
Oracle9iAS TopLink

CMP for Users of BEA WebLogic Server Guide

Release 2 (9.0.3)

August 2002

Part No. B10065-01

WLGuide.book Page i Friday, September 6, 2002 9:56 AM

Oracle 9iAS TopLink CMP for Users of BEA WebLogic Server Guide, Release 2 (9.0.3)

Part No. B10065-01

Copyright © 2002, Oracle Corporation. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and OracleMetaLink, Oracle Store, Oracle9i, Oracle9iAS Discoverer,
SQL*Plus, and PL/SQL are trademarks or registered trademarks of Oracle Corporation. Other names
may be trademarks of their respective owners.

WLGuide.book Page ii Friday, September 6, 2002 9:56 AM

iii

Contents

Send Us Your Comments ... ix

Preface.. xi

1 Introduction

TopLink Container-Managed Persistence.. 1-1
TopLink for Java.. 1-2
TopLink Mapping Workbench ... 1-2
Understanding container-managed persistence ... 1-2

Enterprise JavaBeans (EJBs) .. 1-3
EJB 2.0 Support .. 1-3
Terminology and definitions ... 1-3

Java objects and Entity Beans.. 1-5

2 Mapping Entity Beans

Using TopLink Mapping Workbench ... 2-1
Mappings.. 2-1

Creating mappings ... 2-2
Direct mappings ... 2-2
Relationship mappings .. 2-3

Mappings between entity beans.. 2-3
Mappings between entity beans and Java objects .. 2-4
One-to-one mappings ... 2-5
One-to-many mappings ... 2-5

WLGuide.book Page iii Friday, September 6, 2002 9:56 AM

iv

Many-to-many mappings... 2-6
Aggregate object mappings ... 2-6
Aggregate collection mappings... 2-6

Sequencing with Entity Beans ... 2-7
Inheritance.. 2-8
Indirection .. 2-8

3 Configuring TopLink Container-Managed Persistence

Software requirements... 3-1
Configuring TopLink CMP ... 3-2

Testing TopLink Container-Managed Persistence with entity beans 3-3
Running the BEA WebLogic Server with TopLink.. 3-3

Configuration troubleshooting .. 3-5

4 EJB Entity Bean Deployment

Overview of deployment... 4-1
Understanding Deployment ... 4-1
Requirements before deployment .. 4-2
Steps in the deployment process .. 4-2

Configuring entity bean deployment descriptors .. 4-3
Configuring the ejb-jar.xml file... 4-3

Updating the ejb-jar.xml file .. 4-4
Configuring the weblogic-ejb-jar.xml file ... 4-4

Persistence descriptor ... 4-4
Enabling Call by Reference .. 4-6
Unsupported tags in the weblogic-ejb-jar.xml file ... 4-6

Configuring the toplink-ejb-jar.xml file... 4-7
Defining required project options: the Session Section.. 4-7

Generating the run-time classes... 4-9
Running the Weblogic EJB Compiler... 4-10

Installing the beans in the server... 4-11
Connection pools and data sources.. 4-11

Creating JDBC connection pools ... 4-11
Creating JTS and non-JTS data sources .. 4-11

Using the defined connection pool .. 4-11

WLGuide.book Page iv Friday, September 6, 2002 9:56 AM

v

Using the defined data source .. 4-12
Problems with deployment... 4-12

Message Logging .. 4-12
Hot deployment of EJBs .. 4-13

Running an EJB Client ... 4-14

5 Defining and Executing Finders

Defining finders in TopLink .. 5-1
ejb-jar.xml Finder Options... 5-1

Query Section - XML Elements ... 5-2
Choosing the best finder type for your query... 5-3

Using EJBQL.. 5-3
Creating an EJBQL finder... 5-4

Using the TopLink Expression framework... 5-4
Creating an Expression Finder .. 5-5
Building an expression ... 5-6
Creating amendment methods for Expression finders.. 5-7

Using Dynamic finders .. 5-7
Creating a Dynamic finder... 5-8

Using findAll... 5-9
Using findByPrimaryKey .. 5-9
Using redirect finders .. 5-9
Using SQL.. 5-11

Creating an SQL finder... 5-12
Using ejbSelect .. 5-12

Understanding select methods.. 5-13
Advanced finder options... 5-14

Caching options .. 5-14
Disabling caching of returned finder results .. 5-15
Refreshing finder results ... 5-15
Managing large result sets .. 5-16

Building the query... 5-16
Executing the finder from the client in EJB 1.1 ... 5-16
Executing the finder from the client in EJB 2.0 ... 5-17

WLGuide.book Page v Friday, September 6, 2002 9:56 AM

vi

6 Run-time Considerations

Transaction support .. 6-1
TopLink within the BEA WebLogic Server... 6-1
When updates occur... 6-2
Valid transactional states... 6-2

Maintaining bi-directional relationships... 6-2
One-to-Many relationship ... 6-3

Managing dependent objects (EJB 1.1) ... 6-3
Serializing Java objects between client and server... 6-4

Merging changes to regular Java objects.. 6-4
Managing collections of EJBObjects (EJB 1.1) .. 6-6

7 Customization

Customizing TopLink descriptors and mappings .. 7-1
Creating projects and TopLink descriptors in Java ... 7-2
Customizing TopLink descriptors with amendment methods.. 7-3

Working with TopLink ServerSession and Login .. 7-3
Understanding ServerSession ... 7-3
Understanding DatabaseLogin... 7-4
Customizing ServerSession and DatabaseLogin.. 7-4
Additional configuration changes.. 7-4

Using the DeploymentCustomization interface.. 7-5
Using a BEA WebLogic Startup class ... 7-6

8 Clustering

Terminology ... 8-1
TopLink in a Cluster ... 8-2
Relationships ... 8-2

Static partitioning ... 8-3
Pinning ... 8-3

Using User Transactions... 8-3
Using session beans.. 8-4

Caching issues ... 8-4
Explicit query refreshes ... 8-5

WLGuide.book Page vi Friday, September 6, 2002 9:56 AM

vii

Refresh Policy... 8-5
Cache Usage ... 8-5

Cache Synchronization .. 8-5
Remote Merge.. 8-6
Synchronous Mode ... 8-6
Asynchronous Mode... 8-7
Configuring Cache Synchronization .. 8-7

Cache Locking... 8-8
Using cache locking .. 8-8

9 The EJB 2.0 Single Bean Example Application

Running the Single Bean example .. 9-2
Configuring the example database .. 9-2

Understanding the Single Bean example... 9-2
Single Bean example: packages, classes, and file ... 9-3
The Object model.. 9-4
Database schema... 9-5

Entity Development ... 9-5
Create the interfaces ... 9-6
Create and implement the bean classes... 9-6
Create the deployment descriptors.. 9-6

ejb-jar.xml ... 9-7
weblogic-ejb-jar.xml.. 9-8
toplink-ejb-jar.xml ... 9-8

Map the entities to the database ... 9-9
Creating a TopLink project .. 9-9

Generate the deployable JAR file ... 9-11
Using the Build Script... 9-12

Deploy the JAR file... 9-12

A EJB Architectures Summary

Introduction to EJB architectures... A-1
Remote Entities ... A-2
Remote Session beans .. A-3
Session Façade - Combining Session and Entity beans... A-5

WLGuide.book Page vii Friday, September 6, 2002 9:56 AM

viii

Thin Client ... A-6
Dependent Lightweight Objects.. A-7

Local Entities ... A-7
Dependent Value Objects .. A-8

Dependent Java Objects .. A-8
Dependent Java Objects ... A-8

Conclusion.. A-9

B The toplink-ejb-jar DTD

DTD listing .. B-1

Index

WLGuide.book Page viii Friday, September 6, 2002 9:56 AM

ix

Send Us Your Comments

Oracle 9iAS TopLink CMP for Users of BEA WebLogic Server Guide, Release 2 (9.0.3)

Part No. B10065-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

� Did you find any errors?
� Is the information clearly presented?
� Do you need more information? If so, where?
� Are the examples correct? Do you need more examples?
� What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

� Electronic mail: iasdocs_us@oracle.com
� FAX: 650-506-7407 Attn: Oracle9i Application Server Documentation Manager
� Postal service:

Oracle Corporation
Oracle9i Application Server Documentation
500 Oracle Parkway, M/S 2op3
Redwood Shores, CA 94065
USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

 If you have problems with the software, please contact your local Oracle Support Services.

WLGuide.book Page ix Friday, September 6, 2002 9:56 AM

x

WLGuide.book Page x Friday, September 6, 2002 9:56 AM

xi

Preface

This section introduces the information you need to get the most out of the
documentation that accompanies your software. This preface contains these topics:

� Intended Audience

� Documentation Accessibility

� Structure

� Related Documents

� Conventions

Intended Audience
This document is intended for application developers who perform the following
tasks:

� Application design and development

� Application testing and benchmarking

� Application integration

This document assumes that you are familiar with the concepts of object-oriented
programming, the Enterprise JavaBeans (EJB) specification, and with your own
particular Java development environment.

The document also assumes that you are familiar with your particular operating
system (Windows, UNIX, or other). The general operation of any operating system
is described in the user documentation for that system, and is not repeated in this
manual.

WLGuide.book Page xi Friday, September 6, 2002 9:56 AM

xii

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle Corporation is actively engaged with other
market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional information,
visit the Oracle Accessibility Program Web site at
http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations
that Oracle Corporation does not own or control. Oracle Corporation neither
evaluates nor makes any representations regarding the accessibility of these Web
sites.

Structure
This document contains:

Chapter 1, "Introduction"
This chapter provides an overview of the TopLink and CMP concepts that enable
you to fully-leverage TopLink CMP.

Chapter 2, "Mapping Entity Beans"
This chapter describes how to map container-managed entity beans using the object
mapping features of TopLink for Java. Instructions and hints for using direct and
relationship mappings in an EJB context are provided, and differences between
beans and regular Java objects are outlined.

WLGuide.book Page xii Friday, September 6, 2002 9:56 AM

xiii

Chapter 3, "Configuring TopLink Container-Managed Persistence"
This chapter describes the configuration and testing of TopLink Container-Managed
Persistence.

Chapter 4, "EJB Entity Bean Deployment"
This chapter describes how to deploy beans within the application server.

Chapter 5, "Defining and Executing Finders"
This chapter describes the TopLink support for creating and customizing finders.

Chapter 6, "Run-time Considerations"
This chapter discusses some of the run-time issues associated with developing an
application that uses TopLink Container-Managed Persistence.

Chapter 7, "Customization"
This chapter describes advanced customization of mappings, logins, and other
aspects of persistence. These customizations enable you to take advantage of
advanced TopLink features, JDBC driver features, or gain “low-level” access to
some of TopLink for Java APIs that are normally masked.

Chapter 8, "Clustering"
This chapter describes the integration of multiple server instances into what can be
viewed by clients as a single server entity. This is referred to as clustering.

Chapter 9, "The EJB 2.0 Single Bean Example Application"
This chapter introduces the basic concepts that are required to build and deploy an
entity bean with TopLink. It provides an example of how TopLink CMP is used in a
simple application that combines Java server pages (JSPs) and EJBs.

Appendix A, "EJB Architectures Summary"
This appendix provides an overview of some of the basic design patterns available
when using TopLink and TopLink CMP. It briefly suggests some of the more useful
EJB designs and their suitability to specific applications.

Appendix B, "The toplink-ejb-jar DTD"
This appendix contains a listing of the toplink-ejb-jar document type
description (DTD).

WLGuide.book Page xiii Friday, September 6, 2002 9:56 AM

xiv

Related Documents
For more information, see these Oracle resources:

Oracle9iAS TopLink Getting Started
Provides installation procedures to install and configure TopLink. It also introduces
the concepts with which you should be familiar to get the most out of TopLink.

Oracle9iAS TopLink Tutorials
Provides tutorials illustrating the use of TopLink. It is written for developers who
are familiar with the object-oriented programming and Java development
environments.

Oracle9iAS TopLink Foundation Library Guide
Introduces TopLink and the concepts and techniques required to build an effective
TopLink application. It also gives a brief overview of relational databases and
describes who TopLink accesses relational databases from the object-oriented Java
domain.

Oracle9iAS TopLink Mapping Workbench Reference Guide
Includes the concepts required for using the TopLink Mapping Workbench, a
stand-alone application that creates and manages your descriptors and mappings
for a project. This document includes information on each Mapping Workbench
function and option and is written for developers who are familiar with the
object-oriented programming and Java development environments.

Oracle9iAS TopLink Container Managed Persistence for Application
Servers
Provides information on TopLink container-managed persistence (CMP) support for
application servers. Oracle provides an individual document for each application
server specifically supported by TopLink CMP.

Oracle9iAS TopLink Troubleshooting
Contains general information about TopLink’s error handling strategy, the types of
errors that can occur, and Frequently Asked Questions (FAQs). It also discusses
troubleshooting procedures and provides a list of the exceptions that can occur, the
most probable cause of the error condition, and the recommended action.

WLGuide.book Page xiv Friday, September 6, 2002 9:56 AM

xv

In North America, printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/
Customers in Europe, the Middle East, and Africa (EMEA) can purchase
documentation from

http://www.oraclebookshop.com/

Other customers can contact their Oracle representative to purchase printed
documentation.

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http://otn.oracle.com/admin/account/membership.html

If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://otn.oracle.com/docs/index.htm

Conventions

Conventions in Text
We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention Meaning Example

Italics Italic typeface indicates book titles or
emphasis.

Oracle9i Database Concepts

Ensure that the recovery catalog and target
database do not reside on the same disk.

WLGuide.book Page xv Friday, September 6, 2002 9:56 AM

xvi

Conventions in Code Examples
Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line
statements. They are displayed in a monospace (fixed-width) font and separated
from normal text as shown in this example:

SELECT username FROM dba_users WHERE username = ’MIGRATE’;

The following table describes typographic conventions used in code examples and
provides examples of their use.

lowercase
monospace
(fixed-width)
font

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Enter sqlplus to open SQL*Plus.

The password is specified in the orapwd file.

Back up the datafiles and control files in the
/disk1/oracle/dbs directory.

The department_id and location_id
columns are in the hr.departments table.

Set the QUERY_REWRITE_ENABLED
initialization parameter to true.

Connect as oe user.

The JRepUtil class implements these
methods.

lowercase
italic
monospace
(fixed-width)
font

Lowercase italic monospace font
represents placeholders or variables.

You can specify the parallel_clause.

Run Uold_release.SQL where old_
release refers to the release you installed
prior to upgrading.

Convention Meaning Example

[] Brackets enclose one or more optional
items. Do not enter the brackets.

DECIMAL (digits [, precision])

{ } Braces enclose two or more items, one of
which is required.

{ENABLE | DISABLE}

| A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

{ENABLE | DISABLE}

[COMPRESS | NOCOMPRESS]

Convention Meaning Example

WLGuide.book Page xvi Friday, September 6, 2002 9:56 AM

xvii

Conventions for Microsoft Windows Operating Systems
The following table describes conventions for Microsoft Windows operating
systems and provides examples of their use.

... Horizontal ellipsis points indicate either:

� That we have omitted parts of the
code that are not directly related to
the example

� That you can repeat a portion of the
code

CREATE TABLE ... AS subquery;

SELECT col1, col2, ... , coln FROM
employees;

 .
 .
 .

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

Other notation You must enter symbols other than
brackets, vertical bars, and ellipsis points
as shown.

 acctbal NUMBER(11,2);

 acct CONSTANT NUMBER(4) := 3;

Italics Italicized text indicates placeholders or
variables for which you must supply
particular values.

CONNECT SYSTEM/system_password

DB_NAME = database_name

Convention Meaning Example

Choose Start > How to start a program. To start the Oracle Database Configuration
Assistant, choose Start > Programs >

Case sensitivity
and file and
directory names

File and directory names are not case
sensitive. The following special characters
are not allowed: left angle bracket (<),
right angle bracket (>), colon (:), double
quotation marks ("), slash (/), pipe (|),
and dash (-). The special character
backslash (\) is treated as an element
separator, even when it appears in quotes.
If the file name begins with \\, then
Windows assumes it uses the Universal
Naming Convention.

c:\winnt"\"system32 is the same as
C:\WINNT\SYSTEM32

IMPORTANT NOTE: File names and directory names are case sensitive under UNIX.
Where the name of a file or directory is mentioned and the operating system is a
non-Windows platform, you must enter the names exactly as they appear unless instructed
otherwise.

Convention Meaning Example

WLGuide.book Page xvii Friday, September 6, 2002 9:56 AM

xviii

C:\> Represents the Windows command
prompt of the current hard disk drive.
The escape character in a command
prompt is the caret (^). Your prompt
reflects the subdirectory in which you are
working. Referred to as the command
prompt in this manual.

C:\oracle\oradata>

The backslash (\) special character is
sometimes required as an escape
character for the double quotation mark
(") special character at the Windows
command prompt. Parentheses and the
single quotation mark (’) do not require
an escape character. Refer to your
Windows operating system
documentation for more information on
escape and special characters.

C:\>exp scott/tiger TABLES=emp
QUERY=\"WHERE job=’SALESMAN’ and
sal<1600\"

C:\>imp SYSTEM/password
FROMUSER=scott TABLES=(emp, dept)

<INSTALL_DIR> Represents the Oracle home installation
directory name. The home name can be
up to 16 alphanumeric characters. The
only special character allowed in the
home name is the underscore.

SET CLASSPATH=<INSTALL_DIR>\jre\bin

Convention Meaning Example

WLGuide.book Page xviii Friday, September 6, 2002 9:56 AM

xix

ORACLE_HOME
and ORACLE_
BASE

In releases prior to Oracle8i release 8.1.3,
when you installed Oracle components,
all subdirectories were located under a
top level ORACLE_HOME directory that by
default used one of the following names:

� C:\orant for Windows NT

� C:\orawin95 for Windows 95

� C:\orawin98 for Windows 98

This release complies with Optimal
Flexible Architecture (OFA) guidelines.
All subdirectories are not under a top
level ORACLE_HOME directory. There is a
top level directory called ORACLE_BASE
that by default is C:\oracle. If you
install Oracle9i release 1 (9.0.1) on a
computer with no other Oracle software
installed, then the default setting for the
first Oracle home directory is
C:\oracle\ora90. The Oracle home
directory is located directly under
ORACLE_BASE.

All directory path examples in this guide
follow OFA conventions.

Refer to Oracle9i Database Getting Starting
for Windows for additional information
about OFA compliances and for
information about installing Oracle
products in non-OFA compliant directories.

Go to the ORACLE_BASE\ORACLE_
HOME\rdbms\admin directory.

Convention Meaning Example

WLGuide.book Page xix Friday, September 6, 2002 9:56 AM

xx

WLGuide.book Page xx Friday, September 6, 2002 9:56 AM

Introduction 1-1

1
Introduction

This document includes instructions on installing, configuring, and testing your
software, and includes information that will help you get the most out of TopLink
Container-Managed Persistence, as well as a demonstration application.

If you are a new user, go through the single bean example, as well as the other
examples included in the TopLink installation. These examples provide you with
some hands-on experience with TopLink, and give you a better understanding of
TopLink’s power and usefulness.

TopLink Container-Managed Persistence
TopLink Container-Managed Persistence is an extension of the TopLink for Java
persistence framework. In addition to providing all of TopLink for Java's
object-relational persistence facilities, TopLink Container-Managed Persistence also
provides container-managed persistence (CMP) for Enterprise JavaBeans (EJBs)
deployed in the BEA WebLogic server.

TopLink's CMP supports complex mappings from entity beans to relational
database tables, and enables you to model relationships between beans, and
between beans and regular Java objects. TopLink provides a rich set of querying
options and allows query definition at the bean-level rather than the database level.

TopLink Container-Managed Persistence provides container-managed persistence and
other object-relational mapping features for BEA WebLogic Server 6.1 (service Pack 3)
and 7.0. Earlier versions of BEA WebLogic Server are not supported by this release.

TopLink Container-Managed Persistence supports the EJB 1.1 and EJB 2.0
specifications as defined by Sun Microsystems.

TopLink Container-Managed Persistence is an extension of the TopLink for Java
product and shares all of its core functionality.

WLGuide.book Page 1 Friday, September 6, 2002 9:56 AM

TopLink for Java

1-2 Oracle 9iAS TopLink CMP for Users of BEA WebLogic Server Guide

TopLink for Java
TopLink for Java provides an easy way to map a Java object model to a relational
database. TopLink is a persistence framework that bridges the gap between objects
and relational databases, and allows you to work at the object level.

TopLink supports the creation of a wide variety of Java applications. For building
two-tier, three-tier, or n-tier applications; TopLink can be used within EJB and
non-EJB environments. It can also be used within Java application servers or on its
own.

If you are using TopLink for persistence requirements other than
container-managed persistence (such as traditional two-, three-, or n-tier
applications, non-EJB applications, or session bean-based applications), refer to the
Oracle9iAS TopLink Foundation Library Guide. That document includes information
on advanced TopLink features that are not included in this manual.

TopLink Mapping Workbench
TopLink Mapping Workbench is a separate tool that provides a graphical method of
configuring the descriptors and mappings of a project. It provides many checks to
ensure that the descriptor settings are valid, and it also provides advanced
functionality for accessing the database and creating a database schema.

The TopLink Mapping Workbench does not generate Java code during
development, which would be unmanageable if the descriptors changed. Instead, it
stores descriptor information in an XML deployment file, which can be read into a
Java application using a TopLink method. When the application needs to be
repackaged into a runtime, TopLink can then generate a .java file from the XML
file, eliminating the need for TopLink Mapping Workbench files at runtime.

The TopLink Mapping Workbench displays all of the project information for a given
project, including classes and tables. Refer to the Oracle9iAS TopLink Mapping
Workbench Reference Guide for more information on editing projects and descriptors
using TopLink Mapping Workbench.

Understanding container-managed persistence
This section introduces the concepts required to use TopLink’s container-managed
persistence (CMP) facilities. It highlights the particular features available in TopLink
Container-Managed Persistence that are not available in TopLink’s core Java
Foundation Library and explains any differences in the use of other core features.

WLGuide.book Page 2 Friday, September 6, 2002 9:56 AM

Understanding container-managed persistence

Introduction 1-3

Enterprise JavaBeans (EJBs)
This manual assumes that you have some familiarity with Enterprise JavaBeans
(EJBs) and related concepts. This section provides an overview of some of the key
terms that are encountered when discussing EJBs.

For more information about Enterprise JavaBeans, visit the Sun Microsystems EJB
site at http://java.sun.com/products/ejb.

EJB 2.0 Support
TopLink Container-Managed Persistence provides support for EJB 2.0
container-managed persistence (CMP) entity beans. Our implementation is based
on the EJB 2.0 support provided in WebLogic Server 6.1 (service Pack 3) and 7.0.
This implementation is based on the Final Release of the 2.0 specification.

Some specific features of EJB 2.0 that are supported are:

� support for local interfaces and local relationships

� generation of concrete bean subclasses

� EJB-QL

� automatic management of bi-directional relationships

� Mapping Workbench support for EJB 2.0

� initializing project from ejb-jar.xml

� support for finders

� support for home methods

� support for ejbSelect

Terminology and definitions

Enterprise JavaBeans To quote the Sun EJB specification, an enterprise bean
implements a business task, or a business entity. Enterprise JavaBeans are
server-side domain objects that fit into a standard component-based architecture for
building enterprise applications using the Java language. They are Java objects that,
when installed in an EJB server such as the BEA WebLogic Server, become
distributed, transactional, and secure components. There are three kinds of EJBs:
session beans, entity beans, and message-driven beans.

