 8–1 Output of HelloUserMobileScript.xml and HelloUserMobileScriptHTTP.jsp

Using Mobile Context Information from HTTP Headers

8-98 Oracle9iAS Wireless Developer’s Guide

Part III
Oracle9iAS Wireless Platform and

Services

Part III contains information about the Oracle9iAS Wireless platform and services.

■ Chapter 9, "Mobile Service Developer’s Tools"

■ Chapter 10, "Core Technologies"

■ Chapter 11, "Advanced Customization"

■ Chapter 12, "Alert Engine and Data Feeds"

■ Chapter 13, "Push Service and SMS"

■ Chapter 14, "Transcoding"

■ Chapter 15, "Using Location Services"

■ Chapter 16, "Offline Management"

■ Chapter 17, "Mobile Studio"

Mobile Service Developer’s Tools 9-1

9
Mobile Service Developer’s Tools

Each section of this document presents a different topic. These sections include:

■ Section 9.1, "Mobile Studio"

■ Section 9.2, "Oracle9iAS Wireless SDK"

■ Section 9.3, "Overview of JDeveloper with Oracle9iAS Wireless"

■ Section 9.4, "Third-party Mobile Simulators"

■ Section 9.5, "Deploying Your Applications"

9.1 Mobile Studio

9.1.1 In-house Mobile Studio
Mobile Studio is an online environment for quickly building, testing and deploying
wireless applications. It lets any developer quickly develop mobile applications that
are immediately accessible from all devices.

As a developer, you do not need to download or install any software to start using
the Studio; provides a completely web-based development and testing
environment. To access Mobile Studio on your Oracle9iAS Wireless instance, go to:
http://oracle9iasw-host:port/studio.

9.1.1.1 Register with Mobile Studio
As a developer, you must register with your instance of Studio to access the Studio
web site. To register, click on the register button on the Studio home page and
provide the required details to register. Once you register, Studio provides you with
a personal application area to test your applications and also provides links to
sample applications.

Mobile Studio

9-2 Oracle9iAS Wireless Developer’s Guide

9.1.1.2 Develop HelloWorld Application
In this walkthrough you will create a HelloWorld mobile application.

1. First you will create simple static page that outputs Oracle9iAS Wireless XML
when accessed through a web server.

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>
<!DOCTYPE SimpleResult PUBLIC "-//ORACLE//DTD SimpleResult 1.1//EN"
"http://xmlns.oracle.com/ias/dtds/SimpleResult_1_1_0.dtd">
<SimpleResult>

<SimpleContainer>
<SimpleText>

<SimpleTitle>HelloWorld Page</SimpleTitle>
<SimpleTextItem>Hello World</SimpleTextItem>

</SimpleText>
</SimpleContainer>

</SimpleResult>

2. Host the above helloworld.xml sample page on you web server.

3. Log into the Studio and select the CreateNew application button.

4. In the Create Application page fill in the following:

Name: MyHelloWorld

URL: URL to the helloworls.xml file (such as http://server:port/….)

Deviceclass: Select “all devices”

Description: My First Studio Sample

5. Click Create.

9.1.1.3 Test and Debug HelloWorld Application
In this walkthrough you will test and debug the HelloWorld application created in
the previous walkthrough.

1. Start the Mobile Simulator.

2. Enter the following URL in the Go window:
http://9iASWEServer.domain/ptg/rm
This is the URL of the device portal for your Oracle9iAS Wireless Server
installation.

3. Login into the Oracle9iAS Wireless Portal with your studio username and
password.

Mobile Studio

Mobile Service Developer’s Tools 9-3

4. Select the MyHelloWorld application.
The Oracle9iAS Wireless Server retrieves the helloworld.xml page and displays
it.

5. You can debug the MyHelloWorld application by looking at the log file from
you Studio web page. To view the log:

■ go to the Studio web site and login with you studio username and
password

■ Select the Log icon for the MyHelloWorld application. The system pops up
the log viewer on the web site. The log viewer displays the content
retrieved.

9.1.1.4 Deploy the HelloWorld Application
To deploy an application you will must be part of a Domain. In this walkthrough
you will create a Domain and then deploy the MyHelloWorld application to an
Oracle9iAS Wireless Server.

1. From the Studio Menu select MyDomains.

2. Enter the following in the Create Domain Window

Name: SampleDomain
Enter a password and confirm the password selection.
Set as Default should be checked.

3. Click on MyStudio on the Studio Menu.

4. Select the MyHelloWorld application and select deploy.

5. On the Deploy Application Page, click the Deploy button. This will deploy the
application on to the Domain Host defined by your administrator.

9.1.2 Oracle Online Mobile Studio
You can also use OracleMobile’s hosted Online Studio (a developer portal) to quickly
and easily build, test and deploy your mobile applications.

OracleMobile’s hosted Online Studio enables any developer, systems integrator or
independent software vendor to quickly develop a mobile application that is
immediately accessible from any device. This unique, next generation environment
allows companies to benefit from faster time to market, increased productivity, and
a dramatically simplified testing cycle, while providing access to the latest mobile
applications and tools. It enables you to focus on your business logic which is your
core competency, while we focus on the device complexity, our core competency.

Oracle9iAS Wireless SDK

9-4 Oracle9iAS Wireless Developer’s Guide

For more information on Oracle Online Mobile Studio, and to use
OracleMobileOnline Studio, see Oracle Technology Network (OTN) at:
http://otn.oracle.com.

9.2 Oracle9iAS Wireless SDK

9.2.1 Overview
Oracle9iAS Wireless SDK is a light development version of Oracle9iAS Wireless. It
is an off-line environment that enables developers to create and test MobileXML
applications. With Oracle9iAS Wireless SDK, application developers can test and
simulate applications without needing to support a complete Oracle9iAS Wireless
installation.

The SDK can be separated into two sub-components: transcoder and messaging.

Oracle9iAS Wireless SDK transcoder can be used to test Mobile XML applications,
new XSL stylesheet transformers and new device descriptions. It provides most of
the functionality available in Oracle9iAS Wireless device portal.

Oracle9iAS Wireless SDK messaging API is the same as PushAPI, which delivers all
kinds of messages through Push server or Push Messaging gateway. Push
Messaging gateway is based on SOAP technology. Push server is build on top of
Oracle9iAS Wireless. The implementation of Push Server has been simplified in
Mobile SDK so that SDK does not have dependencies on SOAP or Oracle9iAS
Wireless. Only a Push Server simulator is shipped with SDK, which can send out
emails only. All messages with other transports will be converted to email and send
to an email address called 'default email'. Therefore, a SMTP email server and a
valid email address are needed.

9.2.2 Installation
Oracle9iAS Wireless SDK is a J2EE application. It should be deployed on Oracle9i
Application Server using the OC4J deployment tool. For more details please refer to
the OC4J documentation.

9.2.3 Structure
Oracle9iAS Wireless SDK contains the following important files and directories:

Oracle9iAS Wireless SDK

Mobile Service Developer’s Tools 9-5

■ index.jsp - this is the single entry point to the SDK from all devices. Depending
on the device capabilities, i.e. PC- on non-PC-browser, it redirects the request to
the appropriate URL.

■ index.html - this is the SDK main page when accessed from a PC-browser. It
contains useful links to the SDK test transcoder, the readme document (this file),
the admin page, JavaDoc, and the Mobile XML documentation.

■ Home.jsp - this is the SDK default main wireless application (configurable in
WEB-INF/web.xml). See Default Main Wireless Application for details.

■ apps - this directory contains the default entry points for all example
applications (configurable in WEB-INF/web.xml). See Default Main Wireless
Application for details.

■ docs -Wireless SDK developer documentation.

■ javadoc - JavaDoc for the Oracle9iAS Wireless SDK messaging API.

■ mxml - mobile XML documentation.

■ examples - example applications using the messaging API.

■ logs - this is the default SDK log directory (configurable in WEB-INF/web.xml).

■ omsdk.log - the default SDK log file (configurable in WEB-INF/web.xml).
The SDK uses a single log file, without overriding it. If you want to remove
the old log file and start using a new one, you must delete the old file
manually.

■ repository - this directory (including all subdirectories) is the SDK repository
(configurable in WEB-INF/web.xml. NOTE: If you want to move this directory
somewhere else you have to preserve the subdirectories structure). Every .xml
file in this directory is considered a separate device description. If you want to
add support for a new device simply add a new XML-file with the description
of the new device.

■ XFORM - this directory contains subdirectories with XSL device
transformers. The name of the subdirectories must be in this format m.n
where m is the major version number and n is the minor version number of
the mobile XML schema that the XSL transformers support

1.1 - XSL device transformers for version 1.1 of the mobile XML
schema. Every .xsl file in this directory is considered a separate trans-
former. The name of the file is the name of the transformer (the names
are case sensitive). There are two special files in this directory:

Oracle9iAS Wireless SDK

9-6 Oracle9iAS Wireless Developer’s Guide

SimpleResult_1_1_0.xsd - this is the XML schema describing Mobile
XML version 1.1

SimpleResult_1_1_0.dtd - this is the XML DTD describing Mobile XML
version 1.1

■ WEB-INF

■ web.xml - this is the main configuration file for the Oracle9iAS Wireless
SDK. Some of the entries in this file can be modified to change the default
behavior of the SDK.

■ classes/messages - this directory contains localized messages used by the
XSL transformers.

■ classes/oracle/panama/core/admin

EncodingSets.properties - mappings between IANA and Java character
encoding names. Normally you should not have to modify this file.

ProxyFirewall.properties - proxy firewall settings for the SDK. By
default the SDK is not configured to use a firewall. You should modify
this file only if you need to access an application that is outside your
firewall.

■ lib

■ omsdk.jar - Oracle9iAS Wireless SDK run-time engine implementation.
This file includes also the messaging API. You will need to include it in the
CLASSPATH if you build applications using the SDK messaging API.

9.2.4 Configuration

9.2.4.1 SDK Transcoder
Oracle9iAS Wireless SDK transcoder is a J2EE web application. The configuration
file for the application is WEB-INF/web.xml. Some of the configuration properties
can be modified at run-time using the SDK administration page.

Here is the list of user configurable settings:

Note: The changes made from the SDK administration page do
not get persisted in web.xml. You will have to modify web.xml
manually if you want to use the new settings permanently.

Oracle9iAS Wireless SDK

Mobile Service Developer’s Tools 9-7

■ omsdk.repository.dir - absolute path to the SDK repository directory (use either
"/" or "\\" as file separator on Windows). By default the value for this context
parameter is not set. The SDK will assume that the repository is in
[SDK-context-root-directory]/repository.

■ omsdk.apps.dir - absolute path to the default applications directory (use either
"/" or "\\" as file separator on Windows). By default the value for this context
parameter is not set. The SDK will assume that the applications directory is
[SDK-context-root-directory]/apps.

■ omsdk.log.file - absolute path to the SDK log file (use either "/" or "\\" as file
separator on Windows). By default the value for this context parameter is not
set. The SDK will create a new file omsdk.log in
[SDK-context-root-directory]/logs directory. The log file can be viewed from the
SDK administration page. You can redirect the log information to the system
output or error (in this case you cannot see the log data from the administration
page). The SDK does not delete the log every time it is written. It continues to
use the same log file. If you want to start with an empty log file, delete the old
one or change this value to use a different file name.

■ omsdk.log.level - log level (can be modified from the administration page).
There are four log levels: debug, info, warn and error. Levels are inclusive, that
is, warn level displays any log message marked as warning or error. Default
level is info.

■ xml.validation.mode - used to validate the mobile XML received from the
application (can be modified from the administration page).

Sets the validation mode of the XML parser to one of these four types:
[schema|dtd|partial|none]. Default value is schema.

■ autoreload.transformers - this flag enables/disables autoreloading of the
transformers. If autoreloading is enabled, the SDK checks the timestamp of the
transformer XSL file and automatically reloads the file if it was modified. The
values for this setting are true and false. Default value is true.

Note: In order to use XML parser validation, you must provide an
XSD file (for schema) and a DTD file (for DTD) validation. These
files must reside in the same directory as the corresponding XSL
files. The SDK comes with SimpleResult_1_1_0.xsd and
SimpleResult_1_1_0.dtd files.

Oracle9iAS Wireless SDK

9-8 Oracle9iAS Wireless Developer’s Guide

■ autoreload.devices - this flag enables/disables autoreloading of the device
descriptions. It has the same meaning for the devices as
autoreload.transformers does for the transformers. Default value is true.

■ home.page.url - URL to the main wireless application. This is the application
that will be invoked when a device sends a request to the transcoder. The value
could be either absolute or relative URL. If a relative URL is used it must be
relative to the Oracle9iAS Wireless SDK context.

9.2.4.2 Properties Files
The SDK transcoder uses two properties files for additional configuration. Normally
you should not need to modify those files.

■ EncodingSets.properties - mappings between IANA and Java character
encoding names. You will have to modify this file only if you have problems
with some locale-specific characters. The file contains a brief explanation how to
add new entries.

■ The IANA character set names are published here:
http://www.iana.org/assignments/character-sets

■ This Java encoding names are published here:
http://javasoft.com/j2se/1.3/docs/guide/intl/encoding.doc.html

■ ProxyFirewall.properties - proxy firewall configuration parameters. You will
need to modify this file only if you need to access Mobile XML applications that
are outside your firewall. The file contains explanation about every entry.

9.2.5 SDK Messaging

9.2.5.1 Prerequisites
■ JDK 1.2 or above

■ SMTP email server

■ Valid email address as default email address

■ Java mail jars from JavaSoft: mail.jar, activation.jar

WARNING: Do not modify the remaining settings in
WEB-INF/web.xml.

Oracle9iAS Wireless SDK

Mobile Service Developer’s Tools 9-9

9.2.5.2 Configuration Parameters
Required Parameters

The SDK reads SMTP mail server and default email from the Java VM System
properties. Property name for SMTP server is mobile-sdk.email.server.host and
property name for default email is mobile-sdk.default_email. These two parameters
are required to run SDK.

There are two ways to set those parameter:

1. Programatically

■ In your application that you need to call

■ System.setProperty("mobile-sdk.email.server.host","smtp.company.com");

■ System.setProperty("mobile-sdk.default_
email","default-email@company.com"); before the first call to the messaging
API

2. Passing command line parameters to the Java VM

■ java -Dmobile-sdk.email.server.host=smtp.company.com
-Dmobile-sdk.default_email=default-email@company.com.

Not Required Parameters

MessagingGatewayURL, username and password of the constructors of Push and
PushLite classes are not going to be used. But, you have to pass something to
construct the instance. Passing three nulls will be permissible.

9.2.5.3 Push and PushLite
Push and PushLite have the same functionality: deliver messages to Push server
(Push Server simulator in SDK). But, why do we need them both?

Push takes an instance of Packet as parameter. Packet has a message object, senders,
recipients and additional information, which helps to deliver the message. For
example: priority, speed of delivery, delay etc.

PushLite can send out text messages only. It's very easy to use. The users don't need
to know any other classes like Packet, Message, and AddressData etc.

The reason that they co-exist in the same API is because Push and PushLite give
developers an opportunity to choose the API to meet their needs. If you want to
send text messages fast, use PushLite. If you need more control over the message,
use Push.

Oracle9iAS Wireless SDK

9-10 Oracle9iAS Wireless Developer’s Guide

The source files for both classes are in the examples directory.

9.2.6 Device Description
Oracle9iAS Wireless SDK stores the device description as XML files in its repository
directory. Each XML file stores the description of one device. The XML root element
is <LDEV>. All element attributes and subelements are exactly the same as in the
Oracle9iAS Wireless repository XML representation (there are a few exceptions that
will be explained below). The advantage of that is that you can download the
Oracle9iAS Wireless repository, save all <LDEV> elements from the repository XML
file as separate files, copy them into the SDK repository directory (or modify
web.xml file), and the SDK will use exactly the same device descriptions as your
real server. Or, you can add a new device description to the SDK repository, fully
test it, and then deploy it on your real Oracle9iAS Wireless server. In order to
upload a new device to the real Oracle9iAS Wireless server you will need to create a
new XML file with the following format:

<?xml version = '1.0' encoding = 'UTF-8'?>
<PanamaObjects>
<LDEV_LIST>
<LDEV ...>

The new device description goes here
</LDEV>

</LDEV_LIST>
</PanamaObjects>

Where the <LDEV> element is the one stored in the XML file in the SDK repository
directory.

Here is the complete list of attributes and subelements that comprises the LDEV
element. Please keep in mind that all String values are case sensitive.

9.2.6.1 Attributes
name - a String - the name of the device. The value of this attribute must be the
same as the name of the XML file (without the .xml extension) in which the device
description is stored. The value must be unique.

mimeType - a String - the MIME type that the device expects, for example:
"text/vnd.wap.wml" or "text/html"

encoding - a String - the content encoding. The IANA character set names are
published at:

http://www.iana.org/assignments/character-sets

Oracle9iAS Wireless SDK

Mobile Service Developer’s Tools 9-11

The "mimeType" and the "encoding" attributes are used to create the Content-Type
HTTP header that is sent back to the end user device. For more details please see
the HTTP 1.1 specification at:

 http://www.rfc.net/rfc2616.html

9.2.6.2 Example
Content-Type: text/vnd.wap.wml; charset=ISO-8859-1

deviceCategory - a String - the device category. Oracle9iAS Wireless groups all
devices in the following six categories:

■ pcbrowser

■ pdabrowser

■ microbrowser

■ messenger

■ micromessenger

■ voice

See Chapter 10, "Core Technologies" for more details of the different device classes.

manufacturer - a String - the company name. For example: Nokia, Ericsson, Palm,
Motorola, etc.

model - a String - the device model.

softKeys - an Integer - the number of soft keys that the device has.

screenCols - an Integer - the number of characters (per row) that the device can
display.

screenRows - an Integer - the number of rows text data that the device can display.

screenWidth - an Integer - the screen width in pixels.

screenHeight - an Integer - the screen height in pixels.

imageCapable - a Boolean - whether the device supports images or not.

colorCapable - a Boolean - whether the device supports colors or not.

bitsPerPixel - an Integer - the number of bits per pixel used to represent either the
color or the gray scale.

videoCapable - a Boolean - whether the device supports streaming video or not.

Oracle9iAS Wireless SDK

9-12 Oracle9iAS Wireless Developer’s Guide

voiceCapable - a Boolean - whether the device supports voice or not.

system - a Boolean - whether this is a "system" device or not.

maxDocSize - size of document (in bytes) that a device can accept.

supportsAmpersandEntity - ampersand character can be used in XML-friendly
devices.

supportsRelativeURL - a Boolean - whether the device supports relative URLs or
not. In general all browsers should resolve relative URLs but of them do not do it.

prolog - xml prolog at the start of the content sent to a device. Specifies content
type.

description - a String - a short description of the device.

needsURLCaching - a Boolean - whether the URLs for this device should be cached
or not.

supportsCookie - a Boolean - whether the device supports "cookies" or not.

defaultTransformer - a String - the name of the XSL transformer to be used for this
device.

9.2.6.3 Subelements:
■ UserAgents - the list of HTTP User-Agent headers that should be mapped to

this device.

■ UserAgent - its "value" attribute stores individual User-Agents. You can use
"*" wildcard to map zero or more characters.

Note: This attribute has been deprecated. Both, the Oracle9iAS
Wireless SDK and the Oracle9iAS Wireless server will always cache
the URLs for all devices.

Note: This attribute has been deprecated in the Oracle9iAS
Wireless server. It has been replaced by the "Transformers"
subelement which contains the list of transformers to be used for
the different versions of the Mobile XML. In the current version the
SDK supports only a single version of the Mobile XML language.
And it reads the default Transformer attribute for the transformer
to be used.

Oracle9iAS Wireless SDK

Mobile Service Developer’s Tools 9-13

■ ImageFormatPreferences - the list of image formats that the device supports.

■ ImageFormatPreference - its "mimeType" attribute stores individual MIME
type value and the file extension. For more information about Internet
media types, please read RFC 2045, 2046, 2047, 2048, and 2077. The Internet
media type registry is at
ftp://ftp.iana.org/in-notes/iana/assignments/media-types/

■ VideoFormatPreferences

■ VideoFormatPreference

■ Transformers - the list of transformers to be used with this device

■ Transformer - its "name" attribute stores the name of a single transformer.

■ EXT_ATTR - deprecated subelement that used to store the device login and
error pages. Not used by the SDK.

9.2.7 Deploy the HelloWorld Application
To deploy an application you will must be part of a Domain. In this walkthrough
you will create a Domain and then deploy the MyHelloWorld application to an
Oracle9iAS Wireless Server.

1. From the Studio Menu select MyDomains.

2. Enter the following in the Create Domain Window

Name: SampleDomain
Enter a password and confirm the password selection.
Set as Default should be checked.

3. Click on MyStudio on the Studio Menu.

4. Select the MyHelloWorld application and select deploy.

5. On the Deploy Application Page, click the Deploy button. This will deploy the
application on to the Domain Host defined by your administrator.

9.2.8 Device Detection
Oracle9iAS Wireless SDK uses the same device detection mechanism as Oracle9iAS
Wireless server. See Chapter 10, "Core Technologies" for more details.

Note: This subelement is not used by the SDK.

Overview of JDeveloper with Oracle9iAS Wireless

9-14 Oracle9iAS Wireless Developer’s Guide

9.2.9 Default Main Wireless Application
Oracle9iAS Wireless SDK comes with a default demo wireless application. This
application is a single JSP page: Home.jsp. This JSP page looks in the apps directory
to find user-specific applications. A user application can be a .jsp, .xml or .mxml file.
The main wireless application displays a link to every one of the files it finds in the
apps directory. If you want to test your application, copy its main page into the
apps directory. If your application contains more than one file, then only the first
page must be copied into the apps directory. All other pages should be in a separate
directory (it could be a subdirectory of the apps directory). See the sample
applications for more details.

9.3 Overview of JDeveloper with Oracle9iAS Wireless
JDeveloper provides a mechanism to develop, debug and test Oracle9iAS Wireless
XML JSPs and XML pages in a single tool by providing an Oracle9iAS Wireless
addin for JDeveloper. Developers can create JSP pages with embedded BC4J data
tags with Oracle9iAS Wireless XML tags and by invoking these servlets through
OC4J, they can run any BC4J application on a wireless device emulator. By using the
power of the schema-driven editor, developers can create Oracle9iAS Wireless XML
pages that they can further call from their JSP pages. Based on the source of the
device request, the correct device stylesheet is applied to the XML document.
Figure 9–1, "Simplified Request Path" shows how the servlet works (and could use
BC4J as a data source for example).

To maximize developer productivity, JDeveloper provides a comprehensive set of
integrated tools to support the complete development lifecycle, from source control,
modeling, and coding through debugging, testing, profiling, and deploying.
JDeveloper simplifies J2EE development by providing wizards, editors, visual
design tools, and deployment tools to create high-quality, standard J2EE
components including applets, JavaBeans, JavaServer Pages (JSP), servlets, and
Enterprise JavaBeans (EJB). JDeveloper also provides a public Addin API to extend
and customize the development environment and to seamlessly integrate with
external products.

To simplify the development of scalable, high-performance J2EE applications,
JDeveloper offers an open and extensible J2EE framework called Business
Components for Java (BC4J). BC4J is an object-relational mapping tool that
implements Sun's J2EE design patterns, allowing developers to quickly build
sophisticated J2EE applications.

Overview of JDeveloper with Oracle9iAS Wireless

Mobile Service Developer’s Tools 9-15

9.3.1 JDeveloper and Oracle9iAS Wireless SDK
The SDK primarily consists of a Java servlet which links to a repository of
stylesheets. Based on the source of the HTTP request, the correct stylesheet is
applied by the servlet to transform the data to the target markup language for that
device. By providing an addin for integrating the SDK into JDeveloper, we provide
the developer a mechanism to develop, debug and test Oracle9iAS Wireless XML
JSPs and XML pages in a single tool. The developer can create JSP pages with
embedded BC4J data tags and Oracle9iAS Wireless XML tags and by invoking these
servlets through OC4J, they can run any BC4J application on a wireless device
emulator. By using the power of the schema-driven editor they can create
Oracle9iAS Wireless XML pages that they can further call from their JSP pages.
Figure 9–1, "Simplified Request Path" demonstrates how the servlet works (and
could use BC4J as a data source for example):

Figure 9–1 Simplified Request Path

1. A request is received from a wireless client (which is routed from the gateway
to the application server) for an Oracle9iAS Wireless JSP page. The structure of
such a JSP is as follows:

<%@ page language="java" import="oracle.jbo.*" contentType="text/vnd.oracle.iAS
Wireless XML;charset=WINDOWS-1252" %>
<%@ taglib uri="/webapp/DataTags.tld" prefix="jbo" %>
<SimpleResult>
<SimpleContainer>
<SimpleText>
<SimpleTextItem>Browse Form</SimpleTextItem>
</SimpleText>
<jbo:ApplicationModule id="am"
configname="mypackage.MypackageModule.MypackageModuleLocal"
releasemode="Stateful" />

Overview of JDeveloper with Oracle9iAS Wireless

9-16 Oracle9iAS Wireless Developer’s Guide

<jbo:DataSource id="ds" appid="am" viewobject="DeptView" rangesize="3"/>
<jbo:DataHandler appid="am" />
<SimpleText>
<SimpleTextItem>DeptView Browse Form</SimpleTextItem>
</SimpleText>
<SimpleTable>
<SimpleTableBody>
<SimpleRow>
<SimpleCol><jbo:DataScroller datasource="ds" /></SimpleCol>
<SimpleRow>
<SimpleRow>
<SimpleCol><jbo:DataTable datasource="ds" /></SimpleCol>
</SimpleRow>
</SimpleTableBody>
</SimpleTable>
<SimpleContainer>
<jbo:ReleasePageResources />
</SimpleResult>

2. The application server then launches the REQUEST MANAGER (RM) servlet
which then handles the requests coming from the client. As a part of its init()
process, the RM servlet looks for the repository containing the XSLT stylesheets
and loads it up into memory.

3. The servlet then executes the JSP page (the JSP page may have BC4J data tags)
that are then interpreted and executed. The data is populated in the page with
SimpleResult tags.

4. The RM servlet now received this XML page.

5. It then applies the correct transformation to the data received based upon the
content type and the source of the HTTP request.

6. Finally the correct markup is sent back to the client where the request
originated.

9.3.2 The Addin and the Wizards
There are two simple wizards which allow a user to create an Oracle9iAS Wireless
JSP and an Oracle9iAS Wireless XML document respectively.

The execution flow is as follows:

1. Create a new Oracle9iAS Wireless JSP by going through the following steps:

Overview of JDeveloper with Oracle9iAS Wireless

Mobile Service Developer’s Tools 9-17

a. Choose File|New|Web Objects|9iAS Wireless JSP Wizard. The Oracle9iAS
JSP Wizard is launched.

b. Specify a name for the JSP (or choose the default)

c. Select if you want to generate code for a form or menu (or both) and click
OK. A new Oracle9iAS WE JSP is created. In addition this automatically
performs the following actions:

– Updates the web.xml file with the relevant servlet information (servlet
name, class, parameters, etc.) and adds it to the current project. Here is
the web.xml file:

<?xml version = '1.0' encoding = 'windows-1252'?>
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application
2.2//EN" "http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">
<web-app>
<display-name>Oracle 9iAS App</display-name><description>Oracle 9i Application
Server Wireless SDK Application</description>
<context-param>
<param-name>omsdk.repository.path</param-name>
<param-value>D:\OMSDK\repository</param-value>
</context-param>
<context-param>
<param-name>omsdk.apps.path</param-name>
<param-value>D:\OMSDK\apps</param-value>
</context-param>
<context-param>
<param-name>omsdk.log.path</param-name>
<param-value>D:\OMSDK\logs</param-value>
</context-param>
<servlet>
<servlet-name>sdk</servlet-name>
<servlet-class>oracle.panama.sdk.SdkServlet</servlet-class>
<init-param>
<param-name>xml.validation.mode</param-name>
<param-value>none</param-value>
</init-param>
<init-param>
<param-name>log.level</param-name>
<param-value>debug</param-value>
</init-param>
<init-param>
<param-name>autoreload.transformers</param-name>
<param-value>true</param-value>
</init-param>

Overview of JDeveloper with Oracle9iAS Wireless

9-18 Oracle9iAS Wireless Developer’s Guide

<init-param>
<param-name>autoreload.devices</param-name>
<param-value>true</param-value>
</init-param>
<init-param>
<param-name>home.page.url</param-name>
<param-value>Home.jsp</param-value>
</init-param>
<load-on-startup>1</load-on-startup>
</servlet>
<servlet>
<servlet-name>lfv</servlet-name>
<servlet-class>oracle.panama.sdk.util.LogFileViewer</servlet-class>
</servlet>
<servlet-mapping>
<servlet-name>sdk</servlet-name>
<url-pattern>/rm</url-pattern>
</servlet-mapping>
<servlet-mapping>
<servlet-name>lfv</servlet-name>
<url-pattern>/log</url-pattern>
</servlet-mapping>
<session-config>
<session-timeout>30</session-timeout>
</session-config>
<mime-mapping>
<extension>mxml</extension>
<mime-type>text/vnd.oracle.iAS Wireless XML</mime-type>
</mime-mapping>
<mime-mapping>
<extension>log</extension>
<mime-type>text/plain</mime-type>
</mime-mapping>
<welcome-file-list>
<welcome-file>index.jsp</welcome-file>
<welcome-file>index.html</welcome-file> </welcome-file-list>
</web-app>

– Adds the relevant libraries to the classpath as shown below:

Overview of JDeveloper with Oracle9iAS Wireless

Mobile Service Developer’s Tools 9-19

Figure 9–2 Classpath

– Creates the following JSP file as shown below (with the relevant
content-type):

<?xml version="1.0" encoding="WINDOWS-1252" standalone="yes" ?>
<!DOCTYPE SimpleResult PUBLIC "-//ORACLE//DTD SimpleResult 1.1.0//EN"
"http://xmlns.oracle.com/ias/dtds/SimpleResult_1_1_0.dtd">
<%@ page contentType="text/vnd.oracle.iAS Wireless XML; charset=WINDOWS-1252"
%>
<%@ page language="java" %>
<%@ page import='java.util.*' %>
<Simpleresult>
<Simplecontainer>
<Simpletext>
<Simpletextitem>
The current time is <% out.println((new java.util.Date()).toString()); %>
</Simpletextitem>
</Simpletext>
<menu>
<choice next="choice1.jsp">Choice 1</choice>
<choice next="choice2.jsp">Choice 2</choice>
<choice next="choice3.jsp">Choice 3</choice>
</menu>
</Simplecontainer>
</Simpleresult>

Note: The content-type of this page is text/vnd.oracle.iAS
Wireless XML, NOT html.

Overview of JDeveloper with Oracle9iAS Wireless

9-20 Oracle9iAS Wireless Developer’s Guide

2. Since this is a JSP page, you can include BC4J data tags in the page that means
you can data enable it. However, instead of having HTML tags like a typical JSP
would have, this page would have Oracle9iAS Wireless XML tags (which
makes it akin to a data-bound UIX page). Assuming that the page is
syntactically correct, when you run this page by right-clicking on it, the
following steps occur:

■ It launches the embedded OC4J,

■ Invoke the correct servlet(s) and

■ Launches the user's default browser and pass the URL based on the
application's root context.

The difference between a typical JSP and the Oracle9iAS Wireless JSP is that the
former is automatically run-able by any servlet engine, where as the latter is more
like an XML document which needs to be processed by a servlet. In this case, its
behavior is similar to a UIX page.

9.3.3 Instructions to use the Addin and Wizards

9.3.3.1 Installation Steps
Here are the instructions for installing Oracle9iAS Wireless Wizards and
configuring the JDeveloper properties file to run the addin and the wizards.

1. Download the addin zip file from http://otn.oracle.com (in the “products”,
then “Jdeveloper” section) and unzip it to a directory (for example:
D:\omsdkAddin).

2. Add the project's output path to the $[JDEV_HOME]\bin\jdev.conf file (for
example: AddJavaLibFile ../../../../classes)

3. Add this project's main Addin to the $[JDEV_HOME]\bin\addins.properties
file. For example:

■ AddinCount=100

■ Addin99=oracle.iaswe.iasWEAddin

4. Add the iAS Gallery elements to $(JD9i)\lib\gallery.xml file.

Note: This (AddJavaLibFile) needs to be at the very end of the file,
not anywhere else!

Third-party Mobile Simulators

Mobile Service Developer’s Tools 9-21

5. Find the element called Web Objects and update it to read as follows:

<Item class="oracle.ide.gallery.GalleryElement">
<name>9iAS WE XML Wizard</name>
<wizardClass>oracle.iaswe.iasWEXMLWizard</wizardClass>
<wizardParameters/>
</Item>
<Item class="oracle.ide.gallery.GalleryElement">
<name>9iAS WE JSP Wizard</name>
<wizardClass>oracle.iaswe.iasWEJSPWizard</wizardClass>
<wizardParameters/>
</Item>

9.3.4 Running Instructions
1. Run JDeveloper

2. Create a New Project for Testing

3. Select Menu File | New ...

4. Click on the Web Objects|iAS WE JSP Wizard and create the JSP file

■ Notice Web.xml was added to project

■ Double click on the Project to see the libraries added to project

■ Look at the contents for correctness

5. Click on the Oracle9iAS XML Wizard and create the xml file similarly.

■ Look at the contents for correctness

■ Right click on these nodes to notice the option

■ Click on the Run menu to see the options

6. Now you can add the BC4J data tags in your JSP pages to access the data in the
application logic tier.

9.4 Third-party Mobile Simulators
Although you will be able to test you mobile applications using a regular Web
Browser on your personal computer, it is recommended that you perform testing
using various device emulators with different form factors. This will allow you to
understand the constructs on Oracle9iAS Wireless XML with respect to rendition on
varying device form factors.

Third-party Mobile Simulators

9-22 Oracle9iAS Wireless Developer’s Guide

Various mobile browser vendors have emulators available that can run on a typical
desktop environment. This section lists mobile browser emulators available,
categorized into different form factors. The list below is a sample, and provides an
introduction to various mobile simulators available; it is not an exhaustive list of all
emulators available.

9.4.1 Phones
The typical phone device is considered to have a small form factor, although there
are phones in the market that support form factor and functionality similar to a
PDA device. The browser simulators that support relatively small form factors
include Nokia6210, and Phone.com’s HDML and WML simulators. Below is a list of
phone browser simulators that can be used to test you Oracle9iAS Wireless
applications. These simulators run on your Personal computer, and connect to the
Oracle9iAS Wireless server over HTTP protocol.

9.4.1.1 Openwave SDK 3.2
This is an HDML (HandHeld Markup Language) simulator provided by
Openwave. You can simulate application behavior on phones that support HDML
browsers. HDML is a proprietary markup language supported by Openwave
browsers only.

9.4.1.2 Openwave SDK 4.1 and 5.0
You can use SDK 4.1 to simulate your application with WML 1.1 Openwave
browsers and SDK 5.0 to simulate with WML 1.3 Openwave browsers. Openwave
SDK is provided by Openwave Systems Inc.For more information go to
http://developer.openwave.com.

9.4.1.3 Nokia Mobile Internet Toolkit
This toolkit is provided by Nokia and has a simulator for Nokia’s WML browser.
You can simulate your application on different Nokia phones. The Mobile Internet

Note: This version of SDK can support both WML and HDML. Ensure
that Oracle9iAS Wireless is generating HDML for requests from this
simulator. You can use the web tool and configure Oracle9iAS Wireless to
generate HDML for requests from this simulator. Openwave SDK is
provided by Openwave Systems Inc. For more information go to
http://developer.openwave.com.

Third-party Mobile Simulators

Mobile Service Developer’s Tools 9-23

Tool Kit is provided by Nokia Corporation. For more information go to
http://www.forum.nokia.com.

9.4.1.4 Ericsson’s WapIDE 3.1.1 SDK
This SDK is provided by Ericsson and allows you to simulate WML applications on
various Ericsson phones. The WapIDE 3.1.1 SDK is provided by Telefonaktiebolaget
LM Ericsson. For more information see www.ericsson.com.

9.4.1.5 Yospace Simulator
Yospace provides various WAP simulators that can used to test your application
experience on various WML browsers. Yospace simulator is provided by Yospace
Holdings Ltd. For more information go to http://www.yospace.com.

9.4.2 PDA
The typical PDA device is considered to have a medium form factor. The form
factor of PDA is higher than that of a typical phone. The simulators that support
PDA-style devices are PocketPC and PalmOS simulators. There are other simulators
that support PDA style form factor and also other phone devices with a PDA form
factor.

9.4.2.1 Palm OS Simulator
Simulates the Palm OS on your personal computer. You can typically install on to
the Palm OS simulator a PQA or browsers such as Eudora. This enables you to test
and simulate you application behavior on a PalmOS. Palm, Inc. provides this
simulator. For more information see www.palmos.com.

9.4.2.2 PocketPC SDK
The PocketPC SDK is a desktop application and contains a PocketPC simulator that
runs on your personal computer. You can use a browser application on PocketPC
such as Pocket Internet Explorer, or similar, to test your application on a PocketPC
device. Microsoft Corporation provides PocketPC SDK. For more information go to
http://www.microsoft.com.

9.4.3 Voice
Voice device are classified as a separate form factor. This is because voice devices,
unlike other data devices, do not allow the user to scan the entire document. On

Deploying Your Applications

9-24 Oracle9iAS Wireless Developer’s Guide

voice devices, the user must wait until the voice browser reads the entire document;
it is also difficult for users to “scroll” the document.

9.4.3.1 IBM Voice Server SDK
IBM provides a Voice Server SDK running on a personal computer, and supports
VoiceXML technology. You can use IBM’s Voice Server SDK to test your VoiceXML
applications. The Voice Server SDK is provided by IBM Corporation. For more
information see www.ibm.com.

9.4.3.2 VoiceGenie
VoiceGenie hosts a developer Voice Gateway that allows you to test your
applications over voice. Also VoiceGenie provides Genie IDE that simulates the
Voice platform to test your applications. VoiceGenie Technologies Inc. provides both
the developer voice gateway and the Genie IDE. For more information see
developer.voicegenie.com.

9.5 Deploying Your Applications
Oracle9iAS Wireless provides Web-based, role-specific tools to create, manage, and
deploy mobile services. These webtools include wizards for developing and
managing repository objects, and utilities for managing the server and deploying
Oracle9iAS Wireless.

After creating your applications, use Oracle9iAS Wireless webtools to deploy them
to your customers using your Wireless instance.

For more information on these web-based tools, see Oracle9i Wireless Getting Started
and System Guide.

Core Technologies 10-1

10
Core Technologies

This chapter discusses how you can use the Oracle9iAS Wireless to develop and
deliver mobile services. It explains how to create adapters and transformers,
customize your mobile portals at various levels (JavaServer Pages, Portal API, Data
Model API, and Runtime API), extend and customize the functional components in
the Oracle9iAS Wireless, and work with the XML formats that the Oracle9iAS
Wireless uses. Sections include:

■ Section 10.1, "Oracle9iAS Wireless Components and Process Architecture"

■ Section 10.2, "Integration with other Components"

■ Section 10.3, "Wireless Services"

■ Section 10.4, "Device and Network Adaptation"

■ Section 10.5, "Asynchronous Server"

■ Section 10.6, "Runtime and Data Model APIs"

■ Section 10.7, "Adapters"

Oracle9iAS Wireless Components and Process Architecture

10-2 Oracle9iAS Wireless Developer’s Guide

Figure 10–1 Core technologies

10.1 Oracle9iAS Wireless Components and Process Architecture

10.1.1 Core Platform Architecture
Oracle9iAS Wireless provides a powerful, complete and integrated platform for
developing, testing and deploying mobile applications. The Oracle9iAS Wireless
core, runtime, tools are built top of proven Oracle technologies including OC4J
Container, Distributed Configuration Management (DCM), Enterprise Management
Daemon (EMD), XML, Oracle Internet Directory (OID), Single Sign-On Server (),
Oracle Process Manager (OPMN), WebCache, and Oracle9i. Oracle9iAS Wireless
in-house and community development and testing tools make the mobile
application development easier. Oracle9iAS Wireless Server can take mobile
applications to be deployed to any mobile network, and accessible from any device
through any gateway.

Oracle9iAS Wireless Components and Process Architecture

Core Technologies 10-3

Figure 10–2 Oracle9iAS Wireless Platform Architecture

As depicted in the above diagram, Oracle9iAS Wireless provides the following
wireless development/deployment tool sets:

■ WebTool – provides an advanced in-house device and transformers
management, mobile application development, testing, management and
deployment, and mobile user management.

See Oracle9iAS Wireless System Guide and Getting Started for more detail on how
to use the webtools.

■ Studio – provides simple mobile application testing and deployment in a
developer community fashion.

See Chapter 9, "Mobile Service Developer’s Tools" for more detail on how to use
it.

■ Customization – provides an out-of-the-box testing and demonstration for
mobile application customization through WEB. See Oracle9iAS Wireless Getting
Started and System Guide, and Chapter 11, "Advanced Customization" for more
detail on customization.

Oracle9iAS Wireless Components and Process Architecture

10-4 Oracle9iAS Wireless Developer’s Guide

■ Mobile SDK – provides a simple testing and debugging environment for mobile
applications for developers without installing the entire Oracle9iAS Wireless
software. The MobileSDK does not depend on Oracle9i database. JDeveloper
add-ins can be downloaded from Oracle Technology Network so that
MobileSDK can be integrated into the jDeveloper. Developing, debugging and
testing a mobile application have been made easier.

See Chapter 9, "Mobile Service Developer’s Tools" for more detail on how to use
it.

■ Wireless System Manager – provides configuration management and
performance monitoring for various wireless servers. It is packaged with
Oracle9iAS Enterprise Manager, and launched through the Oracle9iAS
Enterprise Manager console.

See Oracle9iAS Wireless Getting Started and System Guide for more detail on how
to use it.

■ Wireless Servers deployed as OC4J applications:

■ Wireless Web Server – serves wireless requests through HTTP.

■ Async Server – servers wireless requests through non-HTTP, i.e. through
email, SMS, and etc.

See Section 10.5, "Asynchronous Server" in this chapter for more details.

■ Push Server – provides the capability to push a message to any device
through any protocol.

See Section 13, "Push Service and SMS" for more details.

■ Module Server – provides the built-in mobile applications in the areas of
Personal Information Management (PIM), Mobile Commerce, and etc.

See Chapter 18, "Mobile PIM and eMail" and Chapter 19, "m-Commerce" for
more details.

■ Other Wireless Servers deployed as standalone Java applications:

■ Alert Engine – provides alert services to subscribers.

 See Section 12.1, "Alert Engine" for more details.

■ Data Feeder – enables you to fetch content from content providers through
any protocol in any format. The fetched content can be used as data source

Oracle9iAS Wireless Components and Process Architecture

Core Technologies 10-5

for the alert engine or mobile applications.

See Section 12.2, "Data Feeders" for more details.

■ Messaging Server – enable to deliver message in any protocol.

See Section 10.1.2.1, "Key Execution Flows" for more details.

■ Performance Logger – writes usage logging data of Wireless Web Server,
Async Server, Messaging, Alert Engine and Data Feeder asynchronously to
the database for performance monitoring purposes. Furthermore, the
information stored in these tables can be utilized for business intelligence
analysis.

10.1.2 Core Process Architecture
The following figure (divided into halves for easier viewing) shows how the above
Wireless Platform and Tools are deployed physically in terms of processes and
relationships with key components of a complete mobile application solution. The
wireless-specific components are within the dark-blue rectangle. As the wireless
component is an integral part of Oracle9iAS, it seamlessly integrates with other
Oracle9iAS components including WebCache, Oracle Http Server, SSO, OID, EM,
and Oracle Portal (highlighted with light-blue background color).

Oracle9iAS Wireless Components and Process Architecture

10-6 Oracle9iAS Wireless Developer’s Guide

Figure 10–3 Oracle9iAS Wireless Process Architecture (part 1)

Oracle9iAS Wireless Components and Process Architecture

Core Technologies 10-7

Figure 10–4 Oracle9iAS Wireless Process Architecture (part 2)

Oracle9iAS Wireless Components and Process Architecture

10-8 Oracle9iAS Wireless Developer’s Guide

Oracle9iAS Wireless components contribute maximally 7 process groups on any
machine on which the wireless component is installed and configured.

■ Oracle Enterprise Manager (EM) Console – server that provides configuration
management and performance monitoring for all Oracle9iAS components
including Oracle9iAS Wireless. The wireless system manager is deployed on
this server. There is one and only one EM server process allowed on any
installed machine.

■ Wireless ToolSet – All the wireless tools including WebTool, Studio, and
Customization are deployed in this process group. This process group can be
started or stopped through the OC4J manager in the EM console. Default
installation will assign a single process to this process group. To increase
scalability, additional processes can be assigned to this group by modifying the
opmn.xml (REVISIT for the location and example). In this case, processes
assigned to this group have the same configuration settings. By default, these
OC4J applications are deployed, but are not auto-started until the first received
request.

■ Wireless Runtime Servers – All OC4J application-based wireless runtime
servers including wireless web server, async server, push server, and module
servers are deployed in this process group. This process group can also be
started or stopped through OC4J manager in the EM console. The default
installation will assign a single process to this process group. To increase
scalability, additional processes can be assigned to this process by modifying
the opmn.xml file (REVISIT for the location and example). In this case,
processes assigned to this group have the same configuration settings. By
default, these OC4J applications are deployed; only the wireless web server and
async server are configured to be auto started; other applications are started
upon the first received request.

■ Wireless Standalone Java Processes – Alert Engine, DataFeeder, Performance
Logger and Messaging Server are standalone Java Processes that can be started,
stopped and configured through the wireless system manager (accessible
through the EM console). The default installation only enables the performance
logger. Ensure that Performance Logger has been started so that the
performance of various wireless servers on this machine can be monitored
through the wireless system manager. Other processes should only be started
manually if their respective functionality is desired.

Oracle9iAS Wireless Components and Process Architecture

Core Technologies 10-9

10.1.2.1 Key Execution Flows
Oracle9iAS Wireless platform can receive requests from any device via any protocol
and deliver content to any device via any protocol. The key request execution flows
are:

■ Http Request Flow

■ Async Request Execution Flow

■ Push Request Execution Flow

Http Request Flow—Many devices with certain gateway support can request
service through HTTP protocol. These devices include WAP phones with WAP
gateways, fixed voice lines with VoiceXML gateways, and others. As illustrated in
the above process architecture diagram:

1. Load Balancer dispatches a request sent from the external gateways to Oracle
Http Server. Generally, Load Balancer supports sticky session; this means that
the loader balancer will only load-balance these requests from a new session,
otherwise the requests of an existing session will be delivered to the same
Oracle HTTP Server. Load Balancer provides the hardware load-balancing
solution.

2. Oracle HTTP Server dispatches the received request to OPMN Worker, or to the
Wireless Web Server directly (based on the configuration). Requests are routed
to OPMN worker (if OC4J-based software load balancing is desired and
configured). Otherwise, the request is dispatched to the wireless web server
directly.

3. OPMN worker dispatches the request to the appropriate process based on the
process load (if the request is the first one of the current session). Otherwise, the
OPMN worker dispatches the request to the wireless web server process to
which the request session has been assigned.

4. The wireless web server processes receive the request. If the response for the
request from this particular requesting device is cached by the WebCache, the
response is returned immediately. If the request is to access a privileged service,
then the wireless web server redirects the request to SSO. Otherwise it proceeds
to step b below.

a. SSO perform the sign-on process via the wireless web server process. After
the sign-on succeeds, the original request resumes.

b. Wireless web server dispatches the original request to the mobile
application provider to request the mobile content in mobile XML.

Oracle9iAS Wireless Components and Process Architecture

10-10 Oracle9iAS Wireless Developer’s Guide

5. The mobile application provide (which are the external mobile applications)
process the request and return the mobile XML to the wireless web server
process. Oracle Portal is just another mobile application provider.

6. Wireless web server adapts the received content to the network and device and
returns to the request device.

7. The mobile content is visible on the requesting mobile device in its most native
form.

Async Request Execution Flow—Wireless server can also process requests from
non-HTTP based devices, such as SMS device, Pager, Email and etc. Here is the
request execution flow:

1. Messaging Server receives a service invocation request message and dispatches
it to the Async Server that runs insides the Wireless Runtime Server process.

2. Async Server preprocesses the request. The response is returned immediately. If
the request is to access a privileged service, the wireless web server will redirect
the request to SSO. Otherwise it proceeds to step b below.

a. SSO performs the sign-on process via the wireless web server process. After
the sign-on succeeds, the original request resumes.

b. Wireless web server dispatches the original request to the mobile
application provider to request the mobile content in mobile XML.

3. Async Server adapts the received response to the requesting device native
format and sends the adapted response to Messaging Server.

4. Messaging Server dispatches the response to the requesting device.

Push Request Execution Flow—Wireless platform can also push any message to
any device via different protocols. Out-of-the-box, any message can be pushed out
as a SMS message, an email, a voice mail, a fax or to Oracle Mobile Message
Gateway. The push request execution flow is as follows:

1. Push applications including Push Server, Alert Engine, or external applications
can compose a message and send the message through calling push APIs.

2. Messaging Server asynchronously delivers the received message to the delivery
provider through the specified protocol.

3. Messaging Server also asynchronously queries the delivery status (if supported
by the provider).

4. Push applications can either pull the delivery status or be notified.

Oracle9iAS Wireless Components and Process Architecture

Core Technologies 10-11

10.1.2.2 Default Configuration
The default installation configures the installed wireless component to work with
the Oracle HTTP Server, WebCache on the local machine. The following mount
points are added in the configuration file of the Oracle HTTP Server on the local
machine:

/ptg -- for wireless web server

/async -- for async server

/modules – for module server

/webtool – for accessing webtools

/studio – for mobile studio

/customization – for accessing customization portal

/push -- for publishing the push message

If using an Oracle HTTP Server on a different machine (instead of on the local
machine), you must manually configure the Oracle HTTP Server. For instructions
on configuration, see Oracle9iAS Wireless Getting Started and System Guide.

By default, all the above mounting points are exposed. Comment out these
mounting points (so you are not publishing the configuration file from the Oracle
HTTP Server).

By default, the Wireless ToolSet and Wireless Runtime Server process groups are
configured with single process only. See Oracle9iAS Wireless Getting Started and
System Guide to learn how to configure them in load balancing mode.

10.1.2.3 Dependency
Files under ORACLE_HOME/wireless/lib belong to Oracle9iAS Wireless. They are:

■ panama_modules.zip

■ panama_modules_commerce.zip

■ panama_modules_common.zip

■ panama_modules_infra.zip

■ panama_modules_location.zip

■ panama_modules_pim.zip

■ studio.jar

Oracle9iAS Wireless Components and Process Architecture

10-12 Oracle9iAS Wireless Developer’s Guide

■ wireless.jarclient.zip

■ server.zip

■ ssosdk902.jar

Oracle9iAS Wireless depends upon the following jar/zip files included in the
Oracle9iAS Wireless common technology stack:

Table 10–1 Oracle9iAS Wireless Dependent Files

Depending jar/zip files Description Location

uix2.jar, share.jar Uix ORACLE_HOME/jlib/uix2.jar

ORACLE_
HOME/share/share.jar

classes12.zip JDBC driver

ORACLE_HOME/jdbc/lib jndi.jar

ORACLE_HOME/jlib xmlparserv2.jar Xml parser

ORACLE_HOME/lib sax2.jar, regexp.jar

ORACLE_HOME/jlib jai_codec.jar, jai_core.jar, jpeg_
codec.jar, ordimimg.jar

sdoapi.jar, sdovis.jar

Advanced imaging ORACLE_HOME/ord/jlib OH/lbs/mapviewer/web/WEB-INF/lib
/sdoapi.jar

OH/lbs/mapviewer/web/
WEB-INF/lib/sdovis.jar

providerutil.jar LDAP provider

ORACLE_HOME/jlib mail.jar, activiation.jar, pop3.jar EMail client

ORACLE_HOME/lib xschema.jar

ORACLE_HOME/lib http_client.jar, javax-ssl-1_2.jar, jssl-1_
2.jar

http/ssl/https

OH/j2ee/home/lib/javax-s
sl-1_2.jar

OH/j2ee/home/lib/jssl-1_2.jar OH/lib/http_client.jar

dcm.jar, emd.jar, emPID.jar,
log4j-core.jar

ORACLE_HOME/lib/libnmuk.so ORACLE_HOME/bin/nmuk.dll

EM OH/dcm/lib/dcm.jar OH/sysman/webapps/emd/WEB-INF/l
ib/emd.jar

OH/sysman/webapps/em
d/WEB-INF/lib/log4-core.j
ar

$ORACLE_HOME/lib/emPid.jar ldapjclnt9.jar

OID client OH/jlib/ldapjclnt9.jar soap.jar

Integration with other Components

Core Technologies 10-13

10.2 Integration with other Components
This section describes Oracle9iAS Wireless integration with Single Sign-On (SSO)
and Oracle Internet Directory (OID) server. The IAS v902 SSO is used by all IAS
v902 components for user authentication, and OID is the single place for storing all
the User related information.

This integration provides:

■ a framework for secure SSO from browser clients to web-based applications,
including Oracle Applications and Tools, through standard protocols.

■ support for partner applications, which take full advantage of the SSO
framework, as well external applications for support of legacy and third-party
products.

■ seamless integration with Oracle’s middle tier web portal product, iPortal, and
allows management of user information in an external directory, allowing
integration with SSO technologies for other, non-Oracle applications.

Users authenticate only once, and can access any SSO partner application. For
example, a user authenticated by the Oracle9iAS Wireless server can access any
SSO-enabled Partner Application (such as Oracle Portal) without authenticating
again.

The following scenarios illustrate interactions between Oracle9iAS Wireless server
and the SSO server.

10.2.1 Scenario 1: User Authentication by Oracle9iAS Wireless (device portal)
The Oracle9iAS Wireless server authenticates a user when the user sends an explicit
Login Request (identified by URL parameter PAlogin=true), or tries to access a
private service.

Soap OH/soap/lib/soap.jar repository.jar

Repository api OH/jlib/repository.jar ohw.jar

Oracle Help for Web

Table 10–1 Oracle9iAS Wireless Dependent Files

Depending jar/zip files Description Location

Integration with other Components

10-14 Oracle9iAS Wireless Developer’s Guide

Figure 10–5 Interactions between Oracle9iAS Wireless and the Login Server

1. The user sends a Login Request or accesses a private service.

2. Oracle9iAS Wireless sends the Login request (without username/ password) to
the SSO Server.

3. The SSO Server checks the SSO cookie. If one is present, the login server
identifies the user from the encrypted cookie and sends the SSO redirect form
(step 7). This happens if the user is already authenticated by an external partner
application (Section 10.2.2, "Scenario 2: User Authentication by an External
Application"). If the SSO Cookie is not present, the SSO server sends the mobile
xml login form to the Oracle9iAS Wireless server.

4. Oracle9iAS Wireless transforms the mobile xml login page to the appropriate
device markup language and sends the device markup login page (such as
WML) to the device browser.

5. The user enters the username/password and submits the Login Form.

6. Oracle9iAS Wireless forwards the Login Request (with user credentials) to the
SSO Server.

7. SSO Server authenticates the user. If the authentication is successful, the SSO
Server sends the SSO Redirect Form (if unsuccessful, the Login Form is sent
[step 3 above]) to Oracle9iAS Wireless.

Integration with other Components

Core Technologies 10-15

8. Oracle9iAS Wireless Server sends the home page of the user (or the private
service result) to the device browser.

10.2.2 Scenario 2: User Authentication by an External Application
In Oracle9iAS Wireless-v902, the first request to the device portal
(http://Oracle9iAS WirelessServer:port/ptg/rm) returns the home page of the
anonymous user (Guest), or the home page of the identified virtual User. From that
point, the user can access public services or can do an explicit login to access their
private services. The unauthenticated user can execute HTTP Adapter-based public
services, which points to an SSO-based partner application (such as Oracle Portal).
The partner application may complete the SSO-based user authentication.

Figure 10–6 Interactions Between Oracle9iAS Wireless, Login Server and the External
Application

1. An unauthenticated user executes an HTTP adapter-based service pointing to
an SSO-based external application.

2. Oracle9iAS Wireless sends an HTTP request to the external application.

3. The partner application sends an HTTP Redirect pointing to the SSO Server.

Integration with other Components

10-16 Oracle9iAS Wireless Developer’s Guide

4. Oracle9iAS Wireless follows the redirected URL.

5. SSO Server checks the SSO cookie. If one is present, the login server identifies
the user from the encrypted cookie and sends the SSO redirect form (step 9
below). This happens if the user is an authenticated user. If the SSO Cookie is
not present, the Login Server sends the mobile xml login form to the Oracle9iAS
Wireless server.

6. Oracle9iAS Wireless transforms the mobile xml login page to the appropriate
device markup language and sends the device markup login page (such as
WML) to the device browser.

7. The user enters the username/password and submits the Login Form.

8. Oracle9iAS Wireless forwards the Login Request (with user credentials) to the
SSO Server.

9. SSO Server authenticates the user. If the authentication is successful, SSO Server
sends the SSO Redirect Form (if unsuccessful, the Login Form is sent [as in step
5 above]) to Oracle9iAS Wireless. After successful authentication, the
Oracle9iAS Wireless session of the user is upgraded.

10. Oracle9iAS Wireless follows the SSO Redirect form. The redirect form points to
the external partner application.

11. The partner application returns the service content in mobile XML.

12. Oracle9iAS Wireless transforms the mobile xml content to the appropriate
device markup language, and sends the device markup content to the device
browser.

10.2.3 Scenario 3: User Authentication by mod_osso
All Web-based Oracle9iAS Wireless applications (such as Customization) will
authenticate users using mod_osso, which is a module plugged into Oracle HTTP
Server. All of the Web-based Oracle9iAS Wireless applications running behind
Oracle HTTP Server are treated as a single partner application. Users can access any
of the applications after single sign-on.

Integration with other Components

Core Technologies 10-17

The device portal uses the value of the HTTP header OssoUser_Guid to identify the
mod_sso authenticated user.

10.2.4 Scenario 4: Voice based authentication
Voice authentication is accomplished by Oracle9iAS Wireless (locally) using the
account number and the PIN of the user. Note that an authenticated user accessing
external SSO partner applications from a voice device must re-authenticate (using
username and password).

10.2.5 Global Logout
Oracle9iAS Wireless server participates in the SSO Global Logout. The following
steps detail the interactions between Oracle9iAS Wireless, SSO Server and Partner
Applications.

10.2.5.1 Scenario 1: Logout from Oracle9iAS Wireless
The user can click Oracle9iAS Wireless Logout to sign off.

1. The user sends a an Oracle9iAS Wireless Logout request (identified by URL
parameter PAlogoff=true).

2. The Sign Off implementation of Oracle9iAS Wireless sends an HTTP request to
the SSO Sign-Off URL.

3. The SSO server returns the mobile XML global logout page and a special HTTP
header (X-Oracle-SSO-logout with value = true). The global logout page
contains one image for each partner application that has the user session.

4. Oracle9iAS Wireless sends HTTP requests to each image link. This is done so
that the user’s session gets cleaned up in all the partner applications.

5. Oracle9iAS Wireless terminates the user’s session.

6. If Logout is accomplished through Oracle9iAS Wireless link, then the home
page of the “Guest” user is returned.

Note: When executing HTTP Adapter-based services pointing to
external partner applications, the mod_sso authenticated user will
have to be authenticated again. The reason for this is that for mod_
sso authenticated users, the SSO cookies are stored in the PC
browser.

Integration with other Components

10-18 Oracle9iAS Wireless Developer’s Guide

10.2.5.2 Scenario 2: Logout Link
The authenticated user can click on the logout link on the page returned by the
SSO-based partner application. In this case, the logout link will point to the SSO
sign-off URL.

1. The user clicks on the logout link which points to the SSO sign-off URL.

2. The SSO server returns the mobile XML global logout page and a special HTTP
header (X-Oracle-SSO-logout with value = true). The global logout page
contains one image for each partner application that has the user session.

3. Oracle9iAS Wireless sends HTTP requests to each image link. This is done so
that the user’s session gets cleaned up in all the partner applications.

4. Oracle9iAS Wireless terminates the user’s session.

5. Oracle9iAS Wireless follows the done_URL of the global logout page.

6. The content returned by the done_URL is returned to the device.

10.2.5.3 Scenario 3: Logout from Web-based Oracle9iAS application
Since all Web-based Oracle9iAS applications are authenticated through mod_osso,
and are treated as a single partner application, logout from any application triggers
global sign-off and none of the applications will be accessible until the user signs on
through mod_osso again.

10.2.6 Oracle9iAS Wireless-OID Integration
In this release, user information is stored centrally in OID. The SSO server uses an
OID repository to authenticate users. The following table shows the attribute
mapping between PanamaUser (stored in Oracle9iAS Wireless repository) and
orclUserV2 user attributes (stored in OID).

Table 10–2 Attribute Mapping between PanamaUser and orclUserV2 user

PanamaUser OID User

Name orclcommonnicknameattribute (by default cn) specified in OID
configuration

DisplayName DisplayName

Enabled orclIsEnabled

PasswordHint orclPasswordHint

PasswordHintAnswer orclPasswordHintAnswer

Integration with other Components

Core Technologies 10-19

iASv902 administrators can use tools (such as Delegated Administrative Services
[DAS]), to create a new User in OID or to modify attributes of an existing user.
Alternatively, Oracle9iAS Wireless customers can implement their own user
administrator tool to create/modify/delete users using Oracle9iAS Wireless model
APIs.

The user information is synchronized between Oracle9iAS Wireless and OID
repositories using the following mechanisms:

■ Oracle9iAS Wireless repository synchronization after user authentication

■ PL/SQL based asynchronous synchronization

■ Oracle9iAS Wireless model API interface

10.2.7 Oracle9iAS Wireless Repository Synchronization after User Authentication
Oracle9iAS Wireless synchronizes user information (stored in the Wireless
repository) with OID after SSO authentication.

Language and Country preferredLanguage

TimeZone TimeZone

DateofBirth orclDateOfBirth

Globaluid orclguid (orclguid attribute uniquely identifies OID Users)

Password user password

Password Confirm Confirms user password.

Gender orcl header

Table 10–2 Attribute Mapping between PanamaUser and orclUserV2 user

PanamaUser OID User

Integration with other Components

10-20 Oracle9iAS Wireless Developer’s Guide

Figure 10–7 Interactions between Oracle9iAS Wireless, SSO and OID

1. User sends an explicit login request or tries to access a private Service, or an
external SSO partner application. The SSO server challenges user credentials
and the user is authenticated.

2. If the authenticated user does not exist in the Oracle9iAS Wireless repository,
Oracle9iAS Wireless retrieves the user information from OID and creates a new
user in the Oracle9iAS Wireless repository. Otherwise, the User attributes in the
local repository are synchronized with the attributes stored in the OID.

10.2.8 PL/SQL based asynchronous synchronization
The Oracle9iAS Wireless installation registers a PL/SQL procedure with OID. The
PL/SQL procedure is invoked when a user is modified or deleted in OID.

Note: The reason for synchronizing User attributes with OID is that the
PL/SQL notification mechanism does not guarantee real time
notifications.

Integration with other Components

Core Technologies 10-21

Figure 10–8 Interactions between PL/SQL and OID

1. User attribute is modified, or the user is deleted in OID.

2. The Provisioning Synchronization agent picks up the modifications and calls
the registered PL/SQL package.

3. The PL/SQL package accomplishes appropriate changes in the PanamaUser
table (if required).

4. The trigger on the PanamaUser table broadcasts a RefreshCache message to all
running instances of Oracle9iAS Wireless.

5. If the modified PanamaUser is cached by the running instances, the
PanamaUser object is reloaded from the Oracle9iAS Wireless repository.

10.2.9 Oracle9iAS Wireless Programmatic Model API Interface
The ModelFactory.createUser() method creates a corresponding User in the OID
repository.

The User.set methods update the corresponding User entry in OID for all the
attributes. The following table shows the attribute mapping between PanamaUser
(stored in Oracle9iAS Wireless repository) and orclUserV2 user attributes (stored in

Integration with other Components

10-22 Oracle9iAS Wireless Developer’s Guide

OID). The User.delete() method removes the corresponding User from the OID
repository. The current semantics of commit is preserved for the User modifications.

10.2.10 Oracle9iAS Wireless User Management Integrated with DAS
In Oracle9iAS Wireless integration mode, when you create a user through Webtool
User Management, the request is first redirected to OID DAS (Delegated
Administration Service), for entering Oracle9iAS User Common Attribute Values.
After that, the request is redirected back to the Webtool User Management page for
entering Wireless-specific attribute values.

The same applies for editing a registered Wireless user. The user is first edited
through DAS and then through Webtool User Management.

10.2.11 WebCache Integration
Oracle9iAS Wireless is integrated with Oracle WebCache to improve page rendering
performance and scalability. It must be clarified at the outset that WebCache is not
deployed in the traditional sense with Oracle9iAS Wireless. WebCache is usually
deployed in front of web-servers serving HTML content, and interacting with
HTML clients and the web-server to cache dynamic content. However, with
Oracle9iAS Wireless, the wireless runtime determines what content needs to be
inserted into WebCache and when to expire content in the cache. WebCache, in this
case, acts as a device adaptation cache rather than a reverse-proxy cache.

10.2.11.1 How Does this Work?
Since markup content is cached using WebCache, the performance and scalability
benefits are due to two factors: reduced device adaptation costs, and significantly
reduced adapter invocation costs. The savings in terms of device adaptation costs
are due to the fact that content that can be shared across users and sessions is
essentially transformed only once (per logical device) from its Mobile XML format.
Secondly, since the content is not generated every time by an adapter, the total
adapter invocation cost is significantly reduced for a site that has a large subset of
cacheable pages.

10.2.11.2 A Cache Miss Scenario
1. An incoming request is received by the wireless runtime, which requests the

cache for a page corresponding to the request and the device that made the
request.

Integration with other Components

Core Technologies 10-23

2. In this case, the page does not exist in the cache, causing WebCache to send a
request back to the wireless runtime, requesting for the page.

3. This time, the runtime recognizes this request to be from WebCache, rather than
from a client.

4. The runtime processes the requests following the traditional code-path of
invoking the service corresponding to the request and transforming the content.

5. The transformed content is now returned as a response to the WebCache
request.

6. WebCache examines the response to determine if the page is cacheable or not,
and if it is, cacheable for what period of time.

7. Assuming that this particular page is cacheable, WebCache inserts the page into
the cache with an expiration limit set to the page.

8. WebCache then serves this page out as a response to the original request from
the runtime, which in turn uses this page as a response to the client request.

Figure 10–9 A Cache Miss Scenario

Integration with other Components

10-24 Oracle9iAS Wireless Developer’s Guide

10.2.11.3 A Cache Hit Scenario
In this case, an incoming request from a client is for a page that has been cached by
webcache.

1. The wireless runtime sends a request to webcache, which examines the cache to
see if the page is cached or not.

2. If cached, it checks to see if the page has expired. If the page has not expired, it
serves it out of the cache to the runtime, which in turn uses this page as a
response to the client request.

3. However, if the page has expired, it once again follows the same routine as it
would in the event of a cache miss.

Figure 10–10 Cache Hit Scenario

10.2.11.4 Configuration

10.2.11.4.1 Enabling Caching for the Site To cache dynamic content, it is necessary to
enable WebCache in the first place. From the System Manager, click on the Site tab.
Under the Administration section, in the Configuration sub-section, click on
WebCache Configuration.

Integration with other Components

Core Technologies 10-25

■ To enable webcache, check the Enable WebCache checkbox.

■ Next, enter the complete URL that corresponds to the webcache installation. Be
sure to include the port number at which WebCache listens (default port is
1100) and the servlet path to the wireless runtime (default is /ptg/rm).

■ Supply an invalidation password (default is Administrator). This should be the
same as the WebCache invalidation password that is set from the WebCache
administration console. See the WebCache Configuration Guide for details on
how to perform this task.

■ Provide an invalidation port (default is 4001). This should be the same as the
invalidation port specified from the WebCache administration console. See the
WebCache Configuration Guide for details on how to perform this task.

■ Enter a timeout value for requests made to WebCache (default is 20 seconds).
Ensure that this is at least 5 seconds less than the request timeout value from the
WebCache administration console. See the WebCache Configuration Guide for
details on how to perform this task.

■ Click OK after the changes have been made.

10.2.11.4.2 Cache-enabling a Service The steps detailed above described how to
enable caching for a site. For the cache to be of use, it is necessary to enable services
to be cacheable.

■ While creating a master service, the second step in the service creation wizard is
the Caching step. To cache-enable a service, check the Cacheable checkbox.
Once this is done, an Invalidation Frequency section appears. In this section,
specify the frequency at which pages corresponding to the service must be
removed from the cache.

■ When a service is published from Content Manager, if the master service
specified is cacheable, then the published service automatically becomes
cacheable.

10.2.11.4.3 Invalidating Cache Content For any caching mechanism to be effective, it is
necessary to perform invalidation of the cache contents at appropriate intervals.
Invalidation of wireless content residing in webcache can be either policy-based or
asynchronous.

Policy-based Invalidation—It is possible to specify in advance if a page should be
cacheable or not. One of the ways to do this is by specifying the invalidation
frequency of a service (as in the previous section). When a page is inserted into the

Integration with other Components

10-26 Oracle9iAS Wireless Developer’s Guide

cache, the invalidation frequency of the service it belongs to is taken into account
while determining how long the page should live in the cache.

It is also possible to dynamically specify the cacheability of a page. This is done at
the content-source. If the page is to be specified as cacheable, the SimpleResult
element should have a SimpleMeta child element. This element has a required
attribute ‘cache’, which when set to ‘yes’, enables caching for the page and when set
to ‘no’ disables caching. An optional attribute to be used in conjunction with a ‘yes’
value for the ‘cache’ attribute is ‘ttl’. This can be used to specify in seconds the
number of seconds the page should be cached before expiring it. For example:

<SimpleResult>
<SimpleMeta cache=”no”/>
…..
</SimpleResult>

results in the page being non-cacheable, as below:

<SimpleResult>
<SimpleMeta cache=”yes” ttl=”300”/>
….
</SimpleResult>

results in the page being cached for 300 seconds.

Apart from using the SimpleMeta tag to specify cacheability, it is possible to use
standard HTTP cache-control headers and ESI headers to specify cacheability for a
page. Refer to your documentation on WebCache on how to specify cacheability
using ESI headers.

The order in which cacheability for a given page is evaluated is as follows:

■ Check for HTTP or ESI cacheability headers. These override SimpleMeta tags if
any are present.

■ SimpleMeta tags for a given page override the invalidation frequency for the
service it belongs to.

■ If neither the HTTP/ESI headers nor the SimpleMeta headers are present, the
default cacheability policy for the service is applied to the page.

Asynchronous Invalidation—Despite specifying the cacheability policy for a page
at the time of service creation or during the generation of the page, it may be
necessary to explicitly invalidate content in the cache. It is possible to invalidate and
refresh content in the cache based on a master service or a device.

Integration with other Components

Core Technologies 10-27

From System Manager, click on the Site tab. Under the Administration section, in
the Configuration sub-section, click on either ‘Refresh webcache – Master service’ or
‘Refresh webcache – Device’.

■ To invalidate all pages belonging to a master service, click on ‘Refresh webcache
– Master service’, select a master service by clicking a radio button
corresponding to the master service and click Refresh.

■ To invalidate all pages with a given device markup, click on ‘Refresh webcache
– Device’, select a device by clicking a radio button corresponding to the device
and click Refresh.

10.2.11.5 Administration
If webcache is reinstalled on a different machine/port the WebCache settings must
be reconfigured as detailed in the configuration section above.

If the wireless instance is reinstalled on a different machine, the location of the
wireless instance should be modified in the ‘Application Servers’ of WebCache’s
administration console. See the WebCache Configuration Guide for details on how
to perform this task.

10.2.11.6 Building a cacheable service
In this section we shall build a sample service that is cacheable using webcache. We
shall also explore the means to control the cacheability of such a service
dynamically.

The sample service displays the current time and therefore immediately
demonstrates the cached status of the page. We follow the steps detailed below to
create the service:

1. Create an external content source that can be invoked from an HTTP adapter.
(As an aside, there is no requirement that a cacheable service need to be HTTP
adapter based, any other adapter would do just as fine). We designate the
content source as a simple JSP page which displays the current time in Mobile
XML. For example:

<%@ page language="java" %>
<%@ page import="java.text.SimpleDateFormat"%>
<%@ page import="java.util.Date"%>

<%@ page session="false" %>
<%@ page contentType="text/html; charset=iso-8859-1" %>

<SimpleResult>
<SimpleContainer>

Integration with other Components

10-28 Oracle9iAS Wireless Developer’s Guide

<SimpleText>
<SimpleTextItem>
<%

Date date = new Date();
SimpleDateFormat formatter =

new SimpleDateFormat("yyyy.MM.dd G 'at' hh:mm:ss a zzz");
%>
<%=formatter.format(date)%>

</SimpleTextItem>
</SimpleText>
</SimpleContainer>
</SimpleResult>

Let us assume that this page is deployed at the URL:
http://mycontent-server.oracle.com/dateserv.jsp

2. We need to create a master service that uses this as the content source.

■ From the System Manager UI, clicking on the Master Services tab we
create a new master service by clicking the Create Master Service button. In
the mandatory fields (marked by an asterisk), we enter the value Date Serv
for the Name of the master service and choose HTTPAdapter as the Adapter
and ensure that the Valid checkbox is checked.

■ In the subsequent screen, we check the Cacheable checkbox and choose the
Invalidation Frequency by specifying the Cardinal as 40 and Unit as
Seconds, causing all pages corresponding to the service (in this case just one
page) to be cached for 40 seconds.

■ In the next screen since our sample service does not have any Init
Parameters, we click the Next button.

■ In the subsequent Input Parameters screen, we select the URL column and
check the Mandatory field and enter the Default Value as the URL to our
content source, i.e. http://mycontent-server.oracle.com/dateserv.jsp

■ We can skip the next couple of screens (by clicking Next) and create the
master service by clicking the Finish button on the last screen.

3. Now, we need to publish the service from the Content Manager.

■ We click the Add Service button to add a link to the master service that was
created earlier.

Integration with other Components

Core Technologies 10-29

■ We name the new service as DateService in the subsequent screen by
entering DateService in the Name field. We also ensure that at least the
Visible checkbox is checked and the Type is chosen as Normal Service.

■ In the next screen we choose Date Serv as the master, drilling down to the
folder it was created in and click on Next.

■ We accept the default values in the next screen by clicking Next

■ We publish the service by clicking Submit on the next screen.

4. We need to associate the service with an available Group for which we choose
the Groups tab in the next screen.

■ We choose a Group, say Guests and click on the Assign Services button.

■ In the next screen under the list of Available Services, we choose DateService
and click on the Add To Group button.

■ In the subsequent screen DateService should now be listed under Group
Accessible Services. We click the Finish button to complete the service
association.

The service is now accessible from the device portal. We can see that the time-stamp
displayed as a result of invoking the DateService service does not change for 40
seconds, indicating that the service has been cached for 40 seconds and invalidated
after. Please note that after a page in the cache has expired, the content is fetched
from the content source only on a demand basis, i.e. after 40 seconds elapse
Webcache will not refresh the content immediately, but will do so only after a new
request for the page is received.

10.2.11.7 Dynamic specification of page invalidation
The time for which the cache can retain the page without refreshing it has been set
to 40 seconds during the service creation. However, this value can be changed
dynamically at the time of generation of the Mobile XML. This can be done in two
ways:

10.2.11.8 Mobile XML markup
In this case the generated Mobile XML can have a SimpleMeta tag to attain this.
Please see the Policy-base Invalidation sub-section in the previous section on how to
do this. For our sample service, to ensure that the page is expired after 10 seconds
(rather than the default of 40 seconds), the JSP page would be:

<%@ page language="java" %>
<%@ page import="java.text.SimpleDateFormat"%>

Integration with other Components

10-30 Oracle9iAS Wireless Developer’s Guide

<%@ page import="java.util.Date"%>

<%@ page session="false" %>
<%@ page contentType="text/html; charset=iso-8859-1" %>

<SimpleResult>
<SimpleMeta cache=”yes” ttl=”300”/>

<SimpleContainer>
<SimpleText>
<SimpleTextItem>
<%

Date date = new Date();
SimpleDateFormat formatter =

new SimpleDateFormat("yyyy.MM.dd G 'at' hh:mm:ss a zzz");
%>
<%=formatter.format(date)%>

</SimpleTextItem>
</SimpleText>
</SimpleContainer>
</SimpleResult>

10.2.11.9 ESI headers
Responses from the content source may contain ESI headers as part of HTTP
headers that can dictate cache expiration behavior. Using ESI headers entail no
changes to the Mobile XML. The following ESI header expires the page is 30
seconds.

Surrogate-Control: max-age=30+60, content="ESI/1.0"

For more information on ESI headers, please refer to the Webcache Developer’s
Guide.

10.2.12 Oracle Portal and Oracle9iAS Wireless
Oracle9iAS Portal is a web-based application model for building and deploying
e-business portals. It provides a environment for accessing and interacting with
enterprise software services and information resources. Portal provides a
framework that integrates web-based resources such as web pages, applications,
business intelligence reports, and syndicated content feeds, within standardized,
reusable information components called portlets.

A portlet is an area of HTML/XML located within a defined area of a Web page.
Portlets communicate with the portal through an entity called a provider. Portlets
form the fundamental building blocks of a Oracle9iAS Portal page. Each portal page

Integration with other Components

Core Technologies 10-31

consists of content presented through one or more portlets and links that allow the
user to navigate to another page to take some action.

Portlets summarize, promote or provide basic access to an information resource.
The portlets allow information resources to be personalized and managed as a
service of Oracle9iAS Portal. The portal framework provides additional services
including single sign-on, content classification, enterprise search, directory
integration, and access control. OraclePortal traditionally has been supporting
Desktop/PC Web browsers. Starting in Orcale9iAS releas2.0 OraclePortal, besides
support standard web browsers, will enable Oracle9iAS Portal pages to be accessed
from wireless devices. OraclePortal, working in conjunction with Oracle9iAS
Wireless, automatically transforms the portal page structure that is appropriate for
the wireless devices. Portal generates the Page structure in Oracle9iAS Wireless
XML, for all request from wireless device, and rendered to the device by Oracle9iAS
Wireless. This allows portlets to provide wireless interface using OraclePortal,
through Oracle9iAS Wireless.

10.2.13 Oracle Portal as a Wireless Service
To enable Oracle9iAS Wireless access to Portal, the Portal must be deployed as a
Wireless service in the Oracle9iAS Wireless repository. Each Portal installation is
deployed as an HTTP Adapter service in Oracle9iAS Wireless. Multiple Portals may
be deployed on a single Wireless instance. The HTTP adapter service accepts a URL
as a configuration parameter and must be set to the URL of the Portal's home page.
To create a Wireless service, a Master Service definition based on an HTTP adapter
must be created using the Oracle9iAS Wireless Webtool. Also, you must create an
OraclePortal Service based on the HTTP adapter Master Service.

OraclePortal redirects requests from a Wireless device to an Oracle9iAS Wireless
server. The Oracle9iAS Wireless Server accepts the request and invokes the
OraclePortal home page over HTTP and accepts the response generated (in
Oracle9iAS Wireless XML), from OraclePortal. The XML response, generated by
OraclePortal, is then adapted to the native device markup by the Oracle9iAS
Wireless server. All further requests and responses between Wireless device and
OraclePortal is mediated by the Oracle9iAS Wireless Server.

Integration with other Components

10-32 Oracle9iAS Wireless Developer’s Guide

Figure 10–11 Oracle Portal Integration

Wireless devices make the first request to OraclePortal server and Portal redirects
the device request to Wireless Server. The Portal appends two parameters to the
redirected URL, the two query parameters appended are "PAoid" and "PAhome".
Both PAoid and PAhome contain the value of the object id (service-id in the
Wireless repository) of the Portal’s HTTP adapter service. The syntax of the
redirected URL is:

http://9iASWSerrver:port/ptg/rm?PAoid=<OraclePortal object
id>&PAhome=<OraclePortal object id>

The PAoid parameter allows the Wireless server to directly launch the Portal home
page, without having to navigate through the Wireless server's folder and service
hierarchy. The PAhome sets the Portals Home Page as the home page for the current
wireless session.

10.2.14 Developing Wireless Portlets
Portlets are owned by entities called Providers, and one Provider can manage one
or many portlets. Providers are the backbone behind the Portlets being displayed on
each page. Portal supports a Web Provider framework that is written as a web
application. It is installed and hosted on a web server and is remote from the Portal.

Integration with other Components

Core Technologies 10-33

A portlet exposed as a Web Provider can be developed in any web language. A Web
Provider communicates with Oracle9iAS Portal using SOAP(XML).

OraclePortal supports a Java based Portal Developer Kit (PDK) framework to
develop portlets and services. The Java PDK Framework is a set of services that
enable Java programmers to easily create portlets from existing Java-based
applications (Java, Java Servlets, and JSPs). It provides an abstraction to handle
communication with Oracle9iAS Portal, default classes to simplify portlet creation,
and exposes APIs for end-user customization, session storage, security, and logging.

For Wireless devices, OraclePortal will support Portlets that generate Oracle9iAS
Wireless XML. To enable wireless access Portlets must generate Oracle9iAS Wireless
XML and indicate such capability using the Java PDK framework. The Java PDK
framework uses a Provider.xml file to discover the capabilities of the Portlets
supported by a Provider. Refer to OraclePortal's PDK-Java User's Guide for more
information.

Following is a overview of tags (in the Provider.xml file) that indicates the wireless
capabilities of a Portlet.

1.<acceptContentType>
Usage:

<acceptContentType>text/vnd.oracle.mobilexml</acceptContentType>

This value "text/vnd.oracle.mobilexml" indicates that the portlet is capable of
generating Oracle9iAS Wireless XML required for Wireless access. A portlet can be
enabled for both HTML (PC Desktop) and Wireless Access by indicating it can
accept both the content types such as:

<acceptContentType>text/vnd.oracle.mobilexml</acceptContentType>
<acceptContentType>text/html</acceptContentType>

If the Portlet is capable of generating only Oracle9iAS Wireless XML
(text/vnd.oracle.mobilexml), then (unless otherwise indicated) the Portlet will
transform the Oracle9iAS Wireless XML to HTML for PC Desktop clients.

2.<mobileFlags>
Usage: <mobileFlags>MOBILE_ONLY</mobileFlags>

Portlets can set this value to MOBILE_ONLY and hence indicate that this Portlet
must be rendered in wireless devices only. This will prevent the default behavior of
a Portal to transform Oracle9iAS Wireless XML, generated by the Portlet and
rendered to PC Desktop clients.

3.<showLink>
Usage:<showLink>true</showLink>

Integration with other Components

10-34 Oracle9iAS Wireless Developer’s Guide

Portal renders all the Portlets on Wireless devices as links. Portlets must set this
value to True to be rendered on a wireless device. A value of True allows the Portal
to generate a Link, pointing to the Portlet content, on the wireless device.

4.<linkPage>
Usage:<linkPage

class="oracle.portal.provider.v2.render.http.ResourceRenderer">
<resourcePath>/mypath/mypage.jsp</resourcePath>
<contentType>text/vnd.oracle.mobilexml</contentType>
</linkPage>

This tags holds the pointer to the resource which generates the required link that is
rendered on a wireless device. This resource must generate Oracle9iAS Wireless
XML. Below is a sample link page implemented in JSP.

<%@ page session="false" contentType="text/vnd.oracle.mobilexml" %>
<SimpleHref target="/mypath/mywireless.jsp" label="Go">

Wireless HelloWorld
</SimpleHref>

The new version JPDK has been updated to understand these wireless properties of
a Portlet. The JPDK also supports wireless specific request information like location
and device information, which can be accessed by the Portlets through the JPDK
APIs.

10.2.15 OraclePortal, Oracle9iAS Wireless and Single SignOn (SSO)
Both OraclePortal and Oracle9iAS Wireless depend on Oracle's SSO solution for
user authentication and login. This integration allows the user to invoke protected
applications defined on both systems and eliminates multiple login dialog boxes for
users.

Oracle9iAS Wireless Server upgrades the session context of a user to an
“authenticated” state when any service or application (HTTP Adapter services)
validates the user credentials with the SSO server. When OraclePortal, mobile
application, validates the credentials of a user with the SSO Server, the session
context in Oracle9iAS Wireless is also updated. This allows wireless Portlets
deployed on OraclePortal to uses services such as User Location Picker, Routing,
Mobile Positioning supported by the Oracle9iAS Wireless Server.

Integration with other Components

Core Technologies 10-35

10.2.16 Portlets for Services Deployed on Wireless Server
You can use OraclePortal’s services to provide a PC Desktop view of your
Oracle9iAS Wireless services. You can use Portal’s JPDK framework to provide a
“showPage" and "editPage", for web-based customizations.

Since the Portal itself can be accessed from a wireless device, you must also provide
a mobile Portlet. On a wireless device, the mobile Portlets are rendered as links and
can be made to point to a service deployed on the Oracle9iAS Wireless server. You
can use Portal’s JPDK framework to provide a “linkPage" that generates the
appropriate link for your wireless service. To point to a wireless service from a
mobile portlet you can use following URL syntax in your Oracle9iAS Wireless XML:

target=“___REQUEST_NAME__?___SESSION__&PAoid=<PAoid of Wireless Service>"

The Wireless server will replace all “___<Name>__” to the correct values at runtime
and will invoke a service define in the Oracle9iAS Wireless repository.

The following is a sample link page:

<%@ page session="false" contentType="text/vnd.oracle.mobilexml" %>
<SimpleHref target="/___REQUEST_NAME__?PAoid="+PAoid + "&___

SESSION__" label="Go">
My Wireless Service

</SimpleHref>

Mobile devices make the first request to OraclePortal server. Portal redirects the
device request to Oracle9iAS Wireless Server, over HTTP, and appends two
parameters to the redirected URL. The two query parameters are "PAoid" and
"PAhome". Both PAoid and PAhome contain the Portal’s object/service id. The
typical syntax of the redirected URL are:

http://Oracle9iAS
WirelessSerrver:port/ptg/rm?PAoid=<OraclePortalServiceid>&PAhome=<OracleP
ortalService id>

The PAoid parameter allows the Wireless server to directly launch the Portal home
page, without having to navigate through the Wireless server's folder and service
hierarchy. The PAhome sets the Portals Home Page as the home page for the current
wireless session.

10.2.16.1 Webtool and Customization as Portal Providers
The post-installer automatically registers Webtool and Customization as two Oracle
Portal Providers. Thus, if an Oracle Portal user selects the two providers he/she will
see two portlets: one for Webtool, and one for Customization. If the URL for

Wireless Services

10-36 Oracle9iAS Wireless Developer’s Guide

Webtool or Customization is changed, the provider can be registered from Wireless
System Manager, part of Oracle Enterprise Manager. For more information, see
Oracle9iAS Wireless Getting Started and System Guide.

10.3 Wireless Services

10.3.1 Wireless Services Overview
Services enable end users to access the functionality of Oracle9iAS Wireless. They
represent the link between the content source and the delivery target. Services tie a
specific data source (through an adapter) to the different devices.

There are different types of services:

■ MasterService—provides the actual implementation of the service.
MasterServices specify the adapter used for the service and any service-specific
parameters.

■ Link—a pointer to a service. In most cases Links are used to publish
MasterServices to end users and to customize the MasterService parameters.

■ Module—a pointer to a MasterService with a known URL.

■ Folder—container for other services, including other Folders. Used to build
service trees.

■ ExternalLink—a service that points to an external resource.

10.3.1.1 MasterService
MasterServices provide the basic wireless functionality. They are the actual
implementation of the service. Each MasterService is based on one adapter. A
MasterService sets values for the adapter init, input and output parameters. Each
MasterService creates its own instance of the adapter it uses. Therefore, several
services can use the same type of adapter, and each can pass its own service-specific
argument values.

It is recommended that you build all MasterServices using the HTTPAdapter. That
gives you the flexibility to implement the service business logic using JSPs or other
web technologies.

10.3.1.2 Link
Links are used to further customize existing services by overriding the values of
their parameters.

Wireless Services

Core Technologies 10-37

When a Link service is invoked the Wireless server will merge the parameters with
the parameters of the service the Link points to, and invoke that service.

Links are also used to better organize services into user service trees. They give you
the flexibility to publish the same service under different names and in different
folders (different levels in the service tree). If you do not override any parameter
values, then invoking the link is the same as invoking the service it points to.

10.3.1.3 Module
Modules are wireless services with well-known virtual URL (OMP URL, that is,
omp://my.module).

Modules can be called from any application or module and may be instructed to
return control to another application or module. Calls may be nested to any level.
This mechanism of bi-directional linking allows quick applications assembly.

An important difference between a module and a regular service is that the module
receives information about the service it needs to return to after it is done. This is
not always the caller of the module (the module caller may want the module to
return to a different service).

10.3.1.4 Folder
Folders are containers for other services. They are used to better organize
user-accessible services into a service tree. The content of a folder is displayed by
invoking its rendering service—a special service associated with each folder.

The system rendering service displays the folder child services ordered by the
specified sort rule.

Optionally, you can specify icons and audio files to be displayed/played when a
service link is displayed in the folder content or when the service is invoked.

10.3.1.5 ExternalLink
An ExternalLink is a wireless service that points to an external resource. The
external resource is typically a Web page that serves content in a format supported
by the target device.

Oracle9iAS Wireless does not process the content of the ExternalLink target. As a
result, ExternalLink services are not available to all targeted devices, as are other
Wireless services. In most cases, ExternalLinks are set in the Customization portal
by the end user, not in the Service Designer.

Device and Network Adaptation

10-38 Oracle9iAS Wireless Developer’s Guide

10.3.2 Access Control
There are two type of services in terms of accessibility:

■ User Private Services—accessible by a single user.

■ Shared Services—accessible by multiple users.

There are different rules that apply to those two type of services.

The user private services are services that reside in the user home service tree. The
user can access all of those services. No other user can access those services.

The shared services in contrast are accessed by multiple users. The access is
controlled by the User - Group - Service relationship. When you assign a service to a
group, all users from that group can access the service.

10.4 Device and Network Adaptation
This section describes how to create and manage Oracle9iAS Wireless transformers.

10.4.1 Logical Device
Logical Device in Oracle9iAS Wireless represents either a physical device, such as
an Ericsson mobile phone or an abstract device, such as ASYNC. The Logical Device
stores the attributes of the physical device/ browser and device transformers. The
Oracle9iAS Wireless server uses the device transformer of the Logical Device
associated with the request to transform mobile xml service result to device mark
up language.

Each request in Oracle9iAS Wireless is associated with a Logical Device. The Device
Detection process, i.e. finding out the Logical device corresponding to a request, is
done for each Oracle9iAS Wireless request. Device Detection mechanism is
discussed later in the chapter.

The following table lists the Logical Device attributes. These attributes can be
retrieved and modified using programmatic java api’s. Refer to the javadoc of
oracle.panama.model.Device interface.

Table 10–3 Logical Device attributes

Attribute Name Description

Name Name of the logical Device

Description Description of the Logical Device

Device and Network Adaptation

Core Technologies 10-39

The above mentioned attributes can be used by the Transformers, Adapters, Folder
Renderer hooks or external Http Adapter based Services to generate custom content
for the device. The Logical Device attributes are passed to the external Http Adapter
based services through HTTP headers. See Section 10.7, "Adapters" for more
information.

Oracle9iAS Wireless server is shipped with pre-built Logical Devices. Customers
can add additional logical devices or can modify existing Logical Devices if any of
their physical devices can not be mapped to an existing Oracle9iAS Wireless Logical
Device. Refer to Oracle9iAS Wireless Getting Started and System Guide for details on
how to add or modify Logical Devices.

10.4.2 Device Detection
The Device Detection in Oracle9iAS Wireless can be customized by specifying a
hook class that implements the interface
oracle.panama.rt.hook.DeviceIdentificationHook. The default implementation of
the hook is provided in oracle.panma.rt.hook.DeviceIdentificationPolicy class.

The default (built-in) implementation uses the User-Agent String to Logical device
mappings, stored in the LogicalDevice model object, to identify the logical device
from the request. Note that in previous releases of Oracle9iAS Wireless the
User-Agent String to logical device mapping was specified in
oracle/panama/core/admin/UserAgents properties file.

The User-Agent string can contain wild card character ‘*’. For example, the
User-Agent String ‘*DS*’ will match all the User-Agent values containing ‘DS’.

The Device Detection algorithm:

1. Match the User-Agent http header value with all the User-Agent Strings. If
there is a match then use the Logical Device corresponding to the matched
User-Agent String, else go to step 2. In case of multiple matches the Logical

Encoding The Character Encoding to be used by the Device. This
attribute specifies the Character encoding used by the device
browser to send URL parameters. Also the content returned in
response to a request is encoded using the encoding of the
logical device.

Preferred Mime Type mime type supported by the device, for example text/html for
devices supporting HTML

Table 10–3 Logical Device attributes

Attribute Name Description

Device and Network Adaptation

10-40 Oracle9iAS Wireless Developer’s Guide

Device corresponding to the User-Agent string with maximum number of
non-wild card characters is used.

2. Find all the Logical Devices whose mime type attribute matches the value of the
Accept http header. Go to step 3.

3. If the request contains x-up-devcap-screenpixels and x-up-devcap-screenchars
http headers then, find the closest matching logical device using ScreenWidth,
ScreenHeight, ScreenRows, ScreenColumns attributes of the Logical Device.
Else select any logical device.

10.4.3 Image Support
The devices and browsers available in the market today support different image
formats, for example, WML devices support wbmp image formats whereas Palm
supports gray scale depth 2 image formats. The “image Format Preferences”
attribute of Logical device stores all the image mimetype and corresponding file
extension supported by the device. This attribute of Logical Device is used by the
Transformers to transform the <SimpleImage> mobile xml element.

The mobile xml developer can use the “available” attribute of <SimpleImage>
element to specify the list of image file extensions available. The transformer
appends the file extension, supported by the device, to the “src” attribute of the
<SimpleImage> element. The “src” attribute of <SimpleResult> specifies the
location of the image file.

For example, the following <SimpleOracle9iAS Wireless element> specifies that the
image_file is available in “gif”, “wbmp”and “g2gif” formats.

<SimpleImage src="http://IASWServer:port/image_file" available="gif wbmp g2.gif"
/>

For devices supporting only g2.gif extension the above <SimpleImage> will get
transformed to:

10.4.4 Transformer
Oracle9iAS Wireless supports Device Transformers.

The Device Transformers transform mobile xml document to the device markup
language. The transformation logic can be implemented in an XSL stylesheet or in
Java.

Device and Network Adaptation

Core Technologies 10-41

The Result transformers convert content from AdapterResult format to Mobile XML
format. The Adapter Result format is an intermediary format layer that enables
efficient exchange of user interface independent data. You may use it, for example,
to link chained service. A chained service is an Oracle9iAS Wireless service that
invokes another service. Result Transformers are deprecated in Oracle9iAS Wireless
9.0.2 version.

The following table lists the attributes stored in the Device Transformer objects.
These attributes can be accesses by java programmatic apis’ – refer to javadoc of
oracle.panama.model.Transformer, oracle.panama.model.JavaTransformer and
oracle.panama.model.XSLTransformer interface.

10.4.4.1 Java Transformers
Transformers can implement transformation logic in Java by implementing
oracle.panama.rt.xform.RtTransformer interface.

/*
* $Copyright:
* Copyright (c) 2000 Oracle Corporation all rights reserved
* $
*/
package oracle.panama.rt.xform;

import java.io.Writer;
import org.w3c.dom.Element;
import oracle.panama.PanamaException;

/**
* Transform from a XML structure to a device specific content.
*

Table 10–4 Device Transformer objects attributes

Attribute Name Description

Name Name of the transformer

Mime Type The mime type of the target device markup language. For
example, text/html

Mobile XML DTD version The mobile xml dtd version supported by the transformer.

XSL Stylesheet The XSL Stylesheet implementing the transformation logic.
This attribute is valid only for XSL based Transformers

Java Class The class path of the class implementing the transformation
logic. This attribute is valid only for Java based Transformers.

Device and Network Adaptation

10-42 Oracle9iAS Wireless Developer’s Guide

* @since Oracle9i Application Server Wireless Edition
*/
public interface RtTransformer {

/**
* Transform the simple result XML document into a device specific markup la

nguage.
* @param element the <code>ServiceContext</code> XML Element to process.
* @param out the output writer for the result
*/

public void transform(Element element, Writer out) throws PanamaException;

}

Oracle9iAS Wireless run time calls the transform method of the Java transformer to
transform the mobile xml document to device markup. The parameter element
contains the ServiceContext, and the device markup result is written to the out
parameter of the method. The ServiceContext contains the input parameters of the
request, attributes of the logical device corresponding to the request and
SimpleResult (mobile xml document).

The class implementing oracle.panama.rt.xform.RtTransformer interface must provide
a default constructor (that is, constructor without arguments) and the transform()
method should be thread-safe.

The ServiceContext Element passed to the transform() method of RtTransformer class
is of the form.

