
Oracle9iAS TopLink

Foundation Library Guide

Release 2 (9.0.3)

August 2002

Part No. B10064-01

Oracle9iAS TopLink Foundation Library Guide Release 2 (9.0.3)

Part No. B10064-01

Copyright © 2002, Oracle Corporation. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and OracleMetaLink, Oracle Store, Oracle9i, Oracle9iAS Discoverer,
SQL*Plus, and PL/SQL are trademarks or registered trademarks of Oracle Corporation. Other names
may be trademarks of their respective owners.

v

Contents

Send Us Your Comments ... xix

Preface.. xxi

1 Working with Database Sessions

Understanding Database sessions... 1-2
DatabaseSession class .. 1-2
Creating a database session .. 1-3

Registering TopLink Mapping Workbench descriptors with a session 1-3
Registering Java descriptors with a session... 1-3
Registering descriptors after login.. 1-3
Connecting to the database.. 1-4
Database interaction.. 1-4
Caching objects .. 1-4
Logging out of the database... 1-4

Logging SQL and messages .. 1-5
Profiler.. 1-5
Integrity checker ... 1-6
Exception handlers ... 1-6
JTS and external transaction controllers.. 1-7
Creating database sessions: examples ... 1-7
Reference.. 1-8

vi

Using the Conversion Manager ... 1-9
Creating custom types with the Conversion Manager ... 1-10
Assigning custom classes to a TopLink session ... 1-10
The Conversion Manager class loader... 1-10
Resolving class loader exceptions .. 1-11

Database login information .. 1-11
Creating a login object.. 1-11
Specifying database and driver information .. 1-12

Using the Sun JDBC-ODBC bridge ... 1-12
Using a different driver .. 1-13

Setting login parameters .. 1-13
Table Creator/Qualifier... 1-14
Native SQL... 1-14
Sequence number parameters... 1-14
Binding and parameterized SQL.. 1-16
Batch writing ... 1-17
Data optimization ... 1-17
Cache isolation .. 1-18
Manual transactions ... 1-18
External transactions and connection pooling ... 1-18
Other database connections .. 1-18

Direct connect drivers ... 1-19
Using JDBC 2.0 data sources.. 1-19
Custom database connections.. 1-19

Building database logins: examples ... 1-20
Reference .. 1-21

Using the query framework .. 1-22
Session queries .. 1-22
Query objects ... 1-23
Custom SQL queries... 1-24
Database exceptions ... 1-24
Querying on an inheritance hierarchy... 1-25
Querying on interfaces... 1-25

vii

Using session queries... 1-25
Reading objects from the database... 1-26

Read operation... 1-26
Read all operation ... 1-26
Refresh operation .. 1-27
Using expression builder.. 1-27
Using query by example... 1-40

Writing objects to the database... 1-40
Writing a single object to the database... 1-40
Writing all objects to the database .. 1-41
Adding new objects to the database ... 1-41
Modifying existing objects in the database.. 1-41
Deleting objects in the database .. 1-41
Writing objects: Examples .. 1-42

Using transactions .. 1-42
Transaction operations... 1-43
Nesting transactions... 1-43
Implementing a transaction in Java code.. 1-43

Using units of work.. 1-44
Understanding the unit of work... 1-44
Creating a unit of work.. 1-46
Registering existing objects with a unit of work.. 1-46
Reading objects using a unit of work .. 1-47
Creating new objects in a unit of work.. 1-47
Writing objects using a unit of work ... 1-48
Deleting objects through a unit of work.. 1-48
Resuming a unit of work ... 1-49
Reverting a unit of work.. 1-49
Executing queries from the unit of work .. 1-49
Nested and parallel units of work.. 1-50
Inside a unit of work .. 1-50
Advanced features.. 1-51

Read-only classes... 1-51
Read-Only descriptors .. 1-52

viii

Always Conform Descriptors .. 1-52
Merging... 1-52
Validation ... 1-53

Troubleshooting the unit of work .. 1-54
Examples of units of work... 1-54
Reference .. 1-55