WLGuide.book Page 3 Friday, September 6, 2002 9:56 AM

Understanding container-managed persistence

1-4 Oracle 9iAS TopLink CMP for Users of BEA WebLogic Server Guide

EJB Server and Container An EJB bean is said to reside within an EJB Container
that in turn resides within an EJB Server. The exact distinction between container
and server is not completely defined. In general, the server provides the bean with
access to various services (transactions, security, and so on.) while the container
provides the execution context for the bean by managing its life cycle.

Deployment descriptors The additional information required to install an EJB
within its server is provided in the deployment descriptors for that bean. The
deployment descriptors consists of a set of XML files that provide all of the required
security, transaction, relationship, and persistence information for the bean.

Session beans Session beans represent a business operation, task, or process.
Although the use of a session bean may involve database access, the beans are not
in themselves persistent – they do not directly represent a database entry. Session
beans may or may not retain conversational state; they may be stateful and retain
client information between calls, or they may be stateless and only retain
information within a single method call.

TopLink may be used with session beans to make the regular Java objects that they
access persistent, or can be used to access TopLink persistent entity beans. Session
beans may also act as wrappers to other legacy applications.

Entity beans Entity beans represent a persistent data object – an object with
durable state that exists from one access to the next. To accomplish this, the entity
bean must be made persistent in a relational database, object database, or some
other storage facility.

Two schemes exist for making entity beans persistent: bean-managed persistence
(BMP) and container-managed persistence (CMP). BMP requires that the bean
developer hand-code the methods that perform the persistence work. CMP uses
information supplied by the developer or deployer to handle all aspects of
persistence.

Message-driven beans Message-driven beans process asynchronous Java Message
Service (JMS) messages. A bean method is transactionally-invoked by a JMS
message sent to the objects registered against the given topic. From a client
perspective, a message-driven bean is simply a JMS consumer with no
conversational state and no home or remote interfaces.

WLGuide.book Page 4 Friday, September 6, 2002 9:56 AM

Understanding container-managed persistence

Introduction 1-5

Java objects and Entity Beans
A Java object contains the following components:

Attributes. Store primitive data such as integers, and also store simple Java types
such as String and Date.

Relationships References to other TopLink-enabled classes. A TopLink-enabled
class has a descriptor and can be stored in the database. Because TopLink-enabled
classes can be stored in a database, they are called persistent classes.

Methods Paths of execution that can be invoked in a Java environment. Methods
are not stored in the database because they are static.

An entity bean has the following parts:

The bean instance An instance of an entity bean class supplied by the developer
of the bean. It is a regular Java object whose class implements the
javax.ejb.EntityBean interface. The bean instance has persistent state. The client
application should never access the bean instance directly.

The EJBObject An instance of a generated class that implements the remote
interface defined by the bean developer. This instance wraps the bean and all client
interaction is made through this object. The EJBObject does not have persistent
state.

The EJBHome An instance of a class that implements the home interface supplied
by the bean developer. This instance is accessible from JNDI and provides all create
and finder methods for the EJB. The EJBHome does not have persistent state.

The EJBLocalObject An instance of a generated class that implements the local
interface defined by the bean developer. The key difference between an
EJBLocalObject and an EJBObject is that the EJBLocalObject can only be accessed
from within the same server on which the beans are deployed. The EJBLocalObject
does not have persistent state.

The EJBLocalHome An instance of a class that implements the local home
interface supplied by the bean developer. This instance is accessible from JNDI and
provides all create and finder methods for the EJB. The key difference between
an EJBLocalHome and an EJBHome is that the EJBLocalHome can only be accessed
from within the same server on which the beans are deployed even when using
JNDI. The EJBLocalHome does not have persistent state.

WLGuide.book Page 5 Friday, September 6, 2002 9:56 AM

Understanding container-managed persistence

1-6 Oracle 9iAS TopLink CMP for Users of BEA WebLogic Server Guide

The EJB Primary Key An instance of the primary key class provided by the bean
developer. The primary key is a serializable object whose fields match the primary
key fields in the bean instance. Although the EJB Primary Key shares some data
with the bean instance, it does not have persistent state. Note that as of EJB 1.1, it is
not required that a bean have a separate primary key class when the key consists of
a single field.

For more information about BEA WebLogic Server tools, APIs, or concepts, refer to
the BEA WebLogic Server documentation (available online at
http://e-docs.beasys.com).

For more information about the Enterprise JavaBeans standard, visit the Sun
Microsystems EJB site at http://java.sun.com/products/ejb.

WLGuide.book Page 6 Friday, September 6, 2002 9:56 AM

Mapping Entity Beans 2-1

2
Mapping Entity Beans

This chapter describes how to map container-managed entity beans using the object
mapping features of TopLink for Java. Instructions and hints for using direct and
relationship mappings in an EJB context are provided, and differences between
beans and regular Java objects are outlined.

For information on direct and relationship mappings, see the Oracle9iAS TopLink
Mapping Workbench Reference Guide. You should read and thoroughly understand
those chapters before attempting to map entity beans.

Using TopLink Mapping Workbench
When using TopLink Mapping Workbench with entity beans, the bean classes
themselves should be loaded into TopLink Mapping Workbench. The remote, local,
home, and local home interfaces and the primary key class do not need to be
loaded, nor should mappings be defined using these classes.

Make sure you include any classes referred to by the entity beans on the classpath
that is used by the TopLink Mapping Workbench, otherwise errors may occur when
the beans are loaded. The remote, local, home, and localhome interfaces should also
be avilable on the classpath, as they may be used during EJB validation.

Mappings
TopLink mappings define how an object’s attributes are to be represented in the
database. Attributes that are to be persistent, or that reference other beans or
mapped objects, must be mapped to the database using either direct or relationship
mappings.

To enable container-managed persistent storage of entity beans, the attributes on the
bean implementation class must be mapped. The implementation class is the one

WLGuide.book Page 1 Friday, September 6, 2002 9:56 AM

Mappings

2-2 Oracle 9iAS TopLink CMP for Users of BEA WebLogic Server Guide

specified in the ejb-class element for the particular bean in the ejb-jar.xml
deployment descriptor file. The home and remote interface classes should not be
mapped. Primary key classes, if they exist, also should not be mapped.

Creating mappings
You can create mappings by using TopLink Mapping Workbench or by using the
Java code-based API. TopLink Mapping Workbench is a visual tool that offers
windows and dialogs to set properties and to configure the mappings and TopLink
descriptors for any given project. This is the preferred method of creating
mappings, and should be used whenever possible.

TopLink Mapping Workbench imposes some limitations that require you to use the
code API instead of the tool, but these limitations are few and are mentioned in the
TopLink Mapping Workbench documentation.

For more information on the TopLink Mapping Workbench features and usage, and
on the limitations mentioned above, see the Oracle9iAS TopLink Mapping Workbench
Reference Guide.

Direct mappings
Direct mappings define how a persistent object refers to objects that do not have
TopLink descriptors, such as the JDK classes, primitive types and other
non-persistent classes.

Attributes containing state that is a primitive object, or a regular object that is not
itself mapped to the database should be mapped using a direct mapping. For
example, a String attribute would need a direct to field mapping for the attribute to
be stored in a VARCHAR field.

For a complete description of direct mappings, see the Oracle9iAS TopLink Mapping
Workbench Reference Guide.

Entity bean attributes can be mapped using direct mappings without any special
considerations.

Note: The entity context attribute (type javax.ejb.EntityContext)
should not be mapped.

WLGuide.book Page 2 Friday, September 6, 2002 9:56 AM

Mappings

Mapping Entity Beans 2-3

Relationship mappings
Persistent objects use relationship mappings to store references to instances of other
persistent classes. The appropriate mapping type is based primarily upon the
cardinality of the relationship (for example, one-to-one compared to one-to-many).
For a complete description of relationship mappings, see the Oracle9iAS TopLink
Mapping Workbench Reference Guide.

Entity beans may be related to regular Java objects, other entity beans, or both. The
following sections outline the mappings and conditions where special attention
must be paid to correctly map beans and execute operations that traverse or modify
these relationships.

Mappings between entity beans
 The EJB 2.0 specification introduces and defines the concept of relating beans to one
another. It also imposes a number of restrictions on CMP relationships that TopLink
does not enforce. Developers who wish to write their beans in such a way that they
may be more easily migrated to full EJB 2.0 compliance may wish to follow some of
the programming restrictions required by EJB 2.0, even if these restrictions are not
enforced by TopLink.

TopLink support for the EJB 2.0 specification includes the following concepts:

� Bean relationships are managed automatically by the persistence layer, and do
not require any internal use of finder methods.

� One-to-one, one-to-many and many-to-many relationships can be defined
between beans.

� Dependent objects (regular Java objects) may be used to model fine-grained
objects that are associated with a particular entity.

Some of the restrictions imposed by the EJB 2.0 specification that are not enforced
by TopLink include:

� CMP beans must be abstract and have only “virtual” fields.

� Collections of entities used in relationship mappings must not be implemented
by the bean developer, and must never be exposed directly to the client.

� Beans that are referenced by other beans must be related through local
interfaces.

Additional restrictions to the mapping and run-time behavior of EJB 2.0 CMP beans
are described in the EJB 2.0 specification (http://java.sun.com/products/ejb).

WLGuide.book Page 3 Friday, September 6, 2002 9:56 AM

Mappings

2-4 Oracle 9iAS TopLink CMP for Users of BEA WebLogic Server Guide

A bean that has a relationship to another bean acts as a “client” of that bean; that is,
it does not access the actual bean directly but acts through the local interface of the
bean. For example, if an OrderBean is related to a CustomerBean, it has an instance
variable of type Customer (the local interface of the CustomerBean) and only
accesses those methods defined on the Customer interface.

Importing relationship metadata in the Mapping Workbench In accordance with the EJB 2.0
specification, the Mapping Workbench can obtain relationship metadata from the
ejb-jar.xml file. For more information on how to update TopLink relationships in
the Mapping Workbench from the ejb-jar.xml deployment descriptor, see
“Working with project properties” in the Oracle9iAS TopLink Mapping Workbench
Reference Guide.

Mappings between entity beans and Java objects
The EJB 2.0 specification notes that entity beans should represent “independent
business objects” and that dependent objects are “better implemented as a Java class
(or several classes) and included as part of the entity bean on which it depends.”

The following relationship mappings may exist between an entity bean and regular
Java objects:

� One-to-one, privately-owned mappings (bean is source, Java object is target)

� One-to-many, privately-owned mappings (bean is source, Java object(s) is
target)

� Aggregate mappings (bean is source, Java object is target)

� Direct collection mappings (bean is source, Java object is target and is a “base”
datatype, such as String, or Date)

Relationships from entity beans to regular Java objects should be dependent and
relationships between entity beans should be independent.

If dependent objects are exposed to the client, these objects must be serializable.

Note: Although beans must refer to each other through their local
interface, all TopLink descriptors and projects refer to the bean class. For
example, if you are mapping beans using the TopLink Mapping
Workbench and defining relationships between them, you need to load
only the bean classes and not the local, remote, or home interfaces.
When defining a relationship mapping in both the TopLink Mapping
Workbench and code API, the “reference class” is always the bean class.

WLGuide.book Page 4 Friday, September 6, 2002 9:56 AM

Mappings

Mapping Entity Beans 2-5

One-to-one mappings
One-to-one mappings represent simple pointer references between two objects. For
a complete description of one-to-one mappings, see the Oracle9iAS TopLink Mapping
Workbench Reference Guide.

One-to-one mappings are valid between entity beans, or between an entity bean
and a regular Java object where the entity bean is the source and the regular Java
object is the target of the relationship.

To maintain EJB compliance, the object attribute that points to the target of the
relationship must be of the correct type if the target is a bean. This must be the local
interface type and not the bean class.

There are a number of advanced variations on one-to-one mappings, that allow for
more complex relationships to be defined — in particular variable one-to-one
mappings allow for polymorphic target objects to be specified. These variations are
not available for entity beans, but are valid for dependent Java objects. For more
information on these kinds of mappings, see the Oracle9iAS TopLink Mapping
Workbench Reference Guide.

One-to-many mappings
One-to-many mappings are used to represent the relationship between a single
source object and a collection of target objects. For more information on
one-to-many mappings, see the Oracle9iAS TopLink Mapping Workbench Reference
Guide.

One-to-many mappings are valid between entity beans or between an entity bean
and a collection of privately-owned regular Java objects.

As described in the Oracle9iAS TopLink Mapping Workbench Reference Guide, a
one-to-one mapping should also be created from the target object back to the source.
The object attribute that contains a pointer to the bean must be of the correct type
(the local interface type) and not the bean class.

TopLink automatically maintains back-pointers as bi-directional relationships
between beans are created or updated. See "Maintaining bi-directional
relationships" on page 6-2.

WLGuide.book Page 5 Friday, September 6, 2002 9:56 AM

Mappings

2-6 Oracle 9iAS TopLink CMP for Users of BEA WebLogic Server Guide

Many-to-many mappings
Many-to-many mappings represent the relationships between a collection of source
objects and a collection of target objects. They require the creation of an
intermediate table for managing the associations between the source and target
records. For more information on many-to-many mappings, see the Oracle9iAS
TopLink Mapping Workbench Reference Guide.

When using container-managed persistence, many-to-many mappings are valid
only between entity beans and cannot be privately owned. The exception is when a
many-to-many mapping is used to implement a logical one-to-many mapping with
a relation table.

TopLink automatically maintains back-pointers as bi-directional relationships are
created or updated. See "Maintaining bi-directional relationships" on page 6-2.

Aggregate object mappings
Two objects are related by aggregation if there is a strict one-to-one relationship
between the objects and all the attributes of the second object can be retrieved from
the same table(s) as the owning object. This means that if the target (child) object
exists, then the source (parent) object must also exist. The child (owned object)
cannot exist without its parent.

For a complete description of aggregate object mappings, see the Oracle9iAS TopLink
Mapping Workbench Reference Guide.

Aggregate mappings can be used with entity beans when the source of the mapping
is an entity bean and the target is a regular Java object. It is not valid to make an
entity bean the target of an aggregate object mapping. As a consequence, it follows
that aggregate mappings between entity beans are likewise invalid.

Aggregate collection mappings
Aggregate collection mappings are used to represent aggregate relationships
between a single source object and collection of target objects. Unlike normal one-to
many mappings, there is no one-to-one back reference required. Unlike the normal
aggregate mappings, a target table is required for the target objects.

For a complete description of Aggregate collection mappings, see the Oracle9iAS
TopLink Mapping Workbench Reference Guide.

Note: Aggregate objects are privately owned and should not be shared
or referenced by other objects.

WLGuide.book Page 6 Friday, September 6, 2002 9:56 AM

Sequencing with Entity Beans

Mapping Entity Beans 2-7

Aggregate collection mappings can be used with entity beans if the source of the
relationship is an entity or Java object, and the targets of the mapping are regular
Java objects. It is not possible to define an aggregate collection mapping with entity
beans as the targets.

Aggregate collections are most appropriate when the target collections are expected
to be moderate in size and a one-to-one mapping from target to source would be
difficult. In addition, great care should be taken to ensure the identity of the
Aggregate object, when referencing objects from an Aggregate within an Aggregate
Collection.

Sequencing with Entity Beans
Sequencing is a mechanism which can be used to populate the primary key
attribute of new objects/entity beans before inserting them into the database. Refer
to the Oracle9iAS TopLink Mapping Workbench Reference Guide for details on the
different kinds of TopLink sequencing: table and native.

The configuration of sequencing is similar for both Java objects and entity beans.
However, with entity beans a create() method exists on the bean home interface,
and ejbCreate() and ejbPostCreate() methods are implemented on the bean
implementation class.

Because the primary key is automatically generated, no primary key is passed into
the create() method on the home interface when the bean is created. If you are
using table-based sequencing or native sequencing for databases that support
pre-allocation of sequence numbers, the bean’s primary key is available in the
ejbPostCreate() method.

Caution: Although aggregate collection mappings appear similar to
one-to-many mappings, aggregate collections should not be used in
place of one-to-many mappings. One-to-many mappings are more robust
and scalable, and offer better performance. In addition, aggregate
collections are privately owned by the source of the relationship and
should not be shared or referenced by other objects.

WLGuide.book Page 7 Friday, September 6, 2002 9:56 AM

Inheritance

2-8 Oracle 9iAS TopLink CMP for Users of BEA WebLogic Server Guide

Inheritance
Although inheritance is a standard tool in object-oriented modeling, no
implementation guidelines are outlined in the EJB specification. The EJB 1.0
specification does not address the issue, and the 1.1 and 2.0 specifications discuss it
only in general terms. As a result, any use of inheritance should be approached
cautiously.

Some restrictions apply to entity beans when using inheritance:

� The home interfaces cannot inherit. The findByPrimaryKey method must be
overloaded in order to have the correct return type, but this is not allowed. As a
result, inheritance is not applicable to the home interfaces.

� The primary key of the subclass must be the same as that of the parent class.

The advanced example application illustrates inheritance. For more information, see
the ReadMe.html file in the root directory of the advanced example application.
This application is located in

� <INSTALL_DIR>\examples\wls70\examples\ejb\cmp20\advanced\
(WebLogic 7.0 and CMP 2.0)

� <INSTALL_DIR>\examples\wls70\examples\ejb\
cmp1.1\advanced\ (WebLogic 7.0 and CMP 1.1)

� <INSTALL_DIR>\examples\wls61\examples\ejb\cmp20\advanced\
(WebLogic 6.1 and CMP 2.0)

� <INSTALL_DIR>\examples\wls61\examples\ejb\cmp20\advanced\
(WebLogic 6.1 and CMP 1.1)

Indirection
TopLink provides several mechanisms for just-in-time reading of relationships (also
referred to as “lazy-loading” and “indirection”). There are three techniques that are
available:

� use of indirection objects

� transparent indirection

� proxy indirection

WLGuide.book Page 8 Friday, September 6, 2002 9:56 AM

Indirection

Mapping Entity Beans 2-9

While these indirection mechanisms are described in the Oracle9iAS TopLink
Mapping Workbench Reference Guide, there are a number of issues that entity bean
developers should be aware of when using indirection. In general these issues arise
due to the migration of objects between client and server.

Issues include:

� Un-instantiated ValueHolders (indirection objects) do not survive serialization.
If a ValueHolder is sent from the server to the client, it will no longer function
unless it has been previously triggered.

� ValueHolders can be used in bean-bean relationships, and bean-object
relationships, but should be avoided in relationships whose source is likely to
be serialized to the client.

� Collections that use transparent indirection should not be serialized to the client
application before they are instantiated. These collections will not function if
they are serialized.

� Proxy indirection (available in JDK 1.3) cannot be used for relationships whose
target is an entity bean. The proxies used for this kind of indirection will
interfere with the RMI stubs and skeletons generated for the entity. Proxies
should be instantiated before being serialized to the client.

� ValueHolders should generally be used for bean-bean relationships, and for
bean-object relationships. Transparent indirection can be used for collections
that are not exposed to the client application.

Under the EJB 2.0 specification, the indirection policies for CMP fields must be one
of the following:

� Transparent indirection for 1-Many or Many-Many relationships

� Value holder indirection for 1-1 relationships

Because of the code-generated subclasses, all indirection is hidden from the user.

For more information about these and other important issues, consult "Run-time
Considerations" on page 6-1.

WLGuide.book Page 9 Friday, September 6, 2002 9:56 AM

Indirection

2-10 Oracle 9iAS TopLink CMP for Users of BEA WebLogic Server Guide

WLGuide.book Page 10 Friday, September 6, 2002 9:56 AM

Configuring TopLink Container-Managed Persistence 3-1

3
Configuring TopLink Container-Managed

Persistence

This chapter describes the configuration and testing of TopLink Container-Managed
Persistence. Please refer to Oracle9iAS TopLink Getting Started for installation
information.

Software requirements
TopLink Container-Managed Persistence requires:

� BEA WebLogic Server 6.1 (Service Pack 3) or 7.0

� A JDBC driver that is configured to connect with your local database system
(see your database administrator)

� A Java development environment that is compatible with the JDBC API, such
as:

� Oracle JDeveloper

� Sun JDK 1.3 or higher

� Any other Java environment that is compatible with the Sun JDK 1.3 or
higher

� A command-line Java virtual machine (VM) executable (such as java.exe or
jre.exe)

WLGuide.book Page 1 Friday, September 6, 2002 9:56 AM

Configuring TopLink CMP

3-2 Oracle 9iAS TopLink CMP for Users of BEA WebLogic Server Guide

Configuring TopLink CMP
This procedure configures TopLink Container-Managed Persistence Foundation
Library. This procedure assumes you have already installed TopLink
Container-Managed Persistence.

The TopLink class library is certified 100% pure Java and can be run on any JDK 1.2
or higher Java VM/platform.

To configure TopLink:
1. Locate the WebLogic persistence directory, which is located above the

installation drive and root directory of your BEA WebLogic executable, as
follows:

Under Windows, if BEA WebLogic Server is already installed, the TopLink
installer automatically copies a file called persistence.install to the
WebLogic persistence directory.

If BEA WebLogic Server is not yet installed, or if you are installing TopLink in a
non-Windows environment, then you must either:

� Open the persistence directory using a text editor and add a new line to the
persistence.install file referencing TopLink_CMP_Descriptor.xml.

or

Notes:

� If you are running under Windows NT, make sure you have
administrator privileges. Also, make sure you modify the System
Variables, not the User Variables.

� Java package names are case-sensitive. If you are installing under a
32-bit Windows environment, ensure the case sensitivity is enabled.

WebLogic Version Persistence directory (above <WebLogLogicINSTALL_DIR>)

6.1 (service Pack 3) \wlserver6.1\lib\persistence

7.0 \weblogic700\server\lib\persistence

WLGuide.book Page 2 Friday, September 6, 2002 9:56 AM

Configuring TopLink CMP

Configuring TopLink Container-Managed Persistence 3-3

� Replace your existing persistence.install file with the new
persistence.install file found in the <INSTALL_DIR>\wls_cmp
folder.

2. If you are writing your own start script, you must ensure that the CLASSPATH
includes all of the following

<INSTALL_DIR>\core\lib\toplink.jar; <INSTALL_DIR>\core\lib\xerces.jar;
<INSTALL_DIR>\wls_cmp\lib\tl_wlsx.jar;
where <INSTALL_DIR> is the directory into which you installed TopLink
(C:\{ORACLE_HOME}\toplink if you installed to the default directory).

Testing TopLink Container-Managed Persistence with entity beans
To test TopLink Container-Managed Persistence with entity beans, run the Single
Bean example documented in Chapter 9, "The EJB 2.0 Single Bean Example
Application". For detailed instructions on how to set up and run this example, see
Chapter 9, "The EJB 2.0 Single Bean Example Application".

When the TopLink Mapping Workbench, and the Single Bean example all run
successfully, your TopLink installation is complete.