<ServiceRequest>
<Arguments>

<Inputs>

All the input arguments passed to the Service – this includes the service arguments
and other arguments listed below

……..
</Inputs>

</Arguments>
<Result>

The mobile xml content
…….

<Result>
</ServiceRequest>
The input argument is of the form

<name ….>value</name>

Device and Network Adaptation

Core Technologies 10-43

where “name” is the name of the input argument and “value” is the value of the
input argument.

The following table lists the input arguments other than the service input
arguments, which are passed to the Service.

Table 10–5 Input arguments

Name of the Input
Argument Description

_LOGICAL_DEVICE Name of the logical device corresponding to the request.

_ScreenColumns The value of screen columns attribute of the logical device
corresponding to the request

_ScreenRows The value of screen rows attribute of the logical device
corresponding to the request

_ScreenWidth The value of screen width attribute of the logical device
corresponding to the request

_ScreenHeight The value of screen height attribute of the logical device
corresponding to the request

_DeviceCategory The value of device category attribute of the logical device
corresponding to the request

_SoftKeys The value of soft keys attribute of the logical device
corresponding to the request

_MaxDocSize The value of max doc size attribute of the logical device
corresponding to the request

_ImagePreferences The value of image preferences attribute of the logical device
corresponding to the request

_User The name of the User.

_UserLanguage The language preference of the User

_FirstAcceptLanguage The first language specified in the Accept-Language HTTP
header.

USER-AGENT The User-Agent HTTP header value of the request Note: All
the HTTP headers of the Oracle9iAS Wireless request are
added to the Service Context

COOKIE The Cookie HTTP header value of the request

CONNECTION The Connection HTTP header value of the request

Device and Network Adaptation

10-44 Oracle9iAS Wireless Developer’s Guide

10.4.5 XSLT Transformers
Device transformer logic can be implemented in XSL stylesheet. XSL stylesheets are
XML documents that specifies the processing rules for other XML documents. An
XSLT stylesheet, like java transformers, is written for a particular mobile XML DTD.
When it finds the element in source document, it follows the rules defined for the
element to format its content. The ServiceContext element is passed as the source
document to the stylesheet.

ACCEPT The Accept HTTP header value of the request

HOST The Host HTTP header value of the request

REFERER The Referer HTTP header value of the request

ACCEPT-LANGUAGE The Accept-Language HTTP header value of the request

ACCEPT-ENCODING The Accept-Encoding HTTP header value of the request

_SERVICE_NAME The name of the invoked Service.

_SERVICE_NAME_ENC The URL encoded name of the invoked Service.

_SERVICE_URL The URL of the invoked Service

_SERVICE_URL_ENC The URL encoded value of the URL of the invoked Service

PAoid The object id of the invoked service

_REQUEST_NAME The path component of the Servlet. For e.g. /ptg/rm

_HTTP_REQUEST_NAME The URL path of the Servlet. For e.g.
http://IasServer:Port:7777/ptg/rm

_ABS_REQUEST_NAME The URL path of the Servlet. For e.g.
http://IasServer:Port:7777/ptg/rm

_HTTPS_REQUEST_
NAME

The HTTPS URL path of the Servlet. For e.g.
https://IasServer:Port:7778/ptg/rm

PAsid The session id of the request. For e.g. 100BoNrXdG

_SESSION The session id name/value pair. For e.g PAsid=100BoNrXdG

PAservlet The name of the Servlet. For e.g. rm

AMP_EXPLICIT

Table 10–5 Input arguments

Name of the Input
Argument Description

Device and Network Adaptation

Core Technologies 10-45

10.4.5.1 Creating XSL Transformer
In this section we will implement a very simple XSL stylesheet which handles only
<SimpleTable> mobile xml element. It uses the value of screen width attribute of the
logical device, passed as _ScreenWidth element in the ServiceContext, as the width
of the generated HTML table. The Stylesheet converts source mobile xml
documents to HTML.

Example mobile xml document handled by our custom stylesheet.

<SimpleResult>
<SimpleContainer>

<SimpleTable>
<SimpleRow>

<SimpleCol>Row1 column1</SimpleCol>
<SimpleCol>Row1 column2</SimpleCol>

</SimpleRow>
<SimpleRow>

<SimpleCol>row2 column1</SimpleCol>
<SimpleCol>row2 column2 </SimpleCol>

</SimpleRow>
</SimpleTable>

</SimpleContainer>
</SimpleResult>
The stylesheet implementation.

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:p2g="http://www.oracle.com/XSL/Transform/java/oracle.panama.core.xform.XSJ
ava" exclude-result-prefixes="p2g">
This template matches the root of the document.

<xsl:template match="/">
<xsl:apply-templates select="//SimpleResult"/>

</xsl:template>
Template for SimpleResult element.

<xsl:template match="SimpleResult">
<HTML>

<BODY>
<xsl:apply-templates select="SimpleContainer/SimpleTable" />

</BODY>
</HTML>

</xsl:template>
Template for <SimpleTable> element.

<xsl:template match="SimpleTable">
<TABLE>

The width attribute of the table is set to the value of _ScreenWidth element.

Device and Network Adaptation

10-46 Oracle9iAS Wireless Developer’s Guide

<xsl:attribute name="width">
<xsl:value-of select="//_ScreenWidth" />

</xsl:attribute>
<xsl:for-each select="./SimpleRow">

<xsl:apply-templates select="."/>
</xsl:for-each>

</TABLE>
</xsl:template>
Template for SimpleRow element

<xsl:template match="SimpleRow">
<TR>

<xsl:for-each select="./SimpleCol">
<xsl:apply-templates select="."/>

</xsl:for-each>
</TR>

</xsl:template>
Template for SimpleCol element.

<xsl:template match="SimpleCol">
<TD>

<xsl:value-of select="." />
</TD>

</xsl:template>
</xsl:stylesheet>

10.4.5.2 Transformer Version
Oracle9iAS Wireless server supports multiple transformers, one for each version of
the mobile XML DTD, for Logical Devices. The run time selects the transformer
depending on the DTD version specified in the mobile XML Document. All the
mobile xml documents should include the following DOCTYPE declaration

<!DOCTYPE SimpleResult PUBLIC "-//ORACLE//DTD SimpleResult x.y.z//EN"
"http://xmlns.oracle.com/ias/dtds/SimpleResultxyz.dtd">

The DTD version is specified by the string "x.y.z", where x is incremented for every
major revision of DTD, y is incremented for minor revisions, and z can be
incremented by the customer for customer specific DTD enhancements.

For backward compatibility all the mobile xml documents, which do not contain the
DOCTYPE declaration, will be assumed to be confirming to 1.0.0 version (i.e pre
9.0.2 version of the DTD)

The algorithm to find the transformer for a mobile xml document confirming with
DTD version x.y.z

Asynchronous Server

Core Technologies 10-47

1. Find all transformers with major number "x". If no transformers are found then
log an error message and return.

2. From the transformer set returned from step1, find all the transformers with
minor number 'y'. If a transformer is found then go to step4

3. From the transformer set (returned from step1) choose the transformer with
minimum minor number which is greater than y. If no such transformer exists
then choose a transformer with maximum minor number which is less than y.

4. From the transformer set returned from step2, choose the transformer with
customer version number 'z'. If no such transformer is found then choose the
transformer with minimum customer version number which is greater than z. If
no such transformer exists then choose a transformer with maximum customer
version number which is less than z.

The following HelloWorld.xml confirms to DTD version 1.1.0 (which is the current
version of the DTD).

<?xml version = "1.0" encoding = "UTF-8" standalone="yes" ?>
<!DOCTYPE SimpleResult PUBLIC "-//ORACLE//DTD SimpleResult 1.1.0//EN"
"http://xmlns.oracle.com/ias/dtds/SimpleResult_1_1_0.dtd">
<SimpleResult>
<SimpleContainer>
<SimpleText>
<SimpleTextItem>Hello World </SimpleTextItem>

</SimpleText>
</SimpleContainer>
</SimpleResult>

10.5 Asynchronous Server

10.5.1 Asynchronous Server Architecture
Oracle9iAS Wireless presents a framework to develop mobile applications to be
accessed "from anywhere, from any device, using any protocol". The Asynchronous
Server Kernel, also known as ASK makes the "any protocol" promise possible.

Note: For information on using Service Designer to create and
manage Transformers, and for all Service Designer functions, see
"Managing Transformers" in Oracle9iAS Wireless Getting Started and
System Guide.

Asynchronous Server

10-48 Oracle9iAS Wireless Developer’s Guide

Conventionally, the entry point into an application server is through the HTTP
protocol. This limits applications built on an application server to only clients with
Web capability. This server restriction is a problem for mobile market users because
the vast majority of mobile users do not have, or are not enabled with Web access.
These users are almost certain to have some kind of message capabilities though
(such as e-mail, SMS, etc.). Now the dilemma is whether one should build
applications for such users specifically, depending on their capability, or ignore
them because the application server just cannot deal with the mobile market.

With Oracle9iAS Wireless, the dilemma is solved for developers, without them
doing anything at all. With the introduction of ASK, mobile applications can be
accessed through the usual HTTP protocol, as well as any other messaging
protocols (such as e-mail, SMS, etc.). Developers can focus on building their
application logic, and Oracle9iAS Wireless will do the proper connection, session
management, and interpretation of user requests. A mobile service is invoked the
same way regardless of which protocol handles the incoming requests, offering
complete transparency to application developers to allow access to their services.

10.5.2 Key Technical Challenges

10.5.2.1 Multiple transport protocol support
One of the most obvious challenges is to be able to support multiple protocols. It is
not desirable to build the same functionality to work with e-mail, then SMS, then
some other protocols. Oracle9iAS Wireless offers access to the same application
regardless of the protocol used by clients. Hence the immediate challenge is to be
able to support multiple protocols uniformly.

10.5.2.2 The asynchronous nature of messaging protocols
In contrast to the HTTP protocol, (commonly referred to as the synchronous
protocol) messaging protocols such as SMS or e-mail are asynchronous. It is
asynchronous because unlike HTTP, they are not based on a "request and response"
model. A single atomic operation is typically one way. For example, when you use a
Web browser, you enter a URL and make the request, then you wait for the result to
come back. In messaging protocols (such as SMS) sending a message itself
completes one operation. Most applications respond to user requests so HTTP is
usually adequate. To enable the same application be accessed through
asynchronous protocols presents a challenge on how such behavior can be
mimicked with protocols such as SMS or e-mail.

Asynchronous Server

Core Technologies 10-49

10.5.2.3 Supporting Sessions
Another big challenge is that most applications are session based; multiple requests
and responses are typically required to complete a task. Applications are able to
maintain sessions in the Web world because the client, a Web browser, has built in
capabilities such as cookies to facilitate session semantics. This is not the case for an
e-mail or SMS client. They do not have any such ability built in to support
conversational applications.

10.5.2.4 User Navigation
A Web browser offers a User Interface for navigating through applications
(examples include clicking on a hyperlink and traversing through a menu or a
series of steps to complete certain functionality). Clients that work with other
protocols such as SMS or e-mail typically do not have similar navigation power.
The challenge here is to offer similar navigating capability to such clients so that
applications can be independent of the protocols.

10.5.2.5 Naming/Addressing an Application
In the Web world, applications are typically assigned a URL. The URL is how the
application can be identified and requested. Clients for messaging are typically
plain text devices; there is no convention on how to name a service, but consistency
across protocols is needed.

10.5.3 Technical Solutions and Features
ASK combines functionality of a HTTP server and portions of a Web browser to
provide its functionality.

10.5.3.1 Multiple transport protocol support
This challenge is a relatively easy one. Built on top of the Oracle9iAS Wireless
transport system, support for multiple transport protocols is achieved by the nature
of the transport system itself. ASK registers to be an application to the transport
system to send and receive messages. It further registers one address for each of the
protocols it is serving in order to interact with users on those protocols. For
example, it can register ask@yourcomany.com for e-mail and 1234567 for SMS. Then
ask@yourcompany.com and 1234567 become the URIs for their respective protocols
similar to http://yourcompany.com is to the Web world.

ASK itself does not consider the incoming protocols; it is designed to send and
receive messages by the means that it is registered to use. The payload (content) of
the messages are what ASK interprets and acts upon.

Asynchronous Server

10-50 Oracle9iAS Wireless Developer’s Guide

10.5.3.2 The asynchronous nature of messaging protocols
ASK builds logic similar to an HTTP listener to present synchronous semantics over
asynchronous protocols. It achieves this by acting as a client to the service the
device requested. ASK makes a request to the service on behalf of the user, waits
and processes the response from the service, then formats the response and presents
it back to the users. Users have the illusion of a response from an earlier request.

10.5.3.3 Supporting Sessions
Upon receiving requests from a user, ASK create a session for the user. This allows
conversational applications to function. Unlike in HTTP where session info is kept
by the browser (or cookie), all session states are kept in the backend by ASK.

10.5.3.4 User Navigation
ASK transforms elements such as forms or menus, and presents a navigation
command for end users. When elements such as forms are returned by a service,
ASK retains the format of the form in the backend, and determines the action to
take when the form is submitted with all other necessary information. When this
user (using the set of command specified by ASK) fills and submits the command,
ASK makes a request (based on the current user information stored in ASK) and
processes the result again on behalf of the user. You can think of it as if the
hyperlinks are stored in the backend when a user clicks on the "face" of the link.

10.5.3.5 Naming/Addressing an Application
Just as assigning a URL to a service in the Web world, to use ASK, a short name
must be assigned to services to be ASK enabled. For example, assume the stock
quote service has been assigned the path: /finance/quote and can be accessed as
http://mycompany.com/finance/stock. Through Content Manager, a short name
can be assigned to it (for example, st.). Now any messages ASK receives that begins
with st signals a request for the stock quote service. A user can send st orcl to a
site-wide address to which ASK is configured to listen, ask@mycompany.com for
e-mail or 1234567 for SMS, and get back the stock quote for Oracle Corporation.

It is also possible to specify service-level address to services. Through Content
Manager, one can also associate (e-mail) stock@mycompany.com and (SMS)
123FINANCE to the stock quote service. Once this is done, sending just orcl as an
email to stock@mycompany.com or as SMS to 123FINANCE would result in
receiving the stock quote of Oracle Corporation.

Asynchronous Server

Core Technologies 10-51

10.5.3.6 ASK Request Authorization
ASK differentiates the user of a request into two categories: guest or registered.
Upon receipt of a user request by ASK, the source address of the request message is
used to reverse-lookup a Oracle9iAS Wireless user for authentication. A user object
can be located if a user has a device address, registered under his profile, the same
as the source address of the request message. The located user object is then bound
to a newly authenticated session created by the request. Otherwise, a guest user
object is bound to the session. Whichever services are authorized to the user will be
accessible to requests issued from the device.

Only those services belonging to the guest group are accessible to a guest user.
Accessing a non-guest service triggers a returned form challenging the user for
name and password. A valid Oracle9iAS Wireless username/password supplied by
the user enables the previous session to be upgraded to an authenticated one with
the user object identified by the name to be bound. Alternately, a guest user can log
in explicitly through a login command, ’!L’, to avoid ever being challenged.

10.5.3.7 User interface and navigation commands
As discussed earlier, messaging clients typically only present plain text and do not
offer conversational navigation capabilities. Recall that ASK transforms and formats
responses from services to a certain presentation to enable such capabilities. ASK
includes a set of presentation formats and navigational commands similar to what a
Web browser has done for the Web world. Hence when a user invokes services
using ASK, he or she would see the response in the format transformed by ASK.
Further interactions with ASK would have to comply with the format expected by
ASK. In this section we will be discussing commands users can issue to ASK. To
issue a command is simply sending a message with the correct format. The
command text can be put into a subject line or message body.

10.5.3.7.1 System Commands

■ !H: (Help command) provides general help on the command usage

■ !E: (Escape command) clears current form state.

■ !S: marks the end of command sequence. A message may contain a sequence of
commands, each separated by a line feed or command delimiter. !S marks the
end of a command sequence. No interpretation will be done on text past the !S
mark.

■ help: the service level help. If no parameter is provided, all the async service
help is provided. User can also provide a service short name as the parameters
to acquired the help on a particular async service.

Asynchronous Server

10-52 Oracle9iAS Wireless Developer’s Guide

■ !L <username> <password>- to sign on to the system with the user name and
password.

■ !O - to terminate a session

10.5.3.7.2 Service invocation commands These are commands to do service
invocation, menu selection and parameters filling. There are no reserved command
symbols for the service invocation and form commands. Certain commands, such as
form command and menu item selection, can be invoked only when there is a
current form/menu state maintained in the user’s session. More details on
form/menu state will be discussed later in this chapter.

■ [<shortname>|<menuitem] <parm1><parm2> . . . to invoke a service. The first
field provided could be a service short name or a menu item number. A
menuitem can be provided only when the user previously received a menu
message from a service result. The menu state is maintained in the user session
of ASK. A user can make a selection based on the menu to trigger further
actions. More detail on current menu state is explained later in this chapter.

■ <parm1><parm2> . . . to fill the parameter of a form. When a user invokes a
service without providing a required parameter, a form may be returned
requesting the user to fill in the parameter values. This creates a current form
state in the user session, expecting the user to send the parameter sequences in
the subsequent command. The parameter values should be supplied on the
command line in the same sequence as the parameters listed on the previously
returned form.

10.5.4 Examples on Service Invocation

10.5.4.1 Invoke by Service Short Name
All services that are ASK-enabled should be assigned short names to be accessed by
the end user. The short name should be able to uniquely identify a service on the
entire site. To invoke a service, a message should be sent to a site-wide address,
such as info@oraclemobile.com, to which the ASK is configured to listen. The
command line has the format:

<Svc Short Name> <parm1> <parm2> . . .

In the following example, a message is sent to the site-wide address:
info@oraclemobile.com, to invoke a stock quote service whose short name is ST. The
service requires a stock symbol as its parameter (in this case, ORCL is provided).

Asynchronous Server

Core Technologies 10-53

Figure 10–12 Invoking by service short name

10.5.4.2 Invoke by service associated device address
Each service may have some device address associated with it. For example, an e-mail
address stock@oraclemobile.com can be used to identified a stock service. Since the service has
been identified in the destination address of the request message, there is no need to specify
the service short name in the command line. Only the service parameters are required in the
command line, for example, the stock symbol.

All of the system commands (for example, ’help’) can still be issued to the
service-associated address. They are interpreted by Async Server in the same way
they are sent to the site-wide address.

Figure 10–13 Invoking by service associated device address

10.5.4.3 Menu Capability
The way the features are presented is similar to the HTTP model. A service
invocation may trigger the return of a message with the menu. Each menu item is
prefixed with a number. Users are able to make selections by issuing another
message in which the message content contains the menu item number. This
extends the service capability for much better user interaction. A yellow pages
service having a short name of yp expects two user parameters, category and area.
Users invoke services by providing the values, for example, burger and home (a
landmark for the user). The application searches for all the Burger stores in the
home area. A returned message from the service result contains a name list of
Burger stores. The user then issues another message to get detailed information
about the stores in which he is interested.

Asynchronous Server

10-54 Oracle9iAS Wireless Developer’s Guide

Figure 10–14 Menu capability

10.5.4.4 Form Capability
A form is the result of a service invocation requesting user input. The ideal user
interaction for ASK is to have the user fill in the input parameters on the command
line instead of having to fill in the form, which requires more message round trips.

Figure 10–15, "Form capability" demonstrates the possible interaction of a phone book
service. The phonedit command enables users to search and edit the phone number
for a particular user. It expects a name as its parameter. jdoe is provided in the
example. The information of jdoe is returned with a menu, enabling the device user
to edit the phone number or remove the user. There are two options for editing the
phone number:

1. Make a selection without entering any parameter: This is represented in box 2a.
A form is returned prompting the user to enter the new phone number. The
device user creates a new message with the message body containing the new
phone number.

Or

2. Enter the selection with the required parameters. Box 2b demonstrates the
scenario. The device user is aware that a form should returned in response to
their selection 1 (Change phone). Therefore, the parameter value (phone
number) is supplied together with the selection. This saves a message round
trip.

Asynchronous Server

Core Technologies 10-55

Figure 10–15 Form capability

10.5.4.5 Current Menu State
Since a session is maintained for each user, menu navigation is made possible. The
term current menu identifies the latest menu a user received from the ASK. The state
of the current menu is kept in the user session on ASK. Whenever a menu selection
is made by a user, it applies to the current menu. If a menu has not yet been
received for the user, the ASK will attempt to locate a service whose short name is
the same as the number provided by the user. An error is returned when no such
service is found.

A service invocation through short name or device address automatically cancels
the menu state created by the previous service invocation. The figure below
demonstrates the situation. A menu returns as a response to invoking the phonedit
service. A message for requesting the stk service is subsequently issued. It clears the
menu state created by the invocation of the phonedit service. An attempt to make a
menu selection triggers an error message from the ASK.

Asynchronous Server

10-56 Oracle9iAS Wireless Developer’s Guide

Figure 10–16 Current Menu State

10.5.4.6 Current Form State
A current form state is created in the user session whenever the user receives a form
message. Subsequent form parameter values can be issued by the user to fill the
parameter requested from the previous form message. If the user decides not to fill
the form but to invoke another service, the Escape command can be issued to cancel
the current form state. Once the form state is clear, any form parameters issued by
the user are considered invalid. An error message should be returned in respond to
a form parameter without a current form state.

Figure 10–17, "Current Form State" illustrates a form state example. The device user
invokes the phonedit service without providing any parameters. A form message is
returned to the user expecting the user to fill in the search name. If the device user
changes his/her mind and decides to invoke another service (for example stk) the
first step is to clear the form state so that ASK will not treat the command stk as the
name value expected from the phonedit service. Then, a new stk command can be
issued. These two steps are combined into one message by separating the two
commands with the default command separator (;).

Asynchronous Server

Core Technologies 10-57

Figure 10–17 Current Form State

10.5.4.7 Multiple commands in one message
Multiple commands can be issued from one message. They can be issued from the same line,
each command separated by the configurable command separator (default [;]). Or,
commands can be on different lines. The first blank line or stop command (!s) encountered,
marks the end of the command sequence. No command interpretation will be done on text
after the mark.

Figure 10–18 Multiple Commands in One Message

10.5.4.8 Parameter separator
Multiple parameters may be required for an Async service.The default parameter
separator is a blank space. If a parameter value contains space within it, it can be
enclosed by double quote to represent a single parameter value. The parameter
separator is configurable at the service level.

The example below illustrates a direction service expecting both the from and
destination (the to) addresses. The from address is provided with double quotes to
enclose the whole value. The destination is supplied as a landmark, home from the

Asynchronous Server

10-58 Oracle9iAS Wireless Developer’s Guide

user profile. The second message sent from the user is to request traffic information
service. The service is configured to use a comma (,) as the parameter delimiter;
users provide the parameter values with (,) to separate them.

Figure 10–19 Parameter Separator

10.5.5 Writing Asynchronous Applications
The way to develop applications for ASK is basically the same as for the Device
Portal. Service Provider receives user parameter from the device, and responds with
the result (in Mobile XML format). The requirement on the ASK client is low; the
ability to send and receive text messages. Therefore, only a subset of the Mobile
XML tags are applicable to ASK, as shown in Table 10–6, "Summary of semantics for
MobileXML tags".

Developers may choose to have a different logic flow (for example, rendering the
results differently) for the ASK device. In this case, they would need to be able to
recognize if the request was coming from an ASK device class. This is accomplished
by checking the device class attribute of the user request. The request from ASK has
the device class attribute value of either messenger, or micromessenger. The
information can be acquired from the input arguments for a service written in
adapter form, or the HTTP header for services based on HTTP/OC4J adapter. The
input argument _DeviceCategory defined in the ServiceContext specifies the device
class value for adapter formed services. For HTTP/OC4J based services, the value
can be picked up through the HTTP header x-oracle-device.class.

Similarly, any section of the ASK specific Mobile XML result, created by the
application, binds the value of messenger or micromessenger to the element attribute
deviceclass. ASK processes elements common to all devices (with no value specified
in deviceclass), or elements with the attributes containing the value of messenger or
micromessenger.

Asynchronous Server

Core Technologies 10-59

10.5.5.1 ASK enabling MobileXML Application
All mobile XML service can be made ASK enabled from a technical standpoint. The
user experience while using ASK is worth considering when deciding how to build
an application or ASK enabling an existing application. This is the same practice
you might have been applying to decide how you want to render you application to
different types of devices (screen size, form factor and such). ASK assumes a client
with plain text input so it is even more appropriate to consider user experience.
Services that expect many user interactions or have a complicated UI may not work
well.

In addition, some of the Mobile XML tags do not make sense for ASK and one
should be aware of the specific semantics ASK has for the set of XML tags. Since
ASK do not assume any sort of client side browsing capability, it is common that
tags which assumes certain keys or actions on the device are not appropriate for
ASK. The following table lists all the tags for MobileXML, as well as their semantics
in the context of ASK.

Table 10–6 Summary of semantics for MobileXML tags

Mobile XML Tag Semantics

SimpleAction (MobileXML) Treated the same as the SimpleMenuItem and SimpleHref.
Each SimpleMenuItem, SimpleHref or SimpleAction will be
prefixed with a number in the device result for async user to
make selection.

SimpleAudio (MobileXML) Ignored—not applicable to async devices.

SimpleBind (MobileXML) Ignored—not applicable to async devices.

SimpleBreak A new line is created on the page.

SimpleCache (MobileXML) Ignored—not applicable to async devices.

SimpleCase (MobileXML) Ignored —not applicable to async devices.

SimpleCatch (MobileXML) Ignored— not applicable to async devices.

SimpleCol Output the text.

SimpleContainer Processed—no output is generated.

SimpleDefault (MobileXML) Ignored—not applicable to async devices.

SimpleDisconnect
(MobileXML)

Ignored—not applicable to async devices.

SimpleDisplay
(MobileXML)

Ignored—not applicable to async devices.

Asynchronous Server

10-60 Oracle9iAS Wireless Developer’s Guide

SimpleDTMF (MobileXML) Ignored—not applicable to async devices.

SimpleEM (MobileXML) Output the text.

SimpleEvent (MobileXML) Ignored—not applicable to async devices.

SimpleExit (MobileXML) Ignored—not applicable to async devices.

SimpleFinish (MobileXML) Ignore—not applicable to async devices.

SimpleFooter (MobileXML) Ignored.

SimpleForm The form state is maintained in the server so the parameters
issued by the user can be paired with their corresponding
keys.

SimpleFormItem The item text is printed on the returned page. User fills the
corresponding item values in the same sequence as the item
presented on the page.

SimpleFormOption A list of form options is printed on the returned page with a
number prefixed each form option. The user can fill the select
item by giving either the prefix number or the option text. For
example, a select item of 'State' should contain the option, '1
AL, 2 CA, 3 UT...'. The user can supply the value of '2' or 'CA'
to select the option 'CA'. Only Radio box (single selection) is
supported on the version.

SimpleFormSelect Output the text.

SimpleGo (MobileXML) Ignored—not applicable to async devices.

SimpleGrammar
(MobileXML)

Ignored

SimpleHeader (MobileXML) Ignored.

SimpleHelp Output the text.

SimpleHref This is treated the same as SimpleMenuItem. All the
SimpleMenuItem is prefixed with a number so the user is
able to select the item by responding with the corresponding
number.

SimpleImage Ignored; not applicable to ASK.

SimpleKey (MobileXML) Ignored—not applicable to async devices.

SimpleMatch(MobileXML) Ignored—not applicable to async devices.

Table 10–6 Summary of semantics for MobileXML tags

Mobile XML Tag Semantics

Asynchronous Server

Core Technologies 10-61

SimpleMenu A new line is created on the page. The menu state is
maintained in the server.

SimpleMenuItem The value of the menu item is printed on the returned page
with a number prefix to identify the menu item. The target
url and the number prefix is stored in the server so the url can
be retrieved after the user makes the selection.

SimpleMenuItemField
(MobileXML)

Output the text.

SimpleMeta Ignored—not applicable to async devices.

SimpleMItem(MobileXML) Ignored—not applicable to async devices.

SimpleName (MobileXML) Ignored—not applicable to async devices.

SimpleOptGroup
(MobileXML)

Ignored—not applicable to async devices.

SimplePrev (MobileXML) Ignored—not applicable to async devices.

SimpleProperty
(MobileXML)

Ignored.

SimpleRefresh (MobileXML) Ignored—not applicable to async devices.

SimpleReprompt
(MobileXML)

Ignored—not applicable to async devices.

SimpleResult Processed—no output is generated

SimpleRow Print a new line to the returned page.

SimpleSpeech (MobileXML) Ignored—not applicable to async devices.

SimpleStrong (MobileXML) Output the text

SimpleTable No op

SimpleTableBody Output new Line

SimpleTableHeader Output a new line.

SimpleTask (MobileXML) Ignored—not applicable to async devices.

SimpleText Print a new line on the returned page.

SimpleTextItem Output the text.

SimpleTimer Ignored—not applicable to async devices.

Table 10–6 Summary of semantics for MobileXML tags

Mobile XML Tag Semantics

Runtime and Data Model APIs

10-62 Oracle9iAS Wireless Developer’s Guide

10.6 Runtime and Data Model APIs
This section is for advanced users.

10.6.1 Oracle9iAS Wireless Runtime
Oracle9iAS Wireless runtime layer is a servlet in the OC4J servlet container.
Oracle9iAS Wireless runtime processes requests from Hypertext Transaction
Protocol (HTTP) user agents, async user agents (such as SMS, e-mail, two-way
pagers), and autonomous mobile agents, and invokes the services in the repository
for these agents. It performs automatic session tracking and terminates the sessions
when they expire after the maximum interval of inactivity or when the sessions are
invalidated when the users log out from the Oracle9iAS Wireless.

10.6.1.1 Session Management
The Oracle9iAS Wireless runtime tracks the runtime session independently of the
Servlet session, by rewriting every URLs with an added parameter “PAsid,” which
specifies the session id. The session tracking identifies that a sequence of requests
are submitted by the same device. The runtime session contains the user
information, authentication contexts, adapter contexts, runtime contexts, URL
caches, and other states essential for the context sensitive services.

WAP 2.0 devices that implement the WAP HTTP State Management Specification
(http://www.wapforum.org/) can support cookies for session management. Most
of the commercial WAP gateways manage persistent cookies on behalf of the
devices. If the device or gateway does not support cookies, the OC4J servlet
container falls back to URL rewriting for session tracking. Since the Oracle9iAS
Wireless runtime also tracks the session, it is possible for more than one runtime
session to be bound to a single servlet session. For example, two Netscape browsers
on the same client PC can open two independent runtime sessions although the
browsers share the same servlet session because of the shared cookie repository.

By default, the binding to the Servlet session is enabled and is necessary for the
OC4J load balancing and fail over facility. The runtime session states are replicated
to other OC4J instances in the “island” so that the device requests can be redirected

SimpleTitle (MobileXML) Output the text.

SimpleValue (MobileXML) Ignored—not applicable to async devices.

Table 10–6 Summary of semantics for MobileXML tags

Mobile XML Tag Semantics

Runtime and Data Model APIs

Core Technologies 10-63

to another OC4J instance in the island when the first instance fails. The runtime
sessions that are bound to the servlet sessions are invalidated when the servlet
sessions expire.

The session binding from the runtime session to Servlet session can be disabled by
the parameter setting “enable.http.session.binding=false” in the System.properties
file. Without binding to the servlet sessions, the runtime sessions are expired when
the sessions remain idle for more than what is specified by the
“wireless.session.expiration.time” parameter in the site configuration.

Every request from the device is serviced within the context of a valid runtime
session. The requests from anonymous devices are also tracked and assigned to
individual runtime sessions although the owners of the sessions are the same Guest
user, which is an anonymous user. The Oracle9iAS Wireless runtime automatically
provisions a “virtual” user in the Wireless repository for each device that can be
consistently identified, using the identifiers available in the devices. Runtime
sessions for virtual users are opened whenever the device identifiers are present in
the requests. The device identifiers may be based on native device identifiers such
as the Mobile Identification Number (MIN), Mobile Subscriber ISDN (MSISDN),
Ipv6 Address, Electronic Serial Number (ESN), etc. The device identifiers may be
also provisioned into the device by the WAP gateway. The WAP Client ID
Specification (http://www.wapforum.org/) defines a standard scheme for
supporting the device identifiers. If no device identifiers are supplied in the request,
the Oracle9iAS Wireless runtime provisions the device identifiers into the devices
using the persistent cookies whenever possible.

The Oracle9iAS Wireless runtime uses the device identifiers only to facilitate
personalization under the virtual user. The runtime sessions opened under the
virtual users have access to the information such as personalized presets and
customization profiles in the repository. The device identifier also enables the
device to reconnect to the same runtime session for the user, as long as the session
has not expired. The device identifiers add robustness to the session management
for Oracle9iAS Wireless, enabling continuity of the service in the face of intermittent
connection losses. The users may also make telephone calls in between connections
to the Oracle9iAS Wireless without losing their contexts.

Device identifiers are not a mean for authentication. Although the runtime sessions
for the virtual users are not authenticated, it does not prevent the users from
accessing their personalized portals. The users may establish authenticated sessions
only if they register with the Oracle9iAS Wireless. The user can supply the user
name and password during the registration. The user’s personalization profiles and
presets are still available to the user after the user becomes registered. The

Runtime and Data Model APIs

10-64 Oracle9iAS Wireless Developer’s Guide

advantages of the registration include the authentication process that gives access to
the secured services, such as the e-Wallets and financial transaction services.

The application programs for the services that require the authenticated sessions
must add the “PAlogin=true” parameter in the URLs. When the Oracle9iAS
Wireless runtime detects the PAlogin=true parameter among the URL parameters in
the request for a service, the runtime tries to authenticate the user if the runtime
session is not already authenticated. The authentication process, which typically
involves the user supplying the user name and password to the Oracle9iAS
Wireless Single Sign On (SSO) Server, is performed before the runtime invokes the
service being requested. See Section 10.6.2.15, "User-Defined Hooks Examples" for
how the folder renderer service can be used to prepare the URLs with “PAlogin”
parameter for the secured services in a folder. After the “PAlogin” parameter
invokes the authentication process, the application programs for secured services
still have the responsibility to check that the session is authenticated. The
applications that has direct access to the Oracle9iAS Wireless runtime objects can
use isUserAuthenticated() method in oracle.panama.rt.Session interface.
Applications written for the HttpAdapters can get the information from the Http
header attribute "x-oracle-user.authkind" which has the values "authenticated" or
"unauthenticated."

In addition, the applications can also check if the session is secured by the SSL, TLS,
or WTLS channels. The application that has direct access to the Oracle9iAS Wireless
runtime objects can use isSecure() method in the oracle.panama.rt.Request interface.
Applications written for the HttpAdapters can get the isSecure() condition through
the HTTP header attribute "x-oracle-device.secure," which has the values "true" or
"false."

The authorization for access to a service is performed for each request for all
authenticated or unauthenticated sessions. The authorization makes sure that the
session user has the privilege to access the service. The default authorization policy
does not differentiate whether the session is authenticated or unauthenticated. The
unauthenticated sessions of a “virtual” or “registered” user has as much visibility as
the authenticated sessions. It is therefore critical for the applications to apply the
“PAlogin” parameter to enforce the authentication.

10.6.1.2 Virtual User Concept
The Oracle9iAS Wireless runtime automatically provisions “virtual” users in the
Wireless repository for the devices that can be consistently identified, using the
identifiers available in the devices. The virtual user option gives the device owners
immediate access to the personalization features of the portal, which enhance the

Runtime and Data Model APIs

Core Technologies 10-65

user experience. It automates the provisioning process for the carrier and enterprise
portal administrators using the emerging WAP Client ID standards.

The device owners can register with Oracle9iAS Wireless to gain access to secured
services through authentication. The registration can be done from the setup menus
by the device owner. This self-provisioning registration feature further simplifies
the administration tasks. The devices with the virtual user support let the registered
users connect to Oracle9iAS Wireless and access the personalized services without
signing on to the system until they are requested by the secured services to
authenticate. The virtual user feature not only improves the accessibility of the
portal but also enhances the data mining capability of portal operators since the
activities of the devices can be identified with virtual identities.

The virtual user feature can be disabled by the site wide configuration parameter
setting “wireless.virtualuser.enabled=false.” This property can be modified by the
Enable Virtual User option in System Manager>Site>User Provisioning control
panel. If the virtual user feature is disabled or if the device does not support device
identifier, then the session is opened under the “Guest” user, which must be
provisioned in the repository. The Oracle9iAS Wireless bootstrap repository
includes the anonymous user “Guest.”

Applications that have direct access to the Oracle9iAS runtime objects can check the
value of oracle.panama.model.UserType returned by the getUserType() method in
oracle.panama.model.User. The User of the runtime session can be retrieved from
the getUser() method in oracle.panama.rt.Session. Applications that are written for
the HttpAdapter can get the user type information from the HTTP header attribute
"x-oracle-user.userkind." The possible values of this attribute are "anonymous,"
"virtual,” or "registered."

10.6.1.3 Runtime API
During the request execution, the Oracle9iAS Wireless runtime dispatches the
authentication, authorization, device identification, location acquisition, data
logging and other business logics to the respective plug-in modules.

Oracle9iAS Wireless Runtime API provides the Java interfaces to examine the
runtime execution states, monitor the runtime execution behavior, and augment the
default execution semantics. The Runtime API consists of four Java packages:

■ oracle.panama.rt provides the interfaces to the essential runtime objects for state
examination.

■ oracle.panama.rt.event provides the interfaces to monitor the runtime execution
sequence based on the Java event model.

Runtime and Data Model APIs

10-66 Oracle9iAS Wireless Developer’s Guide

■ oracle.panama.rt.hook provides the interfaces for the essential runtime
customizable components and the default implementation policies for these
interfaces.

■ oracle.panama.rt.xform provides the interface for the customizable transformers
for plug in as the Device’s transformers.

These four packages are included in the wireless.jar file. Make sure you have
included wireless.jar in your Java classpath when you compile your Java
application or plug-in modules that depend on the Runtime API.

10.6.1.4 Hooks
One set of the interfaces in the Runtime API, which is contained in the package
oracle.panama.rt.hook, specifies the hooks that can be used by application
developers for their customized plug-in modules. For example, the
ListenerRegistrationHook registers listeners. Application developers can implement
this hook interface for a customized listener registration module that lets the
listeners selectively observe the event sources. A custom listener registration
module may subscribe the listeners only to the requests for the billable services.
Such a listener may add business rules to the runtime controllers.

The Runtime API consists of four public Java packages that provide interfaces for
the following functions:

■ Examining and modifying the state of the runtime objects during the runtime
execution (oracle.panama.rt). The essential runtime objects are:

■ Request: the service invocation specification

■ Response: the result of a request execution

■ Session: the durable context of a connection

■ ServiceContext: the context in which the request is being executed

■ ManagedContext: the application context of a particular service

■ Monitoring the runtime execution sequence, based on the event model
(oracle.panama.rt.event)

■ RequestListener observes the Request Events

■ ResponseListener observes the Response Events

■ SessionListener observes the Session Events

■ Extending the customizable behavior of the runtime controllers using hooks
and policies (oracle.panama.rt.hook)

Runtime and Data Model APIs

Core Technologies 10-67

■ Hooks are the main extension mechanisms.

■ The default implementations of hooks are provided among the public API
as policies.

■ Policies can be delegated to by the customized implementation of hooks, to
realize the chain of responsibility design patterns.

■ The customized hooks must implement the static getInstance() method
according to the Oracle9iAS Wireless singleton pattern.

The new customized hook implementations, which implement the respective
interfaces and the singleton pattern, are registered in the appropriate entries
through System Manager>Site>Wireless Web Server>Hooks control panel in the
Webtool.

10.6.1.5 Runtime Objects
The oracle.panama.rt package defines the core of the Runtime API. Adapters that
conform to the runtime API must implement the
oracle.panama.adapter.RuntimeAdapter interface. The classes that implement the
RuntimeAdapter interface can use the Request, Response, Session, and
ServiceContext interfaces in the oracle.panama.rt package.

The following sections describe the interfaces and classes in this package. The
interfaces are:

■ Request

■ Response

■ Session

■ ServiceContext

■ ManagedContext

The classes in this package are:

■ RequestFactory

■ SessionHolder

10.6.1.6 Request
A request object is used to invoke services. Generally, it defines which service to
invoke and the particular parameters needed to invoke that service. It also defines
the user, device, and other runtime contexts.

Runtime and Data Model APIs

10-68 Oracle9iAS Wireless Developer’s Guide

A listener can subscribe to events from a request.

The following methods in the Request interface allow you to access, replace, add, or
remove the parameters that are associated with the request object:

Object getAttribute(AttributeCategory category, String name)
Object setAttribute(AttributeCategory category, String name,
Object attribute)

The methods access the name and value of the attributes, which can be user
parameters, system parameters, or the contexts for adapters, hooks, and listeners.

There are three categories of attributes:

■ PARAMETERS

■ RUNTIME

■ CONTEXTS

The most important attribute category for Request is PARAMETERS, which
contains the query parameters submitted by the user. For HTTP user agents,
Oracle9iAS Wireless runtime parses the URL query string to retrieve the
parameters. The runtime agents or other internal clients can set these parameters
programmatically. Since Oracle9iAS Wireless runtime may cache and rewrite the
URL for HTTP user agents, some of the parameters are maintained in the URL
cache for the user. Oracle9iAS Wireless runtime may have to parse both the query
strings from the HTTP request and the URL cache to build a complete list of query
parameters.

Step 2 in Section 10.6.2.1, "Case: A Request Involving Session Establishment and
Authentication" shows that each time a new request object is created, Oracle9iAS
Wireless runtime passes the request object to the ListenerRegistrationHook to let the
hook register listeners.

The following table describes the names of the system-defined parameters which
are part of the PARAMETERS AttributeCategory in Request. The left column in the
table shows the Java constants that you can use to retrieve the value of the
parameter from the request object.

The Mobile XML results can contain the runtime variables, (composed from the
names of the parameters) by appending two underscore characters (__) before and
after the parameter name. These runtime variables in the Mobile XML results are
"place holders" which are replaced by the values of the parameters during the post
processing phase (Step 25 in Section 10.6.2.1, "Case: A Request Involving Session

Runtime and Data Model APIs

Core Technologies 10-69

Establishment and Authentication") before the final result is returned to the
requester.

Line [4] in the following code example shows how the value of the PArlmk
parameter can be retrieved from the Request object. Line [5] shows a statement for
setting the Request parameter.

Example:

public void invoke(ServiceContext sc) {
.
Request request = sc.getRequest();
String value = request.getParameter(Request.REQUEST_LANDMARK); [4]
request.setParameter(Request.SESSION_LANDMARK, “Redwood City”); [5]
.

Table 10–7 System Defined Request Parameters

Java Program Constants
Representing the Name of the
Parameter in the Request Object

The Name of the
Parameter in the
Request Object Description

Request.USER_NAME "PAuserid" Deprecated

Request.PASSWORD "PApassword" Deprecated

Request.EFFECTIVE_USER_NAME "PAeffuserid" The name of the effective user.

Request.SERVICE_OID "PAoid" The object id of the requested service.

Request.SERVICE_PATH "PAservicepath" The path of the requested service in the
repository.

Request.SESSION_ID "PAsid" The session id for tracking user sessions.

Request.REQUEST_LANDMARK "PArlmk" The landmark setting for the current request.

Request.SESSION_LANDMARK "PAslmk" The landmark setting for the current session.

Request.LOGOFF "PAlogoff" The request to log off and invalidate the session.

Request.LOGIN "PAlogin" The authentication request.

Request.SESSION_HOME “PAhome” The object id of the service to be set as the session
home.

Request.GO_SESSION_HOME "PAgoHome" A request parameter to invoke the session home
service.

Request.REQUEST_USER_PROFILE "PArprof" The parameter used to specify the user profile for
the request.

Request.SESSION_USER_PROFILE "PAsprof" The parameter used to specify the user profile for
the session.

Runtime and Data Model APIs

10-70 Oracle9iAS Wireless Developer’s Guide

}

10.6.1.7 Response
This interface represents the Response objects in Oracle9iAS Wireless runtime. A
listener can subscribe to events from a Response. The Response object is the
execution result of the prior Request object.

10.6.1.8 Session
This interface represents the session objects in Oracle9iAS Wireless runtime. A valid
session is established after an anonymous user, virtual user, or registered user is
identified for the session (refer to the Session Management Section above for the
user identification process). Any request (or service invocation) can only be
executed in a valid session context. A session can either expire after the session
exceeds the maximum interval of inactivity or get invalidated when the user
requests an explicit log out. Developers can store the session-long information in
the corresponding session object.

A listener can subscribe to events from a session.

Step 7 in Section 10.6.2.1, "Case: A Request Involving Session Establishment and
Authentication" shows that each time a new session object is created, Oracle9iAS
Wireless runtime passes the session object to the ListenerRegistrationHook to let the
hook register listeners.

10.6.1.9 ServiceContext
A ServiceContext provides the service request context for a valid and authorized
request. A new ServiceContext object is created for each validated request. The
ServiceContext stores the input parameters, output parameters, and Mobile XML
results. The associated request and session can be accessed from the ServiceContext
object.

The Mobile XML result can contain the system defined ServiceContext parameters
using the runtime variables as "place holders," which are substituted with values
during the post processing phase (Step 25 in Section 10.6.2.1, "Case: A Request
Involving Session Establishment and Authentication") before the final result is
returned to the requester.

Runtime variables are composed from the names of the parameters, by appending
two underscores (__) before and after the parameter name.

 Example:

Mobile XML results can contain runtime variables as follows:

Runtime and Data Model APIs

Core Technologies 10-71

target="___REQUEST_NAME__?___SESSION__& PAoid=__PAoid__"

Given the variables above and if the following three conditions exist in the
ServiceContext:

■ the value of _REQUEST_NAME is "/ptg/rm"

■ the value of _SESSION is PAsid=ukAj6hH
■ the value of PAoid is 254
Then after the substitution of the runtime variables, the result becomes:

target="/ptg/rm?PAsid=ukAj6hH&PAoid=254"

All the input parameters, output parameters, and Mobile XML result in the
ServiceContext are externalized as an XML document.

This XML document is the input document for the transformers. The XSLT
stylesheets for the transformers must be written against the DTD for the
ServiceContext’s XML document.

The following table describes the system-defined ServiceContext parameters which
are found among the ServiceContext arguments. The left column in the table shows
the Java program constants that represent the names of the parameters in the
ServiceContext object.

Table 10–8 The System Defined ServiceContext Parameters

Java Program Constants Representing
the Name of the Parameter in the
ServiceContext

The Name of the
Parameter in the
ServiceContext Object Description

ServiceContext.DEVICE "_LOGICAL_DEVICE' The name of the device model.

ServiceContext.REQUEST_ NAME "_REQUEST_NAME" The URI of the servlet.

For example, if the URL is
http://www.oracle.com/ptg/r m?
PAoid=100,

then the URI of the servlet
is:

/ptg/rm.

ServiceContext.HTTP_REQUEST_NAME "_HTTP_REQUEST_
NAME"

The absolute URL of the portal
servlet requested through the HTTP
protocol.

ServiceContext.HTTPS_REQUEST_
NAME

"_HTTPS_REQUEST_
NAME"

The absolute URL of the portal
servlet requested through the
HTTPS protocol.

Runtime and Data Model APIs

10-72 Oracle9iAS Wireless Developer’s Guide

ServiceContext.ABS_REQUEST_NAME "_ABS_REQUEST_NAME" The page-name of the portal servlet
requested, for example:
http://www.oracle.com/ptg/rm

ServiceContext.SESSION "_SESSION" The SessionId URL

For example, PAsid=ukAj6hH ServiceContext.INP_
FIRST_ SERVICE_URL

"_SERVICE_URL"

The URL of the requested service in the
repository

For example,
/users/smith/news

ServiceContext.INP_FIRST_
SERVICE_NAME

"_SERVICE_NAME" The name of the requested
service in the repository

For example, news

ServiceContext.FIRST_ ACCEPT_LANG "_FirstAcceptLanguage" The first language in the list of
accepted languages.

ServiceContext.USER "_User" The effective user, which may be
the authenticated user.

ServiceContext.USER_ LANGUAGE "_UserLanguage" The user’s preferred language; it
should be one of the user agent’s
accepted languages.

ServiceContext.LONGITUDE "_Longitude" The current longitude location.

ServiceContext.LATITUDE "_Latitude" The current latitude location.

ServiceContext.SCREEN_ COLS "_ScreenColumns" The number of columns that are
displayed.

ServiceContext.SCREEN_ ROWS "_ScreenRows" The number of rows that are
displayed.

ServiceContext.SCREEN_ WIDTH "_ScreenWidth" The width of the display.

ServiceContext.SCREEN_ HEIGHT "_ScreenHeigth" The height of the display.

ServiceContext.USER_ AGENT "User-Agent" The type of the user agent that is
obtained from the HTTP header.

ServiceContext.ACCEPT_ LANG "Accept-Language" The list of the languages that are
accepted by the user agent.

ServiceContext.COUNTRY "_Country" The country that contains the
current location.

ServiceContext.STATE "_State" The state that contains the current
location.

Table 10–8 The System Defined ServiceContext Parameters

Java Program Constants Representing
the Name of the Parameter in the
ServiceContext

The Name of the
Parameter in the
ServiceContext Object Description

Runtime and Data Model APIs

Core Technologies 10-73

In the following code fragment example, line [5] shows that the Java program
constants can be used to refer to the parameters. Line [6] shows that the name of the
parameter can be spelled out (case sensitive). The parameter "Accept_encoding" is
not one of the parameters in the above table. Line [7] shows that the parameters
from the request object are also available among the ServiceContext arguments.
However, the ServiceContext parameters are not part of the PARAMETERS
attribute category in Request objects, and are not accessible from the Request
objects. They can be accessed only from the ServiceContext arguments as shown in
the following example.

Example:

public void invoke(ServiceContext sc) {
.
Arguments args = sc.getInputArguments();
.
String language = args.getInputValue(ServiceContext.USER_LANGUAGE);[5]
String encoding = args.getInputValue("Accept_encoding"); [6]
String landmark = args.getInputValue(Request.REQUEST_LANDMARK); [7]

}

The Java program constants represent the names of the tags in the XML documents
for the ServiceContext. The “ServiceRequest” tag is the root element of the

ServiceContext.POSTALCODE "_Postalcode" The postal area that contains the
current location.

ServiceContext.DEVICE_CATEGORY "_DeviceCategory" The category of the device, possible
values are

"voice" "microbrowser" "pdabrowser"

"pcbrowser" "micromessenger" "messenger"

ServiceContext.SOFT_KEYS "_SoftKeys" The softkeys supported by the
device.

ServiceContext.IMAGE_PREFERENCES "_ImagePreferences" The image preferences of the
device.

ServiceContext.MAX_DOC_SIZE "_MaxDocSize" The maximum size of the document
handled by the device.

Table 10–8 The System Defined ServiceContext Parameters

Java Program Constants Representing
the Name of the Parameter in the
ServiceContext

The Name of the
Parameter in the
ServiceContext Object Description

Runtime and Data Model APIs

10-74 Oracle9iAS Wireless Developer’s Guide

ServiceContext. The “Result” tag contains the Mobile XML result. The “Arguments”
tag is a sibling of the “Result” tag; it contains all input and output arguments.

The following example of the XML document for a ServiceContext shows the
“ServiceRequest” tag as the root element of the ServiceContext. Several of these
input arguments (tags 21 to 28) are obtained from the HTTP header attributes.

Example of the XML document for a ServiceContext:

1. <ServiceRequest>
a. <Arguments>

i. <Inputs>
1. <PAsid type="SingleLine"

usage="true">BVlcv</PAsid>
2. <PAoid type="SingleLine"

usage="true">244</PAoid>
3. <PAservlet type="SingleLine"

usage="true">rm</PAservlet>
4. <PAdebug type="SingleLine"

usage="true">1</PAdebug>
5. <_SERVICE_NAME type="SingleLine"

usage="true">Employee</_SERVICE_NAME>
6. <_SERVICE_NAME_ENC type="SingleLine"usage="true">

Employees</_SERVICE_NAME_ENC>
7. <_SERVICE_URL type="SingleLine" usage="true">

/home/Employees</_SERVICE_URL>
8. <_SERVICE_URL_ENC type="SingleLine" usage="true">

/home/Employees</_SERVICE_URL_ENC>
9. <_LOGICAL_DEVICE type="SingleLine" usage="true">HTML

</_LOGICAL_DEVICE>
10. <_SESSION type="SingleLine" usage="true">PAsid=BVlcv

</_SESSION>
11. <_REQUEST_NAME type="SingleLine" usage="true">/p2g/rm

Table 10–9 The XML Tag Names for ServiceContext and Results

Java Program Constants
Representing the Names of
the XML Tags in the
ServiceContext

The Name of the
XML Tag Description

ServiceContext.SERVICE_
REQUEST

"ServiceRequest" XML element containing service context

ServiceContext.RESULT "Result" XML element containing the Mobile
XML result.

Runtime and Data Model APIs

Core Technologies 10-75

</_REQUEST_NAME>
12. <_ScreenColumns type="SingleLine" usage="true">0

</_ScreenColumns>
13. <_ScreenRows type="SingleLine" usage="true">0

</_ScreenRows>
14. <_ScreenWidth type="SingleLine" usage="true">0

</_ScreenWidth>
15. <_ScreenHeigth type="SingleLine" usage="true">0

</_ScreenHeigth>
16. <_User type="SingleLine"

usage="true">user1</_User>
17. <_UserLanguage type="SingleLine"

usage="true"/>
18. <_FirstAcceptLanguage type="SingleLine" usage="true">ja

</_FirstAcceptLanguage>
19. <_Longitude type="SingleLine"

usage="true"/>
20. <_Latitude type="SingleLine"

usage="true"/>
21. <accept type="SingleLine" usage="true">image/gif,

image/x-xbitmap, image/jpeg,
image/pjpeg, image/png, */*</accept>

22. <accept-charset type="SingleLine" usage="true">
iso-8859-1,*,utf-8</accept-charset>

23. <accept-encoding type="SingleLine"
usage="true">gzip</accept-encoding>

24. <host type="SingleLine"
usage="true">localhost</host>

25. <cookie type="SingleLine" usage="true">
kurt=NTJCMUIzNzczQTA1QzBFRDAxNzY

3ODdBNEYxNTc0RkYwMDc1Rjc1MjFFU29ubnk=</cookie>
26. <accept-language type="SingleLine"

usage="true">ja,en</accept-language>
27. <connection type="SingleLine"

usage="true">Keep-Alive</connection>
28. <user-agent type="SingleLine"

usage="true">Mozilla/4.5
[en] (WinNT; U)</user-agent>

ii. </Inputs>
b. </Arguments>
c. <Result>

<SimpleResult>
1. <SimpleContainer name="Services">

a. <SimpleMenu name="alias" title="Employees">

Runtime and Data Model APIs

10-76 Oracle9iAS Wireless Developer’s Guide

b. <SimpleMenuItem
target="/p2g/rm?PAsid=BVlcv&

PAckey=6!">Scott</SimpleMenuItem>
c. <SimpleMenuItem

target="/p2g/rm?PAsid=BVlcv&
PAckey=7!">Tiger</SimpleMenuItem>

d. </SimpleMenu>
2. </SimpleContainer>

</SimpleResult>
d. </Result>

2.</ServiceRequest>

10.6.1.10 ManagedContext
In many situations, the customized hooks, listeners, and adapters require
session-long, application-defined context information to be stored in the session
object, so that subsequent calls or requests can access the context information.
Furthermore, these application contexts may contain system resources that should
be freed when the session is closed.

The application-defined context must implement the ManagedContext interface and
provide customized implementation for the invalidate method. The customized
hooks, listeners, and adapters can register the session-long application context
object with the session through the setManagedContext method. The invalidate
method will be called by Oracle9iAS Wireless runtime when the session terminates.

10.6.1.11 RequestFactory
The RequestFactory class is defined in the oracle.panama.rt package. The
RequestFactory provides the APIs to programmatically create request objects to be
executed. The RequestFactory creates the request objects that, when executed,
initiate the runtime controllers to process the service requests by invoking the
necessary business processes, such as session management, authentication,
authorization, service invocation, and result transformation.

10.6.1.12 SessionHolder
The SessionHolder class is defined in the oracle.panama.rt. package. The
SessionHolder is the serializable representation of the runtime Session. It is used to
bind the runtime Session to the servlet session as required for the OC4J cluster
configuration. Only serializable objects placed in the runtime session and the servlet
session are replicated among other OC4J instances in the island. The portal

Runtime and Data Model APIs

Core Technologies 10-77

developers can get an instance of this serializable object using the
getSessionHolder() method in the Session.

10.6.1.13 Case 1: Application of the RequestFactory Pattern in the HTTP Servlet
This case uses the ParmImpl servlet to illustrate the RequestFactory pattern. The
following code example is the doGet() method of the ParmImpl servlet:

public void doGet(HttpServletRequest request, HttpServletResponse response)
throws IOException, ServletException {

Request req = RequestFactory.createRequest(request, response); [3]
if (req == null) {

return;
}
try {

Response resp = req.execute(); [8]
} catch (Exception ex) {
} finally {

req.invalidate(); [11]
}

}

Line [3] in the above example illustrates the use of the static method
createRequest(HttpServletRequest request, HttpServletResponse response) of
RequestFactory to create a Request object.

When the Request object is executed in line [8], it returns a Response object.

The Java code in the above example does not include reading or writing of the
content in the Response object because the runtime controller directly transfers the
content to the HttpServletResponse object.

The execute()method of the Request object starts a control flow which performs the
following sequence of processes:

1. Assign a session to the request.

2. Parse the URL parameters in the HttpServletRequest.

3. Authenticate the user if the user credentials are provided among the
parameters.

4. Authorize the requested service.

5. Invoke the service.

6. Transform the XML result from the service invocation.

Runtime and Data Model APIs

10-78 Oracle9iAS Wireless Developer’s Guide

7. Convert the final XML result to a string.

8. Set the response string in the HttpServletResponse.

9. Return from the servlet.

Line [11] in the code example invalidates the completed Request, thereby freeing all
the resources associated with the request object.

10.6.1.14 Case 2: Application of the RequestFactory Pattern in the Runtime
Agent
The following case illustrates how a runtime agent uses the RequestFactory pattern
to request services through the Oracle9iAS Wireless runtime.

import oracle.panama.rt.RequestFactory;
import oracle.panama.rt.Request;
import oracle.panama.rt.Response;
import oracle.panama.rt.Session;
import oracle.panama.rt.ServiceContext;
.
import oracle.panama.model.MetaLocator;
import oracle.panama.model.ModelServices;
import oracle.panama.model.Service;
import oracle.panama.model.User;
import oracle.panama.model.AlertAddress;
.
.
.

Session signon(String user, String password) throws PanamaException {
Request request = RequestFactory.createRequest(user, password);
request.validate();[17]
Session session = request.getSession();[18]
request.invalidate();
return session;

}

String invokeService(Session session, Service service, User user,
AlertAddress address, String symbol) {

Request req;
Response resp;
ServiceContext sc;
String content = null;

try {

Runtime and Data Model APIs

Core Technologies 10-79

req = RequestFactory.createRequest(session, service,
user, address);[28]

if (req == null) {
return null;

}
try {

req.setParameter(“TickerSymbol”, symbol);
sc = req.validate();
resp = req.execute();

if (sc.isAnyResultPresent()) {
content = resp.getContent();

}
} catch (Exception ex) {
} finally {

req.invalidate();
}

return content;
}

}

String userName = “orcladmin”;
String password = “manager”;
String effectiveUserName = “Guest”;
String symbols[] = { “orcl”, “sunw”, “csco” };

void main() {
ModelServices models = MetaLocator.getInstance().getModelServices();
User user = models.lookupUser(effectiveUserName);
Service service = models.lookupService(“YahooQuote”);
AlertAddress[] addresses = user.getAddresses();
Session session = signon(userName, password);
for (int i = 0; i < symbols.length(); i++) {

.

.
String content = invokeService(session, service, user, addresses[0],

symbol[i]);
.
.

}
}

The signon() method signs on the user to the Oracle9iAS Wireless runtime. When
the Request object is validated in line [17], the user name and password credentials

Runtime and Data Model APIs

10-80 Oracle9iAS Wireless Developer’s Guide

are used to authenticate the user. Since no service is invoked during the sign-on
request, the code example shows that the Request object is not executed.

If there is no exception after validation, the authenticated session is retrieved from
the Request object in line [18].

The Session object is used in the invokeService() method for subsequent requests to
the runtime. Line [28] in the invokeService() method creates a Request object for an
effective user and a specified service. For this operation to succeed, the
authenticated user must have administrative privileges over the effective user
account.

The address parameter identifies the target device model for the Oracle9iAS
Wireless runtime to format the content in the appropriate markup language.

The main routine in the above code example illustrates how it iteratively invokes
the service each time with a different input parameter. The contents returned by
each service request can be combined into a larger document and sent to the user.

10.6.1.15 Event, Listener
During the establishing of a session, the expiration of a session, or the processing of
a request, Runtime can generate a sequence of events to signal the execution
progress if any interested listener is registered with these objects. Generally,
listeners should not be intrusive to the runtime execution. They should monitor the
runtime progress instead of altering its execution behavior. The possible
applications for the event package can be a logger, a billing procedure, or a
performance monitor tool. The oracle.panama.rt.event package defines the Listener
and Event API.

Listeners listen to Events. Listener and Event form an important design pattern in
which the Listener is an observer. Three types of listeners are defined:

■ RequestListener
■ SessionListener
■ ResponseListener
The ListenerRegistrationHook subscribes the listeners to receive events from the
subject, such as Request, Response, or Session.

10.6.1.16 Implementing the RequestListener Interface
The implementor of oracle.panama.rt.event.RequestListener can receive
any of the following events:

■ before request

Runtime and Data Model APIs

Core Technologies 10-81

■ request begin

■ request end

■ service begin

■ service end

■ transform begin

■ transform end

■ after request

■ request error

The timing sequence regarding when the event is generated is discussed in Section
10.6.2, "Reference Model". However, not all the Request-related events will be
generated. Which specific Request-related event will be generated is controlled by
the enent mask in System Manager -> Site -> Wireless Web Server -> Event and
Listeners control panel in the Webtool.

For example, if you want to have your RequestListener receive the request begin
event, you should set the Enable 'request begin' Event to true in the System
Manager -> Site -> Wireless Web Server -> Event and Listeners control panel in
the Webtool. The site configuration property names are:

wireless.http.event.beforeRequest
wireless.http.event.requestBegin
wireless.http.event.requestEnd
wireless.http.event.serviceBegin
wireless.http.event.serviceEnd
wireless.http.event.transformBegin
wireless.http.event.transformEnd
wireless.http.event.requestError
wireless.http.event.afterRequest

Step 11 in Section 10.6.2.1, "Case: A Request Involving Session Establishment and
Authentication" indicates that the RequestListener can intercept the input
parameters during the requestBegin(RequestEvent) and apply additional business
rules to the request parameters before service invocation.

10.6.1.17 Implementing the ResponseListener Interface
The implementor of oracle.panama.rt.event.ResponseListener can receive the
Response-related event. The only possible Response-related event is response error.
If you want Oracle9iAS Wireless runtime to have your ResponseListener receive the

Runtime and Data Model APIs

10-82 Oracle9iAS Wireless Developer’s Guide

response error event, you should set the Enable 'response error' Event option to true
in System Manager -> Site -> Wireless Web Server -> Event and Listeners control
panel in the Webtool. The site configuration property name is:
wireless.http.event.responseError

10.6.1.18 Implementing the SessionListener Interface
The implementor of oracle.panama.rt.event.SessionListener can receive the Session
life cycle events. The possible Session events include:

■ before session

■ session begin

■ session authenticated

■ session end

■ after session

The timing sequence regarding when the event is generated is discussed in Section
10.6.2, "Reference Model". However not all the Session events will be generated.
Which specific Session event will be generated is controlled by the event masks in
the System Manager -> Site -> Wireless Web Server -> Event and Listeners control
panel in the Webtool.

For example, if you want to have your SessionListener receive the session begin
event, you should set the Enable 'session begin' Event option to true in the System
Manager -> Site -> Wireless Web Server -> Event and Listeners control panel in
the Webtool. The site configuration property names are:

wireless.http.event.beforeSession
wireless.http.event.sessionBegin
wireless.http.event.sessionAuthenticated
wireless.http.event.sessionEnd
wireless.http.event.afterSession

10.6.1.19 Guidelines
The following guidelines describe how to set up the customized Event Listener:

1. Implement the RequestListener, ResponseListener, or SessionListener interface.

2. Compile the new Java source files from Step 1 with the wireless.jar file in the
classpath.

Runtime and Data Model APIs

Core Technologies 10-83

3. Modify the event mask entries in the System Manager -> Site -> Wireless Web
Server -> Event and Listeners control panel to enable the generation of specific
events.

4. Specify the class names for the RequestListener, ResponseListener, and
SessionListener in the System Manager -> Site -> Wireless Web Server -> Event
and Listeners control panel of webtool. The site configuration property names
are:

wireless.http.locator.combined.listener.classes
wireless.http.locator.session.listener.classes
wireless.http.locator.response.listener.classes
wireless.http.locator.request.listener.classes

5. Restart the Oracle9iAS Wireless instance.

Any of the event listeners may raise the AbortServiceException to signal the
runtime controller to reject the request, but this veto signal is effective only if it is
raised during one of the following events when the service is yet to be invoked:

■ beforeRequest(RequestEvent)

■ beforeSession(SessionEvent)

■ sessionAuthenticated(SessionEvent)

■ requestBegin(RequestEvent)

■ sessionBegin(SessionEvent)

■ serviceBegin(RequestEvent)

The listeners may raise the AbortServiceException during the serviceEnd(),
transformBegin(), and transformEnd() events to refuse the service’s content to the
user, although any durable effect of the service invocation cannot be rolled back.

The sessionEnd(), afterSession(), requestEnd(), and afterRequest() methods should
not raise the AbortServiceException.

A listener that implements the Request, Response, and Session listener interfaces is
described in the code example in Section 10.6.1.16, "Implementing the
RequestListener Interface". The listener in this example listens to all Request,
Response, and Session events. This listener logs the response time, service time, and
transform time of the requests.

The values placed in the event object persist through the life cycle of the event
source and can be retrieved during subsequent events. Alternatively, the listener
may place the values in the RUNTIME attribute category of the Request or Session

Runtime and Data Model APIs

10-84 Oracle9iAS Wireless Developer’s Guide

objects. Both techniques allow the listeners to correlate and trace the events from
individual event sources.

10.6.1.20 Hooks
The Oracle9iAS Wireless runtime specifies the hook interfaces for standard plug-in
modules. The following sections describe the hooks in the order in which they are
invoked by the runtime.

In the Oracle9iAS Wireless Runtime API, Hook and Policy form a chain of
responsibility design pattern, within which Policy is the default implementation of
Hook that can be delegated by the custom implementation.

The following table lists the Hooks and the default Policies that correspond to the
hook interfaces:

Table 10–10 Classes that Implement the Default Policies

Hook Name Policy Name

AuthenticationHook AuthenticationPolicy

AuthorizationHook AuthorizationPolicy

CallerLocationHook CallerLocationPolicy

DeviceIdentificationHook DeviceIdentificationPolicy

FolderRendererHook FolderRendererPolicy

HomeFolderSorterHook HomeFolderSorterPolicy

ListenerRegistrationHook ListenerRegistrationPolicy

LocationServiceVisibilityHook LocationServiceVisibilityPolicy

MobileIdHook MobileIdPolicy

NormalizeAddressHook NormalizeAddressPolicy

PostProcessorHook

PreProcessorHook

ServiceVisibilityHook ServiceVisibilityPolicy

SessionIdHook SessionIdPolicy

SignOffHook SignOffPolicy

SignOnPagesHook SignOnPagesPolicy

Runtime and Data Model APIs

Core Technologies 10-85

10.6.1.21 The ListenerRegistrationHook
Steps 2 and 7 in Section 10.6.2.1, "Case: A Request Involving Session Establishment
and Authentication" show that each time a new Session or Request object is created,
runtime passes the Session or Request object to the ListenerRegistrationHook to let
the hook register listeners. The listener registration module can be customized to let
the listeners selectively observe the event sources.

For example, a custom listener registration policy may subscribe the listeners only
to the requests for the billable services. Such a listener may add business rules to the
runtime controller.

10.6.1.22 The SessionIDHook
The Oracle9iAS Wireless runtime uses the SessionIdHook to uniquely identify each
new session it creates with a Session id. This Session id is used in the URLs for
session tracking. It is important for custom Session id modules to generate long
Session id strings. Longer Session id strings are less vulnerable to attack.

10.6.1.23 DeviceIdentificationHook
Runtime uses the DeviceIdentificationHook to determine the device model for the
user agent. For HTTP clients, the user-agent type is the value of the “User-Agent”
attribute in the HTTP header. The DeviceIdentificationHook can implement robust
determination of the type of user agents for cases where the user-agent attribute is
not supplied in the request.

This hook provides a mapping of the user-agent type to the device model. Runtime
agents can specify the Device in the RequestFactory method. If the Device is
specified, the runtime controller will not invoke the DeviceIdentificationHook.

Although customization and extensions are supported, the default device
identification policy is fully functional.

10.6.1.24 AuthenticationHook
The Oracle9iAS Wireless runtime dispatches the authentication operations to the
authentication module that implements the AuthenticationHook. The
AuthenticationPolicy provides a public interface to the default authentication policy
in Runtime. The default policy uses the user name and password credentials in the
Oracle9iAS Wireless Single Sign On (SSO) server.

A different implementation of the AuthenticationHook using an external module
may use any custom authentication scheme to validate the user. The external
authentication module may optionally fail over to the default authentication policy.

Runtime and Data Model APIs

10-86 Oracle9iAS Wireless Developer’s Guide

The AuthenticationHook returns the AuthenticationContext if the authentication
succeeds. Otherwise, the hook raises the AuthenticationException. The
AuthenticationContext that is returned by the authentication module specifies the
User object for the Session. This User object may be located in the Oracle9iAS
Wireless repository or provisioned by the authentication module on demand.

The AuthenticationContext is passed to the AuthorizationHook for service
authorization. The String getAuthenticationType() method in Request can provide
the name of the authentication scheme used by the plug-in authentication module,
which extends the "BASIC", "DIGEST", or "SSL" authentication schemes supported
by the javax.servlet.http package.

Runtime provides infrastructure support to mix and match different authentication,
authorization, and provisioning policies by delegating the authentication operation
to the AuthenticationHook and the authorization operation to the
AuthorizationHook.

Runtime places the AuthenticationContext, which is returned by the
AuthenticationHook, in the Session. The AuthenticationContext is passed only to
the AuthorizationHook and is not accessible through the public interface.

The AuthenticationHook may either create the user or look up the user in the
repository. If the user is provisioned by the external accounting system, the
AuthenticationHook will also provision the home folder and group for the user. The
user, which is returned through the AuthenticationContext, becomes the
authenticated user of the session. Although large-scale customization and extension
efforts are supported, the built-in authentication and authorization policies are fully
functional.

10.6.1.25 SignOnPagesHook
In the Oracle9iAS Wireless environment, the sign on pages are generated by the SSO
server. The SignOnPagesHook is used primarily for authentication against the stand
alone repository. This hook is not shown in the execution because it is invoked only
when the AuthenticationPolicy raises the AuthenticationFailOverException.

When the SignOnPagesHook generates the sign-on page, the Oracle9iAS Wireless
runtime sends that sign-on page to the user, who submits the user’s name and
password for authentication by the default authentication module in stand alone
mode (without SSO).

10.6.1.26 MobileIDHook
Runtime invokes the MobileIDHook to determine the mobile client ID.

Runtime and Data Model APIs

Core Technologies 10-87

The mobile identifier may be supplied by the external accounting system, by one of
the fields (such as, the mobile ID field or external ID field) of the user object in the
repository, or by one of the attributes in the HTTP header. The HTTP header
attribute names can be specified by the
“wireless.mobile.id.request.parameter.name” through the System Configuration
Webtool. This mobile id is placed in the authenticated session.

10.6.1.27 AuthorizationHook
The authentication operation is performed only one time to establish a session for
the user. The authorization operation is performed for each request to the
Oracle9iAS Wireless runtime.

The authorization module that implements the AuthorizationHook may use any
custom authorization scheme. It is probable for the same party to implement both
the AuthenticationHook and the AuthorizationHook. For example, in an
environment that uses a pre-billing scheme, the AuthenticationHook provides the
AuthenticationContext that indicates the user’s prepaid level or type of service to
the AuthorizationHook.

The external authorization module may optionally fail over to the default
authorization policy by delegating to the AuthorizationPolicy provided in the
public package. The default authorization policy authorizes the service using the
visibility, validity, ownership, and group membership configuration in the
repository.

10.6.1.28 CallerLocationHook
The CallerLocationHook provides the interface to acquire a caller’s physical
location in terms of latitude and longitude. The Oracle9iAS Wireless provides two
different default implementations of the CallerLocationHook interface.

The oracle.panama.rt.common.CallerLocator class provides the simple
implementation using the location marks. The location object is one way of
specifying the longitude and latitude position. The user can change the location
setting in the session through the URL parameter PAslmk. If the automatic location
acquisition is disabled, the location setting in the session supplies the current
position of the mobile device to the location-based services.

The oracle.panama.rt.common.LocAcq provides the automatic location acquisition
implementation if the user specifies the appropriate privacy directive. If the
automatic acquisition fails or is disabled through the Enable Mobile Positioning flag
in the System Manager -> Site -> Location Management control panel of the

Runtime and Data Model APIs

10-88 Oracle9iAS Wireless Developer’s Guide

webtool or by setting the “wireless.elocation.mp.enable” parameter in the Site
Configuration parameter table, the prior location mark semantics will be applied.

See the oracle.panama.mp section for details on how to specify which mobile
position server (either Ericsson or SignalSoft, or another customized server) is used
to acquire the caller’s location.

10.6.1.29 Service
Services are Oracle9iAS Wireless repository objects. A Master Service object
contains a RuntimeAdapter, which is chief among plug-in components. Folders are
a type of service used for organizing other folders and services in the repository.
The following two hooks control how the content of a folder gets rendered:

■ FolderRendererHook
■ LocationServiceVisibilityHook
The FolderRendererHook uses the LocationServiceVisibilityHook to render the
contents of the folder. When the user first signs on to the system, runtime invokes
the user’s home folder. The built-in FolderRendererHook, accessible through the
FolderRendererPolicy, combines the contents of the home folder with the folders
and services from one or more of the user’s groups. The
LocationServiceVisibilityHook selects from the location-based subfolders in the
folder for those whose regions intersect with the current position of the mobile
device.

Each folder can be associated with a folder rendering service which provides
customized view of the folder. The default folder rendering policy or the site wide
customized folder rendering hook is used only if the folder does not have an
associated rendering service, either assigned to it or inheritable from its parent
folders.

10.6.1.30 PreProcessorHook, Transformer, and PostPorcessorHook
If the PreProcessorHook is specified, the Runtime invokes the PreProcessorHook to
process the Mobile XML result from the service invocation. The Device’s
Transformer is applied to the result of the PreProcessorHook. If specified, the
PostProcessorHook is invoked to process the markup page that is generated by the
Device’s Transformer.

Runtime and Data Model APIs

Core Technologies 10-89

10.6.2 Reference Model
This section describes the Oracle9iAS Wireless runtime, showing how the hooks
and listeners participate in the processing of a service request — in this case, the
request involves authentication and session establishment.

The sequence in the model shows how a service in the repository is invoked after
authentication. If no service is specified in the request, as is the case for sign-on
pages, the service which is invoked is that of the user’s home folder.

10.6.2.1 Case: A Request Involving Session Establishment and Authentication
This is a description of the flow in how runtime processes the events in a request
that needs a new session and authentication. The numbers indicate the sequence of
the actions in the runtime.

1. createRequest(HttpServletRequest,HttpServletResponse)

ParmImpl submits an HTTP request containing input parameters to the
RequestFactory to create the Request object.

2. registerRequestListeners(Request)

Runtime passes the new request to the ListenerRegistrationHook to let it
register listeners.

3. beforeRequest(RequestEvent)

The event source Request issues a notification to each of the RequestListeners,
passing the RequestEvent object.

4. execute()

ParmImpl executes the newly created Request object, which starts the following
sequence of activities within the runtime.

5. createSessionId()

Runtime dispatches to the SessionIdHook to create a new session id for the
PAsid parameter.

6. createSession()

Runtime creates a new Session for the given session id.

7. registerSessionListeners(Request,Session)

Runtime passes the new Session to the ListenerRegistrationHook to let it
register the session listeners.

Runtime and Data Model APIs

10-90 Oracle9iAS Wireless Developer’s Guide

8. beforeSession(SessionEvent)

The event source Session issues a notification to each of the SessionListeners,
passing the SessionEvent object.

9. findDeviceType(String)

Runtime dispatches to the DeviceIdentificationHook to determine the device
model.

10. parseInputParameters()

Runtime parses the URL in the HTTP request and extracts the input parameters.

11. requestBegin(RequestEvent)

The event source Request issues a notification to each of the RequestListeners,
passing the RequestEvent object.

12. authenticate(String,String,Request)

Runtime dispatches to the AuthenticationHook to authenticate the user.

13. getMobileId(Request,Session)

Runtime dispatches to the MobileIdHook to obtain the mobile id of the user,
which can be used by the CallerLocationHook.

14. sessionBegin(SessionEvent)

The event source Session issues a notification to each of the SessionListeners,
passing the SessionEvent object.

15. sessionAuthenticated(SessionEvent)

The event source Session issues a notification to each of the SessionListeners,
passing the SessionEvent object.

16. getCurrentLocation(Request)

Runtime dispatches to the CallerLocationHook to determine the location of the
caller (mobile device).

17. authorize(User,Service,Request,AutheticationContext)

Runtime dispatches to the AuthorizationHook to authorize the requested
service.

18. serviceBegin(RequestEvent)

The event source Request issues a notification to each of the RequestListeners,
passing the RequestEvent object.

Runtime and Data Model APIs

Core Technologies 10-91

19. invoke(ServiceContext)

Runtime invokes the service in the repository, passing the ServiceContext
object.

20. serviceEnd(RequestEvent)

The event source Request issues a notification to each of the RequestListeners,
passing the RequestEvent object.

21. transformBegin(RequestEvent)

The event source Request issues a notification to each of the RequestListeners,
passing the RequestEvent object.

22. process(Request,Element)

Runtime dispatches to the PreProcessorHook to process the SimpleResult
output of the service.

23. rewriteResultURLs(Element)

Runtime replaces the original URL with an encoded URL that contains the
PAsid and PAckey parameters for the session id and the URL cache key,
respectively.

24. transform(Element,LogicalDevice)

Runtime invokes the device ResultTransformer to transform the SimpleResult to
the device’s markup language.

25. process(String,Arguments,Device)

Runtime invokes the PostProcessor to parse the content of the device markup
page. The PostProcessor replaces the runtime variables (which are "place
holders") with the values of the variables. For example, "PAsid=xyzw" replaces
___SESSION__.

26. process(Request,Response,String)

Runtime dispatches to the PostProcessorHook to process the device markup
page to produce the final result.

27. transformEnd(RequestEvent)

The event source Request issues a notification to each of the RequestListeners,
passing the RequestEvent object.

28. writeContent()

Runtime writes the content to the HTTPServletResponse.

Runtime and Data Model APIs

10-92 Oracle9iAS Wireless Developer’s Guide

29. requestEnd(RequestEvent)

The event source Request issues a notification to each of the RequestListeners.

30. invalidate()

ParmImpl invalidates the Request object.

31. afterRequest(RequestEvent)

The event source Request issues a final notification to the RequestListeners,
passing the RequestEvent object.

10.6.2.2 System Parameters
There are two different kinds of system parameters: static and derived parameters.
The following sections discuss these two types of system parameters.

10.6.2.3 Static System Parameters
The Mobile XML results can contain the runtime variables, (composed from the
names of the parameters) by appending two underscore characters (__) before and
after the parameter name. These runtime variables in the Mobile XML results are
"place holders" which are replaced by the values of the parameters during the post
processing phase (Step 25 in Section 10.6.2.1, "Case: A Request Involving Session
Establishment and Authentication") before the final result is returned to the
requester. The following table describes the system-defined ServiceContext
parameters which are found among the ServiceContext arguments. The left column
in the table shows the Java program constants that represent the names of the
parameters in the ServiceContext object. You can access them in one of two ways:

■ Programmatically through the ServiceContext or the Request object:

Arguments args = sc.getInputArguments();
String language = args.getInputValue(X);

where X is the parameter name.

■ Through the PostProcessor for the final result markup language as __X__ using
two underscores as the prefix and two underscores as the suffix around X.

The HTTP headers sent together with the HTTP service request invocation are also
considered static parameters. However which HTTP header is present depends on
the browser and the gateway. To find out which HTTP headers are present in a
request, use the following:

Enumeration in_http_headers = Req.getHeaderAttributes()

Runtime and Data Model APIs

Core Technologies 10-93

This returns an enumeration of present HTTP headers in the request.

You can retrieve the HTTP header’s value by enumerating:

while (in_http_headers.hasMoreElements())
{

String arg = (String) in_http_headers.nextElement();
System.out.println(arg+”= “+ Reg.getParameter(arg));

}

10.6.2.4 Derived System Parameters
The second kind of system parameters is the derived parameters. A derived
parameter’s value is usually not present. To make its value present in the valid
request object, do the following:

■ Add the derived parameter X to the master service and make the derived
parameter X mandatory.

■ After each request has been validated, the runtime computes the values for the
mandatory derived parameters. Then the values of these derived parameters
can be accessed in the same way as the values of the static system parameters.
The runtime-defined derived system parameters are listed in the following
table.

Table 10–11 Derived System Parameters

Derived System
Parameter Name Description

_Longitude The longitude component of the geocoding of the current
requester’s location

_Latitude The latitude component of the geocoding of the current
requester’s location

_State The state from which the current requester is initiating the
request

_Postalcode The postal code of the current requester’s location

_Country The country in which the current requester is initiating the
request

Runtime and Data Model APIs

10-94 Oracle9iAS Wireless Developer’s Guide

10.6.2.5 General Guidelines for User-Defined Listeners and Hook
Implementation
Component developers can develop new types of runtime agents and adapters by
using only the classes and interfaces in the public packages provided in the
wireless.jar file.

The following steps describe how you provide your own implementation of
listeners and hooks.

10.6.2.6 Implementing the Respective Interface
The user-defined listeners and hooks should implement the respective listener
interface or the hook interface. For example, if you define your own
AuthenticationHook, your new AuthenticationHook Java class should implement
the oracle.panama.rt.hook.AuthenticationHook interface.

Furthermore, the new implementation should implement the following Singleton
pattern:

class yourClass implement Xhook {
public static Xhook getInstance() { …. }

…
}

10.6.2.7 Compile Your Java Source
Make sure you have included the wireless.jar in your Java classpath during
compilation.

10.6.2.8 Plug in Your Implementation through Property File
Set the corresponding entry in the System Manager -> Site -> Wireless Web Server
-> Event and Listeners control panel, or the System Manager -> Site -> Wireless
Web Server -> Hooks control panel to specify the name of the class that provides
the implementation.

The following table lists the property entry name in the System Manager -> Site ->
Wireless Web Server -> Hooks control panel for each hook.

Table 10–12 Property Entry Names for Hooks

Hook Name Property Name

AuthenticationHook wireless.http.locator.authentication.hook.class

AuthorizationHook wireless.http.locator.authorization.hook.class

Runtime and Data Model APIs

Core Technologies 10-95

For example, if you provide your own implementation of the authentication hook,
you should set the wireless.http.locator.authentication.hook.class in the System
Manager -> Site -> Wireless Web Server -> Hooks control panel to <your class
name>.

10.6.2.9 Tips and Hints
When implementing the new listeners, hooks, and adapters, consider also the
following points:

10.6.2.10 Concurrent Requests
The Oracle9iAS Wireless runtime supports concurrent instances of requests from
user agents through an HTTP connection. Concurrent requests are not permitted for
the runtime agent that shares the same administrator session among different
effective users. For this type of agent, the runtime serializes the requests under the
same session. Concurrency is achieved by introducing more than one instance of the
runtime agents, each with its own authenticated session.

CallerLocationHook wireless.http.locator.caller.location.hook.class

DeviceIdentificationHook wireless.http.locator.device.identification.hook.class

FolderRendererHook wireless.http.locator.folder.render.hook.class

HomeFolderSorterHook wireless.http.locator.home.folder.sorter.hook.class

ListenerRegistrationHook wireless.http.locator.listener.registration.hook.class

LocationServiceVisibilityHook wireless.http.locator.service.visibility.hook.class

PostProcessorHook wireless.http.locator.post.processor.hook.class

PreProcessorHook wireless.http.locator.pre.processor.hook.class

ServiceVisibilityHook wireless.http.locator.service.visibility.hook.class

SessionIdHook wireless.http.locator.session.id.hook.class

SignOnPagesHook wireless.http.locator.signon.pages.hook.class

MobileIdHook wireless.http.locator.mobile.id.hook.class

NormalizeAddressHook wireless.http.locator.normalizeaddress.hook.class

Table 10–12 Property Entry Names for Hooks

Hook Name Property Name

Runtime and Data Model APIs

10-96 Oracle9iAS Wireless Developer’s Guide

10.6.2.11 Recursive Instances of Requests
The Oracle9iAS Wireless runtime supports recursive instances of requests under the
same session. Recursive instances of requests may be issued by the plug-in
components, for example, to recursively invoke all services under a folder.

10.6.2.12 Query Parameters
The Oracle9iAS Wireless runtime parses the URL query strings from HTTP user
agents to retrieve query parameters. For other agents that do not use URL strings,
the runtime lets the agents set the query parameters programmatically. The runtime
allows the agents to specify the session, user, device, and service using objects
instead of names.

10.6.2.13 Runtime Object References
This design constraint requires that plug-in components do not retain references to
the runtime objects across invocations.

Plug-in components may execute under asynchronous threads; in this case, the
synchronous methods in the components should make snapshots of the runtime
objects before handing them to the asynchronous threads.

10.6.2.14 Thread-Safe and High-Concurrency
Since a single instance of the customized listeners and hooks is created according to
the Singleton design pattern, the Java class should provide a thread-safe but very
high concurrent implementation. Otherwise, the performance of the Oracle9iAS
Wireless runtime can be significantly degraded.

10.6.2.15 User-Defined Hooks Examples
The following examples are available in the respective subdirectories under
\sample.

The following examples illustrate how you can develop user-defined hooks:

10.6.2.16 Example 1

10.6.2.16.1 Changing the folder look and feel The look and feel of folders in Oracle9iAS
Wireless can be changed in the following ways:

■ Through configuration parameters which modify the built-in renderer

■ By specifying a FolderRendererHook

Runtime and Data Model APIs

Core Technologies 10-97

■ By specifying a FolderRendererService

10.6.2.16.2 Configuration parameters The look and feel of the folder can be changed
by modifying the following configuration parameters:

10.6.2.16.3 FolderRendererService Oracle9iAS Wireless also allows an arbitrary
service to be run when accessing a folder. This service is attached to the folder using
the service designer; please see the service designer documentation for details. The
service that renders the folder can either be active for that folder only, or for the
given folder and all its children subfolders. The latter is useful for cases such as
when one is customizing the folder look and feel for a subtree of folders.
Customizing all user home folders is a prime example. If you put all user home
folders beneath the folder /Users Home/, the FolderRendererService can then be

Table 10–13 Configuration parameters

Name type default Effect Notes

wireless.device.login.enable boolean true Display ‘Login’
link

Only displayed when user is
not fully authenticated (guest
or virtual user)

wireless.device.logout.enable boolean true Display ‘Logoff’
link

Only displayed when user is
fully authenticated (explicitly
logged in)

wireless.device.userinfo.enable boolean true Display ‘Setup
/ User Info’ link

wireless.device.customizeservice.enable boolean true Display ‘Setup
/ Service’ link

wireless.device.globalpreset.enable boolean true Display ‘Setup
/ Presets’ link

wireless.device.userprofile.enable boolean true Display ‘Setup
/ User Profile’
link

wireless.device.register.enable boolean true Display
‘Register’ link

Only displayed for guest or
virtual user

wireless.device.help.enable boolean false Display ‘Help’
link

Help page can be configured
using the
wireless.device.help.url

configuration parameter wireless.
device.h
ome.ena
ble

boolean true Display ‘Home’ link

Runtime and Data Model APIs

10-98 Oracle9iAS Wireless Developer’s Guide

attached to the /Users Home/ folder, with recursive rendering turned on (see the
webtool documentation for details on how to do this). If you want to have different
folder rendering for different groups of users, you should group the users home
folder under different group folders and attach different folder rendering services to
each group folder, like this:

■ /Portal1 -- attach folder render service 1

■ /Portal2 -- attach folder render service 1

A folder service is written just like any other Oracle9iAS Wireless service, and will
get invoked with a regular ServiceContext. The folder to be rendered can be
retrieved using the ServiceContext method getCurrentFolder.

10.6.2.17 FolderRendererBean
The service used to render folders can be any Oracle9iAS Wireless service. It is
usually convenient to write this service as a JSP, using the OC4J Adapter. In order to
facilitate writing a FolderRenderer JSP service, the bean
oracle.panama.rt.hook.FolderRendererBean is provided. This class has a number
of methods for getting the content normally used by the built-in FolderRenderer:
the getHeader, getBody and getFooter methods retrieve the header, body (folder
content listing) and footer respectively. All methods in the FolderRenderBean takes
a single argument, namely the current ServiceContext. In addition to the methods
already mentioned, there are a number of utility methods (such as for getting the
current user name), please see the FolderRendererBean JavaDoc for details.

The following example shows how write JSP code that displays a custom header,
but reuses the built in folder renderer for displaying the folder content and footer:

<%@page import="oracle.panama.rt.ServiceContext"%>
<%@page import="oracle.panama.rt.hook.FolderRendererBean" %>

<%
ServiceContext context = (ServiceContext)

request.getAttribute("oracle.wireless.rt.context");
FolderRendererBean renderer =

FolderRendererBean.getInstance();
response.setHeader("Mime-type", "text/xml");
%>
<SimpleResult>
<SimpleContainer>
<SimpleText>
<SimpleTextItem>My custom header</SimpleTextItem>

Runtime and Data Model APIs

Core Technologies 10-99

</SimpleText>
<%= renderer.getBody(context) %>
<%= renderer.getFooter(context) %>

</SimpleContainer>
</SimpleResult>

10.6.2.18 FolderRendererHook
The third way of customizing the folder is by specifying a hook class that
implements the interface oracle.panama.rt.hook.FolderRendererHook. This hook
has a single method invoke, which takes as its argument the current ServiceContext
and returns the DOM document containing the Mobile XML for the current folder.
The hook will be invoked whenever there is no assigned folder rendering service.

10.6.2.19 FolderRendererPolicy
The default (built-in) implementation of the FolderRenderer is provided in the class
oracle.panama.rt.hook.FolderRendererPolicy. This class can be subclassed,
allowing custom hooks to reuse parts of the built-in functionality.

The main entry point for the FolderRendererHook is the invoke method. In the
default FolderRendererPolicy implementation, the invoke method will create a
SimpleResult element and in turn call getHeader, getBody and getFooter methods
in order to append the header, body (folder content listing) and footer respectively.
All methods in the FolderRendererPolicy takes a single argument, namely the
current ServiceContext. If you need to add custom headers and footers, the Folder
Renderer Policy can be subclassed to override the methods for getHeader and
getFooter.

The following code is an example of a FolderRendererHook implementation that
inserts a custom header:

import oracle.panama.rt.ServiceContext;
import oracle.panama.rt.hook.FolderRendererHook;
import oracle.panama.rt.hook.FolderRendererPolicy;
import org.w3c.dom.Document;
import org.w3c.dom.Element;

class CustomFolderRenderer extends FolderRendererPolicy
implements FolderRendererHook {

public Element getHeader(ServiceContext context) {
Document doc = context.getXMLDocument();
Element ret = doc.createElement("SimpleText");

Runtime and Data Model APIs

10-100 Oracle9iAS Wireless Developer’s Guide

Element text = doc.createElement("SimpleTextItem");
ret.appendChild(text);
String str = "My custom header";

text.appendChild(doc.createTextNode(str));
return ret;

}
// inherit getBody
// inherit getFooter

}

10.6.2.19.1 Folder Setup Actions The default folder renderer in the runtime puts the
controls for setting up the end user’s preferences in the header and footer. The
actions that are added in the device header/footer is described by the
FolderSetupAction interface. When writing a folder rendering service or hook, it is
possible to get information about all actions, including the URL (String), the
localized label and whether the action should be displayed or not. Please see the
FolderRendererBean and FolderRendererPolicy JavaDoc for a complete list of
methods that retrieves FolderSetupActions.

Using the FolderSetupActions allows the user that extends the FolderRenderer to
duplicate the built-in setup button semantics and labels, but substitute their own
look and feel, for example by using SimpleHrefs instead of SimpleMenuItems. The
following code is an example of a FolderRendererHook that does this:

import oracle.panama.rt.ServiceContext;
import oracle.panama.rt.hook.FolderRendererHook;
import oracle.panama.rt.hook.FolderRendererPolicy;
import oracle.panama.rt.hook.FolderSetupAction;

import org.w3c.dom.Document;
import org.w3c.dom.Element;
import org.w3c.dom.Text;

class CustomFolderRenderer extends FolderRendererPolicy implements
FolderRendererHook {
public Element getHeader(ServiceContext context) {
Document doc = context.getXMLDocument();
Element ret = doc.createElement("SimpleText");
Element text = doc.createElement("SimpleTextItem");
ret.appendChild(text);
FolderSetupAction[] actions = new FolderSetupAction[] {
super.getEditPresetsAction(context),
super.getEditServicesAction(context),
super.getEditUserInfoAction(context),

Runtime and Data Model APIs

Core Technologies 10-101

super.getLoginAction(context),
super.getLogoffAction(context),
super.getRegisterAction(context),

};

for(int i = 0; i < actions.length; i++) {
if(actions[i].isActive(context)) {

Element href = doc.createElement("SimpleHref");
// set the URL of the href
href.setAttribute("target", actions[i].getURL(context));

// set the text to display for the href
Text label =
doc.createTextNode(actions[i].getLabel(context))

href.appendChild(label);
text.appendChild(href);

}
}
return ret;

}

// inherit getBody unchanged

// override getFooter with implementation that creates footer
// without setup buttons.
public Element getFooter(ServiceContext context) {
Document doc = context.getXMLDocument();
Element ret = doc.createElement("SimpleText");
Element text = doc.createElement("SimpleTextItem");
text.appendChild(doc.createTextNode("My custom footer"));
return ret;

}
}

10.6.2.20 Example 2
The second example is also a hook example, but it takes advantage of the policy
concept. The MyAuthenticator first examines the "badguys" table to make sure the
login Oracle9iAS Wireless user is not in the table. If the user is in the table, then the
hook rejects the login request. Otherwise, it resumes the default policy
implementation in lines 42 and 44.

package hook;

import oracle.panama.rt.hook.AuthenticationHook;
import oracle.panama.rt.hook.AuthenticationPolicy;

Runtime and Data Model APIs

10-102 Oracle9iAS Wireless Developer’s Guide

import oracle.panama.rt.hook.AuthenticationContext;
import oracle.panama.rt.hook.AuthenticationException;
import oracle.panama.rt.hook.AuthenticationFailOverException;
import oracle.panama.rt.Request;
import oracle.panama.rt.hook.AuthenticationContext;
import oracle.panama.core.util.Locator;
import oracle.panama.core.admin.L;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.ResultSet;

public class MyAuthenticator implements AuthenticationHook {

private static MyAuthenticator myAuthenticator;
private Connection conn;
private PreparedStatement st;

private MyAuthenticator () {
try {

// lookup the db.connect.string in the panama's System.properties file
String connectString =

Locator.getInstance().getResource().getSystem().getString("db.connect.string",
"");

// constrct the JDBC connect string, always use the THIN driver for
// simplicity
int i = connectString.indexOf('/');
String user = connectString.substring(0, i);
int j = connectString.indexOf('@', i+1);
String password = connectString.substring(i+1, j);
String dbname = connectString.substring(j+1);
StringBuffer connStrBuf = new StringBuffer("jdbc:oracle:thin:");

connStrBuf.append("@");
connStrBuf.append(dbname);
// load the Oracle's JDBC driver
Class.forName("oracle.jdbc.driver.OracleDriver");

// connect to the database
conn = DriverManager.getConnection(connStrBuf.toString(), user,

password);
st = conn.prepareStatement("select name from badguys where name = ?");

Runtime and Data Model APIs

Core Technologies 10-103

} catch (Exception e) {
L.e(e);
conn = null;

}
}

public static AuthenticationHook getInstance() {
if (myAuthenticator == null) {

synchronized (MyAuthenticator.class) {
if (myAuthenticator == null) {

myAuthenticator = new MyAuthenticator();
}

}
}
return myAuthenticator;

}

public AuthenticationContext authenticate(String name, String passwd,
Request request) throws AuthenticationException,
AuthenticationFailOverException {

boolean badguy;

if (conn == null)
return AuthenticationPolicy.authenticateUser(name, passwd, request);

try {
st.setString(1, name);
ResultSet rs = st.executeQuery();
badguy = rs.next();

} catch (Exception e) {
L.e(e);
return AuthenticationPolicy.authenticateUser(name,

passwd, request); [42]
}

if (badguy) {
L.e(name+ " is an intruder!");
throw new AuthenticationException(name+" is an intruder!");

} else {
return AuthenticationPolicy.authenticateUser(name,

passwd, request); [44]
}

}

Runtime and Data Model APIs

10-104 Oracle9iAS Wireless Developer’s Guide

}

10.6.2.21 Register the Authentication Hook
You should also add the name of the class, in this case hook.MyAuthenticator, in the
System Manager > Site > Wireless Web Server > Hooks control panel in the Webtool
under the wireless.http.locator.authentication.hook.class property.