Working with locking policies ... 1-56
Using optimistic lock.. 1-57

Advantages and disadvantages... 1-57
Version locking policies.. 1-58
Field locking policies... 1-58
Java implementation of optimistic locking .. 1-59
Advanced optimistic locking policies... 1-60

Using optimistic read lock... 1-60
Working with version fields .. 1-61

Pessimistic locking.. 1-64
Advantages and disadvantages... 1-64
Reference... 1-68

Session event manager... 1-68
Session events.. 1-68
Using the session event manager: examples... 1-70
Reference .. 1-70

Query objects ... 1-71
Query object components .. 1-72
Query types ... 1-72
Creating query objects.. 1-73
Executing queries.. 1-73
Query timeout ... 1-74
Read query objects.. 1-74
Parameterized SQL... 1-75
Ordering for read all queries... 1-75
Specifying the collection class... 1-76
Using cursoring for a ReadAllQuery ... 1-76

ix

Query optimization .. 1-76
Query return maximum rows... 1-76
Partial object reading ... 1-77
Refreshing the identity map cache during a read query .. 1-77
In-memory querying and unit of work conforming.. 1-78

Conforming results in a unit of work... 1-79
Handling exceptions resulting from in-memory queries .. 1-80

Disabling the identity map cache update during a read query ... 1-80
Internal query object caches.. 1-81
Write query objects... 1-82
Non-cascading write queries .. 1-82
Disabling the identity map cache during a write query ... 1-83
Using query objects to customize the default database operations 1-83
Creating custom query operations... 1-84
Using Query Redirectors ... 1-84
Reference.. 1-84

Query by example... 1-85
Defining a sample instance ... 1-86
Defining a query by example policy.. 1-87
Combining query by example with expressions.. 1-88
Reference.. 1-88

Report query .. 1-89
Reference.. 1-90

Cursored streams and scrollable cursors.. 1-92
Java streams... 1-92
Supporting streams .. 1-93
Using cursored streams and scrollable cursors: examples ... 1-93
Optimizing streams.. 1-94
Java iterators.. 1-94
Supporting scrollable cursor... 1-95
Traversing scrollable cursors .. 1-95

SQL and stored procedure call queries .. 1-96
SQL Queries... 1-96
Data-level queries ... 1-97
Stored procedure calls.. 1-97

x

Output parameters .. 1-98
Cursor output parameters.. 1-98
Output parameter event ... 1-98

Reference .. 1-99

2 Developing Enterprise Applications

Three-tier and enterprise applications.. 2-1
Client and server sessions ... 2-3

Client sessions ... 2-5
Server sessions... 2-6
Caching database information on the server .. 2-6
Providing client read access .. 2-7
Providing client write access... 2-8
Concurrency .. 2-9
Connection pooling .. 2-10

ServerSession connection options ... 2-11
Connection options... 2-11

ClientSession connection options.. 2-11
Connection policies .. 2-12
Reference .. 2-12

Remote sessions .. 2-13
Architectural overview .. 2-15

Application layer ... 2-16
Transport layer... 2-16
Server layer... 2-17

Accessibility issues ... 2-17
Queries ... 2-18
Refreshing .. 2-18
Indirection.. 2-18
Cursored streams.. 2-19
Unit of work... 2-19
Creating a remote connection using RMIConnection ... 2-19

Session broker ... 2-20
Two-phase/two-stage commits.. 2-21
Using the session broker.. 2-21

xi

Using the session broker in a three-tier architecture... 2-22
Creating multiple projects in the Mapping Workbench ... 2-23
Limitations... 2-24
Advanced use.. 2-24
Reference.. 2-24

Java Transaction Service (JTS).. 2-25
Review of transactions and transaction management .. 2-25
Distributed transactions .. 2-26
Transaction managers .. 2-26
Two-phase commit with presumed rollback.. 2-27
Relationship between OMG Object Transaction Service (OTS) and
Java Transaction Service (JTS) 2-28
JTS transaction synchronization ... 2-29
TopLink unit of work and the synchronization interface... 2-29