Running the BEA WebLogic Server with TopLink
Start the server as described in the WebLogic documentation. The most reliable way
to start a server is to create a startup script. Refer to the BEA WebLogic
documentation for more information on class loader and classpath issues. Once the
server is running, start the TopLink CMP application.

Note: Refer to <INSTALL_DIR>\Index.html for the most recent
installation notes. If you installed to the default directory, <INSTALL_
DIR> is C:\{ORACLE_HOME}\toplink.

Note: When editing the CLASSPATH, ensure that weblogic.jar and
weblogic_sp.jar are placed before the TopLink JAR files in the
CLASSPATH statement.

Note: If you encounter problems running BEA WebLogic Server,
contact BEA’s WebLogic support.

WLGuide.book Page 3 Friday, September 6, 2002 9:56 AM

Configuring TopLink CMP

3-4 Oracle 9iAS TopLink CMP for Users of BEA WebLogic Server Guide

TopLink Container-Managed Persistence includes a sample domain used to deploy
and run the example application. This start script is available in <INSTALL_
DIR>\examples\ under

� wls6.1\Server\config\TopLink_Domain for WebLogic 6.1 (service Pack 3)

� wls7.0\Server\config\TopLink_Domain for WebLogic 7.0

If you write your own start script, ensure that the CLASSPATH includes all of the
following

<INSTALL_DIR>\core\lib\toplink.jar; <INSTALL_DIR>\core\lib\xerces.jar;
<INSTALL_DIR>\wls_cmp\lib\tl_wlsx.jar;

where <INSTALL_DIR> is the directory into which you installed TopLink
(C:\{ORACLE_HOME}\toplink if you installed to the default directory).

If a security manager is used, you must specify a security policy file.

-Djava.security.manager
-Djava.security.policy==c:\weblogic\weblogic.policy
A sample security policy file is supplied with the BEA WebLogic installation
procedure.

Note that you will have to edit the weblogic.policy file (normally located in the
BEA WebLogic install directory) to grant permission for TopLink to use reflection.
To do this, add the following line to the file in the general “grant” section.:

permission java.lang.reflect.ReflectPermission "suppressAccessChecks";

A subset of a “grant” section taken from a weblogic.policy file
grant
// Permission "enableSubstitution" needed to run the WebLogic console
permission java.io.SerializablePermission "enableSubstitution";
// Permission "modifyThreadGroup" required to run the WebLogic Server
permission java.lang.RuntimePermission "modifyThreadGroup";
permission java.lang.RuntimePermission
//... bulk of permissions not shown ...
//required for toplink

permission java.lang.reflect.ReflectPermission
suppressAccessChecks";

};

Note: Ensure that weblogic.jar and weblogic_sp.jar are placed
before the TopLink JAR files in the CLASSPATH.

WLGuide.book Page 4 Friday, September 6, 2002 9:56 AM

Configuration troubleshooting

Configuring TopLink Container-Managed Persistence 3-5

Configuration troubleshooting
If after successfully installing TopLink, you encounter problems running TopLink,
one or more of the following suggestions may help resolve the problem:

� Ensure that the persistence.install file in the WebLogic installation
contains the required TopLink_CMP_Descriptor.xml entry

� Some database servers (such as DB2) require an extra Windows NT service to be
running for JDBC connections. If your server has been rebooted, this service
may not have been restarted.

� If the BEA WebLogic Server is installed to a directory other than the default
directory, ensure that the weblogic.policy file is edited to reflect this.

See Oracle9iAS TopLink Troubleshooting for more information.

WLGuide.book Page 5 Friday, September 6, 2002 9:56 AM

Configuration troubleshooting

3-6 Oracle 9iAS TopLink CMP for Users of BEA WebLogic Server Guide

WLGuide.book Page 6 Friday, September 6, 2002 9:56 AM

EJB Entity Bean Deployment 4-1

4
EJB Entity Bean Deployment

TopLink Container-Managed Persistence provides container-managed persistence
(CMP) for 1.1 and 2.0 Enterprise JavaBeans (EJBs). The deployment process
generates CMP code that allows TopLink to handle persistence aspects of EJBs. To
install entity beans within the BEA WebLogic Server and make them available for
client applications, entity beans must be deployed within the server.

Overview of deployment
The goal of deployment is to make entity beans available to client applications.The
process of deploying entity beans requires the use of several BEA WebLogic tools,
the creation or editing of deployment descriptors and properties files, and
ultimately running the BEA WebLogic Server to deploy the entity beans. For much
of this process, BEA WebLogic tools and programs must be used. Consult your BEA
WebLogic Server documentation for the most up-to-date information on these
topics.

Understanding Deployment
The term “deployment” can sometimes cause confusion since there are actually a
number of stages that occur between creating the bean classes and installing them
in a running server.

Generally speaking the deployment process is three distinct steps:

1. Configuration - A number of properties are specified for the bean, including
what persistence mechanism is being used and additional information required
by the persistence mechanism.

2. Code generation - The information provided in the configuration stage is used
by both BEA WebLogic and TopLink tools to generate the classes required for

WLGuide.book Page 1 Friday, September 6, 2002 9:56 AM

Overview of deployment

4-2 Oracle 9iAS TopLink CMP for Users of BEA WebLogic Server Guide

the bean. This includes helper classes related to transactions, persistence, and
security, the EJBLocalHome, EJBLocalObject, EJBHome, and EJBObject
implementations, and the stubs and skeletons required for RMI.

3. Installation - The server is started and instructed to make the bean available to
clients.

Requirements before deployment
The following tasks must be completed prior to the deployment of TopLink
persisted entity beans:

� Write and compile the various parts of each entity bean to be deployed,
including the bean class, any required local and remote interfaces, home and
local home interfaces, and the primary key class (if required).

� Map the entity beans to the appropriate database tables, and save the mapping
information in a TopLink project class or project file (deployable XML file).

Steps in the deployment process
After the beans have been created and the mappings have been defined, the three
deployment steps must be followed:

1. Configure the beans. Ensure that the XML deployment descriptors have all of
the information that BEA WebLogic and TopLink require.

2. Generate the required run-time classes. Classes are generated using the
weblogic.ejbc utility.

3. Install the beans in the server.

This chapter describes setting up deployment descriptors, generating the run-time
classes, and deploying your entity beans in the BEA WebLogic Server.

Note: Generating the required run-time classes is optional when you
are using WebLogic Server 6.1 (service Pack 3) or 7.0; if you deploy any
uncompiled JAR files using WebLogic Server 6.1 (service Pack 3) or 7.0,
the server runs ejbc for you automatically. Consult your WebLogic
documentation for details.

WLGuide.book Page 2 Friday, September 6, 2002 9:56 AM

Configuring entity bean deployment descriptors

EJB Entity Bean Deployment 4-3

Configuring entity bean deployment descriptors
A TopLink project represents a single deployment unit. In other words, all related
beans (beans that reference each other) and dependent objects within a given
TopLink project must be deployed within a single EJB JAR.

There are three XML files to configure for every EJB JAR file that is to be deployed.
These files can be created and edited using a text editor, or some other tool. These
files must be properly specified to use container-managed persistence:

ejb-jar.xml Contains standard EJB deployment properties

weblogic-ejb-jar.xml Contains BEA WebLogic -specific properties

toplink-ejb-jar.xml Contains TopLink-specific properties

Related beans share the same ejb-jar.xml, weblogic-ejb-jar.xml, and
toplink-ejb-jar.xml files.

Configuring the ejb-jar.xml file
There is one ejb-jar.xml file for every JAR, although multiple beans may be
specified in a single ejb-jar.xml file. The following information is stored in the
ejb-jar.xml file:

persistence-type Each entity specifies what type of persistence it is to use. To
specify that an entity use container-managed persistence, the bean must have its
<persistence-type> tag be set to Container.

Container managed fields Each entity must list the bean fields which are to be
persisted. The <cmp-field> tag is used for each field.

Finders Finders are optional, and may be specified using the <query> tag and its
subtags. An EJB-QL string is used to define the query. The finders found in the
ejb-jar.xml file are read in by the Mapping Workbench. You can use the Mapping
Workbench to further customize finders for your application.

Relationships Bean-to-bean relationships are described under the
<relationships> tag. Each relationship requires an <ejb-relation> tag and
associated subtags. The Mapping Workbench uses these relationship descriptions as
a starting point for defining the reference mappings between beans. Note that the
Mapping Workbench can be used to define other relationships between beans or

WLGuide.book Page 3 Friday, September 6, 2002 9:56 AM

Configuring entity bean deployment descriptors

4-4 Oracle 9iAS TopLink CMP for Users of BEA WebLogic Server Guide

between beans and regular Java objects which are not described in the
ejb-jar.xml file.

Updating the ejb-jar.xml file
The ejb-jar.xml may either be manually updated as you develop your
application or modified by the Mapping Workbench after mapping the TopLink
project. The ejb-jar.xml file and the Mapping Workbench project should be
synchronized as follows:

� When manual changes are made directly in the ejb-jar.xml file, refresh the
Mapping Workbench project by re-importing the ejb-jar.xml file into the
project.

� When changes to the project are made in the Mapping Workbench, the
ejb-jar.xml file is automatically updated when the project is saved.

For more information on managing the ejb-jar.xml file in the Mapping Workbench,
see the Oracle9iAS TopLink Mapping Workbench Reference Guide.

Configuring the weblogic-ejb-jar.xml file
The weblogic-ejb-jar.xml file allows you to configure WebLogic-specific
information for your beans.

Persistence descriptor
Within the weblogic-ejb-jar.xml file, each bean must have a
<persistence-descriptor> entry with subentries indicating that TopLink is
available and should be used.

� If you are deploying to WebLogic 6.1 (service Pack 3), there must be a
<persistence-type> entry, which indicates that TopLink is available and a
<persistence-use> entry that specifies that TopLink is to be used.

� If you are deploying to WebLogic 7.0, the entries under <persistence-use>
includes both of the required pieces of information.

The persistence descriptor includes settings for specifying the EJB version
supported by the bean. Set <type-identifier> to

� TopLink_CMP_2_0 to indicate support for EJB 2.0

� TopLink_CMP_1_1 to indicate support for EJB 1.1

WLGuide.book Page 4 Friday, September 6, 2002 9:56 AM

Configuring entity bean deployment descriptors

EJB Entity Bean Deployment 4-5

The persistence descriptor also includes settings for specifying the WebLogic
version supported by the bean. Set <type-version> to

� 4.5 to indicate support for WebLogic 7.0

� 4.0 to indicate support for WebLogic 6.1 (service Pack 3)

Persistence descriptors and WebLogic 6.1 (service Pack 3) A typical persistence descriptor
for WebLogic 6.1 (service Pack 3) is shown below:

<persistence>
<persistence-type>

<type-identifier>TopLink_CMP_2_0</type-identifier>
<type-version>4.0</type-version>
<type-storage>META-INF\toplink-ejb-jar.xml</type-storage>

</persistence-type>
<persistence-use>

<type-identifier>TopLink_CMP_2_0</type-identifier>
<type-version>4.0</type-version>

</persistence-use>
</persistence>
There may be several entries for the persistence type, but exactly one persistence
use entry must be specified for a given entity bean.

Persistence descriptors and WebLogic 7.0 A typical persistence descriptor for WebLogic
7.0 is shown below:

<persistence>
<persistence-use>

<type-identifier>TopLink_CMP_2_0</type-identifier>
<type-version>4.5</type-version>
<type-storage>META-INF\toplink-ejb-jar.xml</type-storage>

</persistence-use>
</persistence>
It is very important that the <type-version> entry is consistent with the installed
version of TopLink (TopLink_CMP_2_0 for 2.0 entity beans and TopLink_CMP_1_1
for 1.1 entity beans). The <type-version> must be correct in order to use BEA
WebLogic tools, and to deploy the bean in the BEA WebLogic Server.

Within the persistence type, the <type-storage> should be set to
META-INF\toplink-ejb-jar.xml. The toplink-ejb-jar.xml contains

Note: The deprecated <type-version> setting of version 3.5 will also
function correctly with WebLogic 6.1 (service Pack 3) if used with EJB 1.1.

WLGuide.book Page 5 Friday, September 6, 2002 9:56 AM

Configuring entity bean deployment descriptors

4-6 Oracle 9iAS TopLink CMP for Users of BEA WebLogic Server Guide

TopLink-specific information and is stored in the META-INF directory in the
deployable JAR file.

Enabling Call by Reference
To allow TopLink to manage relationships between beans, call-by-reference must be
enabled for all beans managed by TopLink. To enable call-by-reference for beans
you must set the entry <enable-call-by-reference> to True in the
weblogic-ejb-jar.xml file.

<weblogic-ejb-jar>
<weblogic-enterprise-bean>

<ejb-name>AccountBean</ejb-name>
...
<enable-call-by-reference>True</enable-call-by-reference>
...

</weblogic-enterprise-bean>
</weblogic-ejb-jar>

Unsupported tags in the weblogic-ejb-jar.xml file
There are a number of tags included in the weblogic-ejb-jar.xml that are either
not supported or not required by TopLink, as follows:

concurrency-strategy In BEA WebLogic Server 6.1 (service Pack 3) and 7.0, the
weblogic-ejb-jar.xml includes a <concurrency-strategy> tag that does not apply to
entity beans deployed with TopLink for WebLogic. TopLink supports concurrent
access to entities through the use of several locking options, including no locking,
optimistic database-level locking, and pessimistic database-level locking. For more
information please refer to the TopLink documentation.

db-is-shared TopLink does not require this tag because TopLink does not make
any assumptions about the exclusivity of database access. Issues arising from
multi-user access can be addressed through various locking and refreshing policies.

delay-updates-until-end-of-tx TopLink always delays updates until the end of a
transaction, and so does not require this tag. This optimization allows for minimal
write calculations.

finders-load-bean TopLink always loads the bean upon execution of the finder.
This optimization eliminates excessive select calls during the ejbLoad sequence.

WLGuide.book Page 6 Friday, September 6, 2002 9:56 AM

Configuring entity bean deployment descriptors

EJB Entity Bean Deployment 4-7

pool TopLink for WebLogic does not use a pooling strategy for entity beans. This
avoids object-identity problems that can occur due to pooling.

lifecycle This element applies to beans that follow a pooling strategy. As TopLink
does not use a pooling strategy, this tag is not required.

is-modified-method-name TopLink does not require a bean developer-defined
method to detect changes in object state. This is handled automatically.

isolation-level Isolation level settings for the cache or database transactions can be
specified in the TopLink project.

cache TopLink caching properties are defined using the TopLink Mapping
Workbench.

Configuring the toplink-ejb-jar.xml file
The toplink-ejb-jar.xml file is similar to the session.xml file used by
non-CMP beans. The toplink-ejb-jar.xml file specifies all TopLink-related
information. The DTD for this XML file is located in the tl_wlsx.jar file, and is
documented in Appendix B, "The toplink-ejb-jar DTD".

<?xml version="1.0" ?>
<!DOCTYPE toplink-ejb-jar (View Source for full doctype...)>
<toplink-ejb-jar>

<session>
<name>ejb_AccountDemo</name>
<project-xml>Account.xml</project-xml>
<login>

<datasource>jdbc/ejbJTSDataSource</datasource>
<non-jts-datasource>jdbc/ejbNonJTSDataSource</non-jts-datasource>

</login>
</session>

</toplink-ejb-jar>

Defining required project options: the Session Section
The session section is used to define those settings that apply to an entire project,
and must be included in the toplink-ejb-jar.xml file. The xml elements that are
defined in the session section are as follows:

name A string that provides a unique name for the project. No two projects
deployed within the same server instance are permitted to have the same name.

WLGuide.book Page 7 Friday, September 6, 2002 9:56 AM

Configuring entity bean deployment descriptors

4-8 Oracle 9iAS TopLink CMP for Users of BEA WebLogic Server Guide

project-class The fully qualified name of the TopLink project class. The source
code for this class may be created using the TopLink Mapping Workbench and
included in the deployed JAR.

project-xml The fully qualified name of the deployable TopLink project file. This
file may be included in the deployed JAR or located on the CLASSPATH

login A section in which the following entries are provided:

� connection-pool A string identifying the JDBC pool that is to be used by
TopLink. The name of the pool should correspond to a JDBC connection pool
specified in the WebLogic administration console.

� datasource A string identifying the name of the data source to use for this
project. datasource must be used in conjunction with non-jts-datasource.
The combination is intended as an alternative to using a connection-pool.

datasource is intended to map to a Jts data source, and non-jts-datasource
is intended to map to a non-Jts data source.

For more information about data sources, see your user documentation for BEA
WebLogic Server.

� non-jts-datasource A string identifying the name of the read only data
source to use for this project. non-jts-datasource must be used in conjunction
with datasource. The combination is intended as an alternative to using a
connection-pool. See “datasource” earlier for more information.

� should-bind-all-parameters (optional) A string value that indicates
whether all queries should use parameter binding. Valid values are True or
False. Default is False.

� uses-byte-array-binding (optional) A string value that indicates
whether byte arrays should be bound. Valid values are True or False. Default is
False.

� uses-string-binding (optional) A string value that indicates whether
strings should be bound. Valid values are True or False. Default is False.

Note: Use either project-xml or project-class but do not use both.

WLGuide.book Page 8 Friday, September 6, 2002 9:56 AM

Generating the run-time classes

EJB Entity Bean Deployment 4-9

cache-synchronization (optional) When provided, indicates that changes made to
one TopLink cache in a cluster should be automatically propagated to all other
server caches. The following elements may also be provided:

� is-asynchronous (optional) Set to True if synchronization should not wait
until all sessions have been synchronized before returning. Valid values are True
or False. Default is True.

� should-remove-connection-on-error (optional) Set to True if a
synchronization connection should be removed from the session if a
communication error occurs. Valid values are True or False. Default is True.

use-remote-relationships (optional) TopLink goes beyond the EJB 2.0 specification
and allows you to define relationships between beans in terms of their remote
interfaces. This may be especially useful when porting EJB 1.1 applications to EJB
2.0. When this option is specified, all relationships in the JAR must be defined using
remote interfaces. Valid values are True or False. Default is False.

customization-class (optional) This fully qualified name of a
DeploymentCustomization class is optional. For more information, see Chapter 7,
"Customization".

Generating the run-time classes
After creating the deployment descriptors, generate the run-time classes from the
deployment descriptors using of the ejbc tool.

Note: If you use remote relationships, you must run the weblogic.ejbc
tool with the -nocompliance flag set.

Note: Generating the required run-time classes is optional when you
are using WebLogic Server 6.1 (service Pack 3) and 7.0; if you deploy any
uncompiled JAR files using WebLogic Server, the server runs ejbc for you
automatically. Consult your WebLogic documentation for details.

WLGuide.book Page 9 Friday, September 6, 2002 9:56 AM

Generating the run-time classes

4-10 Oracle 9iAS TopLink CMP for Users of BEA WebLogic Server Guide

Running the Weblogic EJB Compiler
When TopLink is used to provide container-managed persistence for BEA WebLogic
entity beans, the standard BEA WebLogic EJB Compiler (ejbc) is used. For more
information about this tool and its use, refer to the BEA WebLogic Server
documentation.

There are two stages involved in running ejbc:

1. Create a “standard” EJB JAR file containing all bean classes and all required
XML files (ejb-jar.xml, weblogic-ejb-jar.xml, toplink-ejb-jar.xml).
The XML files should be placed in the META-INF directory within the JAR.

2. Run ejbc with the JAR file created in step one as command line arguments. ejbc
creates an EJB JAR containing the original classes as well as all required
generated classes and files.

Several things happen when ejbc is run:

� A partial EJB conformance check is performed on the beans and their associated
interfaces

� A number of internal BEA WebLogic classes that manage security, transactions,
and so on, are generated and compiled

� Concrete bean subclasses are generated by TopLink and compiled

� RMI stubs and skeletons are generated for client access of the beans

Running ejbc can take some time because of the number of the processes involved.
If errors occur while running ejbc, attempt to determine which stage is causing the
problem. Problems encountered running this tool may be related to one of the
following areas:

� Errors or problems in the bean classes caused by non-conformance with the
EJB specification

� Problems due to not having all required classes on the CLASSPATH, which
should include all domain classes, all required TopLink classes, and all
required BEA WebLogic classes

� A problem encountered when running the Java compiler (javac),
potentially caused by using an incorrect version of the JDK

� A failure encountered when generating the RMI stubs and skeletons (a
failure of rmic)

WLGuide.book Page 10 Friday, September 6, 2002 9:56 AM

Installing the beans in the server

EJB Entity Bean Deployment 4-11

Installing the beans in the server
Installing entity beans that use TopLink for BEA WebLogic container-managed
persistence follows the same steps as installing other EJBs in the BEA WebLogic
Server. For information on installing entity beans, consult the BEA WebLogic
documentation.

Connection pools and data sources
BEA WebLogic can provide TopLink with either a connection pool or a data source.

Creating JDBC connection pools
A BEA WebLogic JDBC connection pool must be defined for the entity beans that
are to be deployed. Examples of how connection pools are defined and used can be
found in your BEA WebLogic Server documentation.

Creating JTS and non-JTS data sources
To work with data sources, TopLink requires both a JTS and a non-JTS data source.
When working with a connection pool, Toplink configures the connection
automatically, and only needs a single connection pool to operate properly

Please consult the BEA WebLogic Server user documentation for more information
about data sources.

Using the defined connection pool
The pool name is supplied to TopLink using the toplink-ejb-jar.xml file. The
name is specified using the <connection-pool> tag (see "login" on page 4-8).

Note: Use a command script (for example, a batch or ant script) to run
ejbc. This enables you to pre-configure all of the required variables for
the command line and helps to prevent typing errors. Sample build
scripts are provided with the TopLink for BEA WebLogic example
applications.

WLGuide.book Page 11 Friday, September 6, 2002 9:56 AM

Message Logging

4-12 Oracle 9iAS TopLink CMP for Users of BEA WebLogic Server Guide

Using the defined data source
Instead of connecting through a connection pool directly, it is possible to instruct
TopLink to use a defined data source. If data sources are to be used, both JTS and
non-JTS data sources must be used together.

The toplink-ejb-jar.xml file has data-source options in the form of the tags
<datasource> and <non-jts-data-source>. These tags correspond to JTS and
non-JTS data sources respectively.

The values for these data source tags correspond directly to the names of the data
sources as defined in WebLogic Server. Following is an example of a partial
toplink-ejb-jar.xml file listing using data sources:

...
<datasource>myJtsDataSource</datasource>
<non-jts-data-source>myNonJtsDataSource</non-jts-data-source>
...

Problems with deployment
Various configuration errors can cause problems with entity bean deployment. Be
sure that you have followed the steps outlined in the relevant BEA WebLogic Server
documentation.

Message Logging
The logging facilities are configured at the server level and affect all
TopLink-enabled CMP entity beans deployed in that server. The granularity and
destination of TopLink’s logging can be configured by using two system properties.
These properties can be set at the command line of the server start script.

toplink.log.level Determines the granularity of log messages that TopLink will
generate. Possible values include INFO (default), NONE and DEBUG. When set to
DEBUG, TopLink trace statements will be generated. For example:

-Dtoplink.log.level=DEBUG

toplink.log.destination Determines where TopLink log messages get logged.
Possible values include SYSOUT (default), SERVER or the name of a file.