10.6.2.22 Event Listener Example
The following partial example (the complete "runable" example is under the
\sample\listener directory) illustrates how to implement a RequestListener. This
RequestListener simply writes the request related information to a log file.

10.6.2.23 Implementing the RequestListener Interface
The RequestListenerSample source file is as follows:

/*
*
$Copyright:
Copyright (c) 1999 Oracle Corporation all rights reserved
$
*/

package listener;

import oracle.panama.rt.Request;
import oracle.panama.rt.Response;
import oracle.panama.rt.Session;
import oracle.panama.rt.AttributeCategory;

import oracle.panama.rt.event.RequestEvent;
import oracle.panama.rt.event.ResponseEvent;
import oracle.panama.rt.event.SessionEvent;
import oracle.panama.rt.event.RequestListener;
import oracle.panama.rt.event.ResponseListener;
import oracle.panama.rt.event.SessionListener;
import oracle.panama.rt.event.AbortServiceException;

public class RequestListenerSample implements RequestListener { [31]

private final static String BEFORE_REQUEST = "L__L1";
private final static String REQUEST_BEGIN = "L__L2";
private final static String SERVICE_BEGIN = "L__L3";

Runtime and Data Model APIs

Core Technologies 10-105

private final static String SERVICE_END = "L__L4";
private final static String TRANSFORM_BEGIN = "L__L5";
private final static String TRANSFORM_END = "L__L6";
private final static String REQUEST_END = "L__L7";
private final static String AFTER_REQUEST = "L__L8";

/**
* The event notification before the start of request
* @param an event
*/
public void beforeRequest(RequestEvent event) throws AbortServiceException {

ListenerRegistrationHookSample.println("BEFORE REQUEST -- " +
event.toString() + "---" + event.getTimeStamp());
event.put(BEFORE_REQUEST, new Long(event.getTimeStamp()));
event.getRequest().setAttribute(AttributeCategory.RUNTIME, BEFORE_REQUEST,
new Long(event.getTimeStamp()));

}

/**
* The event notification when request begins
* @param an event
*/
public void requestBegin(RequestEvent event) throws AbortServiceException {

ListenerRegistrationHookSample.println("REQUEST BEGIN -- " +
event.toString() + "---" + event.getTimeStamp());

event.put(REQUEST_BEGIN, new Long(event.getTimeStamp()));
event.getRequest().setAttribute(AttributeCategory.RUNTIME, REQUEST_BEGIN,

new Long(event.getTimeStamp()));
}

/**
* The event notification when service begins
* @param an event
*/
public void serviceBegin(RequestEvent event) throws AbortServiceException {

ListenerRegistrationHookSample.println("SERVICE BEGIN -- " +
event.toString() + "---" + event.getTimeStamp());

event.put(SERVICE_BEGIN, new Long(event.getTimeStamp()));
event.getRequest().setAttribute(AttributeCategory.RUNTIME, SERVICE_BEGIN,

new Long(event.getTimeStamp()));
}

/**
* The event notification when service end
* @param an event

Runtime and Data Model APIs

10-106 Oracle9iAS Wireless Developer’s Guide

*/
public void serviceEnd(RequestEvent event) throws AbortServiceException {

ListenerRegistrationHookSample.println("SERVICE END -- " +
event.toString() + "---" + event.getTimeStamp());

event.put(SERVICE_END, new Long(event.getTimeStamp()));
event.getRequest().setAttribute(AttributeCategory.RUNTIME, SERVICE_END,

new Long(event.getTimeStamp()));
}

/**
* The event notification when transform begins
* @param an event
*/
public void transformBegin(RequestEvent event) throws AbortServiceException {

ListenerRegistrationHookSample.println("TRANSFORM BEGIN -- " +
event.toString() + "---" + event.getTimeStamp());

event.put(TRANSFORM_BEGIN, new Long(event.getTimeStamp()));
event.getRequest().setAttribute(AttributeCategory.RUNTIME,

TRANSFORM_BEGIN, new Long(event.getTimeStamp()));
}

/**
* The event notification when transform end
* @param an event
*/
public void transformEnd(RequestEvent event) throws AbortServiceException {

ListenerRegistrationHookSample.println("TRANSFORM END -- " +
event.toString() + "---" + event.getTimeStamp());

event.put(TRANSFORM_END, new Long(event.getTimeStamp()));
event.getRequest().setAttribute(AttributeCategory.RUNTIME,

TRANSFORM_END, new Long(event.getTimeStamp()));
}

/**
* The event notification when request ends
* @param an event
*/
public void requestEnd(RequestEvent event) throws AbortServiceException {

ListenerRegistrationHookSample.println("REQUEST END -- " +
event.toString() + "---" + event.getTimeStamp());

event.put(REQUEST_END, new Long(event.getTimeStamp()));
event.getRequest().setAttribute(AttributeCategory.RUNTIME,

REQUEST_END, new Long(event.getTimeStamp()));
}

Runtime and Data Model APIs

Core Technologies 10-107

/**
* The event notification when request error happens
* @param an event
*/
public void requestError(RequestEvent event) throws AbortServiceException {

ListenerRegistrationHookSample.println("REQUEST ERROR -- " +
event.toString() + "---" + event.getTimeStamp());

}

/**
* The event notification after the end of request
* @param an event
*/
public void afterRequest(RequestEvent event) throws AbortServiceException {

ListenerRegistrationHookSample.println("AFTER REQUEST -- " +
event.toString() + "---" + event.getTimeStamp());

event.put(AFTER_REQUEST, new Long(event.getTimeStamp()));
event.getRequest().setAttribute(AttributeCategory.RUNTIME,

AFTER_REQUEST, new Long(event.getTimeStamp()));

// start logging the object cached in the Request
ListenerRegistrationHookSample.println("logging the object cached in the

request");

Long beforeRequestTime = (Long) event.getRequest().getAttribute(
AttributeCategory.RUNTIME, BEFORE_REQUEST);

if (beforeRequestTime != null)
ListenerRegistrationHookSample.println("BEFORE REQUEST: " +

beforeRequestTime.longValue());

Long requestBeginTime = (Long) event.getRequest().getAttribute(
AttributeCategory.RUNTIME, REQUEST_BEGIN);

if (requestBeginTime != null)
ListenerRegistrationHookSample.println("REQUEST BEGIN: " +

requestBeginTime.longValue());

Long serviceBeginTime = (Long) event.getRequest().getAttribute(
AttributeCategory.RUNTIME, SERVICE_BEGIN);

if (serviceBeginTime != null)
ListenerRegistrationHookSample.println("SERVICE BEGIN: " +

serviceBeginTime.longValue());

Runtime and Data Model APIs

10-108 Oracle9iAS Wireless Developer’s Guide

Long serviceEndTime = (Long) event.getRequest().getAttribute(
AttributeCategory.RUNTIME, SERVICE_END);

if (serviceEndTime != null)
ListenerRegistrationHookSample.println("SERVICE END: " +

serviceEndTime.longValue());

Long transformBeginTime = (Long) event.getRequest().getAttribute(
AttributeCategory.RUNTIME, TRANSFORM_BEGIN);

if (transformBeginTime != null)
ListenerRegistrationHookSample.println("TRANSFORM BEGIN: " +

transformBeginTime.longValue());

Long transformEndTime = (Long) event.getRequest().getAttribute(
AttributeCategory.RUNTIME, TRANSFORM_END);

if (transformEndTime != null)
ListenerRegistrationHookSample.println("TRANSFORM END: " +

transformEndTime.longValue());

Long requestEndTime = (Long) event.getRequest().getAttribute(
AttributeCategory.RUNTIME, REQUEST_END);

if (requestEndTime != null)
ListenerRegistrationHookSample.println("REQUEST END: " +

requestEndTime.longValue());

Long afterRequestTime = (Long) event.getRequest().getAttribute(
AttributeCategory.RUNTIME, AFTER_REQUEST);

if (afterRequestTime != null)
ListenerRegistrationHookSample.println("AFTER REQUEST: " +

afterRequestTime.longValue());

if ((afterRequestTime != null) && (beforeRequestTime != null))
ListenerRegistrationHookSample.println("REQUEST DURATION: " +

(afterRequestTime.longValue() -
beforeRequestTime.longValue()));

// start logging the object cached in the RequestEvent
ListenerRegistrationHookSample.println("logging the object cached in the

request event");

beforeRequestTime = (Long) event.get(BEFORE_REQUEST);

Runtime and Data Model APIs

Core Technologies 10-109

if (beforeRequestTime != null)
ListenerRegistrationHookSample.println("BEFORE REQUEST EVENT: " +

beforeRequestTime.longValue());

requestBeginTime = (Long) event.get(REQUEST_BEGIN);
if (requestBeginTime != null)

ListenerRegistrationHookSample.println("REQUEST BEGIN EVENT: " +
requestBeginTime.longValue());

serviceBeginTime = (Long) event.get(SERVICE_BEGIN);
if (serviceBeginTime != null)

ListenerRegistrationHookSample.println("SERVICE BEGIN EVENT: " +
serviceBeginTime.longValue());

serviceEndTime = (Long) event.get(SERVICE_END);
if (serviceEndTime != null)

ListenerRegistrationHookSample.println("SERVICE END EVENT: " +
serviceEndTime.longValue());

transformBeginTime = (Long) event.get(TRANSFORM_BEGIN);
if (transformBeginTime != null)

ListenerRegistrationHookSample.println("TRANSFORM BEGIN EVENT: " +
transformBeginTime.longValue());

transformEndTime = (Long) event.get(TRANSFORM_END);
if (transformEndTime != null)

ListenerRegistrationHookSample.println("TRANSFORM END EVENT: " +
transformEndTime.longValue());

requestEndTime = (Long) event.get(REQUEST_END);
if (requestEndTime != null)

ListenerRegistrationHookSample.println("REQUEST END EVENT: " +
requestEndTime.longValue());

afterRequestTime = (Long) event.get(AFTER_REQUEST);
if (afterRequestTime != null)

ListenerRegistrationHookSample.println("AFTER REQUEST EVENT: " +
afterRequestTime.longValue());

if ((afterRequestTime != null) && (beforeRequestTime != null))
ListenerRegistrationHookSample.println("REQUEST DURATION EVENT: " +
(afterRequestTime.longValue() - beforeRequestTime.longValue()));

}

Runtime and Data Model APIs

10-110 Oracle9iAS Wireless Developer’s Guide

}

Line [31] in the above code example declares the implementation of the
oracle.panama.rt.event.RequestListener interface.

10.6.2.24 Register the Request Listener
You should also add the name of the listener class, in this case
listener.RequestListenerSample, in the System Manager > Site > Wireless Web
Server > Event and Listeners control panel in the Webtool under the
wireless.http.locator.request.listener.classes property.

10.6.2.25 Register the RequestListener with Each Request Object
You should implement the ListenerRegistrationHook to register your request
listener object whenever a new request is created. See the code section between line
[62] and line [65] in the code example below.

Your new registration hook class has to implement the
oracle.panama.rt.event.ListenerRegistrationHook interface as in line [31] in the code
example below. The class also needs to implement the Singleton pattern. See the
code section between lines 37 and 39 in the code example below.

package listener;

import java.io.FileOutputStream;
import java.io.PrintStream;
import java.io.FileNotFoundException;
import java.net.URL;

import oracle.panama.rt.Request;
import oracle.panama.rt.Response;
import oracle.panama.rt.Session;

import oracle.panama.rt.event.RequestListener;
import oracle.panama.rt.event.ResponseListener;
import oracle.panama.rt.event.SessionListener;

import oracle.panama.rt.hook.ListenerRegistrationHook;

import oracle.panama.rt.hook.ListenerRegistrationPolicy;

public final class ListenerRegistrationHookSample implements [31]
ListenerRegistrationHook {

Runtime and Data Model APIs

Core Technologies 10-111

public final static String LISTENER_LOG_FILE = "ListenerSample.log";
public static PrintStream logPrint = System.out;

private SessionListener sessionListener = null;
private RequestListener requestListener = null;
private ResponseListener responseListener = null;

private static ListenerRegistrationHookSample singleInstance = null;

public static ListenerRegistrationHookSample getInstance() { [37]
if (singleInstance == null) {

singleInstance = new ListenerRegistrationHookSample();
}
return singleInstance;

} [39]

public void finalize() {
logPrint.println("RegistrationHook is deallocated -- " +

System.currentTimeMillis());
logPrint.flush();
logPrint.close();

}

public static void println(String str) {
logPrint.println(str);
logPrint.flush();

}

private ListenerRegistrationHookSample() {
URL url = ClassLoader.getSystemResource(

"listener/ListenerRegistrationHookSample.class");
if (url != null) {

String filePath = url.getFile();
int lastSlash = filePath.lastIndexOf("/");
filePath = filePath.substring(1, lastSlash);

filePath = filePath + "/" + LISTENER_LOG_FILE;
try {

FileOutputStream logFile = new FileOutputStream(filePath, true);
logPrint = new PrintStream(logFile);

} catch (Exception fnfe) {
fnfe.printStackTrace();

}
}

Runtime and Data Model APIs

10-112 Oracle9iAS Wireless Developer’s Guide

logPrint.println("RegistrationHook is initialized -- " +
System.currentTimeMillis());

logPrint.flush();
}

/**
* instantiate the sample session listener class and register to sesson
* @param request an incoming request
* @param session a new session to register listeners
*/
public void registerSessionListeners(Request request, Session session) {

sessionListener = new SessionListenerSample();
if (sessionListener != null) {

session.addSessionListener(sessionListener);
}

// optional, register default session listeners
ListenerRegistrationPolicy.registerSessionListeners(request, session);

}

/**
* instantiate the sample request listener class and register to request
* @param request a new request to register listeners
*/
public void registerRequestListeners(Request request) { [62]

requestListener = new RequestListenerSample();
if (requestListener != null) {

request.addRequestListener(requestListener);
}
//optional, register default request listeners
ListenerRegistrationPolicy.registerRequestListeners(request);

} [65]

/**
* instantiate the sample response listener class and register to response
* @param request an incoming request
* @param session an existing session
* @param response a new response to register listeners
*/
public void registerResponseListeners(Request request, Response response) {

responseListener = new ResponseListenerSample();
if (responseListener != null) {

response.addResponseListener(responseListener);
}

Runtime and Data Model APIs

Core Technologies 10-113

// optional, register default response listeners
ListenerRegistrationPolicy.registerResponseListeners(request, response);

}

/**
* unregister the listeners from session.
* @param session a session to unregister listeners
*/
public void unregisterSessionListeners(Session session) {

if (sessionListener != null) {
session.removeSessionListener(sessionListener);

}
//optional, unregister default session listeners
ListenerRegistrationPolicy.unregisterSessionListeners(session);

}

/**
* unregister the listeners from request.
* @param request a request to unregister listeners
*/
public void unregisterRequestListeners(Request request) {

if (requestListener != null) {
request.removeRequestListener(requestListener);

}
//optional, unregister default request listeners
ListenerRegistrationPolicy.unregisterRequestListeners(request);

}

/**
* unregister the listeners from response.
* @param response a response to unregister listeners
*/
public void unregisterResponseListeners(Response response) {

if (responseListener != null) {
response.removeResponseListener(responseListener);

}
//optional, unregister default response listeners
ListenerRegistrationPolicy.unregisterResponseListeners(response);

}

}

Runtime and Data Model APIs

10-114 Oracle9iAS Wireless Developer’s Guide

10.6.2.26 Register the Listener Registration Hook
You should also add the name of the listener registration class, in this case
listener.ListenerRegistrationHookSample, in the System Manager > Site > Wireless
Web Server > Hooks control panel in the Webtool under the
wireless.http.locator.listener.registration.hook.class property.

10.6.2.27 Modify the Event Mask
Since the sample request is interested in all the request events, you should make
sure that the event mask for all the request-related events is set to true in the
System Manager -> Site -> Wireless Web Server -> Event and Listeners control
panel of webtool.

10.6.3 Repository Data Model API
The Oracle9iAS Wireless Repository comprises the models for the
Model-View-Control (MVC) architecture, while the Oracle9iAS Wireless runtime
layer comprises the controllers for the MVC. The repository Model API in
oracle.panama.model package lets you develop applications that create, delete,
modify, and query the persistent objects in the Oracle9iAS Wireless Repository.
Developers of custom adapters and transformers can implement the corresponding
Model interfaces to develop the applications that supply the business processes and
contents for the Oracle9iAS Wireless portal. The developers can also implement the
“controller” applications, through the adapter, listener, or hook components, that
manipulate the repository objects to perform provisioning, registration,
personalization, accounting, and similar type of functions.

The Oracle9iAS Wireless repository imposes the organizational structure among the
objects. For example, a User can belong to multiple Group’s. The User is assigned
one or more Role’s. The user can access the Service’s that are accessible to the
groups to which the user belongs. However, the implementations of the User
interface can access external provisioning systems or repositories, such as the Oracle
Internet Directory (OID) and the Oracle Applications User Repository (AOL), to
manage the information for the enterprise users and specify the user’s roles, the
user’s group membership, and the particular services that are accessible to the user.

A Folder is a special kind of Service used as a container of the services to build the
service trees. A Service or Folder can be assigned to one or more groups. The User
can own a collection of DeviceAddresses, a collection of LocationMark’s, a
collection of customization Profile’s, and one or more collections of Presets’ which
are used in advanced personalization. A default LocationMark and a default Profile
can be assigned for each User. The Device interface in the Model API defines the

Runtime and Data Model APIs

Core Technologies 10-115

target device protocol (for example: WAP, SMS, or EMAIL), as well as specifies the
physical characteristics of the target device that can be used by the adapters and the
transformers (for example, screen width and height, screen columns and rows, and
number of softkeys).

The intended users of the Model API are developers of customization portals,
portlets, custom hooks, listeners, adapters, transformers, and applications such as
JSPs, servlets, modules, and other (URL addressable) resources that are invoked
through the HttpAdapter. Developers can also develop stand-alone applications
which manipulate persistent objects using the Model API. Although these interfaces
preserve the data integrity in the repository, they do not enforce access control
security. The applications that access the repository through the Model API are not
authenticated or authorized by the same Authentication and Authorization
mechanisms in the Oracle9iAS Wireless runtime layer. In facts, the Model APIs are
used by trusted components to develop and customize the authentication and
authorization policies. The OracleMobile Online Studio, the System, Service, and
Content Management Webtools, and the Customization Portals provide
authentication and authorized access control to the repository. Developers should
apply extreme caution when developing services using the interfaces in the Model
API, and should take appropriate measures to prevent any undesired side effects
when these services are invoked by the end users.

10.6.3.1 Data Model Cache and Synchronization
The repository objects are cached in the Java instances main memory when they are
accessed from the Data Model API. These objects are removed from the main
memory cache only after they are not accessed through the API for a time-to-live
interval. This interval can be configured from "Cache Object Life Time" property in
System Manager -> Site -> Runtime Configuration control panel in the webtool. If
the repository object is modified and committed into the repository from one of the
Java instances; all other Java instances will automatically reload the modified object
from the repository. You can specify the number of cache synchronization threads
from the System Manager -> Site -> Object Cache Synchronization control panel
in the webtool.

10.6.3.2 Interfaces and Interface Hierarchy
The following sections describe the interfaces within the interface hierarchy in the
Model API. These interfaces are contained in the oracle.panama.model
package. For a sample application that illustrates the use of some of the interfaces,
see Section 10.6.4.1, "Sample Code". The oracle.panama.model package also
provides the following three locator and factory objects to access the model objects.

Runtime and Data Model APIs

10-116 Oracle9iAS Wireless Developer’s Guide

10.6.3.3 MetaLocator
MetaLocator, which is in the oracle.panama.model is used to access the
ModelFactory and ModelServices.

10.6.3.4 ModelFactory
ModelFactory, which is in the oracle.panama.model package, provides the
factory to create model objects.

10.6.3.5 ModelServices
ModelServices, which is in the oracle.panama.model package, provides the
locator or façade to access model objects.

10.6.3.6 ModelObject
The ModelObject is the root interface that represents the common behavior and
properties of all repository objects. It is included in the oracle.panama.model
package. The figure below illustrates the inheritance hierarchy among all of the
interfaces in the oracle.panama.model package.

Figure 10–20 Model API Inheritance Hierarchy.

The subinterfaces in the ModelObject interface hierarchy are all persistent objects.
These subinterfaces are (in alphabetical order):

Runtime and Data Model APIs

Core Technologies 10-117

■ Adapter

■ Alert

■ Community

■ Device

■ DeviceAddress

■ ExternalLink

■ Folder

■ Group

■ JavaTransformer

■ Link

■ Module

■ LocationMark

■ LocationPrivacyAuth

■ MasterService

■ Module

■ PresetCategory

■ PresetDescriptor

■ Presets

■ Profile

■ Role

■ Service

■ Transformer

■ User

■ XSLTransformer

The following sections describe each subinterface.

Runtime and Data Model APIs

10-118 Oracle9iAS Wireless Developer’s Guide

10.6.3.7 Adapter
Adapter extends the ModelObject interface. Adapter is the repository container for
the RuntimeAdapter, which is the interface that is to be implemented by all custom
adapters. The Adapter incorporates the RuntimeAdapter classes into the repository
and supports the loading and initialization of the RuntimeAdapter.

10.6.3.8 Device
Device extends the ModelObject interface. A Device is the definition of the target
logical device protocol. It can, for example, be WML11 for WML specific devices,
but also WML_Nokia7110 for Nokia specific WML. Other examples are SMS and
EMAIL. Device contains the Transformer objects.

Observe that the same physical device can support multiple logical devices; a
phone, for example, can support both the SMS and WAP protocols.

10.6.3.9 DeviceAddress
DeviceAddress extends the ModelObject interface. DeviceAddress contains the
device-specific address, such as a phone or an email address. The DeviceAddress
takes precedence over the AlertAddress, which is deprecated in this release.

10.6.3.10 Group
Group extends the ModelObject interface. A Group is a collection of users. It is used
to publish specific services to the group members. A user can access those services
that are accessible to the group to which the user belongs.

10.6.3.11 LocationMark
LocationMark extends the ModelObject interface. It is a persistent object that
represents the named and geocoded physical address.

10.6.3.12 PresetCategory
The PresetCategory extends the ModelObject interface. PresetCategory defines the
structure and attributes of the Presets. Each PresetCategory contains a collection of
PresetDescriptors, which provides the meta information for the attributes in the
Presets relation.

Runtime and Data Model APIs

Core Technologies 10-119

10.6.3.13 PresetDescriptor
The PresetDescriptor extends the ModelObject interface. PresetDescriptor defines
the meta data for an attribute in the Presets relation. The meta data of an attribute
include the name, type, size, format, and description of the attribute.

10.6.3.14 Presets
The Presets interface extends the ModelObject interface. A Presets object contains a
set of preset values whose structure and relation is defined by a PresetCategory. The
Presets are owned by the User objects, and incorporates the personalized user
preferences and frequently used input parameters for the services into the
repository.

10.6.3.15 Profile
The Profile interface extends the ModelObject interface. The User can have one or
more Profiles that encompass the user’s customizations of the service trees. The
Profile for a User can specify a preferred ordering of services in a folder.

10.6.3.16 Service
Service extends the ModelObject interface. Service is an "abstract" interface and
handles all generic aspects of a service.

It contains the following subinterfaces:

ExternalLink — ExternalLink extends Service. An ExternalLink is a reference to
an external URL.

Folder — Folder extends the Service interface. A Folder is like a directory in a
file system; it contains other services including other sub-folders.

Link — Link extends the Service interface. A Link is a pointer to any other
service "including" another Link. The Link is used to "customize" master
services or to create private tree structures of accessible master services. It can
override any accessible parameter kept by the service "chain" down to the final
master service. Link contains the subinterface Alert.

Alert — Alert extends the Link interface. An Alert (sometimes referred to as a
Job) is a service which is set to be automatically executed, given a particular
time interval specification. The Alert interface inherits methods from the
following interfaces:

oracle.panama.model.Link
oracle.panama.model.Service

Runtime and Data Model APIs

10-120 Oracle9iAS Wireless Developer’s Guide

oracle.panama.model.ModelObject

MasterService — MasterService extends the Service interface. The
MasterService is the "final" Service. It is the template for all other Services. It
always uses an Adapter to communicate with the external source.

Module - Module extends the Service interface. A Module is a pointer to a
"modulable" service with well known name called "virtual" URL. The modules
could be local or remote.

Module - Module extends the Module interface. A Module is a pointer to a
"modulable" local MasterService. Local MasterService means that it is in the
same repository as the Module.

10.6.3.17 Transformer
Transformer extends the ModelObject interface. Transformer is the base interface for
all transformation sub-classes. It is the repository container for the real
transformation implementation (Java or XSL). It performs loading and initialization
of the custom transformer classes that implements the
oracle.panama.rt.xform.RtTransformer interface. It also provides the XSLT
transformers for the XSLT stylesheets.

It has the following subinterfaces:

■ JavaTransformer — JavaTransformer extends the Transformer interface. A
JavaTransformer is a class that implements the Transformer interface and is
expected to handle the transformation from the SimpleResult DTD to the
device-specific markup language. It incorporates the
oracle.panama.xform.RtTransformer classes into the repository. It performs
loading and initialization of the custom transformer classes that implements the
oracle.panama.rt.xform.RtTransformer interface.

■ XSLTransformer — XSLTransformer extends the Transformer interface. An
XSLTransformer uses XSLT stylesheet which is expected to handle the
transformation from the SimpleResult DTD to the device-specific markup
language. It incorporates the custom XSLT stylesheets into the repository. It also
provides the XSLT processors for the XSLT stylesheets.

10.6.3.18 User
The User interface extends the ModelObject interface. The User represents the
identity of the user and facilitate personalization in the Oracle9iAS Wireless portals.

Runtime and Data Model APIs

Core Technologies 10-121

Each user can be assigned a private root folder to contain the user’s personal
quicklinks. The user can access the services in the groups to which the user belongs.
The implementation of the User interface may access external provisioning system
or enterprise repositories such as Oracle Internet Directory (OID) to manage the
information about the user.

10.6.4 Sample Code that Uses the Data Model API
The following sample code illustrates how you can provision new objects into the
Oracle9iAS Wireless repository using the interfaces in the Model API. We choose the
standalone class to introduce the sample codes, although other type of components,
such as adapters, hooks, listeners, and servlets can be used to illustrate the Model
API. The example only shows the search, create, delete, and commit operations in
the Model API but does not include the necessary business logics.

The numbers that appear in brackets next to a line of code in the listing are
referenced in the discussion to correlate the explanation with the corresponding
lines in the code itself.

■ Use MetaLocator to get the ModelFactory and ModelServices (line [1]).

■ Use ModelFactory to create a new object.

■ Use ModelServices to search for an object.

MetaLocator metaLocator = MetaLocator.getInstance();
modelFactory = metaLocator.getModelFactory();
modelServices = metaLocator.getModelServices();

The MetaLocator interface is used to lookup the ModelFactory and ModelServices.
The getInstance() method in this interface gets the singleton instance of this
MetaLocator. The methods getModelFactory and getModelServices look up the
ModelFactory and the ModelServices.

Typically, to create a new object, you should check first if the object already exists.
To look up any object, you use the ModelServices interface and the method
lookupX(java.lang.String name), where X is the interface name of the object. In this
sample code, to create a new user (the code section for creating a new user starts in
line [2]), you first look up the user by using the lookupUser(userName) method in
the ModelServices interface (line [3]), as the following line of code shows:

modelServices.lookupUser(userName);

Lookup operation should be the first step before creating any new persistent object
in the Repository. The lookupUser(userName) method searches for the user by

Runtime and Data Model APIs

10-122 Oracle9iAS Wireless Developer’s Guide

name and, if the User by that name is found, returns the User object. If the user with
that name cannot be found, the method throws the PanamaRuntimeException.

Next, you check if the group to which the user belongs (or should belong) already
exists (line [4]). Following the convention for looking up any object, you use the
ModelServices interface and the lookupGroup(groupName) method to look up a
group by name. If the group is found, the method returns the Group object. If the
group is not found, the method throws the PanamaRuntimeException.

After checking if the user and the group already exist, you create the new user
object (line [5] to line [6]):

{
user = modelFactory.createUser(userName, groups);

} else {
user = modelFactory.createUser(userName);

}
user.setPassword(userPassword);
user.setEnabled(true);

You must save the newly created user. Each newly created object must be saved
after it is created (line [7]):

modelFactory.save();

Save applies to all created or modified objects in the current thread. The objects are
saved to the persistent storage and the transaction is committed. The method
throws PanamaException if it is unable to save the work.

The searchUser() method in the sample code (line [8]) illustrates how to search a
User object. To enumerate over a set of users (for example, all the users whose
names start with the letter "B"), you use the ResultSetEnumeration (line [9])
returned by the method findUsers (line [10]). The method findUsers uses the
pattern matching on the names. See also lines [11] and [12] in the listing of the
complete sample code.

You should close the ResultSetEnumeration (line [13]) to release the database cursor,
which otherwise will remain open.

To delete a User, you use the deleteUser method following the sample code section
in line [14]. The user name must be exact in line [15]. ModelServices.lookupUser()
method rejects the pattern matching templates by throwing exceptions. The user
object is deleted in line [16].

Runtime and Data Model APIs

Core Technologies 10-123

10.6.4.1 Sample Code
import java.util.Vector;

import oracle.panama.PanamaException;
import oracle.panama.PanamaRuntimeException;

import oracle.panama.model.MetaLocator;
import oracle.panama.model.ModelFactory;
import oracle.panama.model.ModelServices;
import oracle.panama.model.ResultSetEnumeration;
import oracle.panama.model.User;
import oracle.panama.model.Group;

/**
* This is a sample program demonstrates the usage of the model API.
*/
public class SampleModelClient {

private ModelFactory modelFactory;
private ModelServices modelServices;

public SampleModelClient() {
MetaLocator metaLocator = MetaLocator.getInstance(); [1]
modelFactory = metaLocator.getModelFactory();
modelServices = metaLocator.getModelServices();

}

/**
* Get all group names
*/

private String[] getGroupNames() throws PanamaException,
PanamaRuntimeException {

String[] names;
ResultSetEnumeration result = null;
try {

// Find all user groups - use a wildcard for the name expression
result = modelServices.findGroups("*");
Vector buffer = new Vector();
while (result.hasMoreElements()) {

Group group = (Group)result.next();
String name = group.getName();
buffer.addElement(name);

}
names = new String[buffer.size()];

Runtime and Data Model APIs

10-124 Oracle9iAS Wireless Developer’s Guide

buffer.copyInto(names);
} catch (PanamaRuntimeException ex) {

throw ex;
} finally {

if (result != null) {
result.close();
result = null;

}
}
return names;

}

/**
* Create a new user.
*/

private void createUser(String userName, String userPassword, String
groupName) [2]

throws PanamaException, PanamaRuntimeException {
try {

// First check if the user does not already exists
modelServices.lookupUser(userName); [3]
// If we are here the user must already exists
return;

} catch (PanamaRuntimeException ignore) {}
Group group = null;
try {

// Get the group to add the user
group = modelServices.lookupGroup(groupName); [4]

} catch (PanamaRuntimeException ex) {
// A PanamaRuntimeException is thrown if the group is not found
group = null;

}
User user;
// modelFactory.createUser() will automatically create a
// home folder for the new user.
if (group != null) {

Group[] groups = new Group[1];
groups[0] = group;
user = modelFactory.createUser(userName, groups); [5]

} else {
user = modelFactory.createUser(userName);

}
user.setPassword(userPassword);
user.setEnabled(true); [6]

Runtime and Data Model APIs

Core Technologies 10-125

// save the newly created object
modelFactory.save(); [7]

}

/**
* Search for users.
*/

private User[] searchUser(String userNamePattern) [8]
throws PanamaException, PanamaRuntimeException {

User[] users;
ResultSetEnumeration result = null; [9]
try {

result = modelServices.findUsers(userNamePattern); [10]
Vector buffer = new Vector();
while (result.hasMoreElements()) { [11]

User user = (User) result.next(); [12]
buffer.addElement(user);

}
users = new User[buffer.size()];
buffer.copyInto(users);

} catch (PanamaRuntimeException ex) {
throw ex;

} finally {
if (result != null) {

result.close(); [13]
result = null;

}
}
return users;

}

/**
* Delete a user.
*/

private void deleteUser(String userName) [14]
throws PanamaException, PanamaRuntimeException {

try {
if (userName != null && userName.length() > 0) {

User user = modelServices.lookupUser(userName); [15]
user.delete(); [16]

// Save the changes
modelFactory.save();

}
} catch (PanamaRuntimeException ex) {

Adapters

10-126 Oracle9iAS Wireless Developer’s Guide

throw ex;
}

}

}

10.7 Adapters
Adapters are used to securely fetch application content and prepare it for device
adaptation. Out-of-the-box, Oracle9iAS Wireless includes the HTTP Adapter. The
HTTP Adapter is used to retrieve content from any HTTP/XML/J2EE server and
application. The HTTP Adapter is compliant with HTTP 1.1. It supports HTTPS,
cookies, and redirecting.

The method for creating mobile applications has been simplified in this release.
Previously, it was common to create a Java Adapter for each mobile application.
This would embed some of the application logic in an Adapter and some of the
logic in the application itself. In order to leverage J2EE standards, the HTTP
Adapter is recommended for mobile development. The complete mobile application
can reside on any web server. The HTTP Adapter will point to the application URL
to retrieve Oracle9iAS Wireless XML output. See the XML Developer's Guide section
of this book for more information.

10.7.1 HTTP Adapter
The HTTP Adapter fetches the Mobile XML content from the external HTTP/
HTTPS URLs. It acts as a proxy browser (which understands mobile xml) on behalf
on the mobile device. Init Argument:

INVOKE LISTNER: This argument specifies the class path of the HTTP Adapter
Listener. Refer to the javadoc of
oracle.panama.adapter.http.event.HttpAdapterEventListener for more details on
HttpAdapterEventListener Input Arguments.

Input Arguments:

1. URL: This argument specifies the URL to the data source

2. REPLACE_URL: This argument specifies whether the adapter should replace
the relative URLs inside the fetched mobile xml document with absolute ones

3. FORM_METHOD: This argument specifies the HTTP method that should be
used to open the data source URL

Adapters

Core Technologies 10-127

4. INPUT_ENCODING: This argument specifies the character encoding used by
the adapter to send form parameters to the data source URL.

The HTTP adapter supports all the standard browser features:

1. Cookie Support: The HTTP Adapter implements the version 0 of the Cookie
Specification by Netscape (http://www.netscape.com/newsref/std/cookie_
spec.html). The HTTP Adapter stores the Cookies sent by the external URL’s in
the current session. And sends the relevant cookies (retrieved from the session)
with the external HTTP URL request. The cookies are valid only for a session
and are not stored persistently.

2. HTTPS Support: The HTTP Adapter can access https protocol based URL’s.
Before using https – the client certificates should be configured using the
System Management Tool. Refer to the System Management Tool’s
documentation for more details.

3. Relative URL support: The Mobile XML returned by the external URL can use
absolute or relative URL’s as targets. The following mobile xml document uses
both relative and absolute URL.

Example XML Document, showing the usage of relative and absolute URLs.

<?xml version = "1.0" encoding = "UTF-8" standalone="yes" ?>
<!DOCTYPE SimpleResult PUBLIC "-//ORACLE//DTD SimpleResult 1.1.0//EN"

"http://xmlns.oracle.com/ias/dtds/SimpleResult_1_1_0.dtd">
<SimpleResult>
<SimpleContainer>
<SimpleHref target="http://Oracle9iAS
Wireless.oracle.com/HelloWorld.xml">Absolute URL</SimpleHref>
<SimpleHref target="HelloWorld.xml">Relative URL </SimpleHref>
</SimpleContainer>
</SimpleResult>

4. HTTP Adapter URL Prefix Configuration Parameter: If the Input argument
URL doesn’t start with http or https, then the value of the site configuration
parameter “HTTP Adapter URL Prefix” is prepended to the value of input
argument URL. Refer to the “Site Configuration” document to find more details
on how to set the value of “HTTP Adapter URL Prefix” parameter.

5. HTTP Redirects: The HTTP Adapter honours the HTTP response code 301 to
305 and follows the redirected URL’s, specified by HTTP Location header.

6. Post Redirect Support: The HTTP Adapter support post based redirects. To send
a post based redirect the external application should send HTTP header

Adapters

10-128 Oracle9iAS Wireless Developer’s Guide

x-oracle-mobile-redirect with value true, and mobile xml form as the response
content.

The following jsp file sends a Post redirect to the URL http://Oracle9iAS
Wireless.oracle.com. The param1=value1 is passed as post data to the URL

<%
response.setHeader("x-oracle-mobile-redirect", "true");
response.setHeader("Content-Type", "tex/vnd.oracle.mobilexml");
%>
<?xml version = "1.0" encoding = "UTF-8" standalone="yes" ?>
<!DOCTYPE SimpleResult PUBLIC "-//ORACLE//DTD SimpleResult 1.1.0//EN"
"http://xmlns.oracle.com/ias/dtds/SimpleResult_1_1_0.dtd">
<SimpleResult>

<SimpleContainer>
<SimpleForm name="ProcessSignOnForm" mimetype="text/vnd.oracle.mobilexml"

target="http://Oracle9iAS Wireless.oracle.com/MyApp" method="post">
<SimpleFormItem name="param1" value="value1" type="hidden"/>

</SimpleForm>
</SimpleContainer>

</SimpleResult>

7. Proxy Server Support: HTTP Adapter can access external URL’s through a
HTTP proxy server. The proxy settings can be specified using the Site
Configuration Tool.

8. Referring to non mobile XML documents: The HTTP Adapter rewrites all the
targets specified in the mobile xml document so that they point to the HTTP
Adapter. The mobile xml attribute “mimetype” can be used be indicate that the
“target” points to a non-mobile xml document and should not be rewritten.

9. Support for GET and POST HTTP methods: HTTP Adapter uses the following
logic to find the HTTP Request method to be used:

■ If the device sent a request through HTTP listener, then the method used by
the device to send the Request to the Oracle9iAS Wireless server is used

■ Else if the input argument method has a non-null value, then the value of
method is used

■ Else by default GET method is used.

10. Referral support: HTTP Adapter sends the HTTP Header Referer to specify the
previous URL. This can be used by external applications to trace the context of
the current request. By default, the Referer header is not sent, the mobile xml
attribute “sendreferer” is used to indicate that the Referer header should be
sent.

Adapters

Core Technologies 10-129

The following mobile xml document shows the usage of the sendreferer attribute.

<?xml version="1.0" encoding="UTF-8"?>
<SimpleResult>
<SimpleContainer>
<SimpleHref target="HelloWorld.xml" sendreferer=”true”>Send Referer</SimpleHref>
<SimpleHref target="HelloWorld.xml" sendreferer=”false”>Don't Send Referer
</SimpleHref>
</SimpleContainer>
</SimpleResult>

11. Device Information such as type of device and user Information like location,
locale preferences etc. are passed as HTTP headers.

Following is the list of HTTP headers sent by the HTTP Headers.

Table 10–14 HTTP headers and their descriptions

Header Name Description

x-oracle-user.locale The locale preference of the User. For example, en-US

x-oracle-user.deviceid The device identifier of the device.

x-oracle-user.userkind The type of the User. Possible values are anonymous, virtual,
registered

x-oracle-user.authkind Whether is user is authenticated. Possible values are
authenticated, unauthenticated

x-oracle-user.name The name of the User. This header is sent only if the Disclose
Identity option is selected by the user.

x-oracle-user.displayname This display name of the User. This header is sent only if the
Disclose Location option is selected by the user.

x-oracle-user.location.x This header is sent only if the Disclose Location option is
selected by the user.

x-oracle-user.location.y This header is sent only if the Disclose Location option is
selected by the user.

x-oracle-user.location.addressline1

x-oracle-user.location.addressline2

x-oracle-user.location.addresslastline

x-oracle-user.location.block

x-oracle-user.location.city

x-oracle-user.location.county

x-oracle-user.location.state

Adapters

10-130 Oracle9iAS Wireless Developer’s Guide

The HTTP Adapter should be used to build mobile XML aware applications. The
application can be built using any web programming technology like Java Server
Pages (JSP), Servlet, Perl or Active Server Pages (ASP) and can be hosted on any
web server. In Oracle9iAS Wireless 2.0 HTTP Adapter is the preferred way to build
mobile xml applications.

10.7.2 Other Adapters

10.7.2.1 OC4J
The OC4J Adapter is used to fetch mobile xml content by invoking a JSP page in the
same Java VM. The JSP page can access the request context information. The OC4J
adapter is only for internal use of Oracle9iAS Wireless.

10.7.2.2 Web Integration
The Web Integration adapter retrieves and adapts Web content. The Web Integration
adapter works with Web Interface Definition Language (WIDL) files to map source
content to Portal-to-Go XML. Typically, the source format for the Web Integration
adapter is HTML, but you can also use the adapter to retrieve content in other
formats, such as XML. Portal-to-Go provides a visual tool for creating WIDL files,
the Web Integration Developer. To create a WIDL file, you identify the elements of a
Web page that you want to make accessible to a service. You then associate output

x-oracle-user.location.postalcode

x-oracle-user.location.postalcodeext

x-oracle-user.location.country

x-oracle-user.location.time

x-oracle-user.location.type

x-oracle-user.location.timesincelastupdate

x-oracle-device.orientation The orientation of the device. Possible values are landscape
and portrait.

x-oracle-device.device The type of device. Possible values are voice, microbrowser,
pdabrowser, pcbrowser, micromessenger, messenger.

x-oracle-device.maxdocsize The maximum size of the document (in bytes) that can be
handled by the device.

Table 10–14 HTTP headers and their descriptions

Header Name Description

Adapters

Core Technologies 10-131

and input parameters to the source elements that you want to access in a
Portal-to-Go service.

10.7.2.3 SQL Adapter
The SQL Adapter allows service designers to create services based on SQL
Statements on Stored Procedures. Any database with JDBC driver is supported. The
SQL Adapter uses pool of database connections. The connection pool parameters
can be specified as init arguments of the adapter.

10.7.3 Creating Your Own Adapter
Customers can implement their own adapters by implementing
oracle.panama.adapter.RuntimeAdapter interface (refer to javadoc). In this
section we will implement a simple RMIAdapter, which fetches mobile xml content
by invoking RMI methods.

Lets look at the implementation of the adapter

package oracle.panama.adapter.rmi;

import java.io.StringReader;

import java.util.Vector;
import java.util.Hashtable;
import java.util.Enumeration;

import java.lang.reflect.Method;
import java.lang.reflect.Member;
import java.lang.reflect.Modifier;
import java.lang.reflect.InvocationTargetException;

import java.net.MalformedURLException;

import java.rmi.Naming;
import java.rmi.RemoteException;
import java.rmi.NotBoundException;

import org.w3c.dom.Element;

Note: The Web Integration adapter is deprecated in this release.

Note: The SQL adapter is deprecated in this release.

Adapters

10-132 Oracle9iAS Wireless Developer’s Guide

import org.w3c.dom.Document;

import oracle.panama.PAPrimitive;
import oracle.panama.Argument;
import oracle.panama.Arguments;
import oracle.panama.ArgumentType;
import oracle.panama.OutputArguments;
import oracle.panama.adapter.RuntimeAdapter;
import oracle.panama.adapter.RuntimeAdapterHelper;
import oracle.panama.adapter.AdapterException;

import oracle.panama.rt.ServiceContext;
import oracle.panama.core.xml.XML;

/**
* A Simple RMI Adapter - invokes RMI methods to fetch mobile xml content
*/

All the adapters implement RuntimeAdapter interface

public class RMIAdapter implements RuntimeAdapter {

// init arguments
private Arguments initArgs = null;

// input arguments
private Arguments inputArgs = null;

// output arguments
private OutputArguments outputArgs = null;

private boolean initialized = false;

// reference to remote object
private Object remoteObject = null;

// remote interface
private String remoteInterface;

// hash table containing the method name to Method object mapping
private Hashtable accessibleMethods = null;

// Init argument - specifies the rmi url of the remote object
private static final String RMI_OBJECT_URL = "RMI_OBJECT_URL";

Adapters

Core Technologies 10-133

// Init argument - specifies the remote interface
private static final String REMOTE_INTERFACE = "REMOTE_INTERFACE";

// Input argument - specifies the remote method name to invoke
private static final String METHOD_NAME = "METHOD_NAME";

The getInitArguments() method returns the init arguments required to initialize the
adapter. The values of these arguments are specified during the creation of Master
Service. The UI tools like Service Designer use this method of display the list of init
that are required for creating a master service.

The RMI Adapter has following init arguments

■ RMI Object URL: It specifies the URL of the remote object in the RMI name
space.

■ Remote Interface: It specifies the classpath of the remote interface

/**
* Get the init arguments
* @return init arguments
*/

public Arguments getInitArguments() throws AdapterException {
if (initArgs == null) {

synchronized (this) {
if (initArgs == null) {

initArgs = RuntimeAdapterHelper.createArguments();

Argument arg = null;

arg = initArgs.createInput(RMI_OBJECT_URL);
arg.setComment("The RMI OBJECT URL for eg.,

rmi://rmiserver.com:2008/HelloWorld");
arg.setType(ArgumentType.SINGLE_LINE);
arg.setCaption("RMI Server URL");

arg = initArgs.createInput(REMOTE_INTERFACE);
arg.setComment("The Remote Interface");
arg.setType(ArgumentType.SINGLE_LINE);
arg.setCaption("Remote Interface");

}
}

}
return initArgs;

}

Adapters

10-134 Oracle9iAS Wireless Developer’s Guide

This method returns the Input Arguments expected by the Adapter.

/**
* Get the input Arguments
* @return input arguments
*/

public Arguments getInputArguments() throws AdapterException {
return inputArgs;

}

This method returns the Output Arguments

/**
* Get the output Arguments
* @return an array of output arguments
*/

public OutputArguments getOutputArguments() throws AdapterException {
return outputArgs;

}

The init method initializes the adapter. The init adapter of the method is called
once, when the master service pointing to the adapter is invoked or the
getMergedInputArguments() method of the MasterService is called. The content of
the init method must be synchronized to ensure that the class is not initialized by
another thread.

The init method of RMIAdapter does the following

■ Gets the value of init arguments (RMI_OBJECT_URL or REMOTE_
INTERFACE)

■ Gets reference to remote object

■ Inserts public methods of the remote interface in accessibleMethods hash table.
The hash table is used later.

■ Create input and output arguments of the adapter. The input arguments contain
only one input argument METHOD_NAME of type enumeration.

■ Sets initialized flag to true.

/**
* Initialize the adapter using the information from the init arguments.
* @param args init arguments
*/

public void init(Arguments args) throws AdapterException {
if (initialized == false) {

synchronized (this) {

Adapters

Core Technologies 10-135

if (initialized == false) {
String rmiObjectUrl = args.getInputValue(RMI_OBJECT_URL);
remoteInterface = args.getInputValue(REMOTE_INTERFACE);

// check if both the init args are specified
if ((rmiObjectUrl == null) || (rmiObjectUrl.equals("")) ||

(remoteInterface == null) ||
(remoteInterface.equals(""))) {

throw new AdapterException("Init parameters missing");
}

// Get reference to remote object
Class interfaceClass = null;
try {

remoteObject = Naming.lookup(rmiObjectUrl);
interfaceClass = Class.forName(remoteInterface);

} catch (Exception ex) {
throw new AdapterException(ex);

}

Method[] methods = interfaceClass.getMethods();
accessibleMethods = new Hashtable();
for (int i=0; i<methods.length; i++) {

if (Modifier.isPublic(methods[i].getModifiers())) {
accessibleMethods.put(methods[i].getName(),

methods[i]);
}

}

// Create Input Arguments
inputArgs = RuntimeAdapterHelper.createArguments();
Argument arg = inputArgs.createInput(METHOD_NAME);
arg.setType(ArgumentType.ENUM);

String[] accessibleMethodNames = getAccessibleMethodNames();
arg.setOptions(accessibleMethodNames);

// Create Output Arguments
outputArgs = RuntimeAdapterHelper.createOutputArguments();
initialized = true;

}
}

}
}

Adapters

10-136 Oracle9iAS Wireless Developer’s Guide

The method returns an array of accessible method names

// returns the array of accessible method names
private String[] getAccessibleMethodNames() {

Enumeration enum = accessibleMethods.keys();
Vector v = new Vector();
while (enum.hasMoreElements()) {

String methodName = (String) enum.nextElement();
v.add(methodName);

}

String[] methodNames = new String[v.size()];
methodNames = (String []) v.toArray(methodNames);
return methodNames;

}
The invoke method is called when a client invokes a master service pointing to this
adapter. The method executes the client request and returns the mobile xml result to
the master service.

The method takes one argument of type ServiceContext. For each end user request
received by the Oracle9iAS Wireless Server a ServiceContext object is created. The
ServiceContext object contains all the user input arguments and arguments
specified in Alias and Master Service.

/**
* Invoke the adapter using the input and output parameters in the
* service context.
* @param serviceContext the context that contains input parameters
*/

public Element invoke(ServiceContext serviceContext) throws AdapterException
{

checkState();
// Get the input argument metod name
String methodName =

serviceContext.getInputArguments().getInputValue(METHOD_NAME);
If the method name is not specified the mobile xml displaying the list of available
methods as menu items is returned

if ((methodName == null) || "".equals(methodName)) {
return getMethodMenuElement(serviceContext);

} else {
The specified method is executed.

return invokeRemoteMethod(methodName);
}

}

Adapters

Core Technologies 10-137

The destroy() method releases the resources acquired by the adapter in the init
method.

/**
* Destroy the provider.
*/

public void destroy() {
remoteObject = null;

}
Utility method to check if the adapter is initialized.

private void checkState() throws AdapterException {
if (initialized == false) {

throw new AdapterException("Adapter is not initialized");
}

}
The invokeRemoteMethod() method invokes the remote method and converts the
returned String to an XML DOM Element.

private Element invokeRemoteMethod(String methodName) throws
AdapterException{

Method method = (Method) accessibleMethods.get(methodName);
if (method == null) {

throw new AdapterException("method "+ methodName + " is not
available");

}

try {
// invoke the remote method
String retString = (String) method.invoke(remoteObject, new

Object[0]);
Element elt = XML.makeElement(new StringReader(retString));
return elt;

} catch (Exception ex) {
throw new AdapterException(ex);

}
}

The getMethodMenuElement() method returns mobile xml element for displaying
available methods as menu items.

private Element getMethodMenuElement(ServiceContext serviceContext) {
// Returns SimpleMenu containing method names
Document doc = serviceContext.getXMLDocument();
Element simpleResultElt = PAPrimitive.createSimpleResult(doc, null);
Element simpleContainerElt = PAPrimitive.createSimpleContainer(doc,

"MethodMenu");

Adapters

10-138 Oracle9iAS Wireless Developer’s Guide

simpleResultElt.appendChild(simpleContainerElt);
Element simpleMenuElt = PAPrimitive.createSimpleMenu(doc, "SimpleMenu");
simpleContainerElt.appendChild(simpleMenuElt);

Enumeration enum = accessibleMethods.keys();
while (enum.hasMoreElements()) {

String methodName = (String) enum.nextElement();
Method m = (Method) accessibleMethods.get(methodName);
String target =

RuntimeAdapterHelper.getURLPAoidParameter(serviceContext.getInputArguments());
target += "&" + METHOD_NAME + "=" + m.getName();
Element simpleMenuItemElt =

PAPrimitive.createSimpleMenuItem(doc, m.getName(), target,
false);

simpleMenuElt.appendChild(simpleMenuItemElt);
}
return simpleResultElt;

}

}

The following sample RMI implementation can be used to test the RMI Adapter

SampleInterface.java: Remote Interface

package oracle.panama.adapter.rmi;
import java.rmi.Remote;
import java.rmi.RemoteException;

public interface SampleInterface extends Remote {
// Returns Hello World message
String sayHelloWorld() throws RemoteException;

// Returns the current time
String getTime() throws RemoteException;

}
SampleImpl.java: Remote Implementation

package oracle.panama.adapter.rmi;

import java.io.*;
import java.util.Calendar;

import java.rmi.Naming;
import java.rmi.RemoteException;
import java.rmi.RMISecurityManager;

Adapters

Core Technologies 10-139

import java.rmi.server.UnicastRemoteObject;
import java.rmi.registry.LocateRegistry;

import org.w3c.dom.*;
import oracle.xml.parser.v2.*;

public class SampleImpl extends UnicastRemoteObject implements SampleInterface {

public final static int RMI_REGISTRY_PORT = 2099;

public SampleImpl() throws RemoteException {
super();

}

public String sayHelloWorld() {
return createMobileXMLMessageString("Hello World!");

}

public String getTime() {
return

createMobileXMLMessageString(Calendar.getInstance().getTime().toString());
}

String createMobileXMLMessageString(String message) {
StringBuffer buf = new StringBuffer(1024);
buf.append("<?xml version = \"1.0\" encoding = \"UTF-8\"

standalone=\"yes\" ?>");
buf.append("<!DOCTYPE SimpleResult PUBLIC \"-//ORACLE//DTD SimpleResult

1.1.0//EN\" \"http://xmlns.oracle.com/ias/dtds/SimpleResult_1_1_0.dtd\">");
buf.append("<SimpleResult>");
buf.append("<SimpleContainer>");
buf.append("<SimpleText>");
buf.append("<SimpleTextItem>");
buf.append(message);
buf.append("</SimpleTextItem>");
buf.append("</SimpleText>");
buf.append("</SimpleContainer>");
buf.append("</SimpleResult>");
return buf.toString();

}

public static void main(String args[]) {

// Create and install a security manager

Adapters

10-140 Oracle9iAS Wireless Developer’s Guide

if (System.getSecurityManager() == null) {
System.setSecurityManager(new RMISecurityManager());

}
try {

// Create Registry
LocateRegistry.createRegistry(RMI_REGISTRY_PORT);
SampleImpl obj = new SampleImpl();

// Bind this object instance to the name "HelloServer"
Naming.rebind("//localhost:"+ RMI_REGISTRY_PORT+ "/Sample", obj);
System.out.println("Sample bound in registry");

} catch (Exception e) {
System.out.println("Sample err: " + e.getMessage());
e.printStackTrace();

}
}

}

Steps involved in testing the RMI Adapter

1. Create $ORACLE_
HOME/wireless/server/classes/oracle/panama/adapter/rmi directory

2. Compile RMIAdapter.java and copy the class file in $ORACLE_
HOME/wireless/server/classes/oracle/panama/adapter/rmi directory

3. Compile SampleInterface.java and SampleImpl.java

4. Generate RMI Stubs and Skeleton using rmic tool

5. Copy SampleInterface.class, SampleImpl.class, SampleImpl_Stub.class and
SampleImpl_Skel.class files in $ORACLE_
HOME/wireless/server/classes/oracle/panama/adapter/rmi directory.

6. Load adapter into repository.

7. Create a Master Service pointing to this adapter.

8. Publish the Master Service.

9. Invoke the service from a phone simulator.

Advanced Customization 11-1

11
Advanced Customization

Each section of this document presents a different topic. These sections include:

■ Section 11.1, "Overview of Advanced Customization"

■ Section 11.2, "Presets"

■ Section 11.3, "Location Marks"

■ Section 11.4, "User Device Management"

■ Section 11.5, "Multiple Customization Profiles"

■ Section 11.6, "User and Group Management"

■ Section 11.7, "Service Management"

■ Section 11.8, "Rebranding the Customization Portal"

■ Section 11.9, "Using the Customization Portal API"

Oracle9iAS Wireless incorporates Advanced Customization that enables
development of adaptable applications that personalize interactions and increase
mobile application efficiency. The Advanced Customization allows for quick
development and deployment of reliable, secure, scalable, and manageable
applications. The end result is a complete one-to-one customer interaction.

Overview of Advanced Customization

11-2 Oracle9iAS Wireless Developer’s Guide

Figure 11–1 Advanced customization

11.1 Overview of Advanced Customization
This chapter describes Oracle9iAS Wireless advanced customization features.
Customization typically refers to how the user adapts the system or how the system
adapts to the particular needs and preferences of the user. The user centric
customization features give the users control over how they adapt the system to
their needs and preferences. The system can also introduce mass customization
technique that applies user profiling, sometimes by associating the user with
like-minded group of users, to predict the user’s needs and preferences, and adapt
the system accordingly.

Customization is needed to make applications manageable by understanding
visitors' needs based on their roles and preferences — for example, it is beneficial to
present information in different ways to customers, suppliers, and employees. The
ultimate goal is knowing enough about a customer's preferences and needs to
intelligently suggest new services that they can use. The result is to turn a series of
single transactions into a series of interactions that leads to an enduring, mutually
profitable relationship.

Overview of Advanced Customization

Advanced Customization 11-3

Figure 11–2 Advanced Customization

Oracle9iAS Wireless includes a sample customization portal for PC browsers
developed in Java Server Pages (JSP), which allows end users to customize the
folder, service, bookmark, alert, alert address, location mark, and profiles. You can
reuse these JSPs to re-brand the customization portal. You can also develop your
own customization portals or integrate the customization tools to your existing
portals. The developers should refer to the Runtime API, Data Model API, and the
default JSPs for guidance when developing customization portals. You will find the
concepts and features introduced in this chapter useful for designing the
customization features to empower the end users.

You can introduce mass customization techniques using automatic user profiling.
The usage history of the users can be found in the ptg_service_log and ptg_session_
log tables in the Oracle9iAS Wireless repository. Some of the examples in this
chapter describe how to extend the Oracle9iAS Wireless runtime to introduce mass
customization.

The example customization portal lets the users manage the services, to rearrange,
subscribe or unsubscribe, make bookmarks, and create quicklinks in each
customization profile. Users can create new location marks and geocode the
location marks. They can edit the presets that contain personal information or
preferences. They can create new device addresses and valid them for alerts. They
can subscribe to alerts for these devices.

End Users can log into the portal via a PC browser or any mobile devices to
customize their Services.

The Customization Portal API enables you to create your own JSPs. The classes are
categorized by specific function. Combining these functions is one method of
creating your own JSP framework. This gives a self branded Customization Portal.

Device-based Customization Portal targets the customers who want to customize
their mobile services directly from small devices (such as cell phones, PDAs, etc.).
The device Customization portal presents the services in edit mode and also

Presets

11-4 Oracle9iAS Wireless Developer’s Guide

includes the user's preferences setting, Land Mark creation, Alert creation, Topic
subscription in the menu list. Because of the limited size of display screen and the
restricted input methods, the user interface and user interaction will be simplified
to fit in those devices.

Multiple User Profiles make the mobile experience much more efficient and
personalized. Users are able to manage their Customization Profiles from the
Customization Portal. End Users may create, delete, modify and select the default
Customization Profile.

Oracle9iAS Wireless gives the option to save the input values that a user has
entered as a preset value for future invocations. Furthermore, Oracle9iAS Wireless
gives options to enter a symbolic name to represent the presets. These symbolic
names allow easy selection if there is more than one group of preset values. In
addition, the user can manage their presets with the Customization Portal from any
device or PC

Developers have the control to manage the types of presets available to particular
users and groups and the input values used. Developers create Preset Categories for
managing the presets that are available to end users.

Each Preset Category consists of a Preset Category Name (AddressForm for
example) and any number of Preset Attributes. The first Preset Attribute is Street.
For example, this will give end users the ability to create a Preset called Home,
Work, etc. and each will have their own values for the Preset Attributes (Street,
City...).

11.2 Presets
Oracle9iAS Wireless provides the facilities for the service developers and end users
to apply extensive Customization to create personalized portals, which enhance the
one-one relationships between the portal and each end user. One of the key
Customization facilities is the Presets for storage of the user’s personal information,
preference settings, and frequently used input parameters on the server side so that
the services can use them to generate the personalized responses.

The Oracle9iAS Wireless repository contains the concept of a portal User with
predefined number of persistent attributes. These basic attributes include name,
gender, date-of-birth, home postal address, country, language, default device
address, etc. Presets are persistent objects in the Oracle9iAS Wireless repository that
can be used to extend repository schema, especially to incorporate new persistent
attributes for the User objects in the repository.

Presets

Advanced Customization 11-5

11.2.1 Presets Concept and Architecture
The Presets are persistent objects in the Oracle9iAS Wireless repository that can be
used to extend the User schema and incorporate the user’s personal information
into the repository. Developers of the services can define the PresetCategories to
extend the User schema in application-specific ways, for example to incorporate the
billing address, credit card charge account, bank accounts, brokerage accounts,
stock portfolios, emergency contacts, etc. These extended schemas may be defined
and exclusively maintained by Personal Information Management (PIM) services.

The Presets can be also used to incorporate the user preferences into the repository.
The user agent types and the logical device models in the repository describe the
capabilities of the devices. Individual end users can customize some of the
capabilities of the user agent. The Presets for user agent profiles can be used to let
the end users customize the capabilities of the user agent, for example, to enable or
disable sound, select background color, select quality of service, to disable images to
minimize packet transmissions even though the device supports images, etc. The
user agent profiles control the format of the content, but more general user
preference profiles can affect the selection of the services and response of the
services. For example, the user preference profile for sports, entertainment,
technology, privacy requirements, etc. can be used by the services to filter the
contents. The Presets architecture enables the development of adaptive web services
based on the emerging Composite Capability/Preference Profile (CC/PP), User
Agent profile (WAP UAProf), and Platform for Privacy Preferences (P3P) standards
(www.wapforum.org).

The Presets can also store frequently used input parameters for the services. The
services can define the attributes of the Presets relation to closely match the forms
used by the services. These Presets can be used to auto fill the forms. The services
can store the user inputs as the Presets for subsequent use. The Presets names
uniquely identify the input parameter values and can be used as shorthand to
significantly reduce the amount of data entry.

There are different categories of Presets in the repository. Each Presets relation
contains a set of preset attribute values whose types and relations are defined by the
PresetCategory. A User may own one or more Presets relations in each of the
PresetCategory’s. A PresetCategory contains a collection of PresetDescriptor’s, each
of which provides the metadata for the attributes in the Presets relation. The
metadata of an attribute includes the name, type, size, format, and description of
the attribute. For example, a Presets relation of the address book PresetCategory
may contain the name, address, and phone number attributes of a contact for the
user. Such a PresetCategory may be defined and exclusively maintained by a
Personal Information Management (PIM) service. Another PresetCategory may

Presets

11-6 Oracle9iAS Wireless Developer’s Guide

define the attributes of the Presets relations that contain the stock symbols, names,
and classifications of the companies in the user’s watch list or portfolio. The stock
symbols in this category can be used as input parameters for the stock quote
service.

The name of the PresetCategory must be unique within the repository. Likewise, the
name of the PresetDescriptor must be unique within the PresetCategory to which it
belongs. The name of the Presets relation is optional but if given the name must be
unique among the Presets relations that are owned by the same User within the
same PresetCategory. The PresetCategory’s created programmatically are marked as
system by default, i.e. they are to be maintained by the applications exclusively.
System level PresetCategory’s are not visible in the customization portals and
cannot be edited by the end users directly. The applications can set the
PresetCategory to non-system so that end users may edit its Presets in the
customization portal.

11.2.2 Sample Applications
The PresetCategory’s can be created programmatically as shown in the following
examples. They can also be created from the Service Designer > Preset Definitions
control panel in Webtool.

11.2.2.1 Example 1: Adding attributes to the User schema.
The following code fragment shows how to create a PresetCategory “Billing
Address” to extend the User schema. The method first checks in line [13] if the
“Billing Address” category already exists in the repository. If the category does not
exist, the ModelFactory method createPresetCategory("Billing Address") is used to
create the category in line [21]. Line [23] through [27] defines the first attribute
“Addressee Name” of the category. Line [25] defines that the first attribute is
comprised of a single line of text. In contrast, the second attribute "Street Address"
is defined as a multi-line text field in line [31]. The new PresetCategory is
committed in line [47].

import oracle.panama.model.ModelFactory;
import oracle.panama.model.PresetCategory;
import oracle.panama.model.PresetDescriptor;
import oracle.panama.ArgumentType;
import oracle.panama.PanamaException;

public void createAddressBook() throws PanamaException {

ModelFactory factory = MetaLocator.getInstance().getModelFactory();
ModelServices services = MetaLocator.getInstance().getModelServices();

Presets

Advanced Customization 11-7

PresetCategory category;
try {

category = services.lookupPresetCategory("Billing Address"); [13]
} catch (PanamaRuntimeException ex) {

category = null;
}

if (category != null) {
return; // category already exists

}
category = factory.createPresetCategory("Billing Address"); [21]

PresetDescriptor descriptor = category.createPresetDescriptor("Addressee Name"); [23]
descriptor.setDescription("The name of the addressee");
descriptor.setPresetType(ArgumentType.SINGLE_LINE); [25]
descriptor.setStoredType(java.sql.Types.VARCHAR);
descriptor.setSize(new Long(40));[27]

descriptor = category.createPresetDescriptor("Street Address");
descriptor.setDescription("The street address");
descriptor.setPresetType(ArgumentType.MULTI_LINE); [31]
descriptor.setStoredType(java.sql.Types.VARCHAR);
descriptor.setSize(new Long(120));

descriptor = category.createPresetDescriptor("State");
descriptor.setDescription("The name of the state");
descriptor.setPresetType(ArgumentType.SINGLE_LINE);
descriptor.setStoredType(java.sql.Types.VARCHAR);
descriptor.setSize(new Long(2));

descriptor = category.createPresetDescriptor("Zip code");
descriptor.setDescription("The postal zip code");
descriptor.setPresetType(ArgumentType.SINGLE_LINE);
descriptor.setStoredType(java.sql.Types.NUMERIC);
descriptor.setSize(new Long(5));

factory.save(); [47]
}

Please note that the name of the PresetCategory must be unique in the repository.
The createPresetCategory() method of the ModelFactory will throw
oracle.panama.model.NameUniquenessViolationException if the application tries to
create the PresetCategory with the same name. Likewise, the name of the
PresetDescriptor must be unique within the PresetCategory. The
createPresetDescriptor() method of the PresetCategory will throw
oracle.panama.model.NameUniquenessViolationException if the application tries to

Presets

11-8 Oracle9iAS Wireless Developer’s Guide

create the PresetDescriptor with the same name. The names of PresetCategory and
PresetDescriptor are case sensitive and can contain any valid characters including
spaces.

11.2.2.2 Example 2: Adding a unique Presets relation for the User
The following code fragment shows how the PresetCategory “Billing Address” is
used to add persistent attributes to the User. If the "Billing Address" category does
not exist, this method creates the new category. The example uses the unique object
id of the User as the name of the Presets. The new Presets relation is created in line
[16] only if the look up method in line [13] does not find any existing Presets
relation with the same name. The use of the object id as the Presets name ensures
that only one instance of the Presets relation for “Billing Address” is created for
each user. The attribute values of the Presets relation are modified in line [18]
through [21]. The modified Presets relation is committed into the repository in line
[23].

import oracle.panama.model.*;

public void addBillingAddress(User user, String addressee, String streetAddress,
String state, int zipCode) throws PanamaException {

ModelFactory factory = MetaLocator.getInstance().getModelFactory();
ModelServices services = MetaLocator.getInstance().getModelServices();

PresetCategory category;
try {

category = services.lookupPresetCategory("Billing Address");
} catch (PanamaRuntimeException ex) {

createAddressBook();[9]
category = services.lookupPresetCategory("Billing Address");

}

Presets presets = user.getPresets(category, Long.toString(user.getId()));[13]

if (presets == null) {
presets = user.createPresets(category, Long.toString(user.getId())); [16]

}

presets.setPresetValue("Addressee Name", addressee); [18]
presets.setPresetValue("Street Address", streetAddress);
presets.setPresetValue("State", state);
presets.setPresetValue("Zip code", Integer.toString(zipCode)); [21]

factory.save(); [23]

Presets

Advanced Customization 11-9

}
Please note that the name of the Presets relation must be unique within the User’s
domain. If the application tries to create the Presets again with the same name for
the same User, the createPresets() method of the User will throw the
oracle.panama.model.NameUniquenessViolationException. The names of Presets
relations are case sensitive and can contain any valid characters including spaces.

11.2.2.3 Example 3: Adding a unique Presets relation for Users’ Profiles
The Profile’s are repository objects that support multiple versions of personalized
portals for each user. Let’s suppose that the user has a Profile for “Business” and
another Profile for “Personal” and requires a separate credit card charge account for
each of the Profile’s. The following code fragment describes how to create the
“Credit Card Charge Account” category and the Presets relation that is unique for
each profile of the user. The unique presets name is created from the object id of the
User and the Profile in line [43] to ensure that only one Presets relation is created for
each profile. The example also shows the use of preset type ArgumentType.ENUM
for the "Card Type" attribute. The ENUM type lets you specify the valid options for
that attribute as shown in line [28] and [30]. Lines [60] through [62] shows the use of
the java.sql.Date type for persistent storage. The expiration date of the credit card is
formatted using the java.text.DateFormat utility in line [61] so that it can be parsed
and stored as Date type in the repository.

import oracle.panama.model.*;
import java.util.Date;
import java.text.DateFormat;

public void addCreditAccount(User user, Profile profile, String cardNumber,
String cardType, int expireMonth, int expireYear)
throws PanamaException {

ModelFactory factory = MetaLocator.getInstance().getModelFactory();
ModelServices services = MetaLocator.getInstance().getModelServices();

PresetCategory category;
try {

category = services.lookupPresetCategory("Credit Card Charge Account");
} catch (PanamaRuntimeException ex1) {

try {
category = factory.createPresetCategory("Credit Card Charge Account");

} catch (PanamaException ex2) {
throw ex2;

}

PresetDescriptor descriptor = category.createPresetDescriptor("Account Number");

Presets

11-10 Oracle9iAS Wireless Developer’s Guide

descriptor.setDescription("The credit card account number");
descriptor.setPresetType(ArgumentType.SINGLE_LINE);
descriptor.setStoredType(java.sql.Types.VARCHAR);
descriptor.setSize(new Long(40));

descriptor = category.createPresetDescriptor("Card Type");
descriptor.setDescription("The type of credit card");
descriptor.setPresetType(ArgumentType.ENUM); [25]
descriptor.setStoredType(java.sql.Types.VARCHAR);
descriptor.setSize(new Long(40));
String cardTypes[] = { "Master", "Visa", "Discover", "American Express", "Diners

Club" }; [28]
try {

descriptor.setOptions(cardTypes); [30]
} catch (TooManyOptionsException ex3) {

throw new PanamaException(ex3);
}

descriptor = category.createPresetDescriptor("Expiration Date");
descriptor.setDescription("The expiration date of the credit card");
descriptor.setPresetType(ArgumentType.SINGLE_LINE);
descriptor.setStoredType(java.sql.Types.DATE);

factory.save(); [40]
}

String presetsName = Long.toString(user.getId()) + "-" + Long.toString(profile.getId());
[43]

Presets presets = user.getPresets(category, presetsName);
if (presets == null) {

presets = user.createPresets(category, presetsName);
}

presets.setPresetValue("Account Number", cardNumber);
presets.setPresetValue("Card Type", cardType);
Date date = new Date(expireYear, expireMonth, 1); [60]
String dateStr = DateFormat.getInstance().format(date); [61]
presets.setPresetValue("Expiration Date", dateStr); [62]

factory.save(); [64]
}

Presets

Advanced Customization 11-11

11.2.2.4 Example 4: Selecting the Presets relation under the current Profile.
The following fragment of codes from a RequestListener illustrates how the Presets
relation for the “Credit Card Charge Account” is accessed during the serviceBegin()
event notification. The routine throws AbortServiceException if no valid credit card
charge account is available for the user. It checks for request profile, session profile,
or default user profile in order as shown in line [14] and [16]. It composes the
Presets name from the object id of the User and Profile. If the Presets relation for the
“Credit Card Charge Account” is found, the listener provides the credit card
information to the service as request parameters in line [51] through [52].

import oracle.panama.rt.event.RequestEvent;
import oracle.panama.rt.event.AbortServiceException;
import oracle.panama.rt.Session;
import oracle.panama.rt.Request;

public void serviceBegin(RequestEvent event) throws AbortServiceException {
Request request = event.getRequest();
PresetCategory category;
String presetsName;
ModelServices services = MetaLocator.getInstance().getModelServices();
String serviceName = request.getServicePath();
User user;

Profile profile = request.getProfile(); [14]
if (profile == null) {

profile = request.getSession().getProfile(); [16]
}
if (profile != null) {

user = profile.getUser();
presetsName = Long.toString(user.getId()) + "-" + Long.toString(profile.getId());

} else {
user = request.getSession().getUser();
presetsName = Long.toString(user.getId());

}

try {
category = services.lookupPresetCategory("Credit Card Charge Account");

} catch (PanamaRuntimeException ex1) {
throw new AbortServiceException("This service " + serviceName + " requires a valid

charge account");
}

Presets presets = user.getPresets(category, presetsName);
if (presets == null) {

Presets

11-12 Oracle9iAS Wireless Developer’s Guide

throw new AbortServiceException("This service " + serviceName + " requires a valid
charge account");

}

String creditCardNumber;
String cardType;
String expiration;
try {

creditCardNumber = presets.getPresetValue("Account Number");
cardType = presets.getPresetValue("Card Type");
expiration = presets.getPresetValue("Expiration Date");

} catch (PanamaException ex) {
throw new AbortServiceException("This service " + serviceName + " requires a valid

charge account");
}

if (! creditAvailable(creditCardNumber, cardType, expiration)) {
throw new AbortServiceException("This service " + serviceName + " requires a valid

charge account");
}

request.setParameter("Account Number", creditCardNumber); [51]
request.setParameter("Card Type", cardType); [52]
request.setParameter("Expiration Date", expiration); [53]

}

The above examples are based on the scenario that requires the applications to use
well-defined naming conventions for the Presets relations, although the Presets
names are optional. The following example illustrates a PresetCategory
“Appointments” which allows multi-set entries. The identity of the Presets relation
is provided by one of the attributes in the Presets relation. In this example, the
Presets are created without names.

11.2.2.5 Example 5: Creating Presets without given name.
The following code fragment shows the PresetCategory “Appointments” that lets
the users create appointment events. Since the attribute “Short Title” can be used to
identify the events, the event Presets are created without names as shown in line
[65]. All event Presets for the user can be retrieved from the repository as shown in
line [97]. The “Appointments” category is set to non-system in line [25] so that the
category can be included in the customization portal for end users to edit. The
example shows the use of DateFormat utility to save the event time in line [69] and
retrieve it in line [105]. The expired events are deleted from the repository in line
[112]. The example also shows the use of the regular expression to constrain the

Presets

Advanced Customization 11-13

format of the "Phone Number” attribute. The regular expression is compatible with
the public domain org.apache.regexp.RE toolset. The regular expression in line [59]
is for the phone numbers in the US locale, which is

"\s*[(]?[1-9]\d{2}[)]?\s*-?\s*\d{3}\s*-?\s*\d{4}"

without the escape characters. The setPresetValue() method, line [77], in the Presets
will throw PanamaException if the value does not match the regular expression.
The full regular expression syntax, which is compatible with the
org.apache.regexp.RE toolset, is given in the next section.

import oracle.panama.model.*;
import oracle.panama.PanamaException;
import oracle.panama.PanamaRuntimeException;
import oracle.panama.ArgumentType;

import java.util.Vector;
import java.util.Enumeration;
import java.util.Date;
import java.text.DateFormat;
import java.text.ParseException;

public class SamplePresets {

public void addAppointment(User user, String title, String memo, Date time,
boolean alarm, String phone) throws

PanamaException {
ModelFactory factory = MetaLocator.getInstance().getModelFactory();
ModelServices services = MetaLocator.getInstance().getModelServices();

PresetCategory category;
try {

category = services.lookupPresetCategory("Appointments");
} catch (PanamaRuntimeException ex1) {

try {
category = factory.createPresetCategory("Appointments");
category.setSystem(false); [25]

} catch (PanamaException ex2) {
throw ex2;

}

PresetDescriptor descriptor = category.createPresetDescriptor("Short
Title");

descriptor.setDescription("Brief description of the event");
descriptor.setPresetType(ArgumentType.SINGLE_LINE);

Presets

11-14 Oracle9iAS Wireless Developer’s Guide

descriptor.setStoredType(java.sql.Types.VARCHAR);
descriptor.setSize(new Long(40));

descriptor = category.createPresetDescriptor("Memo");
descriptor.setDescription("Memo for the event");
descriptor.setPresetType(ArgumentType.MULTI_LINE);
descriptor.setStoredType(java.sql.Types.VARCHAR);
descriptor.setSize(new Long(400));

descriptor = category.createPresetDescriptor("Time");
descriptor.setDescription("Time of event");
descriptor.setPresetType(ArgumentType.SINGLE_LINE);
descriptor.setStoredType(java.sql.Types.VARCHAR);
descriptor.setSize(new Long(40));

descriptor = category.createPresetDescriptor("Alarm");
descriptor.setDescription("Enable or disable alarm before event");
descriptor.setPresetType(ArgumentType.SINGLE_LINE);
descriptor.setStoredType(java.sql.Types.VARCHAR);
descriptor.setSize(new Long(1));

descriptor = category.createPresetDescriptor("Phone Number");
descriptor.setDescription("Optional phone number to ring for

alarm");
descriptor.setPresetType(ArgumentType.SINGLE_LINE);
descriptor.setStoredType(java.sql.Types.VARCHAR);
descriptor.setSize(new Long(40));

descriptor.setFormat("\\s*[(]?[1-9]\\d{2}[)]?\\s*-?\\s*\\d{3}\\s*-?\\s*\\d{4}");
[59]

descriptor.setEmptyOK(true);

factory.save();
}

Presets presets = user.createPresets(category); [65]

presets.setPresetValue("Short Title", title);
presets.setPresetValue("Memo", memo);
String timeStr = DateFormat.getDateTimeInstance().format(time); [69]
presets.setPresetValue("Time", timeStr);
if (alarm) {

presets.setPresetValue("Alarm", "Y");
} else {

presets.setPresetValue("Alarm", "Y");

Presets

Advanced Customization 11-15

}
try {

presets.setPresetValue("Phone Number", phone); [77]
} catch (PanamaException ex) {

// ignore
}

factory.save();
}

public Presets[] getAppointments(User user) throws PanamaException {
ModelFactory factory = MetaLocator.getInstance().getModelFactory();
ModelServices services = MetaLocator.getInstance().getModelServices();

PresetCategory category;
try {

category = services.lookupPresetCategory("Appointments");
} catch (PanamaRuntimeException ex1) {

throw new PanamaException(ex1);
}

Date now = new Date(System.currentTimeMillis());
Vector allPresets = user.getAllPresets(category); [97]
Enumeration enum = allPresets.elements();
Vector pending = new Vector();
while (enum.hasMoreElements()) {

Presets event = (Presets) enum.nextElement();
String timeStr = event.getPresetValue("Time");
Date time;
try {

time = DateFormat.getDateTimeInstance().parse(timeStr); [105]
} catch (ParseException ex) {

time = null;
}
if (time != null && time.after(now)) {

pending.add(event);
} else {

user.deletePresets(category, new Long(event.getId())); [112]
}

}
factory.save();

Presets presetsArray[] = new Presets[pending.size()];
pending.copyInto(presetsArray);
return presetsArray;

Presets

11-16 Oracle9iAS Wireless Developer’s Guide

}

}

11.2.3 Regular Expressions Syntax for the Presets Attribute Formats
The full regular expression syntax that can be used to define for formats is:

Table 11–1 Characters

Character Description

char Matches any identical character

 \ Used as an escape character (for example: *, \\, \w)

 \\ Matches a single '\' character

 \0nnn Matches a character with given octet number

 \xhh Matches a character with given 8-bit hexadecimal value

 \\uhhhh Matches a character with given 16-bit hexadecimal value

 \t Matches a tab character

 \n Matches a newline character

 \r Matches a return character

 \f Matches a form feed character

Table 11–2 Character Classes

Character Description

[abc] Simple character class

[a-zA-Z] Range character class; range specified with “-” and “]” (for
example: [x-z]

[^abc] Negated character class, for exclusion tests.

Table 11–3 Standard POSIX Character Classes

Character Description

[:alnum:] Alphanumeric characters.

[:alpha:] Alphabetic characters.

Presets

Advanced Customization 11-17

[:digit:] Numeric characters.

[:upper:] Upper-case alphabetic characters.

[:lower:] Lower-case alphabetic characters.

[:space:] Space characters (such as space, tab, and formfeed, to name a
few).

Table 11–4 Variable Classes

Class Description

. Matches any character other than newline

\w Matches an alphanumeric character

\W Matches a non-alphanumeric character

\s Matches a whitespace character

\S Matches a non-whitespace character

\d Matches a digit character

\D Matches a non-digit character

Table 11–5 Boundary Matchers

Matcher Description

^ Matches the beginning of a line

$ Matches the end of a line

\b Matches a word boundary

\B Matches a non-word boundary

Table 11–6 Greedy Closures (match as many elements as possible)

Element Description

A* Matches A 0 or more times (greedy)

A Matches A 1 or more times (greedy)

A? Matches A 1 or 0 times (greedy)

Table 11–3 Standard POSIX Character Classes

Character Description

Location Marks

11-18 Oracle9iAS Wireless Developer’s Guide

11.3 Location Marks
Location awareness is a key feature of Oracle9iAS Wireless. A user's location can be
obtained from E911 or GPS units or Location Marks. Location Marks are user
defined locations. For example, an end user may enter into their location-aware
applications their home, work and headquarters office addresses. Then, when using
a restaurant lookup application, the application can use the current location to
provide driving directions. To ensure security and privacy, users can control which
applications can access their location.

Due to the limitations of certain mobile devices such as telephones, it is difficult to
input or display lengthy alphanumeric strings. A location mark stores a piece of
spatial information identified by a concise, easy-to-understand name. For example,
"My home" might be the name of a location mark, while the underlying spatial

A{n} Matches A exactly n times (greedy)

A{n,} Matches A at least n times (greedy)

A{n,m} Matches A at least n but not more than m times (greedy)

Table 11–7 Reluctant Closures (match as few elements as possible)

Element Description

A*? Matches A 0 or more times (reluctant)

A? Matches A 1 or more times (reluctant)

A?? Matches A 0 or 1 times (reluctant)

Table 11–8 Logical Operators

Operator Description

AB Matches A followed by B (concatenation)

A|B Matches either A or B(union)

(A) Matches subexpression inside “(” and “)”, not including “(”
and “)”

Table 11–6 Greedy Closures (match as many elements as possible)

Element Description

A* Matches A 0 or more times (greedy)

Multiple Customization Profiles

Advanced Customization 11-19

information might be "123 Main Street, Somewhere City, CA, 12345; Lon = -122.42,
Lat = 37.58".

Users have complete control of their location marks and are easily able to select,
create, delete and modify location with any device or PC.

Location marks also allow users to try "what-if" scenarios: to make an application
behave as if they were in a location different from their default or current location.
For example, a user of an entertainment services application might be in Boston, but
will be traveling to San Francisco in a few days. This person could set a location
mark in San Francisco, and be presented with information relevant to the San
Francisco area. Each user can have personalized location marks, which are stored in
the Wireless repository.

Location marks are created using the LocationMark class. Users can also create
location marks by logging into the Oracle9iAS Wireless Customization Portal,
clicking the LocationMarks tab, and clicking Create. See Chapter 15, "Using
Location Services" for more information on using Location Marks with Geocoding,
Mapping, Routing, Traffic and Region Modeling services.

11.4 User Device Management
Oracle9iAS Wireless gives users, with multiple devices, the ability to easily manage
and optimize their mobile experience for each device. The user can manage their
devices from either a PC or mobile device. In addition, users are easily able to
modify their current default device.

Once a user creates a new device profile, they can enter the following attributes for
each device:

■ Device Name

■ Number of accepted alerts per day

■ Address/number

■ Device Type (voice, wap, pda...)

11.5 Multiple Customization Profiles
Oracle9iAS Wireless enables development of user-centric web services that adapt
the contents not only to the device and network capability but also to the end user’s
preferences. The device portals typically provide the menu of services, which may
be organized under several folders and subfolders. Menu driven device portals are

Multiple Customization Profiles

11-20 Oracle9iAS Wireless Developer’s Guide

designed to optimize the interactive efficiency of wireless devices. Service menus
are usually static but the portal may intelligently suggests new services to the user
as it learns more about the user’s needs and preferences. The Oracle9iAS Wireless
server lets the end users personalize the portal by controlling the arrangement of
the services in the menus. The portal can suggest new services to the user, but the
user still controls when to include or exclude each service in the user’s personalized
portal. The administrators can explicitly prevent the end users from rearranging or
removing certain services, such as promotions, preferred partners, emergency
services, etc., from their personalized portals.

11.5.1 Concepts
The Profiles let the users create multiple personalized versions of the portals for
their devices. The service menus may be different from one profile to another. For
example, let’s suppose that one of the folders for the user may contain the following
five services:

■ E-mail

■ News

■ Stocks

■ Map

■ Phone Directory

■ Shopping

In the Home profile, the service menu in the folder may be customized as:

■ Phone Directory

■ E-mail

■ News

■ Stocks

The same folder may be customized differently for the Traveling profile as:

■ Map

■ Shopping

■ Phone Directory

Multiple Profile’s can be created for different roles, locations or contexts, device and
network characteristics, or any other taxonomy. For a user with sale, marketing, and

Multiple Customization Profiles

Advanced Customization 11-21

consulting responsibilities who may play multiple roles in the enterprise portal,
Profile’s may be created for each of these roles to increase efficiency and
accessibility of services. For a nomadic user who frequents among multiple
metropolitan centers, the profiles may be created for each location. For example, a
user’s customization Profile for a cultural center like “San Francisco” may include
services for theaters, sporting events, and BART schedules. The same user may
have another Profile for the lake Tahoe area with a different combination of services.
A location aware portal can automatically set the session Profile’s for the users
when they connect from different locations.

The Oracle9iAS Wireless runtime controllers can be extended to automatically
provision the Profile’s for users, for example to provide different views of the portal
from more than one type of device. The example in the following section describes
how to automatically provision a profile for the user. Alternatively, end users can
create any number of Profile’s for any context through the Customization Portal via
a PC browser. Through the Service Management tool in the Customization Portal,
they can customize the arrangement of services for each of the Profile’s.

The administrators can specify the default sorting rules for the shared folders.
Under the Profile architecture, end users can alter the default sorting rules to
personalize the views of the shared folders. They can choose from the following five
sorting rules:

■ specified sequence numbers,

■ lexicographic ordering,

■ date of creation,

■ frequency of access, and

■ last access time.

The sequence numbers, lexicographic ordering, and date of creation produce the
static views of the folders. Sorting by frequency of access or last access time
produces the dynamic views of the folders. Furthermore, the administrators can
control the static or dynamic arrangements of some of the services in the folder,
such as emergency, promotion, and preferred partner’s services, that may not be
rearranged by the end users. The administrators can designate the segments of the
views that may be rearranged or hidden by the end users. The view of the folder
may be segmented such that one segment is sorted by the administrator’s
specification and another segment is sorted by the user’s specification.

The Profile architecture lets the end users specify the visibility of a service in the
profile provided the administrator does not explicitly disable the personalizable
attribute of a service. This lets the end users “subscribe” or “unsubscribe” a service

Multiple Customization Profiles

11-22 Oracle9iAS Wireless Developer’s Guide

that may be placed in the user’s folder by the system. The system may also apply
the location based filtering of the services in the location enabled folders, which
offers additional dynamism to the views that vary with the user’s mobile position.

Services that access the runtime objects can get the current Profile from the
ServiceContext.getProfile method. See Section 10.6, "Runtime and Data Model APIs"
for the description of runtime objects. This method first looks up the Profile in the
current Request. If the Request does not specify a Profile, the method looks in the
runtime Session for the session Profile. If the session Profile is empty, then the
method looks up the default Profile of the User. This resolution strategy lets the
Request overrides the session Profile, and the session to override the default User
Profile. ServiceContext.getProfile can return null if there is no Profile at all.
Applications should be prepared to react with default behavior when the Profile is
not specified.

11.5.2 Sample Applications
The following example describes how to automatically provision a Profile for each
of the devices that the User may use. The SampleRequestListener listens for the
serviceBegin() event and provisions a new Profile in line [25] and [27] if the Request
and Session do not already specify a Profile, line [17] and [19]. For the new Profile, it
sets the user’s home folder to sort the services in the home folder by the last access
time of the service in line [36]. For each service that is view customizable in line
[39], it sets the service to be hidden in the Profile in line [40]. The end users can later
customize the Profile’s to unhide the services that they want to use. This needs to be
done only once after the Profile’s are first created. The listener then sets the Profile
in the Request in line [54].

import oracle.panama.model.*;
import oracle.panama.rt.Session;
import oracle.panama.rt.Request;
import oracle.panama.rt.event.RequestAdapter;
import oracle.panama.rt.event.RequestEvent;
import oracle.panama.rt.event.AbortServiceException;
import oracle.panama.PanamaException;

public class SampleRequestListener extends RequestAdapter {

public void serviceBegin(RequestEvent event) throws AbortServiceException {
Request request = event.getRequest();
Session session = request.getSession();
User user = session.getUser();

Profile profile = request.getProfile(); [17]

Multiple Customization Profiles

Advanced Customization 11-23

if (profile == null)
profile = session.getProfile(); [19]

if (profile == null) {
Device device = request.getDevice();
String deviceName = device.getName();
Profile deviceProfile;
synchronized(user) {

deviceProfile = user.lookupProfile(deviceName); [25]
if (deviceProfile == null) {

deviceProfile = user.createProfile(deviceName); [27]
ModelFactory factory =

MetaLocator.getInstance().getModelFactory();
try {

factory.save();
} catch (PanamaException ex) {

deviceProfile = null;
}
if (deviceProfile != null) {

boolean needCommit = false;
Folder home = user.getHomeFolder();
deviceProfile.setSortRule(home, SortRule.SORT_BY_ACCESS_

TIME_ASCEND); [36]
Service[] services =

home.getAccessibleUserServices(user);
for (int i = 0; i < services.length; i++) {

if (services[i].isViewCustomizable()) {
[39]

deviceProfile.setHide(services[i], true);
[40]

needCommit = true;
}

}
try {

if (needCommit)
factory.save();

} catch (PanamaException ex) {

}
}

}
}
if (deviceProfile != null)

request.setProfile(deviceProfile); [54]
}

}

User and Group Management

11-24 Oracle9iAS Wireless Developer’s Guide

}

11.6 User and Group Management
Oracle9iAS Wireless has advanced group and user management. Any user that is
granted "User Manager" abilities is able to create, delete and modify groups and
users through any device or PC. Any Group or User can be restricted or granted
access to any folder or service.

Advanced Access Control List (ACL) used with the User and Group Management
allows for fine grained access control that takes advantage of the flexible user or
group policies that may be applied to Services or Folders

11.7 Service Management
Oracle9iAS Wireless offers complete control to the developer to manage what end
users can do in terms of folder management. Developers can offer groups or users
complete flexibility with their Service Management or restricted use of Service
Management.

Services and folders may be organized in the following ways:

■ user specified sequence numbers (any order)

■ lexicographic ordering

■ date of creation

■ dynamic ordering based on frequency of access or last access

The end user also has the ability to customize their mobile experience with
Bookmarks and Quicklinks. This gives users the ability to link frequently accessed
services to the home deck or any other desired folder.

11.8 Rebranding the Customization Portal

11.8.1 Overview
Oracle9iAS Wireless Customization Portal is both a framework for the
Customization interface and a sample implementation of that framework. The
framework consists of JavaServer Pages (JSP) files, JavaBean modules, JavaScript,

Rebranding the Customization Portal

Advanced Customization 11-25

and such static elements as images, XSL stylesheets, and HTML files. Another
element of the framework is the logical sequence in which the elements execute.
You can rebrand the Customization Portal based on the existing framework or
restructure the framework itself by altering the logic in the JSP files and JavaBeans.

The following sections describe the elements that generate the Customization Portal
and their order of execution, as well as the file naming conventions and the
directory structure used.

11.8.2 Page Naming Conventions
Some Customization Portal pages display information, while others allow you to
customize user information or repository object characteristics. The JSP files execute
the tasks that are associated with user customization.

Each JSP file consists of an action applied to an object. One part of the JSP file name
represents the action (usually Ed or Do, as in EdFolder.jsp and DoFolder.jsp). A
second part of the file name represents the object (or the target) of the action, such
as, Folder, Service, Alert, or Bookmark.

For example, to customize a user from the Service Subscription page Myservice.jsp,
click the User link to invoke EdFolder.jsp, which displays the editable
characteristics of that folder. In this example, the action is editing; it is represented
by the prefix Ed in the file name. The object of the action is folder; it is represented
by Folder in the file name. To apply the changes that you have made, the
DoFolder.jsp file processes the input.

In this case, the actions are Ed and Do; the object is Folder.

■ Edit JSP files, which begin with "Ed", generate the page, retrieve object
characteristics, display the result, and accept user inputs.

■ Action JSP files, which begin with "Do", process user inputs, perform the action,
and display the result.

There are action/object combinations for all Customization Portal objects. For
example:

■ EdFolder.jsp and DoFolder.jsp

■ EdService.jsp, DoService.jsp, and MyService.jsp

■ EdBookmark.jsp and DoBookmark.jsp

Rebranding the Customization Portal

11-26 Oracle9iAS Wireless Developer’s Guide

11.8.3 JavaServer Pages Structure
Each Customization Portal JSP is composed of a series of JavaBeans assembled to
generate the page when they are rendered. Each JavaBean is a reusable element and
can be rendered individually or as part of the JSP.

Figure 11–3 Sample Page JavaBean Structure

Rebranding the Customization Portal

Advanced Customization 11-27

Figure 11–4 JavaBean Location on Sample Page

Table 11–9 JavaBean Function

JavaBean Description

Root Encompasses the JSP and allows it to be rendered as a whole.

Rebranding the Customization Portal

11-28 Oracle9iAS Wireless Developer’s Guide

 1. Form and Page
Layout

Establishes the Header and Footer and reserves the remainder of
the page for other content. This component contains the Tab Bar,
Navigation Trace, Row Layout, and Button elements.

Figure 11–5 Form and Page Layout

2. Header Company branding and Tab Bar.

Figure 11–6 Header

3. Navigation Trace Displays navigation cue and display name elements.

Figure 11–7 Navigation Tree

4. Footer Global button links and Copyright information.

Figure 11–8 Footer

Table 11–9 JavaBean Function

JavaBean Description

Rebranding the Customization Portal

Advanced Customization 11-29

5. Row Layout The main section of the page, which contains Tree, Cell, and
Button elements.

Figure 11–9 Row Layout

6. HGrid Table Linked hierarchical lists.

Figure 11–10 HGrid Table

Table 11–9 JavaBean Function

JavaBean Description

Rebranding the Customization Portal

11-30 Oracle9iAS Wireless Developer’s Guide

Pages can be modified in one of two ways.

■ You can paste a partial page into the current layout. For example, you can
remove a message box by deleting that JavaBean, or replace it with a Text Box.

■ You can reuse an existing JavaBean to introduce a new element on a custom
page. For example, using the Tree JavaBean to place a Tree on a new page.

11.8.4 Directory Structure
To rebrand the Customization Portal, you modify the JSP files that generate the
Customization Portal. After installing Oracle9iAS Wireless, these files are located in
the $ORACLE_HOME/OC4J_Wireless/j2ee/applications/customization directory
which has the following structure:

Table 11–10 Portal Directory Contents

7. Button bar Used to approve or cancel page actions. This is part of a row
layout.

Figure 11–11 Button bar

Directory Contents

customization-web Container JSP files. Container files are accessed directly by
browsers. also contains JavaScript files.

customization-web/images Images used throughout the Customization Portal.

customization-web/Web-inf/jsp Module JSP files. These files are included by either container JSP
files or other module JSP files.

customization-web/cabo JavaBean stylesheet, image, and JavaScript.

customization-web/cabo/images JavaBean static images.

customization-web/cabo/images/cache JavaBean generated images.

customization-web/cabo/jsLibs Javascript.

customization-web/cabo/styles Stylesheets.

Table 11–9 JavaBean Function

JavaBean Description

Rebranding the Customization Portal

Advanced Customization 11-31

11.8.5 Customization Levels
Customization Portal pages can be customized in several different ways. You can
easily alter the appearance of logos, banners, and icons. Alternatively, you may
want to create your own JSP to achieve the desired look and feel.