Writing to a database in three-tier environment .. 2-30
External connection pools and external transaction control ... 2-31

Extending TopLink’s JTS capabilities .. 2-33
TopLink support for Java Data Objects (JDO) .. 2-37

Understanding the JDO API ... 2-37
JDO implementation .. 2-38

JDOPersistenceManagerFactory ... 2-38
JDOPersistenceManager... 2-41
JDOQuery ... 2-45
JDOTransaction ... 2-51

Running the TopLink JDO demo ... 2-53
Distributed Cache Synchronization.. 2-53

Controlling the sessions: the Cache Synchronization Manager .. 2-54
Using Cache Synchronization Manager options .. 2-54
Using a clustering service .. 2-55

Configuring cache synchronization... 2-56
Connecting the sessions... 2-57
Using Java Messaging Service .. 2-58

Preparing to use JMS... 2-58
Setting up JMS in the session configuration file ... 2-59
Setting up JMS in Java .. 2-59

xii

3 Working with Enterprise JavaBeans

The EJB specification ... 3-1
Additional information.. 3-2

Using the session bean model .. 3-2
Session beans and DatabaseSessions ... 3-4
Interactions with JTS .. 3-4
Using session beans with TopLink’s three-tier application model 3-5
Using the Session Manager ... 3-5

Retrieving a session from a SessionManager .. 3-6
Using the default configuration file: sessions.xml.. 3-6
Using the XMLLoader... 3-7

Using the entity bean model... 3-9
TopLink and container-managed persistent entity beans... 3-10

4 EJBQL Support

Why use EJBQL? ... 4-1
EJBQL structure ... 4-2

Basic structure ... 4-2
The FROM clause.. 4-2

The FROM clause defined .. 4-3
Using the FROM clause: a few examples ... 4-3

The SELECT clause... 4-4
Using the SELECT clause: a few examples .. 4-4

The WHERE clause... 4-5
Using constants .. 4-6
Comparison Operators ... 4-6
Logical operators ... 4-7
Null Comparison Expressions: Null ... 4-9
Range Expressions... 4-9
Functional Expressions ... 4-10
Input Parameters ... 4-11

Combining Clauses... 4-12
Multiple clauses: a few examples.. 4-12

xiii

Using EJBQL with TopLink .. 4-12
ReadAllQuery ... 4-13
Session .. 4-13

5 SDK for XML and Non-relational Database Access

Using the TopLink SDK .. 5-1
Accessor ... 5-2

Data Store Connection .. 5-2
Call Execution .. 5-3
Transaction Processing ... 5-3

Calls .. 5-3
Read Object Call .. 5-4
Read All Call .. 5-5
Insert Call.. 5-5
Update Call... 5-5
Delete Call .. 5-5
Does Exist Call ... 5-5
Custom Call.. 5-5
Database Row .. 5-6
FieldTranslator... 5-7
SDKDataStoreException... 5-8

Descriptors and Mappings.. 5-8
SDKDescriptor ... 5-8
Standard mappings ... 5-11
SDK Mappings... 5-15

Sessions .. 5-25
SDKPlatform .. 5-25
SDKLogin ... 5-26
TopLink Project.. 5-27
Session... 5-27
Unsupported features ... 5-28

Using TopLink XML support.. 5-28
Getting Started .. 5-28

Configure your Login using an XMLFileLogin. ... 5-28
Build your Project.. 5-29

xiv

Build your Descriptors using XMLDescriptors... 5-29
Build your Mappings .. 5-29
Build your DatabaseSession and log in. ... 5-30
Build your sequences, if necessary.. 5-30
Use the Session... 5-30

Customizations ... 5-31
Implementation details .. 5-31
XMLFileAccessor .. 5-32

XMLAccessor implementation .. 5-32
Directory creation .. 5-33

XMLCall ... 5-33
XMLStreamPolicy.. 5-33
XMLTranslator... 5-34
XMLTranslator implementations .. 5-34

XMLDescriptor.. 5-37
XMLPlatform... 5-37
XMLFileLogin.. 5-38
XMLSchemaManager... 5-38
XMLAccessor... 5-38
XMLTranslator .. 5-39