When set to SYSOUT log messages are sent to System.out.

WLGuide.book Page 12 Friday, September 6, 2002 9:56 AM

Hot deployment of EJBs

EJB Entity Bean Deployment 4-13

When set to SERVER, logging is integrated with the WebLogic logging streams. If
this mode is in effect then the WebLogic logging levels must be considered since
logging may be filtered by the server log level settings.

When neither of the above is selected, the value is assumed to be the name of a file
(relative or fully qualified). Consider these examples:

-Dtoplink.log.destination=SERVER

-Dtoplink.log.destination=c:\toplink.log

Hot deployment of EJBs
Hot deployment is a feature in BEA’s WebLogic Server product that allows for the
deployment of EJBs on a running server. It is useful for situations where rebooting
the BEA WebLogic Server is not feasible.

The BEA WebLogic Server hot deployment feature allows:

� Newly-developed EJBs to be deployed to a running production system

� Deployed EJBs to be removed from a running server (undeployment)

� The behavior of deployed EJBs to be modified by updating the bean class
definition (redeployment)

For detailed information on hot deployment, see the BEA WebLogic documentation.

Consider the following points when deploying a newly-created EJB JAR or
redeploying an existing JAR:

� All related beans (all beans that share a common TopLink project) must be
deployed within the same EJB JAR file. TopLink for BEA WebLogic views
deployment on a project level. If one bean is to be deployed or updated, then all
of the project’s beans should be deployed or updated to maintain consistency
across the project.

� When a bean is redeployed, its TopLink project is reset. This process flushes all
object caches and rolls back any active object transactions that are associated
with the project.

The client receives deployment exceptions when attempting to access bean
instances that have been undeployed or re-deployed. The client side is responsible
for catching and handling those exceptions.

WLGuide.book Page 13 Friday, September 6, 2002 9:56 AM

Hot deployment of EJBs

4-14 Oracle 9iAS TopLink CMP for Users of BEA WebLogic Server Guide

Running an EJB Client
After the beans have been deployed, an EJB client can be run to access them. The
client can either be a SessionBean or a Java program running outside the server.

The EJB client requires the following bean classes in its CLASSPATH: remote
interface, home interface, and primary key classes for all the beans accessed. In
addition, if the client is a session bean running on the same server as the entity
beans and you want to access the local interfaces of the entity beans, you must also
include their local and home interfaces on the CLASSPATH.

To lookup a bean’s home interface a JNDI InitialContext must be setup. Setting up
the initial context requires that the server’s URL be supplied.

WLGuide.book Page 14 Friday, September 6, 2002 9:56 AM

Defining and Executing Finders 5-1

5
Defining and Executing Finders

TopLink provides a feature-rich query framework in which complex database
queries can be constructed and executed to retrieve entity beans. TopLink
Container-Managed Persistence enables you to define the finder methods on the
home interface, but does not require you to implement them in the entity bean.
TopLink Container-Managed Persistence provides this required functionality, and
offers a number of strategies for creating and customizing finders. The EJB
container and TopLink automatically generate the implementation.

Defining finders in TopLink
The general steps required to successfully define a finder method for an entity bean
using TopLink Container-Managed Persistence's query framework are as follows:

1. Declare finders in the ejb-jar.xml file.

2. Define the finder method on the entity bean's home and/or local home
interface(s) (as required by the EJB specification)

3. Use the Mapping Workbench to change any options on finders.

4. If required, create an implementation for the query. Some query options require
that the query be defined in code on a helper class, but this is not required for
most queries.

ejb-jar.xml Finder Options
The ejb-jar.xml file specifies all of the EJB 2.0 specification related information
for a bean, including the definitions for any finders that are to be used for that bean.
The ejb-jar.xml file may be created and edited using a text editor, or it may be
created using the Mapping Workbench. All finders are defined within the
ejb-jar.xml file with a structure similar to the following example.

WLGuide.book Page 1 Friday, September 6, 2002 9:56 AM

Defining finders in TopLink

5-2 Oracle 9iAS TopLink CMP for Users of BEA WebLogic Server Guide

Example 5–1 A simple finder within an ejb-jar.xml file

...
<query>

<query-method>
<method-name>findLargeAccounts</method-name>

<method-params>
<method-param>double</method-param>

</method-params>
</query-method>

<ejb-ql><![CDATA[SELECT OBJECT(account) FROM AccountBean account WHERE
account.balance > ?1]]></ejb-ql>
</query>
...

Query Section - XML Elements
The ejb-jar.xml file can contain zero or more <query> elements in the <entity>
tag. Each one of these <query> tags corresponds to a finder method that is defined
on the bean's home or local home interface. If you define the same finder (same
name, return type, and parameters) on both home interfaces, then only a single
<query> element is defined in the ejb-jar.xml file and they must share the same
TopLink query.

The elements that are defined in the <query> section of the ejb-jar.xml file are:

� description (optional)- Used to provide text describing the finder.

� query-method - Used to specify the method for a finder or ejbSelect query.

� method-name - Specifies the name of a finder or select method in the entity
bean's implementation class.

� method-params - Contains a list of the fully-qualified Java type names of the
method parameters.

� method-param - Contains the fully-qualified Java type name of a method
parameter.

� result-type-mapping (optional)- Used in the query element to specify
whether an abstract schema type returned by a query for an ejbSelect method is
to be mapped to an EJBLocalObject or EJBObject type. Valid values are Local or
Remote

� ejb-ql - Used for all finders that can be expressed using EJB QL. It contains the
EJB QL query string that defines a finder or ejbSelect query. This parameter is
left empty for non-EJBQL finders.

WLGuide.book Page 2 Friday, September 6, 2002 9:56 AM

Choosing the best finder type for your query

Defining and Executing Finders 5-3

Choosing the best finder type for your query
TopLink supports five general types of finders:

� EJBQL queries

� Expressions built using the TopLink expression framework

� Dynamic queries

� redirect queries

� SQL queries

Most finders can be defined using the EJBQL mechanism. However, the other
mechanisms have their own advantages:

� Expression finders give the user access to TopLink's expression framework.

� If dynamic querying is required (the query logic must be defined at run time)
then one of the Dynamic types may be used.

� SQL and redirect queries are provided for those rare cases where no other
mechanism is suitable.

For more information about defining finders, see the Oracle9iAS TopLink Mapping
Workbench Reference Guide.

Using EJBQL
EJBQL is the standard query language defined in the EJB 2.0 specification and is
available for use in TopLink with both 1.1 and 2.0 beans. EJBQL finders enable a
specific EJBQL string to be specified as the implementation of the query.

Advantages EJBQL offers several advantages in that it:

� is the EJB 2.0 standard for queries

� can be used for most queries

� can be used in dependent object queries

Disadvantages Some complex queries may be difficult to define using EJBQL.

WLGuide.book Page 3 Friday, September 6, 2002 9:56 AM

Choosing the best finder type for your query

5-4 Oracle 9iAS TopLink CMP for Users of BEA WebLogic Server Guide

Creating an EJBQL finder

To create an EJBQL finder
1. Declare the finder in the ejb-jar.xml and enter the EJBQL string in the

ejb-ql tag.

2. Declare the finder on the Home interface, the LocalHome interface, or both as
required.

3. Start the Mapping Workbench.

4. Specify the ejb-jar.xml location and select File > Updated Project from
ejb-jar.xml to read in the finders.

5. Go to the Queries > Named Queries tab for the bean.

6. Select and configure the finder.

Following is an example of a simple EJBQL query that takes one parameter. In this
example, the question mark (“?”) is used to bind the argument name within the
EJBQL string.

SELECT OBJECT(employee) FROM Employee employee WHERE (employee.name =?1)

For more information on EJBQL, see the Oracle9iAS TopLink Foundation Library Guide.

Using the TopLink Expression framework
Finders can take advantage of TopLink's rich expressions framework to define the
logic of the query.

Advantages Using TopLink expressions to access the database has some advantages
over using EJBQL:

� Standardizes queries to Java code, which can be version controlled.

� Can simplify complex operations.

� Fuller set of querying features than is available through EJBQL.

Notes:

� The argument (bolded in the example) must be a numeric value.

� Employee (bolded in the example) refers to the
<abstract-schema-name> defined for that particular bean.

WLGuide.book Page 4 Friday, September 6, 2002 9:56 AM

Choosing the best finder type for your query

Defining and Executing Finders 5-5

Example A sub-query expression using a comparison and count operation
This code queries all employees that have more than 5 managed employees.

ExpressionBuilder emp = new ExpressionBuilder();
ExpressionBuilder managedEmp = new ExpressionBuilder();
ReportQuery subQuery = new ReportQuery(Employee.class, managedEmp);
subQuery.addCount();
subQuery.setSelectionCriteria (managedEmp.get("manager").equal(emp));
Expression exp = emp.subQuery(subQuery).greaterThan(5);

Disadvantages The disadvantages to using TopLink Expressions in finders are:

� The Mapping Workbench does not support the TopLink Expression framework,
so the Expression finders must be created in code using a project class or
descriptor amendment.

Creating an Expression Finder
1. Declare the finder in the ejb-jar.xml and leave the ejb-ql tag empty. This step is

optional but should be performed in order to maintain compliance with the EJB
2.0 spec.

2. Declare the finder on the Home interface, the LocalHome interface, or both as
required.

3. Create an amendment method as described in "Creating amendment methods
for Expression finders" on page 5-7.

4. Start the Mapping Workbench.

5. Select Advanced Properties > After Load from the menu for the bean.

6. Enable the amendment method for the descriptor by specifying the class and
name of the static method.

Note: This type of query is only possible using the TopLink expression
framework.

WLGuide.book Page 5 Friday, September 6, 2002 9:56 AM

Choosing the best finder type for your query

5-6 Oracle 9iAS TopLink CMP for Users of BEA WebLogic Server Guide

Building an expression
An example of an expression is as follows:

builder.get("address").get("city").equal(theCity);

This represents the query logic, or the “selection criteria” for the query. The logical
translation for this query is:

Find all Employees whose address attribute's city attribute is equal to the value
passed in as an argument when the finder method is invoked.

To introduce the basics of constructing a query expression, examine each element of
this expression:

� builder: Represents an instance of TopLink's ExpressionBuilder
(oracle.toplink.expressions.ExpressionBuilder), and represents the
entry point for defining an expression.

� get: The Get predicate allows comparison of attributes within the expression
(in this case, the city attribute of the entity bean's address attribute). If the
attribute is

� a target of a 1:1 relationship, the relationship is traversed and subsequent
predicates can access attributes of the related object. For example:

� get("address").get("city")

� a target of a one-to-many (1:M) or many-to-many (M:M) relationship, the
predicate anyof can be used to apply selection criteria to any of the related
objects, resulting in multiple objects returned equal(theCity), where the
equal operator describes the operation to be applied on the attribute.

In this case, city is compared based on equality to the parameter theCity,
which represents the first argument passed into the finder method.

� equal(theCity): The equal qualifier represents the string or value against
which records are being compared. The equal operator describes the operation
to be applied on the attribute. In this case, city is compared based on equality to
the parameter theCity, which represents the first argument passed into the
finder method.

� (“address”) and (“city”): These components represent nested attributes
within the data. Multiple get predicates indicate a logical comparison that
mirrors the structure of the data. Consider the two gets in the example:

builder.get("address").get("city")

WLGuide.book Page 6 Friday, September 6, 2002 9:56 AM

Choosing the best finder type for your query

Defining and Executing Finders 5-7

The first get in this statement specifies the address attribute, while the second get
examines city, which is an attribute of the attribute, address.

Creating amendment methods for Expression finders
A TopLink Expression query must first be implemented and then registered with
the runtime within a “TopLink descriptor amendment” method. Define the named
query in the static amendment method, and add the query to the TopLink
descriptor's QueryManager. The named query must be defined based on the
following:

� The name of the query must match the name of the finder on the home
interface.

� If the return type for the finder method on the home interface is
java.util.Collection, then the query object defined must be a
oracle.toplink.queryframework.ReadAllQuery.

� If the return type is an entity bean's remote or local interface (that is, only a
single entity bean is returned), then the query must be of type
oracle.toplink.queryframework
.ReadObjectQuery.

� The reference class must be the bean class against which the finder is querying.

� The arguments defined in the query must exactly match the parameter name
and type of the corresponding finder declared on your home interface. This
includes the argument names, the number of arguments, as well as the order in
which they occur.

For more information on configuring an amendment method, see the Oracle9iAS
TopLink Mapping Workbench Reference Guide.

Using Dynamic finders
The EJB 2.0 specification allows for finders defined in the ejb-jar.xml file as
queries, with their search criteria specified as EJBQL query strings. TopLink
expands on the specification, enabling you to create queries using other query
formats such as SQL, expressions, dynamic query objects, and Redirects (see
"Choosing the best finder type for your query" on page 5-3).

In addition to this support, TopLink provides a number of predefined finders that
can be used for executing dynamic queries (queries for which the logic is
determined by the user at run-time). The names for these finders are reserved by the
TopLink runtime and cannot be reused for other finders.

WLGuide.book Page 7 Friday, September 6, 2002 9:56 AM

Choosing the best finder type for your query

5-8 Oracle 9iAS TopLink CMP for Users of BEA WebLogic Server Guide

The predefined finders are:

� EJBObject findOneByEJBQL(String ejbql, Vector args)

� Collection findManyByEJBQL(String ejbql, Vector args)

� EJBObject findOneBySQL(String sql, Vector args)

� Collection findManyBySQL(String sql, Vector args)

� EJBObject findOneByQuery(DatabaseQuery query, Vector args)

� Collection findManyByQuery(DatabaseQuery query, Vector args)

Each of these finders can also be used without the Vector of arguments. For
example, EJBObject findOneByEJBQL(String ejbql) is a valid dynamic finder.
The return type of “EJBObject” is replaced by the component interface of your bean.

Creating a Dynamic finder

To create a Dynamic finder
1. Declare the finder in the ejb-jar.xml file and leave the ejb-ql tag empty.

2. Declare the finder on the Home interface, the LocalHome interface, or both as
required.

3. Start the Mapping Workbench.

4. Specify the ejb-jar.xml location and select File > Updated Project from
ejb-jar.xml to read in the finders.

5. Go to the Queries > Named Queries tab for the bean.

6. Select and configure the finder.

Notes:

� If the advanced query options described in "Advanced finder
options" on page 5-14 are not required, only steps 1 and 2 needs to be
completed.

� The findOneByQuery and findManyByQuery dynamic finders
should not have any query options configured for them. The reason
is the query is created at runtime by the client and passed as a
parameter to the finder. Any query options that you wish to set
should be done on that query.

WLGuide.book Page 8 Friday, September 6, 2002 9:56 AM

Choosing the best finder type for your query

Defining and Executing Finders 5-9

Using findAll
Like the dynamic finders, the name findAll is reserved by the TopLink runtime
and cannot be reused for other finders. For more information on defining and
configuring the finder, see "Creating a Dynamic finder" on page 5-8.

Using findByPrimaryKey
The findByPrimaryKey finder is always created in the Mapping Workbench on the
initial loading of a bean class. Like other finders, the findByPrimaryKey finder can
be configured with the various query options that TopLink provides (see
"Advanced finder options" on page 5-14) but can also be deleted from the Mapping
Workbench project. In this case, however, a warning is issued informing the user
that the default container findByPrimaryKey options will be active. The EJB 2.0
specification requires that the findByPrimaryKey call is present on the home
interface, but should not have a query entry in the ejb-jar.xml file.

Using redirect finders
Redirect finders enable you to specify a finder for which the implementation is
defined in code as a static method on an arbitrary helper class. When the finder is
invoked, the call is re-directed to the specified static method.

The finder can have any arbitrary parameters or none at all. If the finder includes
parameters, they are packaged into a vector and passed to the redirect method.

Advantages Redirect finders provide client parameter-passing flexibility. Compared
to other finder types in which the parameters are relatively simple objects used to
match against an entity bean’s attributes, redirect finders may include arguments
that are not linked to these values, because the finder implementation is completely
defined by the bean developer. The redirect method typically contains the logic
required to extract the relevant data from the parameters and use it to construct a
TopLink query.

Disadvantages Redirect queries are complex and often more difficult to configure.
they also require an extra helper method to define the query.

To create a redirect finder
1. Declare the finder in the ejb-jar.xml leaving the ejb-ql tag empty.

2. Declare the finder on the Home interface, the localHome interface, or both as
required.

WLGuide.book Page 9 Friday, September 6, 2002 9:56 AM

Choosing the best finder type for your query

5-10 Oracle 9iAS TopLink CMP for Users of BEA WebLogic Server Guide

3. Create an amendment method (see "Creating amendment methods for
Expression finders"). on page 5-7

4. Start the Mapping Workbench.

5. Select Advanced Properties > After Load from the menu for the bean.

6. Enable the amendment method for the descriptor by specifying the class and
name of the static method.

The amendment method should then add a query to the descriptor's QueryManager
as follows:

ReadAllQuery query = new ReadAllQuery();query.setRedirector(new
MethodBaseQueryRedirector (examples.ejb.cmp20.advanced.
FinderDefinitionHelper.class, "findAllEmployeesByStreetName"));
descriptor.getQueryManager().addQuery ("findAllEmployeesByStreetName", query);
examples.ejb.cmp20.advanced.FinderDefinitionHelper includes a static
method findAllEmployeesByStreetName(Session session, Vector args)
which executes the query. It is up to the implementor of the query method to ensure
that the proper types are returned. For methods returning more than one bean, the
return type must be java.util.Vector. TopLink converts this result to
java.util.Enumeration (or Collection) if required.

The redirect method must return either a single entity bean (Object) or a Vector. The
possible method signatures are:

� public static Object
redirectedQuery2(oracle.toplink.sessions.Session s, Vector
args)

� public static Vector
redirectedQuery4(oracle.toplink.sessions.Session s, Vector
args)

Example 5–2 A simple Redirect query implementation:

public static Vector findAllEmployeesByStreetName(Session s, Vector args) {
ReadAllQuery raq = new ReadAllQuery();
raq = raq.setReferenceClass(EmployeeBean.class);
raq.addArgument("streetName");

Note: The redirect method also takes a TopLink Session as a parameter.
For more information on TopLink Session, see “Database Sessions” in the
Oracle9iAS TopLink Foundation Library Guide.

WLGuide.book Page 10 Friday, September 6, 2002 9:56 AM

Choosing the best finder type for your query

Defining and Executing Finders 5-11

ExpressionBuilder builder = newExpressionBuilder();
.raq.setSelectionCriteria(builder.get("address")
.get("street").equal(args.elmentAt(0)));

return (Vector)s.executeQuery(raq);
}
At run time when the client invokes the finder from the entity bean’s home, the
arguments are automatically packaged into the args Vector (in order of appearance
from the finder’s method signature) for use within the static method. The code
implementing the Redirect finder can then use any necessary APIs to extract
information out of the arguments (once retrieved from the args Vector) for use
within a TopLink expression.

Using SQL
SQL type finders allow a specific SQL string to be specified as the implementation
of the query.

Advantages The advantages of using SQL include:

� It can be used if the query logic cannot be expressed using EJBQL or the
TopLink expression framework.

� It allows for the use of a stored procedure instead of TopLink generated SQL

� There may be cases where custom SQL will improve performance.

Disadvantages This approach is generally not recommended if the query can be
created using any of the other options, because

� Writing complex custom SQL statements requires a significant maintenance
effort if the database tables change.

� The hard coded SQL limits portability to other databases.

� No validation is done on the SQL String, so if the SQL has errors, these will not
be detected until run time.

� If the SQL does something other than SELECT, unpredictable errors may result.

WLGuide.book Page 11 Friday, September 6, 2002 9:56 AM

Choosing the best finder type for your query

5-12 Oracle 9iAS TopLink CMP for Users of BEA WebLogic Server Guide

Creating an SQL finder

To create an SQL finder
1. Declare the finder in the ejb-jar.xml and leave the ejb-ql tag empty.

2. Start the Mapping Workbench.

3. Specify the ejb-jar.xml location and select File > Updated Project from
ejb-jar.xml to read in the finders.

4. Go the Queries > Named Queries tab for the bean.

5. Select the finder, check the SQL radio button and enter the SQL string.

6. Configure the finder.

Following is an example of a simple SQL finder that takes one parameter. In this
example, the hash-character '#' is used to bind the argument projectName within
the SQL string.

SELECT * FROM EJB_PROJECT WHERE (PROJ_NAME = #projectName)

Using ejbSelect
ejbSelects are similar to finders in function, but they can only be invoked from
within a bean. Like finders, ejbSelects are defined in the ejbjar.xml using a
<query> entry and can have various options configured using the Mapping
Workbench. Also like finders, ejbSelects require a SELECT clause in addition to FROM
and WHERE clauses.

However, ejbSelects differ from regular finders in the following ways:

� ejbSelects require an additional <result-type-mapping> tag, which specifies
whether the return type is intended to be Local or Remote (the default is Local).

� ejbSelects are not defined on the bean home, but rather on the bean itself. These
are not exposed to the client, but are used internally by bean business methods
and by home methods.

� ejbSelect queries can return other return types other than the entity bean type
on which they are invoked, and in fact may return any type corresponding to a
container-managed relationship or container-managed field.

WLGuide.book Page 12 Friday, September 6, 2002 9:56 AM

Choosing the best finder type for your query

Defining and Executing Finders 5-13

Understanding select methods
Select methods are query methods intended for internal use within an entity bean
instance. Unlike finder methods, select methods are not specified in the entity
bean’s home interface but on the abstract bean itself.

The format for an ejbSelect method definition looks like this:

public abstract type ejbSelect<METHOD>(...);

The select method represents a query method that is not directly exposed to the
client in the home or component interface. It is defined as being abstract, and each
bean can include zero or more such methods.

Even though the select method is not based on the identity of the entity bean
instance on which it is invoked, it can use the primary key of an entity bean as an
argument to an ejbSelect<METHOD> to define a query that is logically scoped to a
particular entity bean instance.

Select methods have the following characteristics:

� The method name must have ejbSelect as its prefix.

� It must be declared as public.

� It must be declared as abstract.

� The throws clause must specify the javax.ejb.FinderException, although it may
also specify application-specific exceptions.

The return type for ejbSelects that return entities is determined by the
<result-type-mapping> tag in the ejb-jar.xml. If the flag is set to Remote, then
EJBObjects are returned; if set to Local, then EJBLocalObjects are returned.

Creating an ejbSelect
1. Declare the ejbSelect in the ejb-jar.xml, enter the EJBQL string in the <ejb-ql>

tag, and specify the return type in the <result-type-mapping> tag (if
required).

2. Declare the ejbSelect on the abstract bean class.

3. Start the Mapping Workbench.

4. Specify the ejb-jar.xml location and select File > Updated Project from
ejb-jar.xml to read in the finders.

5. Go the Queries > Named Queries tab for the bean.

6. Select and configure the ejbSelect query.

WLGuide.book Page 13 Friday, September 6, 2002 9:56 AM

Advanced finder options

5-14 Oracle 9iAS TopLink CMP for Users of BEA WebLogic Server Guide

Advanced finder options
There are a number of options that can be used by the experienced TopLink
developer. These options should only be used when the developer has a complete
understanding of the consequences of making changes to them.