11.8.5.1 Appearance Customization
This method requires replacing static strings in the HookFunc.jsp file located in the
$ORACLE_HOME/OC4J_
Wireless/j2ee/applications/customization/customization-web/WEB-INF/jsp
directory. By changing the file names called in by these static strings, you can alter
the banner art, logo art, and tool tip text.

11.8.5.2 Colors and Fonts
The colors and fonts can be customized by modifying the XML Style Sheet file:

$ORACLE_HOME/j2ee/OC4J_Wireless/applications/customization/customization-web/
cabo/styles/blaf.xss.

After the modification, remove:

$ORACLE_HOME/j2ee/OC4J_Wireless/applications/customization/customization-web/
cabo/styles/cache directory, and restart the server.

The new Colors and Fonts will take effect on the Web page.

customization-web/cabo/styles/cache Generated stylesheets.

portal/messages/portal.properties Sets page contents. For more information, see Section 11.8.7,
"Setting the Multi-Byte Encoding for the Customization Portal".

Table 11–11 HookFunc.jsp String Usage

String Page Element

 logoImage Page logo image

 logoDesc Page logo tool tip text

 advImage Optional advertising banner image

 advDescrip Optional advertising banner image tool tip text

 advDest Optional advertising banner image destination

Directory Contents

Rebranding the Customization Portal

11-32 Oracle9iAS Wireless Developer’s Guide

11.8.5.3 JSP Modification
The JSP file PageTemp.jsp generates the Customization Portal page template.
PageTemp.jsp is included in other JSP files which generate different contents in each
page.

■ PageTemp.jsp generates the logo and Tab bar at the top of the page.

■ MyService.jsp presents a hierarchical view of the services available to the user.

11.8.6 Customization Components
The edit and action JSP files execute the tasks associated with user customization:

■ The edit JSP files, which begin with "Ed", generate the forms for accepting user
inputs.

■ The action JSP files, which begin with "Do", process user inputs, perform the
action, and display the result.

For example, to rename a folder, Oracle9iAS Wireless first invokes EdFolder.jsp,
then DoFolder.jsp.

Users can customize or configure the following:

■ Services

■ Alerts(new alerts)

■ Presets

■ View Profiles

■ Devices

■ Location Marks

■ User's Profile

■ Deprecated (the following are only displayed if Deprecated Alert Support is set
to TRUE [the default is FALSE])

■ Alert (deprecated in this release)

■ Alert Address (deprecated in this release)

11.8.6.1 Flow Example - Customizing a Services
The MyService.jsp file displays the Service Subscription page, which allows the user
to customize or copy a service. Depending on the option selected by the user, an

Rebranding the Customization Portal

Advanced Customization 11-33

input form is displayed by an EdService.jsp file. When the user clicks a button on
the input form, the flow moves to a DoService.jsp file. The DoService.jsp file posts
and processes input values, and, depending on the validity of the input values,
returns to the MyService.jsp or displays an error message. The following figure
displays the flow of control when a user edits a service.

Figure 11–12 Service Customization Flow

11.8.6.2 Creating New JSP
To create a new JSP, you implement the Customization Portal API. The classes in
this API enable you to customize a version of the Customization Portal by
providing a set of interfaces for portal customization.

Note: The action pages, DoService.jsp and DoFolder.jsp have no
display component, they perform their function, update the
database, and then return the user to an input page, such as
EdFolder.jsp or MyService.jsp.

Using the Customization Portal API

11-34 Oracle9iAS Wireless Developer’s Guide

11.8.7 Setting the Multi-Byte Encoding for the Customization Portal
The Customization Portal gets the encoding for the text of the site from the setting
in the PAPZ logical device, which is in the repository. The default encoding is
UTF-8, which can handle Western European languages as well as some Asian
languages. The portal sets the content for each page with the encoding specified by
the logical device. To change the default encoding, click PAPZ under Logical
Devices in the Service Designer and change the encoding according to the IANA
standards for your particular language.

The UI labels are loaded from portal_LANGUAGE (_COUNTRY if any). For
example, portal_fr_CA.properties in the directory: $ORACLE_HOME/OC4J_
Wireless/j2ee/server/classes/messages. Before login, the locale is determined by
the Oracle9iAS Wireless locale setting. After login, the locale setting is determined
by the user's locale preference.

11.9 Using the Customization Portal API
This section describes the Oracle9iAS Wireless Customization Portal API.

11.9.1 Overview
The Customization Portal API classes are designed to allow you to customize a
version of the Oracle9iAS Wireless Customization Portal. They provide a
streamlined set of classes for portal customization. There are also built in syntax
checks to verify data model logic.

The use of the Customization Portal is a sequence of Hypertext Transaction Protocol
(HTTP) requests. Each request begins with the user selecting a JavaServer Page
(JSP) link which issues the request. The user enters data and clicks a button which
causes the JSP to retrieve, update, or create a new repository object. Each request is
controlled by classes which have been grouped into controllers based around the
type of operation being performed.

Note: For detailed information regarding the Customization
Portal API, see the Oracle9iAS Wireless Javadoc.

Using the Customization Portal API

Advanced Customization 11-35

11.9.2 Customization Portal API Classes
The Oracle9iAS Wireless Customization Portal is represented by a default set of
JavaServer Pages (JSP) which allow you to personalize folder, service, bookmark,
alert, alert address, locationmark, and profile repository objects. The Customization
Portal API enables you to create your own JSPs. The classes are categorized by
specific function. Combining these functions is one method of creating your own
JSP framework.

The API is categorized into the following controllers. Each of them is stateless and
can be used as a Java singleton class. Calls to these classes are not context sensitive.

11.9.2.1 Login and Initialize Session - RequestController
RequestController handles operations related to requests and session control such
as:

■ User login

■ Session creation

■ Requesting a service

■ Logging out

For more details on Controller APIs, see the javadoc included with Oracle9iAS
Wireless.

11.9.2.2 User Creation and Modification - UserController
UserController oversees operations involving users, such as:

■ View and modify user profile

■ View and manage users’ views

■ view and manage users’ presets values

For more details on User Controller APIs, see the javadoc included with Oracle9iAS
Wireless.

11.9.2.3 Object Customization—ServiceController
ServiceController regulates operations for service, folder, and bookmark objects
such as:

■ Viewing the service tree.

■ Create sub-folder or bookmark.

Using the Customization Portal API

11-36 Oracle9iAS Wireless Developer’s Guide

■ Copying a service.

■ Reordering objects within a folder.

■ View a bookmark URL.

■ Set object parameters.

■ Setting objects as visible/invisible.

■ Delete an object.

For more details on Service Controller APIs, see the javadoc included with
Oracle9iAS Wireless.

11.9.2.4 Alert Subscription Customization—Alert Subscription Controller
AlertSubscription handles operations of alert subscription and trigger settings such
as:

■ Create AlertSubscription

■ Retrieve the trigger conditions of an alert

■ Setting the values of trigger conditions of an AlertSubscription

For more details on Alert Subscription Controller APIs, see the javadoc included
with Oracle9iAS Wireless.

11.9.2.5 Device Customization—Device Controller
Device Controller handles device customization activities, such as:

■ Create and manage devices

■ Validate and test devices

■ WAP Provisioning

For more information, see Oracle9iAS Wireless Getting Started and System Guide, and
the javadoc included with Oracle9iAS Wireless.

11.9.2.6 Alert Customization—AlertController (deprecated)
AlertController handles operations of alerts and alert address settings such as:

■ Create an alert or alert address.

■ Retrieving the parameters of an alert.

■ Setting the parameters of an alert.

Using the Customization Portal API

Advanced Customization 11-37

■ Setting the parameters of an alert address.

■ Delete an alert address.

11.9.2.7 Locationmark Creation and Modification—LocationMarkController
LocationMarkController manages operations with locationmarks including:

■ Create a locationmark.

■ View all the locationmarks.

■ Modify a locationmark.

■ Set default locationmark.

■ Delete a locationmark.

For more details on LocationMark Controller APIs, see the javadoc included with
Oracle9iAS Wireless.

11.9.3 Session Flow
The following diagram displays the flow of operations in an HTTP request.
RequestController handles authenticating the user and initializing the request.
Other controllers are called depending on the parameters of objectId, the current
request, and any input from the user in the form of input strings.

Note: This controller is deprecated in this release.

Using the Customization Portal API

11-38 Oracle9iAS Wireless Developer’s Guide

Figure 11–13 Session Flow

11.9.3.1 Sample Code
The following code samples demonstrate an example of an HTTP session based on
the process illustrated above.

11.9.3.2 Authenticate User
try {

// request is HttpServletRequest
// -1 means the application Session will never expire
// until the HttpSession expires
RequestController.getInstance().login(request, -1);

} catch (PortalException pe) {
}

11.9.3.3 Initialize Session
try

// request is HttpServeltRequest
Request _mRequest =

RequestController.getInstance().initRequest(request);
} catch (PortalException pe) {
}

Using the Customization Portal API

Advanced Customization 11-39

11.9.3.4 Retrieve Objects
try {

//_mRequest is oracle.panama.rt.Request
//currentUser is current user with type of //oracle.panama.model.User
//currentService is current service in Request with type of
//oracle.panama.model.Service
User currentUser = UserController.getInstance().getCurrentUser(_mRequest);
Service currentService =
ServiceController.getInstance().getCurrentService(_mRequest);

} catch (PortalException pe) {
}

11.9.3.5 Display/Edit Objects
try {

//inputHash is assigned with a hashtable of
//inputArgument name-value pairs
Hashtable inputHash = ServiceController.getInstance().
getInputArguments(currentService.getId());

//display inputArgument name and value,
//and modify some of the values in inputHash
..

//update the inputArgument values of the current service
ServiceController.getInstance().
setInputArguments(currentService.getId(), inputHash);

} catch (PortalException pe) {
}

11.9.3.6 Cleanup Request
//_mRequest is oracle.panama.rt.Request
RequestController.getInstance().freeRequest(_mRequest);

Using the Customization Portal API

11-40 Oracle9iAS Wireless Developer’s Guide

Alert Engine and Data Feeds 12-1

12
Alert Engine and Data Feeds

Each section of this document presents a different topic. These sections include:

■ Section 12.1, "Alert Engine"

■ Section 12.2, "Data Feeders"

12.1 Alert Engine
The Oracle9iAS Wireless alert system provides you with extensible and scalable
solutions to develop mobile alert services. An alert service generates alert message
delivery events from a content source based on certain conditions such as a
value-based predicate. For example, sending a stock quote to a user when the stock
price has reached a predefined value. A condition can also be a time-based
predicate with or without a value-based predicate. For example, a user can request
the stock market index every day at 8 am, or a stock market index every day at 8
am, if the index has reached a predefined value. The delivery mechanism of the
alert message is through Oracle9iAS Wireless message gateway, which allows
notification to be sent through WAP push, Email, SMS messages, Instant Messaging
or voice.

12.1.1 Alert Engine Architecture
The alert engine architecture is described in Figure 12–1.

Alert Engine

12-2 Oracle9iAS Wireless Developer’s Guide

Figure 12–1 Alert Engine Architecture

At design time, each master alert service selects a content descriptor, known as data
feeder as its content source and becomes a subscriber to a content arrival event from
that content source. Upon the content arrival event, which is generated by either
data feeders or by custom applications, the alert engine notifies all the content event
handlers whose associated master alert services have subscribed to the content
arrival event. The content event handler in turn evaluates all the user alert
subscriptions to locate the interested alert subscribers. Once the list of alert
subscribers has been determined, the message formatter generates the outgoing
alert message by either applying the message formatting template to the content or
invoking the message formatter hook with the content and alert subscriber
information. Finally, the alert message dispatcher communicates with the
Oracle9iAS Wireless message gateway to deliver the message to the alert
subscriber’s device address.

The end user creates alert subscriptions using either the Oracle9iAS Wireless
Content Manager or the Oracle9iAS Wireless alert subscription APIs. If a master
alert service is set to be time base enabled, the user can specify the time and the
frequency for the alert subscriptions to be evaluated. The time event handler
requests the content from the data feeder based on the user time base setting and
generates content arrival event for the content event handler.

Alert Engine

Alert Engine and Data Feeds 12-3

12.1.2 Creating a Master Alert Service
When you create a master alert service, you (a service designer) must first describe
the data content on which the alert service is built. Oracle9iAS Wireless enables you
to define the data content using a data feeder. The data feeder module defines a
given content in two forms: input parameters and output parameters. For example,
a stock quote content can be defined as having a stock ticker as its input parameter
and having price, volume, change, and change percentage as its output parameters.
Furthermore, the data feeder module allows you to define the data mapping
between any content source and the data feeder’s input and output parameters so
that contents can be retrieved automatically from any content source to Oracle9iAS
Wireless.

12.1.2.1 Defining a Master Service
Defining a master service requires you to provide the following information:

■ Which data feeder to use as the content descriptor

■ Whether the master alert service allows users to create time-based predicate

■ Which value trigger conditions can user defined on any of the output
parameters of the selected data feeder

■ How the notification message should be generated. There are two ways for the
message to be generated:

■ Use a message text template to generate dynamic content.

For example, if you are building an alert service based on a stock feed
which has a stock ticker as its input parameter and price and change as its
output parameters, you can define the message template as follows:

<SimpleText>
Stock Alert for &ticker;
Price: &price;
Change: &change;

</SimpleText>

You can refer to any data feeder input/output parameters in the template using
the notation of &<parameter name>; , which is similar to the XML entity
notation. When the notification message is generated at runtime, all references
to the data feeder’s parameter are replaced by the actual content values. In
addition, the developer can use the following tokens in the template to generate
a personalized message:

Alert Engine

12-4 Oracle9iAS Wireless Developer’s Guide

■ &USER; -- The subscriber’s account name

■ &USERDISPLAY; -- The subscriber’s display name

■ Use an external Java hook for advance message formatting

Developers wishing to generate more sophisticated notification messages
with customized logic base on the runtime contents can supply a Java class
which implements Java interface AlertMessageFormatter or
AlertPersonalMessageFormatter for generic or personalized message
respectively.

12.1.2.2 Extending the Alert Engine’s Subscriber Filtering Capability
In some cases, the designer may wish to apply customized business logic before the
notification message can be delivered to the subscriber. For example, some may
want to interface with the billing system before any notification can be sent to the
subscriber. Oracle9iAS Wireless alert engine allows the developer to supply a Java
class which implements the Java interface AlertSubscriberFilter for additional
subscriber filtering logic.

12.1.2.3 Using the Service Designer to Create Master Alert Service
Generally, you create a master alert service using the Webtool’s Service Designer.
The Service Designer provides you with a wizard that guides you through each step
for creating a master alert service. For more information, see the Oracle9iAS
Wireless Getting Started and System Guide.

12.1.2.4 Using the Java API to Create a Master Alert Service
The following code segment illustrates how to create a Master Alert Service using
Oracle9iAS Wireless public APIs. This example shows how to use a stock quote feed
and generate a stock alert for subscribers when a stock price reaches beyond or
below the subscriber's predefined values.

MetaLocator m = MetaLocator.getInstance();
ModelFactory f = m.getModelFactory();
ModelServices s = m.getModelServices();
// use feed locator get the datafeeder information

Note: Alert message device transcoding is not supported in
current release of Oracle9iAS Wireless. However, the feature will be
supported in the future releases

Alert Engine

Alert Engine and Data Feeds 12-5

DataFeeder df = s.lookupDataFeeder("StockFeed")
try {
// create a master alert with time base disabled
stockMS = f.createMasterAlertService("StockAlert", false, " Stock
Master Alert", df);

stockMS.save();
} catch (PanamaException pe) {
System.out.println(pe.toString());

}

FeedMetaData fmdPrice = df.getOutputParameter("price");
AlertConditionType actGT =

s.getAlertConditionTypeByName("GT");
// add some conditions to the master alert
AlertConditionMeta m1 = stockMS.addConditionDefinition("price_max",

fmdPrice, actGT, "30");
AlertConditionType actLT =

s.getAlertConditionTypeByName("LT");
AlertConditionMeta m2 = stockMS.addConditionDefinition("price_min",

fmdPrice, actLT, "15");

// Set up alert message template
StringBuffer messageTemplate = new StringBuffer("<SimpleText>

\n");
messageTemplate.append("Stock Alert for &ticker; : \n");
messageTemplate.append("Price: &price; \n");
messageTemplate.append("Change: &change; \n");

messageTemplate.append("</SimpleText>");
stockMS.setFormattedXMLTemplate(messageTemplate.toString());

// any create/update operation must be committed with the save. Alert object
do not use the
// wireless caching/persistence framework

stockMS.save();

// Lookup condition definitions
AlertConditionMeta[] acm = stockMS.getConditionDefinitions();
for (int i=0; i<acm.length; ++i) {

System.out.println("Condition info : "+i+" id = "+acm[i].getId()+" Name =
"+acm[i].getConditionName());

}

// lookup input parameters. The input parameters get copied from
datafeeder.
// However the user can set default values

Alert Engine

12-6 Oracle9iAS Wireless Developer’s Guide

AlertInputParamMeta[] aipm =
(AlertInputParamMeta[])mas.getInputParameters();

for (int i=0; i<aipm.length; ++i) {
System.out.println("Param info : "+i+" id = "+aipm[i].getId());

}

* On Section 12.1.10.2, in the code segment, please replace the following
code:

try{
eng.andleFeedContent("StockFeed",content);

}catch (PanamaException e){
// handle the exception

}

with the following new code segment:

try{
eng.handleFeedContent("StockFeed",content);

}catch (PanamaException e){
// handle the exception

}

12.1.2.5 Publishing and Organizing Alert Services
Once the master alert service has been defined, the designer can create
user-accessible alert services based on the master alert service. Oracle9iAS Wireless
allows the designer to create and manage alert services through the following:

■ Specifying captions on the trigger conditions defined in master alert service.

■ Specifying default values on the input parameters defined in master alert
service.

■ Specifying default values on the trigger conditions defined in master alert
service.

■ Creating topics to organize alert services for optimum usage.

■ Assigning the topic and alert services to any user group for access control.

Alert Engine

Alert Engine and Data Feeds 12-7

12.1.3 Using the Content Manager to Create and Manager an Alert Service
Generally, you use the Webtool’s Content Manager to create an alert service based
on an existing master alert service. The Content manager guides you each step in
creating an alert service. For more information on using the content manager, see
the Oracle9iAS Wireless Getting Started and System Guide.

12.1.3.1 Use Java API to Create and Manage Alert Service
The following code segment illustrates how to create an alert service using
Oracle9iAS Wireless public APIs. The use case is to create a stock alert service for
master alert service StockAlert under a topic named Stock Topic. The alert service also
sets the caption of the service for the trigger condition price_max, which is defined in
the master alert service.

MetaLocator m = MetaLocator.getInstance();

ModelFactory f = m.getModelFactory();

ModelServices s = m.getModelServices();

Topic A = null;

// create a topic named StockTopic associated with an alert service stock
alert

try {

A = f.createTopic("StockTopic", null);
A.save();
MasterAlertService mas = s.lookupMasterAlertService("StockAlert");
AlertService as = f.createAlertService("stock alert ", mas);
AlertConditionMeta[] conds = as.getConditionDefinitions();

for (index=0;index<conds.length; index++){
if (conds[index].getConditionName().equals(“price_max”)){

conds[index].setCaption(“above”);
}

}
as.save();
A.addService(as);
A.save();

} catch (Exception e) {
L.e("createTopic failed :"+e.toString());

}

Alert Engine

12-8 Oracle9iAS Wireless Developer’s Guide

12.1.4 Managing Alert Subscriptions
Once an alert service is created and assigned to a user group, the user belonging to
the group can create or modify alert subscriptions as follows:

■ Users can change content by specifying the input parameter values, such as
stock ticker.

■ The trigger condition values, such as the price value for an alert, to trigger
when the stock quote reaches beyond a set point.

■ The expiration time for a given alert subscription.

■ Enable or disable an alert subscription.

■ If the master alert service is set as a time-based enabled, the user can set the
time and the frequency when the alert subscription should be evaluated. For a
user can set this even for every week day at 8 am.

12.1.5 Managing Alert Subscription Using Customization
Users generally manage their alert subscriptions using the Wireless Customization.
For more information, see the Oracle9iAS Wireless Getting Started and System
Guide.

12.1.6 Manage Alert Subscription Using Java API
Managing alert subscriptions using Oracle9iAS Wireless public API is illustrated by
way of the following example:

■ A user, John, wants to create an stock alert subscription for stock ticker ORCL
where he should be notified when the stock price reach beyond 50.

■ In addition, John wants to be notified every day at 8 am if the condition
mentioned above has been met.

Following code segment illustrates how to create an alert subscription for John
using Oracle9iAS Wireless public APIs:

ModelServices s = m.getModelServices();

AlertService as = s.lookupAlertService(“stock alert");

//lookup user
User u = m.lookupUser("John");

UserAlertSubscription subs = as.addUserAlertSubscription(u);

Alert Engine

Alert Engine and Data Feeds 12-9

AlertInputParamValue[] apv = subs.getInputParameters();

for(int i=0; apv!=null && i<apv.length; i++) {

if(apv[i].getParamName().equals("ticker")) {
apv[i].setValue("ORCL");

}
}

// get/set new conditions for the subscription
AlertConditionValue[] acv = subs.getConditions();

for(int i=0; acv!=null && i<acv.length; i++) {

if(acv[i].getConditionName().equals("price_max")){
acv[i].setValue("15");

break;
}

}

subs.setHour(10);
subs.setMinute(30);

// get frequency from model services
AlertTimeFrequency[] af = getAlertTimeFrequencies();
for(int i=0; i<af.length; ++i) {

if(af[i].getFrequencyCode().equals(AlertTimeFrequency.DAILY)){
subs.setFrequency(af[i]);

}
}

// any create/update operation must be committed with the save. Alert objects
// do not use the wireless caching/persistence framework

subs.save();

//... get all subscriptions
//retrieving subscsription

UserAlertSubscription[] mysubs = as.getUserAlertSubscriptions(u);
for (int i=0;i<mysubs.length;i++){

AlertInputParamValue[] params = mysubs[i].getInputParameters();
System.out.println("Sub ID: "+mysubs[i].getId());
System.out.print("Params: ");
for (int j =0;j<params.length;j++){

System.out.print(params[j].getParamType()+"="+params[j].getValue()+" ");

Alert Engine

12-10 Oracle9iAS Wireless Developer’s Guide

}
System.out.print("\n");
AlertConditionValue[] conds = mysubs[i].getConditions();
System.out.print("Conds: ");
for (int j =0;j<conds.length;j++){

System.out.print(conds[j].getConditionName()+"="+conds[j].getValue()+" ");
}
System.out.print("\n");

}

12.1.7 Creating a Device Address for Alert
A user must register a valid device to receive alert notifications. Furthermore, the
user must select a device address for a given alert service. The device address must
have the following attributes:

■ Validity: The device address must be validated.

■ Maximum number of alerts per day: The maximum number of alert messages
that can be delivered to this device address per day.

For detail information regarding Device Address, please refer to the developer
guide for Oracle9iAS Wireless core objects.

To set the user device address selection to a given alert service programmatically,
use the API setUserAlertDevice(DeviceAddress deviceAddress) which
is defined under interface AlertService.

12.1.8 Starting Alert Engine Process
To deploy a master alert service, a system manager creates (or updates) an alert
instance, adds the newly created master alert service to the alert instance and then
starts the alert instance. See the Oracle9iAS Wireless Getting Started and System Guide
for more information managing the Oracle9iAS Wireless system and starting and
stopping an alert engine process.

Note: Oracle9iAS Wireless alert engine uses Oracle9iAS Wireless
message gateway system to deliver message to device addresses.
The transport must be up and running with the selected drivers for
different delivery types.

Data Feeders

Alert Engine and Data Feeds 12-11

12.1.9 Notifying the Alert Engine for Content Arrival
This section describes the methods of pushing contents to the Oracle9iAS Wireless
alert engine for notification delivery. These methods include:

■ The Data Feeder Module

■ The Alert Engine Java API

12.1.9.1 Data Feeder Module
If a designer of an master alert service chooses to use the Oracle9iAS Wireless data
feeder module to retrieve data content, also known as the “POLL” model, the data
feeder automatically notifies the alert engine of the content arrival event. The alert
engine then evaluates all the user subscriptions with the newly arrived content to
deliver alert message to the appropriate subscriber device addresses.

12.1.9.2 Alert Engine Java API
If the designer chooses to use the “PUSH” model by defining a pass-through data
feeder, or the designer wishes to deliver contents to the alert engine
programmatically from an application, the designer uses the alert engine public
APIs to notify alert engine of the content arrival event.

The following code segment illustrates how to notify alert engine using Java APIs:

AlertEngine eng = AlertEngineLocator.getInstance().getAlertEngine();
Hashtable content = new Hashtable();

content.put(“ticker”,”ORCL”);
content.put(“price”,”16”);
content.put(“change”,”1”);

try{
eng.andleFeedContent(“StockFeed”,content);

}catch (PanamaException e){
// handle the exception

12.2 Data Feeders
The Data Feeder is the agent that downloads content. The data feeder runs
periodically, independently of service invocations. The feed framework is designed
to download content for a Oracle9iAS Wireless process. The downloaded content
can be used both for asynchronous alerts as well as cached data for synchronous
services.

Data Feeders

12-12 Oracle9iAS Wireless Developer’s Guide

The download schedule for the data feeder is maintained in the update policy for
that data feeder. The update policy determines the update interval, or how often the
data feeder runs. The update policy can the time of day, and which days of the week
to run the data feeder.

Each data feeder has a content provider, which is the source of the content. The
content provider maintains information about the URI of the content, the protocol
to use for downloading the content, and the format of the data to be downloaded.

When specifying a feed, the user sets up a metadata definition of the content to be
downloaded using feed parameters. These parameters are instances of the data
type, FeedMetaData. Feed parameters have an underlying SQL data type chosen
from a predefined set of types, defined in oracle.panama.feed.FeedUtil.

Feed Input Parameters are input parameters particular to a content provider. They
specify the data used when requesting data from the content provider. For example,
when downloading data from a content provider using HTTP, the input parameters
will be used either to construct a GET URL or as POST parameters in the HTTP
request.

Feed Output Parameters define the data type of the output from the content
provider.

The runtime behavior of the data feeder can be customized with the
FeedDownloadHook and the FeedDataFilterHook.

The FeedDownloadHook is used to customize the URI used when downloading
content. For example, in a HTTP download, the input parameters are, by default,
used to construct a GET URL, with the input parameters used as GET HTTP
parameters. In some cases, however, the base URL depends on the input
parameters. In such a case, the URL would be http://www.ahost.com/input_
param_1/input_param2/index.html. The behavior for constructing the URL can be
overridden with a custom FeedDownloadHook to achieve the desired result.

The FeedDataFilterHook is used to do additional processing on the
downloaded content. As each row of data is downloaded, the data filter hook gets
invoked on each row. This allows the feed implementer to perform special
processing, such as splitting a single output parameter into several output
parameters.

The pass-through data feeder is a datafeeder that accesses local content through
user-defined Java code. Consequently, a pass-through data feeder has neither a
content Provider nor an update policy. Similarly, the FeedDownloadHook and the
FeedDataFilterhook are not relevant for a pass-through data feeder. The feed
metadata still needs to be set up for a pass-through data feeder.

Data Feeders

Alert Engine and Data Feeds 12-13

12.2.1 Building a Data Feeder
You can create a data feeder using the Webtools Service designer, or
programatically.

Creating a data feeder can be broken into the following steps:

1. Create a named data feeder: all data feeders must have a name. The name may
be changed. The data feeder also has a object ID, which is permanent and
unique.

2. Set Content Provider parameters: set the protocol and format for the current
Content Provider. There are constants for the built-in protocols and formats.

3. Create Data Feeder Input parameters: A data feeder must have at least one
input parameter. For each input parameter you specify, you must give an
internal name and data type. Parameters may have options that depend on the
chosen format. If the format chosen is delimited text, you have the option of
specifying the column number in which the input parameter appears. This is
useful if the input parameter is also included in the output from the content
provider. The index for the columns starts at 1, as SQL. If 0 is specified, then the
input parameter is assumed to not be in the output.

4. Create Data Feeder Output parameters: A data feeder must have at least one
output parameter. The output parameter can be customized in the same manner
as an input parameter.

5. Finalize the Feed: Finally, you must call the DataFeeder method
createFeedDefinition. This method creates the feed metadata definition in
the repository, which is required to use the feed and the feed cache table. Once
the feed definition has been created, feed parameters cannot be deleted, only
renamed.

the Webtool’s Service Designer provides you with a wizard to guide you through
each step of the creation process. For more information, see the Oracle9iAS Wireless
Getting Started and System Guide.

Note: In Oracle9iAS Wireless Version 2, the feed framework is
designed perform request-reply (data pull feeds). Although the
architecture has been designed to accommodate push data feeds,
this functionality is not included in this version.

Data Feeders

12-14 Oracle9iAS Wireless Developer’s Guide

12.2.2 Creating a Passthrough DataFeeder
A pass-through datafeeder requires that you specify the classname of the
pass-through datafeeder to use. It does not require all the information that a regular
datafeeder needs: in particular, the protocol and format to use is irrelevant.

The following code creates a pass-through datafeeder:

ModelFactory mf = MetaLocator.getInstance().getModelFactory();
// Create a named datafeeder
PassthroughDataFeeder df = mf. createPassThroughDataFeeder ("stock_passthrough")
// Set the class name to use for implementation
df.setClassName("fully.qualified.package.and.Class");
// Create input parameters
FeedMetaData fmi = df.createMetaData("sym", "TEXT_30");
df.addInputParameter(fmi):
// Create output parameters
FeedMetaData fmo1 = df.createMetaData("price", "NUMBER");
df.addOutputParameter(fmo1);

FeedMetaData fmo2 = df.createMetaData("change", "NUMBER");
df.addOutputParameter(fmo2);

// Finalize the feed -- create feed definition
// in repository
df.createFeedDefinition();

12.2.3 Sample Applications

12.2.3.1 Sample Application: Downloading Stock Quotes in XML
Oracle9iAS Wireless includes the sample200.xml. This sample file contains a
datafeeder for retrieving stock quotes over HTTP. The stock quotes are in XML
format; the sample datafeeder includes the stylesheet for extracting the relevant
values from the XML input feed.

In order to create this data feeder programmatically, you would use the following
code:

ModelFactory mf = MetaLocator.getInstance().getModelFactory();
// Create a named datafeeder
DataFeeder df = mf.createDataFeeder("stock_screamingmedia");
// Set content provider parameters
ContentProviderInfo cpi = df.getContentProviderInfo();
cpi.setProtoolType(ContentProviderInfo.PROTOCOL_HTTP);
cpi.setPrimarySource("http://www.screamingmedia.com/");

Data Feeders

Alert Engine and Data Feeds 12-15

cpi.setFormatType(ContentProviderInfo.FORMAT_XML);
// Create input parameters
FeedMetaData fmi = df.createMetaData("sym", "TEXT_30");
df.addInputParameter(fmi):
// Set the parameters for this parameter and content provider
Map paramOptions = new Hashtable();
paramOptions.put(ContentProviderInfo.COLUMN_NUMBER, 1);
cpi.setParamArguments(fmi, paramOptions);

// Create output parameters
FeedMetaData fmo1 = df.createMetaData("price", "NUMBER");
df.addOutputParameter(fmo1);
paramOptions.put(ContentProviderInfo.COLUMN_NUMBER, 2);
cpi.setParamArguments(fmo1, paramOptions);

FeedMetaData fmo2 = df.createMetaData("change", "NUMBER");
df.addOutputParameter(fmo2);
paramOptions.put(ContentProviderInfo.COLUMN_NUMBER, 3);
cpi.setParamArguments(fmo2, paramOptions);
// Finalize the feed -- create feed definition in repository
// create cache table as needed
df.createFeedDefinition();

12.2.3.2 Sample Application: Downloading Stock Quotes in CSV Format
sample200.xml. also includes a datafeeder for retrieving stock quotes over HTTP
that downloads the stocks in the comma-separated variable (CSV) format.

The following code illustrates how to create this data feeder programmatically.

ModelFactory mf = MetaLocator.getInstance().getModelFactory();
// Create a named datafeeder
DataFeeder df = mf.createDataFeeder("stock_yahoo")
// Set content provider parameters
ContentProviderInfo cpi = df.getContentProviderInfo();
cpi.setProtocolType(ContentProviderInfo.PROTOCOL_HTTP);
cpi.setPrimarySource("http://quotes.yahoo.com/quote");
cpi.setFormatType(ContentProviderInfo.FORMAT_DELIMITED);
// Create input parameters
FeedMetaData fmi = df.createMetaData("sym", "TEXT_30");
df.addInputParameter(fmi):
// Set the parameters for this parameter and
// content provider
Map paramOptions = new Hashtable();

Data Feeders

12-16 Oracle9iAS Wireless Developer’s Guide

paramOptions.put(ContentProviderInfo.COLUMN_NUMBER, 1);
cpi.setParamArguments(fmi, paramOptions);

// Create output parameters
FeedMetaData fmo1 = df.createMetaData("price", "NUMBER");
df.addOutputParameter(fmo1);
paramOptions.put(ContentProviderInfo.COLUMN_NUMBER, 2);
cpi.setParamArguments(fmo1, paramOptions);

FeedMetaData fmo2 = df.createMetaData("change", "NUMBER");
df.addOutputParameter(fmo2);
paramOptions.put(ContentProviderInfo.COLUMN_NUMBER, 3);
cpi.setParamArguments(fmo2, paramOptions);

// Finalize the feed -- create feed definition
// in repository, create cache table as needed
df.createFeedDefinition();

12.2.3.3 Adding Input Parameter Values to the Feed
The data feeder only downloads content which has a specified input parameter.
Input parameter values can be set either implicitly or programmatically. Input
values can be added implicitly by adding an alert topic subscription. The following
code illustrates how to add an alert programmatically:

// Look up existing data feeder
DataFeeder df = ModelServices.getInstance().lookupDataFeeder("stock_yahoo");
// Want to add input params for ORCL
Map params = new Hashtable();
params.put("sym", "ORCL");
df.setData(params);

12.2.3.4 Retrieving Downloaded Values
One primary use of the data feeder is to download cached data for use with regular
synchronous services. Downloaded data can be accessed using the datafeeder
method getData(). This method takes an argument as a map, which is a
name-value mapping of the parameters which get values. The following code
example illustrates how you can retrieve current price and change given a stock
symbol:

ModelServices ms = MetaLocator.getInstance().getModelServices();
DataFeeder df = ms.lookupDataFeeder("stock_yahoo");
Map params = new Hashtable();

Data Feeders

Alert Engine and Data Feeds 12-17

params.put("sym", "ORCL");
Map values = df.getData(params);
Iterator i = values.keys();
while(i.hasMore()) {
String key = (String)i.next();
String val = (String)values.get(key);
System.out.println(key + " = " + val);
}
Running this code we while get the following output:

sym = ORCL
price = 18.75
change = 0.5

12.2.3.5 Starting the Data Feeder Process
System managers start a data feeder process. Oracle9iAS Wireless engine. Like other
processes, the system manager must set up a process of the datafeeder in order to
run it. For more information, see the Oracle9iAS Wireless Getting Started and System
Guide.

12.2.3.6 Feed Parameter External Names
The external name is the name used when retrieving content from a content
provider. This mechanism is intended for cases where the external representation of
the parameter name changes after the feed has been built, such as when one
changes to another content provider. The external name is optional; if it is not
specified, then the internal name is used.

You specify a caption to use for the input parameter. This is for documentation
purposes only.

There are cases where an input parameter has been defined, but is not relevant
when retrieving content. If the special constant __NONE__ is used for the external
parameter name that input parameter will be ignored when constructing the
download URL or POST request.

Note: The data feeder only downloads content where it has an
input parameter value specified.

Data Feeders

12-18 Oracle9iAS Wireless Developer’s Guide

12.2.3.7 Feed Scheduling
By default, feeds run continuously when started. Each feed has an associated
update policy, which can be used to fine-tune the running of the feed, such as the
time of day to start and stop the feed, the days which to run and the interval
between feed runs.

The following code sets the update policy of the example data feeder to run on
weekdays between 9 am and 5 pm.

ModelServices ms = MetaLocator.getInstance().getModelServices();
DataFeeder df = ms.lookupDataFeeder("stock_yahoo");
UpdatePolicy up = df.getUpdatePolicy();
up.setStartTime(9,0,0);
up.setEndTime(17,0,0);
up.setUpdateDays(UPDATE_WORKDAYS);
// Set update interval to 300 seconds, i.e. update every
// 5 minutes
up.setUpdateInterval(300);

12.2.3.8 XML Data Feeds
When accessing datafeeds with XML content, you must specify a XSLT stylesheet
that will transform the input XML to a common XML format.

The common XML format consists of a feed result (<omfeed_result>), which has
a number (zero or more) of datarows (<omfeed_datarow>), each one consists of
one or more named datacolumns (<omfeed_datacolumn>). The name of the data
column is matched with the parameters defined for the feed. Each output parameter
should have a corresponding data column. This code sample illustrates the output
of a stock feed:

<?xml version="1.0"?>
<market-data>
<quote-set>
<quote symbol="ORCL" name="ORACLE CORPORATION" type="stock"
exchange-code="NASDAQ" last="32.000000" close="28.562500" close-flag="closed"
change="3.4375" percent-change="12.04%" volume="56362800" open="30.0"
high="32.4375" low="29.9375" bid="32.0" ask="32.0625" bid-size="36"
ask-size="90" high-52-week="46.468998" low-52-week="15.438"
shares-outstanding="5629833" pe-ratio="29.299999" volatlity="16.150000"
yield="0.000000" earnings-per-share="1.092000" status="ok"/>
</quote-set>
</market-data>
The stylesheet for transforming this result would then look like this:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

Data Feeders

Alert Engine and Data Feeds 12-19

<xsl:template match="quote-set">
<omfeed_result>
<xsl:for-each select="quote">

<omfeed_datarow>
<omfeed_datacolumn>
<xsl:attribute name="name">sym</xsl:attribute>
<xsl:value-of select="@symbol"/>

</omfeed_datacolumn>
<omfeed_datacolumn>
<xsl:attribute name="name">price</xsl:attribute>
<xsl:value-of select="@last"/>

</omfeed_datacolumn>
<omfeed_datacolumn>
<xsl:attribute name="name">change</xsl:attribute>
<xsl:value-of select="@change"/>

</omfeed_datacolumn>
</omfeed_datarow>

</xsl:for-each>
</omfeed_result>

</xsl:template>

Data Feeders

12-20 Oracle9iAS Wireless Developer’s Guide

Push Service and SMS 13-1

13
Push Service and SMS

This document describes Push and SMS Services architecture, and explains how to
use these Services to create and deploy mobile applications. Each section of this
document presents a different topic. These sections include:

■ Section 13.1, "Push Service and SMS Overview"

■ Section 13.2, "Push Services API"

■ Section 13.3, "Oracle9iAS Wireless Messaging System"

■ Section 13.4, "Oracle9iAS Wireless Pre-built Drivers"

Figure 13–1 Push Service and SMS

Push Service and SMS Overview

13-2 Oracle9iAS Wireless Developer’s Guide

13.1 Push Service and SMS Overview
Push services are a key component that enhance your mobile application features
by supporting alerts to your mobile users. Oracle9iAS Wireless Push services
provide a highly scalable mechanism to deliver messages to all mobile devices. The
messages are delivered to the mobile devices in a protocol that is native to the
device, for example via SMS to a mobile phone, as an email to a 2-way pager, as an
audio message to regular phone or as a fax to a fax machine.

Push Services in Oracle9iAS Wireless are implemented as a Web Service (WSDL)
and use SOAP over HTTP. The SOAP service allows applications to invoke remote
object methods over HTTP protocol. This enables applications to invoke push
service from anywhere on the Internet and using any programming model.
Oracle9iAS Wireless Push services allow applications to specify both the message
and the recipient(s) of the message. The application communicates to the Push
service in Oracle9iAS Wireless using SOAP and HTTP. Oracle9iAS Wireless receives
the message and delivers the messages to mobile devices using appropriate
protocols such as SMS, Email, Voice, and others.

Figure 13–2 Push Services

Push Services in Oracle9iAS Wireless is a scalable platform that can handle large
volumes of messages to many devices. The Push Service is based on extensible

Push Service and SMS Overview

Push Service and SMS 13-3

architecture and design that can be extended to support a variety of devices and
push protocols. Push SOAP messages are handled by a Messaging subsystem on the
Oracle9iAS Wireless server. The Messaging subsystem supports a driver-based
architecture. The drivers are components in the wireless messaging system that
handle all device-specific or communication protocol specific routines. The
Messaging subsystem, based on the device address and transport type (SMS, Voice,
Email), dispatches the message to the appropriate transport/protocol driver
implementation. The driver interface delivers the message to the device in the
native device protocol. The Messaging subsystem can support multiple drivers in a
single instance and can support multiple drivers.

Message drivers in Oracle9iAS Wireless are plugable modules that implement
device-specific or communication protocol-specific handling routines. The
Oracle9iAS Wireless server ships with pre-built drivers that support communication
protocols such as SMS (SMPP and UCP), Voice, Email and Fax.

Figure 13–3 Message Drivers

Oracle9iAS Wireless server ships with a special driver implementation that allows
your wireless instance (or install) to act as a client to another Oracle9iAS Wireless

Push Services API

13-4 Oracle9iAS Wireless Developer’s Guide

installation or any service that respects the Web Service Interface defined by
Oracle9iAS Wireless. This special driver uses the SOAP interface (as the PUSH
APIs) to send the messages. In the product by default, this driver is configured to
act as Push Client to an Oracle9iAS Wireless instance hosted, on the Internet, by
Oracle. Instance administrators can change this default setting to point to any server
that respects the PUSH WSDL interface defined by Oracle9iAS Wireless.

13.2 Push Services API
Oracle9iAS Wireless Push service is deployed as a web (WSDL) service using SOAP
with HTTP as the transport layer. WSDL (Web Services Definition language) is a
standard XML interface that defines a Web Service application. With clearly defined
WSDL, developers can build applications in any programming language such as
Java and VB, and communicates with the Oracle9iAS Wireless messaging interface
over the Internet. Developer can use any WSDL toolkit to quickly implement a Push
application and send messages to mobile devices using any Oracle9iAS Wireless
instance on the Internet.

Oracle9iAS Wireless supports a simple Push API, in Java, that abstracts any
protocol-specific (SOAP) implementation from the application Java code. The Java
Push API is an interface in the Java programming language. It is the preferred API
for application developers who need a clear and simple interface to deliver
messages. The Java Push API uses SOAP over HTTP to communicate to the
Oracle9iAS Wireless server instance.

The Push API supports a uniform interface for the delivery of messages to any kind
of devices such as SMS, Voice, Email, and Fax. The API allows applications to
specify multiple recipients for a single message using only one delivery request.
Further, the message destination addresses can have devices using different
communications channels, for example, a single message delivery request
application can send messages to Email as well as fax machines. Applications can
make one delivery request and send the messages to a list of users with SMS
devices, Email clients and Voice devices

Oracle9iAS Wireless supports different types of contents for delivery. A message
can simply consist of only text characters, or can be as complex as a multipart

Note: If you run your application, (hence the Java Push API)
within the Oracle9iAS Wireless server Java VM, the Java Push API
will not use SOAP, and instead will use in process communication
to handle message delivery.

Push Services API

Push Service and SMS 13-5

message. Message types are identified based on the MIME, hence delivering
documents such as Microsoft Word or Adobe PDF is possible if the target device
supports the message MIME type.

13.2.1 Building a Push Application
Oracle9iAS Wireless can support Push content of different MIME Types such as
Microsoft Word documents or Ringtones. A message can consist of text only or can
be a complex multipart message. Oracle9iAS Wireless identifies the message types
based on the MIME, hence delivering document such as MS-Word or PDF is
possible if the target device supports the message MIME type. Oracle9iAS Wireless
provides Java Push API that support a text only message (PushLite) and an
advanced Push API that supports messages of any MIME type (Push).

Following are the two interfaces to send a Push Message:

■ Push Lite

■ Push

13.2.1.1 PushLite
oracle.panama.messaging.push.PushLite

PushLite provides text messaging abilities. It is lightweight and very easy to use.

public String[] send(String[] senders, String[] recipients, String message)

Sends out a text message (without subject) to multiple recipients of multiple
transport types. Encoding of the message is "text/plain". This method provides the
easiest way to send out text messages. Other overloaded send() methods can be
used to set subject, reply to, content type encoding (MIME type) and associated key
parameters.

senders - an array of senders' addresses. A sender's address has a transport type
and address, separated by a colon (:). One sender per transport type. Latest sender
of the same transport type will override earlier senders of the same transport type
in the array.

Example 1: "Email:myemail@company.com"
Example 2: "SMS:16505551234"

Valid transport types are defined in

oracle.panama.messaging.common.TransportType

Push Services API

13-6 Oracle9iAS Wireless Developer’s Guide

recipients - recipients' addresses (Oracle9iAS Wireless email address or phone
number)

Format of recipient addresses:

<transport>:<recipient address 1>[,recipient address 2 ...]
Example: SMS:1-650-5551234,1-408-3456789

Recipients of the same transport may be separated into multiple lines, But, these
lines may not be separated by recipients of other transport type lines. An exception
will be thrown if it has been detected.

Example 1 -- OK:
"Email:john@company.com,mary@company.com"
"Email:bob@company.com"
"SMS:1-123-45678"

Example 2 -- ERROR: second email recipients line (bob@company.com) is cut
off by SMS recipients
"Email:john@company.com,mary@company.com"
"SMS:1-123-45678"
"Email:bob@company.com"

message - body of message.

public String[] send(String[] senders, String[] replyTOs, String[]
recipients, String[] associatedKeys,

String subject, String message, String encoding)

sends out a text message with subject, reply to addresses, associated keys and
content type encoding.

senders - senders’ addresses (same as described above).

replyTOs - an array of alternate reply to addresses or phone numbers (optional).
Use null if no reply to address. The format is the same as senders

recipients’' addresses (Same as above)

associatedKeys - an array of text strings that may be used by client applications to
do message tracking. One key per recipient. The length of each key could be up to
64 bytes. The order of the keys are the same as the order of recipients. This field is
optional, if no associated key is used, use null.

subject - subject of message (optional).

message - body of message.

Push Services API

Push Service and SMS 13-7

encoding - MIME type with optional charset encoding of message. For example:
"text/plain", "text/plain; charset=us-ascii" and "text/html"

public String getStatus(String messageID)

Get current status of one message ID.

Returns: a text status string

public String[] getStatus(String[] messageIDs)

Get current status of a set of message IDs.

Returns: an array of text status strings.

13.2.1.2 Push
oracle.panama.messaging.push.Push
public WorkOrder[] send(Packet pkt)

Send out a message packet.

pkt - The message packet to be delivered. Packet class will be discussed shortly.

Returns: a set of WorkOrders will be returned after the Push server accepts the
request. One WorkOrder for each instance of recipient's address.

public Status getStatus(WorkOrder workOrder)

Get current status of a work order. One work order has one address and the
message ID of that address.

public Status[] getStatus(WorkOrder[] workOrders)

Get current status of a set of work orders.

oracle.panama.messaging.push.Packet

Packet class represents a generic message in the real world. (For example: email) It
may have a subject, one body or a set of message bodies (multipart). The same
message may be delivered to multiple recipients of multiple transport types
(delivery types).

For example: the same message can be delivered to 2 email recipients, 3 SMS
recipients and 4 fax machines in the same packet.

Push Services API

13-8 Oracle9iAS Wireless Developer’s Guide

Every transport type may have a sender, an alternate reply to address and a group
of recipients. The packet could have a set of optional delivery instructions, such as
priority, registered, etc.

To accomplish this, first construct an empty Packet instance. Then set message,
message info, sender, reply to and recipients of the packet. Please see sample code
below for more details.

The Push API provides methods to set the properties of a message and dispatch to
the Oracle9iAS Wireless instance. For a detailed description of the API interfaces,
refer to the Oracle9iAS Wireless Push Javadoc (oracle.panama.messaging.push). To
send a push message you will need to provide the following:

■ Oracle9iAS Wireless server where the Push Web Service is running. Include the
username/password and the HTTP proxy required to access the remote
Oracle9iAS Wireless Web Service (unless the application will be running in an
Oracle9iAS Wireless VM).

■ Actual message to be sent and the content (MIME) type of the message.

■ Address of the target devices such as Email address, Phone number etc.

■ How the message must be delivered, for example, as audio message over voice,
SMS message over voice or as email message.

■ Address of the sender of this message. The API allows you to set the sender
address on a per transport type basis, such as one sender address for SMS, one
for Email and one for voice.

To compile and run the Java Push API you will need JDK 1.3 for your platform and
Oracle9iAS Wireless Push Java libraries.

13.2.1.3 Example: Send a message to multiple recipients
Use PushLite to send out message to two email recipients and 1 SMS phone.

// 2 email and 1 SMS recipients
String recipients[] = new String[2];
recipients[0] = new String(TransportType.EMAIL + ":"
+"john@company.com,mary@company.com");
recipients[1] = new String(TransportType.SMS + ":" +"1-333-5551234");
// one email sender and one SMS sender

String senders[] = new String[2];
senders[0] = TransportType.EMAIL + ":" + "sender@company.com";
senders[1] = TransportType.SMS + ":" + "1-222-1234567";
String messageString = "Hello World!"; // message body
// set the gateway URL to null to use local Push Server.

Push Services API

Push Service and SMS 13-9

// Local Push server is running in the same JVM of Push client. No SOAP is used.
String gatewayURL = "http://messenger.oracle.com/push/webservices";
// create a PushLite client instance
PushLite pushLite = null;
try{
// In fact, Oracle's hosted Push Server does not require an account
// if you have not signed up, you can use "" as both username and password
pushLite = new PushLite(gatewayURL,"user name","password");
}
catch(PushException e)
{ e.printStackTrace(); }

// Set proxy if Push client machine is inside firewall and Push Web Services is
outside firewall.
// Let’s assume the proxy server is: www-proxy.company.com:80
pushLite.setProxy("www-proxy.company.com", 80);

// get supported transport types on Push Web Services
String supportedTransportTypes[] = pushLite.getSupportedTransports();

// send out a text message
String wo[] = null;
try
{
wo = pushLite.send(senders, recipients, messageString);

}
catch(PushException e)
{
System.out.println("**** PushException caught ");
e.printStackTrace();

}
if(wo != null)
{
for(int i=0;i< wo.length;i++)
System.out.println(wo[i]);

}
// query delivery statuses
String status [] = null;
try{
pushLite.getStatus(wo);

} catch(PushException e) { e.printStackTrace(); }
if(status != null)
{
for(int i=0;i< status.length;i++)
System.out.println("[" + status + "]");

Push Services API

13-10 Oracle9iAS Wireless Developer’s Guide

}

13.2.1.4 Example: Sending an Oracle9iAS Wireless XML Message using
PushLite
// In order to send out a Oracle9iAS Wireless XML message, we need to specify
oracle.panama.messaging.ContentTypes.MOBILE_XML as encoding type when calling
send()

// String subject = "message subject";

// send out an Oracle9iAS Wireless XML text message
String wo[] = null;
try
{

// no reply to addresses, no associated keys in this example
wo = pushLite.send(senders, null, recipients, null, subject,

xmlMessageString, oracle.panama.messaging.ContentTypes.MOBILE_XML);

}
catch(PushException e) { ...}

13.2.1.5 Example: OTA: Sending a Ringtone to two cell phones
import oracle.panama.messaging.common.*;
import oracle.panama.messaging.push.*;

// SMS recipients
AddressData smsRecipients[] = new AddressData[2];
smsRecipients[0] = new PhoneAddressData("1-333-5551234");
smsRecipients[1] = new PhoneAddressData("1-444-5551234");
// Packet object
Packet pkt = new Packet();

AddressData smsSender = new PhoneAddressData("1-222-1234567");

pkt.setFrom(TransportType.SMS, smsSender);

pkt.addRecipients(TransportType.SMS, smsRecipients);

Message msg = new Message();

// Ring tone message.
msg.setContentType(RingTone.MIME);
msg.setSubject("ring tone");

Push Services API

Push Service and SMS 13-11

RingTone ringtone = new RingTone();
ringtone.setRingToneEncoding(RingTone.RINGTONE_ENC_OTA_ASCII);
ringtone.setPhoneModel("Nokia 6210");

ringtone.setRingTone("024A3A51D195CDD008001B205505906105605585505485408208499000
");

msg.setContent(ringtone);

pkt.setMessage(msg);

String gatewayURL = "http://messenger.oracle.com/push/webservices";

// create a push client instance
Push push = null;
try{
push = new Push(gatewayURL,"user name","password");

}
catch(PushException e) { e.printStackTrace();}

WorkOrder wo[] = null;
try
{

// send message packet to the server
wo = push.send(pkt);

}
catch(PushException e)
{

System.out.println("**** PushException caught ");
e.printStackTrace();

}

if(wo != null)
{

for(int i=0;i< wo.length;i++)
System.out.println(wo[i]);

// get sending statuses
Status status[] = null;
try {

status = push.getStatus(wo);
} catch(PushException e) { e.printStackTrace(); }

if(status != null)
{
for(int i=0;i< status.length;i++)

Oracle9iAS Wireless Messaging System

13-12 Oracle9iAS Wireless Developer’s Guide

System.out.println(status[i]);
}

}

13.2.1.6 Using Push API - WSDL
The Push Service is deployed as a Web Service on the Oracle9iAS Wireless server.
The Web service uses SOAP over HTTP. To enable development of push
applications on non Java environments, Oracle9iAS Wireless provides a WSDL
(Web Services Definition Language) file. The WSDL can be used with any Web
services development toolkit that supports your application programming
environment and Model. We also ship a standalone package to facilitate
development using the Push server; this package is named push_client.zip and is
available on the product CD. The WSDL file is provided in the wsdl directory of
push_client.zip. Before your development, please verify the Push Web Services
location at the end of the wsdl file:

<service name= "PushServer">
<port ...>
<soap:address location= "push web services URL" />

</port>
</service>

13.3 Oracle9iAS Wireless Messaging System
Oracle9iAS Wireless contains a Messaging subsystem that handles sending and
receiving messages to and from devices, and all message routing functions. The
driver, a component of this subsystem, implement the actual communication
protocol stack while the Messaging system supports Transport API that provides
the abstraction for applications to communicate with the Messaging subsystem. The
Transport API (just as in the Push API) allows applications to send messages to
mobile devices. In addition to sending messages the Transport API allows
applications to receive messages from the client devices and also allows the
applications to change message routing at runtime.

The Transport API application must be running on the same Java VM as the
Oracle9iAS Wireless instance in order to use the Transport API (unlike the Push API
which does not have this requirement). Oracle9iAS Wireless internal applications,
such as the Async server and alert Engine, use the Transport API to deliver
messages to the mobile devices.

Oracle9iAS Wireless Messaging System

Push Service and SMS 13-13

Figure 13–4, "Messaging System Architecture" shows the Messaging subsystem
architecture. To receive messages from the device, applications must implement a
listener interface and register the listener instance with Messaging subsystem.

Figure 13–4 Messaging System Architecture

Transport APIs are independent of the underlying network protocols required to
communicate with mobile devices. The underlying network protocols are
implemented by the driver. The drivers implement device-specific and wireless
communication specific messaging stacks. To deliver messages, the Messaging
system uses the appropriate driver to deliver messages to the device. The Transport
API supports operations that allow applications to send and receive messages from
devices.

The Transport API provides Push applications with the necessary abstraction from
the underlying wireless protocols and allows the Push application to be

Oracle9iAS Wireless Messaging System

13-14 Oracle9iAS Wireless Developer’s Guide

device/network agnostic. The Transport API allows applications, if required, to
control message routing with the available drivers.

The Messaging system supports multiple drivers for different wireless protocols
and also allows multiple drivers that support a given network protocol. The
Messaging system handles all message routing functions, techniques to boost
performance, fault tolerance, and supports a highly scalable environment. The API
allows developers to customize various functions of the transport system.

The drivers are plugable components in the Messaging system; they handle all
network/protocol specific requirements. The Messaging system defines a Driver
Interface that provides the necessary decoupling to achieve the required abstraction.
The Driver API provides an extensible interface for network and protocol-specific
drivers to be plugged into the Oracle9iAS Wireless Messaging system. A driver
implementation wraps required network protocol routines for example, an Email
driver can implement an IMAP/SMTP interface or use a MAPI interface. Drivers
must implement the interface defined by the Messaging system.

13.3.1 Transport Runtime Processes

13.3.1.1 Push SOAP Web Service
The Push Web Service is a Servlet running as part of the VM for Oracle9iAS
Wireless runtime, no special or independent process is started for it.

13.3.1.2 Messaging Servers
Messaging server processes are runtime containers for protocol drivers and provide
the necessary environment for the drivers. The messaging server runs the driver
instances and manages the life cycle of the driver instances. Oracle9iAS Wireless can
run multiple messaging servers on different machines.

13.3.1.3 Driver and Driver Instance
Driver is the software that implements Oracle9iAS Wireless Transport Driver
interface. A Driver instance is a runtime instantiation of a Driver that runs in a
process.

Each driver identifies the type of protocol it handles such as Email or Fax. A single
driver can handle more than one protocol. The protocol a driver handles, the
implementation class and the drivers configuration parameter are specified using
the Oracle9iAS Wireless Webtool.

Oracle9iAS Wireless Messaging System

Push Service and SMS 13-15

The drivers are configured as a site level property for an Oracle9iAS Wireless
installation and can be registered with one or more messaging servers. Such a
configuration allows administrators to load balance and manage hardware
resources based on the usage of individual drivers.

13.3.2 Configuration

13.3.2.1 Messaging Server
Using the Oracle9iAS Wireless Webtool a messaging server can be configured in the
same way one adds, edits or deletes a server process. Also the Webtool enables you
to configure performance parameters and the configuration of driver instances
associated with the messaging server. See Oracle9iAS Wireless Getting Started and
System Guide for more details.

13.3.2.2 Driver
The Oracle9iAS Wireless Webtool allows you to add, edit or delete a driver. Drivers
are site-level properties in the Oracle9iAS Wireless installation. The configuration
page allows you to provide details of a driver name, the implementation class and
other driver-specific properties.

13.3.2.3 Driver Instances
Once a driver is made available on the site level, instances of the driver can be
created and associated with individual messaging servers. You can have multiple
instances of a driver running on different messaging servers, and these different
instances can have distinct driver parameter settings. For example you could have
one Email driver and create instances of the driver that point to different SMTP
servers. The same is true for other protocols, such as multiple instances of the SMPP
driver with different values for the various Telcos to which your server connects.

13.3.3 Transport API
This section details the Transport API, explaining the major constructs and
functionality available to customize the Transport System.

Transport API is the client side messaging interface. Transport API is a rich set of
APIs which can be used for both sending and receiving. In terms of sending,
transport API provides some extra valued features, such as messaging routing and
status tracking.

Oracle9iAS Wireless Messaging System

13-16 Oracle9iAS Wireless Developer’s Guide

To receive messages, the application must register listening end points and a
message callback listener to the transport system. An endpoint essentially is in the
form of an address such as a phone number. It identifies to the transport system
how message should be dispatched. When a message is received for a targeted
address, it is dispatched to the listener associated with an endpoint with a matching
address.

When a message delivery request is submitted, the transport system performs
analysis of the recipients and routes the message to the appropriate protocol drivers
for delivery.

13.3.3.1 Destination Analysis
A single message can be delivered to multiple recipients of different communication
protocols. For example, one can send a meeting reminder to a few people using
SMS, and some other people to their email addresses. So before routing messages to
drivers, the transport must analyze and group recipients by their delivery category.
Typically, the transport system starts its internal processing by analyzing all
destinations and groups them accordingly.

13.3.3.2 Message Routing
To send a message, the transport system has to find a proper driver to do so. The
process of finding a proper driver is called message routing. The transport system at
a particular time may have many messaging servers and protocol drivers
configured. Different driver instances may handle different categories of messages.
For example, a driver may be able to send SMS messages only. Another one may be
able to send email and fax messages only. Therefore, the transport system has to use
a driver with SMS capability to send SMS messages, a driver with email capability
to send email messages. Sometimes, there may be more than one driver that can
handle the same category of messages. For example, there could be more than two
SMS drivers. One talks to ATT's SMSC, the other talks to Cingular's SMSC. The
transport system must use ATT's SMS driver to send SMS messages to ATT's
devices, and use Cingular's SMS driver to send SMS messages to Cingular's devices.
All these decisions are made by the transport based on two sets of information. The
first set is the sending criteria specified by the application, such as delivery type,
speed, cost, encoding and so on. Of these, the delivery type is required and can be
specified in the class destination. The other set of information is provided by the set
of available drivers. The properties of the drivers are configured by the
administrator, such as driver speed, driver cost, encoding and delivery category.
As mentioned earlier, routing finds the best matching driver. Some properties must
match, for example, the delivery category; some of them just find the closest match,
for example, cost and speed.

Oracle9iAS Wireless Messaging System

Push Service and SMS 13-17

The transport uses the following info to do the routing:

■ delivery category

■ protocol

■ carrier

■ speed

■ cost

Attribute encoding is not used in routing this release.

The transport will route a message to a driver with best match:

1. The delivery category, such as SMS or EMAIL.

2. The protocol, such as UCP or SMPP.

3. The carrier, such as Cingular or Telia.

4. If (speed_requested >= 0 and cost_requested >= 0), the minimum (driver_speed
-speed_requested)**2 + (driver_cost - cost_requested)**2

or

if cost_requested < 0 the minimum abs(driver_speed - speed_requested)

or

if speed_requested < 0, the minimum abs(driver_cost - cost_requested)

If more than one driver meet the above criteria, the transport chooses randomly
one of them.

13.3.3.3 Providing hints to facilitate transport internal processing
Applications can provide hints that help speed up routing and destination analysis.
For example, if you specify "Email" as the delivery category of all recipients, the
transport will not have to look into each of the recipients to determine what they
are.

In principal, the required parameter to deliver a message (the Messenger.send()
methods) is Destination and Message. All others (SenderInfo, MessageInfo and
DeviceInfo) are optional. When they are specified, they will be interpreted as hints
that describe properties common to all recipients. For example, if a DeviceInfo is
specified and the getDeliveryType() of this DeviceInfo instance returns
DeliveryType.EMAIL.getName() then the transport will take it as a hint that all
recipients are email addresses and no destination analysis will be performed.

Oracle9iAS Wireless Messaging System

13-18 Oracle9iAS Wireless Developer’s Guide

13.3.3.4 Key interfaces/classes
The key interface is oracle.panama.messaging.transport.Messenger.

An instance of this interface will be returned via get method of
oracle.panama.messaging.transport.MessengerController which in turn can be
obtained through the TransportLocator class. This gives you access into the rest of
the package to build your messaging applications.

Please refer to the javadoc for a complete reference of the APIs.

13.3.3.5 Hooks
Applications can install hooks that will be invoked during message sending and
receiving depending on the type of the hook. All hooks are optional. Typically the
hooks are passed all of the information the application specifies and can do what
ever is appropriate. Hooks are useful in providing routing information, and
perform other custom logic in some cases.

There are two main categories of hooks:

■ Named hooks—only at most one hook for each kind and can be added only
through webtool configuration.

■ General hook—There are four kinds of general hook. They are: pre-send,
post-send, pre-receive, post-receive. There can be none or multiple hooks for
each kind and they can be added and removed either through the webtool or
programmatically through methods available on the Messenger interface.

No default hook is provided for the product.

13.3.3.5.1 Named Hooks

DriverFinder—(interface oracle.panama.messaging.transport.DriverFinder). The
expected semantics of this hook is to fill in the driver name for a delivery request.

CarrierFinder—(interface oracle.panama.messaging.transport.CarrierFinder). This
hook is a named hook that can be configured through webtool. The expected
semantics of this hook is to locate a carrier for a given device address. The carrier
information is then used by the DriverFinder or the transport system to perform
routing. It is generally called once per message. There can be only one hook of this
kind.

GSMSmartMsgEncoder—(interface
oracle.panama.messaging.transport.GSMSmartMsgEncoder). This hook is used to
encode GSM smart messages.

Oracle9iAS Wireless Messaging System

Push Service and SMS 13-19

FailOverHook—(interface oracle.panama.messaging.transport.FailOverHook). This
hook is for future use.

13.3.3.5.2 General Hooks

PreSendingHook—(interface oracle.panama.messaging.transport.GeneralHook).
This hook is called before sending any message.

PostSendingHook—(interface oracle.panama.messaging.transport.GeneralHook).
This hook is called after sending any message.

PreReceivingHook—(interface oracle.panama.messaging.transport.GeneralHook).
This hook is called before passing any received message to the listener.

PostReceivingHook—(interface oracle.panama.messaging.transport.GeneralHook).
This hook is called after passing any received message to the listener.

13.3.4 OTA
Oracle Corporation has provided convenience classes to support Ringtone,
Graphics and WAP Provisioning. To support other types of OTA such as calendar,
see the documentation on the driver that provides such capability.

13.3.5 Sample programs
A sample program for sending.

/**
* A simple transport client.
*
* @author jxiang
*/

public class SimpleClient {

public static void main(String[] args) throws Exception {

TransportLocator locator = TransportLocator.getInstance();
MessagingController controller = locator.getMessagingController();
Messenger messenger = controller.getMessenger();
messenger.start();
Destination dest = new Destination();
dest.setAddress("1234");
DeviceInfo di = new DeviceInfo();
di.setDeliveryType(DeliveryType.SMS.getName());
dest.setDeviceInfo(di);

Oracle9iAS Wireless Messaging System

13-20 Oracle9iAS Wireless Developer’s Guide

dest.SetDriver("SMSDriver"); // we know we are going to use SMSDriver. You
can also leave it blank.

MessageInfo mi = new MessageInfo();
dest.setMessageInfo(mi);
SenderInfo si = new SenderInfo();
Message msg = new Message();
msg.setContentType("text/plain");
msg.setSubject("subject");
msg.setContent("body");
String id = messenger.send(dest, si, msg, null);
// try to get the sending status based on the message id.
// general, you should query the status after some time,
// allowing the transport to process.
Status status = messenger.getStatus(id);
messenger.stop();

}
}
A sample program for receiving.

/**
* Copyright (c) 2001 Oracle Corporation all rights reserved
*/

package oracle.panama.messaging.transport.test;

import java.io.BufferedReader;
import java.io.InputStreamReader;

import oracle.panama.messaging.common.*;
import oracle.panama.messaging.transport.*;
import oracle.panama.model.DeliveryType;

/**
* A simple transport client.
*
* @author jxiang
*/

public class SimpleClient {

public static void main(String[] args) throws Exception {

TransportLocator locator = TransportLocator.getInstance();
MessagingController controller = locator.getMessagingController();
Messenger messenger = controller.getMessenger();
messenger.start();

Oracle9iAS Wireless Messaging System

Push Service and SMS 13-21

EndPoint point = new EndPoint("a@b.c", DeliveryType.EMAIL.getName());
messenger.addEndPoint(point);
point = new EndPoint("1-650-5061234", DeliveryType.SMS.getName());
messenger.addEndPoint(point);
messenger.setMessageListener(new ReceivingListener());
messenger.start();
System.out.print("Enter quit to quit: ");
BufferedReader br = new BufferedReader(
new InputStreamReader(System.in));

while (true) {
String buf = br.readLine();
if (buf != null && buf.equals("quit")); {
messenger.stop();
break;

}
}
System.exit(0);

}
}

class ReceivingListener implements MessageListener {

public int onMessage(String address, DeviceInfo info,
String destination, Message message) {
// process received message.
String contentType = message.getContentType();
if (contnetType.equals(Ringtone.MIME)) {

// received a ring tone.
// printed the attributes.
Ringtone ringtone = (Ringtone)message.getContent();
String enc = (String)ringtone.get(Ringtone.RINGTONE_ENCODING);
//

}
return Listener.SUCCEED;

}

}

13.3.6 Driver Interface APIs
The driver interfaces are intended for the implementation of drivers for particular
protocols. As explained above, drivers can be plugged into the transport system
rather easily, extending network protocol support to the base product. A driver is

Oracle9iAS Wireless Messaging System

13-22 Oracle9iAS Wireless Developer’s Guide

expected to be a very thin layer and handles only the protocol specific details. It
should not deal with much of life cycle, load balancing or scalability issues. The
transport system handles these issues.

The transport system initializes and destroys driver instances by respectively
calling the init() and destroy() methods as specified in the Interface Driver. The
transport system also handles load balancing and concurrence. A driver should just
focus on interpreting the semantics of a particular protocol, leaving all others to the
transport system.

Figure 13–5 Driver Lifecycle

A driver can be capable of only “sending”, or “receiving”, or both. To implement
the “sending” semantics, a driver would just implement the send() methods as
specified in the interface Driver. Receiving is a bit more complex in that the action to
receive is driven by the transport. To implement receiving, a driver fills in the logic
to receive in the receive() method specified by the Driver interface. The transport
will continuously invoke the receive() method through out the life cycle of the
driver instance.

However, the drivers should make every effort to be instance thread safe, or the
usage must be clearly conveyed to system administrators so that proper
configurations can be set to not thread the driver instance.

Oracle9iAS Wireless Messaging System

Push Service and SMS 13-23

This following highlights the key classes and interfaces required for developing the
SMS driver interface to work with the Oracle9iAS Wireless Platform.

13.3.6.1 Class oracle.panama.messaging.transport.TransportLocator
The class TransportLocator defines interfaces that provides initial access to both the
messaging interface and the driver interface. Two key methods defined for this class
are:

■ Method getDriverController() returns an instance for use of the driver interface;
and,

■ Method getMessagingController() returns a Controller instance for use of the
messaging interface.

13.3.6.2 Interface oracle.panama.messaging.transport.Driver
This is the main interface for you to develop drivers for a particular protocol. You
develop a driver by implementing the Driver interface. Your component is a
qualified Oracle9iAS Wireless driver if it implements this interface.

13.3.6.2.1 The init() and destroy() methods These are the methods controlling the life
cycle of the driver instance. The initialization properties passed to the init method
are those specified through the Webtool configuration framework.

The init() method should return an initialization status, which can be one of:

Driver.FAILED, Driver.SEND, Driver.RECEIVE
Driver.SEND_RECEIVE.

Ensure the status returned is consistent with those configured through the webtool
UI. If different, then the status returned here takes precedence.

13.3.6.2.2 The send() method Drivers implement this method to perform whatever is
appropriate for their particular protocols to send out messages. The content to
delivery is stored in the Message object passed onto the send() method, while the
address parameter specifies one or more recipients to deliver the message to.

Further, the driver is expected to return a unique id for each message, or IDs one for
each of the recipients. These ids will be used by the transport to query status of the
delivery when necessary.

Note: All classes mentioned below assumes the package of
oracle.panama.messaging.transport unless otherwise specified.

Oracle9iAS Wireless Messaging System

13-24 Oracle9iAS Wireless Developer’s Guide

The driver must return a null message ID to make the transport retry. Exceptions
thrown out of the send method are ignored, except for exceptions of type
DriverException. If the send () method throws an exception of the type
DriverException, the transport will not retry. If the code of the exception is marked
fatal, the sending capability of this driver instance is revoked. If the exception is not
marked fatal, the driver will still be used to send other messages.

13.3.6.2.3 The receive() method Drivers implement this method to perform whatever
is appropriate for their particular protocols to receive messages. As mentioned
above, the transport would drive the operation. Normally, the driver is expected to
return from this method once a message is received. This way controlled is yielded
back to the transport regularly so that the transport and decide the best step to take
next.

The receive() method is called continuously by the transport. Hence it is preferable
the receive() method blocks if it does not receive any messages. However it should
not block indefinitely otherwise it will be considered a runaway operation and the
thread that calls the receive will be terminated. The time elapse for runaway threads
can be configured by setting "Maximum Execution Time per Request" under
runtime configuration (default is 120 second). When a message is received, it should
call the onMessage method of the Message Listener to submit the message (or, the
onStatus callback on Status Listener if the message was a status report). The method
can throw an exception of type DriverException and mark it fatal to ask the
transport to stop calling the receive () method. The reason for this design is to
simplify the logic and thread control of the driver.

13.3.6.2.4 The getStatus() method The transport calls this method in an attempt to
retrieve delivery status for a particular message.

13.3.6.2.5 The queryTracking() and queryNotifying() methods With some protocols, an
active poll to the external service must be performed to check status of messages
previously sent. These methods are called by the Transport to determine whether a
getStatus() must be issued to retrieve status, or the driver would pass status back to
Transport without such call (in this case, typically the driver calls onStatus() inside
receive()).

13.3.6.3 Interface oracle.panama.messaging.transport.DriverManager
This provides entry point into other driver related utilities and interfaces such as
Message Listener. You can get an instance of the DriverController by calling the
getDriverController() method of the Locator.

Oracle9iAS Wireless Messaging System

Push Service and SMS 13-25

Figure 13–6 Flow of Message and Status

13.3.6.3.1 The getMessageListener() and getStatusListener() methods These methods
return the Transport callback instances for the receiving messages or status. You
typically call the onMessage() or onStatus() methods within your implementation of
the receive() method in the Driver interface to pass on messages and status to the
Transport system respectively.

13.3.6.4 Interface oracle.panama.messaging.transport.GSMSmartMSGEncoder
If your implementation needs to handle UCP style smart message delivery, such as
OTA WAP provisioning, ring-tone, graphics, you may find this interface useful.

We ship a default implementation of this interface, which can be located by getting
the value for a property named “wireless.messaging.gsmsms.encoder.class”. The
default implementation handles OTA WAP provisioning, ringtone, and graphics for
Nokia and Ericsson handsets.

If you would like to extend the base capability you can do so by developing your
own implementation by extending this interface. Once done, you should then
configure the transport property "wireless.messaging.gsmsms.encoder.class” to
have the value of the class of your implementation.

13.3.6.4.1 The encode() method This is the only method needed for the interface. The
parameters indicate the type (ringtone, graphics), model (Nokia, Ericsson) and all
the attributes relevant to the requested type.

You process the information and eventually return the encoded message in a form
of GSMSmartMsg, which is essentially the fragments for the message and some
specific smart message info.

It might happen that either the type, or model or other are of something your
implementation does not support. In this case, you have two choices:

Oracle9iAS Wireless Messaging System

13-26 Oracle9iAS Wireless Developer’s Guide

■ Throw a Transport exception
In this case, the smart messaging process terminates.

■ Do not throw exception, just return null.
In this case, our pre-built UCP driver will fall back to the default
implementation of the GSMSmartMsgEncoder to see if it can handle the
situation. Of course, this depends on whether a driver is developed with this
semantics. However if you are focused on extending capabilities of the
GSMSmartMsgEncoder you should follow this convention to allow maximum
utilization of your development.

13.3.6.5 Interface oracle.panama.messaging.transport.MessageListener and
StatusListener
You obtain instance of these interfaces by calling the appropriate methods in the
DriverManager interface.

You use them typically within your implementation of the receive() method in the
Driver interface to inform the availability of messages or status to the Transport
system.

13.3.6.6 Class oracle.panama.messaging.common.Message
The message class is used to capture the content to be delivered or received. It is
pretty comprehensive and has similar expressive power as email. It supports
multi-part messages and allows mime types to be associated with the content.
However, how to deal with the particular parts or MIME types is left for the
implementation of the drivers.

13.3.6.7 Class oracle.panama.messaging.common.ContentTypes
This class is not a class only for drivers. It specifies a few content types (MIME
types) in addition to the standard MIME types. As driver implementers, you might
encounter these MIME types. How to deal with these MIME types is left to the
individual driver, but it is critical that you are aware of them rather than failing
when presented.

13.3.6.8 Properties of the driver
While adding a driver to the Oracle9iAS Wireless through webtool, a set of
properties must be specified, as listed in the table below.

Oracle9iAS Wireless Messaging System

Push Service and SMS 13-27

Table 13–1 Driver properties

13.3.6.9 Custom properties for a driver
When installing a driver, custom properties can be specified for the driver to
function. For example, for an email driver to work, it might need to have a property
for the imap hostname. The driver can be coded to expect a property of, say, name
imap.hostname. When adding a driver through webtool, one can specify any
number of property names. When creating the driver instances, the specific values
of such a property can be provided. For example, out of the same driver code, one
can install two email driver instances, each provided with imap hostnames to two
distinct IMAP servers.

These set of custom properties will be passed into the driver instance when init() is
called. In addition to the set of custom properties, some Oracle9iAS Wireless
site-level properties are also passed implicitly, they are:

Name Description

Name A discretionary name for the driver. This is a required property.

Class The class that implements the driver. This is a required property.

Delivery Category The supported categories of transport it supports, such as SMS,
Email. This is a required properties.

Protocol The particular protocol the driver transmits, such as SMPP or
UCP. This is optional. Default is "*", meaning all of the
possibilities.

Carrier The carrier the driver can support, such as Cingular, Telia. This
makes sense particularly in the SMS area and is optional. Default
is "*", meaning all the possible carriers.

Speed Speed of the driver. This can be used to better load balancing.
This is optional, with possible value ranging from 0-10. Default
is 0 (slowest).

Cost Cost to use this driver. This can be used to improve load
balancing. This is optional, with possible value ranging from
0-10. Default is 0 (most inexpensive).

Capabilities Whether the driver can send, receive or both. This is optional
defaulted to "send only".

Number of Message
queues

This must be 1 (one) for this release.

Encoding, locale Not used in this release.

Oracle9iAS Wireless Messaging System

13-28 Oracle9iAS Wireless Developer’s Guide

"wireless.log.directory";
"wireless.firewall.http.use.proxy";
"wireless.firewall.http.proxy.host";
"wireless.firewall.http.proxy.port";
"wireless.firewall.http.non.proxy.hosts";
"wireless.firewall.ftp.use.proxy";
"wireless.firewall.ftp.proxy.host";
"wireless.firewall.ftp.proxy.port";
"wireless.firewall.authentication.set";
"wireless.firewall.authentication.username";
"wireless.firewall.authentication.password";

13.3.6.10 Example: A Sample Driver
// Copyright (c) 2001 Oracle Corporation. All rights reserved.

package oracle.panama.messaging.transport.driver.sample;

/**
* A SimpleDriver class.
* <P>

* @author Oracle Corporation
*/

import java.util.Properties;
import java.net.ServerSocket;
import java.net.Socket;
import java.io.BufferedReader;

import java.io.PrintStream;
import java.io.InputStreamReader;
import java.io.IOException;
import java.io.PrintWriter;
import java.io.FileOutputStream;
import java.text.SimpleDateFormat;

import oracle.panama.messaging.transport.*;
import oracle.panama.messaging.common.*;
import oracle.panama.model.DeliveryType;
import oracle.panama.util.MessageCatalog;
import oracle.panama.core.admin.L;

/**
* A Simple driver
*
* @author ashah

Oracle9iAS Wireless Messaging System

Push Service and SMS 13-29

*/
public class SimpleDriver implements Driver {

private String mCompanyName;
private String mDeliveryType;
private String mVersion;
private PrintWriter log = null;

/**
* Initialize the driver.
*
* @param properties the driver's properties.
* @return the initialization status.
*/
public int init(Properties properties) {

// get the locator instance and various listeners
TransportLocator locator = TransportLocator.getInstance();
DriverController manager = locator.getDriverController();
mMessageListener = manager.getMessageListener();
mStatusListener = manager.getStatusListener();

// read properties
mCompanyName = properties.getProperty("company-name");

// delivery type is needed. Use SMS
mDeliveryType = DeliveryType.SMS.getName();
mVersion = "1.0";

int status = Driver.FAILED;

try {
String logName = properties.getProperty("logfile");
if (logName == null)
logName = new String("SimpleDriver.log");

log = new PrintWriter(new FileOutputStream(logName, true));
} catch(Exception e) {
e.printStackTrace();

return status;
}

log ("initialized: " + new java.util.Date());
mPort = Integer.parseInt(properties.getProperty("port"));
mCounter = System.currentTimeMillis();

Oracle9iAS Wireless Messaging System

13-30 Oracle9iAS Wireless Developer’s Guide

mPrefix = "unknown::";
mDelay = 20000; // 20 seconds
mMessage = new Message();
mSemaphore = new Object();
status = Driver.SEND_RECEIVE; // TODO - verify the return code

mStatus = new Status();

log ("init complete");
return status;

}

/**
* Destroy the driver.
*/
public void destroy() {
try {
log ("destroy");
mServerSocket.close();
mReader.close();
mWriter.close();
log ("destroy complete");

}
catch (Exception e) {
}

}

/**
* Get the version of the driver.
*
* @return the version of the driver.
*/
public String getVersion() {
return mVersion;

}

/**
* Get additional information of the listener.
*
* @return the information of the listener.
*/
public String getInfo() {
return "Simple Driver";

}

Oracle9iAS Wireless Messaging System

Push Service and SMS 13-31

/**
* Send a message to a single address with this driver.
*
* @param address the address to send to.
* @param encoding the encoding of the device.
* @param tracking the tracking level.
* @param expiration the expiration time.
* @param reliability the reliability level.
* @param fromAddr the from-address.
* @param replyToAddr the reply-to-address.
* @param message the message to send.
* @return a unique message id, null if failed.
*/
public String send(String dtype, String address, int mode, String encoding,
int tracking, int expiration, int reliability, String fromAddr,
String replyToAddr, Message message) {

log ("send: " + address + " => " + message.getContent());
String id = null;
try {
id = mPrefix + getNextId();
mWriter.println(id);
mWriter.println(message.getContent());
mWriter.flush();

}
catch (Exception e) {
// not synchronized, it works for this toy.
mWriter = null;
mReader = null;
id = null;

}
log ("sent id: " + id);
return id;

}

/**
* Send a message to a list of addresses with this driver.
*
* @param addresses the addresses to send to.
* @param encoding the encoding of the device.
* @param tracking the tracking level.
* @param expiration the expiration time.
* @param reliability the reliability level.
* @param fromAddr the from-address.
* @param replyToAddr the reply-to-address.

Oracle9iAS Wireless Messaging System

13-32 Oracle9iAS Wireless Developer’s Guide

* @param message the message to send.
* @return a list of unique message ids, null if failed.
*/
public String[] send(String dtype, String[] addresses, int[] modes, String

encoding,
int tracking, int expiration, int reliability, String fromAddr,
String replyToAddr, Message message) {
String[] ids = null;
log ("send: multiple => " + message.getContent());
try {
int count = addresses.length;
ids = new String[count];
String id = mPrefix + getNextId();
ids[0] = id;
mWriter.print(id);
for (int i=1; i<count; i++) {
id = mPrefix + getNextId();
ids[i] = id;
mWriter.print(',' + id);

}
mWriter.println();
mWriter.println(message.getContent());
mWriter.flush();

}
catch (Exception e) {
// not synchronized, it works for this toy.
mWriter = null;
mReader = null;
ids = null;

}
log ("sent multiple");
return ids;

}

/**
* Send a message to a list of addresses with this driver.
*
* @param dtypes the delivery types for all destinations
* @param addresses the addresses to send to.
* @param modes the delivery modes
* @param encoding the encoding of the device.
* @param tracking the tracking level.
* @param expiration the expiration time.
* @param reliability the reliability level.
* @param fromAddr the from-address.

Oracle9iAS Wireless Messaging System

Push Service and SMS 13-33

* @param replyToAddr the reply-to-address.
* @param message the message to send.
* @return a list of unique message ids, null if failed.
*/

public String[] send(String[] dtypes, String[] addresses, int[] modes, String
encoding,

int tracking, int expiration, int reliability, String fromAddr,
String replyToAddr, Message message) throws DriverException {
String[] ids = null;

int count = addresses.length;
log ("send: " + count + " recipients : " + message.getContent());
ids = new String[count];

for (int i=0; i<count; i++) {
ids[i] = send(dtypes[i], addresses[i], modes[i], encoding, tracking,

expiration, reliability, fromAddr,
replyToAddr, message);

}
return ids;

}

/**
* Get the sending status of a message. The
* status got by this call should be reported
* the transport system via the driver listener
* onStatus callback.
*
* @param mid the id of the message.
*/
public void getStatus(String mid) {
}

/**
* Get the sending statuses of a list of messages.
* The statuses got by this call should be reported
* the transport system via the driver listener
* onStatus callback.
*
* @param mids the ids of these messages.
*/
public void getStatus(String[] mids) {
}

Oracle9iAS Wireless Messaging System

13-34 Oracle9iAS Wireless Developer’s Guide

/**
* Check if query is required to get the notification.
*
* @return true if required, false otherwise.
*/
public boolean queryNotifying() {
return false;

}

/**
* Check if query is required to track the
* sending status.
*
* @return true if required, false otherwise.
*/
public boolean queryTracking() {
return false;

}

/**
* Receive a message/status. If any message/status
* is received, the driver should use the onMessage/
* onStatus callbacks of the driver listener (got
* via the controller) to report it to the transport
* system. This method should do something if the
* initization status has the RECEIVE ability.
*/
public void receive() {
log ("receive started");
synchronized (mSemaphore) {
try {
if (mServerSocket == null) {
try {

mServerSocket = new ServerSocket(mPort);
mServerSocket.setSoTimeout(mDelay);

}
catch (IOException ioe) {

mServerSocket = null;
mSocket = null;
throw ioe;

}
}
if (mSocket == null) {
try {

mSocket = mServerSocket.accept();

Oracle9iAS Wireless Messaging System

Push Service and SMS 13-35

mSocket.setSoTimeout(mDelay);
}
catch (IOException ioe) {

mSocket = null;
throw ioe;

}
}
if (mReader == null) {
mReader = new BufferedReader(

new InputStreamReader(mSocket.getInputStream()));
mWriter = new PrintStream(mSocket.getOutputStream());

}
String buf = mReader.readLine();
log ("receive read: " + buf);
if (buf.charAt(0) == '*') {
String address = buf.substring(1);
mMessage.setContent(mReader.readLine());
DeviceInfo info = new DeviceInfo();
info.setDeliveryType(mDeliveryType);
info.setEncoding("7b");
String from = "FROM-ME-TODO";
mMessageListener.onMessage(from, info, address, mMessage);
log ("message sent to message listener");

}
else {
mStatus.setContent("received");
mStatusListener.onStatus(buf.substring(1), mStatus);
log ("status sent to status listener");

}
}
catch (IOException ioe) {
mReader = null;
mWriter = null;

}
}

}

private synchronized long getNextId() {
if (++mCounter < 1) mCounter = 1;
return mCounter;

}

/**
* write to message log

Oracle9iAS Wireless Pre-built Drivers

13-36 Oracle9iAS Wireless Developer’s Guide

*
* @param message string
*/
void log(String message) {
if(log != null) {
synchronized(log) {
String currentTime = new SimpleDateFormat("yyyy-MM-dd

HH:mm:ss").format(new java.util.Date());
log.println(currentTime + " " + message);
log.flush();

}
}

}

private Socket mSocket;
private Object mSemaphore;
private ServerSocket mServerSocket;
private MessageListener mMessageListener;
private StatusListener mStatusListener;
private BufferedReader mReader;
private PrintStream mWriter;
private Message mMessage;
private Status mStatus;
private String mPrefix;
private long mCounter;
private int mDelay;
private int mPort;

}

13.4 Oracle9iAS Wireless Pre-built Drivers
As explained before, drivers are plug-in components to Oracle9iAS Wireless that
extends protocol-specific support of the system. Oracle9iAS Wireless ships with a
few pre-built drivers that support major protocols that have been accepted as
industry standards.

The pre-built drivers handle communication protocols such as SMS (SMPP and
UCP), Email, Voice, Fax. The following section provides a brief overview of these
pre-built drivers and the configuration properties required for these drivers. The
pre-built drivers implement only a subset of the communication protocols
specification that are sufficient to construct and deliver and receive a message. The
pre-built Oracle9iAS Wireless drivers typically do not implement the complete
specification of the communication protocols.

Oracle9iAS Wireless Pre-built Drivers

Push Service and SMS 13-37

13.4.1 PushClient Driver
This driver uses a Hosted Push service and by default uses the service hosted by
Oracle Corporation. This driver essentially acts like a Push client to an Oracle9iAS
Wireless server hosted on the Internet and can be configured to point to any service
that supports the Oracle9iAS Wireless Push Web Service. The PushClient driver
uses a special protocol, SOAP over HTTP (the Oracle9iAS Wireless Push Web
Service). As a matter of fact, the Oracle hosted push server does not require any
account for access. If you have not signed up, you can use "" as both username and
password. The URL for it is: http://messenger.us.oracle.com/push/webservices

13.4.1.1 Class name
oracle.panama.messaging.transport.driver.push.PushDriver

13.4.1.2 Configuration
■ messaginggatewayURL

URL to the Hosted Push Web Service. This parameter is required.

For example: http://messenger.oracle.com/push/webservices

■ username

Name to use to authenticate against the Push Service. Push Web Services can
determine whether username and password are required. If username is not
required by Push Web Services, leave blank (empty string). "Bad username or
password " will be returned from Push Web Services if either username does
not exist or password of that username is not correct.

For example: messaginguser

■ password

Password of the user specified in username field, to authenticate against the
Push Service. Push Web Services can determine whether username and
password are required. If username and password are not required, leave
password blank (empty string). "Bad username or password " will be returned
from Push Web Services if either username doesn't exist or password of that
username is not correct.

For example: 8Uh42g

■ Content type it could handle:

Oracle9iAS Wireless Pre-built Drivers

13-38 Oracle9iAS Wireless Developer’s Guide

It can handle all content types. The hosted Push Web Services to determine how
to handle them.

■ Drive runs on an HTTP connection. No explicit HTTP proxy setting is needed
because the Push driver will take proxy setting of Oracle9iAS Wireless.

This driver handles sending only. It supports as many transport types as the Hosted
Push Service. The actual types supported are dependent on which Hosted
(Oracle9iAS Wireless Instance) service is running. The Oracle9iAS Wireless Service
supports an API that describes the exact transports supported by an Instance.

13.4.2 Email Driver

13.4.2.1 Classname
oracle.panama.messaging.transport.driver.email.EmailDriver

The email driver supports SMTP in delivering messages, and either IMAP or POP3
in receiving messages. This driver can handle sending and receiving messages. Both
IMAP or POP3 protocols are supported for receiving messages.

13.4.2.2 Configuration
■ server.incoming.protocol

This is the value for e-mail receiving protocol. The possible values are 'IMAP'
and 'POP3'. Required only if e-mail receiving is supported on the driver
instance.

■ server.incoming.host

The host name of the incoming mail server. Required only if e-mail receiving is
supported on the driver instance.

■ server.incoming.usernames

The list of user names of the mail accounts the driver instance is polling from.
Each name should be separated by ',' (comma), for example, 'foo,bar'. Required
only if e-mail receiving is supported on the driver instance.

■ server.incoming.passwords

The list of passwords corresponding to the user names above. Each password is
separated by ',' (comma) and should reside in the same position in the list as
their corresponding username appears on the 'usernames' list. Required only if
e-mail receiving is supported on the driver instance.

Oracle9iAS Wireless Pre-built Drivers

Push Service and SMS 13-39

Example: 'foopwd,barpwd'

■ server.incoming.emails

The e-mail addresses corresponding to the user names above. Each e-mail
address is separated by ',' (comma) and should reside in the same position in
the list as their corresponding username appears on the 'usernames' list.
Required only if e-mail receiving is supported on the driver instance.

Example: 'foo@oracle.com,bar@oracle.com'.

■ server.incoming.receivefolder

The name of the folder the driver is polling messages from. The default value is
'INBOX'.

server.incoming.checkmailfreq

The frequency with which to retrieve messages from the mail server. The unit is
in seconds and the default value is 3 seconds.

■ server.incoming.autodelete

This value indicates if the driver should mark the messages 'deleted' after they
have been processed. The value could be 'true' or 'false' and the default value is
'false'. For POP3 protocol, the messages are always deleted right after they are
processed.

■ server.incoming.deletefreq

The frequency to remove the deleted messages permanently. The unit is in
seconds and the default value is 300 seconds. A negative value indicates the
messages should not be expunged. For POP3 protocol, the message is expunged
right after it is processed.

■ server.outgoing.host

The name of the SMTP server. Mandatory only if e-mail sending is required.

Example: smtp05.oracle.com

■ default.outgoing.from.address

The default FROM address if one is not provided in the outgoing message.

Note: Only server.outgoing.host must be configured if the driver
is going to be sending only.

Oracle9iAS Wireless Pre-built Drivers

13-40 Oracle9iAS Wireless Developer’s Guide

The email driver supports SMTP in delivering messages, and either IMAP4 or
POP3 in receiving messages. This driver can handle sending and receiving
messages. Both IMAP4 or POP3 protocols are supported for receiving messages.

13.4.3 Voice Driver
The voice driver supports the Out Bound Call protocol supported by VoiceGenie.
Currently, it has been tested only to work with a VoiceGenie gateway. This driver
handles sending messages only. Although the driver can send messages only, it
should be configured to have both sending and receiving capabilities for the driver
to work.

This driver can handle content type text

 ContentTypes.MOBILE_XML_URL

 ContentTypes.MOBILE_XML_URL_REMOTE

 ContentTypes.MOBILE_XML

 ContentTypes.URL (only if the content type of the URL resource is one of
above)

For other content types, the driver will throw a non-fatal driver exception.

13.4.3.1 Classname
oracle.panama.messaging.transport.driver.voice.VoiceGenieDriver

13.4.3.2 Configuration
■ voicegenie.outbound.servlet.uri

URL for the VoiceGenie Outbound Call Servlet. This is required with no default
value. A sample looks like

http://rossini.us.oracle.com/servlet/com.voicegenie.outboun
dcallservlet.OutboundCallServlet. The driver will use the site level
proxy configuration in accessing this URL.

■ voicegenie.outbound.servlet.username

Username for the VoiceGenie Outbound Call.

Note: Only server.outgoing.host must be configured if the driver
is going to be sending only.

Oracle9iAS Wireless Pre-built Drivers

Push Service and SMS 13-41

■ voicegenie.outbound.servlet.password

Password for the VoiceGenie Outbound Call.

■ voicegenie.outbound.servlet.dnis

The phone number to be set as the caller. This is optional. The default value is
12345678.

■ voicegenie.urlservice.path

Servicepath to the prebuilt VoiceGenie service. This driver depends on a
Oracle9iAS Wireless service based on the HTTP adapter. By default the
Oracle9iAS Wireless installation has an HTTP Adapter service named
"VoiceGenieURLService" to support this voice driver. This is a required
parameter. There is no default value and one must look at a particular
Oracle9iAS Wireless installation to obtain value for it. Here is a sample:

foo.oracle.com:9000/ptg/rm?PAservicepath=/VoiceGenieURLService&PAsubmit=
Submit

■ voicegenie.driver.receive.host and voicegenie.driver.receive.port

These are the IP host and port for the HTTP adapter to get sending content in
Mobile XML format. The port should be used by this driver only. These are
required.

13.4.4 UCP Driver
UCP (Universal Communication Protocol) is one of the most popular GSM SMS
protocols. The Oracle9iAS Wireless Server product ships with a pre-built
implementation of the UCP driver as a driver that is capable of both sending and
receiving.

This driver can handle content type text

■ ContentTypes.RING_TONE

Note: This driver opens a port (as specified in
voicegenie.driver.receive.port) and listens to HTTP traffic. It uses
voicegenie.driver.receive.host and voicegeneie.driver.receive.port to
compose a URL for Oracle9iAS Wireless HTTP adapter to contact the driver.
This is required if you want to send a message that contains Oracle9iAS
Wireless XML. Please make sure to provide the correct hostname and
unique port number in order for the driver to function.

Oracle9iAS Wireless Pre-built Drivers

13-42 Oracle9iAS Wireless Developer’s Guide

■ ContentTypes.GRAPHICS

■ ContentTypes.WAP_SETTINGS

■ ContentTypes.URL (only if the content type of the related resource is one of
above)

For other content types, the driver will throw a non-fatal driver exception.

13.4.4.1 Classname
oracle.panama.messaging.transport.driver.sms.UCPDriver

13.4.4.2 Configuration
■ sms.account.id

This is the account ID for the SMSSC. Generally, it should be the assigned short
number by the operator. This is required.

■ sms.account.password

This is password assigned by the operator. It is used to open a session to the
SMSC with UCP command 60.

■ sms.ucptype

Specifies which command to use in sending a message. The possible values are
01 and 51. The default value is 01, which means UCP command 01 is used to
send a message.

■ sms.server.host and sms.server.port.

SMSC server information the driver uses to open a TCP/IP connection.

■ sms.receiver.listener.port

If the driver is in listening mode, this port is used by the SMSC to initialize the
TCP/IP connection to pass received messages to the driver. If the sms.server.url
is specified, this one will be used. Otherwise, it will be ignored.

■ sms.server.url

This is the URL for the driver to access the SMSC to send messages via HTTP
connection. If specified, the sms.server.host and sms.server.port will be ignored.
If it is not specified, then the sms.server.host and sms.server.port are required.

■ sms.message.maxchunks

Oracle9iAS Wireless Pre-built Drivers

Push Service and SMS 13-43

This is the maximum chunks for any single message allowed. Chunks after this
number are ignored. The default is -1, which means no limit.

■ sms.message.chunksize

 This is the maximum size for each chunk in byte. The default is 150.