DefaultXMLTranslator.. 5-39
SDKAggregateObjectMapping.. 5-40
SDKDirectCollectionMapping... 5-40

XML Zip File Extension ... 5-42
Using the Zip file extension ... 5-42
Configure direct file access with Zip File extension... 5-43
Implementation details ... 5-43

6 Performance Optimization

Basic performance optimization .. 6-1
TopLink reading optimization features.. 6-2

Reading Case 1: Displaying names in a list - optimized through partial object reading and
report query 6-3

Partial object reading .. 6-3
Conclusion .. 6-5

xv

Reading Case 2: Batch reading objects .. 6-6
Conclusion.. 6-8

Reading Case 3: Using complex custom SQL queries... 6-8
Reading Case 4: Viewing objects.. 6-8

TopLink writing optimization features .. 6-10
Writing Case 1: Batch writes ... 6-11

Batching and cursoring... 6-12
Sequence number pre-allocation... 6-12
Batch writing.. 6-13
Parameterized SQL ... 6-13
Multi-processing.. 6-13

Optimization check list .. 6-15
Schema optimization.. 6-15

Schema Case 1: Aggregation of two tables into one.. 6-16
Domain.. 6-16

Schema Case 2: Splitting one table into many.. 6-17
Domain.. 6-18

Schema Case 3: Collapsed hierarchy ... 6-18
Domain.. 6-19

Schema Case 4: Choosing one out of many .. 6-20
Domain.. 6-20

7 Mapping Implementation

Direct mappings.. 7-1
Direct-to-field mappings ... 7-2

Reference... 7-3
Type conversion mappings... 7-3

Reference... 7-4
Object type mappings .. 7-4

Reference... 7-5
Serialized object mappings.. 7-6

Reference... 7-6
Transformation mappings... 7-7

Implementing transformation mappings in Java ... 7-7
Reference... 7-10

xvi

Relationship mappings.. 7-10
Aggregate object mappings... 7-11

Reference... 7-12
One-to-one mappings... 7-13

Reference... 7-14
Variable one-to-one mappings.. 7-15

Reference... 7-16
Direct collection mappings.. 7-16

Reference... 7-17
Aggregate collections ... 7-18

When to use aggregate collections .. 7-18
Aggregate collections and inheritance ... 7-19
Java implementation ... 7-19
Reference... 7-20

Direct map mappings... 7-21
Reference... 7-22

One-to-many mappings... 7-23
Reference... 7-24

Many-to-many mappings .. 7-24
Reference... 7-25

Object relational mappings .. 7-26
Array mappings .. 7-26

Implementing array mappings in Java... 7-27
Reference... 7-27

Object array mappings... 7-28
Implementing object array mappings in Java ... 7-28
Reference... 7-29

Structure mappings .. 7-29
Implementing structure mappings in Java .. 7-30
Reference... 7-31

Reference mappings ... 7-31
Implementing reference mappings in Java.. 7-32
Reference... 7-32

Nested table mappings .. 7-33
Implementing nested table mappings in Java... 7-33
Reference... 7-34

xvii

8 Descriptor Implementation

Implementing primary keys in Java ... 8-1
Implementing inheritance in Java ... 8-2

Reference.. 8-8
Implementing interfaces in Java.. 8-8
Setting the copy policy using Java .. 8-9
Implementing multiple tables in Java code .. 8-9

Primary keys match.. 8-9
Primary keys are named differently .. 8-10
Tables related by foreign key relationships.. 8-11
Non-standard table relationships... 8-12

Implementing sequence numbers in Java ... 8-14
Overriding the instantiation policy using Java code ... 8-15
Implementing locking in Java.. 8-16
Implementing identity maps in Java .. 8-17
Implementing query keys in Java .. 8-17
Implementing indirection in Java ... 8-18
Implementing proxy indirection in Java.. 8-19
Implementing object-relational descriptors in Java .. 8-19
Changing Java classes to use indirection ... 8-20
Setting the wrapper policy using Java code .. 8-21
Implementing events using Java ... 8-21