Caching options
Various configurations can be applied to the underlying query to achieve the correct
caching behavior for the application. There are several ways to control the caching
options for queries.

For most queries, caching options can be set in the Mapping Workbench (see
“Caching objects” in the Mapping Workbench Reference Guide).

The caching options can be set on a per-finder basis. The valid values are:

� ConformResultsInUnitOfWork (default): For finders returning a single result
and finders returning a collection, the 'UnitOfWork' cache for the current JTS
UserTransaction is queried. The finder's results will conform to uncommitted
new objects, deleted objects and changed objects.

� DoNotCheckCache: For finders returning a single object and finders returning
a collection, the cache is not checked.

� CheckCacheByExactPrimaryKey: If a finder returning a single object
involves an expression that contains the primary key and only the primary key,
the cache is checked.

� CheckCacheByPrimaryKey: If a finder returning a single object involves an
expression that contains the primary key, a cache hit can still be obtained
through processing the expression against the object in the cache.

� CheckCacheThenDatabase: A finder returning a single object queries the
cache completely before resorting to accessing the database.

� CheckCacheOnly: For finders returning a single object and finders returning a
collection, only the cache is checked; the database is not accessed.

For more information about TopLink queries as well as the TopLink UnitOfWork
and how it integrates with JTS, see “Database Sessions” in the Oracle9iAS TopLink
Foundation Library Guide.

WLGuide.book Page 14 Friday, September 6, 2002 9:56 AM

Advanced finder options

Defining and Executing Finders 5-15

Disabling caching of returned finder results
By default, TopLink adds to the cache all returned objects whose primary keys are
not currently in the cache. This can be disabled if the client knows that the set of
returned objects is very large and wants to avoid the expense of storing these
objects. This option is configurable through the Mapping Workbench or on the
TopLink query API for queries using dontMaintainCache().

Caching of returned finder results can also be disabled in the Mapping Workbench.
For more information on disabling caching for returned finder results, see the
Oracle9iAS TopLink Mapping Workbench Reference Guide.

Refreshing finder results
A finder may return information from the database for an object whose primary key
is already in the cache. When set to true, the refresh cache option in the Mapping
Workbench indicates that the object's non-primary key attributes are refreshed with
the returned information. This occurs on findByPrimaryKey finders as well as all
EXPRESSION and SQL finders for that bean when set at the bean attributes level.

When refreshing is enabled, the refreshIdentityMapResult() method is
invoked on the query. This is configured to automatically cascade private parts. If
behavior other than private object cascading is desired, use a dynamic finder.

In the case where an OptimisticLock field is in use, the refresh cache option can
be used in conjunction with the onlyRefreshCacheIfNewerVersion() option. In
that case, the non-primary key attributes are refreshed only if the version of the
object in the database is newer than the version in the cache.

For finders that have no refresh cache setting, the
onlyRefreshCacheIfNewerVersion() method has no effect.

Note: For finders whose queries are manually created
(findOneByQuery, findManyByQuery), caching options must be applied
manually using TopLink for Java APIs.

Caution: When issuing refreshing finders while in user transactions,
refreshing the object may cause changes already made to that object
during that transaction to be lost.

WLGuide.book Page 15 Friday, September 6, 2002 9:56 AM

Advanced finder options

5-16 Oracle 9iAS TopLink CMP for Users of BEA WebLogic Server Guide

Managing large result sets
Finders can return large result sets which can be resource intensive to collect and
process. To give the client more control over the returned results, TopLink finders
can be configured to use cursors. This leverages TopLink's CursoredStream and a
database's cursoring ability to break up the result set into smaller, more manageable
pieces.

Building the query
Any finder that returns a java.util.Enumeration under EJB 1.1 or a
java.util.Collection under EJB 2.0 can be configured to use a cursor. When the
query is created for the finder, useCursoredStream() enables cursoring.

Example A query that uses a CursoredStream
ReadAllQuery raq = new ReadAllQuery();
ExpressionBuilder bldr = new ExpressionBuilder();
raq.setReferenceClass(ProjectBean.class);
raq.useCursoredStream();
raq.addArgument("projectName");
raq.setSelectionCriteria(bldr.get("name").
like(bldr.getParameter("projectName")));
descriptor.getQueryManager().addQuery ("findByNameCursored");

Executing the finder from the client in EJB 1.1
An extended protocol is available on the client in
oracle.toplink.ejb.cmp.wls11.CursoredEnumerator (based on
java.util.Enumeration):

hasMoreElements() As with java.util.Enumeration, this method returns a
boolean indicating if any elements remain.

nextElement() As with java.util.Enumeration, this method returns the next
available element.

nextElements(int count) Retrieve a Vector of at most count elements from the
available results, depending on how many elements are left to read.

close() close the cursor on the server. It is mandatory that the client send this
message when it is done with the results.

WLGuide.book Page 16 Friday, September 6, 2002 9:56 AM

Advanced finder options

Defining and Executing Finders 5-17

The behavior differs from a normal finder as follows:

� Only the elements requested by the client are sent to the client.

� Nothing is cached on the client in the CursoredEnumerator.

� If you are using the transactional attribute REQUIRED for your entity bean, all
reads must be wrapped in a UserTransaction begin() and commit(). If not,
reads beyond the first page of the cursor will have no transaction in which to
work.

The following example illustrates client-code executing a cursored finder:

import oracle.toplink.ejb.cmpwaswls11. CursoredEnumerator;
//... other imports as necessary
getTransaction().begin();
CursoredEnumerator cursoredEnumerator = (CursoredEnumerator)getProjectHome()
.findByNameCursored("proj%");

Vector projects = new Vector();
for (int index = 0; index < 50; i++) {
Project project = (Project)cursoredEnumerator.nextElement();
projects.addElement(project);
}
// Rest all at once ...
Vector projects2 = cursoredEnumerator.nextElements(50);
cursoredEnumerator.close();
getTransaction().commit();

Executing the finder from the client in EJB 2.0
An extended protocol is available for the client in
oracle.toplink.ejb.cmp.wls.CursoredCollection (based on
java.util.Collection):

isEmpty() As with java.util.Collection, isEmpty() returns a boolean
indicating if the Collection is empty or not.

size() As with java.util.Collection, size() returns an integer which is the
number of elements in the Collection.

iterator() As with java.util.Collection, iterator() returns a
java.util.Iterator for enumerating the elements in the Collection.

WLGuide.book Page 17 Friday, September 6, 2002 9:56 AM

Advanced finder options

5-18 Oracle 9iAS TopLink CMP for Users of BEA WebLogic Server Guide

An extended protocol is also available for
oracle.toplink.ejb.cmp.wls.CursoredIterator (based on
java.util.Iterator):

close() closes the cursor on the server. It is mandatory that the client send this
message when it is done with the results.

hasNext() returns a boolean indicating if there is a next element.

next() returns the next available element.

next(int count) retrieves a Vector of at most count elements from the available
results, depending on how many elements are left to read.

This behavior differs from a normal finder as follows:

� Only the elements requested by the client are sent to the client.

� Nothing is cached on the client.

� If you are using the transactional attribute REQUIRED for your entity bean, all
reads must be wrapped in a UserTransaction begin() and commit(). If not,
reads beyond the first page of the cursor will have no transaction in which to
work.

The following example illustrates client-code executing a cursored finder

//import both CursoredCollection and CursoredIterator
import oracle.toplink.ejb.cmp.wls.*;
//... other imports as necessary
getTransaction().begin();
CursoredIterator cursoredIterator = (CursoredIterator)
getProjectHome().findByNameCursored("proj%")
.iterator();

Vector projects = new Vector();
for (int index = 0; index < 50; i++) {
Project project = (Project)cursoredIterator.next();
projects.addElement(project); !
}
// Rest all at once ...
Vector projects2 = cursoredIterator.next(50);
cursoredIterator.close();
getTransaction().commit();

WLGuide.book Page 18 Friday, September 6, 2002 9:56 AM

Run-time Considerations 6-1

6
Run-time Considerations

This chapter discusses some of the relevant run-time issues surrounding writing an
application that uses TopLink Container-Managed Persistence in the BEA WebLogic
Server container. Other facets of the run-time execution that relate to EJB’s and the
BEA WebLogic Server are beyond the scope of this document and should be
reviewed in the EJB specification and/or the BEA WebLogic Server documentation.

Transaction support
Entity beans that use container-managed persistence may participate in transactions
that are either client-demarcated or container-demarcated.

Clients of entity beans may directly set up transaction boundaries using the
javax.transaction.UserTransaction interface. Invocations on entity beans are
automatically wrapped in transactions that are initiated by the container based
upon the transaction attributes supplied in the EJB deployment descriptor.

For more information on how to use transactions with EJBs, consult the EJB
specification and the BEA WebLogic Server documentation. The following sections
describe briefly how TopLink participates in EJB transactions.

TopLink within the BEA WebLogic Server
Within the BEA WebLogic Server, TopLink provides a persistence layer for entity
beans. While the BEA WebLogic Server controls all aspects of transaction
management, the TopLink layer is synchronized with the BEA WebLogic
transaction service so that updates to the database are carried out at the appropriate
times. BEA WebLogic, through its JTS JDBC Driver, determines the majority of
transactional behavior

WLGuide.book Page 1 Friday, September 6, 2002 9:56 AM

Maintaining bi-directional relationships

6-2 Oracle 9iAS TopLink CMP for Users of BEA WebLogic Server Guide

When updates occur
In general, TopLink does not issue updates to the underlying data store until the
transaction that the enterprise beans are active in begins its two-stage commit
process. This allows for:

� SQL optimizations to ensure that only changed data is written out to the data
store

� Proper ordering of updates to allow for database constraints

Valid transactional states
All modifications to persistent beans and objects should be carried out in the
context of a transaction. The transaction may either be client-controlled or
container-controlled.

The TopLink container does not support modifying beans through their remote
interface when no transaction is active. In this case, TopLink does not write out any
changes to the data. Modifying entity beans without a transaction leads to an
inconsistent state, potentially corrupting the values in the TopLink cache.
Transactional attributes MUST be properly specified in the bean deployment
descriptors, to ensure that data is not corrupted.

Although it is not valid to modify entity beans through their remote interface
without a transaction, in the current release it is permitted to invoke methods on
EJB homes that change the state in the underlying database. Invocation of removes
and creates that are invoked against homes in the absence of a transaction are
permitted.

Maintaining bi-directional relationships
When one-to-one or many-to-many mappings are bi-directional, the back-pointers
must be correctly maintained as the relationships change. When the relationship is
between two entity beans (in EJB 2.0), TopLink automatically maintains the
relationship. However, when the relationship is between an entity bean and a Java
object, or when the application is built to the EJB 1.1 specification, the relationship
must be maintained manually. To set the back-pointer under the EJB 2.0
specification, either

� The entity bean can maintain it when the relationship is established or
modified, or

� The client can explicitly set the back-pointer.

WLGuide.book Page 2 Friday, September 6, 2002 9:56 AM

Managing dependent objects (EJB 1.1)

Run-time Considerations 6-3

If back-pointers are set within the entity bean, the client is freed of this
responsibility. This has the advantage of encapsulating the mapping maintenance
implementation in the bean.

One-to-Many relationship
In a one-to-many mapping, an EmployeeBean might have a number of dependent
phoneNumbers. When a phoneNumber is added to an employee record, the
phoneNumber's back-pointer to its owner (the employee) must also be set.

Example 6–1 Setting the back-pointer in the entity bean

Maintaining a one-to-many relationship in the entity bean involves getting the local
object reference from the context of the EmployeeBean, then updating the
back-pointer. The following code illustrates this technique:

// obtain owner and phoneNumber
owner = empHome.findByPrimaryKey(ownerId);
phoneNumber = new PhoneNumber("cell", "613", "5551212");
// add phoneNumber to the phoneNumbers of the owner
owner.addPhoneNumber(phoneNumber);
The Employee's addPhoneNumber() method maintains the relationship as follows:

public void addPhoneNumber(PhoneNumber newPhoneNumber) {
//get, then set the back pointer to the owner
Employee owner = (Employee)this.getEntityContext()
.getEJBLocalObject();

newPhoneNumber.setOwner(owner);
//add new phone
getPhoneNumbers().add(newPhoneNumber);

}

Managing dependent objects (EJB 1.1)
The EJB 1.1 specification recommends that entity beans be modeled such that all
dependent objects are regular Java objects and not entity beans. If a dependent or
privately owned object is to be exposed to the client application it must be
serializable (it must implement the java.io.Serializable interface) so that it
may be sent over to the client and back to the server.

Note: Under the EJB 1.1 specification, all back pointers must be
updated manually.

WLGuide.book Page 3 Friday, September 6, 2002 9:56 AM

Managing dependent objects (EJB 1.1)

6-4 Oracle 9iAS TopLink CMP for Users of BEA WebLogic Server Guide

Serializing Java objects between client and server
Recall that entity beans are remote objects. This results in a “pass-by-reference”
situation when entity beans are referenced remotely. When an entity bean is
returned to the client, a remote reference to the bean is returned.

Regular Java objects are not remote objects like entity beans are. Instead of a
“pass-by-reference” situation, when regular Java objects are referenced remotely
they are “passed-by-value” and serialized (copied) from the remote machine that
they were originally on.

Merging changes to regular Java objects
One of the side-effects of serializing regular Java objects from server to client and
vice-versa is a loss of object identity, due to the copying semantics inherent in
serialization. When a dependent object is serialized from the server to the client and
then back, two objects with the same primary key but different object identity exist
in the server cache. These objects must be merged to avoid exceptions.

If relationships exist between entity beans and Java objects and these objects are
serialized back and forth between the client and server:

� Use the TopLink SessionAccessor utility class to perform the merging for you,
or

� Do the merging yourself by putting merge methods on your regular Java objects
and within your “set” methods

Using SessionAccessor to merge dependent objects Following the first option, you
would use the class oracle.toplink.ejb.WebLogic.SessionAccessor to
perform merges for you within your “set” methods on your bean class that take
regular Java objects as their arguments.

There are two static methods defined on SessionAccessor that allow you to do the
register/merge operation. One is called registerOrMergeObject() and the other
is called registerOrMergeAttribute().

The registerOrMergeObject() method takes two arguments: the object to merge and
the EntityContext for the bean. For example:

public void setAddress(Address address) {
this.address = (Address) SessionAccessor.registerOrMergeObject
(address,this.ctx);

}

WLGuide.book Page 4 Friday, September 6, 2002 9:56 AM

Managing dependent objects (EJB 1.1)

Run-time Considerations 6-5

The registerOrMergeAttribute() method requires three arguments: the Java
object to be merged, the name of the attribute, and the EntityContext for the bean:

public void setAddress(Address address) {
this.address = (Address) SessionAccessor.registerOrMergeAttribute
(address, “address”, this.ctx);

}
The registerOrMergeAttribute() call can be used "as is" for collection
mappings: you pass in the whole collection as the attribute object. For example:

public void setPhones(Vector phones) {
this.phones = (Vector)SessionAccessor.registerOrMergeAttribute(phones,
"phones", this.ctx);
//... additional logic to set back-pointers on the phones

}
The registerOrMergeObject() method is not as simple to use for setters of
collection mappings. It can be used, but the collection must be iterated through,
invoking the registerOrMergeObject() for each element in the collection. A
new collection, set in the entity bean, must be created to hold the return values of
the call.

Merging code may be required in methods that add elements to a collection. For
example:

//The old version of this phone number is removed from the collection. It is
assumed that equals() returns true for phones with the same primary key value.
If this is not true, the phones must be iterated through to see if a phone with
the same primary key already exists in the collection.
public void addPhoneNumber(PhoneNumber phone) {
phone.setOwner((Employee)this.ctx.getEJBObject());
//add to collection
//merge new phone
PhoneNumber serverSidePhone =
(PhoneNumber)SessionAccessor.registerOrMergeObject(phone,this.ctx);
//set back pointer
getPhoneNumbers().addElement(serverSidePhone);
}

Note: This exmple only requires merging code if there is a risk that a
Phone with the same primary key could be added twice. If it can be
assured that the elements in a collection are not added in more than once,
the merging code is not required.

WLGuide.book Page 5 Friday, September 6, 2002 9:56 AM

Managing collections of EJBObjects (EJB 1.1)

6-6 Oracle 9iAS TopLink CMP for Users of BEA WebLogic Server Guide

Merging dependent objects without SessionAccessor As noted above, the issue that
arises with serializing is that multiple copies of the same object (with different
object identity) can exist within the server cache. These objects must be “merged”,
either using the SessionAccessor methods described above, or manually.

There may be several ways to merge the objects. For example, you could use a
set() method as follows:

public void setAddress(Address address) {
if(this.address == null){

this.address = address;
} else{

this.address.merge(address);
}

}
Merging must also be done when objects are added to a collection on the entity
bean. If it is certain that objects are never “re-added” to a collection, then merging is
not necessary.

Merging a whole collection requires a little more work. For each object in the new
collection, it must be determined if a copy of the object already exists in the
collection. If it does, it must be merged. If not, the new object must simply be added
to the collection.

Managing collections of EJBObjects (EJB 1.1)
Collections typically use the equals() method to compare objects. However, in the
case of a Java object that contains a collection of entities, the EJBObjects do not
respond as expected to the equals() method. In this case, the isIdentical()
method should be used instead. Consequently, you cannot expect the standard
collection methods such as remove() or contains() to work properly when
applied to a collection of EJBObjects.

Note: This issue does not arise in the case of an entity containing a
collection of entities, because a special EJB 2.0 container collection is used
which handles equality appropriately.

WLGuide.book Page 6 Friday, September 6, 2002 9:56 AM

Managing collections of EJBObjects (EJB 1.1)

Run-time Considerations 6-7

Several options are available when dealing with collections of EJBObjects. One
option is to create a helper class to assist with collection-type operations. An
example of such a helper is provided in the distribution named
EJBCollectionHelper:

public void removeOwner(Employee previousOwner){
EJBCollectionHelper.remove(previousOwner, getOwners());
}
The implementation of remove() and indexOf() in EJBCollectionHelper is shown in
the next example:

public static boolean remove(javax.ejb.EJBObject ejbObject, Vector vector) {
int index = -1;
index = indexOf(ejbObject, vector);
// indexOf returns -1 if the element is not found.
if(index == -1){

return false;
}
try{

vector.removeElementAt(index);
} catch(ArrayIndexOutOfBoundsException badIndex){

return false;
}
return true;

}
public static int indexOf(javax.ejb.EJBObject ejbObject, Vector vector) {

Enumeration elements = vector.elements();
boolean found = false;
int index = 0;
javax.ejb.EJBObject current = null;
while(elements.hasMoreElements()){

try{
current = (javax.ejb.EJBObject)
elements.nextElement();
if(ejbObject.isIdentical(current)){

found = true;
break;

}
}catch(ClassCastException wrongTypeOfElement){

. . .
}catch (java.rmi.RemoteException otherError){

. . .
}
index++; //increment index counter

}

WLGuide.book Page 7 Friday, September 6, 2002 9:56 AM

Managing collections of EJBObjects (EJB 1.1)

6-8 Oracle 9iAS TopLink CMP for Users of BEA WebLogic Server Guide

if(found){
return index;

} else{
return -1;

}
}
If JDK 1.2 is used, a special Collection class could be created that uses
isIdentical() instead of equals() for all its comparison operations. For
isIdentical() to function correctly, the equals() method must be properly
defined for the primary key class.

WLGuide.book Page 8 Friday, September 6, 2002 9:56 AM

Customization 7-1

7
Customization

With container-managed persistence (CMP), many aspects of persistence are
handled transparently by the EJB “container”. Other properties may be configured,
as required, in the bean deployment descriptors (see "Configuring entity bean
deployment descriptors" on page 4-3). The intent is to minimize the amount of
persistence code that the EJB developer has to write.

However, there are cases where a bean developer or deployer wants to take
advantage of advanced features that require additional customization and
configuration of bean deployment.

TopLink Container-Managed Persistence provides a number of entry points for
advanced customization of mappings, logins, and other aspects of persistence.
These can be used to take advantage of advanced TopLink features, JDBC driver
features, or to gain “low-level” access to TopLink for Java APIs that are normally
masked in the container-managed persistence layer.

Customizing TopLink descriptors and mappings
TopLink projects and descriptors are normally created using the TopLink Mapping
Workbench. The output of the TopLink Mapping Workbench tool is an XML file that
contains all of the mapping information required to store beans and persistent
objects in the database.

Some customizations available to the TopLink descriptors that make up the project
cannot be configured using the Mapping Workbench. In these situations, customize
the mapping information by specifying an amendment method to be run at deployment

Note: For basic information about TopLink descriptors and mappings,
see the Oracle9iAS TopLink Mapping Workbench Reference Guide.

WLGuide.book Page 1 Friday, September 6, 2002 9:56 AM

Customizing TopLink descriptors and mappings

7-2 Oracle 9iAS TopLink CMP for Users of BEA WebLogic Server Guide

time.. Each TopLink descriptor can have an amendment method. For more
information, see "Customizing TopLink descriptors with amendment methods" on
page 7-3.

Alternatively, the TopLink Mapping Workbench can be bypassed entirely, and
create all the mappings directly in Java code. With this approach, any
customizations can be made directly in the source code.

Creating projects and TopLink descriptors in Java
Creating mappings and TopLink descriptors directly in Java code provides access to
features that are not available in TopLink Mapping Workbench.

To define a project using Java code:

1. Implement a project class that extends the
oracle.toplink.sessions.Project class.

2. Compile the project class.

3. Edit the toplink-ejb-jar.xml deployment descriptor so that the
<project-class> element is used. For more about creating project classes, see
the Oracle9iAS TopLink Mapping Workbench Reference Guide.

After the TopLink project is written and compiled, it can be used in deployment.
You can specify the project class to be used instead of a project file by filling in the
project-class element in the toplink-ejb-jar.xml deployment descriptors
for your entity beans.

Note: The TopLink Mapping Workbench can be used to create a Java
Project class from an existing project which can be used as a starting
point for a custom project class. See the Oracle9iAS TopLink Mapping
Workbench Reference Guide for more information.

Also note that the TopLink Mapping Workbench has an Export Project to
Java Source... option which can be used as starting point for coding the
project class manually.

WLGuide.book Page 2 Friday, September 6, 2002 9:56 AM

Working with TopLink ServerSession and Login

Customization 7-3

The next example shows the session portion of a deployment descriptor that
specifies a session class.

<session>
<name>EmployeeDemo</name>
<project-class>oracle.toplink.demos.ejb.cmp.wls.employee.EmployeeProject
</project-class>
<login>

<connection-pool>ejbPool</connection-pool>
</login>

</session>

Customizing TopLink descriptors with amendment methods
The TopLink descriptor of any persistent class can be modified when the descriptor
is first instantiated. For container-managed persistence, this happens when the
entity beans are deployed into the EJB server.

Amendment methods are static methods that are run at deployment time and allow
for arbitrary descriptor customization code to be run.

For more information on amendment methods, see the Oracle9iAS TopLink Mapping
Workbench Reference Guide.

Working with TopLink ServerSession and Login
TopLink interacts with databases using two key components:

� The ServerSession is a TopLink component that interacts with the underlying
database on behalf of the application.

� The DatabaseLogin contains connection information and settings that are
specific to the underlying database.