13.4.5 SMPP Driver
SMPP (Short Message Peer to Peer) is one of the most popular GSM SMS protocols.
Oracle9iAS Wireless Server product ships with a pre-built implementation the
SMPP driver as a driver that's capable of both sending and receiving. The driver
opens TCP connection to the SMSC as a transceiver, hence only one connection
(initiated by the driver) is needed for all communication between the driver and the
SMSC.

This driver can handle content type text ContentTypes.URL (only if the content type
of the related resource is text). For other content types, the driver will throw a
non-fatal driver exception.

13.4.5.1 Classname
oracle.panama.messaging.transport.driver.sms.SMPPDriver

Notes: 1) If you have a direct TCP connection to the SMSC, the
driver uses Command 60 to start a session with the SMSC. This
allows the driver and the SMSC to communicate with one socket
connection for sending, receiving and status. In this case the
sms.server.url is not used.

 2) If the connection you have to a SMSC is HTTP based then you
should provide the value for sms.server.url and this is the URL the
driver instance uses to send messages. Also
sms.receiver.listener.port should be provided so that the driver
instance opens binds to this port for incoming messages. In the
HTTP connection case, sms.server.host and sms.server.port are not
used.

 3) sms.message.chunksize controls the size of each message in case
the message total size is bigger than one SMS message.
sms.message.maxchunks controls the maximum number of chunks
allowed for each message. Those beyond that will be discarded.

Oracle9iAS Wireless Pre-built Drivers

13-44 Oracle9iAS Wireless Developer’s Guide

13.4.5.2 Configuration
■ sms.account.id

This is the account ID for the SMSSC. Generally, it should be the assigned short
number by the operator. This is required.

■ sms.smpp.system.id, sms.smpp.system.type and sms.smpp.system.password

These three attributes depend on your SMSC. Along with the short number
assigned to you, the operator may also give you a system ID, type and
password for you to log in to the SMSC.

■ sms.server.host and sms.server.port

SMSC server information the driver uses to open a TCP/IP connection.

■ sms.message.maxchunks

This is the maximum chunks for any single message allowed. Chunks after this
number are ignored. The default is -1. A negative value means there is no
limitation.

■ sms.message.chunksize

 This is the maximum size for each chunk in bytes. The default is 150.

13.4.6 Fax Driver (RightFax)
This a Driver that support Fax message and supports RightFax (by Captaris) FAX
protocol. The driver depends on the RightFax software package and the availability
of a RightFax Fax server to deliver fax messages. This driver is capable of only
sending messages.

This driver can handle any content type. It particularly recognize the following
MIME types:

■ text/xml

■ application/msword

■ application/msexcel

■ application/msppt

■ application/postscript

■ application/octet-stream

Oracle9iAS Wireless Pre-built Drivers

Push Service and SMS 13-45

In the case of the ContentTypes.URL, the driver will retrieve the content from the
specified URL. The content and MIME type returned by this operation will become
content and MIME type sent to the fax server.

13.4.6.1 Classname
oracle.panama.messaging.transport.driver.fax.RightFAXDriver

13.4.6.2 Configuration
■ server.url

URL to the RightFax server. This is required.

■ server.account

Account name to the RightFax server. This is required.

All the below default attributes are optional. They are used to customize the
cover sheet only.

default.sender.name
default.sender.corporation.
default.sender.fax
default.sender.phone
default.sender.address
default.sender.notes

Oracle9iAS Wireless Pre-built Drivers

13-46 Oracle9iAS Wireless Developer’s Guide

Transcoding 14-1

14
Transcoding

This document explains Transcoding. Each section of this document presents a
different topic. These sections include:

■ Section 14.1, "Transcoding Overview"

■ Section 14.2, "Web Content Adaptation"

■ Section 14.3, "WML Translator"

Figure 14–1 Transcoding

14.1 Transcoding Overview
The majority of applications available on web render content in format specific to
certain types of clients/devices. Transcoding services allow applications developed

Web Content Adaptation

14-2 Oracle9iAS Wireless Developer’s Guide

for a particular device/markup language to be reformatted to formats suitable for
the any web-enabled device.

Transcoding services in Oracle9iAS Wireless supports a Web content reformatting
service and a WML Translator service. The reformatting service allows Oracle9iAS
Wireless applications to map and adapt any Web content to be reformatted for all
web-enabled devices. The WML Translator service allows interpretation of content
authored in WML and translates the content for access from all web enabled
devices.

14.2 Web Content Adaptation
The Web Content adaptation service allows you to quickly extend your existing
published and legacy web application to wireless web-enabled devices. Oracle9iAS
Wireless services can connect any remote web resource, like HTML or XML
document, and acquire content for reformatting. The content so acquired is adapted
and mapped to data elements in wireless XML format and rendered to the Mobile
devices.

Oracle9iAS Wireless supports WebIntegration Beans and Web Integration server
that enables applications to map web content. The Web Integration Definition
Language (WIDL), developed using Web Integration developer, defines the web
content to be acquired by the Web Integration Server.

Web Content Adaptation

Transcoding 14-3

Figure 14–2 Web Content Adaptation and Reformatting.

14.2.1 WIDL Services
WIDL (Web Interface Definition Language) services allow you to acquire and
extract content from any HTML documents or XML documents. WIDL service is an
XML document that defines the web content that need to be acquires. WIDL
services are individual units of programs that accept inputs from the application
and returns outputs. The input and outputs elements are data structures with one
or more elements. The inputs elements, if needed, are used by the WIDL service as
inputs to acquire the content requested. The output elements represent the extracted
data from the remote source. The elements within the input and output can contain
complex data structures.

14.2.2 WebIntegration Beans
A WIDL service accepts inputs to execute a service and returns the extracted
content as outputs. The inputs and outputs contain complex data structure
elements. An application, to execute a WIDL service, has to connect to the Web
Integration Server and manipulate the input and output elements.

Web Content Adaptation

14-4 Oracle9iAS Wireless Developer’s Guide

WebIntegration Beans, a Java utility, provides the necessary abstraction and masks
the complex nature of these input and output elements. WebIntegration Beans
connects to the Web Integration server and executes the service. Also the beans
provide software based round robin load balancing between different instances of
Web Integration Server.

14.2.3 Using WebIntegration Beans
WebIntegration Beans supports the following classes

14.2.3.1 WebBeanContextDelegator
This object allows you to specify the service and the sub service of the Web
Integration Service that needs to be invoked.

14.2.3.2 WebBeanDelegator
The WebBeanDelegator invokes the service with required service inputs and returns
the outputs. The server to connect to is declared in the property file
WebBeanProperty.properties. Both the inputs and outputs for the
WebBeanDelegator are instances of HashMap (java.util.HashMap). The HashMap
contains the collection of service input and output values. Depending on the service
that values in the HashMap can be a string, HashMap or an array of HashMap.

14.2.3.3 Walkthrough: Creating an WIDL Using Web Integration Developer.
In this walkthrough, you create a WIDL Integration Wireless WIDL using the
Developer tool. You would use the Web Integration Developer to map the elements
of a sample Web page (http://finance.yahoo.com), and define input and output
parameters. You will then publish this Service to the Web Integration Server.

Follow these steps to create a Web page mapping and create a Web Integration
Definition Language (WIDL) file, using the Web Integration Developer.

14.2.3.4 Start the Web Integration Developer
1. Click Start on the Windows NT desktop and point to Programs.

2. From the Programs menu, select Oracle for Windows NT.

3. Select Wireless Edition, then select Web Integration Developer. The Web
Integration Developer appears.

Web Content Adaptation

Transcoding 14-5

14.2.3.5 Open the Source Page
Open the source page in the Web Integration Developer as follows:

1. Select Open URL from the File menu or toolbar.

2. In the Open URL dialog box, type the following URL:
http://finance.yahoo.com

3. Click OK. The Web Integration Developer retrieves the page, parses it, and adds
it to the Document Browser (in the left frame). For this example, the Document
Browser shows the following items:

■ The first item (http://finance.yahoo.com) identifies the open document.

■ The second item (the Document node) represents the contents of the HTML
document: paragraphs, images, links, lists, and tables.

■ The third item (the FirstForm node) represents the form in this document.
When you open a page that contains forms, the Web Integration Developer
creates a form node for each form in the document.

14.2.3.6 Generate a WIDL File
Next, generate a WIDL file from the source page as follows:

1. Select FirstForm in the left frame.

2. Select WIDL from the Generate menu.

3. Complete the New Service dialog as follows:

In this Field... Type...
Interface StockInfo
Service Yahoo_GetQuote

4. Click OK.

5. In the Generate New WIDL for Service dialog, type ORCL.

6. Click the Submit button.

Note: Go to the Configure menu and set proxy to go through the
firewall.

Web Content Adaptation

14-6 Oracle9iAS Wireless Developer’s Guide

14.2.3.7 Edit the Input Binding of the WIDL File
The input variables defined in this WIDL service have the same names as those
specified in the HTML form. You can edit the input binding to make these names
more meaningful as follows:

1. Expand the Bindings folder in the left frame.

2. Click the Yahoo_GetQuoteInput binding.

3. Click the variable “d” in the variable list in the right frame. In the Name field,
type ReportType and press Enter.

4. Click the variable “s” in the variable list. In the Name field, type CoSymbol
and press Enter.

14.2.3.8 Edit the Output Binding of the WIDL File
The output defined by this service extracts all elements from the document returned
by the Web page. To extract just the stock quotes to pass back to the client
application, you can edit the output binding:

1. Select the Yahoo_GetQuoteOutput binding in the left frame.

2. In the right frame, scroll through the variable list until you reach the table
variables.

3. Click the variable table10. Make sure the content of this variable is the stock
price of ORCL. If not, click the variable whose content is ORCL’s stock price.

4. On the Sample tab, select the cell that contains the current stock price.

5. Click the right mouse button and select Create New Variable From Selection
from the pop-up menu.

6. Type CurrentPrice in the New Variable dialog and click OK. The
CurrentPrice variable now appears in the variable list.

7. Delete all other variables from the variable list.

8. Save the WIDL file.

14.2.3.9 Test the WIDL File
To test the WIDL file in the Web Integration Developer:

1. Click Yahoo_GetQuote in the Services folder in the left frame.

2. Select Test Service from the Tools menu.

Web Content Adaptation

Transcoding 14-7

3. Type any valid stock symbol in the CoSymbol field.

14.2.3.10 Publish the WIDL Interface to the Web Integration Server
Publishing a WIDL interface makes it accessible to Web Integration services that
you create in the Service Designer.

You must have administrator authority on the Web Integration Server to perform
this procedure. When you publish an interface, the services in that interface are
added to those already on the Web Integration Server. If you create a service with
the same name as an existing service, the existing service is overwritten.

Follow these steps to publish your WIDL file (StockInfo) to the Web Integration
Server.

1. Select StockInfo in the left frame.

2. From the File menu, select Publishing, then Publish Interface.

3. In the Specify Server field in the Publish Interface dialog, type the name of the
Web Integration Server to which you want to publish this interface. Specify the
server name using the format:

host_name:port

4. The Web Integration Server uses packages to organize services. You can click
Update Packages to view a list of packages on the specified server, then add the
service to a specific package. In this case, however, you can add the sample
service to the Default package. Click OK.

5. If the User Name and Password dialog appears, enter a user name and
password for the selected server. This user must have administrative
privileges.Click OK.

The Web Integration Developer copies the interface to the selected package on the
Web Integration Server and notifies you that the interface is successfully published.

14.2.3.11 Walkthrough: Developing an Oracle9iAS Wireless Service with Web
Integration Service
This walkthrough continues our StockInfo WIDL Service (from previous WIDL
walkthrough). We will create a JSP application that generates Oracle9iAS Wireless
XML and uses the WebIntegration Beans to execute the StockInfo WIDL service.
This JSP application will then be deployed as an Oracle9iAS Wireless HTTP Service
and render to the Wireless Device.

Web Content Adaptation

14-8 Oracle9iAS Wireless Developer’s Guide

14.2.3.12 Create the JSP Application
Create a JSP file, shown in the example. This JSP generates Oracle9iAS Wireless
XML. The JSP looks for the “CoSymbol” as a request parameter, if Present executes
the WIDL Service using the WebIntegration Beans. The response from the JSP
contains the Price of the Stock requested and is embedded in Oracle9iAS Wireless
XML format.

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>
<!DOCTYPE SimpleResult PUBLIC "-//ORACLE//DTD SimpleResult 1.1//EN"
"http://xmlns.oracle.com/ias/dtds/SimpleResult_1_1_0.dtd">
<%@ page language="java" session="false" %>
<%@ page import="java.util.*" %>
<%@ page import="oracle.panama.tools.webbean.*" %>
<%

String CoSymbol = request.getParameter ("CoSymbol");

//CoSymbol is null, ask for a Symbol from the User
if ((CoSymbol == null) || (CoSymbol.length() == 0)) {

%>
<SimpleResult>

<SimpleContainer>
<SimpleForm target="StockQuote.jsp">
<SimpleTitle>Stock Quotes</SimpleTitle>
<SimpleFormItem name="CoSymbol" type="none" displaymode="text">
<SimpleTitle>Enter Company Symbol</SimpleTitle>

</SimpleFormItem>
</SimpleForm>

</SimpleContainer>
</SimpleResult>

<%
}
else {

//Set the Input to the User given Symbol
HashMap inputs = new HashMap();
inputs.put("CoSymbol", CoSymbol);

//Define the Service and ServiceContext
//Set the Service to "StockInfo" and SubService to "Yahoo_GetQuote"
WebBeanContextDelegator context = null;
context = new WebBeanContextDelegator();
context.setService("StockInfo");
context.setSubService("Yahoo_GetQuote");

//Connect to the Server and Invoke the Service

Web Content Adaptation

Transcoding 14-9

WebBeanDelegator webBean = null;
webBean = new WebBeanDelegator();
HashMap outputs = webBean.invokeWebService(context,inputs);

String CurrentPrice = (String)outputs.get ("CurrentPrice");
%>

<SimpleResult>
<SimpleContainer>
<SimpleText>
<SimpleTextItem>

Current Price of <%=CoSymbol%> is: <SimpleBreak></SimpleBreak>
<%=CurrentPrice%>

</SimpleTextItem>
<SimpleAction type="primary" target="StockQuote.jsp" label="New"></S

impleAction>
</SimpleText>

</SimpleContainer>
</SimpleResult>

<%
}

%>

1. Deploy this JSP on your J2EE Web Application Server.

2. Confirm if you can access this JSP from your desktop browser. For example:
Internet Explorer (5.0) would display this page as an XML file, while Netscape
will just display the text in the file.

14.2.3.13 Creating a Oracle9iAS Wireless StockQuotes Service
You will now use the Oracle9iAS Wireless Webtool to create a StockQuotes Service.
The StockQuotes is an Oracle9iAS Wireless service and will execute the
StockQuote.jsp using the HTTPAdapter/HTTPMasterService. The Oracle9iAS
Wireless XML returned by the JSP is the transformed to the device Markup
Language

14.2.3.14 Creating an HTTPAdapter Service
1. Open the Webtool with your HTML Browser and Login

2. Navigate to the Content Manager tab on the Webtool.

3. Select “Add Service” link on the bottom of the Content Manager Page.

4. Complete the New Service page as follows and click
Service Name: StockQuotes

Web Content Adaptation

14-10 Oracle9iAS Wireless Developer’s Guide

Description:Mobile Stock Quotes
Select Visible Check Box
Select Personalizable Check box
Select Normal Service

5. Click Next

6. Select HttpMaster Service

7. Click Next. The screen for Setting the Init Parameters appears. Enter the
following information into the fields.

a. For the URL, enter the URL to your JSP application in the Value Column. It
will be in the form of http://yourserviceport/path/.

b. For the Replace URL enter true in the value column.

c. For the Form Method enter GET in the value column.

8. Click Next and on the Next page click Submit to create the Stock Quotes
Service.

14.2.3.15 Making Stock Quotes Service Available to a Group
You will Webtool to make the service you created available to a group of users:

1. Click the Content Manager tab on the Webtool

2. On the Content Manager Page, select the sub tab Groups.

3. Select the group Guests and click Assign Services.

4. From the list of Available services, on the bottom half of the page, select
StockQuotes Service.

5. Click on AddToGroup button. This makes the service available to both guest
and registered users of Oracle9iAS Wireless.

14.2.3.16 Testing Stock Quotes
You will now test the StockQuotes service using a browser and a phone simulator.

14.2.3.17 Testing the Service on a Browser
Log on to a browser to test the service. To access the URL:

1. From a Web browser, enter the following

URL: http://9iASWEServer.domain/ptg/rm

WML Translator

Transcoding 14-11

2. Click StockQuotes Link

3. Enter a valid stock symbol and click submit.

The StockQuotes retrieves and displays the current stock price.

14.2.3.18 Testing Stock Quotes on a Phone Simulator
You can use any phone simulator (for example, WML, HDML, CHTML) to test
Stock Quotes. If you do not already have one, download and install a simulator. If
you are working behind a firewall, you must configure the proxy server settings in
the simulator before using it to access external sites.

Follow these steps to test the service from a phone simulator.

1. Start the simulator.

2. Enter the following URL in the Go window:

http://9iASWEServer.domain/ptg/rm
This is the URL of the device portal for your Wireless Server installation.

3. Select the StockQuotes Link

4. Enter a valid stock ticker symbol (for example, ORCL) and click OK.

The Wireless server retrieves and displays the current price of the stock.

14.3 WML Translator
The WML translator service reformats WML documents/resources on the web to be
available on all wireless web-enabled devices. The WML translator performs
On-the-fly translation of remote WML resource into Oracle9iAS Wireless XML. The
wireless XML is then transformed into appropriate device specific markup
language.

This WML Translator enables these legacy WML applications to be integrated into
mobile portals, deployed on Oracle9iAS Wireless, accessible by all web-enabled
devices.

Note: If the phone simulator returns an HTTP error, you should:
refresh the cookie cache and source cache. Then go to the phone
simulator install directory and refresh (or delete) the files
CookieCache and SourceCache.

WML Translator

14-12 Oracle9iAS Wireless Developer’s Guide

14.3.1 Deploying and Configuring WML Translator
The WML Translator is deployed as an Oracle9iAS Wireless module. The Translator
service has the following service parameters.

■ ORACLE_SERVICES_COMMERCE_TRANSLATOR_DEFAULT_
CONNECTION

This represents a fully qualified class name. This class encapsulates the
connection to the remote WML resource. This class will be instantiated by the
WML Translator service and is used to get content from a WML URL.

The connection is defined by the Interface
oracle.panama.module.commerce.translator.ConnectionIfc.

This default connection implementation uses HTTP connection to retrieve the
WML content and is implemented by the class
oracle.panama.module.commerce.translator.WMLConnectionImpl

■ ORACLE_SERVICES_COMMERCE_TRANSLATOR_HELPER_WML

This is a fully qualified class name that implements the WML document
translation Interface defined by
oracle.panama.module.commerce.translator.WMLTransformImpl. This class
will be instantiated by the WML Translator service and is used to transform
WML document to wireless XML format.

This default implementation uses the standard XSL Stylesheet and XSLT
processor to perform the required transformation. The default implementation
is provided by the class
oracle.panama.module.commerce.translator.WMLConnectionImpl

■ ORACLE_SERVICES_COMMERCE_TRANSLATOR_XSL_WML_FILENAME

This is an URL to the location of the pointing to the location of the XSL
stylesheet that is used to transform WML document to Oracle9iAS Wireless
XML. In no value is specified, then the default transformation class uses a
pre-built XSL stylesheet.

14.3.2 Using the WML Translator
The WML Translator is deployed as an Oracle9iAS Wireless Module service with
module URL being omp://oracle/services/commerce/translator. To use the WML
Translator applications can invoke the module, with the URL to the WML
application as a parameter. The default parameter name is XLTORSITE, for e.g. to
invoke to www.oraclemobile.com you can use the following URL in your

WML Translator

Transcoding 14-13

Oracle9iAS Wireless XML
omp://oracle/services/commerce/translator?XLTORSITE=http%3A%2F%2Fwww.
oraclemobile.com

WML Translator

14-14 Oracle9iAS Wireless Developer’s Guide

Using Location Services 15-1

15
Using Location Services

This chapter provides conceptual and usage information for developers of
location-based applications. It contains the following major sections:

■ Section 15.1, "Introduction to Location Services"

■ Section 15.2, "Developing Location-Based Applications"

■ Section 15.3, "Enabling Mobile Positioning"

■ Section 15.4, "Using the Region Modeling Tool"

15.1 Introduction to Location Services
Developers of location-based applications need specialized services for:

■ Geocoding: associating geographical coordinates with addresses

■ Mapping: providing a graphical map for a point, set of points, route, or driving
maneuver

■ Routing: providing driving directions

■ Business directories (Yellow Pages): listing businesses by region by either
category or name

■ Traffic: providing information about accidents, construction, and other
incidents that affect traffic flow

Several companies provide these types of specialized content and applications. For
example, some Web sites have categories for business directories, and some sites
provide driving directions. Developers building mobile applications based on the
Oracle9iAS Wireless framework can benefit from being able to use the specialized
content and services. It is inefficient for each application to write custom interfaces
to all the services that it wants to access.

Introduction to Location Services

15-2 Oracle9iAS Wireless Developer’s Guide

The Oracle9iAS Wireless location application components are a set of APIs
(application programming interfaces) for performing geocoding, providing driving
directions, and looking up business directories. Service proxies are included that
map existing important providers to the APIs, and additional providers are
expected to be accommodated in the future.

Oracle9iAS Wireless application developers can take advantage of a uniform
interface to access different service providers without having to make any changes
to their applications. They can also use the infrastructure to prioritize services based
on criteria such as quality, availability, or cost. Service providers also benefit from
the fact that their contents and specialized functions are available "out-of-the-box"
to all Oracle9iAS Wireless application developers.

This section introduces the location application components API, describes how to
find the detailed javadoc-generated documentation and online examples, and
explains conceptual and usage information that you must understand before using
the components. It contains the following major subsections:

■ Section 15.1.1, "Getting Started"

■ Section 15.1.2, "Location Services"

■ Section 15.1.3, "Service Providers"

■ Section 15.1.4, "Geocoding Services"

■ Section 15.1.5, "Location Marks"

■ Section 15.1.7, "Mapping Services"

■ Section 15.1.8, "Routing Services"

■ Section 15.1.9, "Business Directory (Yellow Page) Services"

■ Section 15.1.10, "Traffic Services"

15.1.1 Getting Started
To get started using the Oracle9iAS Wireless location application components,
follow these steps:

1. Read the conceptual and usage information in this document before using any
example programs or creating any applications.

2. Go to the sample directory, which contains example files. Read the
Readme.txt file in that directory; examine the supplied files, and use any that
meet your needs.

Introduction to Location Services

Using Location Services 15-3

3. View the javadoc documentation, and refer to it for detailed reference
information about packages and classes. To view the javadoc documentation,
open the following file in a Web browser:

iAS-Wireless-Home/wireless/doc/index.html

where ias-Wireless-home is your Oracle9iAS Wireless home directory.

Figure 15–1 shows part of the index.html display. Navigate to find detailed
information about packages and classes.

Figure 15–1 Javadoc Documentation

15.1.2 Location Services
Location services are provided in the following major categories: geocoding,
mapping, routing, business directory (Yellow Page), and traffic.

Other sections in this chapter describe how to specify and configure external
providers for location services, and describe each type of service in greater detail.

15.1.2.1 SpatialManager Class
The SpatialManager Java class manages all these location services.

The SpatialManager class is defined as follows:

Introduction to Location Services

15-4 Oracle9iAS Wireless Developer’s Guide

package oracle.panama.spatial;
import …;
public class SpatialManager
{
public static synchronized Geocoder getGeocoder() {…}
public static synchronized Router getRouter() {…}
public static synchronized YPFinder getYPFinder() {…}
public static synchronized Mapper getMapper() {…}
public static synchronized TrafficReporter getTrafficReporter() {…}

}

15.1.3 Service Providers
The actual core computation for location services is generally performed at an
external provider. The external provider might be accessed over the Internet or
other means of communication, or might be local. The Oracle9iAS Wireless Location
Application Components API performs the communication and adaptation of
results in a unified framework, so that users are generally not aware of which
provider is supplying a particular service. In addition, the API minimizes the
application developer’s implementation effort and dependence on specific
providers.

Access to an initial set of providers for most services is included. Some providers
have full configuration information included, and some do not. (For providers that
do not have configuration information, you usually receive the necessary
information after you purchase the right to use their user name and password.)

You can provide access to additional providers by using the webtool. If a a new
provider is added and if the provider does not use the same interface as an existing
provider, a Java class must be created to translate between the provider’s format
and the Oracle9iAS Wireless location application components API. (This program is
specified as the ProviderImpl attribute.) In addition, the implementing class file
for the program must be added to the class path.

Using multiple providers for a service increases the probable reliability of the
service. The API fails only either if all providers fail or if Web access is temporarily
unavailable. Because providers are specified in preference list, the API
automatically fails over when the preferred provider cannot perform the requested
service, such as when any of the following occurs:

■ The provider is temporarily inaccessible over the Web.

■ The provider does not support the exact requested service.

■ The request is incorrectly specified (such as a nonexistent address).

Introduction to Location Services

Using Location Services 15-5

15.1.3.1 Provider Selection
Location services use a list of providers and support fail-over between them. The
sequence in which providers are tried should ideally represent an order of
preference. The preference ranking can be a simple ranking of providers, or it might
be affected by region, time, performance, reliability, and cost.Whichever criteria are
used, they are evaluated by a provider selection framework that determines
provider order of preference.

The provider selection framework needs to be configured, as described in this
section. If a service request is not satisfied by the framework, then either the
provider selection framework implementation has been incorrectly configured or all
providers have failed. You can find information about any problems or failures from
the console log or the log file, as explained in Section 15.1.3.2.

You must select a provider selection framework to be used. To select the framework,
use the Oracle9iAS Wireless webtool and follow these steps:

1. If the System Manager page is not already displayed, click the System Manager
tab.

2. Click the Site tab on the System Manager page. The Site Information page is
displayed, the top portion of which is shown in Figure 15–2.

Figure 15–2 Site Information Page

3. Scroll down to the Administration section and Configuration subsection.
Figure 15–3 shows the portion that includes Location Services.

Introduction to Location Services

15-6 Oracle9iAS Wireless Developer’s Guide

Figure 15–3 Administration Section of Site Information Page

4. Click Location Services in the Configuration subsection. The Location Services
page is displayed, as shown in Figure 15–4.

Figure 15–4 Location Services Page

Introduction to Location Services

Using Location Services 15-7

5. On the Location Services page under Basic Configuration, for Provider Selector
Class Name enter a provider selection framework implementation.

Your choice of a provider selection framework implementation determines whether
more or less complex rules can be used for provider selection. The following
implementations are available:

■ oracle.panama.spatial.core.ruleengine.SimpleRuleEngineImpl

This simple implementation tries all providers until one succeeds. The sequence
in which providers are tried is specified in the provider configuration list.

■ oracle.panama.spatial.core.ruleengine.RuleEngineImpl

This implementation can select providers based on whether or not they provide
satisfactory coverage for a given country. Among all providers that provide
satisfactory coverage for a given country, providers are tried based on the
sequence in the provider configuration list.

This implementation avoids time being wasted trying providers that do not
provide coverage for a country or that provide unsatisfactory service (for
example, if the cost is too high or the service quality is poor). However, this
selection framework does require more configuration: lists of countries and
country aliases need to be specified for each provider (although examples of
such configurations are provided).

Other provider selection framework implementations can be added later.

15.1.3.1.1 Configuring Provider Information To configure the provider information, use
the Oracle9iAS Wireless webtool and go to the same page as for provider selection,
then select the appropriate type of service for configuration. Follow these steps:

1. If the System Manager page is not already displayed, click the System Manager
tab.

2. Click the Site tab.

3. Scroll down the page to the Administration section and Configuration
subsection.

4. Click Location Services in the Configuration section.

5. Select the appropriate type of service for configuration:

■ Geocoding Configuration

■ Routing Configuration

■ Mapper Configuration

Introduction to Location Services

15-8 Oracle9iAS Wireless Developer’s Guide

■ Traffic Configuration

■ YP Provider Configuration

The provider information (described in Section 15.1.3.1.2) is very similar for all
types of services (geocoding, mapping, routing, traffic, and YP).

For geocoding and perhaps other services, you may need to provide configuration
information for country name aliases (see Section 15.1.3.1.3) and address formats
(see Section 15.1.3.1.4).

15.1.3.1.2 Provider Configuration An ordered list of providers is configured with the
following parameters:

■ Provider Name: the provider name, which serves as an ID

■ Provider Impl Class: the class implementing the proxy for this provider (for
translation and communication with the provider)

■ URL: the static URL prefix used to access the provider

■ User Name: a user name as determined by the provider

■ Password: the password to be used in combination with the user name

■ Parameters: any parameters required to customize and configure the provider
proxy

■ ISO Locales: a semicolon-delimited list of country IDs (as specified in the
country name alias list, described in Section 15.1.3.1.3)

■ Corporate URL: the corporate URL of the provider (used as an advertisement)

■ Service Version: the service version for the provider that this proxy uses

■ Corporate Logo URL: the corporate logo URL of the provider (used as an
advertisement)

Note: All location services configuration information, except YP
category information, is maintained internally (by Oracle9iAS
Wireless) in an XML configuration file named site_cfg_
bootstrap.xml. However, you are encouraged not to modify that
file directly; instead, use the webtool interface to modify
configuration information.

Introduction to Location Services

Using Location Services 15-9

15.1.3.1.3 Country Name Alias Configuration The country name alias configuration
relates country names and synonyms to a single standard identifier for a given
country. This standard identifier should be the ISO name (US for US, DE for
Germany, and so on), although you can specify other identifiers.

The aliases are used in combination with the
oracle.panama.spatial.core.ruleengine.RuleEngineImpl provider
selection framework implementation. Each provider is configured for a set of
countries, specified by their IDs. For example, when a service request is made, for
example to geocode an address in the United States, the country alias table is
consulted to find the standard ID US. Subsequently, only providers with US in their
list of covered countries are tried.

If a country name is used which is not configured as a known alias for some country
ID, the ID unknown is used, instead. In this case, providers with unknown in the
covered country list are tried.

If the simple provider selection framework implementation
(oracle.panama.spatial.core.ruleengine.SimpleRuleEngineImpl) is
used, country aliases are not required for provider selection.

15.1.3.1.4 Address Format (International) Configuration The address format
configuration is used to specify international address formats. The
oracle.panama.spatial.intladdress package in the API uses this list to
determine which components are part of an address (US, French, German, Chinese,
and so on) and how they are presented for input and output.

The international address framework is configured with a list of address formats in
the repository, accessible through the webtool. This configuration specifies all
components of an address, aliases for the components, and mappings to standard
concepts such as city, state, and street name. The format of the textual representation
is also configured, to determine such things as:

■ How is the address usually divided into separate lines?

■ In which sequence do the components occur?

■ Which components are optional, and which are required?

This approach requires that users specify a country-specific format for addresses, in
order to view and enter addresses in that format. Otherwise, for example, the
system cannot know whether to ask a user to specify a state or province before the
country.

The benefits of this approach include the following:

Introduction to Location Services

15-10 Oracle9iAS Wireless Developer’s Guide

■ Users see a form that exactly matches the desired address format for mailed
letters.

■ The system can better analyze addresses when each component is known
separately and meaningfully identified, rather than simply being included
somewhere in first line, second line, and last line.

■ An application looks more professional if it automatically adapts to the local
address format, both for input and output of addresses.

■ Outside the US, customers are much more impressed when presented with their
local address format, as opposed to the US format.

■ The application does not have to be rewritten for different countries. Everything
is handled automatically by the framework

Several international address formats are supplied. Two examples are as follows.

For the US:

{name}
{house number/house} {street}[Apt {apt}]
{city} {state} {postal code}[-{postal code ext}]
{country}

For Germany:

{Name/name}
{Strasse/street/first line} {Hausnummer/house}[Wohnung {Wohnung/apt}]
{PLZ/postal code} {Stadt/city}
[{Bundesland/state}]
{Land/country}

Syntax notes:

■ { } (braces) enclose an address component.

■ / (slash) separates alternative aliases within a component.

■ [] (brackets) enclose optional elements.

■ Anything outside braces other than brackets is taken as quoted from an address
(such as Apt in 123 Main Street Apt 4).

For programming information and examples relating to international address
formats, see Section 15.2.2.1.1.

Introduction to Location Services

Using Location Services 15-11

15.1.3.2 Provider Selection Logging
The provider selection framework implementation logs selection, success, and
failure of providers on the iAS servlet container console or in the Oracle9iAS
Wireless log file (for example, sys_panama.log). For example, you can look for
events such as the following:

■ The multiplexers for geocoding, mapping, and so on (other types of services)
have been initialized.

■ The provider selection framework implementation has been initialized.

■ The proxies for geocoding, mapping, and so on (other types of services) have
been initialized.

■ A specific provider has been tried.

■ A specific provider has failed.

■ A specific provider has succeeded.

■ All providers have failed.

15.1.4 Geocoding Services
The geocoding API provides the geographic location of a given address. For a user
of Oracle9iAS Wireless, an address is the most common way to specify a location.
However, for finding restaurants in close vicinity or providing driving directions,
the text representation of an address may not be useful unless it is first geocoded,
that is, translated to geographic coordinates.

The address to be geocoded has a textual representation like that from a standard
mailed letter. The result returned is the longitude/latitude corresponding to the
address. For example, the input to geocoding might include the following:

■ firmName: "oracle"

■ firstLine: "1 Oracle Drive"

■ secondLine: ""

■ lastLine: "Nashua NH 03062"

■ matchMode: "tight"

In this example, the result is: Point(x = -71.455, y = 42.7117)

Because a user might specify an ambiguous address, the GeocodeResult contains
an array of Location objects instead of a single object.

Introduction to Location Services

15-12 Oracle9iAS Wireless Developer’s Guide

15.1.4.1 Geocoding API
This section describes the geocoding API for location application components.

Two of the following classes, Point and Location, are used by the whole API and
are not specific to geocoding. However, they are described here because they
represent components central to the geocoding service, both for input and output.

15.1.4.1.1 Point Class The Point class defines a longitude/latitude coordinate
point. Additional values for a label and a radius can be used for representing a
point on a map. The label and radius are not used by any other functions than map
display.

15.1.4.1.2 Location Class The Location class defines a location with address and
longitude/latitude. If the location object is constructed using firstLine,
secondLine, and lastLine, then some external providers might not correctly
identify the city or state, because lastLine can contain city, state, and postal code
in a country-specific and relatively flexible format.

If no specific substring can be identified as the component representing the city, the
city is "unknown". In this case, the API itself might not try complex analysis, but
instead leave this task to the experts, that is, the external geocode providers.

15.1.4.2 Geocoder Interface
The Geocoder interface defines how an application programmer accesses the
geocoding service. An object of a class implementing this interface is returned by
the SpatialManager.

15.1.5 Location Marks
Due to the limitations of certain mobile devices such as telephones, it is difficult to
input/display lengthy alphanumeric strings. A location mark stores a piece of
spatial information identified by a concise, easy-to-understand name. For example,
"My home" might be the name of a location mark, while the underlying spatial
information might be "123 Main Street, Somewhere City, CA, 12345; Lon = -122.42,
Lat = 37.58".

[preceding for when rectangles are allowed] For example, "My home" and
"Downtown San Francisco" might be the names of two location marks, while the
underlying spatial information might be "123 Main Street, Somewhere City, CA,
12345; Lon = -122.42, Lat = 37.58" for the first location mark, and "The rectangle
geometry within bounding points (Lon/Lat = -122.49, 37.79) and (Lon/Lat =
-122.41, 37.74)" for the second location mark.

Introduction to Location Services

Using Location Services 15-13

Location marks allow users to avoid inconvenient string input on mobile devices.
Users can manage their location marks on a desktop and then access them by
referring to their names from mobile devices. Today's location-aware applications
typically just use a point location (such as an address or a road intersection). In this
case, the spatial information can be provided by geocoding. In this release, a
location mark must be a point. However, in a future release it is planned to allow a
location mark to be something other than a point; for example, it could be the
current position associated with automatic mobile positioning or a region defined
by region modeling.

Location marks also allow users to try "what-if" scenarios: to make an application
behave as if they were in a location different from their default or current location.
For example, a user of an entertainment services application might actually be in
Boston now, but will be traveling to San Francisco in a few days. This person could
set a location mark in San Francisco as the default, and be presented with
information relevant to the San Francisco area.

Each user has personalized location marks, which are stored in the Oracle9iAS
Wireless repository.

Location marks are created using the LocationMark class. Users can also create
location marks by logging into the iAS Personalization Portal, clicking the
LocationMarks tab, and clicking Create.

For information about using a location mark to enable mobile positioning, see
Section 15.3.1.

15.1.6 LOCATIONMARK Table
A new table named LOCATIONMARK is added to the Oracle9iAS Wireless
repository schema. This table contains detailed information about each location
mark, including the user associated with each location mark. For example, several
users might have a location mark named Office but with a different location for
each.

Table 15–1 lists the columns in the LOCATIONMARK table.

Table 15–1 LOCATIONMARK Table columns

Column Name Type

objectId_ NUMBER(10)

name VARCHAR2(32)

userId NUMBER(10)

Introduction to Location Services

15-14 Oracle9iAS Wireless Developer’s Guide

15.1.7 Mapping Services
The mapping API provides functions for creating map images for any of the
following:

■ A single point (such as an address or a location mark)

■ Multiple points (such as several addresses or location marks)

■ A complete route

■ A single driving maneuver

The mapping API lets you specify the size (resolution) of the map and the image
format. Image transformation is also provided through the
oracle.panama.spatial.imagex class (discussed in Section 15.1.8.3). For
example, if the provider only supports GIF format but the user requires WBMP
format, the imagex API can perform the transformation.

longitude NUMBER

latitude NUMBER

addrline1 VARCHAR2(256)

addrline2 VARCHAR2(256)

addrlastline VARCHAR2(256)

block VARCHAR2(256)

city VARCHAR2(256)

country VARCHAR2(256)

county VARCHAR2(256)

firmname VARCHAR2(256)

pcode VARCHAR2(32)

pcode_ext VARCHAR2(16)

state VARCHAR2(256)

matchmode VARCHAR2(32)

description VARCHAR2(256)

Table 15–1 LOCATIONMARK Table columns (Cont.)

Column Name Type

Introduction to Location Services

Using Location Services 15-15

Mapping capabilities can be made visible to users as a purely mapping application
or as part of a routing application. In a routing application, the mapping of routes
and driving maneuvers is performed by the routing provider. For information about
routing services, see Section 15.1.8.

15.1.8 Routing Services
The routing API provides routing (driving directions) information based on a start
point, an end point, and optionally a list of intermediate via points. All points are
specified as longitude/latitude pairs or addresses.

The routing result consists of a set of maneuvers. A maneuver corresponds to a
driving instruction, such as "turn left onto I-93" or "bear right and merge to Route
3". The routing result also includes estimated driving time and distance. Optionally,
maps and route coordinates can be requested.

15.1.8.1 Routing Settings
Routing can be influenced by preferences or requirements, called routing options.
These options are combined in a set, called routing settings. There are two types of
routing options: basic options and secondary options.

Basic options include:

■ Whether maps (images) are requested

■ Whether geometries (route coordinates) are requested

Secondary options include:

■ Optimization method, such as shortest distance or shortest driving time

■ Route properties to avoid, such as toll roads, ferry lanes, or limited-access
highways

■ Map sizes

Secondary options can be mandatory or preferred:

■ If a secondary option is mandatory but not supported by the provider, the API
will automatically fail over to the next provider.

■ If a secondary option is preferred but not supported by the provider, the API
will not check to see if other providers support the option.

If the application developer requests a secondary option without specifying
whether it is mandatory or preferred, the following defaults are applied:

Introduction to Location Services

15-16 Oracle9iAS Wireless Developer’s Guide

■ Optimization method: preferred

■ Avoid Ferry: preferred

■ Avoid Limited Access Hwy: preferred

■ Avoid Toll: preferred

■ Overview Map size: mandatory

■ Maneuver Map size: mandatory

■ Overview Map scale and zoom level: preferred

■ Maneuver Map scale and zoom level: preferred

15.1.8.2 Routing Results
The application can query the following components of a returned route:

■ List of maneuvers

■ Total distance

■ Total estimated driving time

■ Overview map

An overview map shows the source and destination, with the route highlighted.
Figure 15–5 shows an overview map for the driving direction from New York City
to Washington, DC.

Figure 15–5 Overview Map

A set of maneuvers (driving directions) is returned as part of the routing result.
Each maneuver corresponds to a driving instruction and contains the following
information:

■ Textual narrative

Introduction to Location Services

Using Location Services 15-17

■ Distance traveled during or prior to this maneuver ("After how many miles do I
have to make this right turn?")

■ Detailed maneuver map

■ Geometry (list of coordinate points, longitude/latitude)

Figure 15–6 shows a maneuver map for merging onto Interstate Route 95. The
narrative might be "Continue on ramp at sign reading 'Exit 5 I-95 South Del. Tpke.
To Baltimore' and go southwest for 0.4 miles."

Figure 15–6 Maneuver Map

Maps of the complete route or maneuvers can be requested as Java Image objects or
as Strings representing a URL.

15.1.8.3 Map Options and Transformation Requirements
The application can affect the size of the map. Because different devices (for
example, a desktop web browser, a Palm device, and a phone) may need specific
image formats (for example, GIF, BMP, or WBMP) and because most providers
support only a single format, the application currently is responsible for image
transformation between formats.

Transformation support is provided in the oracle.panama.spatial.imagex
class. This class provides functions for transforming images to different image
formats, sizes, and orientations. You can use this class to perform the following
operations on images:

■ Convert between BMP, WBMP and GIF

■ Scale image size

■ Rotate (90°, 180°, 270°)

■ Flip (vertically, horizontally, diagonally and antidiagonally)

Introduction to Location Services

15-18 Oracle9iAS Wireless Developer’s Guide

15.1.8.4 Support for Multiple Languages
If the routing provider supports multiple languages, the API chooses a language
based on the Java locale object specified in the request to the router. The language
setting can affect the maneuver narratives and distance measures.

15.1.8.5 Routing API
This section describes the routing API for location application components.

15.1.8.5.1 Router Interface The Router interface defines how an application
programmer accesses the routing service. An object of a class implementing this
interface is returned by the SpatialManager.

15.1.8.5.2 RoutingSettings Class The RoutingSettings class defines a set of
options passed to routing. There are two types of routing options: basic and
secondary.

Basic options include whether or not to request a map or a geometry. Basic options
can be specified in the constructor of a RoutingSettings object.

Secondary options can be set using setSecondaryOption. The first parameter is a
RoutingOption object, which is a static constant defined in the RoutingOption
class. It identifies the option for which a value is set. The second parameter is a
String representing the value.

Whether or not the secondary option is mandatory is defined by
setSecondaryOptionRequired. The first parameter is the RoutingOption and
the second parameter specifies whether this option requirement is mandatory.
Unless this function is called, the default value is assumed.

15.1.8.5.3 RoutingResult Class The RoutingResult class defines the routing
results, which are described in Section 15.1.8.2.

15.1.8.5.4 Maneuver Class The Maneuver class defines a single maneuver in a route
(see Section 15.1.8.2 for the maneuver attributes).

15.1.9 Business Directory (Yellow Page) Services
Business directory (Yellow Page, or YP) services provide lists of businesses in a
given area and matching a specified name or category.

Existing providers use YP services with different interfaces. Specifically, they all
have different YP categories, and even different hierarchical structures. The

Introduction to Location Services

Using Location Services 15-19

categories might be organized in a flat list or in a hierarchy of categories and
subcategories. A hierarchy tree might be deep or shallow, with a high or low fanout,
and might be balanced or unbalanced.

To unify the service of different providers, the Oracle business directory services use
a custom hierarchy that the Oracle9iAS Wireless developer defines in an XML file.
Each leaf in this hierarchy has a reference to a category of one or more providers.
Non-leaf nodes might also have such references. This custom hierarchy defines
preferred categories first. Subsequently, the carrier using Oracle9iAS Wireless tries
to match these categories to semantically similar categories supported by external
providers.

The customized hierarchy with the references to external providers’ categories is
represented in an XML file that stores hierarchical and ordered structures.
Representing order in the category hierarchy can account for the popularity of
different categories. For example, on a device with a limited screen size, an
application might restrict the choices among the most popular categories.

15.1.9.1 Different Approaches Among Yellow Pages Providers
Several providers offer YP services on the web; however, the approaches taken by
these providers differ significantly and do not offer a uniform interface.
Furthermore, the respective approaches are not final in their methodology and can
be expected to change.

A unifying pattern in the various approaches is that businesses are categorized by
subject and location. The location component is well understood in that either a ZIP
code or the combination of a city and state can be used to determine the location.

The categorization of businesses, on the other hand, is not uniformly implemented.
Some providers offer a flat list of categories, user-selected by simple substring
matching. Another approach is a 3-level or 4-level hierarchical organization of
subcategories, often with a fanout of 20 to 50, sometimes more than 100. A user
might start the hierarchy traversal at the root of the hierarchy (by default).
Alternatively, a user might enter a keyword that is matched to an appropriate
starting point within the hierarchy. Such keyword matching might go beyond
simple substring search and result in more intelligent choices.

15.1.9.2 Business Directory Category Configuration
Support for business categories and the hierarchy of categories is provided through
an XML configuration file. (You should view and modify business directory
provider information using the webtool; however, you must view and modify
business directory category information using the XML file.)

Introduction to Location Services

15-20 Oracle9iAS Wireless Developer’s Guide

The category hierarchy definition file in Example 15–1 represents the custom
hierarchy of business directory categories. Each category can have any number of
subcategories. There is no restriction to the level of nesting. A category can be
linked to multiple business directory content providers. The flexibility allowed by
this file accommodates the different approaches of various business directory
service providers, as discussed in Section 15.1.9.1.

Example 15–1 Business Directory Category Hierarchy Definition File

<?xml version="1.0" standalone="yes"?>
<Categories>
…
<Category
CategoryName = "Berry crops">
<Provider
Name = "…"
Parameter = "…"/>
<Category
CategoryName = "Cranberry farm">
<Provider
Name = "…"
Parameter = "…"/>

</Category>
</Category>
…
<Category
CategoryName = "Ornamental nursery products">
<Provider
Name = "…"
Parameter = "…"/>

<Category
CategoryName = "Florists' greens and flowers">
<Provider
Name = "…"
Parameter = "…"/>

</Category>
<Category
CategoryName = "Bulbs and seeds">
<Provider
Name = "…"
Parameter = "…"/>

</Category>
</Category>
<Category
CategoryName = "Crops grown under cover">

Introduction to Location Services

Using Location Services 15-21

<Provider
Name = "…"
Parameter = "…"/>

<Category
CategoryName = "Mushrooms grown under cover">
<Provider
Name = "…"
Parameter = "…"/>

</Category>
</Category>
…

</Categories>

15.1.9.3 Business Directories (Yellow Pages) API
The application developers can traverse the category hierarchy by using the
functions in the YPFinder interface. For any resulting category, the following can
be requested:

■ List of businesses

■ List of direct subcategories

■ List of direct or indirect subcategories containing a substring

15.1.9.3.1 YPFinder Interface The YPFinder interface defines how an application
programmer accesses the YP service. An object of a class implementing this
interface is returned by the SpatialManager.

An object of this class lets the user query:

■ Businesses in a state

■ Businesses in a city

■ Businesses in a postal code

■ Businesses in a radius around a center

■ The closest n businesses around a center

In each of these region types, businesses can be found:

■ Matching a given business name or keyword

■ Matching a given category

■ Matching both a given business name or keyword and a given category

Introduction to Location Services

15-22 Oracle9iAS Wireless Developer’s Guide

■ Matching a keyword in either a business name or category

15.1.9.3.2 YPCategory Class The YPCategory class defines a single category that is
part of the hierarchy. This class lets users access businesses in the category. It also
lets users find subcategories of the category; specifically, you can find:

■ All the direct subcategories

■ All direct or indirect subcategories matching a keyword

■ A subcategory with a given name

One of the most popular applications probably is to find subcategories of the root
matching a given keyword.

15.1.9.3.3 YPBusiness Class The YPBusiness class defines a single business. It
represents an address (Location interface) that also has a telephone number, a
description, and a list of categories it matches. You can get all businesses in a
category or all categories for each of these businesses. For example, a given
bookstore might be both in the categories book store and cafe.

15.1.10 Traffic Services
The traffic API provides information about conditions that can affect traffic flow on
road networks in major metropolitan areas. These areas are typically further
divided into smaller areas, such as downtown, metro West, metro East, and so on.
Real-time traffic reports update conditions in short time periods (such as every 5
minutes), thus providing information that is important for fleet management as
well as personal navigation.

The major components of traffic reports are incidents. An incident is an event that
will probably affect the flow of traffic. Examples of incidents are accidents,
construction activity, and traffic congestion (normal or unexpected). Each incident
includes such information as the type of incident, where the incident occurred (such
as the route number, the location, or the region), the direction along the route (such
as northbound), the expected delay, and the length of the traffic backup.

For the current release, the following kinds of queries are supported for
incident-based traffic information:

■ City-level query: return traffic incidents in the entire city.

■ Route-level query: return traffic incidents on the specified route in a city.

■ Longitude/latitude (point) or address plus radius-level query: return traffic
incidents in the requested circular area.

Introduction to Location Services

Using Location Services 15-23

Examples of traffic queries include returning the traffic report for:

■ A metropolitan area (such as Boston)

■ A route in a metropolitan area (such as I-93 South in Boston)

■ A planned route (such as from Nashua, NH to Boston, MA), returned as a
collection of (route, city)

■ A mobile range consisting of a location (longitude, latitude) and a radius from
the location

■ The vicinity of a given address (such as One Oracle Drive, Nashua, NH 03062)

The traffic API processes requests and returns responses. The requests and
responses can be in Java or XML format. Section 15.1.10.2 provides examples of an
XML request and response in XML format. Section 15.1.10.3 describes the traffic
Java API.

15.1.10.1 Traffic Report Caching
Traffic report information is cached at the city level. The first time that a traffic
report on a city is fetched, the report is written to the traffic report cache. The
cached report is considered invalid after a maximum cache age time (for example,
15 minutes), which can be set using the iAS webtool.

A network round-trip operation to the traffic service provider is required to update
the cached traffic report for the city. The cached report is updated only when both of
the following conditions are true:

■ A query is made for the city or for any Spatial geometry (route or point with
radius) that is in or partially in the city (that is, where the queried geometry
spatially interacts with the city’s geometry).

■ The cached report for the city is older than the maximum cache age time.

15.1.10.2 Traffic XML Requests and Responses
Example 15–2 shows a city-level request in XML format for traffic information for
Boston.

Note: For the current release, no traffic service providers are
included in the sample configuration files.

Introduction to Location Services

15-24 Oracle9iAS Wireless Developer’s Guide

Example 15–2 Traffic Request for Boston

<?xml version="1.0" encoding="UTF-8"?>
<traffic_request>
<query_list>
<query_info

query_type="city_level_query"
city_name="boston"
state_name="MA"
country_name="US"

/>
</query_list>

</traffic_request>

Example 15–3 shows a response in XML format for traffic information for Boston.

Example 15–3 Traffic Response for Boston

<?xml version="1.0" encoding="UTF-8"?>
<traffic_response>
<report_list>
<traffic_report>
<provider
name="Trafficstation"
covered_city_name="Boston"
state_name="MA"
country_name="US"/>
<report_time month="6" day="19" year="2001" hour="5" minute="28" meridian =
"PM"/>
<unit distance_unit="MILES" time_unit="MINUTE"/>

<incident_list>
<incident id = "1">
<incident_type>ACCIDENT</incident_type>
<description>CAR ACCIDENT</description>
<route type = "Interstate" name = "I-93" direction = "SOUTH"/>
<geo_location longitude = "-71.0607" latitude = "42.3659" radius =

"5.0"/>
<location_range>
<at_location>EXIT 26</from_location>

</location_range>
<time_range>
<from_time month = "6" day = "19" year = "2001" hour = "5" minute =

"28" meridian = "PM"/>
<to_time month = "6" day = "19" year = "2001" hour = "5" minute =

"28" meridian = "PM"/>
</time_range>

Introduction to Location Services

Using Location Services 15-25

<severity>HEAVY</severity>
<speed>15.0</speed>
<impact>EXPECT DELAY</impact>
<advice>TAKE LEFT LANE</advice>

</incident>
<incident id = "2">
<incident_type>CONSTRUCTION</incident_type>
<description>REGULAR MAINTENANCE</description>
<route type = "Interstate" name = "I-95" direction = "NORTH"/>
<geo_location longitude = "-71.3555" latitude = "42.3601" radius =
"30.0"/>

<location_range>
<at_location>EXIT 36</at_location>

</location_range>
<time_range>
<at_time month = "6" day = "19" year = "2001" hour = "5" minute =

"28" meridian = "PM"/>
</time_range>
<severity>MINOR</severity>
<speed>35.0</speed>
<impact>EXPECT DELAY</impact>
<advice>USE I-495</advice>

</incident>
</incident_list>

</traffic_report>
</report_list>
</traffic_response>

15.1.10.3 Traffic Java API
This section describes the traffic Java API for location application components.

15.1.10.3.1 CityInfo Class The CityInfo class provides the city name, state name,
and country name for a city. A common use of this class is to create a CityInfo
instance with city name, state name (optional), and country name, and pass it to the
query for a traffic report at city level, route level, or point and radius level with a
city.

15.1.10.3.2 City Interface The City interface provides information about a city from
a specified service provider. The information includes the city name, state name,
country name, and information about routes. A City instance could be obtained
from the TrafficReport interface.

Introduction to Location Services

15-26 Oracle9iAS Wireless Developer’s Guide

15.1.10.3.3 RouteInfo Class The RouteInfo class provides the name and type for a
route. A common use of this class is to create a RouteInfo instance and pass it to
the query for a traffic report at route level.

15.1.10.3.4 TrafficRoute Interface The TrafficRoute interface provides information
for a route from a specified service provider. The information includes the route
name, route type, geometry that represents the route, and the city name. A
TrafficRoute instance could be obtained from the TrafficIncident interface.

15.1.10.3.5 TrafficReport Interface The TrafficReport interface provides
information for an incident-based traffic report, such as the report time, the number
of incidents, the provider's information, the city, and the incidents. A report could
then be created to show to users or administrators of the application.

15.1.10.3.6 TrafficIncident Interface The TrafficIncident interface provides
information for a traffic incident, such as the severity, type, description, route and
direction on which the occurred, location, time range, impact, and advice.

15.1.10.3.7 TrafficReporter Interface The TrafficReporter interface provides
functions that return a traffic report based on different queries. The following kinds
of queries are supported:

■ Given the information about a city (city name, state name [optional], country
name), return the report.

■ Given the information about a route (with or without direction) and the city
where the route is located in, return the report.

■ Given the longitude/latitude coordinates of a point and the radius, return the
report for the area.

■ Given the address of a location and the radius, return the report for the area.

When using SpatialManager.createLocation() to get an instance of
Location, you must specify the city name and country name. Do not use the
LastLine attribute to combine these pieces of information. Set the value of the
Point geometry to null to avoid automatic geocoding.

15.1.10.3.8 TrafficCityManager Interface The TrafficCityManager interface
provides two functions, one to obtain all the cities for which traffic information is
provided, and the other to obtain the routes info for a given city. A common use of
these functions is to call them to create a drop-down list of cities and routes
supported by the application.

Introduction to Location Services

Using Location Services 15-27

15.1.10.4 Traffic Service Configuration
After the region modeling data and city coverage data has been loaded into the
repository during the Oracle9iAS Wireless installation, you can add traffic providers
and supported cities for a provider.

15.1.10.4.1 Adding a Traffic Provider To add support for a new traffic service provider,
follow these steps:

1. Using the iAS webtool, set the traffic provider information and the traffic report
cache time.

2. For each supported city of this new provider, use the region modeling tool
(described in Section 15.4) to check if there is an entry in the CITY table for that
city, including a valid GEOMETRY column value. If there is not an entry for the
city, including its geometry, add an entry.

3. Get and note the ID of this city.

4. Use SQL*Plus connect to the Oracle9iAS Wireless repository.

5. For each city to be supported for this traffic service provider, set the value of the
COVERED_BY_TRAFFIC column in the CITY_COVERAGE table to 'Y', and use
the value of city’s ID to perform the update. For example:

UPDATE city_coverage SET covered_by_traffic = 'Y' WHERE id = 12345;
COMMIT;

If there is not already an entry in the CITY_COVERAGE table for this city, add a
row and set the value of the COVERED_BY_TRAFFIC column to 'Y', and be
sure that the ID value in this table is the same as the ID value for the city in the
CITY table. For example:

INSERT INTO city_coverage (id, name, state_name, country_name,
covered_by_traffic) VALUES (10750, 'BOSTON', 'MA', 'US', 'Y');

COMMIT;

15.1.10.4.2 Adding a Supported City for a Provider To add support for a new city for an
existing traffic service provider, follow these steps:

1. For each supported city of this new provider, use the region model tool
(described in Section 15.4) to check if there is an entry in the CITY table for that
city, including a valid GEOMETRY column value. If there is not an entry for the
city, including its geometry, add an entry.

2. Get and note the ID of this city.

Developing Location-Based Applications

15-28 Oracle9iAS Wireless Developer’s Guide

3. Use SQL*Plus connect to the Oracle9iAS Wireless repository.

4. If there is an entry in the CITY_COVERAGE table for this city, set the value of
the COVERED_BY_TRAFFIC column in the CITY_COVERAGE table to 'Y', and
use the value of city’s ID to perform the update. For example:

UPDATE city_coverage SET covered_by_traffic = 'Y' WHERE id = 12345;
COMMIT;

If there is not already an entry in the CITY_COVERAGE table for this city, add a
row and set the value of the COVERED_BY_TRAFFIC column to 'Y', and be
sure that the ID value in this table is the same as the ID value for the city in the
CITY table. For example:

INSERT INTO city_coverage (id, name, state_name, country_name,
covered_by_traffic) VALUES (10750, 'BOSTON', 'MA', 'US', 'Y');

COMMIT;

15.2 Developing Location-Based Applications
You can develop a location-based application by using either of the following
approaches:

■ Creating Java Server Page (JSP) files that contain MobileXML and/or HTML
tags and that include custom Oracle-supplied tags

■ Writing a Java program (specifically, an adapter)

Creating JSP files is often easier and more convenient that writing an adapter;
however, writing an adapter gives you greater flexibility and control over the
program logic. This section describes both approaches.

15.2.1 Creating Java Server Pages
If you do not need to write an adapter, you can create Java Server Pages (JSP files) to
provide location-based capabilities to users.

This section provides detailed information about the Oracle-supplied tags that you
can use. Each reference section includes an example.

Developing Location-Based Applications

Using Location Services 15-29

Table 15–2 groups the JSP tags for location services by the type of application for
which the tag is useful, and briefly describes the information specified by the tag.

These tags must be used with a prefix, which must be specified in the JSP file. The
following example defines the loc prefix, which is used in other examples of
specific tags:

<%@ taglib uri="LocationTags" prefix="loc" %>

The following example shows the loc prefix used with the address tag:

<loc:address name="hq" type="oracle.panama.model.Location"
businessName="Oracle Headquarters" firstLine="500 Oracle Parkway"
city="Redwood City" state="CA" postalCode="94065" country="US"/>

The following sections (in alphabetical order by tag name) provide reference
information for all the parameters available for each tag: the parameter name, a

Table 15–2 JSP Tags for Location Services

Type of
Application Tag Name Specifies

Geocoding,
Mapping,
Routing

address An address to be geocoded, located on a map, or
used as the start or end address of a route or as the
center for a business directory query

Mapping map A map with a specified resolution, including one or
more points or routes, or showing a driving
maneuver or a complete route

Routing route A route with a specified map resolution

Routing iterateManeuvers A collection of driving maneuvers, presented
individually

Business
directory

businesses A collection of businesses that share one or more
attributes

Business
directory

iterateBusinesses A collection returned by the businesses tag,
presented individually

Business
directory

category A business category (for example, Dealers)

Business
directory

iterateCategoriesMatc
hingKeyword

A collection of categories that match a specified
keyword value, presented individually

Business
directory

iterateChildCategories A collection of immediate child subcategories,
presented individually

Developing Location-Based Applications

15-30 Oracle9iAS Wireless Developer’s Guide

description, and whether or not the parameter is required. If a parameter is
required, it must be included with the tag. If a parameter is not required and you
omit it, the interpretation is performed by the service provider.

Short examples are provided in the reference sections for JSP tags, and more
comprehensive examples are provided in Section 15.2.1.10.

 and evaluated at run time:

■ If a parameter is required, it must be included with the tag. If a parameter is not
required and you omit it, the interpretation is performed by the service
provider.

15.2.1.1 address
The address tag specifies an address to be geocoded, located on a map, or used as
the start or end address of a route or as the center for a business directory query.

Table 15–3 lists the address tag parameters. (See Section 15.2.1 for an explanation of
the information provided.)

The following example of the address tag specifies an address (for a store named
Mike’s Hardware) to be geocoded.

<loc:address
name = "hardware_1"
type = "oracle.panama.model.Location"
businessName = "Mike’s Hardware"

Table 15–3 Address Tag Parameters

Parameter
Name Description Required

name Name for the returned address object. Example: hardware_1. Yes

type Type of object. Must be: oracle.panama.model.Location Yes

businessName Descriptive name of the business or other entity at the address.
Example: Mike’s Hardware

No

firstLine Street address. No

city City name. No

state 2-character state (US) or province (Canada) code. No

postalCode Postal code. No

country Country name. No

Developing Location-Based Applications

Using Location Services 15-31

firstLine = "22 Monument Sq"
city = "Concord"
state = "MA"
postalCode = "01742"
country = "US" />

15.2.1.2 businesses
The businesses tag specifies a collection of businesses that share one or more
attributes.

Table 15–4 lists the businesses tag parameters. (See Section 15.2.1 for an explanation
of the information provided.)

Table 15–4 Businesses Tag Parameters

Parameter
Name Description Required

name Name for the returned object. Example: mikes_hardware_
stores

Yes

type Type of object. Must be: java.util.Collection Yes

businessName Descriptive name of the business or other entity at the address.
Example: Mike’s Hardware

No

categoryID Business services category variable name. Example:
Automotive.

No

keyword Any string to search for in the name or categoryID. Example:
French

No

city City name. No

state 2-character state (US) or province (Canada) code. No

postalCode Postal code. No

country Country name No

centerID A point variable name (such as for an address) to be used as
the center point from which to start searching. If you specify
centerID, you must also specify radius or nearestN.

No

radius Length (in meters) of the radius of the circle in which to search.
If you specify radius, you must also specify centerID.

No

nearestN Maximum number of nearest results that satisfy the query
requirements (for example, to find the 3 nearest banks to a
hotel or the user’s current position). If you specify nearestN,
you must also specify centerID.

No

Developing Location-Based Applications

15-32 Oracle9iAS Wireless Developer’s Guide

The following example of the businesses tag specifies all businesses named
Borders in the state of California in the United States. The use of the map tag to
enclose the businesses tag causes a map to be created that includes and labels
each Borders bookstore.

<loc:map name="map1" type="oracle.panama.spatial.jsptags.beans.Map"
xres="1000" yres="500">

<loc:businesses name="bord" type="java.util.Collection"
businessName="Borders"

country="US" state="CA"/>
</loc:map>

15.2.1.3 category
The category tag specifies a business category (for example, Dealers).

Table 15–5 lists the category tag parameters. (See Section 15.2.1 for an explanation of
the information provided.)

The following example uses two category tags. The first category tag creates an
object named cat_auto that specifies a category named Automotive. The second
category tag creates an object named cat_dealers that specifies a category
named Dealers that is a child of the cat_auto (Automotive) parent category.

<mt:category name="cat_auto" type="oracle.panama.spatial.yp.YPCategory"
categoryName="Automotive" />

<mt:category name="cat_dealers" type="oracle.panama.spatial.yp.YPCategory"
parentCategory="cat_auto" categoryName="Dealers" />

Table 15–5 Category Tag Parameters

Parameter
Name Description Required

name Name for the returned object. Example: cat_dealers Yes

type Type of object. Must be:
oracle.panama.spatial.yp.YPCategory

Yes

parentCategory Name of the object containing the specification of the parent
category (created previously using the category tag). If not
specified, the root is assumed.

No

categoryName Name of the category. Example: Dealers. Yes

Developing Location-Based Applications

Using Location Services 15-33

15.2.1.4 iterateBusinesses
The iterateBusinesses tag presents individually the businesses in a collection
returned by the businesses tag.

Table 15–6 lists the iterateBusinesses tag parameters. (See Section 15.2.1 for an
explanation of the information provided.)

The following example creates a collection of all Borders stores in California and
then uses the iterateBusinesses tag to present each Borders store location in
the collection.

<loc:businesses name="bord" type="java.util.Collection" businessName="Borders"
country="US" state="CA"/>

<loc:iterateBusinesses name="iter_borders" type="oracle.panama.model.Point"
collection="bord" />

15.2.1.5 iterateCategoriesMatchingKeyword
The iterateCategoriesMatchingKeyword tag creates a collection of categories
that match a specified keyword value, and presents the categories individually.

Table 15–7 lists the iterateCategoriesMatchingKeyword tag parameters. (See
Section 15.2.1 for an explanation of the information provided.)

Table 15–6 IterateBusinesses Tag Parameters

Parameter
Name Description Required

name Name for the returned object. Example: iter_borders Yes

type Type of object. Must be: oracle.panama.model.Point Yes

collection Name for the returned collection. Example: bord Yes

Table 15–7 IterateCategoriesMatchingKeyword Tag Parameters

Parameter
Name Description Required

name Name for the returned object. Example: hardware_stores Yes

type Type of object. Must be:
oracle.panama.spatial.yp.YPCategory

Yes

parentCategory Name of the object containing the specification of the parent
category (created previously using the category tag).

No

Developing Location-Based Applications

15-34 Oracle9iAS Wireless Developer’s Guide

The following example shows the category tag used to create an object named
cat_auto that specifies a category named Automotive. The
iterateCategoriesMatchingKeyword tag is then used to create an object
named key that contains each category containing Dealers under the Automotive
parent category, and the fully qualified name of each returned category is
displayed.

<mt:category name="cat_auto" type="oracle.panama.spatial.yp.YPCategory"
categoryName="Automotive" />

<mt:iterateCategoriesMatchingKeyword name="key"
type="oracle.panama.spatial.yp.YPCategory"
keyword="Dealers" parentCategory="cat_auto">

>>> <%= key.getFullyQualifiedName() %>
</mt:iterateCategoriesMatchingKeyword>

15.2.1.6 iterateChildCategories
The iterateChildCategories tag specifies a collection of immediate child
subcategories, presented individually.

Table 15–8 lists the iterateChildCategories tag parameters. (See Section 15.2.1
for an explanation of the information provided.)

The following example of the iterateChildCategories tag presents each
immediate child category under the automotiveDealers category.

keyword Word or phrase to be searched for in the parent category
name, or in all category names if parentCategory is not
specified.

Yes

Table 15–8 IterateChildCategories Tag Parameters

Parameter
Name Description Required

name Name for the returned object. Example: hardware_stores Yes

type Type of object. Must be:
oracle.panama.spatial.yp.YPCategory

Yes

parentCategory Name of the object containing the specification of the parent
category (created previously using the category tag).

No

Table 15–7 IterateCategoriesMatchingKeyword Tag Parameters (Cont.)

Parameter
Name Description Required

Developing Location-Based Applications

Using Location Services 15-35

<loc:category name="automotiveDealers"
type="oracle.panama.spatial.yp.YPCategory" categoryName="Dealers">

<loc:category name="automotive" type="oracle.panama.spatial.yp.YPCategory"
categoryName="Automotive"/>

</loc:category>

<loc:iterateChildCategories name="cat"
type="oracle.panama.spatial.yp.YPCategory" parentCategory="automotiveDealers">

<%= cat %>

15.2.1.7 iterateManeuvers
The iterateManeuvers tag creates a collection of driving maneuvers, and it
presents the maneuvers individually.

Table 15–9 lists the iterateManeuvers tag parameters. (See Section 15.2.1 for an
explanation of the information provided.)

The following example creates a route named myRoute between two Oracle offices,
displays a map of the route, and presents each driving maneuver (using the
iterateManeuvers tag and the getMap and getNarrative function calls).

<loc:route name="myRoute" type="oracle.panama.spatial.jsptags.beans.Route"
xres="800" yres="600">

<loc:address
name="NEDC"
type="oracle.panama.model.Location"
businessName="NEDC"
firstLine="1 Oracle Dr"
city="Nashua"
state="NH"
postalCode="03062"
country="US"/>

<loc:address

Table 15–9 IterateManeuvers Tag Parameters

Parameter
Name Description Required

name Name for the returned object. Example: eManeuver Yes

type Type of object. Must be:
oracle.panama.spatial.jsptags.beans.route

Yes

routeID Name of the route for which to present the driving
maneuvers.

Yes

Developing Location-Based Applications

15-36 Oracle9iAS Wireless Developer’s Guide

name="HQ"
type="oracle.panama.model.Location"
businessName="HQ"
firstLine="500 Oracle Parkway"
city="Redwood City"
state="CA"
postalCode="94065"
country="US"/>

</loc:route>

<img src="<%= myRoute.getMap() %>">

<loc:iterateManeuvers name="aManeuver"
type="oracle.panama.spatial.jsptags.beans.Maneuver" routeID="myRoute">

<a href="<%= aManeuver.getMap() %>">
<%= aManeuver.getNarrative() %>

</loc:iterateManeuvers>

15.2.1.8 map
The map tag specifies a map with a specified resolution and showing one of the
following:

■ One or more points

■ A route

■ A driving maneuver

Table 15–10 lists the map tag parameters. (See Section 15.2.1 for an explanation of
the information provided.)

Table 15–10 Map Tag Parameters

Parameter
Name Description Required

name Name for the returned object. Example: myMap Yes

type Type of object. Must be:
oracle.panama.spatial.jsptags.beans.Map

Yes

points Name of a collection of points around which to create the
map.

No

route Name of a route around which to create the map. No

maneuver Name of a maneuver around which to create the map. No

Developing Location-Based Applications

Using Location Services 15-37

The following example of the map tag creates a map named NEDCSmall 400 pixels
wide and 300 pixels high. The center point for the map is the address defined by the
address tag enclosed in the map tag.

<loc:map name="NEDCSmall" type="oracle.panama.spatial.jsptags.beans.Map"
xres="400" yres="300">

<loc:address
name="NEDC"
type="oracle.panama.model.Location"
businessName="NEDC"
firstLine="1 Oracle Dr"
city="Nashua"
state="NH"
postalCode="03062"
country="US"/>

</loc:map>

15.2.1.9 route
The route tag specifies a route with a specified map resolution. It includes
maneuvers, an overview map, and maneuver maps.

Table 15–11 lists the route tag parameters. (See Section 15.2.1 for an explanation of
the information provided.)

xres Width of the map in screen display units. Yes

yres Height of the map in screen display units. Yes

Table 15–11 Route Tag Parameters

Parameter
Name Description Required

name Name for the returned object. Example: myRoute Yes

type Type of object. Must be:
oracle.panama.spatial.jsptags.beans.Route

Yes

xres Width of the displayed route in screen display units. Yes

yres Height of the displayed route in screen display units. Yes

Table 15–10 Map Tag Parameters (Cont.)

Parameter
Name Description Required

Developing Location-Based Applications

15-38 Oracle9iAS Wireless Developer’s Guide

The following example of the route tag specifies the route between two addresses
(an Oracle office in New Hampshire and Oracle headquarters in California).

<loc:route name="myRoute" type="oracle.panama.spatial.jsptags.beans.Route"
xres="800" yres="600">

<loc:address
name="NEDC"
type="oracle.panama.model.Location"
businessName="NEDC"
firstLine="1 Oracle Dr"
city="Nashua"
state="NH"
postalCode="03062"
country="US"/>

<loc:address
name="HQ"
type="oracle.panama.model.Location"
businessName="HQ"
firstLine="500 Oracle Parkway"
city="Redwood City"
state="CA"
postalCode="94065"
country="US"/>

</loc:route>

15.2.1.10 JSP Examples for Location Services
This section includes several examples of JSP code to perform operations that
involve location services. In these examples, addresses are specified in the points
attribute of the appropriate tag (<map> or <route>).

Example 15–4 displays small and large maps of two locations.

Example 15–4 Mapping Using JSP Tags

<%@ taglib uri="LocationTags" prefix="loc" %>

<%!
public String transformString(String orig)
{
String result = "";
for (int i=0;i<orig.length();i++)
{
if (orig.charAt(i) == '&') result = result + "&";
else if (orig.charAt(i) == '<') result = result + "<";
else if (orig.charAt(i) == '>') result = result + ">";

Developing Location-Based Applications

Using Location Services 15-39

else result = result + orig.charAt(i);
}
return result;

}
%>

<SimpleResult>
<loc:address
name="NEDC"
type="oracle.panama.model.Location"
businessName="NEDC"
firstLine="1 Oracle Dr"
city="Nashua"
state="NH"
postalCode="03062"
country="US"/>

<loc:map
name="NEDCSmall" type="oracle.panama.spatial.jsptags.beans.Map" xres="400"

yres="300" points="NEDC">
</loc:map>

<loc:address
name="HQ"
type="oracle.panama.model.Location"
businessName="HQ"
firstLine="500 Oracle Parkway"
city="Redwood City"
state="CA"
postalCode="94065"
country="US"/>

<loc:map name="HQSmall" type="oracle.panama.spatial.jsptags.beans.Map"
xres="400" yres="300" points="HQ">

</loc:map>

<loc:map name="BothSmall" type="oracle.panama.spatial.jsptags.beans.Map"
xres="400" yres="300" points="NEDC HQ"/>

<loc:map name="NEDCLarge" type="oracle.panama.spatial.jsptags.beans.Map"
xres="800" yres="600" points="NEDC"/>

<loc:map name="HQLarge" type="oracle.panama.spatial.jsptags.beans.Map"
xres="800" yres="600" points="HQ"/>

<loc:map name="BothLarge" type="oracle.panama.spatial.jsptags.beans.Map"
xres="800" yres="600" points="NEDC HQ"/>

<SimpleImage target="<%= transformString(NEDCLarge.toString()) %>"
src="<%= transformString(NEDCSmall.toString()) %>"/>

Developing Location-Based Applications

15-40 Oracle9iAS Wireless Developer’s Guide

<SimpleImage target="<%= transformString(HQLarge.toString()) %>"
src="<%= transformString(HQSmall.toString()) %>"/>

<SimpleImage target="<%= transformString(BothLarge.toString()) %>"
src="<%= transformString(BothSmall.toString()) %>"/>

</SimpleResult>

Example 15–5 displays the route between two locations and the driving directions
(maneuvers).

Example 15–5 Routing Using JSP Tags

<%@ taglib uri="LocationTags" prefix="loc" %>

<%!
public String transformString(String orig)
{
String result = "";
for (int i=0;i<orig.length();i++)
{
if (orig.charAt(i) == '&') result = result + "&";
else if (orig.charAt(i) == '<') result = result + "<";
else if (orig.charAt(i) == '>') result = result + ">";
else result = result + orig.charAt(i);

}
return result;

}
%>

<SimpleResult>
<loc:address
name="NEDC"
type="oracle.panama.model.Location"
businessName="NEDC"
firstLine="1 Oracle Dr"
city="Nashua"
state="NH"
postalCode="03062"
country="US"/>

<loc:address
name="HQ"
type="oracle.panama.model.Location"
businessName="HQ"
firstLine="500 Oracle Parkway"

Developing Location-Based Applications

Using Location Services 15-41

city="Redwood City"
state="CA"
postalCode="94065"
country="US"/>

<loc:route name="myRoute" type="oracle.panama.spatial.jsptags.beans.Route"
xres="800" yres="600" points="NEDC HQ">

</loc:route>

<SimpleImage src="<%= transformString(myRoute.getMap()) %>"/>

<SimpleText>
<loc:iterateManeuvers name="aManeuver"

type="oracle.panama.spatial.jsptags.beans.Maneuver" routeID="myRoute">
<SimpleTextItem>

<%= aManeuver.getNarrative() %>
</SimpleTextItem>

</loc:iterateManeuvers>
</SimpleText>

</SimpleResult>

Example 15–6 displays business directory (YP) information by name within a
specified distance of a location: specifically, a map with the ten Starbucks locations
nearest to Oracle headquarters.

Example 15–6 Business Directory (YP) by Name Using JSP Tags

<%@ taglib uri="LocationTags" prefix="loc" %>

<%!
public String transformString(String orig)
{
String result = "";
for (int i=0;i<orig.length();i++)
{
if (orig.charAt(i) == '&') result = result + "&";
else if (orig.charAt(i) == '<') result = result + "<";
else if (orig.charAt(i) == '>') result = result + ">";
else result = result + orig.charAt(i);

}
return result;

}
%>

<SimpleResult>
<loc:address

Developing Location-Based Applications

15-42 Oracle9iAS Wireless Developer’s Guide

name="HQ"
type="oracle.panama.model.Location"
businessName="HQ"
firstLine="500 Oracle Parkway"
city="Redwood City"
state="CA"
postalCode="94065"
country="US"/>

<loc:businesses
name="starbucks"
type="java.util.Collection"
businessName="Starbucks"
centerID="HQ"
nearestN="10"/>

<loc:map name="starbucksMap" type="oracle.panama.spatial.jsptags.beans.Map"
xres="800" yres="600" points="starbucks">

</loc:map>

<SimpleImage src="<%= transformString(starbucksMap.toString()) %>"/>

<SimpleText>
<loc:iterateBusinesses name="singleStarbucks" type="oracle.panama.model.Point"

collection="starbucks">
<SimpleTextItem> <%= singleStarbucks %> </SimpleTextItem>

</loc:iterateBusinesses>
</SimpleText>

</SimpleResult>

Example 15–7 displays business directory (YP) information by category within a
specified area: specifically, a map with all automobile dealers (new cars) in San
Francisco, California.

Example 15–7 Business Directory (YP) by Category Using JSP Tags

<%@ taglib uri="LocationTags" prefix="loc" %>

<%!
public String transformString(String orig)
{
String result = "";
for (int i=0;i<orig.length();i++)
{
if (orig.charAt(i) == '&') result = result + "&";
else if (orig.charAt(i) == '<') result = result + "<";

Developing Location-Based Applications

Using Location Services 15-43

else if (orig.charAt(i) == '>') result = result + ">";
else result = result + orig.charAt(i);

}
return result;

}
%>

<SimpleResult>
<loc:category name="automotive"

type="oracle.panama.spatial.yp.YPCategory" categoryName="Automotive">
</loc:category>

<loc:category name="automotiveDealers"
type="oracle.panama.spatial.yp.YPCategory" categoryName="Dealers"
parentCategory="automotive">

</loc:category>

<loc:category name="newAutomotiveDealers"
type="oracle.panama.spatial.yp.YPCategory" categoryName="New"
parentCategory="automotiveDealers">

</loc:category>

<loc:businesses name="dealers" type="java.util.Collection"
categoryID="newAutomotiveDealers" country="US" state="CA"
city="San Francisco"/>

<loc:map name="dealerMap" type="oracle.panama.spatial.jsptags.beans.Map"
xres="800" yres="600" points="dealers">

</loc:map>

<SimpleImage src="<%= transformString(dealerMap.toString()) %>"/>

<SimpleText>
<loc:iterateBusinesses name="dealer" type="oracle.panama.model.Point"

collection="dealers">
<SimpleTextItem>
<%= transformString(dealer.toString()) %>

</SimpleTextItem>
</loc:iterateBusinesses>
</SimpleText>

</SimpleResult>

Developing Location-Based Applications

15-44 Oracle9iAS Wireless Developer’s Guide

15.2.2 Creating a Location-Based Application Adapter
You can use the location API to write an adapter, which is a Java program that
represents the location-based application to its end users.

This section provides information specific to creating an adapter for a
location-based application. It does not describe adapter concepts or the general
procedure for writing an adapter, because these topics are covered in the Oracle9iAS
Wireless Developer’s Guide.

15.2.2.1 Geocoding
In a geocoding application, the user is asked for an address and the adapter
geocodes that address. Such an application can start by constructing a SimpleForm
object for the address, as shown in Example 15–8.

Example 15–8 Constructing a SimpleForm Object

Element sf = XML.makeElement(result, "SimpleForm");
sf.setAttribute("target", targetString);
result.appendChild(sf);

Element sfi = XML.makeElement(sf, "SimpleFormItem");
sfi.setAttribute("name", "adrLine1");
sfi.setAttribute("title", "address line 1");
sf.appendChild(sfi);

sfi = XML.makeElement(sf, "SimpleFormItem");
sfi.setAttribute("name", "city");
sfi.setAttribute("title", "city");
sf.appendChild(sfi);

sfi = XML.makeElement(sf, "SimpleFormItem");
sfi.setAttribute("name", "state");
sfi.setAttribute("title", "state");
sf.appendChild(sfi);

sfi = XML.makeElement(sf, "SimpleFormItem");
sfi.setAttribute("name", "postalcode");
sfi.setAttribute("title", "postal code");
sf.appendChild(sfi);

sfi = XML.makeElement(sf, "SimpleFormItem");
sfi.setAttribute("name", "country");
sfi.setAttribute("title", "country");

Developing Location-Based Applications

Using Location Services 15-45

sf.appendChild(sfi);

The next time the adapter is invoked (after the user has entered values into the
fields), the adapter can access the data, as shown in Example 15–9.

Example 15–9 Accessing Address Data

String
adrLine1 = sr.getInputArguments().getInputValue("adrLine1"),
city = sr.getInputArguments().getInputValue("city"),
state = sr.getInputArguments().getInputValue("state"),
postalcode = sr.getInputArguments().getInputValue("postalcode"),
country = sr.getInputArguments().getInputValue("country");

Geocoding can be done with a call, as shown in Example 15–10. (Another format of
SpatialManager.createlocation, not shown in Example 15–10, specifies a
point with longitude and latitude coordinates, in which case a Location object is
created but no geocoding is done.)

Example 15–10 Geocoding the Address

Location address =
SpatialManager.createLocation(

companyName,
adrLine1, // "500 Oracle Parkway"
null,
city, // "Redwood City"
state, // "CA"
postalcode, // "94065"
postalCodeExtension, // null
country); // "US"

The resulting longitude and latitude values can be accessed as shown in
Example 15–11.

Example 15–11 Accessing Values of the Geocoded Address

address.getLongitude()
address.getLatitude()
address.getAddressLine1()
address.getCity()
address.getState()

Developing Location-Based Applications

15-46 Oracle9iAS Wireless Developer’s Guide

Note that the getLongitude and getLatitude methods are inherited from the
Point interface.

15.2.2.1.1 International Addresses To better adapt to local address formats, you can
use the international address formatting options provided in the
oracle.panama.spatial.intladdress package. (For information about
international address formats, see Section 15.1.3.1.4.) The number of steps necessary
to have a user input an address increases by one: the user first has to select a
country (address format) in order to be presented with a form for entering the
address. Obviously, the form depends on the choice of country, so that the two
separate steps cannot be merged to one.

Example 15–12 creates a drop-down SimpleFormSelect element that lets the user
select an address format (US, German, French, and so on).

Example 15–12 Selecting an Address Format

protected void addAdrFormatChoice(
Element result,
String targetString)

{
Element sf = XML.makeElement(result, "SimpleForm");
sf.setAttribute("target", targetString);
result.appendChild(sf);
Element sfs = XML.makeElement(sf, "SimpleFormSelect");
sfs.setAttribute("name", "adrFormat");
sfs.setAttribute("title", "address format");
sf.appendChild(sfs);

Iterator it = IntlAddressManager.getAddressFormats();
while(it.hasNext())
{

String name = (String)it.next();
Element sfo = XML.makeElement(sfs, "SimpleFormOption");
sfo.setAttribute("value", name);
sfs.appendChild(sfo);
sfo.appendChild(XML.makeText(sfo, name));

}
}

The next step is to provide a form requesting all address components relevant to the
given address format. The components are determined dynamically based on the
chosen country, as shown in Example 15–13.

Developing Location-Based Applications

Using Location Services 15-47

Example 15–13 Requesting Address Components for a Specified Country

protected void chooseAdr(
Element result,
String targetString,
String adrFormat)

{
Element sf = XML.makeElement(result, "SimpleForm");
sf.setAttribute("target", targetString);
result.appendChild(sf);

Iterator addressComponentNames =
IntlAddressManager.getAddressFormat(adrFormat).getComponentNames();

while(addressComponentNames.hasNext())
{

Element sfi = XML.makeElement(sf, "SimpleFormItem");
String name = (String)addressComponentNames.next();
sfi.setAttribute("name", "adr_" + name.replace(' ', '_'));
sfi.setAttribute("title", name);
sf.appendChild(sfi);

}
}

Example 15–14 displays the result. The components to display and the number of
lines depend on the chosen country.

Example 15–14 Displaying Addresses in a Country-Specific Format

protected void printResult(
Element result,
String targetString,
String adrComp[],
String adrFormat)

{
IntlAddress loc = IntlAddressManager.createAddress(

adrFormat,
adrComp);

Element sf = XML.makeElement(result, "SimpleText");
result.appendChild(sf);

Iterator lines = loc.getAddressLines(false, true);
while(lines.hasNext())
{

Element sfi = XML.makeElement(sf, "SimpleTextItem");

Developing Location-Based Applications

15-48 Oracle9iAS Wireless Developer’s Guide

sfi.appendChild(XML.makeText(sfi, (String)lines.next()));
sf.appendChild(sfi);

}

Element sfi = XML.makeElement(sf, "SimpleTextItem");
sfi.appendChild(XML.makeText(sfi, "lat: " + loc.getLatitude()));
sf.appendChild(sfi);

sfi = XML.makeElement(sf, "SimpleTextItem");
sfi.appendChild(XML.makeText(sfi, "lon: " + loc.getLongitude()));
sf.appendChild(sfi);

}

15.2.2.2 Location Marks
An adapter can work with location marks. Example 15–15 retrieves the location
marks into an array. (Code not relevant to location marks is omitted from this
example.)

Example 15–15 Getting Location Marks

public Element invoke (ServiceContext sr)
throws AdapterException

{
…

LocationMark locMarks[] = sr.getSession().getUser().getLocationMarks();

…
}

Note that LocationMark extends Location (an address).

15.2.2.3 Routing
You can create an adapter that provides routing information between a start address
and an end address that the user enters. The adapter must:

1. Set the routing settings and options.

2. Compute the route.

3. Present the resulting route to the user (for example, as a list of maneuvers and
maneuver maps, plus an overview map).

Developing Location-Based Applications

Using Location Services 15-49

Example 15–16 sets the routing settings and options by constructing a
RoutingSettings object and specifying the resolution (height and width) of the
resulting overview and maneuver maps.

Example 15–16 Setting Routing Settings and Options

RoutingSettings rS = new RoutingSettings(true, false);
rS.setSecondaryOption(RoutingOption.overviewMapHeight, "600");
rS.setSecondaryOption(RoutingOption.overviewMapWidth, "800");
rS.setSecondaryOption(RoutingOption.maneuverMapHeight, "600");
rS.setSecondaryOption(RoutingOption.maneuverMapWidth, "800");

Example 15–17 computes the route, returning a RoutingResult object.

Example 15–17 Computing the Route

RoutingResult rR =
SpatialManager.getRouter().computeRoute(

startLoc,
endLoc,
null, // via points
rS, // routing options
Locale.US);

Example 15–18 presents the resulting route to the user, displaying a list of
maneuvers and maneuver maps, plus an overview map. (In this example, code
specific to the routing API is shown in bold.)

Example 15–18 Presenting the Route to the User

Element sm = XML.makeElement(result, "SimpleMenu");
result.appendChild(sm);
Element smi = XML.makeElement(sm, "SimpleMenuItem");
smi.setAttribute("target", rR.getOverviewMapURL()[0].toString()); // first of

// possibly several overview maps
sm.appendChild(smi);
Text txt2 = XML.makeText(smi, "Map of complete route");
smi.appendChild(txt2);

Maneuver man[] = rR.getManeuvers();
for(int maneuver = 0; maneuver < man.length; maneuver++)
{

Element sti = XML.makeElement(sm, "SimpleMenuItem");
sti.setAttribute("target", man[maneuver].getManeuverMapURL().toString());
sm.appendChild(sti);

Developing Location-Based Applications

15-50 Oracle9iAS Wireless Developer’s Guide

String str;
str = man[maneuver].getNarrative();
Text txt = XML.makeText(sti, str);
sti.appendChild(txt);

}

15.2.2.4 Mapping
In a typical mapping application, the user enters an address and wants to see a
map. Example 15–19 gets the map image URL of an address (loc) to be mapped.
(The variable loc of type Location contains an address that had been previously
geocoded.)

Example 15–19 Getting a Map Image URL:

String url =
SpatialManager.getMapper().getMapURL(

loc,
oracle.panama.imagex.ImageFormats.GIF,
800, // width
600, // height
false); // allow turning

In Example 15–19, the last parameter specifies whether or not the API can switch
the width and height of the image to fit the map better to some mobile device
screens. In this example, this option is disabled.

As alternatives to passing a single point object as the first parameter as shown in
Example 15–19, you can pass an array of Point objects or an object of type
Location (address) or YPBusiness, which extend the Point interface.

15.2.2.5 Business Directory (YP)
In a typical business directory (YP) application, the user enters a region specifying a
country, state, and city, and wants to get businesses in some category, such as
relating to wine tasting or wineries. The user must be asked for country, state, and
city, and the application must determine the exact category and then all the relevant
businesses.

The first step in determining the category is usually to ask the user for a category
keyword (for example, wine) through a SimpleForm object.

The next step is to determine all the categories that match the keyword, as shown in
Example 15–20.

Developing Location-Based Applications

Using Location Services 15-51

Example 15–20 Finding Categories Matching a Keyword

YPFinder ypF = SpatialManager.getYPFinder();
YPCategory cats[] = ypF.getCategoryAtRoot().getCategoriesMatchingName(keyword);

Example 15–21 shows a simple user interface that presents categories from which to
choose. The user is presented a drop-down menu from which select the category
that best matches what he or she is looking for.

Example 15–21 User Interface for Selecting a Category

Element sf = XML.makeElement(result, "SimpleForm");
sf.setAttribute("target", targetString);
result.appendChild(sf);
Element sfs = XML.makeElement(sf, "SimpleFormSelect");
sfs.setAttribute("name", "category");
sfs.setAttribute("title", "Business category");
sf.appendChild(sfs);

for(int i = 0; i < cats.length; i++)
{

String name = cats[i].getFullyQualifiedName();
Element sfo = XML.makeElement(sfs, "SimpleFormOption");
sfo.setAttribute("value", name);
sfs.appendChild(sfo);
sfo.appendChild(XML.makeText(sfo, name));

}

When the adapter determines the fully qualified name of the chosen category, you
can obtain the appropriate category, as shown in Example 15–22.

Example 15–22 Finding the Category

YPCategory cat = YPCategory.fromFullyQualifiedName(categoryNameString);
YPBusiness b[] = SpatialManager.getYPFinder().getBusinessesInCity(cat, country,
state, city, Locale.US);

The conversion in Example 15–22 from category to String back to category is
required because a drop-down menu lets you make a selection among String
objects, not among general objects.

15.2.2.6 Traffic
To create an application based on the traffic services API, you must do the
following:

Developing Location-Based Applications

15-52 Oracle9iAS Wireless Developer’s Guide

1. Prepare input objects (such as CityInfo, RouteInfo, Point, and Location)
for the query.

2. Get TrafficReporter and summit the query.

3. Obtain TrafficReport and process the information.

The rest of this section contains examples of typical operations. Example 15–23
performs a city-level query.

Example 15–23 City-Level Query

TrafficReporter reporter = SpatialManager.getTrafficReporter();
CityInfo c = new CityInfo("BOSTON", "MA", "US");
TrafficReport report = null;
try{
report = reporter.getReportViaCity(c);

}catch(LBSException e){
System.out.println(e.getLocalizedMessage());

}

Example 15–24 performs a route-level query without specifying a direction, and
returns incidents in both directions.

Example 15–24 Route-Level Query (Incidents in Both Directions)

RouteInfo r = new RouteInfo("US 3", null);
try{
report = reporter.getReportViaRoute(r,c);

}catch(LBSException e){
System.out.println(e.getLocalizedMessage());

}

Example 15–25 performs a route-level query for a specified direction (north).

Example 15–25 Route-Level Query Specifying Direction

try{
report = reporter.getReportViaRoute(r,TrafficReporter.North,c);

}catch(LBSException e){
System.out.println(e.getLocalizedMessage());

}

Developing Location-Based Applications

Using Location Services 15-53

Example 15–26 performs a route-level query for an area 10 miles around a specified
longitude/latitude point.

Example 15–26 Route-Level Query Around Longitude/Latitude Point

p = SpatialManager.createPoint(-71.0607, 42.3659);
try{
report = reporter.getReportViaLocation(p, 10, TrafficReporter.MILES,

c);
}catch(LBSException e){
System.out.println(e.getLocalizedMessage());

}

Example 15–27 performs a route-level query for an area 10 miles around a specified
address.

Example 15–27 Route-Level Query Around Address

Location loc = SpatialManager.createLocation(null, null, "839 Kearny
Street", null, "San Francisco", "CA", null, null, "US");

try{
report = reporter.getReportViaAddress(loc, 10, TrafficReporter.MILES);

}catch(LBSException e){
System.out.println(e.getLocalizedMessage());

}

Example 15–28 processes a traffic report to get useful information.

Example 15–28 Processing a Traffic Report

Calendar rTime = report.getReportTime();
TrafficIncident[] incidents = report.getIncidents();
if(incidents != null){
for(int i=0; i<incidents.length; i++){
TrafficIncident inc = incidents[i];
String desc = inc.getDescription();
String severity = inc.getSeverity();
String type = inc.getType();
TrafficRoute route = inc.getIncidentRoute();
String[] locations = inc.getLocationRange(); //text description
if(locations.length == 2){ //a location range
String exit1 = locations[0];
String exit2 = locations[1];

}
else if(locations.length == 1){

Enabling Mobile Positioning

15-54 Oracle9iAS Wireless Developer’s Guide

String exit1 = locations[0]; //one location
}
Point geoLocation = inc.getIncidentLocation(); //lon/lat or

lon/lat+radius
Calendar[] tr = inc.getTimeRange();

}
}

Example 15–29 returns a list of cities for which traffic support is provided.

Example 15–29 Returning a List of Cities

TrafficCityManager manager = reporter.getCityManager();
CityInfo[] cities = null;
try{
cities = manager.getActiveCities();

}catch(LBSException e){
System.out.println(e.getLocalizedMessage());

}

Example 15–30 returns a list of routes for which traffic support is provided in a
specified city (San Francisco, California).

Example 15–30 Returning a List of Routes in a City

TrafficCityManager manager = reporter.getCityManager();
CityInfo sf = new CityInfo("SAN FRANCISCO", "CA", "US");
RouteInfo[] routes = null;
try{
routes = manager.getRoutesInCity(sf);

}catch(LBSException e){
System.out.println(e.getLocalizedMessage());

}

15.3 Enabling Mobile Positioning
You can enable mobile positioning for individual users or groups of users of a
location-based application. Mobile positioning of a user refers to associating a
location with that user. When mobile positioning is enabled for a user, the user’s
current location, whether it is obtained dynamically from automatic positioning or
from a default location mark, is used by Oracle9iAS Wireless to determine the
visibility of location-based services or folders. A service or folder can be defined as
location-dependent (as described in Section 15.4.4) by associating it with a system
region or a previously defined custom region. A location-dependent service or

Enabling Mobile Positioning

Using Location Services 15-55

folder appears in a user’s portal only when the user’s current location (from
automatic positioning or from a default location mark) is within the associated
region. For example, if the user’s current location is in Boston, a Boston traffic
information service would be visible to the user; otherwise, the service would not
be visible to that user.

Mobile positioning can be manual or automatic:

■ Manual positioning occurs when a specific location is assigned to a user. The
assigned location could be the geocoded result of an address that the user is
asked to enter, an explicitly specified location mark, or a default location for the
user. For example, the location of the user’s home might be specified for mobile
positioning, and an application could then offer information and options
relevant to that home area (regardless of the user’s actual current physical
location).

■ Automatic positioning (sometimes called location acquisition) occurs when the
user’s location is determined automatically based on positioning information
based on the location of the mobile device. For example, the location of a
delivery truck driver or service technician might be periodically determined
based on the person’s mobile device location, and an application could consider
that location data when providing information or instructions to the user.

Automatic positioning provides several options relating to frequency of
position updates and user privacy.

This section describes manual and automatic positioning in more detail, and
describes how to enable each type of positioning.

15.3.1 Manual Positioning
Manual positioning associates a specific location with the mobile application user.
The location can be explicitly specified (such as the user entering an address or the
name of a location mark), or it can be a default location mark for that user. A
location mark is a position that is typically associated with longitude and latitude
coordinates and that has a name. For example, an application user can create
location marks named MyHome and MyOffice (for the person’s home and office
locations, respectively), and associate a geocoded address with each one. If this
person designated MyHome as the default location mark, the mobile application
would consider the person’s home address as the person’s location.