Registering event listeners .. 8-22
Reference.. 8-22

A Sessions.xml DTD

sessions.xml dtd .. A-1

B TopLink Development Tools

The Schema Manager... B-1
Using the Schema Manager to create tables ... B-2

Creating a table definition.. B-2
Adding fields to a table definition .. B-2
Defining Sybase and SQL Server sequence numbers .. B-3

xviii

Example of table definition .. B-4
Creating tables on the database... B-4
Creating the sequence table ... B-5

Using the Schema Manager to manage Java and database type conversions B-5
Session management services .. B-9

RuntimeServices.. B-9
DevelopmentServices... B-9
Using session management services .. B-9

The stored procedure generator ... B-10
Generation of stored procedures .. B-10
Attaching the stored procedures to the descriptors .. B-11

The Session Console .. B-11
Requirements... B-12
Using session console features.. B-12
Launching the session console from code... B-15

The Performance Profiler .. B-15
Using the profiler .. B-16
Browsing the profiler results... B-17

C TopLink Session Configuration File

Contents of the sessions.xml file ... C-1
Converting from TOPLink.properties file to sessions.xml .. C-3

D EJBQL Syntax

About Backus Naur Form .. D-1
EJBQL language definition ... D-2

Index

xix

Send Us Your Comments

Oracle9iAS TopLink Foundation Library Guide Release 2 (9.0.3)

Part No. B10064-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

� Did you find any errors?
� Is the information clearly presented?
� Do you need more information? If so, where?
� Are the examples correct? Do you need more examples?
� What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

� Electronic mail: iasdocs_us@oracle.com
� FAX: 650-506-7407 Attn: Oracle9i Application Server Documentation Manager
� Postal service:

Oracle Corporation
Oracle9i Application Server Documentation
500 Oracle Parkway, M/S 2op3
Redwood Shores, CA 94065
USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

 If you have problems with the software, please contact your local Oracle Support Services.

xx

xxi

Preface

This section introduces the information you need to get the most out of the
documentation that accompanies your software. This preface contains these topics:

� Intended Audience

� Documentation Accessibility

� Structure

� Related Documents

� Conventions

Intended Audience
This document is intended for application developers who perform the following
tasks:

� Application design and development

� Application testing and benchmarking

� Application integration

This document assumes that you are familiar with the concepts of object-oriented
programming, the Enterprise JavaBeans (EJB) specification, and with your own
particular Java development environment.

The document also assumes that you are familiar with your particular operating
system (Windows, UNIX, or other). The general operation of any operating system
is described in the user documentation for that system, and is not repeated in this
manual.

xxii

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle Corporation is actively engaged with other
market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional information,
visit the Oracle Accessibility Program Web site at
http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations
that Oracle Corporation does not own or control. Oracle Corporation neither
evaluates nor makes any representations regarding the accessibility of these Web sites.

Structure
This document contains:

The following shows a sample presentation of structure:

Chapter 1, "Working with Database Sessions"
This chapter is a comprehensive reference for database sessions in TopLink. It
describes the fundamental concepts required to connect to the database and to
perform queries as well as optional and advanced session and query properties.

Chapter 2, "Developing Enterprise Applications"
This chapter describes how to develop enterprise applications using TopLink, and
discusses the issues and techniques associated with creating Enterprise
applications. It also illustrates some of the TopLink features that enable TopLink to
integrate with industry-leading enterprise application servers, including
Oracle9iAS.

xxiii

Chapter 3, "Working with Enterprise JavaBeans"
This chapter describes TopLink features that provide support for Enterprise
JavaBeans. It discusses a number of topics related to TopLink support for EJBs and
EJBs in general.

Chapter 4, "EJBQL Support"
This chapter describes TopLink’s support for EJBQL, and includes a discussion on
the advantages and disadvantages of using EJQBQL in s TopLink query.

Chapter 5, "SDK for XML and Non-relational Database Access"
This chapter describes the TopLink Software Development Kit (SDK), which
provides support for non-relational database access and eXtensible Markup
Language (XML).