Understanding ServerSession
In TopLink container-managed persistence support, the ServerSession is
normally hidden from the EJB developer because interaction with the database is
performed transparently by the EJB container (via TopLink). The ServerSession is
still present “behind-the-scenes”, but plays a lesser role in its direct interaction with
the EJB application.

The ServerSession handles all aspects of persistence, such as caching, reading and
writing.

WLGuide.book Page 3 Friday, September 6, 2002 9:56 AM

Working with TopLink ServerSession and Login

7-4 Oracle 9iAS TopLink CMP for Users of BEA WebLogic Server Guide

Understanding DatabaseLogin
Databases typically require a valid username and password to login successfully. In
a TopLink application, this login information is stored in the DatabaseLogin class.
All sessions must have a valid DatabaseLogin instance before logging in to the
database.

For more information on DatabaseLogin, see “Database Sessions” in the
Oracle9iAS TopLink Foundation Library Guide.

Customizing ServerSession and DatabaseLogin
A session amendment class can be used to configure the ServerSession and
DatabaseLogin in ways not available through the deployment descriptor file.

The ServerSession and DatabaseLogin may need to be customized for any of the
following reasons:

� You need to specify special settings for the JDBC driver, such as to use parameter
binding or to use a different data conversion routine to work with an
incompatible driver

� You wish to directly access regular TopLink for Java features, such as database
connections or caching

Other settings that can be applied to the ServerSession and DatabaseLogin are:

� Native SQL support — required if your JDBC bridge does not support the JDBC
standard SQL syntax

� Binding and parameterized SQL — these options determine whether values are
inlined directly into the generated SQL or are parameterized

� Batch writing — allows groups of insert/update/delete statements to be sent to
the database in a single batch

� Optimizing data conversion

Additional configuration changes
To make additional configuration changes, one must obtain access to the
ServerSession or DatabaseLogin that exists on the server. This access enables
direct method invocation on the session or login.

WLGuide.book Page 4 Friday, September 6, 2002 9:56 AM

Working with TopLink ServerSession and Login

Customization 7-5

There are currently two supported methods of obtaining the session and login
objects and configuring them:

� Use the Deployment Customization interface

� Use a BEA WebLogic Startup class

Using the DeploymentCustomization interface
A DeploymentCustomization class is one that implements the
oracle.toplink.ejb.cmp.DeploymentCustomization interface. A class
implementing this interface must be specified in the toplink-ejb-jar.xml bean
deployment descriptor for the project. If a class is specified, an instance of the class
is created during deployment, and the code provided by the class is run.

The DeploymentCustomization interface defines the following methods:

public String beforeLoginCustomization(Session session) throws Exception;
public String afterLoginCustomization(Session session) throws Exception;
These methods are invoked immediately before and after TopLink logs into the
database for the first time (during bean deployment). This gives developers the
chance to invoke methods on the ServerSession as required.

The DatabaseLogin can be obtained by invoking the getLogin() method on the
Session that is passed in as a parameter to each method. The following example
illustrates how the beforeLoginCustomization() method configures TopLink to
use parameter binding:

public String beforeLoginCustomization(Session session)
throws Exception{

session.getLogin().useBinding();
return "beforeLogin customization successful";

}
The class implementing the DeploymentCustomization interface should have a
zero argument constructor. The Strings returned from each of the methods are
output to the BEA WebLogic Server console.

To supply a class to be used for this purpose, the fully-qualified name of the class
must be supplied in the customization-class element of the
toplink-ejb-jar.xml deployment descriptor.

WLGuide.book Page 5 Friday, September 6, 2002 9:56 AM

Working with TopLink ServerSession and Login

7-6 Oracle 9iAS TopLink CMP for Users of BEA WebLogic Server Guide

The following example shows the project portion of the toplink-ejb-jar.xml
deployment descriptor that specifies a customization class

<session>
<name>EmployeeDemo</name>
<project-class>
oracle.toplink.demos.ejb.cmp.wls
.employee.EmployeeProject.class
</project-class>
<login>

<connection-pool>ejbPool</connection-pool>
</login>
<customization-class>
oracle.toplink.demos.ejb.cmp.wls
.employee.EmployeeCustomizer
</customization-class>

</session>

Using a BEA WebLogic Startup class
When a project is deployed, the TopLink Session is placed in a static Hashtable
keyed on the project identifier (the value of name in the toplink-ejb-jar.xml
deployment descriptor).

This can be retrieved at startup-time by using a BEA WebLogic Startup class (an
implementor of the interface weblogic.common.T3StartupDef) to:

� Call SessionManager.getManager().getSession(String) to look up the
Session under the name supplied by the name parameter

� Invoke methods on the Session

For example:

import weblogic.common.*;
import oracle.toplink.threetier.ServerSession
import oracle.toplink.tools.sessionmanagement.SessionManager

public class BindingStartup implements T3StartupDef {
// Define project identifier here
static final String PROJECT_IDENTIFIER = "EmployeeDemo";
public T3ServicesDef services;
public BindingStartup() {}
public String startup(String theName, Hashtable properties) {

System.out.println(theName + " startup");
try{

ServerSession session = SessionManager.getManager().getSession

WLGuide.book Page 6 Friday, September 6, 2002 9:56 AM

Working with TopLink ServerSession and Login

Customization 7-7

(PROJECT_IDENTIFIER);
If (session == null) return name + " startup could not find project
" + PROJECT_IDENTIFIER;
session.getLogin().useBinding();

} catch(Exception e) {
return name + " startup failed: " + e.getMessage();

}
return name + " startup successful";

}
public void setServices(T3ServicesDef theServices) {

services = theServices;
}

}
For more information on BEA WebLogic Startup classes, see your BEA WebLogic
Server documentation.

WLGuide.book Page 7 Friday, September 6, 2002 9:56 AM

Working with TopLink ServerSession and Login

7-8 Oracle 9iAS TopLink CMP for Users of BEA WebLogic Server Guide

WLGuide.book Page 8 Friday, September 6, 2002 9:56 AM

Clustering 8-1

8
Clustering

A key feature provided by BEA WebLogic Server is the ability to integrate multiple
server instances into what can be viewed by clients as a single server entity referred
to as a cluster. Once formed, the cluster will support deployment of EJB’s and other
J2EE components and provide load-balancing and a measure of failover on those
components. For more information on BEA WebLogic Server clustering please
consult the BEA WebLogic Server documentation.

This chapter discusses how TopLink for BEA WebLogic may be used within a
clustered BEA WebLogic Server environment. There are certain issues that affect
how a TopLink application should be configured to ensure that it executes correctly
and consistently on a cluster. This chapter discusses those issues, explains the
TopLink features that help resolve those issues and offers some best practices for
clustered applications.

Terminology
A BEA WebLogic Server instance is an operating system process in which a single
Java Virtual Machine has been invoked passing the BEA WebLogic Server class as
the main program argument to the JVM. Server instances may be distributed across
multiple host machines or running on the same machine.

When an entity bean is invoked through its remote interface then it must of
necessity get loaded into a server instance. Once that bean has been loaded then it is
said to be pinned to that server, meaning that all subsequent invocations of business
logic on that same remote interface stub instance will be directed to the previously
instantiated bean on the server into which it was loaded. This does not preclude the
bean instance from being instantiated on other servers by acquiring another remote
interface to the bean through the use of a finder or reference from another bean.

WLGuide.book Page 1 Friday, September 6, 2002 9:56 AM

TopLink in a Cluster

8-2 Oracle 9iAS TopLink CMP for Users of BEA WebLogic Server Guide

When two or more beans get pinned to the same server then they are said to be
co-located. Bean co-location implies that optimizations of locality, such as
call-by-reference inter-bean invocations, may be employed on the server.

Other terms and concepts that relate to BEA WebLogic Server clustering are further
explained in the BEA WebLogic Server documentation.

TopLink in a Cluster
When using TopLink for BEA WebLogic in a cluster the TopLink run-time jars must
be available to all servers in the cluster, or at least all servers in which TopLink CMP
beans are deployed. The beans may be deployed on any number or subset of
servers in the cluster, with the conditions discussed below in the Static Partitioning
section.

Related beans (beans that are associated using a TopLink relationship mapping)
require special consideration to provide acceptable performance and correctness.
The issues surrounding relating beans are discussed in the Relationships section.

Each server in the cluster manages its own cache independently, with additional
capabilities as described in "Cache Synchronization" on page 8-5. If cache
synchronization is not used then the caches must be manually refreshed.

Relationships
To define relationships between beans, all of the related beans and objects must be
co-located. Source and target objects should also be retrieved on the same server.

Co-location of related beans may be achieved in BEA WebLogic Server 6.1 and 7.0
by making use of one or more of the following observations:

� Beans that are deployed in a single server are only ever invoked on that server.

� Bean home interfaces are clustered, but bean instances are not. Once a bean has
been instantiated, then it is pinned to the server in which it was instantiated

� The server attempts to execute operations that are performed inside the same
JTS user transaction on the same server.

� When executing operations that are performed from a session bean (that has
already been instantiated in a server) the server attempts to carry out the
operations locally.

WLGuide.book Page 2 Friday, September 6, 2002 9:56 AM

Relationships

Clustering 8-3

The first point leads to partitioning the beans across the server as a
statically-defined means of co-location. The second point introduces the relevance
of pinning to co-location. The last two points convey the ideas that using user
transactions or session beans can cause the desired co-location to occur.

Static partitioning
Beans can be deployed to particular servers only, allowing for static partitioning of
beans. Statically partitioning the beans across the cluster provides the required
co-location conditions as long as all related beans are deployed in the same server.
Other unrelated beans may be deployed in the same or a different server, and
depending upon the amount of predicted access traffic could be deployed in more
than one server. No application code need be modified. Failover is limited, and
load-balancing is statically determined. Cache inconsistency is not an issue in this
configuration since beans will only ever get loaded on the server in which they
were deployed. These types of systems may suffer from bottlenecking and overhead
costs.

Pinning
Once a bean is created or found it is pinned to a particular server. The BEA
WebLogic server will attempt to keep all beans accessed in a given transaction on
the same server in an effort to localize the transaction. A transaction cannot be
localized if it involves beans that were previously pinned to different servers.

In order to ensure that all beans are local in the transaction each bean used should
be re-looked up in the context of that transaction. Beans that were created or found
in previous transactions should be discarded.

There are two common methods of using pinning to dynamically co-locate beans:
user transactions and using session beans.

Using User Transactions
Ensuring that all bean invocations are in an enclosing transaction is one way of
influencing where beans get instantiated in the cluster. If the beans are deployed in
multiple servers then the user transaction may be initiated on any one of the server
instances. It doesn’t matter which server is chosen since an attempt is made to pin
all accessed beans to that server for the duration of the transaction. This way
load-balancing can occur while still allowing the co-location demands to be
satisfied.

WLGuide.book Page 3 Friday, September 6, 2002 9:56 AM

Caching issues

8-4 Oracle 9iAS TopLink CMP for Users of BEA WebLogic Server Guide

For example, the following code is a portion of a client program that uses a user
transaction to co-locate related beans.

UserTransaction transaction = lookupUserTransaction()
// Enclose all construction of relationships in the same transaction
transaction.begin();
// Look up the home interface and the bean even if they have already been looked
up previously
Employee emp = lookupEmployeeHome().findByPrimaryKey(new EmployeePK(EMP_ID));
Address address = new Address(EMP_ID, “99 Bank”, “Ottawa”, “Ontario”, “Canada”,
“K2P 4A1”);
emp.setAddress(address);
Project project = lookupProjectHome().findByPrimaryKey(new ProjectPK(PROJ_ID));
emp.addProject(project);
transaction.commit();

Using session beans
Entity beans accessed through a session bean are instantiated on the same server as
the session bean. By moving the application logic from the client to a session bean,
the optimization of locality can be exploited to allow the bean code to run on the
same VM. The client need only invoke a single method in the session bean and the
bean performs all of the required logic on the same server. If deployed in every
server in the cluster, then scalability as well as failover (which must still be handled
by the client) can be achieved.

It depends upon the application whether to use session beans, user transactions, or
static partitioning of the beans as a means of achieving co-location, since some of
these techniques may not be appropriate for certain models. Regardless of the
method, co-location is required in order to define relationships between beans.

Caching issues
Another issue that must be considered when running in a clustered configuration is
that of cache consistency. Under normal conditions a TopLink session in a BEA
WebLogic Server is an independent and autonomous object. Changes made to a
bean in one server are not reflected in the caches of other servers. This situation
could lead to objects in different states existing in multiple servers and result in
phantom reads or updates to stale data (causing previous changes to be lost),
amongst other incorrect behavior.

WLGuide.book Page 4 Friday, September 6, 2002 9:56 AM

Caching issues

Clustering 8-5

Explicit query refreshes
One solution that may make sense if only some objects are required to be fresh is to
cause them to be refreshed from the database whenever appropriate. This would
involve configuring certain finders to cause refreshing and then invoking these
queries when the situation warrants. There are two facets to making a query refresh
the object -- setting the refresh policy and the cache usage.

Refresh Policy
Whenever a query is issued there is a possibility that the result from the database is
more recent than the cached version. But by default if objects are already in the
cache then they are used instead of the database results, even if the database query
was issued. This is a TopLink optimization that reduces the number of objects that
have to be built from database results. This feature may be overridden by setting a
refresh policy to ensure the objects from the database replace the ones in the cache,
if such objects exist there. This way the cache is always updated with the latest
copies of the objects from the database whenever a query is completed. Refreshing
can be done on each TopLink descriptor or just on certain queries depending upon
the nature of the data that can change.

Cache Usage
When a findByPrimaryKey finder is invoked then the object in the cache is
returned if it exists there. The refresh policy is not applied because no database
query is issued. In this case, disabling cache hits is required to prevent the finder
from using the cached object in case it was deleted or modified by another server.
This can be achieved by setting the caching option element to DoNotCheckCache in
the bean deployment descriptor. For more information, see "Caching options" on
page 5-14.

Cache Synchronization
Cache synchronization automatically causes updates made to one TopLink cache to
be propagated to all other server caches. This obviates the need to do manual
refreshing, and can provide a consistent view of cached data across the cluster. This
feature is enabled by supplying a value for the cache-synchronization element
in the TopLink deployment descriptor.

Note: Refreshing does not prevent phantom reads from occurring. See
the "Refreshing finder results" on page 5-15.

WLGuide.book Page 5 Friday, September 6, 2002 9:56 AM

Caching issues

8-6 Oracle 9iAS TopLink CMP for Users of BEA WebLogic Server Guide

Cache synchronization is currently supported at the project level. This means that
all updates to beans and dependent objects in a given project marked for
propagation will be propagated to the caches on all other servers. Propagation at a
finer granularity, such as individual beans or objects, may be available in future
releases.

Propagation of changes can be configured to function in one of two modes--
synchronous or asynchronous. Users should choose the mode that best meets their
requirements. For many applications, synchronous mode is more appropriate as it
provides for tighter data consistency models.

Remote Merge
Once a transaction has been committed, whether it be through an explicit client
commit call or bean method invocation that triggered a transaction begin and
subsequent commit, the changes to objects in the transaction must be merged into
the TopLink cache. When Cache synchronization is in effect, a remote merge process
is also initiated.

Remote merging involves merging the changes into all other remote TopLink caches
after the local merge has completed. If problems occur during update propagation it
is typically the remote merge process that will be the root cause of such problems.
Each server must be able to merge the changes into its local cache and finish up
with a consistent version of the object. As mentioned above, the TopLink cache does
not begin the merge or update process until the database transaction has already
been committed. This is quite beneficial in that it avoids letting uncommitted data
into the shared cache, but should be recognized where transactional
synchronization is considered. In cases where a merge may have failed there is no
way to roll back the changes made to the database (although it is questionable
whether this would be a good idea in any case). As a consequence, failures during
remote merging can leave the cache in an inconsistent state. This makes it important
to handle any errors that occur by performing cache normalization actions, such as
resetting the cache, or even the server.

Synchronous Mode
When updates are synchronously propagated, the committing client is blocked until
the remote merge process is complete. This provides the client with the assurance
that its changes have either successfully reached all remote servers, or that an error
occurred and was already handled by its server-side handler. Thus, when the client
process gets control, it can invoke another business method and rely upon the
receiving server having already incorporated the changes of the clients previous
transaction.

WLGuide.book Page 6 Friday, September 6, 2002 9:56 AM

Caching issues

Clustering 8-7

Asynchronous Mode
Depending upon the requirements of the application, asynchronous operation may
be a more efficient approach to updating the distributed caches. When a transaction
commits the updates are sent off to the remote servers while the committing client
gets control returned to it. Though there are no guarantees as to delivery, errors
resulting from merging the updates can be caught and handled by server-side
handlers installed by the application, just as in the synchronous case. However,
since the client has already been unblocked there is no opportunity to take any
action that would affect the calling client, and the client may have already gone on
to invoke other business methods on the server cache where the merge failed.

The asynchronous mode of operation is particularly appropriate when freshness
time constraints are softer or less of an issue. This would include such applications
where it is acceptable to read stale data on some occasions immediately after an
update, as long as the cached data gets updated within a “reasonable” period of
time.

Configuring Cache Synchronization
Cache Synchronization is configured using the toplink-ejb-jar.xml deployment
descriptor (See Chapter 4, "EJB Entity Bean Deployment"). It is invoked using the
optional cache-synchronization element and configured using the a number of
optional sub-elements:

cache-synchronization (optional) When provided, indicates that changes made to
one TopLink cache in a cluster should be automatically propagated to all other
server caches. The following elements may also be provided:

� is-asynchronous (optional): Set to True if synchronization should not wait until
all sessions have been synchronized before returning. Valid values are True or
False. Default is True.

� should-remove-connection-on-error (optional): Set to True if a synchronization
connection should be removed from the session if a communication error
occurs. Valid values are True or False. Default is True.

Following is an example TopLink descriptor that specifies cache synchronization:

<toplink-ejb-jar>
<session>

<name>ejb20_AccountDemo</name>
<project-class>

oracle.toplink.demos.ejb20.cmp
.account.AccountProject

WLGuide.book Page 7 Friday, September 6, 2002 9:56 AM

Caching issues

8-8 Oracle 9iAS TopLink CMP for Users of BEA WebLogic Server Guide

</project-class>
<login>

<connection-pool>ejbPool
</connection-pool>

</login>
<cache-synchronization>

<is-asynchronous>True
</is-asynchronous>
<should-remove-connection-on-error>True
</should-remove-connection-on-error>

</cache-synchronization>
</session>

</toplink-ejb-jar>

Cache Locking
To protect objects from being written by more than one client at a time, or to protect
against using stale data for updates, optimistic locking causes a check to occur at
transaction commit time. This check ensures that no client has gotten in and
modified the data since it was last read by the client making the update. An
OptimisticLockException exception will be generated and will cause the commit to
fail should a stale write be detected. This strategy should be used regardless of
whether updates are refreshed or automatically propagated.

Even when synchronous mode is activated and when optimistic locking is in place
this cannot guarantee that all clients will always read the freshest data, because that
is not possible without pessimistically locking the data being read. Update
propagation is designed to provide a convenient and efficient trade-off that
minimizes any optimistic locking conflicts that occur and provides specialized
functionality to many clients that have consistency requirements.

Using cache locking
When update propagation is in effect the remote merging process causes the
number of updates to each cache to be increased substantially, because each cache is
updated once for every transaction in the system. The default cache locking policy
is set to allow concurrent reading and writing to optimize cache access, but this may

Note: Using optimistic locking by itself does not protect against
phantom reads or having different copies of the same object existing in
multiple nodes. See “Optimistic Locking” in the Oracle9iAS TopLink
Mapping Workbench Reference Guide.

WLGuide.book Page 8 Friday, September 6, 2002 9:56 AM

Caching issues

Clustering 8-9

be changed to ensure safer cache updates during propagation. To change the cache
isolation level to lock the cache during updates, a customization class must be
supplied and the cache isolation level can be set on the login. For available isolation
options, refer to “Cache Isolation” in the Oracle9iAS TopLink Foundation Library
Guide.

afterLoginCustomization(Session session) throws Exception
{session.getLogin().setCacheTransactionIsolation(DatabaseLogin.SYNCHRONIZED_
READ_ON_WRITE);

WLGuide.book Page 9 Friday, September 6, 2002 9:56 AM

Caching issues

8-10 Oracle 9iAS TopLink CMP for Users of BEA WebLogic Server Guide

WLGuide.book Page 10 Friday, September 6, 2002 9:56 AM

The EJB 2.0 Single Bean Example Application 9-1

9
The EJB 2.0 Single Bean Example

Application

This chapter introduces the basic concepts that are required to build and deploy an
entity bean with TopLink. It provides an example of how TopLink CMP is used in a
simple application that combines Java server pages (JSPs) and EJBs. A simple entity
bean is used to illustrate TopLink’s basic direct-to-field mapping capabilities, along
with some simple EJBQL queries.

Included in this example are instructions for

� creating bean classes and interfaces

� creating deployment descriptors

� mapping entities to the database using the Mapping Workbench

� generating a deployable JAR file

The example package is examples.ejb.cmp20.singlebean.

See <INSTALL_DIR>/doc/demos.html for links to all the examples and details
on configuring the examples for WebLogic Application Server.

A note about this example This chapter guides you through running the example, as
well as describing in detail how the example was built. Although the Single Bean
example is a relatively simple application, the process and procedures it introduces
can be used to build much more complex applications as well.

WLGuide.book Page 1 Friday, September 6, 2002 9:56 AM

Running the Single Bean example

9-2 Oracle 9iAS TopLink CMP for Users of BEA WebLogic Server Guide

Running the Single Bean example
To run the Single Bean example, you must

� Start the TopLink domain WebLogic Server. From Windows Start menu, click
Programs > Oracle9iAS TopLink > Example Utilities > Start TopLink
WebLogic Demo Server.

Configuring the example database
TopLink includes HSQL, as well as a preconfigured database containing all of the
tables required to run the example. The SQL commands required to recreate the
database are found in the createTables.sql file. Use the provided
ResetDatabase.cmd script to reset the database tables if required.

Understanding the Single Bean example
The Single Bean example shows how a single bean can be made persistent using
TopLink Container-Managed Persistence CMP support. This example illustrates
simple direct-to-field mappings and introduces the basic steps required to deploy a
bean.

This is a simple example that demonstrates how to use entity beans when deployed
using TopLink CMP. The example consists of an entity bean called Account.

The Single Bean example demonstrates:

� The use of an entity bean in an application

� That persistence-related code is not required in the entity bean

� That implementation of ejbFind methods is not required in the entity bean –
query logic for each finder method defined in the home interface is defined
using the Mapping Workbench or in an amendment method

� The use of the TopLink “project” class, which contains bean-to-database
mapping meta information

� How TopLink transparently manages persistence for beans when they are being
created, updated, removed, and queried

The client application is an HTML page generated by JSP components. The Single
Bean example follows the basic J2EE application architecture, using pure HTML
generated by JSPs. The JSPs access the Single Bean entity bean.

WLGuide.book Page 2 Friday, September 6, 2002 9:56 AM

Understanding the Single Bean example

The EJB 2.0 Single Bean Example Application 9-3

The example can be viewed by pointing a web browser at
http://localhost:7001/Account/mainPage.jsp. Starting at this main page, you can
query for single beans based on the associated balance and owner, and add and
delete single beans.