If a user tries to set a default location mark that is not geocoded, a geocoding
operation is performed before the location mark is made the default. If the
geocoding operation fails, it is recommended that you not set that location mark as

Enabling Mobile Positioning

15-56 Oracle9iAS Wireless Developer’s Guide

the default, because many capabilities (such as location-dependent service
visibility) depend on the geocoded information of the default location mark.

For more information about location marks, see Section 15.1.5.

15.3.1.1 Enabling Manual Positioning
To enable manual positioning for a user, first set up any location marks that you
might want to use. Use the API (LocationMark class) or the Personalization Portal
Web interface to create one of more location marks (if they do not already exist), and
specify a location mark as the default for that user.

To enable manual positioning using the Personalization Portal interface, follow
these steps:

1. Log in to the Personalization Portal Web interface

2. Click the LocationMarks tab.

3. If the location mark that you want for your default location does not already
exist it, create it. (Click Create and complete the information on the page that is
displayed.)

4. Select the location mark that you want for your default location.

5. Click Set Default.

15.3.2 Automatic Positioning
Automatic positioning allows the user’s location to be determined based on a
position based on the location of the user’s mobile device. You can determine how
timely, and thus potentially how accurate, the location is by setting a positioning
quality of service (QoS) value.

The Oracle9iAS Wireless API enables an application to access a mobile user’s
current location through the current session (see getCurrentLocation() in the
oracle.panama.rt.Session interface). If automatic positioning is turned on in
the system, the user’s current physical location is returned from the mobile

Note: If automatic positioning (described in Section 15.3.2) is
turned off or if the positioning server is temporarily unavailable,
manual positioning is used, and the user’s default location mark is
used. (Automatic positioning can be turned on and off using the
Oracle9iAS Wireless webtool.)

Enabling Mobile Positioning

Using Location Services 15-57

positioning system. If automatic positioning is turned off or if the positioning server
is temporarily unavailable, the user’s default location mark is returned.

Privacy and the security of privacy-related information are important concerns in a
location acquisition system. The Oracle9iAS Wireless location services provide a
privacy management component that allows users to view and edit their privacy
settings, to enable and disable the positioning operation on themselves, and to
authorize one or more people (a mobile community) to obtain positioning
information on them within certain time frames. It also allows application
developers to access these capabilities through a public API.

Automatic positioning is controlled by the mobile positioning framework, which is
shown in Figure 15–7.

Figure 15–7 Mobile Positioning Framework

As Figure 15–7 shows:

■ Application developers can use the mobile positioning API together with the
privacy API to provide services.

■ The mobile positioning API in the application communicates with the location
cache (described in Section 15.3.2.1) and the location acquisition layer to
determine the user’s location. Whether or not the cache is used is affected by
the positioning quality of service (QoS) value, which is described in
Section 15.3.2.2.

■ The location acquisition layer passes the actual current position to the location
cache and to the mobile positioning API.

■ Privacy management logic controls privacy-related aspects of the mobile
positioning framework, which are described in later sections.

Enabling Mobile Positioning

15-58 Oracle9iAS Wireless Developer’s Guide

15.3.2.1 Location Cache
The location cache is an area in memory that temporarily stores a mobile user's ID,
the most recently acquired location information, and the time when that
information was gathered. If the location cache is searched for a mobile positioning
request, and if there is an entry in the cache for the user whose location is requested,
the time difference between the cache entry time and the current request time is
compared against the positioning quality of service level of the positioning request.
(Positioning quality of service is explained in Section 15.3.2.2.)

When a positioning request is satisfied by information in the cache, no position
sensing is required; that is, no network round-trip operation is required.

15.3.2.2 Positioning Quality of Service
The positioning quality of service (QoS) value controls:

■ Whether to check the current device position or the location cache to determine
the location.

■ If the location cache is checked, a maximum "age" of the most recent cached
location value (that is, a number of seconds since that value was written to the
location cache) for it to be used by the application.

You can specify the positioning quality of service value in either of the following
ways:

■ As a number of seconds, representing the maximum age of the position in the
location cache for it to be used by the application. If the most recent position in
the location cache is older than the appropriate time, the actual current position
of the device is obtained, written in the cache, and used by the application. A
value of 0 (zero) causes the positioning framework always to give the actual
positioning result and not to search the location cache.

■ As one of the following string values, each representing a level of positioning
quality:

■ Exact: Causes the positioning framework always to give the actual
positioning result and not to search the location cache; equivalent to
specifying 0 (zero) seconds.

■ High: Represents a high level of probable accuracy.

■ Medium: Represents a medium level of probable accuracy.

■ Low: Represents a lower level of probable accuracy than the Medium value.

Enabling Mobile Positioning

Using Location Services 15-59

For the High, Medium, and Low values, the positioning framework determines an
age value (number of seconds) in a heuristic manner.

There is a system default positioning quality of service level, which you can set. If a
positioning quality of service level is not specified with a positioning request, the
system default is used. The level can be set using the mobile positioning API (see
Section 15.3.2.7).

The trade-off in selecting a positioning quality of service level is probable accuracy
versus application performance. A value of 0 seconds or Exact guarantees that the
actual current position is obtained; however, obtaining the actual position requires
network round-trip to the service provider for each mobile positioning request.
Such round-trip operations can slow application performance, especially if there are
positioning requests for many users or many requests for the same user. You should
use a value of 0 seconds or Exact only if the application always needs to know the
actual position. A value of Low returns a location that is least likely to be accurate
(unless the user has not moved at all); however, it increases the probability that the
location will be obtained from the cache, eliminating the need for a network
round-trip operation. If the user is not likely to move very far or fast, or if it is not
important to know the actual current location, a value of Low may be best.

15.3.2.3 Specifying Positioning Providers
Automatic mobile position is queried by calling the
Positioner.requestPosition function. (Positioner is a class in the
oracle.panama.mp package). A Positioner object is based on one or more
mobile positioning providers. As with other location service providers, a mobile
positioning is configured by specifying information such as the name, version, URL,
user name, and password.

However, a mobile positioning service differs from other location services in that in
some cases positioning can only be handled by one specific provider, which is less
likely to be true for other location based services. For example, if you request a map
of California, several mapping providers are able to provide the map. However, if
you request mobile position for a specific phone number (such as +4412345678), it is
very likely only one provider can provide the position. A mobile ID (typically a
phone number) usually identifies a wireless carrier and thus also determines the
mobile positioning provider or providers. Therefore, application developers need to
be able to get a positioner based on specific mobile positioning providers.

To meet different application needs, several getPositioner signatures are
provided in the MPManager class:

■ getPositioner()

Enabling Mobile Positioning

15-60 Oracle9iAS Wireless Developer’s Guide

■ getPositioner(MPProvider provider)

■ getPositioner(MPProvider[] providers)

An Internet portal may have subscribers from different carriers, and they may need
to decide dynamically, based on the mobile ID, which provider to use at run time.
This need is supported by mobile positioning provider selector hooks (implemented
through the oracle.panama.mp.MPProviderSelector interface).

A provider selector hook takes a mobile ID and returns an array of MPProvider
objects that can handle the positioning request. The default provider selector hook
is provided by oracle.panama.mp.core.ProviderSelectorImpl, which
returns all providers in the system, which means by default the positioning
framework does not attempt to choose a provider. A selector hook is used by a
positioner when calling positioner.requestPosition and is applicable for the
getPositioner() signature. If the providers are already specified when the
positioner is called, the selector hook is not used.

The Oracle9iAS Wireless API enables an application to access a mobile user's
current location through the current session
(Session.getCurrentLocation()). By default, the user's mobile ID (which is
in the user's profile) is used to call the mobile positioning API to get the current
position. However, if advanced users want to use a different value for positioning,
they can write their own mobile ID hook by implementing the
oracle.panama.rt.hook.MobileIDHook interface. A mobile ID hook takes the
current user's information and returns his or her mobile ID for positioning. If the
automatic positioning fails, the system fails over to the user's default location mark
as the current location.

Note that you do not have to implement either the provider selector hook or the
mobile ID hook. If the default settings meet your needs, you can simply configure
mobile positioning providers and call
MPManager.getPositioner().requestPosition().

To summarize:

■ A Positioner can be a system default based on all mobile positioning
providers configured in the system, or it can be customized based only on one
or more specific providers.

■ When a system default is used, a provider selector hook is used only when
choosing the system default positioner. A selector hook takes a mobile ID and
decides which provider or providers can handle it. In the case of batch query,
the first mobile ID in the batch determines which provider is selected.

Enabling Mobile Positioning

Using Location Services 15-61

■ Failover is provided when a positioner is based on more than one provider and
a provider cannot handle the request.

Programs should check that the PositionResult has a nonzero error code before
using it.

Example 15–31 gets the user’s position using system default providers and the
default positioning quality of service.

Example 15–31 Getting Position using System Default Providers and Default QoS

Positioner positioner = MPManager.getPositioner();
PositionResult res = positioner.requestPosition("46708123456790");
Date timeStamp = res.getTimeStamp();
double lon = res.getPositionAreas()[0].getCenterPointLongitude();
double lat = res.getPositionAreas()[0].getCenterPointLatitude();

Example 15–32 shows two examples of getting the user’s position and specifying a
positioning quality of service level. The first example specifies the quality
descriptively as high, and the second example specifies the quality as a number of
seconds. (Section 15.3.2.2 explains the ways in which you can specify positioning
quality of service.)

Example 15–32 Getting Position Specifying QoS

PositionResult res = positioner.requestPosition("46708123456790",
ServiceQoS.HIGH_QUAL);

PositionResult res = positioner.requestPosition("46708123456790", new
ServiceQos(120));

Example 15–33 gets the user’s position based on an array of specific providers.

Example 15–33 Getting Position Based on an Array of Providers

MPProvider[] providers = new MPProvider[2];
providers[0] = MPManager.lookup("CellPoint", "1.2");
providers[1] = MPManager.lookup("Ericsson", "3.0");
Positioner positioner = MPManager.getPositioner(providers);

15.3.2.4 Granting and Revoking Positioning Rights
By default a user’s location information can only be accessed by himself or herself.
No other user has the right to access the user’s location information. If users want
to allow other users to access their location information, they must grant the

Enabling Mobile Positioning

15-62 Oracle9iAS Wireless Developer’s Guide

positioning right to those users. A user granting the positioning right can later
revoke the granted right.

The positioning right can also be granted for a certain duration or recurring interval
of time. In many cases, users want to restrict the time periods to grant other users
the right to access their location information. For example, users may want to grant
coworkers this right from 9:00 am to 5:00 pm during weekdays, but they do not
want coworkers to position them at night or during weekends. Users can specify
such time restrictions as:

■ Starting and ending dates of the granted right

■ Starting and ending time during a day

■ Exclusions: days that are within the start and end dates but are excluded from
the positioning right, such as Saturdays and Sundays

15.3.2.5 Mobile Communities
A mobile community is a collection of one or more users who can be granted or
denied positioning rights. Mobile users can be assigned to one or more
communities, and users can grant and deny positioning rights to communities.
Users can view and manage their community information through the
Personalization Portal, and application developers can access these capabilities
through the public API.

The concept of mobile community is useful in many mobile application scenarios.
For example, a project team can create a project community. A team member can
grant to the project community the right of accessing to his or her location
information instead of granting the right to each team member individually. For
example, with mobile positioning and location-based alerts, a field service manager
could know when service representatives are nearby and could contact them to get
status updates or to have them respond to local problems.

The concept of visibility applies to communities and to members of communities.
Visibility refers to the ability of system users to see that a community or member
exists and to obtain some relevant information. Visibility can depend on the
relationship of the requesting user to the community or member: for example,
whether the requesting user has administrator privileges or is a member of the
community in question. Visibility is implemented using calls to the privacy API,
which is described in Section 15.3.2.8.

For any given request by a user to see information about a community or members
of a community, the following visibility conditions are possible:

Enabling Mobile Positioning

Using Location Services 15-63

■ The community and the members of the community are visible to the
requesting user.

■ The community is visible to the requesting user, but the members of the
community are not visible. For example, the community has been set up so that
its existence is visible to all system users; however, information about
community members is available only to administrators.

■ The community is not visible to the requesting user, and therefore members of
the community are not visible either.

Different types of communities are supported, to accommodate different user
requirements for visibility. When you create a community, you can specify the type
of community, namely:

■ Private: A private community is visible only to the creator of the community,
who has sole and complete control. No other users, including members of the
community, can see or perform operations on a private community.

■ Shared: A shared community is visible to all the community members but not
to other users in the system. A community member is visible to all other
community members. A community member can remove himself or herself
from the community.

■ Public with Member Visibility: A public community with member visibility is
visible to all the users in the system. Any users in the system can add
themselves to the community and remove themselves from the community.

■ Public Member-Controlled Visibility: A public community with
member-controlled visibility is visible to all the users in the system; however,
each member can control whether he or she is visible or not visible to other
users.

■ System: A system community is visible to all users of the system, but the
members are visible only to users who have administrator privileges. Users
without administrator privileges cannot remove themselves from a system
community.

 The following community operations are supported:

■ Create a community and add initial members

■ Delete a community

■ View a list of all the communities that are visible to the user

■ View all the members in the community who are visible to the user

Enabling Mobile Positioning

15-64 Oracle9iAS Wireless Developer’s Guide

■ Add users to a community (for the creator of a community)

■ Remove users from a community (for the creator of a community, or any
community member for removing himself or herself from a shared community)

15.3.2.6 Privacy Directives and Enabling or Disabling Automatic Positioning
With the initial default privacy settings, the system does not have the right to
position a user and temporarily store the user’s position in the location cache, and
write the user’s location information to the cache log. However, the administrator
can specify a different system default level of privacy -- and users can control their
level or privacy through the Personalization Portal -- by using any of the following
privacy directives, listed in decreasing order of privacy provided:

■ Disable Positioning and Caching: No positioning on the user is allowed. The
system has no right to position the user, and no access to the user’s location is
allowed. This setting provides the most privacy.

■ Enable Positioning, Disable Caching: The user’s location information is not
cached. The system has the right to position the user, but the system cannot
store the user’s location information in the location cache. In this case, the
user’s location is always obtained by going to the positioning service providers
directly.

For example, with this directive a mobile user’s movements might not be
tracked, and the position at any time might be reported as the user’s office or
whatever location the service provider supplies.

■ No Log: The user’s location information is stored in the location cache, but is
not written to the cache log. Cache items for this user are not written to the log
when they are replaced from the cache, but are simply discarded.

For example, with the No Log directive, a mobile user’s current position might
be available, but earlier positions might not be available if they had discarded
from the location cache.

■ Enable Positioning and Caching: The system has the right to acquire and cache
the user’s location information.

15.3.2.7 Mobile Positioning API
Mobile device positioning is performed by calling the corresponding
requestPosition functions in the Positioner class. The API allows
application developers to specify the positioning quality of service (QoS) level.
(These levels are explained in Section 15.3.2.2.)

Enabling Mobile Positioning

Using Location Services 15-65

15.3.2.8 Privacy API
Developers of mobile applications can manage the privacy capabilities through the
location services privacy API. This section describes the privacy API and provides
examples.

15.3.2.8.1 LocationPrivacyManager Class The LocationPrivacyManager class
handles all the location privacy-related operations, such as granting and revoking
positioning rights, enabling and disabling positioning rights, setting and getting
system privacy options, and checking if a user has right to position another user.
The class also provides ways to retrieve the LocationPrivacyAuth object, which
stores information about a privacy authorization item.

A user can grant authorization to another user or to a mobile community using
grantAuthorization. The authorization can be temporarily disabled using
disableAuthorization. The disabled authorization can be recovered by using
enableAuthorization. The granted right can be permanently revoked using
revokeAuthorization. checkAuthorization can be used to check whether a
user has right to position another user at specific time.

All the privacy authorization operations are application-specific, which means that
they only affects the application in which the operation is performed.

15.3.2.8.2 CommunityManager Class The CommunityManager class handles
community-related operations, such as creating and deleting community and
retrieving community information. Community operations specific to a single
community are defined in the Community interface.

15.3.2.8.3 LocationPrivacyAuth Interface The LocationPrivacyAuth interface
provides methods to retrieve information specific to a location authorization item,
such as the authorization period, the service where the authorization occurs, the
user granting the right, and the user receiving the right.

15.3.2.8.4 Community Interface The Community interface provides methods to
retrieve information about the community object, add members to and remove
members from the community, and set community attributes.

15.3.2.8.5 AuthPeriod Class The AuthPeriod class maintains a time range that is
used when a user grants the positioning right to other users. An authorization
period is composed of start date, end date, start time, end time, and exclusions. The
class also provides a method contains to check whether a specific time falls in the
time range represented by the class.

Enabling Mobile Positioning

15-66 Oracle9iAS Wireless Developer’s Guide

15.3.2.8.6 LocationPrivacyException Class The LocationPrivacyException class
is a subclass of PanamaException. It represents a location privacy-specific
exception.

15.3.2.8.7 Privacy API Examples This section contains examples of the location
services privacy API. The examples are taken from the sample adapters
SampleCommunityManager.java and SampleFriendFinder.java is the
iAS-wireless-home\sample\sampleadapter\mp\privacy directory. These two
sample adapters demonstrate the major capabilities of the privacy API.

Example 15–34 lists all communities of a specified type that are visible to a user.

Example 15–34 List Communities of a Specified Type Visible to a User

CommunityManager commMan = CommunityManager.getInstance();
...
try{

ResultSetEnumeration comms = commMan.getVisibleCommunities(user,type);
while (comms.hasNextElement()){

sfo = XML.makeElement(sfs,"SimpleFormOption");
oracle.panama.model.Community comm =

(oracle.panama.model.Community)(comms.next());
sfo.setAttribute("value",String.valueOf(comm.getId()));
txt = XML.makeText(sfo,comm.getCreator().getName()+":"+ comm.getName()

);
sfo.appendChild(txt);
sfs.appendChild(sfo);

}
}catch(Exception e){ throw new AdapterException(e); }

Example 15–35 grants the positioning right to a user or a community based on user
input.

Example 15–35 Grant Positioning Right to a User or Community

CommunityManager commMan = CommunityManager.getInstance();
LocationPrivacyManager priMan = LocationPrivacyManager.getInstance();

...

SimpleDateFormat ddf = new SimpleDateFormat("MM/dd/yyyy");
SimpleDateFormat tdf = new SimpleDateFormat("HH:mm");
Calendar startD,endD,startT,endT=null;
try{

startD = Calendar.getInstance();

Enabling Mobile Positioning

Using Location Services 15-67

startD.setTime(ddf.parse(sdate));

endD = Calendar.getInstance();
endD.setTime(ddf.parse(edate));

startT = Calendar.getInstance();
startT.setTime(tdf.parse(stime));

endT = Calendar.getInstance();
endT.setTime(tdf.parse(etime));

}catch(ParseException e){
showError(result,sr,"Illegal Date Format","&grantmenu=y");
return;

}

StringTokenizer st = new StringTokenizer(excl,",");
String exclDate = null;
byte exclusions=0;
while (st.hasMoreTokens()) {

exclDate=st.nextToken();
if ("Mon".equals(exclDate))

exclusions =(byte)(exclusions|AuthPeriod.MONDAY);
else if ("Tue".equals(exclDate))

exclusions =(byte)(exclusions | AuthPeriod.TUESDAY);
else if ("Wed".equals(exclDate))

exclusions =(byte)(exclusions | AuthPeriod.WEDNESDAY);
else if ("Thu".equals(exclDate))

exclusions =(byte)(exclusions | AuthPeriod.THURSDAY);
else if ("Fri".equals(exclDate))

exclusions =(byte)(exclusions | AuthPeriod.FRIDAY);
else if ("Sat".equals(exclDate))

exclusions =(byte)(exclusions | AuthPeriod.SATURDAY);
else if ("Sun".equals(exclDate))

exclusions =(byte)(exclusions | AuthPeriod.SUNDAY);
else {

showError(result,sr,"Illegal Exclusions.", "&grantmenu=y");
return;

}
}

AuthPeriod period = new AuthPeriod(startD,endD, startT,endT, exclusions);
oracle.panama.model.Community commObj = null;
User posUserObj = null;
try{

Using the Region Modeling Tool

15-68 Oracle9iAS Wireless Developer’s Guide

if (community!=null && !community.equals("")){
commObj = commMan.getCommunity(Long.parseLong(community));
priMan.grantAuthorization(service,owner,commObj,period);

}
else{

posUserObj = services.lookupUser(positionUser);
priMan.grantAuthorization(service,owner,posUserObj,period);

}
}catch(PanamaException e){ throw new AdapterException(e); }

15.4 Using the Region Modeling Tool
The region modeling tool lets administrators of a wireless portal service manage
regions and make a service or folder location-dependent. When you create a service
or a folder, you can specify that it is location-dependent by associating a system
region or a previously created custom region with the service or folder. A
location-dependent service or folder appears is a user’s portal only when the user’s
current location (either from automatic mobile positioning or from the user’s
default location mark) is within the specified region.

A region is simply a geographic entity, or location. A region can be small (such as a
street address) or large (such as a country). A region can be represented by a point,
as is often done for addresses and locations of interest (such as airports and
museums), or by a polygon, as is usually done for states and countries.

15.4.1 Service and Folder Visibility Using Region Modeling
You may want to define specific regions for a variety of applications and services,
such as:

■ City guides for selected metropolitan areas, so that users in those areas receive
only services and information (such as restaurant listings or advertisements)
relevant to them

■ Colleges that have a certain ranking or that specialize in certain subject areas, so
that prospective students and their parents can receive information about those
locations

■ Art museums in a city or a multistate area, so that art lovers can plan trips to
museums

Your company may provide many specialized services, and users may be able to
subscribe to and pay for individual services tied to regions. For example, one user

Using the Region Modeling Tool

Using Location Services 15-69

might subscribe to city guides for the entire United States, while another user might
subscribe only to city guides for southeastern states.

To implement the city guide example, you could do the following:

1. Create a folder (static, not location dependent) called City_guide.

2. Under the City_guide folder create city guide services for Boston, San
Francisco, and California

3. Set the default location mark to an address in a city. If the address is in Boston,
the user sees the Boston city guide; if the address is in San Francisco, the user
sees both the San Francisco and California guides.

In another example scenario, several services may be relevant to a region, in which
case you can create a location-dependent folder and place the relevant services in
that folder (instead of designating each service as location-dependent on the
region). For example, assume that you have ATM Locator, Flight Gate Information,
Airport Parking Information, and Taxi Finder services associated with a region
named Airport, and that you have Printer Finder, Conference Room Scheduler, and
Cafeteria Menu services associated with a region named Office. In this case, you can
create two location-dependent folders named Airport and Office, and associate
them with the Airport and Office regions, respectively.

15.4.2 Folders and Hierarchies of Regions
Regions are stored in folders. Folders can be in a hierarchy (that is, there can be
folders in folders). There are two top-level folders: System-Defined Regions and
Custom Regions.

■ System-defined regions are arranged in a hierarchy of predefined areas:
continents, which contain countries. The United States further contains states,
which contain postal codes, counties, and cities.

■ Custom regions are regions created by users, based on entering an address or
on selecting one or more other regions (system-defined or custom).

15.4.3 Region Modeling Tool Web Interface
The region modeling tool’s Web interface is part of the Oracle9iAS Wireless Service
Designer, which is part of the webtool. In the Service Designer, click the Regions
tab to display the region modeling tool, shown in Figure 15–8.

Using the Region Modeling Tool

15-70 Oracle9iAS Wireless Developer’s Guide

Figure 15–8 Region Modeling Tool Web Interface

The Web browser window initially displays the top level of the region hierarchy,
with two entries: system-defined regions and custom regions. You can find regions,
and you can select regions for viewing or for adding to a collection from which you
create a custom region.

To find a region, enter a character string that is in its name to search by name, or
enter a number to search by ID (by region ID). Specify to search all regions or only
under current region (the currently selected region), then click Go.

To select a region to perform an operation on it, click the box to the left of its icon
and name. (To deselect a selected item, click the box.) You can select all regions in
the current display by clicking Select All, and deselect all regions in the current
display by clicking Select None.

Using the Region Modeling Tool

Using Location Services 15-71

To perform an operation on the selected region or regions, click the command text
link or button shown in Table 15–12.

15.4.4 Associating a Region with a Service
When you create a service and make it location dependent, you must specify the
region for which the service applies or is relevant. Before you can specify the region,
it must already exist, either as a system-defined region or a custom region. If it is a

Table 15–12 Region Modeling Tool Operations

To Do This: Click This:

Add selected regions to the
collection of regions at the
bottom of the display

Add to Collection

View a map display showing
selected regions

View

Create a custom region from the
collection of regions at the
bottom of the display

Create from Collection. A series of pages is then
displayed, in which you specify the location in the
region hierarchy and the name for the custom region.

Create a custom region from a
street address that you enter

Create from Address. A series of pages is then
displayed, in which you specify the address, the location
in the region hierarchy, and the name for the custom
region.

Create a custom region from the
collection of regions at the
bottom of the display

Create from Collection. A series of pages is then
displayed, in which you specify a location in the region
hierarchy and a name for the custom region.

Create a folder in which to
organize regions

Create Folder. A series of pages is then displayed, in
which you specify the location in the region hierarchy
under which to create the folder and the name for the
folder.

Go to the previous or next set of
entries in the display of regions
or the current collection

Previous or Next

Go up one or more levels in the
region hierarchy

The name of the desired level on the current hierarchy
line near the top of the page. Example of how this line
might look (with all items except the last as links):
Regions > System Defined Regions > NORTH
AMERICA > USA > California

Get help about any screen Help

Using the Region Modeling Tool

15-72 Oracle9iAS Wireless Developer’s Guide

custom region, it must have been created using the region modeling tool, using one
of the methods described in Section 15.4.3 for creating a region.

To associate a region with a service, you must specify Location Dependent when
creating the service, and you must click the flashlight icon to select the region.
Figure Figure 15–9 shows an example of a service specified as location dependent.

Figure 15–9 Specifying a Service as Location Dependent

When you click the flashlight icon, a window is displayed showing the top of the
region hierarchy. You can select any region (but only one region) in the region
hierarchy.

To associate the selected region with the service, click Done.

15.4.5 Loading and Updating Region Data
The region modeling tool is installed with an extensive set of data for the United
States, as well as country data for many countries. However, you can add data
about other countries, states, cities, and so on by adding rows to the tables where
the region data is stored. For example, you could add a row for each state in India
to the STATE table. If you are careful and know what you are doing, you can also

Using the Region Modeling Tool

Using Location Services 15-73

modify certain data in those tables, such as editing the DESCRIPTION column
values for certain cities or states.

15.4.5.1 Tables for Region Data
 Region data is stored in the Oracle9iAS Wireless repository in the tables listed in
Table 15–13.

To see the definition of any of these tables, use the SQL statement DESCRIBE.
Example 15–36 shows the DESCRIBE statement output with information about all
of the tables.

Example 15–36 Region Data Table Definitions

SQL> DESCRIBE continent;
Name Null? Type
--- -------- ----------------------------
ID NOT NULL NUMBER
NAME VARCHAR2(100)
REFCNT NUMBER
DESCRIPTION VARCHAR2(2000)
GEOMETRY MDSYS.SDO_GEOMETRY

SQL> DESCRIBE country;
Name Null? Type
--- -------- ----------------------------
ID NOT NULL NUMBER
NAME VARCHAR2(300)
REFCNT NUMBER
CONT_ID NUMBER

Table 15–13 Tables for Region Data

Table Name Contains Information About

CONTINENT Continents

COUNTRY Countries

STATE States

COUNTY Counties

CITY Cities

POSTALCODE Postal codes

USERDEFINED Custom regions

Using the Region Modeling Tool

15-74 Oracle9iAS Wireless Developer’s Guide

DESCRIPTION VARCHAR2(2000)
GEOMETRY MDSYS.SDO_GEOMETRY

SQL> DESCRIBE state;
Name Null? Type
--- -------- ----------------------------
ID NOT NULL NUMBER
NAME VARCHAR2(400)
REFCNT NUMBER
ABBR VARCHAR2(32)
CONT_ID NUMBER
COUNTRY_ID NUMBER
DESCRIPTION VARCHAR2(2000)
GEOMETRY MDSYS.SDO_GEOMETRY

SQL> DESCRIBE county;
Name Null? Type
--- -------- ----------------------------
ID NOT NULL NUMBER
NAME VARCHAR2(400)
REFCNT NUMBER
CONT_ID NUMBER
COUNTRY_ID NUMBER
STATE_ID NUMBER
DESCRIPTION VARCHAR2(2000)
GEOMETRY MDSYS.SDO_GEOMETRY

SQL> DESCRIBE city;
Name Null? Type
--- -------- ----------------------------
ID NOT NULL NUMBER
NAME VARCHAR2(400)
REFCNT NUMBER
CONT_ID NUMBER
COUNTRY_ID NUMBER
STATE_ID NUMBER
DESCRIPTION VARCHAR2(2000)
GEOMETRY MDSYS.SDO_GEOMETRY
MIN_LON NUMBER
MIN_LAT NUMBER
MAX_LON NUMBER
MAX_LAT NUMBER

SQL> DESCRIBE postalcode;
Name Null? Type

Using the Region Modeling Tool

Using Location Services 15-75

--- -------- ----------------------------
ID NOT NULL NUMBER
NAME VARCHAR2(400)
REFCNT NUMBER
CONT_ID NUMBER
COUNTRY_ID NUMBER
STATE_ID NUMBER
DESCRIPTION VARCHAR2(2000)
GEOMETRY MDSYS.SDO_GEOMETRY

SQL> DESCRIBE userdefined;
Name Null? Type
--- -------- ----------------------------
ID NOT NULL NUMBER
NAME VARCHAR2(200)
REFCNT NUMBER
TYPE NUMBER
PARENT_FOLDER_ID NUMBER
DESCRIPTION VARCHAR2(2000)
GEOMETRY MDSYS.SDO_GEOMETRY

15.4.5.2 Inserting Data into Region Tables
You can use the SQL statement INSERT to insert rows into the region tables. The
following considerations apply when you are inserting region data:

■ You should use idseq.nextval to generate the ID column value whenever
you insert a new row, as shown in Example 15–37. The idseq sequence is created
automatically during the iAS installation; you should not create it.

■ The REFCNT column should be set to 0 (zero) when you insert a row. The
REFCNT column contains the reference count of how many services are
associated with the region. The value is automatically incremented when a
service is associated with the region and decremented when it is disassociated
from the region or when the service is deleted. A region with a nonzero
REFCNT value cannot be deleted.

■ If you are inserting data about postal codes, cities, or counties for a country that
does not use the default region hierarchy, specify 0 (zero) as the STATE_ID in
POSTALCODE, CITY, or COUNTY table.

■ The GEOMETRY column value must be a valid Oracle Spatial geometry of type
MDSYS.SDO_GEOMETRY. The SDO_GTYPE value must be 4 digits, and the
SRID (coordinate system) value must be 8307 (for WGS-84 longitude/latitude
format). If the SRID value is not currently 8307, you must transform geometries

Using the Region Modeling Tool

15-76 Oracle9iAS Wireless Developer’s Guide

into that format before inserting them into the region data tables. For detailed
information about the spatial data type, coordinate systems, and coordinate
system transformation, see the Oracle Spatial User’s Guide and Reference.

Example 15–37 shows an INSERT statement to insert a row for Concord,
Massachusetts into the CITY table. It assumes that the geometry representing
Concord exists in another table named MY_CITIES.

Example 15–37 Inserting a City

DECLARE
city_geom MDSYS.SDO_GEOMETRY;

BEGIN

-- Populate geometry variable with city geometry from another table.
SELECT m.geometry into city_geom FROM my_cities m
WHERE m.name = 'Concord';

-- Insert into the CITY table.
INSERT INTO CITY VALUES (

idseq.nextval,
'Concord',
0,
5004, -- continent ID for North America
5006, -- country ID for USA
5028, -- state ID for Massachusetts
'The historic town of Concord',
city_geom,
-71.37, -- minimum longitude
42.46, -- minimum latitude
-71.36, -- maximum longitude
42.47); -- maximum latitude

END;
/

The minimum and maximum longitude and latitude values in the CITY table are
required and are used by traffic support services. The minimum longitude and
latitude values identify the lower-left corner, and the maximum longitude and
latitude values identify the upper-right corner, of the bounding rectangle.

Using the Region Modeling Tool

Using Location Services 15-77

15.4.6 Region Modeling API
The region modeling tool is based on the region modeling API, which is
implemented through the RegionModel interface of the
oracle.panama.spatial.region package. The RegionModel interface
includes methods for getting the postal code, state, and country, and for
determining different kinds of interaction among regions.

Using the Region Modeling Tool

15-78 Oracle9iAS Wireless Developer’s Guide

Offline Management 16-1

16
Offline Management

This document explains Offline Management using Oracle9iLite.

Figure 16–1 Offline Management

16.1 Oracle9i Lite: The Internet Platform for Mobile Computing
Oracle9i Lite provides infrastructure and application services that enable the
delivery of secure and personalized applications using a broad range of mobile
devices. Oracle9i Lite is an add-on to Oracle9iAS, and complements Oracle9iAS
Wireless, providing a complete, integrated, therefore simple mobile e-business
framework. Oracle9i Lite includes two major components:

Mobile Server—This middle-tier infrastructure server acts as a gateway between
mobile devices (such as PDAs, cellular phones, automotive computers, as well as
traditional laptops) and the e-business application services those devices need to

Oracle9i Lite: The Internet Platform for Mobile Computing

16-2 Oracle9iAS Wireless Developer’s Guide

access. Mobile Server provides the necessary functions required to support mobile,
disconnected devices.

Mobile Development Kit—This SDK provides the facilities, tools, APIs and sample
code to develop mission-critical mobile, disconnected applications.

Developers have the option to choose amongst three different application models:

■ Native—Applications use ODBC to access the Oracle Lite Database on the
mobile device. C++, Visual Basic for Windows CE (ADOCE), Satellite Forms or
Oracle Forms are typically used to build native, device-specific applications. A
native application developed in C++ can be recompiled and run on multiple
devices without recoding.

■ Java—These Java applications invoke JDBC functions to access the Oracle Lite
Database on mobile devices. The UI can be built using AWT or SWING classes.
Java provides reusability and cross-platform capability which makes it the
choice for applications which must run on multiple devices.

■ Web—Enables developers to run existing web applications using the J2EE Java
Servlets/JSP in a disconnected mode without modifying the code base. This
unique feature makes it very easy to extend web applications to mobile,
disconnected devices.

Mobile Development Kit supports Windows, Palm Computing, EPOC, and different
flavors of Windows CE such as Windows CE 2.11, 2.12, Pocket PC, on different chip
sets such as StrongARM, MIPS, SH4, and x86.

For more information, see otn.oracle.com/products/lite.

Mobile Studio 17-1

17
Mobile Studio

Each section of this document presents a different topic. These sections include:

■ Section 17.2, "Getting Started" introduces the Studio to new users and briefly
explains how to use it to create applications.

■ Section 17.3, "Studio Configuration" explains how to use the web-based
administrator user interface to configure basic features of the Studio.

■ Section 17.4, "Administration" explains how to use the resource-driven user
interface framework to customize the look-and-feel of the Studio.

■ Section 17.5, "Advanced Customization (Studio Tag Library)" explains how to
use the JSP tag library to customize and enhance the layout, flow, and
functionality of the Studio.

■ For up-to-date information on the Oracle9iAS Wireless Mobile Studio, visit the
OracleMobile Online Studio at http://otn.oracle.com (under Hosted
Development > OracleMobile Online Studio).

Oracle9iAS Wireless Mobile Studio Overview

17-2 Oracle9iAS Wireless Developer’s Guide

Figure 17–1 Mobile Studio

17.1 Oracle9iAS Wireless Mobile Studio Overview
This chapter introduces Oracle9iAS Wireless Mobile Studio. Oracle9iAS Wireless
Mobile Studio is a 100% online, hosted environment for developing, testing, and
deploying mobile applications for the Oracle9iAS Wireless platform. It also serves
as a web portal, supporting the wireless developer community in the enterprise and
on the Internet.

The Studio offers developers a simple, intuitive, easy-to-use web-based user
interface to facilitate rapid configuration, testing, and deployment of Oracle9iAS
Wireless XML applications. Developers need not download or install anything on
their workstations; all they need is a web browser and access to the Studio server.
Once the XML content is registered with the Studio, the developer can test their
application using any mobile device or simulator (including voice), and can
instantly access debug log information in the Studio. Once the application is
successfully tested, the developer may choose to deploy it to a production server
with the click of a button.

Service providers can brand the Studio and customize its look-and-feel and content
in order to integrate it with their existing site. The Studio's intuitive administrator
interface allows web masters to rapidly create a compelling developer portal that
can serve both as an interactive development tool and as a one-stop source for
up-to-date information and collateral on the wireless server platform. This makes it
easy for service providers to support their developer community and attract new
developers.

Key features for developers are:

Getting Started

Mobile Studio 17-3

■ 100% online, hosted environment (nothing to download).

■ Simple, web-based UI targeted at application developers (as opposed to the
Webtool, which is targeted at system administrators and advanced developers).

■ Instant access to developed applications from any device or simulator
(including voice).

■ Instant debug log access for interactive testing.

■ (Optional) One-click deployment to production.

Key features for service providers are:

■ Serves as developer portal attracting new developers while supporting existing
ones.

■ Easy to brand & customize using web-based administrator UI.

■ Can support multiple look-and-feel settings in multiple languages and
character sets out of the box.

■ Targeted at web masters, not engineers (for simple customization, no coding
required; for complex customization, only HTML knowledge required).

17.2 Getting Started

17.2.1 Login and Registration
Once Oracle9iAS Wireless has been successfully installed, the Studio is immediately
available for use without any further configuration. Use any web browser (e.g.
Netscape 6.2 or Internet Explorer 6.0) to access the Studio main page at the
following URL:

http://<studio_server>:<studio_port>/studio

where <studio_server> and <studio_port> are the name of the host running the
Studio instance and the dedicated Studio port number, as configured in the Oracle
Installer during the installation process.

Note: The Studio has been optimized for the latest versions of the
popular Netscape and Internet Explorer browsers. In particular, the
Studio is not certified for Netscape 4.x or Internet Explorer 4.x.

Getting Started

17-4 Oracle9iAS Wireless Developer’s Guide

If Oracle9iAS Wireless was installed correctly, the above URL takes you to the
Studio login screen:

Figure 17–2 Login page

From this screen, users can:

■ Log in to the Studio using an existing user ID and password by entering the
user ID and password and clicking the Log In button.

■ Register for a new Studio account by clicking the Register button.

■ Go directly to often-used Studio pages (i.e. My Studio, My Domains, and My
Profile) if already logged in.

■ Browse the Oracle9iAS Wireless XML tag glossary by clicking the Tag Glossary
button.

■ Access online help by clicking the Help button.

■ End the session by clicking the Log Out button.

Getting Started

Mobile Studio 17-5

In addition, the sample Studio includes a shortcut to the Short Messaging
demo page (requires login) as well as to the Oracle9iAS Wireless discussion
forum on the Oracle Technology Network (requires free OTN account).

For users without an existing account, clicking on the Register button brings up
the registration page:

Figure 17–3 Registration page

Studio Configuration

17-6 Oracle9iAS Wireless Developer’s Guide

Additional configuration steps are required to enable single sign-on (SSO) support
for the Studio. See Section 17.3, "Studio Configuration" for details.

17.3 Studio Configuration
To run the studio application successfully, you must configure certain parameters.

These parameters can be edited using the Mobile Studio Administration UI at this
URL: http://myserver.myCompany.com:myport/studio/admin/config.jsp

17.3.1 Sample Applications Configuration
New sample applications can be added to Mobile Studio using the Mobile Studio
Administration UI.

Adding a sample applications involves following steps:

1. Create a sample JSP file that is Mobile XML compliant.

2. Store the sample JSP file in the samples root folder (this is same as the
samples.source.root.path parameter listed above).

Note: Single Sign-on (SSO): User profile information (including
user ID and password) is stored in an Oracle Internet Directory
(OID) repository and is shared by all SSO-enabled applications,
including Oracle9iAS Wireless and all its components (such as
Oracle Portal, etc.).

Table 17–1 Parameters that must be configured

Name Description Example

deploy.ptg.url Contains the URL of the
remote Oracle9iAS
Wireless server, to which
the studio applications are
deployed.

http://myserver.myCompany.com:
myport/studio

samples.source.root.path Contains the path to the
folder which contains all
the sample JSPs.

<WIRELESS_
HOME>/wireless/j2ee/application
s/studio/studio-web/samples

Studio Configuration

Mobile Studio 17-7

3. Create a new Sample Application using the Mobile Studio Administration UI.

17.3.1.1 login.jsp
This is the first page users see when opening the Mobile Studio URL; users can log
in Mobile Studio via this page.

If users try to access other pages without logging in, they will be redirected to this
page, and instructed to log in before proceeding.

Users can take these actions from this page:

■ Log in the Studio.

■ Register as a new user.

■ Browse through the information pages using the menu.

Table 17–2 Mobile Studio JSPs

JSP JSP JSP JSP

login.jsp loginPortlet.jsp pageMenu.jsp pagePortlets.jsp

loginInfoBox.jsp home.jsp createService.jsp editService.jsp

deployService.jsp deployedServiceList.jsp profile.jsp domains.jsp

registration.jsp newFolder.jsp editFolder.jsp moveOrCopy.jsp

sendMessage.jsp viewLog.jsp quicklink.jsp samplesSource.jsp

pageHeader.jsp pageFooter.jsp

Studio Configuration

17-8 Oracle9iAS Wireless Developer’s Guide

Figure 17–4 Login page

Table 17–3 Resources

Name Description Example

login.text.info informational text Oracle9iAS Wireless Mobile
Studio is an online
environment for quickly
building, testing and
deploying wireless
applications.

login.text.title page title Welcome to Oracle9iAS
Wireless Mobile Studio.

login.text.boxinfo informational text in box You can use Oracle9iAS
Wireless Mobile Studio to
write a single application
that can be accessed via both
wireless and voice interfaces.

Studio Configuration

Mobile Studio 17-9

17.3.1.2 loginPortlet.jsp
This page is included inside login.jsp. It contains a form for the user to complete for
login.

Figure 17–5 loginPortlet

login.text.boxtitle box title Developing Voice
Applications

login.image.frontpage 340x340 splash image on
login page

/images/frontpage.gif

Table 17–4 Action Fields

Name Type Description Condition

UserId Input field ID for the user. Must be a valid user
ID.

Password Input field Password for the
user.

Must be a valid
password.

Login Button Submits the login
form.

Userid and password
fields must not be
empty.

Register Link Directs user to
registration page.

Table 17–5 Resources

Name Description Example common.href.login

URL for the login
page

login.jsp common.label.logi
n

label for login
button

Table 17–3 Resources

Name Description Example

Studio Configuration

17-10 Oracle9iAS Wireless Developer’s Guide

17.3.1.3 pageMenu.jsp
This page is included inside login.jsp. It provides a link to different pages for users
to browse.

Figure 17–6 pageMenu.jsp

Log In common.label.password label for password
text input field

Password

common.label.regist
er

label for register button Register common.label.userid

label for userID text
input field

User ID common.title.login portlet title text

Log In

Table 17–6 Resources

Name Description Example common.label.home

Label for home button. My Studio common.label.domains Label for domains
button.

My Domains common.label.profile Label for profile button. My Profile

common.label.glossary Label for Tag glossary
button.

Tag Glossary common.label.help

Label for documentation
button.

Documentation common.label.logout Label for logout button.

Log Out common.href.home Link to home page. home.jsp

common.href.domains Link to domains page. domains.jsp common.href.profile

Table 17–5 Resources

Name Description Example common.href.login

Studio Configuration

Mobile Studio 17-11

17.3.1.4 pagePortlets.jsp
This page is included inside login.jsp. It displays 2 portlets:

■ Short Messaging

■ Discussion Forum

Link to profile page. profile.jsp common.href.glossary Link to Tag glossary
page.

tagglossary.htm common.href.help Link to documentation
page.

openHelpwindow()

common.href.logout Link to logout page. logout.jsp

Table 17–7 Action Fields

Name Type Description Condition

My Studio Link Directs user to Home
page.

User should login
first.

My Domains Link Directs user to
Domain page.

User should login
first.

My Profile Link Directs user to Profile
page

User should login
first.

Tag Glossary Link Directs user to Tag
Glossary (wealth of
information on Tags)

Help Link Directs user to help
page.

Log Out Link Logs user out.

Table 17–6 Resources

Name Description Example common.label.home

Studio Configuration

17-12 Oracle9iAS Wireless Developer’s Guide

Figure 17–7 pagePortlets page

.

Table 17–8 Resources

Name Description Example

common.title.sms The title for short messaging Short Messaging

common.text.sms Informational text. Click here to try the
Oracle9iAS Wireless short
messaging service.

sms.link.name URL for short message page. sendMessage.jsp

common.image.icon.sms Image for the sms. /images/icon_sms.gif

common.title.forum Title of the forum portlet Discussion forum

common.text.forum The text for the forum
portlet.

Click here to participate in
the Oracle9iAS Wireless
online discussion forum.

common.href.forum The URL of the forum. discuss.jsp

common.image.icon.forum The image for the forum. /images/icon_forum.gif

Table 17–9 Action Fields

Name Type Description

Condition Short messaging Link

Directs user to Short
messaging page.

User must be logged in first. Discussion Forum

Link Directs user to discussion
forum.

Studio Configuration

Mobile Studio 17-13

17.3.1.5 home.jsp
This is the main user page; it is the first page that a user sees when logging in. These
are the Actions available from the home.jsp page

Table 17–10 Actions available from home.jsp page.
■ Create Service

■ Edit Service

■ Deploy Service

■ Create Folder

■ Rename Folder

■ View Log

■ View Profile

■ View domains

■ Explore the folders and its contents

■ View sample services

Table 17–11 Resources

Name Description Example

home.text.greeting Welcome message for the
user.

Welcome User1

common.href.viewlog URL of the log page viewLog.jsp

common.href.home URL of the home page. home.jsp

home.image.currfold Image for the current folder.
(open folder image)

/images/folderopen.gif

home.tooltip.upfolder The informational message to
the user for the upper level
folder.

Up One Level

common.href.createfolder URL for creating new folder
page.

newFolder.jsp

home.tooltip.newfolder The informational message to
the user for new folder.

Create New Folder.

home.label.newfolder The label that appears on
new Folder button.

New Folder

Studio Configuration

17-14 Oracle9iAS Wireless Developer’s Guide

home.tooltip.newapp The informational message to
the user for new application.

Create New Application.

home.label.newapp The label that appears on
new Application button.

New Application

home.text.appsinfo Informational text about
applications.

Use this portlet to manage
your Studio applications. To
create a new application,
click on the New
Application button above.

home.label.appname The name of the application. Service1

home.label.appdesc The description for the
application.

This is a test service.

home.label.appstatus The status of the application. Deployed.

home.image.application The icon for the Application. /images/app.gif

home.label.view The label on View button View.

home.label.rename The label on Rename button Rename

home.label.move The label on Move button Move

home.label.copy The label on copy button Copy

home.label.delete The label on Delete button Delete

home.label.deploy The label on Deploy button Deploy

home.image.viewlog The image for ViewLog. images/viewlog.gif

home.text.samples The samples application title. Sample Applications

home.text.samplesinfo The information about
sample applications.

Use this portlet to view
sample Studio applications.
To view a sample
application, simply select it
from the list below and click
on the View button.

home.text.test.boxtitle The test applications title. Testing Studio Applications.

Table 17–11 Resources

Name Description Example

Studio Configuration

Mobile Studio 17-15

Table 17–12 Java Beans

Name Type Description

foldersList java.util.ArrayList This list holds the list of all
the sub -folders of the user
for the current folder.

servicesList java.util.ArrayList This list holds all the services
of the user for the given
folder.

sampleServices java.util.Vector This list holds the sample
services for the given user.

Table 17–13 Action Fields

Name Type Description Condition

Up Button Moves to one level
up folder.

New Folder Button Directs user to create
folder page.

New Application Button Directs user to create
Service page.

View Button If Application then
displays its contents.

If folder then
displays its sub
folders and
applications.

Rename Button Changes the name of
the folder or service.

Same name should
not be used by other
folder or service at
same level.

Move Button Moves a folder /
service to other
folders.

Cannot move to same
folder.

Copy Button Copies a folder /
service to other
folders.

Cannot copy to same
folder.

Delete Button Deletes a given folder
/ service.

Studio Configuration

17-16 Oracle9iAS Wireless Developer’s Guide

17.3.1.6 createService.jsp
Create a new service based on the information provided by the user.

Deploy Button Deploys the given
Application to the
Deployment server.

The URL of the
deployment server
should be valid.

Refresh Button Updates the contents.

Table 17–14 Resources

Name Description Example

createService.body.title The body title for creating
applications.

Create Application

common.labels.Name The label for name field. Name

editService.labels.name.hint The hint for name field. A short name for your
Application.

common.labels.RemoteURL The label for Remote URL
field.

Remote URL

editService.labels.RemoteUR
L.hint

The hint for Remote URL
field.

The URL of XML document
that implements your
application.

common.labels.Comments The label for Comments. Comments

editService.labels.comments.
hint

The hint for comments field. Comments about your
application for your
convenience.

common.labels.Keywords The label for keywords. Keywords

createService.labels.keyword
s.hint

The hint for keywords field. Search keywords for your
application.

common.labels.Description The label for Description
field.

Description.

common.labels.description.hi
nt

The hint to the user for the
description field

A short description for your
application.

common.buttons.label.Create The label for Create Button. Create

common.buttons.label.Cance
l

The label for Cancel Button. Cancel

Table 17–13 Action Fields

Name Type Description Condition

Studio Configuration

Mobile Studio 17-17

17.3.1.7 editService.jsp
Users can view the application details and edit them.

Figure 17–8 edit application page

Table 17–15 Action Fields

Name Type Description Condition

Name Input Enter the name of the
application.

Cannot be left empty

URL Input Enter the URL of the
application

Cannot be left empty

Description Input Enter the description
for application.

Keywords Input Enter the keywords.

Comments Input Enter the comments.

Create Button Submit the form for
creating application.

Cancel Button Go back to home
page.

Table 17–16 Resources

Name Description Example

common.labels.Name The label for name field. Name

Studio Configuration

17-18 Oracle9iAS Wireless Developer’s Guide

editService.labels.name.hint The hint for name field. A short name for your
Application.

common.labels.RemoteURL The label for Remote URL
field.

Remote URL

editService.labels.RemoteURL.hint The hint for Remote URL
field.

The URL of XML
document that
implements your
application.

common.labels.Description The label for Description
field.

Description.

common.labels.description.hint The hint to the user for
the description field

A short description for
your application.

common.links.Comments The label for Comments. Comments

editService.labels.comments.hint The hint for comments
field.

Comments about your
application for your
convenience.

common.labels.Keywords The label for keywords. Keywords

editService.labels.Keywords.hint The hint for keywords
field.

Search keywords for your
application.

common.buttons.label.Save The label for Save Button. Save

common.buttons.label.Cancel The label for Cancel
Button.

Cancel

Table 17–17 Java Objects

Name Type Description

coreService oracle.panama.studio.core.CoreService Stores all the Oracle9iAS
Wireless service details.

studioService oracle.panama.studio.db.StudioService Stores studio specific details.

Table 17–18 Action Fields

Name Type Description Condition

Name Input Edit the name of the
application.

Cannot be left empty

Table 17–16 Resources

Name Description Example

Studio Configuration

Mobile Studio 17-19

17.3.1.8 deployService.jsp
Enables users to deploy applications in their default domains. If an application is
already deployed, then it is redeployed in that domain. In this way, if the name of
an application is changed between 2 deployments, there will still be only one
deployed application on the deployment server.

URL Input Edit the URL of the
application

Cannot be left empty

Description Input Edit the description
for application.

Keywords Input Edit the keywords.

Comments Input Edit the comments.

Save Button Submit the form for
saving the changes.

View Log Button View the runtime log
for the application.

Cancel Button Go back to home
page.

Table 17–18 Action Fields

Name Type Description Condition

Studio Configuration

17-20 Oracle9iAS Wireless Developer’s Guide

Figure 17–9 deploy service page

Table 17–19 Resources

Name Description Example

deploy.body.title The body title text for the
page.

Deploy your
application.

common.labels.Application.Name The label for application
name field.

Application Name.

common.labels.Mobile.Domain The label for domain name
field.

Domain Name.

common.labels.MobileURL The label for Mobile URL
field.

Mobile URL

common.labels.Description The label for description
field.

Description

common.links.Comments The label for comments field. Comments

Studio Configuration

Mobile Studio 17-21

17.3.1.9 deployedServiceList.jsp
This page displays the list of the deployed services.

Available actions from this page:

■ undeploy service

■ view quicklinks

■ view the list of deployed services

common.labels.Keywords The label for keywords field. Keywords

common.buttons.label.Deploy The label for deploy button. Deploy

common.buttons.label.Cancel The label for cancel button. Cancel

Table 17–20 Action Fields

Name Type Description Condition

Description Input Edit the description
for application.

Keywords Input Edit the keywords.

Comments Input Edit the comments.

Comments Button View all the
comments for the
application.

Deploy Button Submit the form for
application
deployment.

Cancel Button Go back to home
page.

Table 17–19 Resources

Name Description Example

Studio Configuration

17-22 Oracle9iAS Wireless Developer’s Guide

Figure 17–10 deployedServiceList page

Table 17–21 Resources

Name Description Example

The label for undeploy
button

Undeploy

The label for view quicklink
button

View quicklink

common.buttons.label.Cance
l

The label for cancel button Cancel

Table 17–22 Action Fields

Name Type Description Condition

Undeploy Button Submit the form for
application
undeployment.

Service should be
selected first, and
that service should be
owned by the user.

Studio Configuration

Mobile Studio 17-23

17.3.1.10 profile.jsp
Users can view and edit their profiles.

Figure 17–11 profile page

Cancel Button Go back to domains
page.

Table 17–23 Resources

Name Description Example

profile.body.title The body title text for the
page.

My Profile

common.labels.User.ID The label for users id. User ID

register.label.accountnumber The label for account number 123456

common.labels.Name The label for Name field Name

Table 17–22 Action Fields

Name Type Description Condition

Studio Configuration

17-24 Oracle9iAS Wireless Developer’s Guide

common.labels.email.address The label for email field Email

common.labels.Phone.Number The label for Phone field Phone

common.labels.Landmark The label for landmark field Landmark

common.labels.HOME The label for home field HOME

common.labels.home.address The label for home address
field

Home Address

common.labels.city The label for city field City

common.labels.stateZip The label for state, zip field State/Zip

common.labels.country The label for country field Country

common.labels.setDefault The label for set default field Set as Default

common.labels.WORK The label for work field WORK

common.labels.Company The label for company field Company

common.labels.work.address The label for work address
field

Work Address

common.labels.changePin The label for change
password field

Change Password

common.labels.NewPassword The label for new password
field

New Password

common.labels.NewPasswordAgain The label for new password
again field

New Password
(again)

profile.text.changepin The label for change pin field Change PIN

register.label.voicepin The label for voice pin field Voice PIN

register.label.voicepinagain The label for voice pin again
field

PIN (again)

common.buttons.label.Save The label for save button. Save

common.buttons.label.Cancel The label for cancel button Cancel

Table 17–23 Resources

Name Description Example

Studio Configuration

Mobile Studio 17-25

17.3.1.11 domains.jsp
Allows users to create, join, delete, and manage their domains. Displays a list of
domains that users own or have joined.

Table 17–24 Action Fields

Name Type Description Condition

Name Input Edit the name.

Email Input Edit the email. Cannot be left empty.

Phone Input Edit the Phone. Cannot be left empty.

Home Address Inputs Edit the home
address.

Work Address Inputs Edit the work
address.

Password Input Change the
password.

Cannot be left empty.

PIN Input Change the PIN. Cannot be left empty.

Save Button Submit the form for
saving the changes.

Cancel Button Go back to home
page.

Studio Configuration

17-26 Oracle9iAS Wireless Developer’s Guide

Figure 17–12 domains page

.

Table 17–25 Resources

Name Description Example

domain.body.title The body title text for the
page.

My Domain

domain.labels.new.domain The label for new domain
title

Create New domain

common.labels.Name The label for name field Name

common.labels.Password The label for password field Password

common.labels.PasswordAgain The label for password again
field

Password (again)

common.buttons.label.Create The label for create button. Create

common.buttons.label.Cancel The label for cancel button Cancel

common.labels.setDefaultQ The label for set default field Set as default

domain.labels.joinDomain The label for join domain
title.

Join Domain

Studio Configuration

Mobile Studio 17-27

common.buttons.label.Join The label for name field Name

common.labels.owneddomains The label for owned domains
field

Domains Owned.

common.labels.joineddomains The label for joined domains
field

Domains Joined.

common.buttons.label.SetDefault The label for set default
button.

Set Default

common.buttons.label.LeaveDom
ain

The label for leave domain
button

Leave Domain

common.buttons.label.Delete The label for delete button Delete

common.buttons.label.LISTAPPLI
CATIONS

The label for list applications
button

List Applications

common.buttons.label.Cancel The label for cancel button Cancel

Table 17–26 Action Fields: Create Domain

Name Type Description Condition

Name Input The name of the
domain to be created

Cannot be left empty

Password Input The password of the
domain to be created

Cannot be left empty

Set as Default Checkbox Set the domain as
default

Create Button Submit the form for
new domain creation.

Cancel Button Go back to home
page.

Table 17–25 Resources

Name Description Example

Studio Configuration

17-28 Oracle9iAS Wireless Developer’s Guide

.

17.3.1.12 registraton.jsp
Users can register to Mobile Studio by filling in the registration form.

Table 17–27 Action Fields: Create Domain

Name Type Description Condition

Name Input The name of the
domain to be Joined

Cannot be left empty

Password Input The password of the
domain to be Joined

Cannot be left empty

Set as Default Checkbox Set the domain as
default

Create Button Submit the form for
joining domain.

Cancel Button Go back to home
page.

Table 17–28 Action Fields: Manage Domains

Name Type Description Condition

Set Default Button Set the selected
domain as the default
one.

Leave Domain Button Leave the selected
domain.

The selected domain
should not be the one
owned.

Delete Button Deletes the selected
domain.

The selected domain
should be the owned
by the user.

List Applications Button List the applications
for the selected
domain

Cancel Button Go back to home
page.

Studio Configuration

Mobile Studio 17-29

Figure 17–13 registration page

Table 17–29 Resources

Name Description Example

common.href.register The URL for registration
page

Registration.jsp

register.text.title The body title text for the
page.

New User Registration

register.text.info The informational message
for registration

By registering, you indicate
that you agree to our Terms
of Use and Privacy policy.
Fields marked with an
asterisk (*) are required.

common.label.userid The label for user id field User ID

register.hint.userid The hint for user id field. Choose an alphanumeric
userid.

common.label.password The label for password field Password

register.hint.password The hint for password field Choose an alphanumeric
password.

common.label.password2 The label for password again
field

Password (again)

register.hint.password2 The hint for password again
field

Re-enter your password for
verification.

register.label.accountnumber The label for account number
field

Voice account number

Studio Configuration

17-30 Oracle9iAS Wireless Developer’s Guide

register.hint.accountnumber The hint for account number Choose an account number
required for voice login.

register.label.voicepin The label for voice pin Voice PIN

register.hint.voicepin The hint for voice pin Choose a numeric PIN,
required for voice login.

register.label.voicepinagain The label for voice pin again. PIN (again)

register.hint.voicepin2 The hint for voice again pin Re-enter your PIN for
verification.

register.hint.name The hint for name field Enter your first and last
name, for example, John
Smith.

common.label.email The label for Email field Email Address

register.hint.email The hint for email Enter your email address, for
example,
jsmith@company.com

common.label.phone The label for phone field Phone Number

register.hint.phone The hint for phone field Enter your phone number,
including country and area
code. for example,
16505151212

common.label.workaddr The label for work address Work Address

common.label.company The label for company Company Name

common.label.addr The label for address line 1 Address Line 1

common.label.addr2 The label for address line Address Line 2

common.label.city The label for city. City

common.label.state The label for state State

common.label.zip The label for zip Zip

common.label.country The label for country Country

register.label.setdefault The label for set as default Set as Default

register.hint.workaddr The hint for work address Enter your work address.

common.label.homeaddr The label for home address Home Address

Table 17–29 Resources

Name Description Example

Studio Configuration

Mobile Studio 17-31

17.3.1.13 newFolder.jsp
Users can create new folders under their home folder or any of its sub-folders.

register.hint.homeaddr The hint for home address Enter your home address.

common.label.register The label for register button Register

common.label.cancel The label for cancel button Cancel

Table 17–30 Action Fields

Name Type Description Condition

User Id Input Enter the user id. Cannot be left empty.
Should be unique.

Account Number Input Enter the account
number.

Cannot be left empty.
Should be unique.

Name Input Enter the name.

Email Input Enter the email. Cannot be left empty.
Should be unique.

Phone Input Enter the Phone. Cannot be left empty.
Should be unique.

Home Address Inputs Enter the home
address.

Work Address Inputs Enter the work
address.

Password Input Enter the password. Cannot be left empty.

PIN Input Enter the PIN. Cannot be left empty.

Register Input Submit the form for
registration.

Cancel Input Go back to login
page.

Table 17–29 Resources

Name Description Example

Studio Configuration

17-32 Oracle9iAS Wireless Developer’s Guide

Figure 17–14 new folder page

17.3.1.14 editFolder.jsp
Allows users to rename their folders or applications.

Table 17–31 Resources

Name Description Example

home.image.folder Image of the folder /images/omFolder.gif

newfolder.text.title Title for the portlet Create New Folder

newfolder.label.foldername The label for the folder name New Folder Name

newfolder.text.foldername The text for the folder New Folder

newfolder.label.create The label for create button Create

newfolder.label.cancel The label for cancel button Cancel

Table 17–32 Action Fields

Name Type Description

Condition Folder Name Input

The name of the new folder. Cannot be left empty and
should be unique

Create

Button Submit the form for creating
folder.

Cancel Button Go back to home page.

Studio Configuration

Mobile Studio 17-33

Figure 17–15 edit folder page

17.3.1.15 moveOrCopy.jsp
Allows users to move /copy their folders or services.

Table 17–33 Resources

Name Description Example

rename.text.title Title for the portlet Rename fold1

rename.label.newname Label for the name of folder New Name

rename.label.rename The label for the rename
button

Rename

rename.label.cancel The label for the cancel
button

Cancel

Table 17–34 Action Fields

Name Type Description Condition

Name Input The name of the
folder or service.

Cannot be left empty
and should be unique

Rename Button Submit the form for
renaming folder or
service.

Cancel Button Go back to home
page.

Studio Configuration

17-34 Oracle9iAS Wireless Developer’s Guide

Figure 17–16 move/copy pages

Table 17–35 Resources

Name Description Example

home.image.folder The image of the folder /images/omFolder.gif

move.label.to The label for the destination
folder

To

move.label.cancel The label for the cancel
button

Cancel

Table 17–36 Action Fields

Name Type Description Condition

To Select Users folders list. Cannot be left empty
and should be unique

Move Button Submit the form for
moving
folder/service.

Cannot move to same
folder.

Copy Button Submit the form for
copying
folder/service.

Cannot copy to same
folder.

Cancel Button Go back to home
page.

Studio Configuration

Mobile Studio 17-35

17.3.1.16 sendMessage.jsp
Users can send messages to a number of people using Email, SMS, Voice, Two way
pager and other supporting features that are available in Oracle9iAS Wireless.

Figure 17–17 send message page

Table 17–37 Resources

Name Description Example

common.href.sms The url for the send massage
page

sendMessage.jsp

sms.text.title The title for the page Short Messaging

sms.text.info The informational text. Send a text message to any
mobile phone. Also, send a
voice message to any phone
number in the United States.

sms.label.transport The label for transport field Transport

Studio Configuration

17-36 Oracle9iAS Wireless Developer’s Guide

sms.hint.transport The hint for transport field Select the transport mode.
Voice is currently only
available for US phone
numbers.

sms.label.sender The label for sender field From

sms.hint.sender The hint for sender field Enter your email address.

sms.label.recipients The label for recipients field Recipients

sms.hint.recipient The hint for recipients field. Enter up to 10 phone
numbers, separating each
entry with a comma.

sms.label.subject The label for subject field Subject

sms.label.message The label for message field Message Text

sms.hint.messagechar The text for characters
remaining

Characters remaining

sms.hint.message The hint for message field Text messages can be
upto160 characters in length,
including the senders email
address, the subject and the
message body.

sms.text.legal The text for legal terms Oracle mobile is not
responsible for messages lost
or misdirected due to
interruptions or fluctuations
in internet.

sms.label.sendmessage The label for send message
button

Send Message

Table 17–38 Action Fields

Name Type Description Condition

Transport Select List of the supported
transport type.

From Input Senders email Id /
Phone number.

Table 17–37 Resources

Name Description Example

Studio Configuration

Mobile Studio 17-37

17.3.1.17 viewLog.jsp
Users can test their services by viewing the log message for the service at runtime.

Figure 17–18 view log page

Recipients Input Submit the form for
copying
folder/service.

Cannot be left empty

Subject Input Subject of the
message.

Message Text Input Message text.

Send Message Button Submit the form for
sending message.

Table 17–39 Resources

Name Description Example

viewlog.head.title The head title for view log
page.

View Log

viewlog.body.title The body title for view log
page.

View Log Messages

home.image.viewlog The image for view log images/viewlog.gif

Table 17–38 Action Fields

Name Type Description Condition

Studio Configuration

17-38 Oracle9iAS Wireless Developer’s Guide

17.3.1.18 quicklink.jsp
Users can quicklink an application that is deployed. The next time when they log in
to Oracle9iAS Wireless using their mobile devices, they can access this application.

Figure 17–19 quicklink page

viewlog.label.close The label for close button Close

viewlog.label.show The text Show

viewlog.label.requests The text message Most recent log messages

viewlog.label.refresh The label for refresh button Refresh Log

Table 17–40 Action Fields

Name Type Description Condition

No. of Logs Input Enter the no. of log
messages to see.

Refresh Log Input Submits the form for
refreshing logs.

Close Window Input Closes the window.

Table 17–41 Resources

Name Description Example

quicklink.text.title The head title for the portlet Quicklink

Table 17–39 Resources

Name Description Example

Studio Configuration

Mobile Studio 17-39

17.3.1.19 sampleSource.jsp
Displays the JSP source code of the sample application for users reference.

Figure 17–20 sample source page

17.3.1.20 pageHeader.jsp
This page is included as a header for all the customer facing JSPs.

quicklink.body.title The body title for the portlet Processing Auto Quicklink

quicklink.text.info Informational text QuickLink this application to
your wireless portal main
menu.

quicklink.label.userid The label for userid field User ID

quicklink.label.password The label for password field Password

quicklink.label.linktitle The label for quicklink name
field

Quicklink Title

quicklink.label.cancel The label for cancel button Cancel

quicklink.label.next The label for next button Next

Table 17–42 Resources

Name Description Example

home.image.application The image for the application /images/app.gif

samplesrc.label.close The label for close button Close Window

Table 17–41 Resources

Name Description Example

Studio Configuration

17-40 Oracle9iAS Wireless Developer’s Guide

Figure 17–21 page header

17.3.1.21 pageFooter.jsp
This page is included as a footer for all customer facing JSPs.

Figure 17–22 page footer.

Table 17–43 Resources

Name Description Example

page.title window title Home

site.name site name

common.image.button.help Help button image name /images/button_help.gif

common.image.button.logout Logout button image
name

/images/button_logout.gif

common.image.window.left left window border
image name

/images/window_left.gif

common.image.window.top top window border
image name

/images/window_top.gif

common.image.window.topleft top left window corner
image name

/images/window_topleft.gif

common.image.window.topright top right window corner
image name

/images/window_
topright.gif

common.href.help URL of the Help page documentation.jsp

common.href.logout URL of the Logout action logout.jsp

common.tooltip.help tooltip text for the Help
button

Help

common.tooltip.logout tooltip text for the
Logout button

Log out

Studio Configuration

Mobile Studio 17-41

Table 17–44 Resources

Name Description Example

common.image.window.bot bottom window border
image name

/images/window_bot.gif

common.image.window.botleft bottom left window
corner image name

/images/window_botleft.gif

common.image.window.botright bottom right window
corner image name

/images/window_
botright.gif

common.image.window.left left window border
image name

/images/window_left.gif

common.image.window.line window separator line
image name

/images/window_line.gif

common.image.window.lineleft window separator left
joint image name

/images/window_lineleft.gif

common.image.window.lineright window separator right
joint image name

/images/window_
lineright.gif

common.image.window.right right window border
image name

/images/window_right.gif

Table 17–45 Customizable User Messages

Name Value

error.accountnumber.exist Account number already used. Please try another
value.

error.create.user.exist User of this name already Exist

error.create.user.generic Unable to register user.

error.update.user.generic Unable to update user profile.

error.create.email.exist Email address already used by other user.

error.create.voice.exist Phone number already used by other user.

error.login.user.param Please log in using a valid User ID and password.

error.restricted.page.access First login using valid UserId and Password.

error.select.service.edit Select the service you want to edit.

Studio Configuration

17-42 Oracle9iAS Wireless Developer’s Guide

error.select.service.deploy Select the service you want to deploy.

error.select.service.delete Select the service you want to delete.

error.delete.service.generic Unable to delete the service. Please try again later.

error.create.service.generic Unable to create the service. Please try again later.

error.create.service.exist Service of same name already exist.

error.edit.service.generic Unable to edit the service. Please try again later.

error.servicename.mobileurl.null Service Name and the Mobile URL cannot be null.

error.deploy.service.generic Unable to deploy the service. Please try again later.

error.deploy.service.name.exist Service of same name already deployed by other user
in same domain. Try other name or other domain.

error.default.domain.notexist Currently you are not associated with any domain,
either join or create one.

error.invalid.input.field Please enter valid information in the given fields.

error.create.folder.generic Unable to create the folder. Please try again later.

error.rename.folder.generic Unable to rename the folder. Please try again later.

error.create.folder.exist Folder of this name already exist.

error.copy.folder.same Not allowed. The destination folder is same as folder.

error.move.folder.same Not allowed. The destination folder is same as folder.

error.select.folder.rename Select the folder you want to rename.

error.folder.name.null Name of the Folder cannot be null.

error.select.folder.delete Select the folder you want to delete.

error.delete.folder.generic Unable to delete the folder. Please try again later.

error.quicklink.user.invalid Please enter valid username and password.

error.create.quicklink.generic Unable to quicklink the service. Please try again later.

error.get.domains.generic Unable to fetch the domains. Please try again later.

error.domain.name.null Domain name and password cannot be null.

error.create.domain.exist Domain of same name already exist. try different name.

error.create.domain.generic Unable to create domain. Please try again later.

Table 17–45 Customizable User Messages

Name Value

Studio Configuration

Mobile Studio 17-43

error.select.domain.delete Select the domain you want to delete.

error.delete.domain.notowner Only the owner of the domain can delete it.

error.delete.domain.generic Unable to delete domain. Please try again later.

error.join.domain.notexist Invalid domain name / password.

error.join.domain.generic Unable to join domain. Please try again later.

error.select.domain.leave Select the domain you want to leave.

error.leave.domain.generic Unable to leave domain. Please try again later.

error.select.domain.default Select the domain you want to set as default.

error.deployedservice.list No Services are deployed in this domain.

error.undeployservice.noprivilige Only the owner of the service can undeploy it.

message.domain.not.found No Domains found.

error.domain.alreadyowned Domain already owned, no need to join it.

error.leave.domain.owned You cannot leave the owned domains. Delete if not
required.

error.resource.notFound Resource "{0}" not found.

error.session.expired Your session has expired. Please log in using a valid
user ID and password.

error.login.invalidPassword Incorrect password. Please log in using a valid user ID
and password.

error.login.secureDocument You have tried access a secure document. Please log in
first.

error.user.notLoggedIn User not logged in

error.privileges.generic You do not have appropriate privileges.

error.create.generic Unable to create. Please try again later.

error.rename.generic Unable to rename. Please try again later.

error.move.generic Unable to Move. Please try again later.

error.copy.generic Unable to Copy. Please try again later.

error.create.folderOrService.exist Name already used. Try different name.

error.select.generic Please make a selection first.

Table 17–45 Customizable User Messages

Name Value

Administration

17-44 Oracle9iAS Wireless Developer’s Guide

17.4 Administration

17.4.1 Login
Location: http://hostname:port/studio/admin/login.jsp

1. Type in user name (for example, orcladmin)

2. Type in password (for example, manager)

3. Click on ‘Login’; if your user name and password are correct, you will be
brought to the administration pages.

Subsequent pages can be accessed only after you have logged in.

For any of the changes that an administrator makes through the Administration UIs
to be visible to end-users, the administrator must press the “Reset” button that is
located on the top right-hand side of the pages.

success.edit.service Changes saved.

success.create.service Application created.

success.create.folder Folder created.

success.create.domain Domain created.

success.join.domain Joined the requested Domain.

success.leave.domain Left the requested Domain.

success.delete.domain Domain deleted.

success.default.set.domain Set Domain as default.

success.rename.service Successfully renamed.

Note: If you tried to access the administration pages without
logging in first, you will be brought to this page automatically and
the following error message will be shown on the top of the page:
"Your session has expired. Please log in using a valid user ID and
password”.

Table 17–45 Customizable User Messages

Name Value

Administration

Mobile Studio 17-45

17.4.2 Site
Location: http://hostname:port/studio/admin/site.jsp

From the Sites page, you can find site(s) using a pattern, or you can add, edit, and
delete sites.

To find a site (if, for example, you have many sites), type the name or a pattern for
the site you are looking for, then click the “Find” button. You will be given a list of
the sites that matched the name or pattern.

To add a site, click the “Add” button; you will be brought to another page,
http://hostname:port/studio/admin/editSite.jsp, where you can create a site after
you specify the name and description and pick a default locale for the site. If you
click “Save”, then the changes are stored and you are brought back to the Sites page.
If you click “Cancel”, no changes will be stored and you will be brought back to the
Sites page.

To edit a site, first select the site you want to edit from the list of sites you have, then
click the “Edit” button below the list of sites. You will be brought to the another
page, http://hostname:port/studio/admin/editSite.jsp, where you can make
changes to the site and store the changes. For a site created by an administrator, the
name, description, and default locale can all be changed. However, only description
is changeable for the default site.

To delete a site, select the site you want to delete and the click the “Delete” button.
The save the deletion, click the “Save” button. To undo the deletion, click the
“Undelete” button. The “Undelete” button appears if you have just deleted site(s),
and you have not saved your changes yet.

17.4.3 Configuration
Location: http://hostname:port/studio/admin/config.jsp

From the Configuration page, you can find configuration parameter(s) using a
pattern, or you can add, edit, and delete configuration parameters.

To find a configuration parameter (if, for example you have many configuration
parameters), type the name or a pattern for the parameter you are looking for in the
textbox, and click the “Find” button. You will be given a list of the configuration
parameters that match the name or pattern.

Note: The changes will not be stored until you click the “Save”
button.

Administration

17-46 Oracle9iAS Wireless Developer’s Guide

To add a configuration parameter, click the “Add” button, you will be brought to
another page, http://hostname:port/studio/admin/editConfig.jsp, where you can
create a configuration parameter. You must specify the name and description for a
parameter before it can be created. You can add value(s) to the parameter by
clicking the “Add” button. Once you have added a value to a list of values for the
parameter, you can delete, or move them up/down the list.

When you click the “Save” button, the changes are stored and you are brought back
to the configuration parameters page. If you click the “Cancel” button, no changes
will be stored and you will be brought back to the configuration parameters page.

To edit a configuration parameter, select the configuration parameter you want to
edit from the list of configuration parameters, then click the “Edit” button below the
list of configuration parameters. You will be brought to another page,
http://hostname:port/studio/admin/editConfig.jsp, where you can make changes
to the configuration parameters and store them.

To delete a configuration parameter, select the configuration parameter you want to
delete and the click the “Delete” button. To save the deletion, click the “Save”
button. To undo the deletion, click the “Undelete” button. The “Undelete” button
appears if you have just deleted configuration parameter(s), and you have not yet
saved your changes.

17.4.4 Locales
Location: http://hostname:port/studio/admin/locale.jsp

Note: The first value on the list is used as the value of the
parameter while the other values are just for convenience.

Note: The changes will not be stored until you click the “Save”
button.

IMPORTANT:

The site you designate as the default site must be given this name:

oracle.panama.studio.resource.defaultSite

For a list of other import configuration parameters, see Section 17.3,
"Studio Configuration" on studio configuration.

Administration

Mobile Studio 17-47

From the Locales page, you can either find locale(s) using a pattern, or you can add,
edit, and delete locales.

To find a locale, type the name or a pattern for the locale you are looking for in the
textbox, and click the “Find” button. You will be given a list of the locales that
match the name or pattern.

To add a locale, click the “Add” button, a new entry will be added to the list of
locales with the name and description fields left blank. You must specify the name
and description for a locale before it can be created. Click the “Save” button to store
the change(s).

To edit a locale, edit the name or description of the locale in the appropriate fields.
Click the “Save” button to store the change(s). Note that the name of the default
locale is not editable.

To delete a locale, select the locale you want to delete, then click the “Delete”
button. To save the deletion, click the “Save” button. To undo the deletion, click the
“Undelete” button. The “Undelete” button appears if you have just deleted
configuration parameter(s), but have not yet saved your changes. Note that the
default locale cannot be deleted.

Mobile Studio comes with default bundles for 28 different locales as listed in the
following table:

Locales of the default bundles for Mobile Studio.

Note: The changes will not be stored until you click the “Save”
button.

Table 17–46 Mobile Studio locales

Name Description Name Description

ar Arabic ko Korean

cs Czech nl Dutch

da Danish no Norwegian

de German pl Polish

el Greek pt Portuguese

es Spanish Pt_BR Portuguese (Brazil)

es_ES Spanish ro Romanian

Administration

17-48 Oracle9iAS Wireless Developer’s Guide

The locales are only enabled after the administrator has explicitly added them
through this interface and reset the system by clicking the “Reset” button. For
example, to support users whose preferred locale is ‘ru’, the administrator must add
‘ru’ and the description (for example: “Russian”), through the UI, save the changes,
and click the “Reset” button to see the effects.

The following is a description of the algorithm that Mobile Studio uses to resolve
the locale to use:

1. Given the list of preferred locales for the user, which can be obtained from the
request.

2. Iterate through the list, and for each preferred locale L, check if it can be found
in the list of enabled locales for Mobile Studio. If L can be found, return the
found locale and the iteration stops. If L cannot be found, then another search
on a new L’ which is constructed using only the language part of L is tried. For
example, if “en_US” cannot be found, then “en” will be tried instead. If the
second try works, the new locale L’ will be returned and the iteration stops.

3. If after the iteration finished and no suitable locale can be found, then the
default locale of the default site will be returned if it is enabled. Similarly, a
second try will be given to this default locale as well.

4. If after step 3, the preferred locale is still not found, locale “en” will be returned.

If an additional locale other than these 28 locales is needed (for example, “hi” for
Hindi), it is the administrator’s responsibility to provide the following resources to
make sure Mobile Studio works consistently.

■ The administrator must provide a “DefaultSite_hi.properties” file or go through
the resource administration pages to provide a value of locale “hi” for each of

fi Finnish ru Russian

fr French sk Slovak

fr_CA French (Canada) sv Swedish

hu Hungarian th Thai

it Italian tr Turkish

iw Hebrew Zh_CN Chinese (PRC)

ja Japanese Zh_TW Chinese (Taiwan)

Table 17–46 Mobile Studio locales

Name Description Name Description

Administration

Mobile Studio 17-49

the resources that must be changed. To add the file to the application, follow
these steps:

1. From the Oracle9iAS Wireless root directory, navigate to
iaswv20/wireless/lib, and find studio.jar file.

2. Unjar the file and add “DefaultSite_hi.properties” to the extracted files.

3. Jar all the files back into studio.jar.

■ The administrator must provide the “messages_hi.properties” file for messages. To
add the file to the application, follow these steps:

1. From the Oracle9iAS Wireless root directory, navigate to
iaswv20/wireless/server/classes/messages/oracle/panama/studio.

2. Insert “messages_hi.properties” there.

■ The administrator must provide the “ommsg_hi.js” file for javascript messages.
To add the file to the application, follow these steps:

1. From the Oracle9iAS Wireless root directory, navigate to
iaswv20/wireless/j2ee/applications/studio/studio-web/javascript/.

2. Insert “ommsg_hi.js” there.

■ The instance must be restarted after these changes.

17.4.5 Sample Services
Location: http://hostname:port/studio/admin/samples.jsp

From the Sample Services page, you can either find the list of sample service(s) or
you can add, edit, and delete locales.

To add a sample service, click the “Add” button; you will be brought to another
page, http://hostname:port/studio/admin/editSamples.jsp. You must specify the
name, description, the name of the service JSP and service URL before the new
sample service can be stored. The JSP name of the service is the name of the JSP that
supports the service, while the service URL is the URL used by Oracle9iAS Wireless
server at runtime for the application. The sample service can be hidden from users
by setting the Visible to “No”, or it can be shown to users by setting it to “Yes”. To
save the changes, click the “Save” button.

To edit a sample service, click the “Edit” button; you will be brought to the
http://hostname:port/studio/admin/editSamples.jsp page, where you can change
the name, description, JSP name, the service URL, and the status of visibility of the
sample service. Again, click the “Save” button if you want the change(s) stored.

Administration

17-50 Oracle9iAS Wireless Developer’s Guide

To delete a sample service, first select the sample service from the list of services
shown then click the “Delete” button.

17.4.6 Resources
Location: http://hostname:port/studio/admin/resource.jsp

From the Resources page, you can either browse the list of resources(s) or you can
add, edit, and delete resources.

The resources are displayed in the fashion similar to a file directory structure. On
first access to the resource page, the resources and folders inside the root folder are
shown. To drill down a folder, click on the name of the folder. To go back up a level,
click on the link called “Up One Level” on the front of the resource list.

To add a resource, click on the “Add” button, you will be brought to another page,
http://hostname:port/studio/admin/editResource.jsp. You must specify the name,
description, the type of the resource and default locale for the resource before the
new resource can be created. To add a value for the resource, click the “Add” button
on this page, select the site you want the resource to be bound to, the locale for the
resource, and type in the value for the resource in the text box. Click the “Save”
button to store the change(s). Only resources can be added to the system, however,
folders can be added as a side effect. For example, if you are browsing the directory,
“deploy.head”, and then you decide to add a resource called
“deploy.head.folder.resource”, if the “deploy.head.folder” does not exist, it will be
created in addition to the resource “deploy.head.folder.resource”.

To edit a resource, select the resource from the resource lists then click the “Edit”
button. You will be brought to
http://hostname:port/studio/admin/editResource.jsp, where you can change the
name, description, type of the resource, and default locale for the resource.

Note: You CANNOT edit a folder at this location. For default
resources, name and default value CANNOT be edited. Click the
“Save” button to store the change(s).

Advanced Customization (Studio Tag Library)

Mobile Studio 17-51

To delete a resource, select the resource from the resources list, then click the
“Delete” button.

17.5 Advanced Customization (Studio Tag Library)

17.5.1 Resources
Resources currently supported in Mobile Studio are divided into two categories:
literal resources and http resources.

Literal resources are resources with a literal value, as the name suggests. Mobile
Studio includes a set of literal resources; advanced users of Mobile Studio can
customize them, although it is an involved process and therefore recommended
only for advanced users. Literal resources can always be overridden (effectively,
customized) from the Mobile Studio administration pages.

Http resources are usually static HTML pages that can be dynamically included at
runtime and they should be stored inside a directory that can be seen by the web
server.

All the resources can be accessed using the <om:res> tag; the only requirement for
this tag to work is that the attribute with the given name must exist in the current
context (that is, the current http request, the page context, or the current session).

At runtime, the tag library automatically determines the type of the resource and
outputs its value dynamically (that is, the literal value or the HTML page).

17.5.2 Tag Library

<om:is />
Specification in taglib:

<tag>
<name>is</name>
<attribute>
<name>attr</name>

Note: folders and default resources CANNOT be deleted. To undo
the deletion, click the “Undelete” button. Click the “Save” button to
store the change(s). Remember, the changes WILL NOT be stored
until you click the "Save" button.

Advanced Customization (Studio Tag Library)

17-52 Oracle9iAS Wireless Developer’s Guide

<required>true</required>
<rtexprvalue>true</rtexprvalue>

</attribute>
<attribute>
<name>value</name>
<required>true</required>
<rtexprvalue>true</rtexprvalue>

</attribute>
<attribute>
<name>name</name>
<required>false</required>
<rtexprvalue>true</rtexprvalue>

</attribute>
<attribute>
<name>prefix</name>
<required>false</required>
<rtexprvalue>true</rtexprvalue>

</attribute>
<tagclass>oracle.panama.studio.taglib.IsTag</tagclass>
<bodycontent>JSP</bodycontent>
<info>Evaluate the body if the value found from the bean matches the given

value</info>
</tag>

Usage:

<om:is attr= “attrName” value= “attrValue” (name= “beanName”) (prefix=
“prefixName”) >…</om:is>

<om:is> is a body tag, that is, if the condition evaluate is set to true, then the body
content will be processed and output as appropriate. The attributes are explained as
follows:

■ attr: The attribute of the bean whose value is being tested.

■ value: The value of the bean attribute being testing against.

■ name (optional): The name of the bean in context.

■ prefix (optional): When asking the bean for the attribute, the prefix to the name
of the attribute is added (for example, if the prefix is “is”, and the attribute is
“empty”, then the method to invoke on the bean would be “isEmpty()” which
follows Java naming conventions). If not given, then we test first “get” is tested

Note: The attributes in parenthesis are optional.

Advanced Customization (Studio Tag Library)

Mobile Studio 17-53

first, then “is” is tested as the prefix. If neither one is found, then an exception
will be thrown.

<om:not>
Specification in taglib:

<tag>
<name>not</name>
<attribute>
<name>attr</name>
<required>true</required>
<rtexprvalue>true</rtexprvalue>

</attribute>
<attribute>
<name>value</name>
<required>true</required>
<rtexprvalue>true</rtexprvalue>

</attribute>
<attribute>
<name>name</name>
<required>false</required>
<rtexprvalue>true</rtexprvalue>

</attribute>
<attribute>
<name>prefix</name>
<required>false</required>
<rtexprvalue>true</rtexprvalue>

</attribute>
<tagclass>oracle.panama.studio.taglib.NotTag</tagclass>
<bodycontent>JSP</bodycontent>
<info>Evaluate the body if the value found from the bean does not match the

given value.</info>
</tag>

Usage:

<om:not attr= “attrName” value= “attrValue” (name= “beanName”) (prefix=
“prefixName”) >….</om:not>

<om:not> is a body tag (that is, if the condition evaluate is set to false, then the
body content will be processed and output as appropriate.

The attributes are explained as follows:

■ attr: The attribute of the bean whose value is being tested.

Advanced Customization (Studio Tag Library)

17-54 Oracle9iAS Wireless Developer’s Guide

■ value: The value of the bean attribute being testing against.

■ name (optional): The name of the bean in context.

■ prefix (optional): When asking the bean for the attribute, the prefix to the name
of the attribute is added (for example, if the prefix is “is”, and the attribute is
“empty”, then the method to invoke on the bean would be “isEmpty()” which
follows Java naming conventions). If not given, then we test first “get” is tested
first, then “is” is tested as the prefix. If neither one is found, then an exception
will be thrown.

<om:get />
Specification in taglib:

<tag>
<name>get</name>
<attribute>
<name>attr</name>
<required>true</required>
<rtexprvalue>true</rtexprvalue>

</attribute>
<attribute>

<name>name</name>
<required>false</required>
<rtexprvalue>true</rtexprvalue>

</attribute>
<tagclass>oracle.panama.studio.taglib.GetTag</tagclass>
<bodycontent>empty</bodycontent>
<info>Gets the value of a bean attribute using reflection.</info>

</tag>
Usage:

<om:get attr= “attrName” (name= “beanName”)/>
<om:get> is a simple tag, that is, it does not allow content inside its body. This tag
tried to get the attribute from bean and output it if found. It does nothing if the
bean or the attribute are not found.

The attributes are explained as follows:

■ attr: The attribute of the bean whose value is being tested.

■ value: The value of the bean attribute being testing against.

<om:bean />
Specification in taglib:

Advanced Customization (Studio Tag Library)

Mobile Studio 17-55

<tag>
<name>bean</name>
<attribute>

<name>name</name>
<required>true</required>
<rtexprvalue>true</rtexprvalue>

</attribute>
<tagclass>oracle.panama.studio.taglib.BeanTag</tagclass>
<bodycontent>JSP</bodycontent>
<info>Sets up the context for the bean.</info>

</tag>

Usage:

<om:bean name= “beanName”/>
<om:bean> is a simple tag, that is, it does not allow content inside its body. This tag
put the bean in the context (same as JSP page context) with the given name.

The attributes are explained as follows:

■ attr: The attribute of the bean whose value is being tested.

■ value: The value of the bean attribute being testing against.

<om:test />
Specification in taglib:

<tag>
<name>test</name>
<attribute>
<name>attr</name>
<required>true</required>
<rtexprvalue>true</rtexprvalue>

</attribute>
<attribute>

<name>value</name>
<required>true</required>
<rtexprvalue>true</rtexprvalue>

</attribute>
<attribute>

<name>prefix</name>
<required>false</required>
<rtexprvalue>true</rtexprvalue>

</attribute>
<tagclass>oracle.panama.studio.taglib.TestTag</tagclass>
<bodycontent>JSP</bodycontent>

Advanced Customization (Studio Tag Library)

17-56 Oracle9iAS Wireless Developer’s Guide

<info>Test if the value of a bean attribute is the same as given using
reflection.</info>
</tag>

Usage:

<om:test attr= “attrName” value= “attrValue” (prefix = “prefix”)>….</om:test>
<om:test> is a body tag, that is, its body content is evaluated and output as
appropriate if the test condition evaluates to true.

The attributes are explained as follows:

■ attr: The attribute of the bean whose value is being tested.

■ value: The value of the bean attribute being testing against.

■ prefix (optional): The prefix that can be used when invoking the method against
the bean in context.

<om:equals />
Specification in taglib:

<tag>
<name>equals</name>
<attribute>
<name>attr</name>
<required>true</required>
<rtexprvalue>true</rtexprvalue>

</attribute>
<attribute>

<name>name</name>
<required>true</required>
<rtexprvalue>true</rtexprvalue>

</attribute>
<attribute>

<name>prefix</name>
<required>false</required>
<rtexprvalue>true</rtexprvalue>

</attribute>
<tagclass>oracle.panama.studio.taglib.EqualsTag</tagclass>
<bodycontent>JSP</bodycontent>
<info>Test if the value of a bean attribute is the same as given using

reflection.</info>
</tag>

Usage:

Advanced Customization (Studio Tag Library)

Mobile Studio 17-57

<om:equals attr= “attrName” name= “attrName” (prefix = “prefix”)>….</om:equals>
<om:equals> is a body tag, that is, its body content is evaluated and output as
appropriate if the test condition evaluates to true.

The attributes are explained as follows:

■ attr: The attribute of the bean whose value is being tested.

■ value: The value of the bean attribute being testing against.

■ prefix (optional): The prefix that can be used when invoking the method against
the bean in context.

<om:indexIs />
Specification in taglib:

<tag>
<name>indexIs</name>
<tagclass>oracle.panama.studio.taglib.IndexIsTag</tagclass>
<bodycontent>JSP</bodycontent>
<info>Test if the index inside iteration is the same as given by the

user.</info>
<attribute>

<name>value</name>
<required>true</required>
<rtexprvalue>true</rtexprvalue>

</attribute>
</tag>

Usage:

<om:indexIs value= “value” >….</om:indexIs>
<om:indexIs> is a body tag, that is, its body content is evaluated and output as
appropriate if the test condition evaluates to true.

The attributes are explained as follows:

■ value: The value of the bean attribute being testing against.

<om:indexEquals />
Specification in taglib:

<tag>
<name>indexEquals</name>
<tagclass>oracle.panama.studio.taglib.IndexEqualsTag</tagclass>
<bodycontent>JSP</bodycontent>

Advanced Customization (Studio Tag Library)

17-58 Oracle9iAS Wireless Developer’s Guide

<info>Test if the index inside iteration is the same as the value
found.</info>

<attribute>
<name>name</name>

<required>true</required>
<rtexprvalue>true</rtexprvalue>

</attribute>
</tag>

Usage:

<om:indexEquals name= “attrName” >….</om:indexEquals>
<om:indexEquals> is a body tag, that is, its body content is evaluated and output as
appropriate if the test condition evaluates to true.

The attributes are explained as follows:

■ name: The name of the attribute in context whose value is being tested.

<om:index />
Specification in taglib:

<tag>
<name>index</name>
<tagclass>oracle.panama.studio.taglib.IndexTag</tagclass>
<bodycontent>empty</bodycontent>
<info>Gets the current index during iteration.</info>

</tag>

Usage:

<om:index/>
<om:index> is a simple tag, that is, there is no content inside the tag allowed. It
simply outputs the index of the current bean which is used mostly inside
<om:iterate>.

<om:res />
Specification in taglib:

<tag>
<name>res</name>
<attribute>
<name>name</name>
<required>true</required>
<rtexprvalue>true</rtexprvalue>

Advanced Customization (Studio Tag Library)

Mobile Studio 17-59

</attribute>
<tagclass>oracle.panama.studio.taglib.ResourceTag</tagclass>
<bodycontent>empty</bodycontent>
<info>A generic "get-resource" tag.</info>

</tag>

Usage:

<om:res name= “resName” >….</om:res>
<om:res> is a simple tag, that is, there is no content allowed inside its body.

The attributes are explained as follows:

■ name: The name of the attribute in context whose value is to be output if it
exists.

The context is the defined as the HTTP request parameter, the JSP page context, or
the current HTTP session.

<om:enc />
Specification in taglib:

<tag>
<name>enc</name>
<attribute>
<name>name</name>
<required>true</required>
<rtexprvalue>true</rtexprvalue>

</attribute>
<tagclass>oracle.panama.studio.taglib.EncodeTag</tagclass>
<bodycontent>empty</bodycontent>
<info>A generic "encode-resource" tag.</info>

</tag>

<om:exist />
Specification in taglib:

<tag>
<name>exist</name>
<tagclass>oracle.panama.studio.taglib.ExistTag</tagclass>
<bodycontent>JSP</bodycontent>
<info>A logical exists tag.</info>
<attribute>
<name>name</name>
<required>true</required>

Advanced Customization (Studio Tag Library)

17-60 Oracle9iAS Wireless Developer’s Guide

<rtexprvalue>true</rtexprvalue>
</attribute>

</tag>

Usage:

<om:exist name= “attrName” >….</om:exist>
<om:exist> is a body tag, that is, its body content is evaluated and output as
appropriate if the test condition evaluates to true.

The attributes are explained as follows:

■ name: The name of the attribute in context whose value is being tested.

The context is the defined as the HTTP request parameter, the JSP page context, or
the current HTTP session.

<om:notexist />
Specification in taglib:

<tag>
<name>notexist</name>
<tagclass>oracle.panama.studio.taglib.NotExistTag</tagclass>
<bodycontent>JSP</bodycontent>
<info>A logical not-exists tag.</info>
<attribute>
<name>name</name>
<required>true</required>
<rtexprvalue>true</rtexprvalue>

</attribute>
</tag>

Usage:

<om:notexist name= “attrName” >….</om:notexist>
<om:notexist> is a body tag, that is, its body content is evaluated and output as
appropriate if the test condition evaluates to true.

The attributes are explained as follows:

■ name: The name of the attribute in context whose value is being tested.

The context is defined as the HTTP request parameter, the JSP page context, or the
current HTTP session.

Advanced Customization (Studio Tag Library)

Mobile Studio 17-61

<om:if />
Specification in taglib:

<tag>
<name>if</name>
<tagclass>oracle.panama.studio.taglib.IfTag</tagclass>
<bodycontent>JSP</bodycontent>
<info>A logical if tag.</info>
<attribute>
<name>name</name>
<required>true</required>
<rtexprvalue>true</rtexprvalue>

</attribute>
<attribute>
<name>value</name>
<required>true</required>
<rtexprvalue>true</rtexprvalue>

</attribute>
<attribute>
<name>op</name>
<required>true</required>
<rtexprvalue>false</rtexprvalue>

</attribute>
</tag>

Usage:

<om:if name= “attrName” value= “attrValue” op= “equal” >
<om:then> ….</om:then>

<om:elseif name=”attrName” value=”attrValue” op=”equal”>
<om:then> …</om:then>
<om:ese>

<om:then> …</om:then>
</om:else>

</om:elseif>
</om:if>
<om:if> is used in combination with <om:elseif>, <om:else> and
<om:then>.

If the application of the operator between the value of the given attribute in context
and the value given evaluates to true, then the immediate child <om:then> tag’s
content are evaluated and output. Otherwise, the <om:elseif> or <om:else>
that is an immediate child of the <om:if> is evaluated, and its contents are output
as appropriate to them.

Advanced Customization (Studio Tag Library)

17-62 Oracle9iAS Wireless Developer’s Guide

The attributes are explained as follows:

■ name: The name of the attribute in context whose value is being tested.