Chapter 6, "Performance Optimization"
This chapter discusses how to optimize TopLink-enabled applications for best
performance. It includes sections on basic performance optimization, writing
optimization, and schema optimization.

Chapter 7, "Mapping Implementation"
This chapter describes how to implement mappings in Java code for TopLink-based
applications.

Chapter 8, "Descriptor Implementation"
This chapter describes how to implement descriptors in Java code for
TopLink-based applications.

Appendix A, "Sessions.xml DTD"
This appendix contains the DTD for sessions.xml, the session configuration file
used by TopLink sessions.

Appendix B, "TopLink Development Tools"
This appendix contains information on the development tools that make the
development, testing and debugging of TopLink applications easier.

Appendix C, "TopLink Session Configuration File"
This appendix contains a description of all elements available in the TopLink
sessions.xml file.

xxiv

Appendix D, "EJBQL Syntax"
This appendix describes the TopLink implementation of EQJBQL, and includes a
discussion of EJBQL syntax.

Related Documents
For more information, see these Oracle resources:

Oracle9iAS TopLink Getting Started
Provides installation procedures to install and configure TopLink. It also introduces
the concepts with which you should be familiar to get the most out of TopLink.

Oracle9iAS TopLink Tutorials
Provides tutorials illustrating the use of TopLink. It is written for developers who
are familiar with the object-oriented programming and Java development
environments.

Oracle9iAS TopLink Foundation Library Guide
Introduces TopLink and the concepts and techniques required to build an effective
TopLink application. It also gives a brief overview of relational databases and
describes who TopLink accesses relational databases from the object-oriented Java
domain.

Oracle9iAS TopLink Mapping Workbench Reference Guide
Includes the concepts required for using the TopLink Mapping Workbench, a
stand-alone application that creates and manages your descriptors and mappings
for a project. This document includes information on each Mapping Workbench
function and option and is written for developers who are familiar with the
object-oriented programming and Java development environments.

Oracle9iAS TopLink Container Managed Persistence for Application
Servers
Provides information on TopLink container-managed persistence (CMP) support for
application servers. Oracle provides an individual document for each application
server specifically supported by TopLink CMP.

xxv

Oracle9iAS TopLink Troubleshooting
Contains general information about TopLink’s error handling strategy, the types of
errors that can occur, and Frequently Asked Questions (FAQs). It also discusses
troubleshooting procedures and provides a list of the exceptions that can occur, the
most probable cause of the error condition, and the recommended action.

In North America, printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

Customers in Europe, the Middle East, and Africa (EMEA) can purchase
documentation from

http://www.oraclebookshop.com/

Other customers can contact their Oracle representative to purchase printed
documentation.

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http://otn.oracle.com/admin/account/membership.html

If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://otn.oracle.com/docs/index.htm

Conventions

Conventions in Text
We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention Meaning Example

Italics Italic typeface indicates book titles or
emphasis.

Oracle9i Database Concepts

Ensure that the recovery catalog and target
database do not reside on the same disk.

xxvi

Conventions in Code Examples
Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line
statements. They are displayed in a monospace (fixed-width) font and separated
from normal text as shown in this example:

SELECT username FROM dba_users WHERE username = ’MIGRATE’;

The following table describes typographic conventions used in code examples and
provides examples of their use.

lowercase
monospace
(fixed-width)
font

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Enter sqlplus to open SQL*Plus.

The password is specified in the orapwd file.

Back up the datafiles and control files in the
/disk1/oracle/dbs directory.

The department_id and location_id
columns are in the hr.departments table.

Set the QUERY_REWRITE_ENABLED
initialization parameter to true.

Connect as oe user.

The JRepUtil class implements these
methods.

lowercase
italic
monospace
(fixed-width)
font

Lowercase italic monospace font
represents placeholders or variables.

You can specify the parallel_clause.

Run Uold_release.SQL where old_
release refers to the release you installed
prior to upgrading.