The use of JSPs and EJBs in this example provides a simple example of a J2EE
application, and demonstrates one of several different ways to leverage this
technology.

Figure 9–1 Structure of the Single Bean Example

Single Bean example: packages, classes, and file
The following table lists the packages, classes, and files associated with the Single
Bean example in this chapter. All files associated with the example are located in
<install>\examples\wlsxx\examples\ejb\cmp20\
singlebean unless otherwise noted.

.

Table 9–1 Packages, classes, and files in the Single Bean example

Component Type Component Name / Location

Package examples.ejb.cmp20.singlebean

Note: The root directory for the package is
<install>\examples\

Server classes/interfaces Account, AccountHome, AccountBean

JSP source ./jsp/mainPage.jsp,
./jsp/findAccounts.jsp,
./jsp/createAccount.jsp,
./jsp/removeAccount.jsp

HTML

Main Page

Search Results

JSP

Main Page

Find Accounts

Create Account

Remove Account

EJB

Account

HTML

Main Page

Search Results

JSP

Main Page

Find Accounts

Create Account

Remove Account

EJB

Account

WLGuide.book Page 3 Friday, September 6, 2002 9:56 AM

Understanding the Single Bean example

9-4 Oracle 9iAS TopLink CMP for Users of BEA WebLogic Server Guide

The Object model
The Single Bean example provides a simplified view of the standard “bank account”
example, and shows how a single class can be modeled as an entity bean and made
persistent using TopLink.

The interface examples.ejb.cmp20.singlebean.Account provides the public
“local” interface for the bean. It extends the javax.ejb.EJBLocalObject interface,
and contains all of the business methods that are accessible to local clients of the
entity. This includes getters and setters for the instance data, as well as deposit()
and withdraw() methods.

The class examples.ejb.cmp20.singlebean.AccountBean provides the actual
bean implementation for the bank single bean. It has methods corresponding to the
methods on the remote interface, as well as the methods required by the
javax.ejb.EntityBean interface, which it extends. The account’s fields include
AccountId (String), balance (double), and owner (String).

The interface examples.ejb.cmp20.singlebean.AccountHome provides the
“local home” interface of the bean. It extends the javax.ejb.EJBLocalHome
interface, and defines the required create, remove, and finder methods.

In this example, no additional primary key class is used. In EJB 1.1 and above,
additional primary key classes are not required if the primary key consists of one
field.

HSQL database build script ResetDatabase.cmd (Windows only)

Table definitions and
data population SQL

createTables.sql

Environment settings <Install>/setenv.cmd (Windows only)

Deployment files /ejb-jar.xml,weblogic-ejb-jar.xml,
toplink-ejb-jar.xml

TopLink Mapping Workbench
project

./mw/Account.mwp

Sample build script build.cmd

Deployable project Account.xml

Mapping Workbench directory ./mw

Table 9–1 Packages, classes, and files in the Single Bean example (Cont.)

Component Type Component Name / Location

WLGuide.book Page 4 Friday, September 6, 2002 9:56 AM

Entity Development

The EJB 2.0 Single Bean Example Application 9-5

Database schema
The Single Bean data is stored in a single table.

The example also makes use of table-based sequencing through the EJB_
ACCOUNT_SEQ table. This table provides primary keys (account numbers) for the
EJB_ACCOUNT table.

Entity Development
A deployable component is typically developed as follows:

� Create the interfaces.

� Create and implement the bean classes.

� Create the deployment descriptors.

� Map the entities to the database.

� Deploy the JAR file.

� Deploy the JAR file.

Table 9–2 The EJB_ACCOUNT BEAN table

Column Name Column Type Details

ACCOUNT_ID Numeric primary key

BALANCE DOUBLE balance in single bean

OWNER VARCHAR owner’s name

Table 9–3 The EJB_ACCOUNT_SEQ table

Name Type Details

SEQ_NAME VARCHAR Used by TopLink to identify the table that
requires sequence data

SEQ_VALUE DECIMAL Sequence data

WLGuide.book Page 5 Friday, September 6, 2002 9:56 AM

Entity Development

9-6 Oracle 9iAS TopLink CMP for Users of BEA WebLogic Server Guide

Create the interfaces
Each entity can contain any or all of the following interfaces:

� local home (under EJB 2.0)

� home

� local

� remote

These interfaces dictate how the bean is used by other components of the
application. The Account interfaces have been created and are located in the main
“single bean” example directory.

Create and implement the bean classes
Define abstract get and set methods to represent the persistent attributes and use
the get and set methods when implementing the business logic in the beans. The
AccountBean class has been created and is located in the main Single Bean Example
directory.

Create the deployment descriptors
Three deployment descriptors are required for each JAR. They are

� ejb-jar.xml

� weblogic-ejb-jar.xml

� toplink-ejb-jar.xml

The ejb-jar.xml descriptor should be created as specified in the EJB 2.0
specification. The weblogic-ejb-jar.xml file should be defined as described in
WebLogic Server documentation. The toplink-ejb-jar.xml file should be
defined as described in this documentation. These descriptors have been created
and are located in the example directory.

The deployment descriptors must be in the META-INF directory in the JAR.

WLGuide.book Page 6 Friday, September 6, 2002 9:56 AM

Entity Development

The EJB 2.0 Single Bean Example Application 9-7

ejb-jar.xml
This is the main deployment descriptor prescribed and specified by the EJB
specification. It defines most of the basic properties for the session and entity beans,
including

� the bean home and component interfaces

� the bean abstract class

� inter-bean relationships information

� security declarations

� transactional attributes

� references to other beans

� resources used by the bean

The key elements that are particularly relevant to TopLink CMP are:

<ejb-name> A unique name (across all beans in the JAR) which must match the
ejb-name attribute in the weblogic-ejb-jar.xml file.

<cmp-version> Must be set to 2.x to indicate that EJB 2.0 is being used.

<resource-ref> Lists the data source used by the entity in which it is declared.

<query> A group of elements that, when combined, describe a particular bean
finder by including the method name, parameter types and query criteria.

The use of all XML elements in the file are described in the EJB 2.0 specification.

Note: Mapping beans in the Mapping Workbench creates or modifies
the information in some of the fields in the project. Using the Mapping
Workbench to write to the ejb-jar.xml ensures that the ejb-jar.xml
and the TopLink project information remain properly synchronized.

WLGuide.book Page 7 Friday, September 6, 2002 9:56 AM

Entity Development

9-8 Oracle 9iAS TopLink CMP for Users of BEA WebLogic Server Guide

weblogic-ejb-jar.xml
This descriptor file is specific to WebLogic Server and offers an opportunity to
override some of the configuration settings in the server. Some of the elements that
may require modification are:

<persistence-type> A section that sets the persistence type. Note that this tag is
not required by WebLogic 7.0, as its function is included in the
<persistence-use> tag.

<persistence-use> A section that specifies TopLink as the persistence storage
mechanism.

For information on configuring the weblogic-ejb-jar.xml file, see "Configuring
entity bean deployment descriptors" on page 4-3.

toplink-ejb-jar.xml
The TopLink deployment descriptor is included in the JAR in the same META-INF
directory as the other two deployment descriptors. This descriptor provides the
information that TopLink needs to deploy the entities in the JAR. Because the
entities deployed in a JAR are all encompassed by a TopLink project, the
deployment JAR file is associated with exactly one project. This project is in turn
associated with exactly one TopLink session (as implied by the single session
element in the descriptor).

The elements that have been modified for the Single Bean example in the
toplink-ejb-jar.xml file are:

<name> A session name (unique among all deployed JARs) that is used as a key
for the deployed TopLink project (or the JAR that contains the project).

<project-class> The fully-qualified name of the TopLink project class. This class
should be included in the deployable JAR file. The project class can either be
generated by the Mapping Workbench or written manually.

Note: You can use a <project-xml> rather than a <project-class> if
you choose. The <project-xml> element specifies a project deployment
XML file that can be stored either in the deployable JAR file or left on the
file system. For more information, see "Configuring entity bean
deployment descriptors" on page 4-3.

WLGuide.book Page 8 Friday, September 6, 2002 9:56 AM

Entity Development

The EJB 2.0 Single Bean Example Application 9-9

<connection-pool> A sub-element of login, the fully-specified connection pool
specifies the connection pool URL of the data source.

For more information on the options available for the <connection-pool>
element, refer to the DTD in <install>\wls_cmp\toplink-wls-ejb-jar_
903.dtd.

Map the entities to the database
This section describes the steps required to create the Single Bean project using the
Mapping Workbench. It also introduces and addresses some issues related to
mapping EJB 2.0 beans, such as relationships and reserved finders, which are not
encountered in the Single Bean example.

For more information about creating projects using the Mapping Workbench,
consult the Oracle91AS TopLink Mapping Workbench Reference Guide.

This section assumes you have already read and completed the introductory
tutorials in Oracle9iAS TopLink Tutorials, which offers an introduction to the
fundamental concepts of the Mapping Workbench.

Creating a TopLink project
A TopLink project defines how the entity beans are to be persisted to the database.
The Mapping Workbench can be used to easily build a TopLink project. The project
is specified in the toplink-ejb-jar.xml in the <project-class> or
<project-xml> element and used at runtime to persist the beans.

To create a TopLink project:
1. Create a new project. Click File > New Project.

2. In the General tab, set the Persistence Type to 2.0 CMP.

3. Specify an ejb-jar.xml file to use for the project. You can either choose an
existing file or create a new one. The ejb-jar.xml file is typically created by
another tool, and the mapping information it contains is read and used by the
Mapping Workbench (see step 7 below).

If no ejb-jar.xml file is available, the Mapping Workbench can be used to
create one and to populate the file with the information the Mapping
Workbench requires. Once the file is created, however, other elements usually
need to be added to the ejb-jar.xml file before it can be used with ejbc and in
a deployable JAR.

WLGuide.book Page 9 Friday, September 6, 2002 9:56 AM

Entity Development

9-10 Oracle 9iAS TopLink CMP for Users of BEA WebLogic Server Guide

When the Mapping Workbench project is saved, changes to the ejb-jar.xml
file can also be written out. See “Working with the ejb-jar.xml file” in the
Oracle9iAS TopLink Mapping Workbench Reference Guide for details on working
with the ejb-jar.xml file.

4. In the General tab, specify a project classpath. The project classpath should
contain the classes to be added to the project and interfaces associated with
those classes. Classes to be added to the project include bean classes and
referenced classes. Bean interfaces do not have to be added to the project, but
must appear in the project classpath.

5. To add the beans to the project, click Selected > Add/Refresh Classes. While
bean classes must to be added to the project at this point (for example, the
Single Bean example requires the AccountBean class) referenced classes are not
required. At this point the cmp and cmr fields do not appear on the
AccountBean descriptor.

6. To specify the beans classes as bean descriptors, click Selected > Descriptor
Type > Class Descriptor. This causes the Mapping Workbench to read the
abstract getters/setters and ejb-jar.xml file for cmp and cmr fields.

After setting the AccountBean to be an EJB descriptor, the cmp and cmr fields
appear and are available for mapping.

7. Update the project from the ejb-jar.xml file by selecting the project and
clicking Selected > Update Project from ejb-jar.xml. This is an optional step
that is not required if you are generating the ejb-jar.xml file in the Mapping
Workbench. However, the the Single Bean example uses an existing
ejb-jar.xml file, so using it to update the project brings in two user-defined
finders which appear in the AccountBean descriptor's Queries tab.

The Mapping Workbench reads from and writes to the following elements in
the ejb-jar.xml:

� primkey-field

� ejb-name

� local-home

� local

� ejb-class

� prim-key-class

� abstract-schema-name

WLGuide.book Page 10 Friday, September 6, 2002 9:56 AM

Entity Development

The EJB 2.0 Single Bean Example Application 9-11

� cmp-field

� query and its sub-elements

� relationships

8. Create database tables. The Single Bean example uses an EJB_ACCOUNT table
to persist the bean to an EJB_ACCOUNT_SEQ table for sequencing. Ensure that
the ACCOUNT_ID is the primary key in the EJB_ACCOUNT table. The tables
can either be imported from the database or created in the Mapping
Workbench. For more information on working with tables, see “Working with
database tables” Oracle9iAS TopLink Mapping Workbench Reference Guide.

9. To associate AccountBean with a table, select the AccountBean and set the EJB_
ACCOUNT table as the associated table in the Descriptor Info tab.

10. Map the cmp and cmr fields. The AccountBean has three cmp fields to be
mapped using direct-to-field mappings: accountId, balance, and owner. Map
them to their corresponding database fields in the EJB_ACCOUNT table.

11. Set up sequencing. The AccountBean uses TopLink sequencing for its primary
key generation. In the Descriptor Info tab, select the Use Sequencing
check-box and specify ACCOUNT_SEQ for the Name, and EJB_ACCOUNT and
ACCOUNT_ID for the Table and Field.

12. Export a project to be used at runtime. The project can be written out as a Java
class which has to be compiled and included with the deployment JAR or an
XML file. In the toplink-ejb-jar.xml file either the <project-class> or
<project-xml> element is used depending on which export method was used.

Generate the deployable JAR file
The Single Bean example is packaged into and EAR file, which itself contains the
following:

� A WAR file containing contains the JSP code and associated configuration XML
files.

� A deployable JAR file containing the interface and abstract bean classes, the
classes (RMI stubs and implementation classes) generated by weblogic.ejbc, and
the deployment descriptor XML files.

WLGuide.book Page 11 Friday, September 6, 2002 9:56 AM

Entity Development

9-12 Oracle 9iAS TopLink CMP for Users of BEA WebLogic Server Guide

Using the Build Script
A build script is included in the ...\singlebean example directory which
compiles the bean classes, runs weblogic.ejbc, and creates the EAR file. Running the
build script places a copy of the EAR file in both the Single Bean directory and the
server's deployment directory.

Windows users can use the build script as provided. Users of other platforms can
use the build script as a template to create their own build script.

The build script can be modified and used to build deployable EAR or JAR files for
other applications.

The build.cmd file uses the environment information in the
<install>/setenv.cmd file (Under Windows) or the setenv.sh file
(non-Windows). To avoid possible errors, ensure that your environment also
matches these settings before running the script.

Deploy the JAR file
This can be done a number of different ways. See the WebLogic Server
documentation for more detailed information on how to deploy an EJB JAR or an
EAR into the server.

WLGuide.book Page 12 Friday, September 6, 2002 9:56 AM

EJB Architectures Summary A-1

A
EJB Architectures Summary

Enterprise JavaBeans present a way to build components as well as a means to
make these components exist in a transactional, secure, and distributed
environment. However, a single bean represents only one component - and
consequently only one part of a complete application. EJB provides developers with
flexibility in determining how these components should be made to work together.
There are a number of ways in which Enterprise JavaBeans can be made to work
together to form a complete enterprise application. TopLink can be integrated into
each variety of EJB application architecture to provide both the technology that
enables these architectures and the features that add value to them.

This chapter gives an overview of some of the basic design patterns available when
using TopLink and TopLink CMP. It is not meant to be prescriptive and neither is it
complete. It briefly suggests some of the more useful EJB designs and their
suitability to specific applications. Architects and developers may find these
sections useful at the early stages of application design. As more experience is
acquired the appropriateness of particular patterns will become more obvious, and
architectural decisions will be more intuitively reached.

Introduction to EJB architectures
The basic ways in which EJBs can be assembled, or the basic “EJB architectures”,
can be described in terms of which kinds of beans or J2EE components are used,
how client applications access them, and how the underlying “domain objects” are
represented. The EJB architectures can be fundamentally divided into three
categories: an Entity bean architecture, a Session bean architecture, and a Session
and Entity “tiered” approach. Each basic architecture also has variations and
refinements and can be decorated with a variety of J2EE components.

WLGuide.book Page 1 Friday, September 6, 2002 9:56 AM

Introduction to EJB architectures

A-2 Oracle 9iAS TopLink CMP for Users of BEA WebLogic Server Guide

The EJB 2.0 specification does not dictate how enterprise entities are used, but it is
clear from the evolution of the specification that certain architectures were assumed
to be dominant. Some of the recommended architectures are explained in the J2EE
Blueprints (see http://java.sun.com/blueprints). These documents should be
reviewed for more information about J2EE and EJB architectures.

Remote Entities
If entities alone are used then they must have remote interfaces that expose all of
the client servicing methods. In the absence of Session beans, the client may only
access entity state through its remote interface, and may not traverse relationships,
except as encapsulated by remote method calls. Only remote references and data
may be returned by these calls. Finders may only return remote references as well.

If relationships do exist then they must be implemented using local interfaces,
hence there must be different levels of access from the remote and local interfaces.
References to related entities must be translated from local to remote references if
they are to be passed back from remote client calls.

Figure A–1 Remote entities architecture

Clients gain from this approach in that the distribution of the entities is transparent.
Clients reference the entities as if they were local, and do not need to worry about
location. Entities can exist at different locations without the client even being aware
of it.

The converse of transparent distribution is that if clients are not aware of the
distributed nature of the entities then they may not be aware of the cost of invoking
them. If the entities are “fine-grained” objects then each fine-grained method
invocation on them will end up being a remote call. The accumulation of these
remote method invocations could sum up to a potentially serious network or
communication latency cost.

Fat Client

Server

Entity

Entity

WLGuide.book Page 2 Friday, September 6, 2002 9:56 AM

Introduction to EJB architectures

EJB Architectures Summary A-3

If Container transactions are used for each entity operation a separate transaction
will end up being initiated for each method invocation. This could introduce
excessive and unnecessary transaction management overhead if client-demarcated
UserTransactions are not used.

Since Entity beans are intended to be “components” there are more restrictions
placed on them than on regular Java objects (e.g. thread-spawning is disallowed).
This may impose limits on how they can be used to model certain domain concepts.
The limitations should be well understood and compared against the model to
ensure that they are not discovered too late in the design phase.

In general, however, this architecture is less desirable than other architecture types.
The relationship limitations imposed by the EJB 2.0 specification are often an
impediment to using this approach.

Advantages
� Increased distribution

� Potential for greater location transparency

Disadvantages
� Not suitable for fine-grained entities

� Cannot have relationships between entities

� Communication overhead for each method call

� Transactional costs of each method call

� Client accesses many EJB interfaces (no single client interface or point of server
entry)

� Much of the business logic must reside on the client

Remote Session beans
It is common practice to apply a Session bean layer in front of lightweight objects.
This may take the form of the session façade pattern described below, with
lightweight entities or other types of persistent objects being managed.

WLGuide.book Page 3 Friday, September 6, 2002 9:56 AM

Introduction to EJB architectures

A-4 Oracle 9iAS TopLink CMP for Users of BEA WebLogic Server Guide

Figure A–2 Remote session beans architecture

Since Session beans do not themselves represent durable objects, often a session
façade pattern will be used to converse directly with persistent Java objects, without
the use of entities. Persistent data can be modeled using regular TopLink-enabled
persistent Java objects that are managed by the Session beans and mapped using
TopLink tools. Since few domain objects actually “live” on the client, client
applications rarely need to access the domain objects directly, but if regular objects
are used then they may be sent to the client if necessary since no such restriction
exists for them. The Session beans are used to carry out most of the application
logic. Stateful beans are used for those operations for which client-identity is
important, while stateless Session beans can be used for “single-shot” operations.
All of the EJB benefits of security, transactions and distribution are available
through the Session beans.

The exclusive use of Session beans does not allow for overly complex client
behavior - all client behavior is limited to services provided by the Session beans.
Simple client behavior is a general characteristic of all thin client architectures.

Simplicity and fast client access are clear benefits of this approach. In addition, there
is great flexibility in how the domain objects are designed, and how these objects
are mapped to the underlying relational database tables.

Advantages
� Location transparency on session interface

� Fine-grained persistent object operations can be “batched” or combined into a
single session bean call to reduce communication overhead

� High performance storage/retrieval of persistent objects

� EJB features available through single point of session bean entry to reduce
Container overhead

Client

Server

Session

Java
Object

Java
Object

WLGuide.book Page 4 Friday, September 6, 2002 9:56 AM

Introduction to EJB architectures

EJB Architectures Summary A-5

� Can relate persistent objects

� Can pass persistent objects to the client side if necessary

Disadvantages
� Fine-grained client calls may require explosion of session interface calls

� Persistent Java objects not included in EJB specification

Session Façade - Combining Session and Entity beans
The majority of systems have relationships between application entities. This being
the expected scenario, it is well observed and explained by J2EE designers. The EJB
2.0 specification dictates that all such related entities must be co-located within the
same server, or running in the same VM. Such a requirement to use local interfaces
to entities both enforces transactional integrity of relationships and opens the door
to substantial optimization of entity invocation.

The problem of accessing the local entities on the server from a remote Java client is
overcome by installing a session bean that exports the required client operations
through a remote interface, as was described in the above section. The client
application, then, converses only with the session bean and passes all of its data and
requests to the session bean for service. The client may still retain much of the logic,
if so desired, with the session bean making fine-grained operations on the local
entities. More common, however, is to incorporate the domain logic into the session
bean itself. This migrates the business logic from the client to the server which
provides a number of well-known benefits including ease of maintenance,
convenient upgradability, and increased access to server features.

Regardless of whether the session bean simply forwards operations to entities or
actually includes the application logic as a façade that fronts the local entities it is a
modular approach to remotely accessing server-side objects. It is also likely to be
easier to maintain as the J2EE specification moves forward, since session beans tend
to experience change to a lesser degree than other components, such as entities. The
decision to use a stateful or stateless session bean will likely depend on the amount
of business logic incorporated into the session bean.

WLGuide.book Page 5 Friday, September 6, 2002 9:56 AM

Thin Client

A-6 Oracle 9iAS TopLink CMP for Users of BEA WebLogic Server Guide

Figure A–3 Session façade architecture

Advantages
� Location transparency on session interface

� Fine-grained entity operations can be “batched” or combined into a single
session bean call to reduce communication and transaction overhead

� Inter-entity method calls are pass-by-reference

� Can maintain entity relationships

� All components described by EJB specification

� Flexibility to create new (local) transactions on specific method calls when
required·

Disadvantages
� Fine-grained client calls may require explosion of session interface calls

� Some Container overhead still incurred on each local entity call

Thin Client
A prevalent B2B architecture uses an HTTP browser as its client and makes use of
J2EE servlet and JSP components to contain the presentation and sometimes even
business logic. These layers then typically invoke EJB's for transactional behavior.
Although the EJB specification seems to treat server-side components as remote the
J2EE specification does allow ejb-ref and ejf-local-ref elements to be added they are
still, according to the EJB specification, remote clients to the EJB's. Some servers,
however, support the definition of ejb-refs or ejb-local-refs in the descriptors of

Client

Server

Session

Entity

Entity

WLGuide.book Page 6 Friday, September 6, 2002 9:56 AM

Dependent Lightweight Objects

EJB Architectures Summary A-7

these components, which will enable invocation of referenced EJB's. This allowance
takes into consideration the fact that these components are all co-located and that
local entity access could occur.

A stricter and more portable approach would be to retain the session façade layer
described in the above section. This would require the JSP to remotely access a
session bean, which in turn would invoke the local entities. This layered J2EE
structure divides the responsibilities of the system up into its various components,
and allows substitution or upgrading of a single component with little or no effect
on the others.