The context is defined as the HTTP request parameter, the JSP page context, or the
current HTTP session.

value: The value of the attribute being testing against.

<om:elseif>
Specification in taglib:

<tag>
<name>elseif</name>
<tagclass>oracle.panama.studio.taglib.ElseIfTag</tagclass>
<bodycontent>JSP</bodycontent>
<info>A logical elseif tag, allowed only inside if or elseif.</info>
<attribute>
<name>name</name>
<required>true</required>
<rtexprvalue>true</rtexprvalue>

</attribute>
<attribute>
<name>value</name>
<required>true</required>
<rtexprvalue>true</rtexprvalue>

</attribute>
<attribute>
<name>op</name>
<required>true</required>
<rtexprvalue>false</rtexprvalue>

</attribute>
</tag>

Usage:

<om:if name= “attrName” value= “attrValue” op= “equal” >
<om:then> ….</om:then>

<om:elseif name=”attrName” value=”attrValue” op=”equal”>
<om:then> …</om:then>
<om:ese>

<om:then> …</om:then>
</om:else>

</om:elseif>
</om:if>

Advanced Customization (Studio Tag Library)

Mobile Studio 17-63

<om:elseif> is used in combination with <om:if>, <om:else> and
<om:then>.

If the application of the operator between the value of the given attribute in context
and the value given evaluates to true, then the immediate child <om:then> tag’s
content are evaluated and output Otherwise, the <om:else> that is the immediate
child of the <om:elseif> is evaluated, and its contents are output as appropriate
to it.

The attributes are explained as follows:

■ name: The name of the attribute in context whose value is being tested.

The context is defined as the HTTP request parameter, the JSP page context, or the
current HTTP session.

value: The value of the attribute being tested against.

<om:else />
Specification in taglib:

<tag>
<name>else</name>
<tagclass>oracle.panama.studio.taglib.ElseTag</tagclass>
<bodycontent>JSP</bodycontent>
<info>A logical else tag.</info>

</tag>

Usage:

<om:if name= “attrName” value= “attrValue” op= “equal” >
<om:then> ….</om:then>

<om:elseif name=”attrName” value=”attrValue” op=”equal”>
<om:then> …</om:then>
<om:ese>

<om:then> …</om:then>
</om:else>

</om:elseif>
</om:if>
<om:else> is used in combination with <om:elseif>, <om:else> and
<om:then>.

When the parent <om:if> or <om:elseif> evaluates to false, then the content of
the child <om:then> tag is evaluated and output as appropriate, otherwise, it does
nothing.

Advanced Customization (Studio Tag Library)

17-64 Oracle9iAS Wireless Developer’s Guide

<om:then />
Specification in taglib:

<tag>
<name>then</name>
<tagclass>oracle.panama.studio.taglib.ThenTag</tagclass>
<bodycontent>JSP</bodycontent>
<info>A logical else tag.</info>

</tag>

Usage:

<om:if name= “attrName” value= “attrValue” op= “equal” >

 <om:then> ….</om:then>

 <om:elseif name=”attrName” value=”attrValue” op=”equal”>

 <om:then> …</om:then>

 <om:ese>

 <om:then> …</om:then>

 </om:else>

 </om:elseif>

</om:if>

<om:then> is used in combination with <om:if> , <om:elseif> and
<om:else>.

If the parent <om:if> , <om:elseif> and <om:else> evaluates to true, then the
contents of the <om:then> tag are evaluated and output as appropriate.

<om:iterate />
Specification in taglib:

<tag>
<name>iterate</name>
<tagclass>oracle.panama.studio.taglib.IterateTag</tagclass>
<!-- teiclass>oracle.panama.studio.taglib.IterateTagTEI</teiclass -->
<bodycontent>JSP</bodycontent>
<info>An iteration tag.</info>
<attribute>
<name>name</name>
<required>true</required>

Advanced Customization (Studio Tag Library)

Mobile Studio 17-65

<rtexprvalue>true</rtexprvalue>
</attribute>

</tag>

Usage:

<om:iterate name= “collectionName” >
…
</om:iterate>
<om:iterate> is used for iterating over a collection of bean objects. If an object
with the given name is found in the context, and it is of Java Collection type, then
the collection can be looped through, and each of the object inside the collection can
be used as we loop through it. The body of the <om:iterate> tag will be output n
times where n is the number of objects inside the collection.

<om:switch />
Specification in taglib:

<tag>
<name>switch</name>
<tagclass>oracle.panama.studio.taglib.SwitchTag</tagclass>
<bodycontent>JSP</bodycontent>
<info>A switch tag.</info>
<attribute>
<name>name</name>
<required>true</required>
<rtexprvalue>true</rtexprvalue>

</attribute>
</tag>

Usage:

<om:switch name= “attrName”>
<om:case value= “value1”>
…
</om:case>
<om:case value= “value2” >
…
</om:case>
…
<om:default>
…
</om:default>
</om:switch>

Advanced Customization (Studio Tag Library)

17-66 Oracle9iAS Wireless Developer’s Guide

<om:switch> is used in combination with <om:case> and <om:default>,
where in <om:switch> the name of the attribute being tested is specified, and
inside <om:case> the value of the attribute being testing against is specified. In
case of a match, the body of the <om:case> that satisfies the match is evaluated
and output as appropriate, otherwise if the <om:default> is specified, then its
body is evaluated and output instead.

<om:case />
Specification in taglib:

<tag>
<name>case</name>
<tagclass>oracle.panama.studio.taglib.CaseTag</tagclass>
<bodycontent>JSP</bodycontent>
<info>A case tag.</info>
<attribute>

<name>value</name>
<required>true</required>
<rtexprvalue>true</rtexprvalue>

</attribute>
</tag>

Usage:

See that of <om:switch >

<om:default />
Specification in taglib:
<tag>

<name>default</name>
<tagclass>oracle.panama.studio.taglib.DefaultTag</tagclass>
<bodycontent>JSP</bodycontent>
<info>A default tag. </info>

</tag>

Usage:

See that of <om:switch>

Part IV
Oracle9iAS Wireless Modules

Part IV contains information about Oracle9iAS Wireless modules.

■ Chapter 18, "Mobile PIM and eMail"

■ Chapter 19, "m-Commerce"

■ Chapter 20, "Location-Based Module"

Mobile PIM and eMail 18-1

18
Mobile PIM and eMail

Each section of the chapter describes a module and its configuration. The sections of
this chapter include:

■ Section 18.1.1, "Mobile Email"

■ Section 18.1.2, "Mobile Directory"

■ Section 18.1.3, "Mobile Address Book"

■ Section 18.1.4, "Calendar"

■ Section 18.1.5, "Instant Messaging"

■ Section 18.1.6, "Short Messaging"

■ Section 18.1.7, "Document Management"

■ Section 18.1.8, "Fax Module"

■ Section 18.1.9, "Tasks"

Mobile PIM and eMail Overview

18-2 Oracle9iAS Wireless Developer’s Guide

Figure 18–1 The Mobile PIM and Email

18.1 Mobile PIM and eMail Overview
Oracle9i Application Server Personal Information Management (PIM) Service
enables customers to integrate corporate email, directory, address book, calendaring
and instant messaging applications into their mobile enterprise portals.

Each of these applications is built as a module that can be called either directly by
mobile users from their devices, or by other applications. These mobile PIM and
email applications are fully integrated within one another, enabling a user to access
such features as an address book-based recipient selection or a directory when
composing email messages.

Oracle9i Application Server customers can leverage the Personal Information
Management Service modules into their own or third-party applications to add
communication features to these services, to retrieve corporate directory
information, or to add and manage appointments for users such as travel or dining
reservations.

18.1.1 Mobile Email
The email module enables users to access their email messages from any mobile
device. Mobile Email integrates with any IMAP or POP3 server (including
Microsoft Exchange and Lotus Domino servers).

18.1.1.1 Configuring an Email Service
All the necessary .jar files are shipped with Oracle9iAS Wireless. The are no scripts.

Mobile PIM and eMail Overview

Mobile PIM and eMail 18-3

Table 18–1 Email Module Parameters

Parameter Description
Default
Value Example

ORACLE_SERVICES_PIM_
MAIL_PROTOCOL

The mail protocol. pop3 imap, pop3

ORACLE_SERVICES_PIM_
MAIL_SERVER_NAME

Full hostname of the Mail server. localhost mailserver.mycom
pany.com

ORACLE_SERVICES_PIM_
MAIL_SERVER_PORT

Port number of the Mail server on the host. 110 Typically 143 for
imap and 110 for
pop3.

ORACLE_SERVICES_PIM_
MAIL_SMTP_SERVER_NAME

Full hostname of the SMTP server. localhost mysmtp.mycomp.
com

 ORACLE_SERVICES_PIM_
MAIL_SMTP_SERVER_PORT

Port number of the SMTP server on the host. 25 25, 45

ORACLE_SERVICES_PIM_
MAIL_SMTP_SERVER_LOGIN

The login name of the SMTP server. If login for
SMTP is not required, then this value should
be null or empty # string (""), otherwise, the
value will be used for SMTP login. The format
is <login name>@<domain>. If domain is not
specified here, the value of the property
ORACLE_SERVICES_PIM_MAIL_
AUTODOMAIN will be appended. If that is
not specified also, the property ORACLE_
SERVICES_PIM_MAIL_DEFAULT_
EMAILDOMAIN will be used.

none john.doe@mycom
p.com

ORACLE_SERVICES_PIM_
MAIL_AUTODOMAIN

When composing email, if email address does
not have a domain, this domain will be
automatically appended.

localhost mycomp.com

ORACLE_SERVICES_PIM_
MAIL_FOLDER_INBOX

The name of the Inbox folder on the mail
server.

INBOX INBOX, Inbox

ORACLE_SERVICES_PIM_
MAIL_FOLDER_SENT

The name of the Sent folder on the mail server. Sent Sent, SentItems

ORACLE_SERVICES_PIM_
MAIL_DEFAULT_
EMAILDOMAIN

The default email domain for sending emails.
When sending emails, if the email domain is
not specified, then the default email domain
will be appended to the username. For
example, if the default domain is
oraclemobile.com, and a user sends an email to
the user "john.doe", the email will be sent to
john.doe@mycomp.com

localhost mycomp.com

Mobile PIM and eMail Overview

18-4 Oracle9iAS Wireless Developer’s Guide

18.1.1.2 Linking to a Email Service
You can link to an email service using the following virtual URL:

omp://oracle/services/pim/mail

Input Call Parameters
The input call parameters of the email module include the following:

ORACLE_SERVICES_PIM_
MAIL_MSGFETCH_SETSIZE

The maximum number of messages fetched for
one request. This is the maximum number of
messages return for one request. For example,
if a folder has 300 messages, only the first 200
will be returned at the first time.

200 200, 300

ORACLE_SERVICES_PIM_
MAIL_SERVER_CONNECT_
TIMEOUT

The connection timeout in milliseconds. 2000 2000, 3000

ORACLE_SERVICES_PIM_
MAIL_CONFIG_CLASS

The configuration class. Users can provide
their own configuration classes, enabling them
to perform advanced configuration such as
selecting a mail server host name based on
runtime information.

oracle.pa
nama.mo
dule.pim.
mail.util.
Config

oracle.panama.mo
dule.pim.mail.util.
Config

mycomp.mail.con
fig.MailConfig

ORACLE_SERVICES_PIM_
MAIL_TEMP_DIR

The temporary directory for downloading a
message or attachments.

/temp /home/9iasuser/
temp,
D:\9iasuser\temp

ORACLE_SERVICES_PIM_
MAIL_AUDIO_TMP_DIR

The temporary directory that stores the
temporary audio files. This directory holds the
.wav files that are generated when a user
replies to an email in the voice version of the
application. This directory should be web
accessible.

/module
s/modul
es-web/p
im/mail
/audiote
mp

/home/9iasuser/i
aswv20/modules
/modules-web/pi
m/mail/audiote
mp

ORACLE_SERVICES_PIM_
MAIL_AUDIO_TMP_URL

The url for the temporary audio files directory. http://lo
calhost/
modules
/pim/m
ail/audio
temp

http://localhost/
modules/pim/ma
il/audiotemp

ORACLE_SERVICES_PIM_
MAIL_MESSAGE_ENCODING

The encoding that is used while sending an
email. If this field is empty, then the default
system encoding is used.

UTF-8 UTF-8, Shift_JIS,
Big5

Table 18–1 Email Module Parameters

Parameter Description
Default
Value Example

Mobile PIM and eMail Overview

Mobile PIM and eMail 18-5

action
The action the email module should perform. This is a mandatory input parameter.

Table 18–2 Input Parameters for Action

mailto
The email address to which the message is sent. This is an optional input parameter.
The value must be a string. For example:

■ mailto=oraclemobile@oracle.com

■ mailto=john.smith@mycompany.com

attach
The fully-qualified path of the local file that is sent as an attachment to the email.
the value must be a string. For example:

■ attach=/home/9iasuser/temp/presentation.ppt

■ attach=D:\9iasuser\temp\instructions.txt

Output Parameters (Examples)
To send an email to Scott Tiger, you configure the action and mailto parameters as
follows:

■ action=messageto

■ mailto=scott.tiger@oracle.com

To send the picture (a .jpeg)of your new home, you configure the action and attach
parameters as follows:

■ action=sendasattachment

■ attach=/private/9iasuser/temp/my1MilDolHome.jpg

Valid Value Description Requirement

messageto Send an email message. Requires mailto.

messagecc CC an email message. Requires mailto.

sendasattachment Send an attachment Requires attach.

Mobile PIM and eMail Overview

18-6 Oracle9iAS Wireless Developer’s Guide

18.1.2 Mobile Directory
The Mobile Directory module enables users to access LDAP directory servers from
any mobile device. The directory module is integrated with the mobile email
module, enabling users to browse their corporate directory and then send an email
to a particular contact, or to compose a recipient list from the directory.

18.1.2.1 Configuring the Mobile Directory
All of the required .jar files are included with Oracle9iAS Wireless. This module
requires no scripts.

The Mobile directory includes the following configuration parameters:

Table 18–3 Configuration Parameters for the Mobile Directory

Parameters Description Default Value Examples

ORACLE_SERVICES_PIM_DIRECTORY_
HOST

The LDAP server
hostname.

localhost

Valid value:
myldapserver.cycompany.com

ORACLE_SERVICES_PIM_DIRECTORY_
PORT

The LDAP server port
number

389 389,345

ORACLE_SERVICES_PIM_DIRECTORY_
LOGIN

Is Login required or not? The valid value is
’false’.

 true, false

ORACLE_SERVICES_PIM_DIRECTORY_
USERNAME

If a LDAP login is
required, then a default
username and password
can be specified. Set
ORACLE_SERVICES_
PIM_DIRECTORY_
LOGIN to true.

my user User 1234

ORACLE_SERVICES_PIM_DIRECTORY_
PASSWORD

If a LDAP login is
required then a default
username and password
can be specified. Set
ORACLE_SERVICES_
PIM_DIRECTORY_
LOGIN to true.

1234 55 hello

27478

ORACLE_SERVICES_PIM_DIRECTORY_
MAX_RESULT_COUNT

Maximum results
returned from a query.

1000 1000, 1200

Mobile PIM and eMail Overview

Mobile PIM and eMail 18-7

ORACLE_SERVICES_PIM_DIRECTOR_
QUERY_NAMES

The list of IDs for each
type of query to be
defined. For each one
defined, other
parameters with the ID
need must be created as
specified below. The
parameters with the ID
"BYNAME" must be
created for each query.

None BYNAME,
BYEMAIL

ORACLE_SERVICES_PIM_DIRECTORY_
MAX_REC_PAGE

The maximum results
displayed on a screen.

9 9, 10

ORACLE_SERVICES_PIM_DIRECTORY_
MERGE_RESULTS

Whether to display other
attributes returned by a
query but not specified
in the filter.

 true, false

ORACLE_SERVICES_PIM_DIRECTORY_
HOTLINK_NAMES

The list of hotlink names.
You must define
corresponding
parameters for each
hotlink you define. The
parameters with the ID
"MANAGER" are
required for each hotlink.

 MANAGER

ORACLE_SERVICES_PIM_DIRECTORY_
QUERY_BYNAME_DISPLAY

The display name for this
query, which is displayed
to the user.

 Search by
Name.

ORACLE_SERVICES_PIM_DIRECTORY_
QUERY_BYNAME_SEARCHBASE

Identifies the location
from which the search
begins.

 Examples
(dc=oracle,dc
=com)

ORACLE_SERVICES_PIM_DIRECTORY_
QUERY_BYNAME_SEARCHSCOPE

Identifies the scope of the
search.

 BASE, ONE,
SUBTREE

ORACLE_SERVICES_PIM_DIRECTORY_
QUERY_BYNAME_VISIBLE

Whether a query is
visible as a choice to the
user.

 true, false

ORACLE_SERVICES_PIM_DIRECTORY_
QUERY_BYNAME_FILTER

The filter attributes for
the query.

 cn, sn, email

ORACLE_SERVICES_PIM_DIRECTORY_
QUERY_FILTER_EXPRESSION

The Filter expression for
the query, which is RFC
2254 - compliant.

 (!(cn=Scott
Tiger)),
cn=*?*

Parameters Description Default Value Examples

Mobile PIM and eMail Overview

18-8 Oracle9iAS Wireless Developer’s Guide

ORACLE_SERVICES_PIM_DIRECTORY_
QUERY_BYNAME_FILTER_DISPLAY

A prompt for the input
values of the filter.

 Enter a name
to search:,
Enter an area
to search

ORACLE_SERVICES_PIM_DIRECTORY_
QUERY_BYNAME_RESULTLIST

The list of attributes that
you want from the query.

ORACLE_SERVICES_PIM_DIRECTORY_
QUERY_BYNAME_RESULTLIST_DISPLAY

The display names for
the attributes that are
retrieved.

. First Name,
Last Name,
Email
Address

ORACLE_SERVICES_PIM_DIRECTORY_
QUERY_BYNAME_RESULTLIST_TYPE

The type of link (made
from the results).

 display,
phone, fax,
email, link,
SMS

ORACLE_SERVICES_PIM_DIRECTORY_
QUERY_BYNAME_RESULTLIST_HOTLINK

Specifies if the result
attribute is a hotlink. Set
to false if the result
attribute is not a hotlink;
otherwise, any other
value will suffice.

 false,
MANAGER,
GROUP

ORACLE_SERVICES_PIM_DIRECTORY_
QUERY_BYNAME_HOTLINK_NAMES

The names for the
hotlink of an attribute. If
the corresponding
attribute in the list is not
a hotlink, enter "nope"

. nope,
MANAGER,

ORACLE_SERVICES_PIM_DIRECTORY_
HOTLINK_MANAGER_QUERY

The query name used by
the hotlink.

ORACLE_SERVICES_PIM_DIRECTORY_
HOTLINK_MANAGER_COLUMN_REFER

The column values to use
from the current result
set.

 cn, sn

ORACLE_SERVICES_PIM_DIRECTORY_
HOTLINK_MANAGER_COLUMN_BIND

The attribute names to
bind the referenced
values.

 cn, sn

ORACLE_SERVICES_PIM_DIRECTORY_
HOTLINK_MANAGER_COLUMN_DISPLAY

The attribute values that
are displayed. These
values are delimited by a
space in the display.

 givenname,

sn

Parameters Description Default Value Examples

Mobile PIM and eMail Overview

Mobile PIM and eMail 18-9

18.1.2.2 Linking to the Directory Module
You can link to the directory module through the following virtual URL:

omp://oracle/services/pim/directory

You can configure each element of this service; clicking any field after getting the
details of a result returns the field value to the caller as the parameter mailto.

Output Parameters
The output parameters for the mobile directory service include the following:

mailto
The value of the field that the user clicks. For example:

■ mailto=oraclemobile@oracle.com

■ mailto=John

■ mailto=Smith

■ mailto=(650)999-9999

There are no restrictions for this parameter.

ORACLE_SERVICES_PIM_DIRECTORY_
QUERY_BYNAME_RESULTLIST_
SHORTLIST

Comma-delimited series
of tokens, either "true" or
"false", and is of the same
length as the parameter
ORACLE_SERVICES_
PIM_DIRECTORY_
QUERY_BYNAME_
RESULTLIST.

The value of the token
specifies whether that
particular member of the
result list will be
displayed in the short list
mode (value = true) or if
the member of the result
list will only be
displayed in the detailed
view (value = false).

Parameters Description Default Value Examples

Mobile PIM and eMail Overview

18-10 Oracle9iAS Wireless Developer’s Guide

Examples
To return a first name, configure the mailto parameter as follows:

mailto=john

To return an email address, cofeature the mailto parameter as follows:

mailto=john.smith@mycompany.com

18.1.3 Mobile Address Book
The Mobile address book enables users to manage their own address books and
contacts as well as enabling call functions from wireless phones. The mobile address
book integrates with the Mobile Email Module to allow users to compose a
messages' recipient list from their address book.

Once you find a contact, you can also edit the contact information or delete a
contact. While deleting, nothing is returned to the caller.

18.1.3.1 Configuring the Mobile Address Book
This service implements two distinct modes, both with the same user experience
but different back-ends. In its Oracle9iAS Wireless 2.0 mode, it does not require any
third-party software and uses Oracle9iAS Wireless 2.0 storage. In its Microsoft
Exchange Mode, it fully integrates with a Microsoft Exchange server to mobile
enable Exchange users

Required Software
The mobile address book requires the following third-party software:

Table 18-1 Required Third-Party Software for the Mobile Address Book

Name Instructions Version(s)

MS Exchange [Exchange Mode] Install the Microsoft Exchange Server. 5.5

MS IIS [Exchange Mode] Install the Microsoft Internet Information
Server.

4.0

MS CDO [Exchange Mode] Collaborative Data Objects. Available with
Exchange SDK. The cdo.dll library must be installed on the IIS
Server.

1.2.1

Mobile PIM and eMail Overview

Mobile PIM and eMail 18-11

Configuration Parameters
The mobile address book includes the following parameters:

■ ORACLE_SERVICES_PIM_ADDRESSBOOK_CLASS

■ Description: The service implementation class. Determines whether the
Oracle9iAS or Exchange mode is used.

■ Default Value:
oracle.panama.module.pim.addressbook.omaddressbook.OMAddressBook

■ Valid Values:
oracle.panama.module.pim.addressbook.omaddressbook.OMAddressBook,
oracle.panama.module.pim.addressbook.exchange.ExchangeAddressBook.

■ ORACLE_SERVICES_PIM_ADDRESSBOOK_SERVER_NAME

■ Description: If Exchange mode is selected, designates the Exchange server
host name or IP address. It should not contain a value in the Wireless 2.0
mode.

■ Default Value: localhost

■ Valid Values: exchange.mycompany.com, email-serv.mycompany.com.

■ ORACLE_SERVICES_PIM_ADDRESSBOOK_SERVER_DATA_WEB_LINK

Oracle9iAS
Wireless 2.0
Exchange
ASP
(Shipped
with
Oracle9iAS
Wireless 2.0)

[Exchange Mode] Create any directory on the IIS server. Copy
all the files in $ORACLE_
HOME/iaswv20/wireless/j2ee/applications/modules/modul
es-web/pim/addressbook/asp/ for a Solaris install,
%ORACLE_
HOME%\iaswv20\wireless\j2ee\applications\modules\mod
ules-web\pim\addressbook\asp\ for an NT install to the just
created directory on the IIS server. Invoke the properties dialog
box for this directory. Choose the Directory tab. Click the "Edit"
button for the "Anonymous Access and Authentication
Control". Set as follows:

■ Allow Anonymous Access - unchecked

■ Basic Authentication - checked

■ Windows NT Challenge/Response - checked

Table 18-1 Required Third-Party Software for the Mobile Address Book

Name Instructions Version(s)

Mobile PIM and eMail Overview

18-12 Oracle9iAS Wireless Developer’s Guide

■ Description: If Exchange mode is selected, this is the URL pointing to the
Oracle9iAS Wireless Exchange Address Book ASP (AddressBook.asp)
running on IIS. It should have no value in the Wireless 2.0 mode.

■ Default Value: None

■ Examples:
http://iis.mycompany.com/Oracle9iASW20/exchange/AddressBook.asp

■ ORACLE_SERVICES_PIM_ADDRESSBOOK_DOMAIN

■ Description: The domain attached to the user account information. This is a
free form field. If the Oracle9iAS Wireless instance supports multiple
address book servers, then these address books must not have the same
domain. Different PIM services with the same domain share the user
account information.

■ Default Value: LOCALDOMAIN

■ Examples: LOCALDOMAIN for the Oracle9iAS Wireless Mode,
ExchangeDomain for Exchange.

18.1.3.2 Linking to the Mobile Address Book
You can link to the mobile address book using the following virtual URL:

omp://oracle/services/pim/addressbook

The mobile address book includes the following call parameters:

Table 18–4 Input Call Parameters of the Mobile Address Book

Parameter Name Mandatory Description Valid Value

screen No The function
performed by the
Addressbook.

0 (Displays the list of contacts);

51 (Makes the Addressbook
service add the contact with the
provided data to this database of
contacts. This parameter requires
SERIALIZED_CONTACT if the
value is 51.)

srchstr No Makes the
Addressbook
perform a search
for the specified
string among all of
the contacts.

The string to search for. Requires
screen := {0 empty}

Mobile PIM and eMail Overview

Mobile PIM and eMail 18-13

SERIALIZED_CONTACT
The SERIALIZED_CONTACT group contains the parameters for each element of a
contact, such as contact name, contact work phone, and contact work address. The
elements described in this optional group are returned when the user clicks done in
the screen with a contact detail.

The SERIALIZED_CONTACT group includes the following parameters:

Table 18–5 Parameters of the Serialized Contact Group for Addressbook

Parameter Name Mandatory Description Valid Value

NAME Yes The name of this contact. For example, NAME=John Smith.

WORKPH No The work phone number of this
contact.

Restriction: white-spaces, special
characters, are encoded.

WORKPH=650-123-4567

MOBILEPH No The mobile phone number of this
contact.

HOMEPH No The home phone of this contact.

Restriction: white-spaces, special
characters, are encoded.

WORKFAX No The business fax number of this
contact.

Restriction: white-spaces, special
characters, are encoded.

EMAIL1 No The email (or the first email) address
of this contact.

Restriction: white-spaces, special
characters, are encoded.

An email address, for example,
EMAIL1=scott.tiger@oralce.com

EMAIL2 No The second email address of this
contact.

Restriction: white-spaces, special
characters, are encoded.

An email address, for example,
EMAIL2=scott.tiger@homemail.co
m

WADDRLINE1 No The first (or only) line of the Work
address of this contact.

Restriction: white-spaces, special
characters, are encoded.

The first line of a street address. For
example:

WADDRLINE1=123 Main Street

Mobile PIM and eMail Overview

18-14 Oracle9iAS Wireless Developer’s Guide

WADDRCITY No The city or Work address of this
contact.

Restriction: white-spaces, special
characters, are encoded.

A city; for example, WADDRCITY =
Boston

WADDRSTATE No The state (or federal region) of the
WORK address of this contact.

Restriction: white-spaces, special
characters, are encoded.

A state (or federal region); for
example, WADDRSTATE = CA

WADDRSTATE = Massa chusetts

WADDRZIP No The ZIP or postal code of the work
address of this contact.

A ZIP or postal code. For example,
WADDRZIP=02142

WADDRZIP=D-80333

WADDRCOUNTRY No The country of the work address of
this contact.

The name of a country, for example:

WADDRCOUNTRY=U.S.A.

HADDRLINE1 No The first (or only) street line of the
home address of this contact.

Restriction: white-spaces, special
characters, are encoded.

The first line of a street address, for
example:

HADDRLINE1 = 2901 Armstrong
Dr.

HADDRCITY No The city of the home address of the
person in the contact.

The name of a city, for example:

HADDRCITY=Boston

HADDRSTATE No The state (or federal region) of the
home address of the person in this
contact.

The full name or abbreviation of the
state. For example:

HADDRSTATE=Massachusetts

HADDRSTATE=CA

HADDRZIP No The ZIP or postal code of this contact. The ZIP or postal code. For
example:

HADDRZIP=90210

HADDRZIP=D-80333

HADDRCOUNTRY No The country of the home address of
this contact.

A name of a country, for example:

HADDRCOUNTRY=U.S.A.

NOTES Yes Text notes describing this contact.

Restriction: white-spaces, special
characters, are encoded.

A short description of the person in
the contact, for example:

NOTES=This the chief-of-staff in
CCC Co.

Parameter Name Mandatory Description Valid Value

Mobile PIM and eMail Overview

Mobile PIM and eMail 18-15

Output Parameters
The output parameters for the Addressbook include the following:

Table 18–6 Output Parameters of the Addressbook

smPhone
smphone is a phone number of a contact, returned with additional parameters used
by the Short Messaging module (usually when the user clicks on a phone number in
the Addressbook).

This group includes the following parameters:

Table 18–7 Parameters of smPhone

faxNumber
faxNumber is the fax number of a contact, returned with additional parameters
used by the FAX or Short-Messaging modules (usually when the user clicks on a fax
number in the Addressbook). The faxNumber group includes the following
parameters:

Table 18–8 Parameters of faxnumber

Parameter Name Mandatory Description

mailto No. An email address of a contact. This must be an email address. For example:
mailto=scott.tiger@orcale.com

Parameter Name Mandatory Description Valid Value

type Yes The type of short messaging
service desired.

VOICE, FAX

destinationAddress Yes The recipient number of
address for the short message
(usually a phone number).

A phone number, for example:

destinationAddress=650-555-5000.

Parameter Name Mandatory Description Valid Value

type Yes The type of short
messaging service
needed.

FAX

destinationAddress Yes The fax number of the
recipient used in the short
messaging module.

A fax number, for example,
destinationAddress=650-123-4567

Mobile PIM and eMail Overview

18-16 Oracle9iAS Wireless Developer’s Guide

SERIALIZED_CONTACT
The SERIALIZED_CONTACT group contains the parameters for each element of a
contact, such as contact name, contact work phone, and contact work address. The
elements described in this optional group are returned when the user clicks done in
the screen with a contact detail.

The parameters of the SERIALIZED CONTACT group are as follows:

Table 18–9 Parameters of the SERIALIZED_CONTACT Group

FAXTODO Yes The function that the fax
module perform.

NEWFAX

RNAME Yes The name of the recipient
of the fax.

A name, for example: RNAME=Scott Tiger

RPHONE Yes The phone number of the
recipient of the fax.

a phone number, for example:
RPHONE=650-555-5000.

RFAX Yes The fax number to which
the fax is sent.

a fax number, for example,
RFAX=650-555-1234

Parameter Name Mandatory Description Valid Value

NAME Yes The name of this contact.

Restriction: the white-spaces,
special characters, are encoded.

A name. For example, NAME=John
Smith.

WORKPH No The work phone number of this
contact.

Restriction: the white-spaces,
special characters, are encoded.

A phone number, for example:

WORKPH=650-123-4567

HOMEPH No The home phone number of this
contact.

Restriction: the white-spaces,
special characters, are encoded.

A phone number, for example:
HOMEPH=650-555-5000

MOBILEPH No The mobile phone number of this
contact.

Restriction: the white-spaces,
special characters, are encoded.

A phone number, for example:
MOBILEPH=650-555-5000

Parameter Name Mandatory Description Valid Value

Mobile PIM and eMail Overview

Mobile PIM and eMail 18-17

WORKFAX No The business fax number of this
contact.

Restriction: the white-spaces,
special characters, are encoded.

Example: WORKFAX=

EMAIL1 No The e-mail (or the first email)
address of this contact. Restriction:
the white-spaces, special characters,
are encoded.

An email address, for example,
EMAIL1=scott.tiger@oralce.com

EMAIL2 No The second email address of this
contact.

Restriction: the white-spaces,
special characters, are encoded.

An email address, for example,
EMAIL2=scott.tiger@homemail.com

WADDRLINE1 No The first (or only) line of the Work
address of this contact.

Restriction: the white-spaces,
special characters, are encoded.

The first line of a street address. For
example:

WADDRLINE1=123 Main Street

WADDRCITY No The city or work address of this
contact.

Restriction: the white-spaces,
special characters, are encoded.

A city; for example, WADDRCITY =
Boston

WADDRSTATE No The state (or federal region) of the
WORK address of this contact.

Restriction: the white-spaces,
special characters, are encoded.

A state (or federal region); for
example, WADDRSTATE = CA

WADDRSTATE = Massachusetts

WADDRZIP No The ZIP or postal code of the work
address for this contact.

A ZIP or postal code. For example,
WADDRZIP=02142

WADDRZIP=D-80333

WADDRCOUNTRY No The country of the work address of
this contact.

The name of a country, for example:

WADDRCOUNTRY=U.S.A.

HADDRLINE1 No The first (or only) street line of the
home address of this contact.

Restriction: the white-spaces,
special characters, are encoded.

The first line of a street address, for
example:

HADDRLINE1 = 2901 Armstrong Dr.

Parameter Name Mandatory Description Valid Value

Mobile PIM and eMail Overview

18-18 Oracle9iAS Wireless Developer’s Guide

18.1.4 Calendar
The calendar enables users to manage their schedule and tasks via mobile access to
calendaring servers, such as Microsoft Exchange and Lotus Domino.

18.1.4.1 Configuring the Calendar Module
This service implements two distinct modes, both with the same user experience
but with different back-ends. In its Lotus Domino mode, it fully integrates with a
Lotus Domino server to mobile enable Domino users. In its Microsoft Exchange
Mode, it fully integrates with a Microsoft Exchange server to mobile enable
Exchange users.

Required Third-Party Software
The calendar module requires the following third-party software:

HADDRCITY No The city of the home address of the
person in the contact.

The name of a city, for example:

HADDRCITY=Boston

HADDRSTATE No The state (or federal region) of the
home address of the person in this
contact.

The full name or abbreviation of the
state. For example:

HADDRSTATE=Massachusetts

HADDRSTATE=CA

HADDRZIP No The ZIP or postal code of this
contact.

The ZIP or postal code. For example:

HADDRZIP=90210

HADDRZIP=D-80333

HADDRCOUNTRY No The country of the home address of
this contact.

A name of a country, for example:

HADDRCOUNTRY=U.S.A.

NOTES Yes Text notes describing the person
this contact.

Restriction: the white-spaces,
special characters, are encoded.

A short description of the person in
the contact, for example:

NOTES=This the chief-of-staff in
CCC Co.

Parameter Name Mandatory Description Valid Value

Mobile PIM and eMail Overview

Mobile PIM and eMail 18-19

Table 18–10 Software Requirements for the Calendar Module

Name Instruction Version(s)

MS Exchange Exchange mode: Install the Microsoft
Exchange Server.

5.5

MS IIS Exchange mode: Install the Microsoft
Internet Information Server.

4.0

MS CDO Exchange mode: Collaborative Data
Objects. Available with Exchange SDK.
The cdo.dll library must be installed on
the IIS Server.

1.2.1

Oracle9iAS Wireless (Exchange
ASP Shipped with Oracle9iAS
Wireless 2.0)

Exchange mode: Create any directory on
the IIS server. Copy all the files in
$ORACLE_
HOME/iaswv20/wireless/j2ee/applicati
ons/modules/modules-web/pim/calend
ar/asp/ for a Solaris install, %ORACLE_
HOME%\iaswv20\wireless\j2ee\applica
tions\modules\modules-web\pim\calen
dar\asp\ for an NT install to just created
directory on the IIS server. Invoke the
properties dialog box for this directory.
Choose the Directory tab. Click the "Edit"
button for the "Anonymous Access and
Authentication Control", make sure the
following check boxes are set as follows:

■ Allow Anonymous Access -
unchecked

■ Basic Authentication - checked

■ Windows NT
Challenge/Response-checked

Mobile PIM and eMail Overview

18-20 Oracle9iAS Wireless Developer’s Guide

Configuration Parameters
The Calendar module includes the following configuration parameters:

■ ORACLE_SERVICES_PIM_CALENDAR_CLASS

■ Description: The service implementation class, which determines whether
the Domino or Exchange mode is used.

■ Default Value: None

■ Valid Values:
oracle.panama.module.pim.calendar.domino.DominoCalendarService,
oracle.panama.module.pim.calendar.exchange.ExchangeCalendarService.

■ ORACLE_SERVICES_PIM_CALENDAR_SERVER_NAME

Lotus Java SDK Domino Mode: Install the Lotus Domino
Toolkit for Java/CORBA, and add
NCSO.jar to the classpath for Oracle9iAS
Wireless 2.0. Installing the toolkit creates
"DTJava" directory on the file system.
Copy the DTJava/lib/NCSO.jar to
$ORACLE_HOME/wireless/lib on
Solaris, to %ORACLE_
HOME%\wireless\lib on NT.Examples of
ORACLE_HOME values: Solaris:
ORACLE_HOME=/u01/iaswv20NT:
ORACLE_HOME=d:\oracle\iaswv20

Ensure you download "Lotus Domino
Toolkit for Java/CORBA Release 5.0.8
Update" or "Lotus Domino Toolkit for
Java/CORBA Release 5.0.5 Update
Shipping".

Do not use version 2.x toolkit.

On the Domino server, the server tasks
HTTP and DIIOP must be running.
Ensure that the Domino server notes.ini
file contains the following line:

ServerTasks=<other
tasks>,http,diiop

 R5

Name Instruction Version(s)

MS Exchange Exchange mode: Install the Microsoft
Exchange Server.

5.5

Mobile PIM and eMail Overview

Mobile PIM and eMail 18-21

■ Description: Designates the Exchange server or Domino server host name.

■ Default Value: None

■ Examples: exchange.mycompany.com, domino-server.mycompany.com

■ ORACLE_SERVICES_PIM_CALENDAR_SERVER_DATA_WEB_LINK

■ Description: If the Exchange mode is selected, this is the URL pointing to
the Oracle9iAS Wireless 2.0 Exchange Calendar ASP (Calendar.asp) running
on IIS.

■ Default Value: None

■ Examples:
http://iis.mycompany.com/Oracle9iASW20/exchange/Calendar.asp

■ ORACLE_SERVICES_PIM_CALENDAR_DOMAIN

■ Description: The domain is attached to the user account information. This is
a free-form field. If the Wireless instance supports multiple calendar
servers, then these must not have the same domain. Different PIM services
with the same domain share the user account information.

■ Default Value: None

■ Examples: DominoDomain for the Domino Mode, ExchangeDomain for
Exchange.

18.1.4.2 Linking to the Calendar Module
You can link to the calendar module using the following virtual URL:

omp://oracle/services/pim/calendar

Input Call Parameters for the Calendar Module
The input call parameters of the calendar module include the getApptDetails
group. This optional group includes the following input call parameters:

Table 18–11 Parameters of ID

Parameter Name Mandatory Description Valid Value

ID Yes The input ID required to
retrieve appointment details.

A string. For example, ID=1324.

Mobile PIM and eMail Overview

18-22 Oracle9iAS Wireless Developer’s Guide

Table 18–12 Parameters of addAppt

The Calendar module also includes the deleteAppt group. The deleteAppt
group includes the following parameter:

Table 18–13 Parameter of deleteAppt

Output Parameters of the Calendar Module
The calendar module includes the following output parameters:

The output parameters of the calendar module include the
getApptDetailsRresponse group. This optional group contains the following
parameters:

Parameter Name Mandatory Description Valid Value

TITLE Yes The title of the appointment. A string. For example, TITLE=Dinner at
Joe’s.

DATE Yes The date of the appointment. A string. For example, DATE=December
31, 2001

TIME Yes The time of the appointment. A string. For example, TIME= 8:00 p.m.

DURATION Yes The duration of the appointment. A string. For example, DURATION=1
hour.

NOTES Yes The notes for the appointment. A string. For example,
NOTES=Remember the brief.

TYPE Yes The type of appointment, either
personal or business.

A string. For example, TYPE=Business.

LOCATION Yes The location of an appointment. A string. For example,
LOCATION=Home.

REMIND Yes The time interval before the event
reminder occurs.

A string. For example, REMIND=1 hour.

SHARING Yes A flag that enables or disables the
sharing of an appointment. If True,
the appointment is shared; if
FALSE, then the appointment is
not shared.

For example, SHARING=TRUE.

Parameter Name Mandatory Description Valid Value

ID Yes The input ID required to
select an appointment.

A string. For example,
ID=1324.

Mobile PIM and eMail Overview

Mobile PIM and eMail 18-23

Table 18–14 The Output Parameters of the getApptDetailsResponse Group

apptResponse
The apptResponse group (an optional group) includes the following parameters:

Table 18–15 The Output Parameters of the addApptResponse Group

Parameter Name Mandatory Description Valid Value

TITLE Yes The title of the appointment. A string. For example, TITLE=Dinner at Joe’s.

DATE Yes The date of the appointment. A string. For example, DATE=December 31,
2001

TIME Yes The time of the appointment. A string. For example, TIME= 8:00 p.m.

DURATION Yes The duration of the
appointment.

A string. For example, DURATION=1 hour.

NOTES Yes The notes for the appointment. A string. For example, NOTES=Remember the
brief.

TYPE Yes The type of appointment,
either personal or business.

A string. For example, TYPE=Business.

LOCATION Yes The location of an
appointment.

A string. For example, LOCATION=Home.

REMIND Yes The time interval before the
event reminder occurs.

A string. For example, REMIND=1 hour.

SHARING Yes A flag that enables or disables
the sharing of an appointment.
If True, the appointment is
shared; if FALSE, then the
appointment is not shared.

For example, SHARING=TRUE.

Parameter Name Mandatory Description Valid Value

TITLE Yes The title of the appointment. A string. For example, TITLE=Dinner at
Joe’s.

DATE Yes The date of the appointment. A string. For example, DATE=December 31,
2001

TIME Yes The time of the appointment. A string. For example, TIME= 8:00 p.m.

DURATION Yes The duration of the
appointment.

A string. For example, DURATION=1 hour.

NOTES Yes The notes for the appointment. A string. For example, NOTES=Remember
the brief.

Mobile PIM and eMail Overview

18-24 Oracle9iAS Wireless Developer’s Guide

deleteApptResponse
The deleteApptResponse group (an optional group) includes the following
parameters:

Table 18–16 Parameters of the deleteApptResponse group

TYPE Yes The type of appointment, either
personal or business.

A string. For example, TYPE=Business.

LOCATION Yes The location of an appointment. A string. For example, LOCATION=Home.

REMIND Yes The time interval before the
event reminder occurs.

A string. For example, REMIND=1 hour.

SHARING Yes A flag that enables or disables
the sharing of an appointment.
If True, the appointment is
shared; if FALSE, then the
appointment is not shared.

For example, SHARING=TRUE.

Parameter Name Mandatory Description Valid Value

TITLE Yes The title of the
appointment.

A string. For example,
TITLE=Dinner at Joe’s.

DATE Yes The date of the
appointment.

A string. For example,
DATE=December 31, 2001

TIME Yes The time of the
appointment.

A string. For example, TIME=
8:00 p.m.

DURATION Yes The duration of the
appointment.

A string. For example,
DURATION=1 hour.

NOTES Yes The notes for the
appointment.

A string. For example,
NOTES=Remember the brief.

TYPE Yes The type of appointment,
either personal or
business.

A string. For example,
TYPE=Business.

LOCATION Yes The location of an
appointment.

A string. For example,
LOCATION=Home.

REMIND Yes The time interval before
the event reminder
occurs.

A string. For example,
REMIND=1 hour.

Parameter Name Mandatory Description Valid Value

Mobile PIM and eMail Overview

Mobile PIM and eMail 18-25

18.1.5 Instant Messaging
The instant messaging module provides presence management, enabling employees
to exchange instant messages from their mobile devices. Integrated with Jabber
Instant Messaging server and the MSN and Yahoo networks.

18.1.5.1 Configuring the Instant Messaging Module
The instant messaging module, which uses the Jabberbeans classes to connect to a
Jabber Instant Messaging Server, requires the following third-party software.

Table 18–17 Third-Party Software for the Instant Messaging Module

This module does not require scripts.

Configuration Parameters of the Instant Messaging Module

SHARING Yes A flag that enables or
disables the sharing of an
appointment. If True, the
the appointment is
shared; if FALSE, then the
appointment is not
shared.

For example,
SHARING=TRUE.

Name Instructions Version(s)

Jabber Beans Copy the latest jabberbeans.jar to $ORACLE_
HOME/wireless/lib on Solaris, to %ORACLE_
HOME%\wireless\lib on NT.Examples of
ORACLE_HOME values: Solaris: ORACLE_
HOME=/u01/iaswv20NT: ORACLE_
HOME=d:\oracle\iaswv20

0.9.0-pre4

Jabber Server Follow the Jabber server's installation guide. 1.4.1

Yahoo Transport
Gateway

Optional. Follow the Jabber server's installation
guide

0.8.0

MSN Transport
Gateway

Optional. Follow the Jabber server's installation
guide.

1.1.0

Parameter Name Mandatory Description Valid Value

Mobile PIM and eMail Overview

18-26 Oracle9iAS Wireless Developer’s Guide

The instant messaging module includes the following configuration parameters:

Table 18–18 Instant Messaging Module Parameters

Parameter Description
Default
Value Valid Values

ORACLE_SERVICES_
PIM_IM_PROXY_SET

Determines whether the service uses
an HTTP proxy to access the Jabber
Server.

false true, false

ORACLE_SERVICES_
PIM_IM_PROXY_HOST

The host name of the HTTP proxy, if
any, used to connect to the Jabber
Server.

none www-proxy.mycompany.com,
http-proxy.mycompany.com

ORACLE_SERVICES_
PIM_IM_PROXY_PORT

The port number of the HTTP proxy, if
any, used to connect to the Jabber
Server.

80 Any valid TCP port number
on which the HTTP proxy is
listening (8080, etc).

ORACLE_SERVICES_
PIM_IM_SERVER_NAME

The host name of the machine on
which the Jabber Server is configured.

localhost jabber.mycompany.com,
corporate-jabber.mycompany.c
om

ORACLE_SERVICES_
PIM_IM_USER_
DIRECTORY

The name of the user directory service
configured on the Jabber Server
accessed by the service.

None Jud.jabber.mycompany.com

directory.jabber.mycompany.c
om.

This name should be set to the
value of the jid attribute of the
service element of type jud in
the active Jabber server's
jabber.xml configuration file:

<service type="jud"
jid="jud.jabber.mycomp
any.com" name="Dir">

<ns>jabber:iq:search</
ns>

<ns>jabber:iq:register
</ns>

</service>

Mobile PIM and eMail Overview

Mobile PIM and eMail 18-27

ORACLE_SERVICES_
PIM_IM_YAHOO

The Yahoo! Instant Messaging
transport, if any, configured on the
Jabber Server used by the service.

None yahoo.jabber.mycompany.com

yahoo-im.jabber.mycompany.c
om

This name should be set to the
value of the jid attribute of the
service element of type yahoo
in the active Jabber server's
jabber.xml configuration file:

<service type="yahoo"
jid="yahoo.jabber.myco
mpany.com" name="Y">

<ns>jabber:iq:gateway<
/ns>

<ns>jabber:iq:register
</ns>

</service>

ORACLE_SERVICES_
PIM_IM_YAHOO_KEY

The initial group name to assign to
users acquired through the Yahoo!
transport, if any.

Yahoo Yahoo Users, Yahoo!

ORACLE_SERVICES_
PIM_IM_MSN

The MSN Instant Messaging transport,
if any, configured on the Jabber Server
used by the service.

None msn.jabber.mycompany.com,

msn-im.jabber.mycompany.co
m

This name should be set to the
value of the jid attribute of the
service element of type msn in
the active Jabber server's
jabber.xml configuration file

<service type="msn"
jid="msn.jabber.mycompany.c
om" name="MSN">

<ns>jabber:iq:gateway</ns>

 <ns>jabber:iq:register</ns>

</service>

Table 18–18 Instant Messaging Module Parameters

Parameter Description
Default
Value Valid Values

Mobile PIM and eMail Overview

18-28 Oracle9iAS Wireless Developer’s Guide

18.1.5.2 Linking to the Instant Messaging Module
You can link to the instant messaging module using the following virtual URL:

omp://oracle/services/pim/instantmessaging

Input Call Parameters of the Instant Messaging Module
The input call parameters of the instant messaging module includes the IMMessage
parameter.

Table 18–19 The IMMessage Parameter

ORACLE_SERVICES_
PIM_IM_MSN_KEY

The initial group name to assign to
users acquired through the MSN
transport, if any.

MSN MSN Users, MSN

ORACLE_SERVICES_
PIM_IM_CONFERENCE

The name of the conference service
configured on the Jabber Server
accessed by the service, if any.

None conference.jabber.mycompany.
com, conf.mycompany.com
This name should be set to the
value of the jid attribute of the
conference element in the
active Jabber server's
jabber.xml configuration file:

<conference type="private"
jid="conference.jabber.mycom
pany.com" name="Private
Conferencing"/>

ORACLE_SERVICES_
PIM_IM_REFRESH_TIME

The refresh rate for some pages
accessed by the service. This value is in
milliseconds.

20000 30000 - for 30 seconds

60000 - for 60 seconds

Parameter Name Mandatory Description Valid Value

IMMessage No The text of a message that
is sent through the
service.

A string. For example:

■ IMMESSAGE=How are
you doing today?

■ IMMESSAGE=I am
sending you this message
through IM

Table 18–18 Instant Messaging Module Parameters

Parameter Description
Default
Value Valid Values

Mobile PIM and eMail Overview

Mobile PIM and eMail 18-29

Output Parameters
An example of the IMMessage output parameter is calling the module to send a
simple message. For example:

Input Parameter: IMMessage=Do you want to go see a movie?

18.1.6 Short Messaging
The short messaging module enables users to send messages through such
mediums as voice, email, fax or SMS messaging. To send a short message, a user
sends the service four parameters: the type of message to be sent (email, SMS, Voice,
or Fax), the destination address of the message, the subject text, and the body text of
the email. The subject and body text are translated into the medium appropriate to
the message type and then sent to the destination.

18.1.6.1 Configuring the Short Messaging Module
This service does not require any third-party software components. It relies on
Oracle9iAS Wireless transports to be configured. The short messaging modules does
not require scripts.

Configuration Parameters
The short messaging service includes the following configuration parameters:

■ ORACLE_SERVICES_PIM_SM_FROM_ADDRESS

■ The default address used as sender information for guest or anonymous
users.

■ None

■ anonymous@mycompany.com, Company Name, (800)123-4567

18.1.6.2 Linking to the Short Messaging Module
You can link to a short messaging module using the following virtual URL:

omp://oracle/services/pim/sm

Input Call Parameters
The short messaging module includes the following input call parameters:

Mobile PIM and eMail Overview

18-30 Oracle9iAS Wireless Developer’s Guide

Table 18–20 Input Call Parameters of the Short Messaging Module

Output Parameters (Examples)
An example of the short message output parameters is sending a simple message.
For example:

Parameter Name Mandatory Description Valid Value

type No The type of medium
through which the
message is sent.

The values include:

■ EMAIL (for sending
email messages)

■ SMS (for sending a SMS
message)

■ VOICE (for sending a
message through a
phone).

■ FAX (for sending a
message through a
facsimile)

destinationAddress No The address to which the
message is sent.

A string. For example:

■ destinationAddress=6505551
234

■ destinationAddress=oraclem
obile@oracle.com

subjectText No The subject of a message
to be sent.

A String. For example:

■ subjectText=Hi There!

■ subjectText=Tomorrow
Night

bodyText No The body text of a
message to be sent.

A String. For example:

bodyText=Don’t forget to
pick up the children on the
way home. And buy dinner,
too.

sendMessage No Specifies whether the
service should attempt to
send the message with the
given information. The
service does not send the
message unless it has
been instructed to do so.

Specify Yes if the service
should send the message.
Specify No if the service
should not send the message.

Mobile PIM and eMail Overview

Mobile PIM and eMail 18-31

Sending an Email
To send an email configure the input parameters as follows:

type=EMAIL

destinationAddress=friend@oracle.com

subjectText=Hey there!

bodyText=How’s it going?

sendMessage=yes

Sending a Voice Message
To send a voice message, configure the input parameters as follows:

type=Voice

destinationAddress=9095551234

18.1.7 Document Management
The Oracle Internet File System (iFS) module enables users to both upload files to,
or download files from, an Oracle IFS server. The iFs module is integrated with
other modules, such as the email module and the fax module.

18.1.7.1 Configuring the iFS Module
The Oracle iFS module enables users to both attach and save files in their native
formats. The Oracle iFS module is also integrated with RightFax to enable
document printing through faxes. Users can remotely select an attachment and send
it by email to another mobile user, who can then view the document (Microsoft
Office files) and print it to a nearby fax. This modules does not require scripts.

Required Software
This iFS Module requires the Java development kit for Oracle Internet File System.

Mobile PIM and eMail Overview

18-32 Oracle9iAS Wireless Developer’s Guide

Configuration Parameters
The iFS module includes the following configuration parameters:

■ ORACLE_SERVICES_PIM_IFS_SERVICES

■ Description: A list of IFS service names (they are simply aliases and are up
to the user to name), separated by commas.

■ Default Value: ifsserver1, ifsserver2

■ Examples: myifs.oracle.com, myifs2.oracle.com

■ ORACLE_SERVICES_PIM_IFS_SERVICENAMES

■ Description: A list of IFS server names, separated by commas. A server
name is used when the IFS Java API looks up the client side properties for
the IFS server. Therefore, these names must match the names of the
properties files.

■ Default Value: Ifs1, Ifs2

Table 18–21 Required Software for the iFS Module

Name Instructions Version

Java development kit for
Oracle Internet File
System

Copy the latest adk.jar, email.jar, release.jar,
repos.jar, utils.jar to $ORACLE_
HOME/wireless/lib on Solaris, to
%ORACLE_HOME%\wireless\lib on NT.

Examples of ORACLE_HOME values:

■ Solaris: ORACLE_HOME=/u01/iaswv20

■ NT: ORACLE_HOME=d:\oracle\iaswv20

1.1.6 or
higher

Oracle Internet File
System

 Follow the Oracle IFS installation guide. 1.1.6 or
higher

Server instance properties
file (from the Oracle IFS
server instance)

For each IFS server instance, its properties
file is needed on the iASW 2.0 server. Copy
the properties file (for example:
oracle.ifs.server.properties.IfsDefault.propert
ies) so it's included in the OC4J classpath.
Example: %ORACLE_
HOME/wireless/server/classes

N/A

Mobile PIM and eMail Overview

Mobile PIM and eMail 18-33

■ Examples: IfsDefault1, IfsDefault2 (so the Java API will look for
IfsDefault1.properties and IfsDefault2.properties)

■ ORACLE_SERVICES_PIM_IFS_SERVICEPASSWORDS

■ Description: A list of IFS schema password (one for each server), separated
by commas.

■ Default Value: ifspassword1,ifspassword2

■ Examples: welcome, manager

■ ORACLE_SERVICES_PIM_IFS_DOWNLOADDIR

■ Description: The absolute path for the local directory that is used for
temporarily storing downloaded IFS files.

■ Default Value: /temp/ifs

■ Examples: d:\temp\ifs

18.1.7.2 Linking to the iFS Module
You can link to the iFS Module using the following virtual URL:

omp://oracle/services/pim/ifs

Input Call Parameters
The iFS module includes the following call parameters and parameter groups:

Table 18–22 The IFSAction Input Parameter

Parameter Name Mandatory Description Valid Value

IFSAction Yes The type of action to be
performed.

UPLOAD (for uploading a file
to the IFS server.)

DOWNLOAD (for
downloading a filed to the IFS
server.)

If the value is UPLOAD, then
IFSAction requires
uploadIfsRequest. If the value
is DOWNLOAD, then the
downloadIfsRequest output is
triggered.

Mobile PIM and eMail Overview

18-34 Oracle9iAS Wireless Developer’s Guide

uploadIfsRequest
This optional group includes the following parameters:

Table 18–23 Parameters of the uploadIfsRequest Group

Output Parameters
The Oracle iFS module includes the following output parameters:

downloadIfsInfo
This optional group specifies such information about the downloaded file as the
size of the downloaded file, its location, and its original name.

The downloadIFsInfo group includes the following parameters:

Table 18–24 Parameters of the IFsInfo Group

Parameter Name Mandatory Description Valid Value

LOCALPATH Yes The absolute local path of
the file to be uploaded to
the iFS Server.

A string. For example:

■ LOCALPATH=/private/joe d
ocs/file.doc

■ LOCALPATH=c:\TEMP\RES
UME.PDF

OBJNAME No Enables the user to
rename the uploaded file
rather than keeping the
file name given in
LOCALPATH.

Note: This name must
conform to the UNIX file
system convention. For
example, it cannot contain
the back-slash (\).

A string. For example,
OBJNAME=Renamed File.doc

Parameter Name Mandatory Description Valid Value

IFSPATH Yes The absolute path of the
downloaded file.

A string, for example:

■ IFSPATH=/private/joe/down
load/file.doc

■ IFSPATH=C:\TEMP\RESUM
E.PDF

Mobile PIM and eMail Overview

Mobile PIM and eMail 18-35

Examples
To upload, files.doc, from the directory/private/joe/docs and save it as newfile.doc,
you must configure the parameters as follows:

IFSACTION=UPLOAD

LOCALPATH=/private/joe/docs/file.doc

OBJNAME=newfile.doc

To download files.doc from the Oracle iFS Server, configure the parameters as
follows:

IFSACTION=DOWNLOAD

IFSPATH=/private/joe/download/file.doc

IFSNAME=file.doc

Output Parameter: IFSORIGPATH=ifshome/joe/file.doc

Output Parameter: IFSSIZE=15.0

18.1.8 Fax Module
The fax module enables users to send a fax, check the status of a fax, forward or
delete a fax from any wireless device. By combining email or iFS services, it also
supports faxing documents through mobile devices.

IFSORIGPATH Yes The original IFS path of
the downloaded file.

A string, for example:

IFSORIGPATH=/ifshome/joe/
file.doc

IFSNAME Yes The original name of the
downloaded filed. This
name is provided for
display in the user
interface.

A string, for example:

■ IFSNAME=file.doc

■ IFSNAME=RESUME.PDF

IFSSIZE Yes The size (in kilobytes) of
the downloaded file.

Double. For example:

IFSSIZE=12.4

Parameter Name Mandatory Description Valid Value

Mobile PIM and eMail Overview

18-36 Oracle9iAS Wireless Developer’s Guide

Requirements
This service requires third-party software components: it uses the RightFax Java
API to connect to a RightFax server.

Table 18–25 Required Software for the Fax Module

This module does not require scripts.

Sample Cover Page
Since the fax module uses customized cover sheet file, it is highly
recommended that you use the provided sample cover page.

To use this cover page, you must have Microsoft Word 2000 installed on your
RightFax server for server-side application conversion.

On Solaris installations, this cover page is located at:

$ORACLE_
HOME/iaswv20/wireless/j2ee/applications/modules/modules-web
/images/pim/fax/FCS.doc

On Windows NT installations, this cover page is located at:

%ORACLE_
HOME%\iaswv20\wireless\j2ee\applications\modules\modules-we
b\images\pim\fax\FCS.doc

To use the provided fax cover page:

Name Instructions From Version(s)

RightFax Server (available
from RightFax)

Install the RightFax server. 7.2

RightFax Integration
Module (available from
RightFax)

Install the Integration module on fax
server.

 7.2

RightFax PFD module
(available from RightFax)

Install the PFD module on the fax server. 7.2

RightFax Java API (available
from RightFax)

Copy RFJava_api.zip(Fax server's
RightFax/Production/xml/java
directory) to $ORACLE_
HOME/wireless/lib on Solaris, to
%ORACLE_HOME%\wireless\lib on
NT. Include this zip file in the classpath.

 7.2

Mobile PIM and eMail Overview

Mobile PIM and eMail 18-37

1. Copy the FCS.doc to the directory RightFax\FCS on the machine in which you
installed your RightFax server.

2. Specify which cover sheet to use.

■ Run Enterprise Fax Manager

■ Highlight Users under the appropriate server and double-click the user ID
Administrator. Click the Default Cover Sheets tab. In the Cover Sheet
Defaults group box, check Send Cover Sheets and select the cover sheet file
(FCS.doc) in the Cover Sheet Model field.

■ Highlight Groups under the appropriate server and double-click the group
ID Everyone. Click the Basic Information tab. Select the cover sheet file
(FCS.doc) in the Cover Sheet Model field.

Configuring the Fax Module
The fax module includes the following configuration parameters:

■ ORACLE_SERVICES_PIM_FAX_HOST

■ Description: Fax server URL. The Fax module performs fax transactions
through this server.

■ Default Value: http://localhost

■ Example: http://144.25.172.183

■ ORACLE_SERVICES_PIM_FAX_SENDER

■ Description: The default user to be used when submitting fax transactions
to fax server.

■ Default Value: Administrator

■ Valid Values: registered user account in designated fax server

■ ORACLE_SERVICES_PIM_FAX_RECORDS_PER_USER

■ Description: The maximum number of fax history records kept in database
for each user.

■ Default Value: 20

Note: See the RightFax Administrator’s Guide for detailed
instructions on fax cover sheets.

Mobile PIM and eMail Overview

18-38 Oracle9iAS Wireless Developer’s Guide

■ Valid Values: non-negative integers

■ ORACLE_SERVICES_PIM_FAX_ITEMS_PER_PAGE

■ Description: The maximum number of fax history records displayed in a
page.

■ Default Value: 9

■ Valid Values: non-negative integer

■ ORACLE_SERVICES_PIM_FAX_DEBUG

■ Description: Whether to keep log information in the system log file.

■ Default Value: false

■ Valid Values: true, false

■ ORACLE_SERVICES_PIM_FAX_LDAP_ENABLED

■ Description: Whether to enable Directory module in searching recipient.
Generally set to true only if Directory has fax number information.

■ Default Value: false

■ Valid Values: true, false

■ ORACLE_SERVICES_PIM_FAX_DOWNLOADDIR

■ Description: The absolute path for the local directory that is used for
temporarily storing downloaded files.

■ Default Value: /temp/fax

■ Valid Values: /private/joe/temp/fax

18.1.8.1 Linking to the Fax Module
You can link to the fax module using the following virtual URL:

omp://oracle/services/pim/fax

The fax module has one input call parameter, FAXTODO. This parameter describes
the type of actions to be performed. This mandatory input parameter includes the
following values:

Mobile PIM and eMail Overview

Mobile PIM and eMail 18-39

Table 18–26 Values of the FAXTODO Input Parameter

sendNewFax
The FAXTODO parameter includes sendNewFax group. This mandatory group of
parameters specify the information about the fax to be sent.

Table 18–27 Parameters of the sendNewFax Group

Value Requirement Triggers Output

NEWFAX SendNewFax SendNewFaxResult.

STATUS faxID CheckFaxStatusResult

DELETE faxID deleteFaxResult

FWD forwardFax forwardFaxResult

Parameter Name Mandatory Description Valid Value

SENDER_NAME No Sender name. A string. For example:
SENDER_NAME=Joe Smith

SENDER_CORP No Sender company. A string. For example:
SENDER_CORP=Oracle
Corp.

SENDER_PHONE No Sender phone
number.

A string. For example:
SENDER_
PHONE=1(650)123-4567

SENDER_FAX No Sender fax number. A string. For example:
SENDER_
FAX=1(650)123-4567

SENDER_ADDRESS No Sender address. A string. For example:
SENDER_ADDRESS=Home
address

SENDER_NOTES No Other sender
information not
listed above.

A string. For example:
SENDER_NOTES=email:
joe.smith@oracle.com

RECIPIENT_NAME No Recipient name. A string. For example:
RECIPIENT_NAME=John
White

RECIPIENT_CORP Yes Recipient company. A string. For example:
RECIPIENT_
CORP=1(650)123-4567

Mobile PIM and eMail Overview

18-40 Oracle9iAS Wireless Developer’s Guide

forwardFax
The FAXTODO parameter includes the forwardFax group. This mandatory group
includes the following parameters:

Table 18–28 Parameters of the forwardFax Group

Output Parameters
The Fax module includes the following output parameters:

RECIPIENT_PHONE No Recipient phone
number.

A string. For example:
RECIPIENT_
PHONE=1(650)987-6543

RECIPIENT_FAX Yes Recipient fax
number.

A string. For example:
RECIPIENT_
FAX=1(650)123-4567

RECIPIENT_ADDRESS No Recipient address. A string. For example:
RECIPIENT_
ADDRESS=Work address

MESSAGE No Short message to be
written on cover
page.

A string. For example:
MESSAGE=An awesome
resume!

ATTACHMENT No Attachment to be
faxed.

A string. For example:
ATTACHMENT=mydoc/resu
me.pdf

Parameter Name Mandatory Description Valid Value

FAXID Yes The unique id of
the fax to be
forwarded.

A string. For example:
FAXID=12345

RECIPIENT_FAX Yes The destination
fax number.

A string. For example: Example:
RECIPIENT_
FAX=1(650)123-4576

Parameter Name Mandatory Description Valid Value

Mobile PIM and eMail Overview

Mobile PIM and eMail 18-41

Table 18–29 Output Parameters of the Fax Module

Examples
To send a fax, you configure the FAXTODO parameters as follows:

FAXTODO = NEWFAX

RECIPIENT_FAX = 1(650)987-6543

MESSAGE = Hello world!

sendNewFaxResult = Fax has been successfully submitted for sending.

To check the status of a fax you configure the FAXTODO parameters as follows:

FAXTODO = STATUS

faxID = 16543

checkFaxStatusResult = OK

18.1.9 Tasks
The tasks module enables users and applications to schedule and manage tasks.
This module integrates with Lotus and Exchange servers.

Parameter Mandatory Description Valid Value

sendNewFaxResult Yes Whether the fax was
successfully sent or
not.

A string. For example:
sendNewFaxResult=Fax has
been successfully submitted for
sending.

checkFaxStatusResult Yes The fax status. A string. For example:
checkFaxStatusResult=Sending
(50%)

deleteFaxResult Yes Whether the fax was
successfully deleted
or not.

A string. For example:
deleteFaxResult=Fax
successfully deleted.

forwardFaxResult Yes Whether the fax was
successfully
forwarded or not.

A string. For example:
forwardFaxResult=Fax has
been successfully submitted for
forwarding.

Mobile PIM and eMail Overview

18-42 Oracle9iAS Wireless Developer’s Guide

Requirements
This service implements two distinct modes, both with the same user experience
but with different back-ends. In its Lotus Domino mode, it fully integrates with a
Lotus Domino server to enable mobile Domino users. In its Microsoft Exchange
Mode, it fully integrates with a Microsoft Exchange server to mobile enable
Exchange users.

The Tasks module requires the following third-party software:

Table 18–30 Software Required for the Tasks Module

Name Instructions From Version

MS Exchange [Exchange Mode] Install the Microsoft
Exchange Server.

5.5

MS IIS {Exchange Mode] Install the Microsoft
Internet Information Server.

 4.0

MS CDO {Exchange Mode] Collaborative Data
Objects. Available with Exchange SDK. The
cdo.dll library must be installed on the IIS
Server.

1.2.1

Oracle9iAS Wireless 2.0
Exchange ASP(Shipped with
Oracle9iAS Wireless)

[Exchange Mode] Create any directory on
the IIS server. Copy all the files in
$ORACLE_
HOME/iaswv20/wireless/j2ee/applicatio
ns/modules/modules-web/pim/tasks/as
p/ for a Solaris install, %ORACLE_
HOME%\iaswv20\wireless\j2ee\applicati
ons\modules\modules-web\pim\tasks\a
sp\ for an NT install to just created
directory on the IIS server.

Invoke the properties dialog box for this
directory. Choose the Directory tab. Click
the "Edit" button for the "Anonymous
Access and Authentication Control", make
sure the following check boxes are set as
follows:

■ Allow Anonymous Access - unchecked

■ Basic Authentication - checked

■ Windows NT Challenge/Response -
checked

Mobile PIM and eMail Overview

Mobile PIM and eMail 18-43

This module does not require scripts.

Configuring the Task Module
The Task Module includes the following configuration parameters:

■ ORACLE_SERVICES_PIM_TASKS_CLASS

■ Description: The service implementation class, which determines whether
the Domino or Exchange mode is used.

■ Default Value: None

■ Valid Values:
oracle.panama.module.pim.tasks.exchange.ExchangeTaskService for
Exchange server

Lotus Java SDK [Domino Mode] Install the Lotus Domino
Toolkit for Java/CORBA, add NCSO.jar to
the classpath for Oracle9iAS Wireless 2.0.
Installing the toolkit creates a "DTJava"
directory on the file systemCopy the
DTJava/lib/NCSO.jar to $ORACLE_
HOME/wireless/lib on Solaris, to
%ORACLE_HOME%\wireless\lib on NT.

Examples of ORAClLE_HOME values:

■ Solaris: ORACLE_
HOME=/u01/iaswv20

■ Windows NT: ORACLE_
HOME=d:\oracle\iaswv20

Ensure you download "Lotus Domino
Toolkit for Java/CORBA Release 5.0.8
Update" or "Lotus Domino Toolkit for
Java/CORBA Release 5.0.5 Update
Shipping".

Do not use version 2.x toolkit.

On the Domino server, the server tasks
HTTP and DIIOP must be running. Ensure
that the Domino server notes.ini file
contains the following line:

ServerTasks=<other
tasks>,http,diiop

R5

Name Instructions From Version

Mobile PIM and eMail Overview

18-44 Oracle9iAS Wireless Developer’s Guide

oracle.panama.module.pim.tasks.domino.DominoTasksService for Lotus
Domino server.

■ ORACLE_SERVICES_PIM_TASKS_SERVER_NAME

■ Description: Designates the Exchange server or Domino server host name.

■ Default Value: None

■ Valid Values: exchange.mycompany.com
domino-server.mycompany.com

■ ORACLE_SERVICES_PIM_TASKS_SERVER_DATA_WEB_LINK

■ Description: If Exchange mode is selected, this is the URL pointing to the
Oracle9iAS Wireless Exchange Tasks ASP (Tasks.asp) running on IIS.

■ Default Value: None

■ Valid Values:
http://iis.mycompany.com/Oracle9iASW20/exchange/Tasks.asp

■ ORACLE_SERVICES_PIM_TASKS_DOMAIN

■ Description: The domain attached to the user account information. This is
free form field. If the Oracle9iAS Wireless instance supports multiple tasks
servers, then these must have the same domain. Different PIM services with
the same domain share the user account information.

■ Default Value: None

■ Valid Values: DominoDomain for the Domino Mode
ExchangeDomain for Exchange.

18.1.9.1 Linking to the Task Module
You can link to the task module using the following virtual URL:

omp://oracle/services/pim/tasks

m-Commerce 19-1

19
m-Commerce

This document describes reusable Services that are included in Oracle9iAS Wireless.

Each section of this document presents a different topic. These sections include:

■ Section 19.1, "m-Commerce Service"

■ Section 19.2, "m-Commerce APIs"

■ Section 19.3, "Mobile Wallet (m-Wallet)"

■ Section 19.4, "Translator"

■ Section 19.5, "iPayment"

■ Section 19.6, "Formfiller"

■ Section 19.7, "Creating a Billing Mechanism"

Figure 19–1 M-Commerce

m-Commerce Service

19-2 Oracle9iAS Wireless Developer’s Guide

19.1 m-Commerce Service
Oracle m-Commerce Service is a set of Oracle9iAS Wireless modules that securely
store user profiles, supply information authorized by users of third party
applications, and interface with on-line payment mechanisms to complete
transactions. The m-Commerce Service also translates existing WML applications
into Mobile-XML, and uses FormFiller to map forms, which spares users from
entering information from a mobile device. Oracle m-Commerce Service is
automatically installed along with Oracle9i Application Server.

The extendible modules architecture on the m-Commerce Service enables the
development of drivers to integrate m-Commerce services to third-party
applications.

19.2 m-Commerce APIs
You can build an m-Commerce application using Oracle9i Application Server
Mobile XML. You can incorporate any m-Commerce component to this application
by adding URL links to the modules complying with their APIs.

If you have already developed an m-Commerce application in WML, you can run it
through the Translator Module by calling its API, and providing your application’s
URL. This action will add links from your application to all m-Commerce modules.

19.2.1 Before You Begin
Before you configure the modules, you must do the following:

1. Modify the security.sh script and change the variables. See Section 19.3.1.5 for a
list of variables.

2. Set the JAVA13_HOME environment to the current JDK directory.

3. Run the script to generate the key, security.sh (UNIX) or security.bat
(WINDOWS).

4. Record the path of the encryption file %ORACLE_
HOME/wireless/j2ee/applications/modules/modules-web/commerce/setup
/scripts KeyMgmtProps.enc

5. Using the Edit Master Services function of the Service Designer, modify the
default value of the input parameter, ORACLE_SERVICES_COMMERCE_
SECURITY_PROPS_PATH.

Mobile Wallet (m-Wallet)

m-Commerce 19-3

19.3 Mobile Wallet (m-Wallet)
The mobile Wallet (m-wallet) enables users to manage their profile from mobile
devices as well as participate in commerce transactions and track their activity.

The m-Wallet Module securely stores user's payment instrument information, such
as credit cards, bank accounts, and shipping addresses. Upon user approval, other
m-Commerce applications can retrieve this information to process payments.

The Oracle9iAS Wireless administrator can configure the Credit Cards, Bank
Accounts and Extended Information compartments at any time, even if they contain
values that users have previously entered. The fixed compartments are profile,
shipping addresses and internet accounts.

The m-Wallet is divided into compartments that can hold one or more instruments.
For example the Credit Cards compartment holds as many credit cards as a user
sees fit to enter. The Extended Information compartment, however, holds only one
information set.

19.3.1 Configuring the m-Wallet
Mobile Wallet module (m-Wallet) provides a convenient single-click commerce
payment mechanism. It is a server side, encrypted entity that contains payment
instrument, identification and address information for registered users. m-Wallet
enables users to store all the information required to fill out commerce-related
forms from any application. That information is used to complete transactions, and
through APIs (built and maintained by authorized third-party service providers),
can be made available to authorized partners and e-merchants. It processes requests
(via proxies) for personal and payment instrument information issued through
HTML or WML forms by third-parties, and presents them to users, who decide
explicitly what information gets sent back to the third-party. The wallet stores this
information securely for users, providing them an easy, secure shopping experience,
and freeing them from repeatedly entering information.

m-Wallet also encrypts and decrypts all of the information stored in the Repository
using a three-part key comprised from a combination of the following:

■ a system key (specific to each deployment of the product)

Note: The default value of this input parameter must not include
the KeyMgmtProps.enc file.

Mobile Wallet (m-Wallet)

19-4 Oracle9iAS Wireless Developer’s Guide

■ a user-specific key (uniquely identifying users within the system, and retrieved
when a function is applied to specific user information)

■ the user’s trading password

Each portion of the three-layer key can be changed independently, but each of them
is required in order to decrypt wallet-stored information. This combination is never
stored, only an encrypted alias, assigned to each entry during its creation or
modification, is sent over the wireless network.

Because security is central to the m-Wallet you must configure HTTPs for the
m-Wallet.

19.3.1.1 Configuring the OC4J Application Server for HTTPS
The installation of Oracle9i Application Server includes both installation of a
dummy certificate and automatic HTTPS configuration. Use this certificate only for
testing and development, as it is not signed by a trusted entity.

19.3.1.2 Configuring the SQL Tables
You do not need to configure the SQL tables; installing Oracle9iAS Wireless installs
all of the tables needed by the Formfiller module.

19.3.1.3 Configuring the Security Server
You must install and configure the Secure Key Server before using the Wallet
Module. For more information, see Section 19.2.1.

19.3.1.4 Java Configuration
The following security .jar files must be placed under jdk1.3/jre/lib/ext. (The
Oracle Installer creates this directory.)

■ ojcae.jar

■ US_export_policy.jar

■ local_policy.jar

■ jce1_2_1.jar

Note: When setting up a production machine, you must install the
actual certificate for HTTPS on the server.

Mobile Wallet (m-Wallet)

m-Commerce 19-5

19.3.1.5 Scripts for Generating and Installing the Security Keys
You must insert an encryption key. This encryption key forms the backbone for
encryptions and decryptions performed by the system.

To configure security.sh, complete these steps:

1. Modify the security.sh script and change the variables.

2. Run the script to generate the key, security.sh (UNIX) or security.bat
(WINDOWS).

To generate and install the security key, follow these steps:

1. Go to ORACLE_HOME/wireless/sample

2. Edit the template security.sh (or security.bat) script to configure the following:

Table 1 Security Key configuration

DB_USER, DB_PWD
and DB_URL

Passwords for the Wireless database schema are randomized out of the box, and
are not available to end users. Hence, the password must be changed by a user
through the Oracle Enterprise Manager console; this new password must be used
for security key configuration. The password for the Wireless schema can be
changed from the Oracle Enterprise Manager console:

1. Click on the link corresponding to the middle tier.

2. Click the 'Configure Schema' option.

3. Select the radio button corresponding to 'Oracle9iAS Wireless'.

4. Click 'Change Password'.

All platforms are affected by this.

SEC_SEED The seed number used to create the System Encryption Key. The range of
the number is that of a java long number (that is, -9223372036854775808L
to 9223372036854775807L.) For example: SEC_SEED 1234567890

SEC_PWD The password with which the generated System Encryption Key is
encrypted and stored in the database. The password can be any length
greater than eight characters. For example: SEC_PWD
systemEncryptionKeyPassword

SEC_FILE_PWD The password with which to encrypt the local KeyMgmtProps.enc file
(which contains secure information) protecting it from unauthorized
access. The password can be any length greater than eight characters. For
example: SEC_FILE_PWD fileEncryptionPassword.

Mobile Wallet (m-Wallet)

19-6 Oracle9iAS Wireless Developer’s Guide

3. Save your changes and execute the script. This generates a secure file,
KeyMgmtProps.enc in the current directory and also generates, encrypts and
inserts the System Encryption Key into the database as well as printing out the
directory path for the security file. You must save the path to the file because it
is used as a service input parameter value.

19.3.1.6 Configuring modules.properties
You must configure the modules.properties file with the correct paths for both the
HTTP and HTTPS listeners so that such resources as audio and images are
presented properly in HTTPS mode.

The modules.properties is located under ORACLE_
HOME/wireless/server/classes/messages/oracle/panama/module/common

An example of the correct values for modules.properties is as follows:

/*
*
* $Copyright:
* Copyright (c) 2001 Oracle Corporation all rights reserved
*/
#--
Please configure here the module server URLs.
If no value if configured, we'll try to use the request in order to
get the server name
example:
device.resources.host=http://myserver.com
device.resources.port=9080
device.resources.secure.host=https://myserver.com
device.resources.secure.port=9081
#--
device.resources.host=http://www.myserver.com
device.resources.port=9080
device.resources.secure.host=https://www.myserver.com
device.resources.secure.port=443

Note: Because the script contains sensitive information, you
should destroy it after running it or move it to a secure place.

Mobile Wallet (m-Wallet)

m-Commerce 19-7

19.3.1.7 Service Input Parameters
There are two optional service input parameters which do not require
configuration.

ORACLE_SERVICES_COMMERCE_WALLET_CONFIRMATION_PAGE
Whenever a third party application requests user information from the Wallet, the
user must agree to share this information. This parameter is set regardless of
whether this confirmation card is presented to user.

The valid values for this input parameter include:

■ ALWAYS: Always show the confirmation card user. The user cannot override
this value.

■ NEVER: Never show the confirmation card to the user and automatically return
the user information to the third party application.

■ USER: Unless otherwise specified by the user, always show the confirmation
card to the user. This is the default value.

Administrators may want to customize these values depending on the site's policy.

ORACLE_SERVICES_COMMERCE_WALLET_IS_SECURE
Defines whether the m-Wallet module runs in HTTP or HTTPS.

The valid values for this input parameter include the following:

■ true: When accessing m-Wallet module, the connection between the user device
and Oracle9iAS Wireless will be secure HTTPS. This is default value.

■ false: When accessing wallet module, the connection between the user device
and Oracle9iAS Wireless will be non-secure HTTP.

Wallet Module requires the Security Server to be correctly installed and configured
prior to its use. There is one required parameter which requires configuration:

ORACLE_SERVICES_COMMERCE_SECURITY_PROPS_PATH

■ Description: The fully qualified path to the directory where the
KeyMgmtProps.enc (encrypted file) was created, not including the
KeyMgmtProps.enc name itself.

■ Valid Value: For this service input parameter is:
/private/ptg20/iaswv20/wireless/j2ee/applications/modules/modules-web/
commerce/setup/scripts

Mobile Wallet (m-Wallet)

19-8 Oracle9iAS Wireless Developer’s Guide

■ Default Value: /
Note: The user must customize this value before using Wallet Module. For more
information see Section 19.2.1.

19.3.2 Linking to the M-Wallet
You can link to the m-wallet using the following virtual URL:

omp://oracle/services/commerce/wallet

The m-wallet includes the following input call parameters:

Wallet_Action
Wallet_Action is used to determine the type of overall action that service requests.
This is a mandatory parameter.

Table 19–2 Input Parameters for Wallet_Action

getWalletInfoRequest
This group contains the following parameters. This is an optional group.

Table 19–3 Parameters of the getWalletInfoRequest Group

Valid Value Description Requirement

GETSTRUCTURE Used to retrieve the Wallet structure
definition. Triggers WALLET_STRUCTURE

.

GET_FORM_DATA Used when a third party application wants
to request information from the user’s
mobile wallet.Triggers output
generateUserResponse

getWalletInfoRequest.

GET_INET_ACCT Used to add Internet account information
in the user’s wallet.

createInternetAccountRequest.

GEN_USER_PASS Used to automatically generate the
username and password information.
Triggers output generateUserResponse.

Parameter
Name Mandatory Description Valid Value

FORM_TITLE Yes This parameter is displayed as
part of the Wallet module for
the duration of the call.

A string. For example:

FORM_TITLE=Movie Ticket Purchase.

Mobile Wallet (m-Wallet)

m-Commerce 19-9

19.3.3 Output Parameters for the m-Wallet
The m-Wallet module includes the following output parameters:

GET_DATA Yes A comma-separated string of
tokens which specify which
values to retrieve from the
wallet.

Valid values in this string are:

■ CC (triggers output creditCardData)

■ BA (triggers output bankAccountData)

■ FN (triggers output FIRSTNAME)

■ LN (triggers output LASTNAME)

■ EMAIL (triggers output EMAIL)

■ PHONE (triggers output phoneData)

■ INT_ACC (triggers output
internetAccountData)

■ SHIP (triggers output shippingData)

For example:

■ GET_DATA=FN,LN,SHIP

■ GET_DATA=CC, PHONE, INT_ACC

APPICATION No The application name
displayed to the user and
stored in the History file, so
that the user always knows
which applications are
requesting the user’s wallet
information.

A string. For example:
APPLICATION=Bookshop Application.

ISEXCLUSIVE No If set to True, then the user can
chose either Credit Card or
Bank Account. This parameter
is used only by the Payment
module.

A boolean.

DOMAIN Yes A string. For example:
DOMAIN=http:/wwww.oraclemobile.com

ACCOUNT_
ID

Yes A string. For example: ACCOUNT_
ID=smurgle.

PASSWORD Yes A string. For example: PASSWORD=237894.

Parameter
Name Mandatory Description Valid Value

Mobile Wallet (m-Wallet)

19-10 Oracle9iAS Wireless Developer’s Guide

Table 19–4 Output Parameters for the m-Wallet Module

CreditCardData
The Credit Cards structure held in wallet.properties. The fields are returned as
request parameters. The following parameters are the default parameters of the
CreditCardData group. This is an optional parameter.

Parameter Name Mandatory Description Valid Value

WALLET_SELECT Yes Defines whether the operation completed
correctly. If the user cancels the wallet
operation, this variable contains False.

Valid values are True and
False

WALLET_STRUCTURE No This string specifies the wallet’s internal
structure. The wallet structure is based on
fixed- and user- defined compartments.
The fixed compartments include the User
Profile, Internet Accounts, and Shipping
Addresses. The user-defined compartments
include Credit Card, Bank Account, and
Extended Info.

Restriction: The return string is formatted
as COMPARTMENT_NAME:FIELD_
NAME90FIELD_DESCRIPTION.

A string. For example:
WALLET_STRUCTURE=If
the wallet has
compartments CC and BA
for credit card and bank
account respectively, then
the return string can be
CC:CCNUM()CreditCard
Number,
CC:CCEXP()Credit Card
Expiration Date,
BA:BNUM() Bank Account
Number...

FIRSTNAME No This variable holds its value of the user’s
first name when the calling application
requests the user’s name. This variable
cannot be changed, as it is part of the fixed
Profile compartment.

A string. For example:
FIRSTNAME=John

LASTNAME No This variable holds the value of the user’s
last name when the calling application
requests the user’s last name. It cannot be
changed as it is part of the fixed Profile
compartment.

A string. For example:
LASTNAME=John

 EMAIL No This variable holds the value of the user’s
email address when the calling application
requests the user’s email. This cannot be
changed, as it is part of the fixed Profile
compartment.

A string. For example:
EMAIL=John.Doe@compa
ny.com

Mobile Wallet (m-Wallet)

m-Commerce 19-11

Table 19–5 Parameters of the CreditCardData Group

Parameter Name Mandatory Description Valid Value

CC Yes A short name for the
credit card.

A string. For example:
CC=My Bank Visa Card.

CC_HOLDER_NAME Yes The name of the
holder of the credit
card.

A string. For example: CC_
HOLDER_NAME=John Doe

CC_HOLDER_ADDRESS_LANDMARK Yes The billing address
of the holder of the
credit card. This is a
link to the user's
locationmarks.

Restriction: this
landmark must be
defined in the
location module.

 A string. For Example: CC_
HOLDER_ADDRESS_
LANDMARK=Office at
Oracle

CC_EXPIRATION_DATE Yes The expiration date
of the credit card.

Restriction: this
should be in the
MM/YYYY form.
This also must be
defined in
wallet.properties.

A string. For example: CC_
EXPIRATION_
DATE=04/2003

CC_LANDMARK_NAME Yes The locationmark of
the credit card.

Restriction: the
parameters for the
street address (such
as CC_ADDRESS_
LINE1)are built
on-the-fly as Wallet
Module 'knows' that
Billing Address is a
reference to a
location mark.

A string. For example: CC_
LANDMARK_
NAME=Office at Oracle

CC_ADDRESS_LINE1 No A string. For example: CC_
ADDRESS_LINE1=500
Oracle Pkwy

Mobile Wallet (m-Wallet)

19-12 Oracle9iAS Wireless Developer’s Guide

bankAccountData
The Bank Account structure defined in wallet.properties. All the fields are returned
as request parameters.

This group contains the following parameters. This is an optional group.

Table 19–6 Parameters of the bankAccountData Group

CC_ADDRESS_LINE2 No A string. For example: CC_
ADDRESS_LINE2=

CC_CITY No A string. For example: CC_
CITY=Redwood Shores

CC_STATE No A string. For example:CC_
STATE=CA

CC_COUNTRY No A string. For example: CC_
COUNTRY=USA

CC_ZIPCODE No A string. For example: CC_
ZIPCODE=94065

Parameter Name Mandatory Description Valid Value

BA Yes The short name for
the bank account

A string. For example:
BA=Checking ****-2438

BA_HOLDER_NAME Yes The name of the
holder of the bank
account.

A string. For example: BA_
HOLDER_NAME=John Doe

BA_HOLDER_ADDRESS_LANDMARK Yes Statement Address -
this is a link to the
user's Location
Marks

Restriction: This
landmark must be
defined in the
location module.

A string. For example: BA_
HOLDER_ADDRESS_
LANDMARK=Palo Alto branch
of Western Union

BA_ACCT_NUMBER Yes The number of the
bank account.

Restriction: this can
only be numbers; all
other characters are
ignored.

A string. For example: BA_
ACCT_NUMBER=23894592

Parameter Name Mandatory Description Valid Value

Mobile Wallet (m-Wallet)

m-Commerce 19-13

BA_ACCT_TYPE Yes The type of account,
such as checking or
savings.

Checking, Savings,Market-Rate.
For example: BA_ACCT_
TYPE=Checking

BA_FI_ROUTING_NUMBER Yes The routing number
of the bank.

Restriction: this must
only be numbers; all
other characters are
ignored.

A string. For example: BA_FI_
ROUTING_
NUMBER=23985002394

BA_FI_NAME Yes The name of the
bank.

A string. For example: BA_FI_
NAME=Bank of America

BA_LANDMARK_NAME Yes The parameters for
the bank’s street
address (such as BA_
ADDRESS_LINE1)
are built on-the-fly, as
the Wallet module
'knows' that Billing
Address is a
reference to a location
mark.

Restriction: This
landmark must be
defined in the
location module.

A string. For example: BA_
LANDMARK_NAME=Palo Alto
branch of Western Union

BA_ADDRESS_LINE1 No A string. For example: BA_
ADDRESS_LINE1=2035 Island
Parkway

BA_ADDRESS_LINE2 No A string. For example: BA_
ADDRESS_LINE2=Apt. #P-24

BA_CITY No A string. For example: BA_
CITY=Menlo Park

BA_STATE No A string. For example: BA_
STATE=CA

BA_COUNTRY No A string. For example: BA_
COUNTRY=USA

BA_ZIPCODE No A string. For example: BA_
ZIPCODE=91750

Parameter Name Mandatory Description Valid Value

Mobile Wallet (m-Wallet)

19-14 Oracle9iAS Wireless Developer’s Guide

idData
The Extended Information structure defined in wallet.properties. All fields are
returned as request parameters.

The idData group contains the following parameters. This is an optional group:

Table 19–7 Parameters of the idData Group

19.3.3.1 Extending the m-Wallet Structure
You can configure the structure of the m-Wallet so that its contents can be
personalized according to usage.

The m-Wallet structure is defined in the wallet.properties file located under the
directory ORACLE_
HOME/wireless/server/classes/messages/oracle/panama/module/commerce/w
allet/wallet.properties

Parameter Name Mandatory Description Valid Value

ID_SSN No the Social Security
Number

A string. For example: ID_SSN=298459825

ID_DL No A driver’s licence
number

A string. For example: ID_DL=B239922023

ID_DL_STATE No The state in which the
driver’s license has
been issued.

A string. For example: ID_DL_STATE=CA

ID_DL_EXP_DATE No The expiration date of
the driver’s license.

Restriction: The format
(MM/DD/YYYY,) is
defined in the
wallet.properties.

A string. For example: ID_DL_EXP_
DATE=04/27/2007

ID_PASSPORT No A passport number A string. For example: ID_
PASSPORT=B293A923CK

ID_PASSPORT_
EXP_DATE

 No The expiration date of
the passport.

Restriction: The format
(MM/DD/YYYY) is
defined in the
wallet.properties.

A string. For example: ID_PASSPORT_EXP_
DATE=04/08/1997

Mobile Wallet (m-Wallet)

m-Commerce 19-15

This file contains the definitions for credit cards, bank accounts and extended
information. In addition, this file contains the definition of the formats to be used
for each field. The format definitions are used for internationalization purposes of
the dates.

Defining a Compartment
To define a compartment, When defining a compartment, there are few things one
needs to do:

1. Add a reference to this compartment in the compartments key:

compartments=CREDIT_CARD,BANK_ACCOUNT,ID

2. Add the total number of fields in this new compartment:

CREDIT_CARD.fieldnumber=6

3. Add all the fields for this compartment and add attributes for each field. You
can add up to six attributes (0 - 5)

The variable is built as follows:

<comparment_name>.fieldNN.itemNN=<value>, where:
compartment_name = current compartment name, i.e. CREDIT_CARD
fieldNN = represents the current field, starting in 1, i.e. CREDIT_
CARD.field1
itemNN = represents each attribute of this field, starting in 0, i.e.
CREDIT_CARD.field1.item0

The attributes are defined as follows:

– The application reads variables from the request to retrieve a value for an
specific field from the wallet. This variable name is defined in the attribute
#0

CREDIT_CARD.field1.item0=<request_variable_name, i.e.
CC_HOLDER_NAME>

– The label that appears to the end user is defined in the attribute #1. It is a
key to a value defined in portal.properties (for internationalization
purposes).

CREDIT_CARD.field1.item1=<key.in.portal.properties, i.e.
modules.commerce.wallet.creditcard.holdername

Translator

19-16 Oracle9iAS Wireless Developer’s Guide

– Each field can be either optional or mandatory, depending on the
compartment rules. This is defined in attribute #2.

CREDIT_CARD.field1.item2=<MANDATORY|OPTIONAL>

– The format of this field (for display on WML and HDML WAP devices) is
defined in attribute #3 and is a reference of a format previously defined in
wallet.properties

CREDIT_CARD.field1.item3=<format, i.e. MIXED_FORMAT,
NUMBER_FORMAT, DATE_FORMAT>

– If the field contains a list of possible values, such as credit card types, then
they are listed in attribute #4. Use a comma (,) to separate these values.

CREDIT_CARD.field1.item4=<comma-separated list of
values, i.e. Visa, Master, AmEx, Discover, Diners>

– Attribute #5 is used if the current field stores an address by having a
reference to an existing location mark.

CREDIT_CARD.field1.item5=<LINK_LOC>

19.4 Translator
The Translator module enables any site written in WML to be rendered on any
device by converting its contents to MobileXML. It also enhances the navigation of
sites originally authored in WML by adding links to Oracle9iAS Wireless core
services. Currently, only WAP sites are supported. There is no output parameter; the
translated result and status code are internally consumed by the translator module.

19.4.1 Configuring the Translator Module
The Translator has the following service input parameters:

■ ORACLE_SERVICES_COMMERCE_TRANSLATOR_DEFAULT_CONNECTION

■ Description: A fully qualified class name. The class will be instantiated
automatically and the instantiated object is used to get content from an
URL. This default class uses HTTP connection.

■ Default Value:
oracle.panama.module.commerce.translator.WMLConnectionImpl

■ Customizability: No configuration is necessary.

Translator

m-Commerce 19-17

■ ORACLE_SERVICES_COMMERCE_TRANSLATOR_HELPER_WML

■ Description: A fully qualified class name. The class will be instantiated
automatically and the instantiated object is used to transform the WML
document into MobileXML document.

■ Default Value:
oracle.panama.module.commerce.translator.WMLTransformImpl

■ Customizability: No configuration is necessary.

■ ORACLE_SERVICES_COMMERCE_TRANSLATOR_XSL_WML_FILENAME

■ Description: AA URL pointing to the location of the XSL stylesheet used to
transform WML into MobileXML.

■ Default Value:
Null--to use the default location for the XSL
http://server.com/xsl/wml_to_mxml.xsl

■ Customizability: Users may change this value if they want to provide a
different URL for the XSL file.

19.4.2 Linking to the Translator Module
You can link to the Translator module using the following virtual URL:

omp://oracle/services/commerce/translator

The Translator module includes the following input call parameters.

Table 19–8 Input Call Parameters of the Translator Module

Parameter Name Mandatory Description Restriction Valid Value Example

XLTORSITE Yes The source URL of
the WML site, whose
content will be
translated into
MobileXML

This must be
in a valid URL
format.

XLTORSITE
=http://w
ww.oracle
mobile.com

XLTORLANG No The source language
of the WML site

Valid strings
are WML,
HDML,
VXML.
Currently only
WML is
accepted.

WML

Translator

19-18 Oracle9iAS Wireless Developer’s Guide

Output Parameters
This section includes invocation examples for translating a site and removing a
preset using the following input parameters:

■ XLTORSITE

■ EXTENSIONACTION

■ PRESETLABEL

Translating a Site
You use the input parameter XLTORSITE to translate a WML site as follows:

XLTORSITE=http://www.oraclemobile.com

Removing a Preset
You use the input parameters EXTENSIONACTION and PRESETLABEL to remove
a preset as follows:

EXTENSIONACTION=DELPRESET

PRESETLABEL=www.oraclemobile.com

EXTENSIONACTION No Extension actions are
actions other than
translating a URL.
The extension action
can be either "HELP"
(used to show help
message) or
"DELPRESET" (used
to delete a preset). If
the extension action
is passed as
"DELPRESET", then
the preset label
should be passed.

The valid values
include:

HELP (Help
message for
translator service)

 DELPRESET (Delete
a preset)

PRESETLABEL No Label of the preset
that will be deleted,
which is normally a
site name

The label
should be a
string.

 PRESETLA
BEL=www.
oraclemobil
e.com

Parameter Name Mandatory Description Restriction Valid Value Example

iPayment

m-Commerce 19-19

19.5 iPayment
The iPayment module, which integrates with Oracle CRM iPayment module,
processes credit card and bank account transactions.

Payment Processing enables integration with payment mechanisms, such as
Oracle's CRM iPayment. As a result, credit card processing and bank account
transactions are carried out through direct connections to financial networks. You
can add other drivers that integrate payment solution providers per customer
requests.

Through integration with Oracle CRM's iPayment component, which implements
transaction settlement support for credit cards and bank accounts, allows
transactions to be processed directly through the platform rather than through a
processing infrastructure deployed by merchants.

19.5.1 Configuring the iPayment Service Module
You must correctly install and configure the Oracle CRM iPayment before you use
the iPayment module.

19.5.1.1 Service Configuration Parameters
The iPayment Service module includes the following service configuration
parameters:

■ ORACLE_SERVICES_COMMERCE_PAYMENT_DBCFILE

■ Description: This value points to the location of the DBC file, used by
Oracle CRM iPayment. This file has the necessary configuration for the
iPayment database, such as username and password.