Convention Meaning Example

[] Brackets enclose one or more optional
items. Do not enter the brackets.

DECIMAL (digits [, precision])

{ } Braces enclose two or more items, one of
which is required.

{ENABLE | DISABLE}

| A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

{ENABLE | DISABLE}

[COMPRESS | NOCOMPRESS]

Convention Meaning Example

xxvii

Conventions for Microsoft Windows Operating Systems
The following table describes conventions for Microsoft Windows operating
systems and provides examples of their use.

... Horizontal ellipsis points indicate either:

� That we have omitted parts of the
code that are not directly related to
the example

� That you can repeat a portion of the
code

CREATE TABLE ... AS subquery;

SELECT col1, col2, ... , coln FROM
employees;

 .
 .
 .

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

Other notation You must enter symbols other than
brackets, vertical bars, and ellipsis points
as shown.

 acctbal NUMBER(11,2);

 acct CONSTANT NUMBER(4) := 3;

Italics Italicized text indicates placeholders or
variables for which you must supply
particular values.

CONNECT SYSTEM/system_password

DB_NAME = database_name

Convention Meaning Example

Choose Start > How to start a program. To start the Oracle Database Configuration
Assistant, choose Start > Programs >

Case sensitivity
and file and
directory names

File and directory names are not case
sensitive. The following special characters
are not allowed: left angle bracket (<),
right angle bracket (>), colon (:), double
quotation marks ("), slash (/), pipe (|),
and dash (-). The special character
backslash (\) is treated as an element
separator, even when it appears in quotes.
If the file name begins with \, then
Windows assumes it uses the Universal
Naming Convention.

c:\winnt"\"system32 is the same as
C:\WINNT\SYSTEM32

IMPORTANT NOTE: File names and directory names are case sensitive under UNIX.
Where the name of a file or directory is mentioned and the operating system is a
non-Windows platform, you must enter the names exactly as they appear unless instructed
otherwise.

Convention Meaning Example

xxviii

C:\> Represents the Windows command
prompt of the current hard disk drive.
The escape character in a command
prompt is the caret (^). Your prompt
reflects the subdirectory in which you are
working. Referred to as the command
prompt in this manual.

C:\oracle\oradata>

The backslash (\) special character is
sometimes required as an escape
character for the double quotation mark
(") special character at the Windows
command prompt. Parentheses and the
single quotation mark (’) do not require
an escape character. Refer to your
Windows operating system
documentation for more information on
escape and special characters.

C:\>exp scott/tiger TABLES=emp
QUERY=\"WHERE job=’SALESMAN’ and
sal<1600\"

C:\>imp SYSTEM/password
FROMUSER=scott TABLES=(emp, dept)

<INSTALL_DIR> Represents the Oracle home installation
directory name. The home name can be
up to 16 alphanumeric characters. The
only special character allowed in the
home name is the underscore.

SET CLASSPATH=<INSTALL_DIR>\jre\bin

Convention Meaning Example

xxix

ORACLE_HOME
and ORACLE_
BASE

In releases prior to Oracle8i release 8.1.3,
when you installed Oracle components,
all subdirectories were located under a
top level ORACLE_HOME directory that by
default used one of the following names:

� C:\orant for Windows NT

� C:\orawin95 for Windows 95

� C:\orawin98 for Windows 98

This release complies with Optimal
Flexible Architecture (OFA) guidelines.
All subdirectories are not under a top
level ORACLE_HOME directory. There is a
top level directory called ORACLE_BASE
that by default is C:\oracle. If you
install Oracle9i release 1 (9.0.1) on a
computer with no other Oracle software
installed, then the default setting for the
first Oracle home directory is
C:\oracle\ora90. The Oracle home
directory is located directly under
ORACLE_BASE.

All directory path examples in this guide
follow OFA conventions.

Refer to Oracle9i Database Getting Starting
for Windows for additional information
about OFA compliances and for
information about installing Oracle
products in non-OFA compliant directories.

Go to the ORACLE_BASE\ORACLE_
HOME\rdbms\admin directory.