Figure A–4 Thin client architecture

Dependent Lightweight Objects
There are a good many applications that make use of persistent data objects that are
not autonomous, or that do not require their own transactional and security
mechanisms. Instead they would be better suited to share, or “piggy-back” on top
of the mechanisms of an existing object upon which they rely. This secondary or
reliant object is called a dependent object.

Dependent objects may take one of three forms. They may appear as local entity
beans residing only on the server. They may be simple persistent TopLink-enabled
Java objects that can be shipped back and forth between the client and server. They
may even be serializable “dependent value” objects that are persisted by simply
attaching them to entities and letting their contents be serialized when the entity
gets written back to its persistent store. Each of these three strategies has its
advantages and may apply more readily in certain applications.

WLGuide.book Page 7 Friday, September 6, 2002 9:56 AM

Dependent Lightweight Objects

A-8 Oracle 9iAS TopLink CMP for Users of BEA WebLogic Server Guide

Local Entities
Strictly speaking, EJB local entities should not be considered lightweight since all of
the container security, transactional and synchronization costs are still very much in
effect. They are included in this category chiefly because they are more lightweight
than remote entities and because they can, in practice be used as dependent objects.
But they are not considered to be truly “dependent”, in the sense that they can be
“found” (using finder methods on the home interface) by any server-side
component regardless as to whether they are related to the object or not.

Because EJB Containers can assume that local entities are always co-located in the
same VM, communication optimizations can be effected by the Container. Local
entity methods can be invoked using pass-by-reference semantics, alleviating
unnecessary marshalling and communications infrastructure costs. This makes
them lighter than remote entities both in the amount of code that gets generated by
the Container, and the execution time of each method invocation.

Dependent Value Objects
The EJB 2.0 specification discusses a class of object called a dependent value object
that can be assigned to an entity attribute. They are nothing more than regular
serializable Java objects and must be serialized in their entirety and written out in
BLOB form when any part of them changes. It is an integral part of the entity since
it is stored as a “cmp” field in the entity. Although it can be sent across from client
to server and back again, its persistence is coupled with the entity and it is not
practical when multiple levels of dependent objects are required.

Figure A–5 Using dependent value objects in a system

Entity

Value
Object

Value
Object

Value
Object

WLGuide.book Page 8 Friday, September 6, 2002 9:56 AM

Conclusion

EJB Architectures Summary A-9

Dependent Java Objects
Because of TopLink's ability to persist regular Java objects without the need for EJB
container support these objects offer the most flexibility. They do not incur the
entity costs of container management but can be persisted independent of the entity.
This means that changes are detected at commit-time, but if nothing changes during
the course of an entity update then the object will not be written back, and likewise
only the object may be written out if the reverse is true. The dependency upon the
entity is still intact, however, as any removal of the entity will automatically
propagate to cause the dependent Java object to be removed from persistent storage.
Like serializable value objects, they can be transported back and forth between the
client and server, allowing for client interactions that refer to the owning bean, but
operate on the dependent data. These objects are not supported in the EJB 2.0
specification, but do offer the benefits of managed, mapped persistence.

Figure A–6 Using dependent Java objects in a system

Conclusion
EJB provides developers with a great deal of infrastructure that makes building
enterprise applications easier. This allows developers to build better applications by
allowing them to focus on the business logic of their application rather than on
distribution, security, and transactions. Even with everything that EJB provides,
developing with EJB requires intelligent architectural choices to be made. Although
EJB provides much, it also allows for flexibility so that developers can use it to meet
their needs.

Regardless of the EJB architecture used, TopLink will support it by providing the
right level of control and transparence appropriate to the architecture. The TopLink
persistence framework also adds the value required to customize applications to

Entity

Dependent
Object

Dependent
Object

Dependent
Object

WLGuide.book Page 9 Friday, September 6, 2002 9:56 AM

Conclusion

A-10 Oracle 9iAS TopLink CMP for Users of BEA WebLogic Server Guide

run at their best, and will play an essential role in enabling customers to
successfully develop and deploy their enterprise applications.

WLGuide.book Page 10 Friday, September 6, 2002 9:56 AM

The toplink-ejb-jar DTD B-1

B
The toplink-ejb-jar DTD

This appendix offers a listing of the toplink-ejb-jar document type description
(DTD).

DTD listing
<!ELEMENT toplink-ejb-jar (session)>

<!-- The element that describes the TopLink session for the beans in a
particular jar.
Example:
<toplink-ejb-jar>
<session>
<name>ejb20_AccountDemo</name>
<project-class>oracle.toplink.demos.ejb20.cmp.account.
AccountProject</project-class>
<login>

<connection-pool>ejbPool</connection-pool>
</login>
<customization-class>oracle.toplink.demos.ejb20.cmp.account.
AccountCustomizer</customization-class>

</session>
</toplink-ejb-jar>
Used in: toplink-ejb-jar
-->
<!ELEMENT session (
name,
(project-class | project-xml),
login,
cache-synchronization?,
use-remote-relationships?,
customization-class?

WLGuide.book Page 1 Friday, September 6, 2002 9:56 AM

DTD listing

B-2 Oracle 9iAS TopLink CMP for Users of BEA WebLogic Server Guide

)>

<!-- The unique name that will be used to identify this session.
Valid values: User-chosen name unique amongst all deployed jars
Used in: session

-->
<!ELEMENT name (#PCDATA)>

<!-- The class name that this session will load to provide mapping information.
Valid values: fully-qualified class name
Example: <project-class>oracle.toplink.demos.ejb20.cmp
.account.AccountProject</project-class>
Used in: session

-->
<!ELEMENT project-class (#PCDATA)>

<!-- The XML project that this session will load to provide mapping information.
The xml can (and should) be located
 in the deployable jar file in order simplify portability across machines.
Valid values: A fully-qualified, or relative file name
Example: <project-xml>META-INF/AccountProject.xml</project-xml>
Used in: session

-->
<!ELEMENT project-xml (#PCDATA)>

<!-- Used to specify the login parameters such as the data source.
Example:
// using a connection pool
<login>

<connection-pool>ejbPool</connection-pool>
</login>

// using datasources
<login>

<datasource>ejbDataSourceJTS</datasource>
<non-jts-datasource>ejbDataSourceNonJTS</non-jts-datasource>

</login>

Used in: session
-->
<!ELEMENT login (
(connection-pool | (datasource, non-jts-datasource)),
should-bind-all-parameters?,
uses-byte-array-binding?,
uses-string-binding?)>

WLGuide.book Page 2 Friday, September 6, 2002 9:56 AM

DTD listing

The toplink-ejb-jar DTD B-3

<!-- The name of the WebLogic connection pool used by TopLink.
Valid values: Name of connection pool defined in WLS
Used in: login

-->
<!ELEMENT connection-pool (#PCDATA)>

<!-- The name of the transactional data source used by TopLink to get db
 connections to use for writing.
Valid values: Name of transactional data source defined in WLS
Used in: login

-->
<!ELEMENT datasource (#PCDATA)>

<!-- The name of the non-transactional data source used by TopLink to get db
 connections to use for reading.
Valid values: Name of non-transactional data source defined in WLS
Used in: login

-->
<!ELEMENT non-jts-datasource (#PCDATA)>

<!-- Set to true if all queries should use parameter binding.
Valid values: "True", "False"
Used in: login

-->
<!ELEMENT should-bind-all-parameters (#PCDATA)>

<!-- Set to true if byte arrays should be bound.
Valid values: "True", "False"
Used in: login

-->
<!ELEMENT uses-byte-array-binding (#PCDATA)>

<!-- Set to true if strings should be bound.
Valid values: "True", "False"
Used in: login

-->
<!ELEMENT uses-string-binding (#PCDATA)>

<!-- Configure how TopLink synchronizes its caches across all
 local and remote sessions.
Example:
<cache-synchronization>

<is-asynchronous>True</is-asynchronous>
<should-remove-connection-on-error>True</should-remove-connection-on-error

WLGuide.book Page 3 Friday, September 6, 2002 9:56 AM

DTD listing

B-4 Oracle 9iAS TopLink CMP for Users of BEA WebLogic Server Guide

>
</cache-synchronization>

Used in: session
-->
<!ELEMENT cache-synchronization (is-asynchronous?,
should-remove-connection-on-error?)>

<!-- Set to true if synchronization should not wait until all sessions have been
 synchronized before returning.
Valid values: "True", "False"
Used in: cache-synchronization

-->
<!ELEMENT is-asynchronous (#PCDATA)>

<!-- Set to true if a synchronization connection should be removed from
 the session if a communication error occurs.
Valid values: "True", "False"
Used in: cache-synchronization

-->
<!ELEMENT should-remove-connection-on-error (#PCDATA)>

<!-- Defines whether the Session should use remote relationships for
 all bean-to-bean relationships.
Valid values: "True", "False"
Default: "False"
Example:
<use-remote-relationships>True</use-remote-relationships>

Used in: session
-->
<!ELEMENT use-remote-relationships (#PCDATA)>

<!-- The class that will be called to customize the session
 before and after login.
Valid values: A fully-qualified class name
Example:
<customization-class>oracle.toplink.demos.ejb20.cmp

.account.AccountCustomizer</customization-class>
Used in: session

-->
<!ELEMENT customization-class (#PCDATA)>

WLGuide.book Page 4 Friday, September 6, 2002 9:56 AM

Index-1

Index
A
Account demo

object model, 9-4
Account example

configuring the database, 9-2
database schema, 9-5
described, 9-2
entity development, 9-5
object model, 9-4
packages, classes, and files, 9-3
running, 9-2
using build script, 9-12

aggregate collection mappings, 2-6
aggregate object mappings, 2-6
amendment methods, 7-1

static, 7-3
TopLink descriptors, customizing, 7-3

application server, running with TopLink, 3-3
attributes

described, 1-5
in Java objects, 1-5

B
bean instance, defined, 1-5
beans, installing in server, 4-11
bi-directional relationships

maintaining, one-to-many relationships, 6-3
maintaining, overview, 6-2

C
cache

issues in clustering, 8-4
locking in clustering, 8-8
synchronization

in clustering, 8-5
cache locking, in clustering, 8-8
cache synchronization

in clustering, 8-5
caching issues in clustering, 8-4
caching options for finders, 5-14
call by reference, enabling, 4-6
class

run-time, 4-9
WebLogic Startup, 7-6

class, persistent, 1-5
clustering

cache locking, 8-8
cache synchronization, 8-5
caching issues, 8-4
described, 8-1
explicit query refreshes, 8-5
pinning, 8-3
relationships, 8-2
static partitioning, 8-3
terminology, 8-1
using session beans, 8-4
using TopLink, 8-2

CMP see "container-managed persistence"
cmp-version element in ejb-jar.xml, 9-7
connection pools, JDBC, 4-11
connection-pool element in toplink-ejb-jar.xml, 9-9

WLGuide.book Page 1 Friday, September 6, 2002 9:56 AM

Index-2

container-managed persistence
concepts, 1-2
customization, 7-1
example application, 9-1

Creating a redirect finder, 5-9
creating in Java

mappings, 7-2
TopLink descriptors, 7-2

customization
DatabaseLogin, 7-4
descriptors and mappings, 7-1
in container-managed persistence, 7-1
ServerSession, 7-4
the DeploymentCustomization interface, 7-5
TopLink descriptors using amendment

methods, 7-3
customizing

DeploymentCustomization interface, 7-5
descriptors using amendment methods, 7-3
WebLogic Startup class, 7-6

D
database schema

Account example, 9-5
DatabaseLogin described, 7-4
dependent Java objects, A-8
dependent lightweight objects

dependent Java objects, A-8
dependent value objects, A-8
local entities, A-7

dependent objects
merging with SessionAccessor, 6-4
merging without SessionAccessor, 6-6

dependent objects, managing under EJB 1.1, 6-3
dependent value objects, A-8
deployment descriptors

customizing using amendment methods, 7-3
described, 1-4
for entity beans, 4-3

deployment, hot, 4-13
DeploymentCustomization interface, 7-5
descriptors (TopLink)

creating in Java, 7-2
customizing with amendment methods, 7-3

direct mappings
described, 2-2
with entity beans, 2-2

Dynamic finders
creating, 5-8
defined, 5-7

E
EJB container, described, 1-4
EJB deployment, hot, 4-13
EJB Entity bean deployment

configuring descriptors, 4-3
described, 4-1
overview, 4-1

EJB Primary Key, defined, 1-6
EJB See Enterprise JavaBean, 9-3
EJB server, described, 1-4
EJB specification

indirection, 2-8
inheritance, 2-8
mapping, 2-1
sequencing, 2-7

EJB_ACCOUNT table, 9-5
ejbc, 4-10
EJBHome, defined, 1-5
ejb-jar.xml

described, 4-3
ejb-name element, 9-7

ejb-jar.xml file
cmp-version element, 9-7
described, 9-7
query element, 9-7
resource-ref element, 9-7

EJBLocalHome, defined, 1-5
EJBLocalObject, defined, 1-5
ejb-name in ejb-jar.xml, 9-7
EJBObject, defined, 1-5
EJBQL, using for finders, 5-3

WLGuide.book Page 2 Friday, September 6, 2002 9:56 AM

Index-3

Enterprise JavaBeans
2.0 support, 1-3
architectures summary, A-1
container, 1-4
deployment descriptors, 1-4
described, 1-3
Entity beans, 1-4
message-driven beans, 1-4
remote entities, A-2
remote session beans, A-3
server, 1-4
Session Beans, 1-4
using in a demo application, 9-3

Entity bean deployment
configuring descriptors, 4-3
described, 4-1
overview, 4-1

entity beans
bean instance, 1-5
defined, 1-5
described, 1-4
EJB Home, 1-5
EJB Object, 1-5
EJB Primary Key, 1-6
EJBLocalHome, 1-5
EJBLocalObject, 1-5
inheritance, 2-8
mapping using Mapping Workbench, 2-1
mapping, overview, 2-1
mappings, 2-4
persistent state, 1-5
sequencing with, 2-7
with TopLink Mapping Workbench, 2-1

example applications
Single Bean, 9-2

Expression finder, creating, 5-5

F
finder results

disabling caching, 5-15
refreshing, 5-15

finders
advanced options, 5-14
caching options, 5-14
choosing the most appropriate type, 5-3
creating SQL finders, 5-12
defining in TopLink, 5-1
disabling caching of returned results, 5-15
Dynamic, 5-7
managing large result sets, 5-16
refereshing results, 5-15
reserved, 5-9
using EJBQL, 5-3
using SQL, 5-11
using TopLink Expression framework, 5-4

H
home interface, inheritance, 2-8
hot deployment, described, 4-13

I
indirection

described, 2-8
EJBs, entity beans, 2-8

inheritance
described, 2-8
EJBs, entity beans, 2-8
home interface, 2-8

installation
troubleshooting, 3-5

J
Java objects

merging changes under EJB1.1, 6-4
serializing between client and server under EJB

1.1, 6-4
Java objects, described, 1-5
Java Server Page, using in a demo application, 9-3
JDBC connection pools, 4-11
JSP See Java Server Page

WLGuide.book Page 3 Friday, September 6, 2002 9:56 AM

Index-4

L
local entities, A-7
login, Database, 7-3

M
many-to-many mappings, 2-6
mappings

aggregate collection, 2-6
aggregate object, 2-6
between entity beans and Java objects, 2-4
creating, 2-2
creating in Java, 7-2
described, 2-1
direct, 2-2
many-to-many, 2-6
one-to-many, 2-5
one-to-one, 2-5
relationship, 2-3

Message-driven beans, described, 1-4
methods

described, 1-5
in Java objects, 1-5

N
name element in toplink-ejb-jar.xml, 9-8
native sequencing, 2-7

O
object model, Account example, 9-4
one-to-many mappings, described, 2-5
one-to-one mapping, described, 2-5

P
persistence descriptor, 4-4
persistence-type element,in

weblogic-ejb-jar.xml, 9-8
persistence-use element

in weblogic-ejb-jar.xml, 9-8
persistent classes in Java objects, 1-5
persistent state, 1-5
pinning in clusters, 8-3

project-class element
in toplink-ejb-jar.xml, 9-8

Q
query element in ejb-jar.xml, 9-7

R
redeployment, 4-13
relationship mappings

described, 2-3
with entity beans, 2-3

relationships, described, 1-5
remote entities, A-2
remote session beans, A-3
reserved finders

described, 5-9
resource-ref element in ejb-jar.xml, 9-7
Running the Weblogic EJB Compiler, 4-10
run-time classes, generating, 4-9
run-time issues

described, 6-1
maintaining bi-directional relationships, 6-2
transaction support, 6-1

S
sequencing

native, 2-7
with entity beans, 2-7

session and entity beans, combining, A-5
session beans

remote, A-3
session beans, described, 1-4
session beans, using in clustering, 8-4
session described, 7-3
session façade, A-5
SessionAccessor

merging dependent objects under EJB 1.1, 6-4
SQL finder

creating, 5-12
defined, 5-11

stateful, stateless Session Beans, 1-4
static amendment methods, 7-3

WLGuide.book Page 4 Friday, September 6, 2002 9:56 AM

Index-5

static partitioning
in clusters, 8-3

T
tables, EJB_ACCOUNT, 9-5
thin client architecture, A-6
TopLink

installing in a Windows environment, 3-2
TopLink CMP

overview, 1-1
testing with entity beans, 3-3

TopLink descriptors
creating in Java, 7-2
customizing with amendment methods, 7-3

TopLink Expression framework
building an expression, 5-6
using for finders, 5-4

TopLink for Java, overview, 1-2
TopLink Mapping Workbench

overview, 1-2
using with entity beans, 2-1

TopLink project, creating, 9-9
toplink-ejb-jar.xml

connection-pool element, 9-9
Data Type description (dtd), B-1
described, 4-7, 9-8
name element, 9-8
project-class element, 9-8

transaction support
valid transactional states, 6-2
when updates occur, 6-2

U
undeployment, 4-13

W
WebLogic Startup class, described, 7-6
weblogic.ejbc, 4-10
weblogic-ejb-jar.xml, 4-4

described, 4-4
unsupported tags, 4-6

weblogic-ejb-jar.xml file
 element, 9-8
described, 9-8
persistence-type element, 9-8

WLGuide.book Page 5 Friday, September 6, 2002 9:56 AM

Index-6

WLGuide.book Page 6 Friday, September 6, 2002 9:56 AM

	Oracle9iAS Toplink CMP for Users of BEA WebLogic Server Guide
	Contents
	Send Us Your Comments
	Preface
	Intended Audience
	Documentation Accessibility
	Structure
	Related Documents
	Conventions

	1 Introduction
	TopLink Container-Managed Persistence
	TopLink for Java
	TopLink Mapping�Workbench
	Understanding container-managed persistence
	Enterprise JavaBeans (EJBs)
	EJB 2.0 Support
	Terminology and definitions

	Java objects and Entity Beans

	2 Mapping Entity Beans
	Using TopLink Mapping Workbench
	Mappings
	Creating mappings
	Direct mappings
	Relationship mappings
	Mappings between entity beans
	Mappings between entity beans and Java objects
	One-to-one mappings
	One-to-many mappings
	Many-to-many mappings
	Aggregate object mappings
	Aggregate collection mappings

	Sequencing with Entity Beans
	Inheritance
	Indirection

	3 Configuring TopLink Container-Managed Persistence
	Software requirements
	Configuring TopLink CMP
	Testing TopLink Container-Managed Persistence with entity beans
	Running the BEA WebLogic Server with TopLink

	Configuration troubleshooting

	4 EJB Entity Bean Deployment
	Overview of deployment
	Understanding Deployment
	Requirements before deployment
	Steps in the deployment process

	Configuring entity bean deployment descriptors
	Configuring the ejb-jar.xml file
	Updating the ejb-jar.xml file

	Configuring the weblogic-ejb-jar.xml file
	Persistence descriptor
	Enabling Call by Reference
	Unsupported tags in the weblogic-ejb-jar.xml file

	Configuring the toplink-ejb-jar.xml file
	Defining required project options: the Session Section

	Generating the run-time classes
	Running the Weblogic EJB Compiler

	Installing the beans in the server
	Connection pools and data sources
	Creating JDBC connection pools
	Creating JTS and non-JTS data sources

	Using the defined connection pool
	Using the defined data source
	Problems with deployment

	Message Logging
	Hot deployment of EJBs
	Running an EJB Client

	5 Defining and Executing Finders
	Defining finders in TopLink
	ejb-jar.xml Finder Options
	Query Section - XML Elements

	Choosing the best finder type for your query
	Using EJBQL
	Creating an EJBQL finder

	Using the TopLink Expression framework
	Creating an Expression Finder
	Building an expression
	Creating amendment methods for Expression finders

	Using Dynamic finders
	Creating a Dynamic finder

	Using findAll
	Using findByPrimaryKey
	Using redirect finders
	Using SQL
	Creating an SQL finder

	Using ejbSelect
	Understanding select methods

	Advanced finder options
	Caching options
	Disabling caching of returned finder results
	Refreshing finder results
	Managing large result sets
	Building the query
	Executing the finder from the client in EJB 1.1
	Executing the finder from the client in EJB 2.0

	6 Run-time Considerations
	Transaction support
	TopLink within the BEA WebLogic Server
	When updates occur
	Valid transactional states

	Maintaining bi-directional relationships
	One-to-Many relationship

	Managing dependent objects (EJB 1.1)
	Serializing Java objects between client and server
	Merging changes to regular Java objects

	Managing collections of EJBObjects (EJB 1.1)

	7 Customization
	Customizing TopLink descriptors and mappings
	Creating projects and TopLink descriptors in Java
	Customizing TopLink descriptors with amendment methods

	Working with TopLink ServerSession and Login
	Understanding ServerSession
	Understanding DatabaseLogin
	Customizing ServerSession and DatabaseLogin
	Additional configuration changes
	Using the DeploymentCustomization interface
	Using a BEA WebLogic Startup class

	8 Clustering
	Terminology
	TopLink in a Cluster
	Relationships
	Static partitioning
	Pinning
	Using User Transactions

	Using session beans

	Caching issues
	Explicit query refreshes
	Refresh Policy
	Cache Usage

	Cache Synchronization
	Remote Merge
	Synchronous Mode
	Asynchronous Mode
	Configuring Cache Synchronization

	Cache Locking
	Using cache locking

	9 The EJB 2.0 Single Bean Example Application
	Running the Single Bean example
	Configuring the example database

	Understanding the Single Bean example
	Single Bean example: packages, classes, and file
	The Object model
	Database schema

	Entity Development
	Create the interfaces
	Create and implement the bean classes
	Create the deployment descriptors
	ejb-jar.xml
	weblogic-ejb-jar.xml
	toplink-ejb-jar.xml

	Map the entities to the database
	Creating a TopLink project

	Generate the deployable JAR file
	Using the Build Script

	Deploy the JAR file

	A EJB Architectures Summary
	Introduction to EJB architectures
	Remote Entities
	Remote Session beans
	Session Façade - Combining Session and Entity beans

	Thin Client
	Dependent Lightweight Objects
	Local Entities
	Dependent Value Objects
	Dependent Java Objects

	Conclusion

	B The toplink-ejb-jar DTD
	DTD listing

	Index