■ Valid Values: /apps.dbc (if DBC file is in root directory);
d:/iaswv20/wireless/j2ee/applications/modules/modules-web/payment
/apps.dbc

■ Default Value: /apps.dbc

Note: ORACLE_SERVICES_COMMERCE_PAYMENT_DBCFILE
and ORACLE_SERVICES_COMMERCE_PAYMENT_ECAPPID are
required parameters.

iPayment

19-20 Oracle9iAS Wireless Developer’s Guide

■ Customizability: Users must customize this value before using the
iPayment module.

■ ORACLE_SERVICES_COMMERCE_PAYMENT_ECAPPID

■ Description: This value represents the Electronic Commerce Application ID
(ECAPPID) within iPayment. An ECAPPId is the Id by which iPayment
identifies the calling application. All applications in 11i have a unique
"Application Id" by which it is identified. Users of payment module will
need to register a new ECAPPID for Oracle9iAS Wireless.

■ Default Value: 00000

■ Customizability: The user must customize this value before using the
iPayment module.

■ ORACLE_SERVICES_COMMERCE_PAYMENT_DEFAULT_TRANSACTION

■ Description: The default transaction processor which is used for such
functions as creating accounts, submitting transaction requests, cancelling
transactions, and querying transactions. The default class
(OracleIPaymentHook) provides the driver for Oracle CRM 11i
iPayment.

■ Default Value:
oracle.panama.module.commerce.payment.OracleIPaymentHook

■ Customizability: Only needs to be changed if you're providing a different
payment system.

■ ORACLE_SERVICES_COMMERCE_PAYMENT_DEFAULT_CURRENCY

■ Description: The default currency that is used when submitting transactions
to Payment Module. Note: the currency may also be configured at runtime
by sending it in the request. It is used for that transaction only.

■ Valid Values: USD - for US dollar; BRL - for Brazilian Real

■ Default Value: USD

■ Customizability: Users can customize this to their default currency.

19.5.1.2 Capturing Transactions
Merchants can use a URL whenever they want to capture previously authorized
transactions. This URL can be used in both secure and non-secure modes. The
difference between the two modes is the HTTP and HTTPS protocols.

iPayment

m-Commerce 19-21

Non-Secure Capture
The http URL for the non-secure capture of a previously authorized transaction is as
follows:

http://myserver.com:9080/modules/commerce/payment/jsp/IPaymentProcess.js
p?

MERCHANTID=<merchantID>&

MERCHANTPW=<merchantPWD>&

TRXID=<transactionID>&

CURRENCY=<currency>&

AMOUNT=<amount>

For a merchant called BookStore to capture transaction #1234 in the amount of
US$100.00, you call the URL and then enter the parameters as follows:

http://myserver.com:9080/modules/commerce/payment/jsp/IPaymentProcess.js
p?

MERCHANTID=bookstore&MERCHANTPW=welcome&TRXID=1234&CURRENC
Y=USD&AMOUNT=100

Secure Capture
In order to use the secure mode for the capture URL, you must first configure the
SSL for the OC4J Application Server. For information on configuring the OC4J
Application Server, see Section 19.3.1.1.

The HTTPS URL for the secure capture of a previously authorized transaction is as
follows:

https://myserver.com:443/modules/commerce/payment/jsp/IPaymentProcess.js
p?

MERCHANTID=<merchantID>&
MERCHANTPW=<merchantPWD>&
TRXID=<transactionID>&
CURRENCY=<currency>&
AMOUNT=<amount>

Formfiller

19-22 Oracle9iAS Wireless Developer’s Guide

19.6 Formfiller
The Formfiller module is a self-teaching form filler, one that maintains mappings
between application form fields and wallet elements. The Formfiller accepts a URL
and a list of label and variable names as input parameters, and checks if there is a
stored mapping from the given labels and variables to wallet fields. If there is no
such mapping, it enables users to create a new mapping into wallet fields. Once a
mapping is retrieved or created, it calls the wallet, asking it for the given mapped
information. Upon successful completion, the module returns a status of Success
along with the wallet values corresponding to the label/variable name list.
Otherwise, a status code of Failure will be returned

19.6.1 Configuring the Formfiller Module
Before you can deploy the Formfiller module, you must install the Formfiller,
configure the guessing heuristics, and approve the mappings.

19.6.1.1 Installing Formfiller
You do not need to configure the SQL tables; installing Oracle9iAS Wireless installs
all of the tables needed by the Formfiller module.

19.6.1.2 Configuring the Guessing Heuristics
When an existing mapping is not available, the Formfiller enables authorized users
to select given fields from the m-Wallet to fill in values for a given input field in a
wireless form.

When constructing a new mapping, the Formfiller uses name guessing heuristics to
automatically suggest default values to the user. As a result, the mapping creation
process is minimized, making it a "user-approved" mapping process.

Name-guessing can be done in two ways: you can enter rules for explicit mapping
suggestions, (such as 'Credit Card number' to 'CreditCard:Number') or you can
implement a dynamic heuristic that determines the similarities between the input
field and the fields in the m-Wallet. For example, 'Deluxe user home address' would
map automatically to 'Profile:Address'.

Note: Merchants must have an Oracle9iAS Wireless account to use
the capture URL.

Formfiller

m-Commerce 19-23

Detail Implementation and Usage
The "fixed" mapping suggestions should be placed as service parameters for the
Formfiller service. The Input Parameter name should consist of ‘ORACLE_
SERVICES_COMMERCE_FORMFILLER_SUGGESTIONS_’ and the suggested key
to use. For example, ‘ORACLE_SERVICES_COMMERCE_FORMFILLER_
SUGGESTIONS_Credit Card’ would be a suggested key to use. The default value
must contain a valid Wallet compartment and field name. The administrator for the
Formfiller should know the compartment and the field name in advance. For
example:

Input Parameter Name: ORACLE_SERVICES_COMMERCE_FORMFILLER_
SUGGESTIONS_Credit Card

Default Value: CREDIT CARD:CC_NUMBER

The "dynamic" mapping suggestions are controlled by a class that implements the
GuessingHeuristic interface. The factory method inside the
FormFillerManager to retrieve the implementation of the guessing heuristic
takes the class name from the Formfiller service parameters. The key of the property
is ORACLE_SERVICES_COMMERCE_FORMFILLER_HEURISTIC.

19.6.1.3 Setting Up the Guessing Heuristics
The guessing heuristics uses keys that are defined in the service parameters for
Formfiller Master Service. In order to setup, ORACLE_SERVICES_COMMERCE_
FORMFILLER_HEURISTIC defines the property that the GuessingHeuristic
implementor of the Formfiller module uses. This value must be the fully qualified
class name of the class implementing the GuessingHeuristic interface. This is
an optional field, as the default dynamic heuristic provider is set to
oracle.panama.app.services.modules.formfiller.WalletGuessingHe
uristic.

The following are input service parameters are examples of the configuration file:

■ ORACLE_SERVICES_COMMERCE_FORMFILLER_HEURISTIC

The default value for this parameter is
oracle.panama.app.services.modules.formfiller.WalletGuessingHeuristic

■ ORACLE_SERVICES_COMMERCE_FORMFILLER_SUGGESTIONS_ is the
prefix used by the Formfiller module to define fixed mappings for the guessing
heuristics. The key must be appended to this prefix and inserted as an input
parameter for the Formfiller service. It maps a key to some value. The key is
matched against the label and the variable name of the input fields for the new
mapping (in that order). The administrator must enter the correct values for the

Formfiller

19-24 Oracle9iAS Wireless Developer’s Guide

keys, matching them, for example, to the Wallet fields. For example, an
administrator matches the values to the keys to the wallet fields as follows: The
following is an example of such a file:

ORACLE_SERVICES_COMMERCE_FORMFILLER_SUGGESTIONS_Credit
Card

Default Value: CREDIT CARD:CC_NUMBER

19.6.1.4 Using the Formfiller Administration
The Formfiller Administration enables you to manage settings, manipulate stored
mappings, and approve pending mappings.

To access the Formfiller Administration:

1. Select the Content Manager. The Root Folders and Services screen appears.

2. From the browse screen for the root-level folders and services, select the
Commerce Folder.

3. Select Formfiller.

4. Click Edit. The Edit Service screen appears.

5. From the left panel of the Edit Service screen, select Master Service.

6. From the Edit Master Service screen, click Configure. The Formfiller
Administration appears and defaults to the Config tab.

The Config tab enables you to set the submission mode for the Formfiller mappings
by selecting between the following options:

■ Open -- Enables all users to submit mappings.

■ Closed -- Restricts all users from submitting mappings.

■ Restricted -- Only selected users can submit mappings.

The Config tab also includes the Auto-Approve Mode. Selecting this option
approves all submitted mappings immediately. (These mappings do not need
approval as they become effective immediately.)

Formfiller

m-Commerce 19-25

Figure 19–2 The Config Tab of the Formfiller Administration

The Existing Mappings tab enables you to search for, edit, and delete existing
Formfiller mappings.

To retrieve a stored mapping, either search for the mapping by URL, or select Get
All. The mapping appears in the pane in the Stored Maps section of the screen. To
edit a mapping, click on the mapping. The mapping’s form label, variable name
(Varname) and matching wallet parameters appear in the right frame. You can then
modify the mapping by using the drop-down lists to select different matching
wallet parameters. Click done after you have completed your changes. Clicking
Delete removes the mapping.

Formfiller

19-26 Oracle9iAS Wireless Developer’s Guide

Figure 19–3 The Existing Mappings Tab of the Formfiller Administration

The Pending Mappings tab enables you to search for, edit, delete, and approve any
pending (unapproved) mappings.

You can retrieve a pending mapping either by searching by URL, or by user. To
retrieve all the pending mappings, select Get All. The mappings appear in the pane
in the Stored Maps section of the screen. To select a mapping, click on the mapping.
The mapping’s form label, variable name (Varname) and matching wallet
parameters appear in the right frame. You can then approve the mapping or delete
it.

Formfiller

m-Commerce 19-27

Figure 19–4 The Pending Mappings Tab of the Formfiller Administration

19.6.1.5 Configuring the Input Parameters for the Formfiller Module
To configure the input parameters for this module:

The Formfiller module includes the following optional input parameters, which do
not require configuration.

■ ORACLE_SERVICES_COMMERCE_FORMFILLER_HEURISTIC

■ Description: A fully qualified classname of formfiller guessing heuristic
class, if a user wants to override the default guessing implementation.

■ Valid Values: Null - to use the default guessing heuristic class
package.formfiller.myGuessingHeuristic

■ Default Value: Null.

■ Customizability: The user needs to customize this value only if they want to
override the default heuristic mechanism.

■ ORACLE_SERVICES_COMMERCE_FORMFILLER_SUGGESTIONS_<label_
key or variable_key>=<Wallet <compartment>:<field>>

Note: For performance reasons, (such as a database connection
cache with a five-minute expiration period) it can take up to five
minutes for changes made using the Formfiller Administration to
be reflected in the system.

Formfiller

19-28 Oracle9iAS Wireless Developer’s Guide

■ Description: A suggestion that corresponds to the label or variable in the
key. Whenever formfiller receives <label_key> or <variable_key>, it
automatically points to the corresponding compartment and field in Wallet.
For example: ORACLE_SERVICES_COMMERCE_FORMFILLER_
SUGGESTIONS_ccnum=CREDIT_CARD:CC_NUMBER

■ ORACLE_SERVICES_COMMERCE_FORMFILLER_SUGGESTIONS_
fn=PROFILE:FIRSTNAME

■ Default Value: Null.

■ Customizability: Users only need to customize these values if they want to
add suggestions.

19.6.1.6 Linking to the Formfiller Module
You link to the Formfiller module using the following virtual URL:

omp://oracle/services/commerce/formfiller

The Formfiller module includes the following input call parameters:

Table 19–9 Input Call Parameters of the Formfiller Module

Parameter Name Mandatory? Description Valid Value
Triggers
Output

FORMFILLURL Yes The URL of the form to be
filled. Restriction: URL
encoded

 A string. For
example:
FORMFILLURL=htt
p://www.formfiller
demo.com

ReturnGroup

FORMFILLPARAMS Yes The parameters inside the
form. Restriction: It should be a
comma-separated, ordered list
of [%label%:%variable name%]
pairs.Where %label% is the
label used in the form that is
used for the %variable name%
variable. The Actual
parameters must be URL
encoded

.A string. For
example:
FORMFILLPARAMS
=First+Name:fname,
Last+Name:lname,C
redit+Card:CC_
NUMBER,Email:EM
AIL,Address:Addres
s

ReturnGroup

Formfiller

m-Commerce 19-29

19.6.1.7 Output Parameters
The Formfiller’s output parameters include the following:

ReturnGroup
This group includes the following parameters, which return the values for the
Formfiller.

Table 19–10 Parameters of ReturnGroup

APPLICATION No Specifies the application name
to identify the request to the
Formfiller (which in turn
passes it to the m-Wallet).
When it is not specified, the
URL will be treated as the
application name. This must be
URL encoded.

A string. For
example:
APPLICATION=For
mFiller Demo

ReturnGroup

Parameter Mandatory Description Valid Values

FORMFILLURL Yes The URL of the form to be filled.
Restriction: URL encoded

A string. For example:
FORMFILLURL=http://www.form
fillerdemo.com

FORMFILLPARAMS Yes The parameters inside the form.

Restrictions:

■ The parameters must be URL
encoded.

■ For successful retrievals, the
parameters should be a
comma-separated ordered list
of [%label%:%variable
name%:%value%] pairs. Where
%label% is the label used in the
form that is used for the
%variable name% variable.
%value% contains the result
from the m-Wallet.

■ For unsuccessful retrievals, the
parameters do not return
anything for the values.

A string. For example:
FORMFILLPARAMS=First
Name:fname:Bob,Last
Name:lname:Smith,Credit
Card:CC_
NUMBER:123456789,Email:EMAIL:
bob.smith@company.com,Address:
Address:SomeWhereOnEarth
Example:
FORMFILLPARAMS=First
Name:fname:,Last
Name:lname:,Credit Card:CC_
NUMBER:,Email:EMAIL:,Address:
Address:

Parameter Name Mandatory? Description Valid Value
Triggers
Output

Formfiller

19-30 Oracle9iAS Wireless Developer’s Guide

19.6.1.8 Examples
For a the successful data retrieval for the application, FormFiller Demo, configure
the parameters as follows:

■ Input Parameters:

■ FORMFILLURL=http://www.formfillerdemo.com

■ FORMFILLPARAMS=First+Name:fname,Last+Name:lname,Credit+Card:CC_
NUMBER,Email:EMAIL,Address:Address

■ APPLICATION=FormFiller Demo

■ Output Parameters:

■ FORMFILLURL=http://www.formfillerdemo.com

■ FORMFILLPARAMS=First+Name:fname:Bob,Last+Name:lname:Smith,Credit
+Card:CC_
NUMBER:123456789,Email:EMAIL:bob.smith@company.com,Address:Add
ress:Some+Street+On+Earth

■ SUCCESSCODE=TRUE

An example of the unsuccessful retrieval of data for the application, FormFiller
Demo, is as follows:

■ Input Parameters:

■ FORMFILLURL=http://www.formfillerdemo.com

■ FORMFILLPARAMS=First+Name:fname,Last+Name:lname,Credit+Card:CC_
NUMBER,Email:EMAIL,Address:Address

■ APPLICATION=FormFiller Demo

SUCCESSCODE Yes The success code indicates whether
there was a successful request of
information from the m-Wallet for
the given labels and variable
names.

The valid values are:

TRUE -- For successful data
retrieval

FALSE --For Unsuccessful retrieval
of data because the user cancelled
or was or unable to retrieve
dynamic mapping. For example:

■ SUCCESSCODE=TRUE

■ SUCCESSCODE=FALSE

Parameter Mandatory Description Valid Values

Creating a Billing Mechanism

m-Commerce 19-31

■ Output Parameters:

■ FORMFILLURL=http://www.formfillerdemo.com

■ FORMFILLPARAMS=First+Name:fname:,Last+Name:lname:,Credit+Card:CC
_NUMBER:,Email:EMAIL:,Address:Address:

■ SUCCESSCODE=FALSE

19.7 Creating a Billing Mechanism
Billing with Oracle9iAS Wireless is based on the service activity logging framework.
The Activity Logger provides the logging framework used by the runtime
components. Database logging is handled asynchronously because the runtime
logging on the database carries a huge overhead. The runtime data is generated as
files, which are less expensive. The data thus generated is picked up by the
Performance Logger framework and written onto the database. When services are
executed, the log tables contains a record with information of the user, timestamp,
service name and the related values. Related values are values that can be
associated with the service, such as a cost. The framework can be extended to create
a custom cost-handling mechanism. For more information on logging activity,
system logging tables and how to manage the logging system, refer to the
Oracle9iAS Wireless Getting Started and System Guide.

Creating a Billing Mechanism

19-32 Oracle9iAS Wireless Developer’s Guide

Location-Based Module 20-1

20
Location-Based Module

This document describes the reusable Location-Based Module, included in
Oracle9iAS Wireless. Each section of this document presents a different topic. These
sections include:

■ Section 20.1, "Location Modules"

■ Section 20.2, "Driving Directions"

■ Section 20.3, "The Business Directory Module"

■ Section 20.4, "Maps Module"

■ Section 20.5, "Extending the Mobile Modules"

20.1 Location Modules
Location-based services make mobile applications easier to use and provide them
with quick access to timely and critical information.

20.1.1 Location Picker
The Location Picker module enables users to pick and manage their
frequently-accessed locations. Using this module, a user can specify a location that
can be used by another module, such as the driving directions module. This
location can be the user's default location, the current location (if mobile positioning
is enabled), a Locationmark selected by the user, a recent location used by the user,
or a new location to be entered by the user

The Location Picker module is used by other modules to acquire a location from the
user. When used directly by the user, Location Picker provides management of the
user’s locationmarks and allows the user to set his "preferred" location, which is

Location Modules

20-2 Oracle9iAS Wireless Developer’s Guide

either the user’s current location (when mobile positioning is available and on) or
the user’s default locationmarks.

Other location modules include Driving Directions, Maps, and Business Directory.
These modules use the Location Picker to acquire location(s) from the user if the
user does not have a "preferred" location or if the user specifically wants to change
the location used for those modules.

This module integrates with positioning servers when available and is built upon
the Oracle9iAS Wireless Location Application Component API.

20.1.2 Configuring the Location Picker Module
This service requires the Oracle9iAS Wireless geocoding provider only when the
geocoding of addresses is needed and the Oracle9iAS Wireless mobile positioning
provider only when the positioning feature is needed. The geocoding and mobile
positioning are optional features.

 This module does not require scripts.

20.1.2.1 Configuring the Input Parameters of the Location Picker Module
The Location Picker module includes the following input parameters:

■ ORACLE_SERVICES_LOCATION_PICKER_STACKSIZE

■ Description: The depth of the location history stack. When it reaches this
depth, the least recent locations are replaced by new locations to keep the
depth constant.

■ Default Value: 72

■ ORACLE_SERVICES_LOCATION_PICKER_RECS_PER_PAGE

■ Description: The number of locations displayed per page. Used to indicate
how many locations are displayed per page.

■ Default Value: 9

Table 20–1 Requirements for the Location Picker Module

Name
External

Providers Instructions From

Geocoding Provider otn.oracle.com See Section 15.1.3. 2.0

Mobile positioning
provider

otn.oracle.com See Section 15.1.3. 2.0

Location Modules

Location-Based Module 20-3

20.1.2.2 Linking to the Location Picker Module
You link to the location picker module using the following virtual URL:

omp://oracle/services/location/picker - Invocation Interface

Input Parameters
The location picker has the following input call parameters:

■ LOCATIONTITLE

■ Description: The name of the location to be specified. This will be displayed
throughout the Location Picker module as the title of the page.

■ Valid Value: A String. For example:

* LOCATIONTITLE=Map

* LOCATIONTITLE=Destination Location

■ LOCATIONQUALITY

■ Mandatory: No

■ Description: The quality of the location to be specified. This will be used to check if
the specified location meets the required quality.

■ Valid Values:

* 1 (Address quality)

* 2 (Street quality)

* 3 (Intersection quality)

* 4 (Postalcode quality)

* 5 (City quality)

* 6 (County quality)

* 7 (State quality)

* 8 (Country quality)

* 11 (Unknown quality)

■ LOCATIONMASK

■ Mandatory: No

Location Modules

20-4 Oracle9iAS Wireless Developer’s Guide

■ Description: The mask used to specify which location fields will be available when
entering a new location.

■ Valid Value: An integer derived by bitwise ORing together the integer values for
all the location fields wanted. The values are defined as follows:

* COMPANYNAME_FIELD = 1

* FIRSTLINE_FIELD = 2

* SECONDLINE_FIELD = 4

* LASTLINE_FIELD = 8

* BLOCK_FIELD = 16

* CITY_FIELD = 32

* COUNTY_FIELD = 64

* STATE_FIELD = 128

* COUNTRY_FIELD = 256

* POSTALCODE_FIELD = 512

* POSTALCODEEXT_FIELD = 1024

* LAT_FIELD = 2048

* LNG_FIELD = 4096

* Examples:

LOCATIONMASK=14 (address line 1, address line 2, address last line)
LOCATIONMASK=162 (address line 1, city, state)

■ MOD

■ Mandatory: Optional

■ Description: This parameter is used to specify a condition on the returned location.
For example, if the user only wants to choose among the named location (for
example, Location Marks), then use MOD="LM". If unspecified, the default mode
will be used (for example, all available locations will be offered as choices).

■ Valid Value: LM (Allows to choose among existing Location Marks or create
new ones.)

Example: MOD=LM

Location Modules

Location-Based Module 20-5

Output Parameters
The output parameters for the Location Picker module include the following:

Table 20–2 Output Parameters of the Location Picker

Parameter Name Mandatory Description Valid Value

CN No Company Name A string. For example: CN=Oracle
Corp.

FL No Address First Line A string. For example: FL=500
Oracle Parkway

SL No Address Second
Line

A string. For example:
SL=Redwood City, CA

LL No Address Last Line A string. For example: LL=US

BL No Block A string. For example: BL=Block
400

CI No City A string. For example:
CI=Redwood City

CT No County A string. For example: CT=San
Mateo

ST No State A string. For example: ST=CA

PC No Postal Code A string. For example:
PC=94065

PCE No Postal Code
Extension

A string. For example: PCE=5423

CO No Country A string. For example: CO=US

LT No Latitude Double. For example: LT=37.2433

LN No Longitude Double. For example: LN=-122.3452

N No Name A string. For example: N=Golden
Gate Park

LMN No Location Mark
Name

A string. For example: LMN=Office

STATUS No The status of the
module call.

(Ok) CANCEL (Cancelled)

Driving Directions

20-6 Oracle9iAS Wireless Developer’s Guide

20.2 Driving Directions
The Driving Directions module allows a mobile application to provide its users with
driving directions between an originating address and a destination address. It links
to the Location Picker module to enable users to select originating and destination
addresses not provided by Driving Directions. The Driving Directions module also
links with the Maps module for enhanced routing.

This module is built upon the Oracle9iAS Wireless Location Application
Component API.

20.2.1 Configuring the Driving Directions
This service requires the Oracle9iAS Wireless routing provider.

This module does not require scripts.

20.2.1.1 Input Parameters
 The Driving Directions module includes the following input parameters:

■ ORACLE_SERVICES_LOCATION_ROUTER_RECS_PER_PAGE

■ Description: Items per page. Used to indicate how many steps are displayed per
page.

■ Default Value: 9

■ ORACLE_SERVICES_LOCATION_ROUTER_VOICETOKENFILE

■ Description: The absolute file path for the voice token file--a properties file that
gives the mapping between recorded .wav files and voice outputs.

■ Default Value: .

20.2.1.2 Linking to the Driving Directions Module
You link to the Driving Directions module through the following virtual URL:

omp://oracle/services/location/directions

Table 20–3 Requirements for the Location Picker Module

Name
External
Provider(s) Instructions From

Routing Provider otn.oracle.com See Section 15.1.3. 2.0

Driving Directions

Location-Based Module 20-7

Input Call Parameters
The Driving Directions module includes the following input call parameters:

Table 20–4 Input Call Parameters of the Driving Directions Module

Parameter Name Mandatory Description Valid Value

OCOMPANYNAME No Company Name of
Starting Location

A string. For example:
OCOMPANYNAME=Oracle
Corp.

OADDRESS No Address First Line of
Starting Location

A string. For example:
OADDRESS=500 Oracle
Parkway

OADDRESS2 No Address Second Line of
Starting Location

A string. For example:
OADDRESS2=Redwood City,
CA

OADDRESSLL No Address Last Line of
Starting Location

A string. For example:
OADDRESSLL=US

OBLOCK No Block of Starting
Location

A string. For example:
OBLOCK=Block 400

OCITY No City of Starting
Location

A string. For example:
OCITY=Redwood City

OCOUNTY No County of Starting
Location

A string. For example:
OCOUNTY=San Mateo

OSTATE No State of Starting
Location

A string. For example:
OSTATE=CA

OZIP No Postal Code of Starting
Location

A string. For example:
OZIP=94065

OZIPEXT No Postal Code Extension
of Starting Location

A string. For example:
OZIPEXT=5423

OCOUNTRY No Country of Starting
Location

A string. For example:
OCOUNTRY=US

OLAT No Latitude of Starting
Location

(Double) For example:
OLAT=37.2433

OLNG No Longitude of Starting
Location

 (Double) For example:
OLNG=-122.3452

ONAME No Name of Starting
Location

A string. For example:
ONAME=Golden Gate Park

Driving Directions

20-8 Oracle9iAS Wireless Developer’s Guide

DCOMPANYNAME No Company Name of
Destination Location

A string. For example:
DCOMPANYNAME=Oracle
Corp.

DADDRESS No Address First Line of
Destination Location

A string. For example:
DADDRESS=500 Oracle
Parkway

DADDRESS2 No Address Second Line of
Destination Location

A string. For example:
DADDRESS2=Redwood City,
CA

DADDRESSLL No Address Last Line of
Destination Location

A string. For example:
DADDRESSLL=US

DBLOCK No Block of Destination
Location

A string. For example:
DBLOCK=Block 400

DCITY No City of Destination
Location

A string. For example:
DCITY=Redwood City

DCOUNTY No County of Destination
Location

A string. For example:
DCOUNTY=San Mateo

DSTATE No State of Destination
Location

A string. For example:
DSTATE=CA

DZIP No Postal Code of
Destination Location

A string. For example:
DZIP=94065

DZIPEXT No Postal Code Extension
of Destination Location

A string. For example:
DZIPEXT=5423

DCOUNTRY No Country of Destination
Location

A string. For example:
DCOUNTRY=US

DLAT No Latitude of Destination
Location

(Double) For example:
DLAT=37.2433

DLNG No LLongitude of
Destination Location

(Double) For example:
DLNG=-122.3452

DNAME No Name of Destination
Location

A string. For example:
DNAME=Golden Gate Park

Table 20–4 Input Call Parameters of the Driving Directions Module

Parameter Name Mandatory Description Valid Value

The Business Directory Module

Location-Based Module 20-9

Output Parameters
The Driving Directions Module includes the following output parameters:

20.3 The Business Directory Module
The Business Directory module provides user with a complete business directory.
This module is built on the Oracle9iAS Wireless Location Application Component
API.

This module provides a "yellow pages" type interface to look for the addresses and
phone numbers of registered businesses in a given radius. It has search capabilities
for business names or categories. Browsing through categories is also enabled. If no
location parameters are passed to this module, the location module is invoked to
obtain location data for the search.

20.3.1 Configuring the Business Directory Input Parameter
This module requires the Oracle9iAS Wireless business directory provider.

This module does not require scripts.

20.3.1.1 Configuring the Input Parameters
The Business Directory includes the following input parameters:

■ ORACLE_SERVICES_LOCATION_BIZDIR_RECS_PER_PAGE

■ Description: Items per page. Used to indicate how many businesses/categories are
displayed per page.

■ Default Value: 9

Table 20–5 Output Parameter of the Driving Directions Module

Parameter Name Mandatory Description Valid Value

STATUS No The status of a mobile
call.

(OK)

CANCEL (Cancelled)

Table 20–6 Requirements for the Business Directory Module

Name
External
Provider(s) Instructions From

Business Directory Provider otn.oracle.com See Section 15.1.3. 2.0

The Business Directory Module

20-10 Oracle9iAS Wireless Developer’s Guide

20.3.1.2 Linking to the Business Directory
You link to the Business Directory Module using the following virtual URL:

omp://oracle/services/location/bizdir

The Business Directory Module includes the following input call parameters:

Table 20–7 The Input Call Parameters of the Business Directory Module

Parameter Name Mandatory Description Valid Value

PH No Phrase (keywords) to
search for.

A string. For example:
PH=Pizza

PH=Restaurants
PH=Oracle

FC No Full category of the
business. This category
is defined in the YP
mapping XML file,
which is specified using
the Oracle9iAS Wireless
Webtool.

A string. For example:
FC=/Business/Restaurant
/Italian For example:
FC=/Business/Automotiv
e/Dealer/New/BMW

 CN No Company Name A string. For example:
CN=Oracle Corp.

 FL No Address First Line A string. For example:
FL=500 Oracle Parkway

 SL No Address Second Line A string. For example:
SL=Redwood City, CA

 LL No Address Last Line A string. For example:
LL=US

 BL No Block A string. For example:
BL=Block 400

 CI No City A string. For example:
CI=Redwood City

 CT No County A string. For example:
CT=San Mateo

 ST No State A string. For example:
ST=CA

 PC No Postal Code A string.For example:
PC=94065

Maps Module

Location-Based Module 20-11

Output Parameter
The Driving Directions Module includes the following output parameter:

20.4 Maps Module
The Maps module provides broad and detailed maps for a given location, supports
map tiling and image map transformation for different devices. This module
integrates with the Driving Directions module and is built upon the Oracle9iAS
Wireless Location Application Component API.

20.4.1 Configuring the Maps Input Parameters
This service requires the Oracle9iAS Wireless mapping provider.

 PCE No Postal Code Extension A string. For example:
PCE=5423

 CO No Country A string. For example:
CO=US

 LT No Latitude (Double) For example:
LT=37.2433

 LN No Longitude (Double) For example:
LN=-122.3452

 N No Name A string. For example:
N=Golden Gate Park

Table 20–8 Output Parameter of the Driving Directions Module

Parameter Name Mandatory Description Valid Value

STATUS No The status of a mobile
call.

(OK)

CANCEL (Cancelled)

Table 20–9 Requirements for the Maps Module

Name
External

Providers Instructions From

Mapping Provider otn.oracle.com See Section 15.1.3. 2.0

Table 20–7 The Input Call Parameters of the Business Directory Module

Parameter Name Mandatory Description Valid Value

Maps Module

20-12 Oracle9iAS Wireless Developer’s Guide

20.4.2 Configuring the Input Parameters
The Maps module includes the following input parameters:

■ ORACLE_SERVICES_LOCATION_MAPS_WIDTH_MS

■ Description: The width of maps on PDAs and PC browsers.

■ Default Value: 200

■ ORACLE_SERVICES_LOCATION_MAPS_HEIGHT_MS

■ Description: The height of maps on PDAs and PC browsers.

■ Default Value: 200

20.4.3 Linking to the Maps Module
You link to the Maps module using the following virtual URL:

omp://oracle/services/location/maps

Input Call Parameters
The Maps module includes the following input call parameters:

Table 20–10 Input Call Parameters of the Maps Module

Parameter Name Mandatory Description Valid Value

CN No Company Name A string. For example: CN=Oracle
Corp.

FL No Address First Line A string. For example: FL=500
Oracle Parkway

SL No Address Second
Line

A string. For example:
SL=Redwood City, CA

LL No Address Last Line A string. For example: LL=US

BL No Block A string. For example: BL=Block
400

CI No City A string. For example:
CI=Redwood City

CT No County A string. For example: CT=San
Mateo

ST No State A string. For example: ST=CA

Extending the Mobile Modules

Location-Based Module 20-13

Output Parameter of the Maps Module
The Maps module includes the following output parameter

20.5 Extending the Mobile Modules
The location modules use the Oracle9iAS Wireless Location Application Component
APIs. These Java APIs can be used independently to write other Location Based
Services (LBS). For more information on the Location Application Component API,
see Section 15.2.

This section describes the main classes of these APIs. For each class, the typical use
cases and the code example for each use case are given.

PC No Postal Code A string. For example:
PC=94065

PCE No Postal Code
Extension

A string. For example: PCE=5423

CO No Country A string. For example: CO=US

LT No Latitude Double. For example: LT=37.2433

LN No Longitude Double. For example: LN=-122.3452

N No Name A string. For example: N=Golden
Gate Park

LMN No Location Mark
Name

A string. For e xample: LMN=Office

STATUS No The status of the
module call.

(Ok) CANCEL (Cancelled)

Table 20–11 Output Parameter of the Map Module

Parameter Name Mandatory Description Valid Value

STATUS No The status of a mobile
call.

(OK)

CANCEL (Cancelled)

Table 20–10 Input Call Parameters of the Maps Module

Parameter Name Mandatory Description Valid Value

CN No Company Name A string. For example: CN=Oracle
Corp.

Extending the Mobile Modules

20-14 Oracle9iAS Wireless Developer’s Guide

20.5.1 The oracle.panama.model.LocationMark class
This interface represents a Location Mark saved by the user. It extends the Location
interface which represents a location.

The typical operations a user wants to perform include:

1. Get all Location Marks of a user

LocationMark[] locationmarks = iasUser.getLocationMarks();
where iasUser is an object of User, which represents a user of Oracle9iAS
Wireless wireless.

2. Get and set attribute(s) of a Location Mark The LocationMark class has specific
"get" and "set" methods. For example, to get the city of a Location Mark, use
String city = locationmark.getCity();

To set the city, use

locationmark.setCity(city);

For a complete listing of these methods, refer to the Oracle9iAS Wireless
javadoc.

3. Create a Location Mark

String locationmark_name = "Office";
LocationMark lm =
MetaLocator.getInstance().getModelFactory().createLocationMark(locationmark_
name,iasUser);
Location l = SpatialManager.createLocation("Oracle", "500 Oracle
Parkway","", "Redwood City, CA 94065", "US");
lm.setLocation(l);
Locator.getInstance().getPersistentLocator().getSessionManager().commitSessi
on();

4. Delete a Location Mark

LocationMark lm =
MetaLocator.getInstance().getModelServices().lookupLocationMark(locationmark
_id);
lm.delete();
MetaLocator.getInstance().getModelFactory().save();

where locationmark_id is an automatically generated unique Java "long"
which identifies the Location Mark. To get this id, call getId() on the
LocationMark object.

Extending the Mobile Modules

Location-Based Module 20-15

5. Update a Location Mark The steps to update a Location Mark is similar to
creating a new one. First, get the Location Mark object. Second, update the
location. Finally, commit the changes.

LocationMark lm =
MetaLocator.getInstance().getModelServices().lookupLocationMark(locationmark
_id);
lm.setCity("San Francisco");
Locator.getInstance().getPersistentLocator().getSessionManager().commitSessi
on();

6. Set a Location Mark as the default location

LocationMark lm =
MetaLocator.getInstance().getModelServices().lookupLocationMark(locationmark
_id);
iasUser.setDefaultLocationMark(lm);
MetaLocator.getInstance().getModelFactory().save();

20.5.2 The oracle.panama.spatial.geocoder.Geocoder class
The Geocoder interface abstracts the implementation of a geocoder. The geocoder
implementation is specific to the geocoding content provider. For example, to use
the geocoding content from MapQuest, the implementation class is
oracle.panama.spatial.core.geocoder.GeocoderImplMapQuest, which
is supplied with Oracle9iAS Wireless. At the module level, the specific
implementation class is transparent.

The typical operations a user wants to perform include:

1. Get an instance of Geocoder

Geocoder geocoder = SpatialManager.getGeocoder();

2. Geocode a location. There are two ways:

■ Use the Geocoder interface:

Location[} locations = geocoder.geocodeAddress(location, matchmode);
Where location is a Location object and matchmode is a String indicating
how the geocoder should try to geocode the location. The valid values for
matchmode are:

Extending the Mobile Modules

20-16 Oracle9iAS Wireless Developer’s Guide

– MATCH_MODE_NORMAL, MATCH_MODE_STANDARD, MATCH_
MODE_TIGHT

– MATCH_MODE_RELAXED

Refer to the Oracle9iAS Wireless javadoc for details.

■ Use the Location interface to geocode a location.

location.geocode(checkWhetherNecessary,
makeCorrections);

where checkWhetherNecessary and makeCorrections are two
booleans.

20.5.3 The oracle.panama.module.location.LocationHistoryManager class
The LocationHistoryManager class manages the locations saved automatically
by other modules or applications. It has methods for:

1. Get all automatically saved locations (that is, location history).

Location[] locations = LocationHistoryManager.getLocations(iasUser);

This method returns an array of locations sorted by their last used time stamps.

2. Update the location history with a location.

The location history is a stack of locations saved by modules or applications.
The history can be used by modules and applications to eliminate the need for
users to enter those locations again. The history also can be shared among all
location based services. For example, a restaurant found using the Business
Directory module is saved in the history and is be automatically available when
the user uses the Driving Directions module to get directions to that restaurant.
The maximum size of the stack is configurable by the ORACLE_SERVICES_
LOCATION_PICKER_STACKSIZE service parameter. When the stack size is
below the maximum, new locations are added to the stack. When the stack size
reaches the maximum, a new location replaces the earliest location on the stack
(that is, the location with the earliest time stamp).

long id =LocationHistoryManager.updateHistory(l, iasUser);

Extending the Mobile Modules

Location-Based Module 20-17

Where l is an object of LocationHelper, a class that implements the Location
interface. The above code updates the location history stack with location "l" for
iasUser. Refer to Oracle9iAS Wireless modules javadoc for details on the
LocationHelper class.

20.5.4 The oracle.panama.spatial.router.Router class
The Router interface abstracts the implementation of a router, which provides
turn-by-turn driving directions. The router implementation is specific to the routing
content provider. For example, to use the routing content from MapQuest, the
implementation class will be
oracle.panama.spatial.core.router.RouterImplMapQuest, which is
supplied with Oracle9iAS Wireless. At the module level, the specific
implementation class used is transparent. The typical operations a user wants to
perform include:

1. Get an instance of Router.

Router router = SpatialManager.getRouter();

2. Get Driving Directions between two locations.

RoutingResult rr = router.computeRoute(starting_location, destination_
location, via_points, settings, locale);

where starting_location and destination_location are two Location
objects, via_points is an array of Location objects that represent the desired
via points along a route (null is okay if no via points is needed), settings is a
RoutingSettings object that indicates the routing options (see below for
details), and locale is the desired locale for directions output (for example, mile
is used as distance unit for United States, whereas km is used in Canada). Once
the RoutingResult object is obtained, you can iterate through the maneuvers
to get turn-by-turn directions. For example:

for (int i = 0; i < rr.getManeuvers().length; i++){
Maneuver m = rr.getManeuvers()[i];
System.out.println(m.getNarrative());

}

3. Set Driving Directions options Use RoutingSettings class to set options. For
example, to get the overview map of a route:

RoutingSettings settings = new RoutingSettings();

Extending the Mobile Modules

20-18 Oracle9iAS Wireless Developer’s Guide

settings.setRequestMap(true);
settings.setSecondaryOption(RoutingOption.overviewMapWidth, MAP_WIDTH+"");
settings.setSecondaryOption(RoutingOption.overviewMapHeight, MAP_HEIGHT+"");
RoutingResult rr = router.computeRoute(starting_location, destination_
location, via_points, settings, locale);
String url = rr.getOverviewMapURL();

Refer to Oracle9iAS Wireless javadoc for details of available options.

20.5.5 The oracle.panama.spatial.mapper.Mapper class
The Mapper interface abstracts the implementation of a mapper, which provides
maps. The mapper implementation is specific to the mapping content provider. For
example, to use the mapping content from MapQuest, the implementation class will
be oracle.panama.spatial.core.mapper.MapperImplMapQuest, which is
supplied with Oracle9iAS Wireless. At the module level, the specific
implementation class used is transparent. The typical operations a user wants to
perform include:

1. Get an instance of Mapper.

Mapper mapper = SpatialManager.getMapper();

2. Get the map of a location There are several methods available in the Mapper
class. For example:

String mapurl = mapper.getMapURL(location, ImageFormats.GIF,
location.getLongitude() - zoomlevel * MAP_LNG_SIZE,
location.getLongitude() + zoomlevel * MAP_LNG_SIZE,
location.getLatitude() - zoomlevel * MAP_LAT_SIZE,
location.getLatitude() + zoomlevel * MAP_LAT_SIZE,
MAP_WIDTH, MAP_HEIGHT,
false);

Refer to the Oracle9iAS Wireless javadoc for details of this and other mapping
methods.

20.5.5.1 The oracle.panama.spatial.yp.YPFinder class
The YPFinder interface abstracts the implementation of a "YP" like business
directory service. The YPFinder implementation is specific to the business
directory content provider. For example, to use the content from MapQuest, the
implementation class will be
oracle.panama.spatial.core.yp.YPFinderImplMapquest, which is

Extending the Mobile Modules

Location-Based Module 20-19

supplied with Oracle9iAS Wireless. At the module level, the specific
implementation class used is transparent. The typical operations a user wants to
perform include:

1. Get an instance of YPFinder.

YPFinder finder = SpatialManager.getYPFinder();

2. Get business categories The YPFinder class supports the "browsing" of
business categories. These categories are defined by user based on the content
provider in oracle.panama.spatial.yp.YPCategories.xml file. The location of this
file needs to be specified in Oracle9iAS Wireless webtool. At runtime, the
YPFinder class has methods that support the browsing of the category
hierarchy. For example, to start at the root category,

YPCategory root = finder.getCategoryAtRoot();

Then to get the subcategories at root,

YPCategory[] cats = root.getSubCategories();

3. Search for businesses. The "search" operation can be performed with two
classes: YPFinder and YPCategory. The search can be proximity search (that
is, around a location within a certain radius), using such criteria as searching a
city, or a zipcode.

YPBusiness[] bizes = root.getBusinessesInRadius(location, raidus_in_meters,
locale);
YPBusiness[] bizes = finder.getBusinessesInSameCity(bizname, location,
locale);
YPBusiness represents a business and extends the Location class. So you can
get the address of the business using this class or use getTelephone() to
get the business phone.

20.5.5.2 Location Mark API Examples
This example creates a Location Mark, "Office". Note that the call
SpatialManager.createLocation() automatically geocodes the location.

Source
import oracle.panama.model.LocationMark;
import oracle.panama.model.Location;
import oracle.panama.model.MetaLocator;

Extending the Mobile Modules

20-20 Oracle9iAS Wireless Developer’s Guide

import oracle.panama.core.util.Locator;
import oracle.panama.spatial.SpatialManager;
String locationmark_name = "Office";
LocationMark lm =
MetaLocator.getInstance().getModelFactory().createLocationMark(locationmark_
name,iasUser);
Location l = SpatialManager.createLocation("Oracle","500 Oracle Parkway","",
"Redwood City, CA 94065","US");
lm.setLocation(l);
Locator.getInstance().getPersistentLocator().getSessionManager().commitSession()
;

20.5.5.3 Driving Directions API Examples
This section provides an example of the Driving Directions API and its output.

Source
import oracle.panama.model.LocationMark;
import oracle.panama.model.Location;
import oracle.panama.spatial.SpatialManager;
import oracle.panama.spatial.router.Router;
import oracle.panama.spatial.router.RoutingSettings;
import oracle.panama.spatial.router.RoutingOption;
import oracle.panama.spatial.router.RoutingResult;
import oracle.panama.spatial.router.Maneuver;
Location starting= SpatialManager.createLocation("Oracle","500 Oracle
Parkway","", "Redwood City, CA 94065","US");
Location destination = SpatialManager.createLocation("Autobahn Motors","700
Island Pkwy","", "Belmont, CA","US");
Router r = SpatialManager.getRouter();
RoutingSettings settings = new RoutingSettings();
settings.setRequestMap(true);
settings.setSecondaryOption(RoutingOption.overviewMapWidth, "400");
settings.setSecondaryOption(RoutingOption.overviewMapHeight, "400");
RoutingResult rr = r.computeRoute(starting, destination, null, settings,
Locale.getDefault())
for (int i = 0; i < rr.getManeuvers().length; i++){
Maneuver m = rr.getManeuvers()[i];
System.out.println((i+1)+")"+m.getNarrative());

}

Extending the Mobile Modules

Location-Based Module 20-21

Output
1. Begin at 500 Oracle Pkwy on Oracle Pkwy and go West for 0.6 miles (0.6Miles)

2. Bear right on Island Pkwy and go West for 0.3 miles (0.3Miles)

3. Make U-turn on Island Pkwy and go South for 80 feet to Island Pkwy (0.0Miles)

20.5.5.4 Maps API Examples

Source

import oracle.panama.model.LocationMark;
import oracle.panama.model.Location;
import oracle.panama.spatial.SpatialManager;
import oracle.panama.spatial.mapper.Mapper;
import oracle.panama.imagex.ImageFormats;
Location location= SpatialManager.createLocation("Oracle","500 Oracle
Parkway","", "Redwood City, CA 94065","US");

Mapper mapper = SpatialManager.getMapper();
String mapurl = mapper.getMapURL(location,
ImageFormats.GIF,
location.getLongitude() - 0.008,
location.getLongitude() + 0.008,
location.getLatitude() - 0.008,
location.getLatitude() + 0.008,
400,
400,
false);

20.5.5.5 YPFinder API Examples
This example searches for Pizza Hut within two miles of Oracle

Source
import oracle.panama.model.LocationMark;
import oracle.panama.model.Location;
import oracle.panama.spatial.SpatialManager;
import oracle.panama.yp.YPFinder;
import oracle.panama.yp.YPBusiness;
Location location= SpatialManager.createLocation("Oracle","500 Oracle
Parkway","", "Redwood City, CA 94065","US");

Extending the Mobile Modules

20-22 Oracle9iAS Wireless Developer’s Guide

YPFinder yp = SpatialManager.getYPFinder();
YPBusiness[] bizes = yp.getBusinessesInRadius("pizza hut", location, 2*1609.344,
null);
for (int k = 0; k < bizes.length; k++) {
YPBusiness biz = (YPBusiness) bizes[k];
double dist = biz.getDistance(location);
bizname = biz.getCompanyName();
bizaddr = biz.getAddressLine1();
bizcity = biz.getCity();
bizstate = biz.getState();
bizcountry = biz.getCountry();
bizphone = biz.getTelephone();
// output results
//...

}

Index-1

Index
A
Access Control, 10-38
accidents, 15-22
Adapter, 10-118
Advanced Customization, 11-1
alert engine architecture, 12-2
alert services

creating with JAVA API, 12-7
creating with the Content Manager, 12-7
device addresses for, 12-10

alert subscriptions
managing with the JAVA API, 12-8
managing with Wireless Customization, 12-8

ASK
overview, 10-47

Asynchronous Applications
writing, 10-58

Asynchronous Server, 10-47
AuthenticationHook, 10-85
AuthorizationHook, 10-87
automatic positioning, 15-56

enabling and disabling, 15-64

B
basic formatting, 3-6

tables, 3-6
Business Directory module, 20-9

input parameters, 20-9
linking to, 20-10
output parameters, 20-11

business directory services
API, 15-21

overview, 15-18
XML configuration files, 15-20

C
cache

location, 15-58, 15-64
log, 15-64

Calendar
configuration and required third-party

software, 18-18
configuration parameters, 18-20
linking to, 18-21
overview, 18-18

CallerLocationHook, 10-87
City interface, 15-25
CityInfo interface, 15-25
community

mobile, 15-62
operations supported on, 15-63
types of, 15-63
visibility, 15-62

configuration file
site_cgf_bootstrap.xml, 15-8

construction activity, 15-22
coordinate system for region data, 15-75
Core Platform Architecture, 10-2
Core Process Architecture, 10-5
Core Technologies, 10-1
createService.jsp, 17-16
custom regions (user-defined), 15-69
Customization Portal, 11-24

customization levels, 11-31
page naming conventions, 11-25

Index-2

rebranding, 11-25
Customization Portal API, 11-34

D
DAS

user management and, 10-22
DAS (Delegated Administration Service), 10-22
data feeders

content providers, 12-12
creating with the Service Designer, 12-13
update policy, 12-12

Data Model APIs, 10-62
DeckExample.xml, 3-3
deployedServiceList.jsp, 17-21
deployService.jsp, 17-19
Destination Analysis, 13-16
Device, 10-118
Device and Network Adaptation, 10-38
Device Transformers, 10-40
DeviceAddress, 10-118
deviceclass attribute, 3-4
DeviceIdentificationHook, 10-85
device-specific markup language, 3-2
directives

privacy, 15-64
display

formatting, 3-5
displaying and formatting contents of XML, 3-1
DOCTYPE declaration, 3-2
domains.jsp, 17-25
Driver Interface APIs, 13-21
Driving Directions, 20-6

configuring, 20-6
input call parameters, 20-7
input parameters, 20-6
output parameters, 20-9

driving directions, 15-15
maneuvers, 15-15, 15-16

Driving Directions API Examples, 20-20

E
editFolder.jsp, 17-32
editService.jsp, 17-17

Email Driver, 13-38
encryption keys

configuration, 19-5
end-element, 2-1
Event, 10-80
example files

location services, 15-2
external providers for location services, 15-4
ExternalLink, 10-36

F
Fax Driver (RightFax), 13-44
fax module

linking to, 18-38
overview, 18-35
required third-party software, 18-36
sample cover page, 18-36

FeedDataFilterHook, 12-12
FeedDownloadHook, 12-12
Folder, 10-36
FolderRendererBean, 10-98
FolderRendererHook, 10-99
FolderRendererPolicy, 10-99
formatting display, 3-5
formatting, basic, 3-6
FormattingExample.xml, 3-5
Formfiller

configuring mappings for, 19-24
guessing heuristics configuration, 19-22
input parameters of, 19-27
overview, 19-22

G
Geocoder interface, 15-12
geocoding

API, 15-12
overview, 15-11

getPositioner method, 15-59
Global Logout, 10-17
Group, 10-118

Index-3

H
HDML devices, 3-4
HelloWorld.xml, 3-1
home.jsp, 17-13
Hooks, 10-66, 13-18
hooks

policies, 10-84
runtime, 10-84

HTML tags, 2-2

I
idseq sequence, 15-75
iFS Module

configuration and required software, 18-31
overview, 18-31

Image Support, 10-40
incident (traffic), 15-22
Instant Messaging

overview, 18-25
required third-party software, 18-25

iPayment
capturing transactions, 19-20
configuration, 19-19
overview, 19-19

J
Java Server Pages (JSPs), 15-28
Java Transformers, 10-41
JavaServer Pages, 11-26

L
languages (support for multiple), 15-18
Link, 10-36
Listener, 10-80
ListenerRegistrationHook, 10-85
location cache, 15-58, 15-64
Location class, 15-12
location dependent

identifying service as, 15-72
location mark, 15-12, 15-55
Location Mark API Examples, 20-19
Location Marks, 11-18

Location Modules, 20-1
Location Picker module, 20-1

configuring input parameters, 20-2
input parameters, 20-3
linking to, 20-3
output parameters, 20-5
requirements, 20-2

location privacy, 15-57
location services, 15-3

providers, 15-4
LocationMark, 10-118
LocationMark class, 15-12
LOCATIONMARK table, 15-13
log

cache, 15-64
logical devices

attributes, 10-38
device detection, 10-39
image formats, 10-40
images formats, 10-38

login.jsp, 17-7
loginPortlet.jsp, 17-9
longitude/latitude region data, 15-75

M
maneuver, 15-15, 15-16
Maneuver class, 15-18
manual positioning, 15-55

enabling, 15-56
Maps API Examples, 20-21
Maps module, 20-11

configuring the input parameters, 20-12
input call parameters, 20-12
input parameters, 20-11
linking to, 20-12
output parameters, 20-13

master alert services
creating, 12-3

MasterService, 10-36
m-Commerce, 19-1

APIs, 19-2
configuration, 19-2
configuring encryption keys for, 19-5

m-Commerce Service

Index-4

overview, 19-2
Message Routing, 13-16
messenger, 3-4
MetaLocator, 10-116
microbrowser, 3-4
micromessenger, 3-4
Mobile Address Book

configuration and required software, 18-10
configuration parameters, 18-11
linking to, 18-12
overview, 18-10

mobile community, 15-62
operations supported on, 15-63
types of, 15-63
visibility, 15-62

Mobile Directory
configuration, 18-6
linking to, 18-9
output parameters of, 18-9
overview, 18-6

Mobile Email
configuration and parameters, 18-2
input call parameters of, 18-4
linking to, 18-4
overview, 18-2

Mobile Modules
extending, 20-13

mobile positioning
API, 15-64
framework, 15-57
privacy directives relating to, 15-64

Mobile Studio, 17-1
administration, 17-44
advanced customization, 17-51
configuration, 17-6
JSPs, 17-7
locales, 17-47
login and registration, 17-3
parameters, 17-6
Resources page, 17-50
sample apps configuration, 17-6
Sample Services page, 17-49
tag library, 17-51

MobileIDHook, 10-86
ModelFactory, 10-116

ModelObject, 10-116
ModelServices, 10-116
Module, 10-36
moveOrCopy.jsp, 17-33
MPManager class, 15-59
Multiple Customization Profiles, 11-19
m-Wallet

configuration, 19-3
extending, 19-14
linking to, 19-8
overview, 19-3

N
namespaces, 2-1
newFolder.jsp, 17-31

O
Offline Management

using Oracle9iLite, 16-1
OID

integration with Oracle9iAS Wireless, 10-18
integration with Wireless, 10-18

Oracle Portal, 10-30
Oracle9iAS Portal

accessing Wireless as a service, 10-31
relationship with Wireless, 10-30

Oracle9iAS Wireless
deployment of XML applications, 17-2
integration with other components, 10-13

Oracle9iAS Wireless Runtime, 10-62
Oracle9iLite, 16-1
OTA, 13-19
overview map, 15-16

P
pageFooter.jsp, 17-40
pageHeader.jsp, 17-39
pageMenu.jsp, 17-10
pagePortlets.jsp, 17-11
pass-through data feeder, 12-12
pass-through datafeeder

creating, 12-14

Index-5

pcbrowser, 3-4
pdabrowser, 3-4
PIM

overview, 18-2
Point class, 15-12
portlets

development, 10-32
positioning

automatic, 15-56
manual, 15-55
privacy directives relating to, 15-64
providers, 15-59
quality of service, 15-58

positioning rights, 15-61
PostPorcessorHook, 10-88
Pre-built Drivers, 13-36
PreProcessorHook, 10-88
PresetCategory, 10-118
PresetDescriptor, 10-119
Presets, 10-119, 11-4
privacy

API, 15-65
directives, 15-64
location, 15-57

Profile, 10-119
profile.jsp, 17-23
providers

configuring, 15-8
location services, 15-4
positioning, 15-59
selection of, 15-5
selector hook, 15-60

Push application
building, 13-5

Push Service, 13-1
Push Services

API, 13-4
PushClient Driver, 13-37
PushLite, 13-5

Q
QoS (quality of service), 15-58
quality of service, 15-58
quicklink.jsp, 17-38

R
REFCNT column in region tables, 15-75
reference count (REFCNT), 15-75
Reference Model, 10-89
region, 15-68

adding new region, 15-75
API for modeling, 15-77
associating with a service, 15-71
custom, 15-69
reference count (REFCNT), 15-75
system-defined, 15-69
using sequence to generate ID, 15-75

registraton.jsp, 17-28
Repository Data Model API, 10-114
Request

attributes, 10-68
parameters, 10-68

RequestFactory
application, 10-77

rights
positioning, 15-61

RouteInfo interface, 15-26
Router interface, 15-18
routing

languages (support for), 15-18
maneuver, 15-15, 15-16
map options, 15-17
overview, 15-15
overview map, 15-16
results, 15-16
settings, 15-15
transformation requirements, 15-17

RoutingSettings class, 15-18
Runtime

core, 10-67
ManagedContext, 10-76
Request, 10-67
RequestFactory, 10-76
Response, 10-70
ServiceContext, 10-70

Runtime Objects, 10-67

Index-6

S
sampleSource.jsp, 17-39
Secure Key

configuration, 19-2
selection of service providers, 15-5
selector hook, 15-60
sendMessage.jsp, 17-35
Service, 10-119
Service Management, 11-24
ServiceContext

parameters, 10-71
XML tag names, 10-74

SessionIDHook, 10-85
SGML (Standard Generalized Markup

Language), 2-1
Short Messaging

configuration, 18-29
overview, 18-29

SignOnPagesHook, 10-86
SimpleAudio, 3-4
SimpleBreak, 3-5
SimpleCol, 3-6
SimpleContainer, 3-3
SimpleEm, 3-5
SimpleHref, 3-4
SimpleResult, 3-3
SimpleRow, 3-6
SimpleStrong, 3-5
SimpleTable, 3-6
SimpleTableBody, 3-6
SimpleTableHeader, 3-6
SimpleText, 3-4
SimpleTextItem, 3-4, 8-81
site_cgf_bootstrap.xml, 15-8
SMPP Driver, 13-43
SMS, 13-1
SOAP, 13-2
spatial mark, 15-12
SpatialManager class, 15-3
SRID (coordinate system) for region data, 15-75
SSO, 10-34

global logout, 10-17
integration with Oracle9iAS Portal, 10-34
integration with Wireless, 10-13

SSO Global Logout, 10-17
SSO-enabled applications

Mobile Studio, 17-6
start-element, 2-1
stylesheet

XSL, 2-2
system parameters, 10-92
system-defined regions, 15-69

T
TableExample.xml, 3-6
tasks module

linking to, 18-44
overview, 18-41
required software, 18-42

traffic
incident, 15-22
overview, 15-22
request XML DTD, 15-23

TrafficCityManager interface, 15-26
TrafficIncident interface, 15-26
TrafficReport interface, 15-26
TrafficReporter interface, 15-26
TrafficRoute interface, 15-26
Transcoding, 14-1
Transformer, 10-120
transformers

attributes, 10-40
XSLT transformers, 10-44

Translator
configuration, 19-16
linking to, 19-17
overview, 19-16

Transport API, 13-15
Transport Runtime Processes, 13-14

U
UCP Driver, 13-41
User and Group Management, 11-24
User Device Management, 11-19

Index-7

V
viewLog.jsp, 17-37
visibility

mobile community, 15-62
voice, 3-4
Voice Driver, 13-40

W
Web Content Adaptation, 14-2
WebCache

configuration, 10-24
integration with Wireless, 10-22

WebCache Integration, 10-22
WebIntegration Beans, 14-3
well-formedness, 2-1
WGS-84 coordinate system for region data, 15-75
WIDL Services, 14-3
Wireless Portlets

developing, 10-32
Wireless Services, 10-36
World Wide Web Consortium (W3C), 2-1
WSDL, 13-2

X
XML

1.0 specification, 2-1
DTD, 2-1
schema, 2-3
schema language, 2-1

XML configuration file
site_cgf_bootstrap.xml, 15-8

XML DTD, 8-1
XML files

business directory category hierarchy, 15-20
examples, 15-2
traffic request DTD, 15-23

XML tags, 8-2
XML, defined, 2-1
XSL stylesheet, 2-2
XSLT Transformers, 10-44

Y
Yellow Pages services, 15-18
YPBusiness class, 15-22
YPCategory class, 15-22
YPFinder API Examples, 20-21
YPFinder interface, 15-21

Index-8

	Contents
	Send Us Your Comments
	Preface
	Part I� Introduction
	1 Introduction
	1.1� Overview
	1.2� Wireless Internet Components
	1.2.1� The Wireless Network
	1.2.1.1� Networks
	1.2.1.2� Wireless Gateways
	1.2.1.3� Wireless Services
	1.2.1.4� Application Servers

	1.3� Developing Mobile Internet Applications
	1.3.1� User Input Limitations
	1.3.1.1� Device Display Form Factor

	1.3.2� Myriad Wireless Device Standards
	1.3.2.1� Support a Broad Variety of Devices and Protocols
	1.3.2.2� Write Applications Once and Deliver Them Anywhere

	1.3.3� Heterogeneous Sources of Content
	1.3.3.1� Leveraging Existing Content
	1.3.3.2� Application Performance and Scalability Requirements
	1.3.3.2.1� Support a Large Numbers of Users
	1.3.3.2.2� Support a Large Number of Concurrent Sessions
	1.3.3.2.3� Support a Large Volumes of Content

	1.3.3.3� Evolving Wireless Internet Market Requirements
	1.3.3.4� Evolving Wireless Standards

	1.4� Oracle9iAS WirelessArchitecture
	1.4.1� Mobile Services
	1.4.2� Processing a Request for a Wireless Service
	1.4.2.1� Sending a Wireless Request
	1.4.2.2� Recognizing and Authenticating the Wireless Device
	1.4.2.3� Establishing the Wireless Session
	1.4.2.4� Translating the request over the Internet
	1.4.2.5� Connecting to the Application Server
	1.4.2.6� Recognizing the User's Information
	1.4.2.7� Processing the Wireless Request

	1.5� Oracle9iAS WirelessCore and Services
	1.5.1� The Core
	1.5.1.1� Adapters
	1.5.1.2� XML Application Framework
	1.5.1.3� Device and Network Adaptation
	1.5.1.4� Runtime APIs
	1.5.1.5� Wireless Webtools
	1.5.1.6� Customization
	1.5.1.7� Push/SMS Service
	1.5.1.8� Transcoding
	1.5.1.9� Offline Management
	1.5.1.10� Location Based Services

	1.5.2� Mobile PIM and Email
	1.5.3� m-Commerce and Billing
	1.5.4� Mobile Studio
	1.5.5� Security

	Part II� Oracle9iAS Wireless XML Developer’s Guide
	2 XML Overview
	2.1� What is XML?
	2.2� Relationship between Oracle9iAS Wireless XML and HTML
	2.3� Why use Oracle9iAS Wireless XML?
	2.4� How Does Oracle9iAS Wireless XML Work with Oracle9iAS Wireless?

	3 Displaying and Formatting Content
	3.1� Hello World Example
	3.1.1� HelloWorld.xml
	3.1.2� DOCTYPE Declaration
	3.1.3� SimpleResult
	3.1.3.1� SimpleContainer
	3.1.3.2� DeckExample.xml
	3.1.3.3� SimpleText, SimpleTextItem

	3.2� Formatting the Display
	3.2.1� SimpleBreak, SimpleStrong and SimpleEm
	3.2.1.1� FormattingExample.xml

	3.2.2� Tables and Basic Formatting Example
	3.2.2.1� SimpleTable, SimpleTableHeader, SimpleTableBody, SimpleRow and SimpleCol
	3.2.2.2� TableExample.xml

	3.3� Wireless Graphics
	3.3.1� SimpleImage
	3.3.2� ImageDisplay.xml

	3.4� Enhancing with Audio for Voice Access
	3.4.1� SimpleAudio and SimpleSpeech
	3.4.2� Recommendation for Voice Navigation

	4 Application Navigation
	4.1� Introduction
	4.2� Basic Navigation
	4.2.1� SimpleMenu, SimpleMenuItem
	4.2.1.1� SimpleMenuExample.xml

	4.2.2� Navigating by Voice
	4.2.2.1� EnhancedSimpleMenuExample.xml

	4.3� Document Linking
	4.3.1� SimpleHref, SimpleTimer
	4.3.1.1� ContactAuthors.xml
	4.3.1.2� PhoneCallDemo.xml
	4.3.1.3� SimpleAction
	4.3.1.4� SimpleCache
	4.3.1.5� SimpleMeta

	4.3.2� Enhancing with Voice
	4.3.2.1� SimpleDTMF
	4.3.2.2� SimpleDTMF.xml
	4.3.2.3� SimpleCatch
	4.3.2.4� SimpleGrammar
	4.3.2.5� DocumentLinkingDemo.xml
	4.3.2.6� Mobile XML Voice Navigation Elements
	4.3.2.7� Help

	5 Filling Out Forms for Data Entry and Navigation
	5.1� Introduction
	5.2� Basic User Interaction
	5.2.1� SimpleForm
	5.2.2� SimpleFormItem
	5.2.2.1� FormExample.xml
	5.2.2.2� GuestBook.xml

	5.3� Complete User Forms
	5.3.1� SimpleFormSelect, SimpleFormOption, and SimpleOptGroup
	5.3.2� Profile.xml

	5.4� Enhancing Voice
	5.4.1� SimpleGrammer, SimpleValue and SimpleDTMF
	5.4.2� Recommendation for Voice Forms

	6 Advanced User Interactions and Channel Optimization
	6.1� Introduction
	6.2� Events and Tasks Using SimpleBind
	6.2.1� SimpleBind.xml
	6.2.2� Device Specific SimpleBind

	6.3� Device Headers and Device Class
	6.3.1� Article.jsp
	6.3.2� PageNavigation.java

	7 Mobile Modules
	7.1� Introduction
	7.2� Wireless XML Attributes for Mobile Modules
	7.3� Shipped Mobile Modules
	7.4� Using Shipped Mobile Modules
	7.4.1� Commerce Services
	7.4.2� PIM Services
	7.4.3� Location Services

	7.5� Developing Custom Mobile Modules
	7.5.1� “Hello World” Mobile Module
	7.5.1.1� Create and publish the JSP pages for the module and the caller services
	7.5.1.2� Create HelloWorldModuleMS and HelloWorldCallerMS MasterServices
	7.5.1.3� Create the caller and the module services

	7.5.2� Sending Parameters to a Mobile Module

	8 XML Tag Glossary
	8.1� XML Tags
	SimpleAction
	Usage
	Related Tags

	SimpleAudio
	Related Tags

	SimpleBind
	Related Tags

	SimpleBreak
	Related Tags

	SimpleCache
	Related Tags

	SimpleCase
	Related Tags

	SimpleCatch
	Related Tags

	SimpleClear
	Related Tags

	SimpleCol
	Related Tags

	SimpleContainer
	Related Tags

	SimpleDisconnect
	Related Tags

	SimpleDisplay
	Usage
	Related Tags

	SimpleDTMF
	Related Tags

	SimpleEm
	Related Tags

	SimpleExit
	Related Tags

	SimpleFinish
	Related Tags

	SimpleForm
	Related Tags

	SimpleFormItem
	Related Tags

	SimpleFormOption
	Related Tags

	SimpleFormSelect
	Related Tags

	SimpleGo
	Related Tags

	SimpleGrammar
	Related Tags

	SimpleHelp
	Related Tags

	SimpleHref
	Related Tags

	SimpleImage
	Related Tags

	SimpleKey
	Related Tags

	SimpleMatch
	Related Tags

	SimpleMenu
	Related Tags

	SimpleMenuItem
	Related Tags

	SimpleMeta
	Related Tags

	SimpleMItem
	Related Tags

	SimpleName
	Related Tags

	SimpleOptGroup
	Related Tags

	SimplePhone
	Related Tags

	SimplePrev
	Related Tags

	SimpleProperty
	Related Tags

	SimpleRefresh
	Related Tags

	SimpleReprompt
	Related Tags

	SimpleResult
	Related Tags

	SimpleRow
	Related Tags

	SimpleSpan
	Related Tags

	SimpleSpeech
	Related Tags

	SimpleStrong
	Related Tags

	SimpleSubmit
	Related Tags

	SimpleSwitch
	Related Tags

	SimpleTable
	Related Tags

	SimpleTableBody
	Related Tags

	SimpleTableHeader
	Related Tags

	SimpleTask
	Related Tags

	SimpleText
	Related Tags

	SimpleTextField
	Related Tags

	SimpleTextItem
	Related Tags

	SimpleTimer
	Related Tags

	SimpleTitle
	Related Tags

	SimpleUnderline
	Related Tags

	SimpleValue
	Related Tags

	8.2� Using Mobile Context Information in XML
	8.3� Using Mobile Context Information from HTTP Headers
	8.3.1� Encoding and Escaping Locale String from Request
	8.3.1.1� User Location Context
	8.3.1.2� Service Context
	8.3.1.3� Module Context
	8.3.1.4� HelloUserMobileScript.xml
	8.3.1.5� HelloUserMobileScriptHTTP.jsp

	Part III� Oracle9iAS Wireless Platform and Services
	9 Mobile Service Developer’s Tools
	9.1� Mobile Studio
	9.1.1� In-house Mobile Studio
	9.1.1.1� Register with Mobile Studio
	9.1.1.2� Develop HelloWorld Application
	9.1.1.3� Test and Debug HelloWorld Application
	9.1.1.4� Deploy the HelloWorld Application

	9.1.2� Oracle Online Mobile Studio

	9.2� Oracle9iAS Wireless SDK
	9.2.1� Overview
	9.2.2� Installation
	9.2.3� Structure
	9.2.4� Configuration
	9.2.4.1� SDK Transcoder
	9.2.4.2� Properties Files

	9.2.5� SDK Messaging
	9.2.5.1� Prerequisites
	9.2.5.2� Configuration Parameters
	9.2.5.3� Push and PushLite

	9.2.6� Device Description
	9.2.6.1� Attributes
	9.2.6.2� Example
	9.2.6.3� Subelements:

	9.2.7� Deploy the HelloWorld Application
	9.2.8� Device Detection
	9.2.9� Default Main Wireless Application

	9.3� Overview of JDeveloper with Oracle9iAS Wireless
	9.3.1� JDeveloper and Oracle9iAS Wireless SDK
	9.3.2� The Addin and the Wizards
	9.3.3� Instructions to use the Addin and Wizards
	9.3.3.1� Installation Steps

	9.3.4� Running Instructions

	9.4� Third-party Mobile Simulators
	9.4.1� Phones
	9.4.1.1� Openwave SDK 3.2
	9.4.1.2� Openwave SDK 4.1 and 5.0
	9.4.1.3� Nokia Mobile Internet Toolkit
	9.4.1.4� Ericsson’s WapIDE 3.1.1 SDK
	9.4.1.5� Yospace Simulator

	9.4.2� PDA
	9.4.2.1� Palm OS Simulator
	9.4.2.2� PocketPC SDK

	9.4.3� Voice
	9.4.3.1� IBM Voice Server SDK
	9.4.3.2� VoiceGenie

	9.5� Deploying Your Applications

	10 Core Technologies
	10.1� Oracle9iAS Wireless Components and Process Architecture
	10.1.1� Core Platform Architecture
	10.1.2� Core Process Architecture
	10.1.2.1� Key Execution Flows
	10.1.2.2� Default Configuration
	10.1.2.3� Dependency

	10.2� Integration with other Components
	10.2.1� Scenario 1: User Authentication by Oracle9iAS Wireless (device portal)
	10.2.2� Scenario 2: User Authentication by an External Application
	10.2.3� Scenario 3: User Authentication by mod_osso
	10.2.4� Scenario 4: Voice based authentication
	10.2.5� Global Logout
	10.2.5.1� Scenario 1: Logout from Oracle9iAS Wireless
	10.2.5.2� Scenario 2: Logout Link
	10.2.5.3� Scenario 3: Logout from Web-based Oracle9iAS application

	10.2.6� Oracle9iAS Wireless-OID Integration
	10.2.7� Oracle9iAS Wireless Repository Synchronization after User Authentication
	10.2.8� PL/SQL based asynchronous synchronization
	10.2.9� Oracle9iAS Wireless Programmatic Model API Interface
	10.2.10� Oracle9iAS Wireless User Management Integrated with DAS
	10.2.11� WebCache Integration
	10.2.11.1� How Does this Work?
	10.2.11.2� A Cache Miss Scenario
	10.2.11.3� A Cache Hit Scenario
	10.2.11.4� Configuration
	10.2.11.4.1� Enabling Caching for the Site
	10.2.11.4.2� Cache-enabling a Service
	10.2.11.4.3� Invalidating Cache Content

	10.2.11.5� Administration
	10.2.11.6� Building a cacheable service
	10.2.11.7� Dynamic specification of page invalidation
	10.2.11.8� Mobile XML markup
	10.2.11.9� ESI headers

	10.2.12� Oracle Portal and Oracle9iAS Wireless
	10.2.13� Oracle Portal as a Wireless Service
	10.2.14� Developing Wireless Portlets
	10.2.15� OraclePortal, Oracle9iAS Wireless and Single SignOn (SSO)
	10.2.16� Portlets for Services Deployed on Wireless Server
	10.2.16.1� Webtool and Customization as Portal Providers

	10.3� Wireless Services
	10.3.1� Wireless Services Overview
	10.3.1.1� MasterService
	10.3.1.2� Link
	10.3.1.3� Module
	10.3.1.4� Folder
	10.3.1.5� ExternalLink

	10.3.2� Access Control

	10.4� Device and Network Adaptation
	10.4.1� Logical Device
	10.4.2� Device Detection
	10.4.3� Image Support
	10.4.4� Transformer
	10.4.4.1� Java Transformers

	10.4.5� XSLT Transformers
	10.4.5.1� Creating XSL Transformer
	10.4.5.2� Transformer Version

	10.5� Asynchronous Server
	10.5.1� Asynchronous Server Architecture
	10.5.2� Key Technical Challenges
	10.5.2.1� Multiple transport protocol support
	10.5.2.2� The asynchronous nature of messaging protocols
	10.5.2.3� Supporting Sessions
	10.5.2.4� User Navigation
	10.5.2.5� Naming/Addressing an Application

	10.5.3� Technical Solutions and Features
	10.5.3.1� Multiple transport protocol support
	10.5.3.2� The asynchronous nature of messaging protocols
	10.5.3.3� Supporting Sessions
	10.5.3.4� User Navigation
	10.5.3.5� Naming/Addressing an Application
	10.5.3.6� ASK Request Authorization
	10.5.3.7� User interface and navigation commands
	10.5.3.7.1� System Commands
	10.5.3.7.2� Service invocation commands

	10.5.4� Examples on Service Invocation
	10.5.4.1� Invoke by Service Short Name
	10.5.4.2� Invoke by service associated device address
	10.5.4.3� Menu Capability
	10.5.4.4� Form Capability
	10.5.4.5� Current Menu State
	10.5.4.6� Current Form State
	10.5.4.7� Multiple commands in one message
	10.5.4.8� Parameter separator

	10.5.5� Writing Asynchronous Applications
	10.5.5.1� ASK enabling MobileXML Application

	10.6� Runtime and Data Model APIs
	10.6.1� Oracle9iAS Wireless Runtime
	10.6.1.1� Session Management
	10.6.1.2� Virtual User Concept
	10.6.1.3� Runtime API
	10.6.1.4� Hooks
	10.6.1.5� Runtime Objects
	10.6.1.6� Request
	10.6.1.7� Response
	10.6.1.8� Session
	10.6.1.9� ServiceContext
	10.6.1.10� ManagedContext
	10.6.1.11� RequestFactory
	10.6.1.12� SessionHolder
	10.6.1.13� Case 1: Application of the RequestFactory Pattern in the HTTP Servlet
	10.6.1.14� Case 2: Application of the RequestFactory Pattern in the Runtime Agent
	10.6.1.15� Event, Listener
	10.6.1.16� Implementing the RequestListener Interface
	10.6.1.17� Implementing the ResponseListener Interface
	10.6.1.18� Implementing the SessionListener Interface
	10.6.1.19� Guidelines
	10.6.1.20� Hooks
	10.6.1.21� The ListenerRegistrationHook
	10.6.1.22� The SessionIDHook
	10.6.1.23� DeviceIdentificationHook
	10.6.1.24� AuthenticationHook
	10.6.1.25� SignOnPagesHook
	10.6.1.26� MobileIDHook
	10.6.1.27� AuthorizationHook
	10.6.1.28� CallerLocationHook
	10.6.1.29� Service
	10.6.1.30� PreProcessorHook, Transformer, and PostPorcessorHook

	10.6.2� Reference Model
	10.6.2.1� Case: A Request Involving Session Establishment and Authentication
	10.6.2.2� System Parameters
	10.6.2.3� Static System Parameters
	10.6.2.4� Derived System Parameters
	10.6.2.5� General Guidelines for User-Defined Listeners and Hook Implementation
	10.6.2.6� Implementing the Respective Interface
	10.6.2.7� Compile Your Java Source
	10.6.2.8� Plug in Your Implementation through Property File
	10.6.2.9� Tips and Hints
	10.6.2.10� Concurrent Requests
	10.6.2.11� Recursive Instances of Requests
	10.6.2.12� Query Parameters
	10.6.2.13� Runtime Object References
	10.6.2.14� Thread-Safe and High-Concurrency
	10.6.2.15� User-Defined Hooks Examples
	10.6.2.16� Example 1
	10.6.2.16.1� Changing the folder look and feel
	10.6.2.16.2� Configuration parameters
	10.6.2.16.3� FolderRendererService

	10.6.2.17� FolderRendererBean
	10.6.2.18� FolderRendererHook
	10.6.2.19� FolderRendererPolicy
	10.6.2.19.1� Folder Setup Actions

	10.6.2.20� Example 2
	10.6.2.21� Register the Authentication Hook
	10.6.2.22� Event Listener Example
	10.6.2.23� Implementing the RequestListener Interface
	10.6.2.24� Register the Request Listener
	10.6.2.25� Register the RequestListener with Each Request Object
	10.6.2.26� Register the Listener Registration Hook
	10.6.2.27� Modify the Event Mask

	10.6.3� Repository Data Model API
	10.6.3.1� Data Model Cache and Synchronization
	10.6.3.2� Interfaces and Interface Hierarchy
	10.6.3.3� MetaLocator
	10.6.3.4� ModelFactory
	10.6.3.5� ModelServices
	10.6.3.6� ModelObject
	10.6.3.7� Adapter
	10.6.3.8� Device
	10.6.3.9� DeviceAddress
	10.6.3.10� Group
	10.6.3.11� LocationMark
	10.6.3.12� PresetCategory
	10.6.3.13� PresetDescriptor
	10.6.3.14� Presets
	10.6.3.15� Profile
	10.6.3.16� Service
	10.6.3.17� Transformer
	10.6.3.18� User

	10.6.4� Sample Code that Uses the Data Model API
	10.6.4.1� Sample Code

	10.7� Adapters
	10.7.1� HTTP Adapter
	10.7.2� Other Adapters
	10.7.2.1� OC4J
	10.7.2.2� Web Integration
	10.7.2.3� SQL Adapter

	10.7.3� Creating Your Own Adapter

	11 Advanced Customization
	11.1� Overview of Advanced Customization
	11.2� Presets
	11.2.1� Presets Concept and Architecture
	11.2.2� Sample Applications
	11.2.2.1� Example 1: Adding attributes to the User schema.
	11.2.2.2� Example 2: Adding a unique Presets relation for the User
	11.2.2.3� Example 3: Adding a unique Presets relation for Users’ Profiles
	11.2.2.4� Example 4: Selecting the Presets relation under the current Profile.
	11.2.2.5� Example 5: Creating Presets without given name.

	11.2.3� Regular Expressions Syntax for the Presets Attribute Formats

	11.3� Location Marks
	11.4� User Device Management
	11.5� Multiple Customization Profiles
	11.5.1� Concepts
	11.5.2� Sample Applications

	11.6� User and Group Management
	11.7� Service Management
	11.8� Rebranding the Customization Portal
	11.8.1� Overview
	11.8.2� Page Naming Conventions
	11.8.3� JavaServer Pages Structure
	11.8.4� Directory Structure
	11.8.5� Customization Levels
	11.8.5.1� Appearance Customization
	11.8.5.2� Colors and Fonts
	11.8.5.3� JSP Modification

	11.8.6� Customization Components
	11.8.6.1� Flow Example - Customizing a Services
	11.8.6.2� Creating New JSP

	11.8.7� Setting the Multi-Byte Encoding for the Customization Portal

	11.9� Using the Customization Portal API
	11.9.1� Overview
	11.9.2� Customization Portal API Classes
	11.9.2.1� Login and Initialize Session - RequestController
	11.9.2.2� User Creation and Modification - UserController
	11.9.2.3� Object Customization—ServiceController
	11.9.2.4� Alert Subscription Customization—Alert Subscription Controller
	11.9.2.5� Device Customization—Device Controller
	11.9.2.6� Alert Customization—AlertController (deprecated)
	11.9.2.7� Locationmark Creation and Modification—LocationMarkController

	11.9.3� Session Flow
	11.9.3.1� Sample Code
	11.9.3.2� Authenticate User
	11.9.3.3� Initialize Session
	11.9.3.4� Retrieve Objects
	11.9.3.5� Display/Edit Objects
	11.9.3.6� Cleanup Request

	12 Alert Engine and Data Feeds
	12.1� Alert Engine
	12.1.1� Alert Engine Architecture
	12.1.2� Creating a Master Alert Service
	12.1.2.1� Defining a Master Service
	12.1.2.2� Extending the Alert Engine’s Subscriber Filtering Capability
	12.1.2.3� Using the Service Designer to Create Master Alert Service
	12.1.2.4� Using the Java API to Create a Master Alert Service
	12.1.2.5� Publishing and Organizing Alert Services

	12.1.3� Using the Content Manager to Create and Manager an Alert Service
	12.1.3.1� Use Java API to Create and Manage Alert Service

	12.1.4� Managing Alert Subscriptions
	12.1.5� Managing Alert Subscription Using Customization
	12.1.6� Manage Alert Subscription Using Java API
	12.1.7� Creating a Device Address for Alert
	12.1.8� Starting Alert Engine Process
	12.1.9� Notifying the Alert Engine for Content Arrival
	12.1.9.1� Data Feeder Module
	12.1.9.2� Alert Engine Java API

	12.2� Data Feeders
	12.2.1� Building a Data Feeder
	12.2.2� Creating a Passthrough DataFeeder
	12.2.3� Sample Applications
	12.2.3.1� Sample Application: Downloading Stock Quotes in XML
	12.2.3.2� Sample Application: Downloading Stock Quotes in CSV Format
	12.2.3.3� Adding Input Parameter Values to the Feed
	12.2.3.4� Retrieving Downloaded Values
	12.2.3.5� Starting the Data Feeder Process
	12.2.3.6� Feed Parameter External Names
	12.2.3.7� Feed Scheduling
	12.2.3.8� XML Data Feeds

	13 Push Service and SMS
	13.1� Push Service and SMS Overview
	13.2� Push Services API
	13.2.1� Building a Push Application
	13.2.1.1� PushLite
	13.2.1.2� Push
	13.2.1.3� Example: Send a message to multiple recipients
	13.2.1.4� Example: Sending an Oracle9iAS Wireless XML Message using PushLite
	13.2.1.5� Example: OTA: Sending a Ringtone to two cell phones
	13.2.1.6� Using Push API - WSDL

	13.3� Oracle9iAS Wireless Messaging System
	13.3.1� Transport Runtime Processes
	13.3.1.1� Push SOAP Web Service
	13.3.1.2� Messaging Servers
	13.3.1.3� Driver and Driver Instance

	13.3.2� Configuration
	13.3.2.1� Messaging Server
	13.3.2.2� Driver
	13.3.2.3� Driver Instances

	13.3.3� Transport API
	13.3.3.1� Destination Analysis
	13.3.3.2� Message Routing
	13.3.3.3� Providing hints to facilitate transport internal processing
	13.3.3.4� Key interfaces/classes
	13.3.3.5� Hooks
	13.3.3.5.1� Named Hooks
	13.3.3.5.2� General Hooks

	13.3.4� OTA
	13.3.5� Sample programs
	13.3.6� Driver Interface APIs
	13.3.6.1� Class oracle.panama.messaging.transport.TransportLocator
	13.3.6.2� Interface oracle.panama.messaging.transport.Driver
	13.3.6.2.1� The init() and destroy() methods
	13.3.6.2.2� The send() method
	13.3.6.2.3� The receive() method
	13.3.6.2.4� The getStatus() method
	13.3.6.2.5� The queryTracking() and queryNotifying() methods

	13.3.6.3� Interface oracle.panama.messaging.transport.DriverManager
	13.3.6.3.1� The getMessageListener() and getStatusListener() methods

	13.3.6.4� Interface oracle.panama.messaging.transport.GSMSmartMSGEncoder
	13.3.6.4.1� The encode() method

	13.3.6.5� Interface oracle.panama.messaging.transport.MessageListener and StatusListener
	13.3.6.6� Class oracle.panama.messaging.common.Message
	13.3.6.7� Class oracle.panama.messaging.common.ContentTypes
	13.3.6.8� Properties of the driver
	13.3.6.9� Custom properties for a driver
	13.3.6.10� Example: A Sample Driver

	13.4� Oracle9iAS Wireless Pre-built Drivers
	13.4.1� PushClient Driver
	13.4.1.1� Class name
	13.4.1.2� Configuration

	13.4.2� Email Driver
	13.4.2.1� Classname
	13.4.2.2� Configuration

	13.4.3� Voice Driver
	13.4.3.1� Classname
	13.4.3.2� Configuration

	13.4.4� UCP Driver
	13.4.4.1� Classname
	13.4.4.2� Configuration

	13.4.5� SMPP Driver
	13.4.5.1� Classname
	13.4.5.2� Configuration

	13.4.6� Fax Driver (RightFax)
	13.4.6.1� Classname
	13.4.6.2� Configuration

	14 Transcoding
	14.1� Transcoding Overview
	14.2� Web Content Adaptation
	14.2.1� WIDL Services
	14.2.2� WebIntegration Beans
	14.2.3� Using WebIntegration Beans
	14.2.3.1� WebBeanContextDelegator
	14.2.3.2� WebBeanDelegator
	14.2.3.3� Walkthrough: Creating an WIDL Using Web Integration Developer.
	14.2.3.4� Start the Web Integration Developer
	14.2.3.5� Open the Source Page
	14.2.3.6� Generate a WIDL File
	14.2.3.7� Edit the Input Binding of the WIDL File
	14.2.3.8� Edit the Output Binding of the WIDL File
	14.2.3.9� Test the WIDL File
	14.2.3.10� Publish the WIDL Interface to the Web Integration Server
	14.2.3.11� Walkthrough: Developing an Oracle9iAS Wireless Service with Web Integration Service
	14.2.3.12� Create the JSP Application
	14.2.3.13� Creating a Oracle9iAS Wireless StockQuotes Service
	14.2.3.14� Creating an HTTPAdapter Service
	14.2.3.15� Making Stock Quotes Service Available to a Group
	14.2.3.16� Testing Stock Quotes
	14.2.3.17� Testing the Service on a Browser
	14.2.3.18� Testing Stock Quotes on a Phone Simulator

	14.3� WML Translator
	14.3.1� Deploying and Configuring WML Translator
	14.3.2� Using the WML Translator

	15 Using Location Services
	15.1� Introduction to Location Services
	15.1.1� Getting Started
	15.1.2� Location Services
	15.1.2.1� SpatialManager Class

	15.1.3� Service Providers
	15.1.3.1� Provider Selection
	15.1.3.1.1� Configuring Provider Information
	15.1.3.1.2� Provider Configuration
	15.1.3.1.3� Country Name Alias Configuration
	15.1.3.1.4� Address Format (International) Configuration

	15.1.3.2� Provider Selection Logging

	15.1.4� Geocoding Services
	15.1.4.1� Geocoding API
	15.1.4.1.1� Point Class
	15.1.4.1.2� Location Class

	15.1.4.2� Geocoder Interface

	15.1.5� Location Marks
	15.1.6� LOCATIONMARK Table
	15.1.7� Mapping Services
	15.1.8� Routing Services
	15.1.8.1� Routing Settings
	15.1.8.2� Routing Results
	15.1.8.3� Map Options and Transformation Requirements
	15.1.8.4� Support for Multiple Languages
	15.1.8.5� Routing API
	15.1.8.5.1� Router Interface
	15.1.8.5.2� RoutingSettings Class
	15.1.8.5.3� RoutingResult Class
	15.1.8.5.4� Maneuver Class

	15.1.9� Business Directory (Yellow Page) Services
	15.1.9.1� Different Approaches Among Yellow Pages Providers
	15.1.9.2� Business Directory Category Configuration
	15.1.9.3� Business Directories (Yellow Pages) API
	15.1.9.3.1� YPFinder Interface
	15.1.9.3.2� YPCategory Class
	15.1.9.3.3� YPBusiness Class

	15.1.10� Traffic Services
	15.1.10.1� Traffic Report Caching
	15.1.10.2� Traffic XML Requests and Responses
	15.1.10.3� Traffic Java API
	15.1.10.3.1� CityInfo Class
	15.1.10.3.2� City Interface
	15.1.10.3.3� RouteInfo Class
	15.1.10.3.4� TrafficRoute Interface
	15.1.10.3.5� TrafficReport Interface
	15.1.10.3.6� TrafficIncident Interface
	15.1.10.3.7� TrafficReporter Interface
	15.1.10.3.8� TrafficCityManager Interface

	15.1.10.4� Traffic Service Configuration
	15.1.10.4.1� Adding a Traffic Provider
	15.1.10.4.2� Adding a Supported City for a Provider

	15.2� Developing Location-Based Applications
	15.2.1� Creating Java Server Pages
	15.2.1.1� address
	15.2.1.2� businesses
	15.2.1.3� category
	15.2.1.4� iterateBusinesses
	15.2.1.5� iterateCategoriesMatchingKeyword
	15.2.1.6� iterateChildCategories
	15.2.1.7� iterateManeuvers
	15.2.1.8� map
	15.2.1.9� route
	15.2.1.10� JSP Examples for Location Services

	15.2.2� Creating a Location-Based Application Adapter
	15.2.2.1� Geocoding
	15.2.2.1.1� International Addresses

	15.2.2.2� Location Marks
	15.2.2.3� Routing
	15.2.2.4� Mapping
	15.2.2.5� Business Directory (YP)
	15.2.2.6� Traffic

	15.3� Enabling Mobile Positioning
	15.3.1� Manual Positioning
	15.3.1.1� Enabling Manual Positioning

	15.3.2� Automatic Positioning
	15.3.2.1� Location Cache
	15.3.2.2� Positioning Quality of Service
	15.3.2.3� Specifying Positioning Providers
	15.3.2.4� Granting and Revoking Positioning Rights
	15.3.2.5� Mobile Communities
	15.3.2.6� Privacy Directives and Enabling or Disabling Automatic Positioning
	15.3.2.7� Mobile Positioning API
	15.3.2.8� Privacy API
	15.3.2.8.1� LocationPrivacyManager Class
	15.3.2.8.2� CommunityManager Class
	15.3.2.8.3� LocationPrivacyAuth Interface
	15.3.2.8.4� Community Interface
	15.3.2.8.5� AuthPeriod Class
	15.3.2.8.6� LocationPrivacyException Class
	15.3.2.8.7� Privacy API Examples

	15.4� Using the Region Modeling Tool
	15.4.1� Service and Folder Visibility Using Region Modeling
	15.4.2� Folders and Hierarchies of Regions
	15.4.3� Region Modeling Tool Web Interface
	15.4.4� Associating a Region with a Service
	15.4.5� Loading and Updating Region Data
	15.4.5.1� Tables for Region Data
	15.4.5.2� Inserting Data into Region Tables

	15.4.6� Region Modeling API

	16 Offline Management
	16.1� Oracle9i Lite: The Internet Platform for Mobile Computing

	17 Mobile Studio
	17.1� Oracle9iAS Wireless Mobile Studio Overview
	17.2� Getting Started
	17.2.1� Login and Registration

	17.3� Studio Configuration
	17.3.1� Sample Applications Configuration
	17.3.1.1� login.jsp
	17.3.1.2� loginPortlet.jsp
	17.3.1.3� pageMenu.jsp
	17.3.1.4� pagePortlets.jsp
	17.3.1.5� home.jsp
	17.3.1.6� createService.jsp
	17.3.1.7� editService.jsp
	17.3.1.8� deployService.jsp
	17.3.1.9� deployedServiceList.jsp
	17.3.1.10� profile.jsp
	17.3.1.11� domains.jsp
	17.3.1.12� registraton.jsp
	17.3.1.13� newFolder.jsp
	17.3.1.14� editFolder.jsp
	17.3.1.15� moveOrCopy.jsp
	17.3.1.16� sendMessage.jsp
	17.3.1.17� viewLog.jsp
	17.3.1.18� quicklink.jsp
	17.3.1.19� sampleSource.jsp
	17.3.1.20� pageHeader.jsp
	17.3.1.21� pageFooter.jsp

	17.4� Administration
	17.4.1� Login
	17.4.2� Site
	17.4.3� Configuration
	17.4.4� Locales
	17.4.5� Sample Services
	17.4.6� Resources

	17.5� Advanced Customization (Studio Tag Library)
	17.5.1� Resources
	17.5.2� Tag Library
	<om:is />
	<om:not>
	<om:get />
	<om:bean />
	<om:test />
	<om:equals />
	<om:indexIs />
	<om:indexEquals />
	<om:index />
	<om:res />
	<om:enc />
	<om:exist />
	<om:notexist />
	<om:if />
	<om:elseif>
	<om:else />
	<om:then />
	<om:iterate />
	<om:switch />
	<om:case />
	<om:default />

	Part IV� Oracle9iAS Wireless Modules
	18 Mobile PIM and eMail
	18.1� Mobile PIM and eMail Overview
	18.1.1� Mobile Email
	18.1.1.1� Configuring an Email Service
	18.1.1.2� Linking to a Email Service

	18.1.2� Mobile Directory
	18.1.2.1� Configuring the Mobile Directory
	18.1.2.2� Linking to the Directory Module

	18.1.3� Mobile Address Book
	18.1.3.1� Configuring the Mobile Address Book
	18.1.3.2� Linking to the Mobile Address Book

	18.1.4� Calendar
	18.1.4.1� Configuring the Calendar Module
	18.1.4.2� Linking to the Calendar Module

	18.1.5� Instant Messaging
	18.1.5.1� Configuring the Instant Messaging Module
	18.1.5.2� Linking to the Instant Messaging Module

	18.1.6� Short Messaging
	18.1.6.1� Configuring the Short Messaging Module
	18.1.6.2� Linking to the Short Messaging Module

	18.1.7� Document Management
	18.1.7.1� Configuring the iFS Module
	18.1.7.2� Linking to the iFS Module

	18.1.8� Fax Module
	18.1.8.1� Linking to the Fax Module

	18.1.9� Tasks
	18.1.9.1� Linking to the Task Module

	19 m-Commerce
	19.1� m-Commerce Service
	19.2� m-Commerce APIs
	19.2.1� Before You Begin

	19.3� Mobile Wallet (m-Wallet)
	19.3.1� Configuring the m-Wallet
	19.3.1.1� Configuring the OC4J Application Server for HTTPS
	19.3.1.2� Configuring the SQL Tables
	19.3.1.3� Configuring the Security Server
	19.3.1.4� Java Configuration
	19.3.1.5� Scripts for Generating and Installing the Security Keys
	19.3.1.6� Configuring modules.properties
	19.3.1.7� Service Input Parameters

	19.3.2� Linking to the M-Wallet
	19.3.3� Output Parameters for the m-Wallet
	19.3.3.1� Extending the m-Wallet Structure

	19.4� Translator
	19.4.1� Configuring the Translator Module
	19.4.2� Linking to the Translator Module

	19.5� iPayment
	19.5.1� Configuring the iPayment Service Module
	19.5.1.1� Service Configuration Parameters
	19.5.1.2� Capturing Transactions

	19.6� Formfiller
	19.6.1� Configuring the Formfiller Module
	19.6.1.1� Installing Formfiller
	19.6.1.2� Configuring the Guessing Heuristics
	19.6.1.3� Setting Up the Guessing Heuristics
	19.6.1.4� Using the Formfiller Administration
	19.6.1.5� Configuring the Input Parameters for the Formfiller Module
	19.6.1.6� Linking to the Formfiller Module
	19.6.1.7� Output Parameters
	19.6.1.8� Examples

	19.7� Creating a Billing Mechanism

	20 Location-Based Module
	20.1� Location Modules
	20.1.1� Location Picker
	20.1.2� Configuring the Location Picker Module
	20.1.2.1� Configuring the Input Parameters of the Location Picker Module
	20.1.2.2� Linking to the Location Picker Module

	20.2� Driving Directions
	20.2.1� Configuring the Driving Directions
	20.2.1.1� Input Parameters
	20.2.1.2� Linking to the Driving Directions Module

	20.3� The Business Directory Module
	20.3.1� Configuring the Business Directory Input Parameter
	20.3.1.1� Configuring the Input Parameters
	20.3.1.2� Linking to the Business Directory

	20.4� Maps Module
	20.4.1� Configuring the Maps Input Parameters
	20.4.2� Configuring the Input Parameters
	20.4.3� Linking to the Maps Module

	20.5� Extending the Mobile Modules
	20.5.1� The oracle.panama.model.LocationMark class
	20.5.2� The oracle.panama.spatial.geocoder.Geocoder class
	20.5.3� The oracle.panama.module.location.LocationHistoryManager class
	20.5.4� The oracle.panama.spatial.router.Router class
	20.5.5� The oracle.panama.spatial.mapper.Mapper class
	20.5.5.1� The oracle.panama.spatial.yp.YPFinder class
	20.5.5.2� Location Mark API Examples
	20.5.5.3� Driving Directions API Examples
	20.5.5.4� Maps API Examples
	20.5.5.5� YPFinder API Examples

	Index