Convention Meaning Example

xxx

Working with Database Sessions 1-1

1
Working with Database Sessions

A database session represents an application’s dialog with a relational database.
This chapter is a comprehensive reference for database sessions in TopLink. It
describes the fundamental concepts required to connect to the database and to
perform queries as well as optional and advanced session and query properties. It
discusses

You should have a good command of the topics in this chapter and the Descriptors
and Mappings chapters before using TopLink in an application.

A complete listing of the TopLink application programming interface (API) is
provided in HTML format. It is located in the Java Docs directory where TopLink
was installed. Refer to this document for more information on the complete
TopLink API.

� Understanding Database sessions � Session event manager

� Database login information � Query objects

� Using the query framework � Query by example

� Using session queries � Report query

� Writing objects to the database � Cursored streams and scrollable cursors

� Using units of work � SQL and stored procedure call queries

� Working with locking policies

Understanding Database sessions

1-2 Oracle9iAS TopLink Foundation Library Guide

Understanding Database sessions
A session represents the connection between an application and the relational
database that stores its persistent objects. TopLink provides several different session
objects that all implement the same Session interface. The simplest session is the
DatabaseSession, which can be used for single user/single database
applications. All of the following examples use DatabaseSession.

TopLink also provides a ServerSession, ClientSession, RemoteSession,
UnitOfWork and SessionBroker. For more information on these sessions, refer to
Chapter 2, "Developing Enterprise Applications".

DatabaseSession class
An application must create an instance of the DatabaseSession class. A
DatabaseSession class stores the following information:

� an instance of Project and DatabaseLogin, which stores database login and
configuration information

� an instance of DatabaseAccessor, which wraps the JDBC connection and
handles database access

� the descriptors for each of the application’s persistent classes

� the identity maps, which maintain object identity and act as a cache

The session is created from an instance of Project, which contains the database
connection parameters.

� If the project was generated or read from the TopLink Mapping Workbench
project, its descriptors are automatically loaded into the session.

� If the descriptors were built using code, or if multiple projects were used, the
application must register the descriptors of the persistent classes with the
session before logging in to the database.

Note: If you are building a three-tier application, use the
ServerSession, not a DatabaseSession. If you use DatabaseSession,
it may be difficult to migrate your application to a scalable architecture
in the future.

Understanding Database sessions

Working with Database Sessions 1-3

A typical application then reads from the database using the TopLink query
framework, and writes to the database using a unit of work. A well-designed
application then logs out of the database when it is finished accessing the persistent
objects in the database.

Creating a database session
Instances of DatabaseSession must be created from a Project instance. Initialize
this project with all of the appropriate database login parameters, such as the JDBC
driver and the database URL. Refer to "Understanding Database sessions" on
page 1-2 for more information on reading the TopLink Mapping Workbench project
file.

Registering TopLink Mapping Workbench descriptors with a session
If the application uses descriptors created with the TopLink Mapping Workbench
tool, the project adds its descriptors automatically. If multiple projects are used, the
additional projects must use the addDescriptors(Project) method to register
their descriptors with the session. Refer to "Understanding Database sessions" on
page 1-2 for more information on reading the TopLink Mapping Workbench project
file.

Registering Java descriptors with a session
If the application does not use a TopLink Mapping Workbench project, register a
Vector of descriptors using the addDescriptors(Vector) method.

Registering descriptors after login
Descriptors can be registered after the session logs in, but they should be
independent of any descriptors already registered. This allows self-contained
sub-systems to be loaded after connecting.

It is also possible to re-register descriptors that have already been loaded. If this is
done, ensure that all related descriptors are re-registered at the same time. Changes
to one descriptor may affect the initialization of other descriptors.

Note: You can also register each descriptor individually using the
addDescriptor(Descriptor) method; however, registering descriptors
using a vector minimizes the possibility of errors.

Understanding Database sessions

1-4 Oracle9iAS TopLink Foundation Library Guide

Connecting to the database
After the descriptors have been registered, the DatabaseSession can connect to
the database using the login() method. If the login parameters in the
DatabaseLogin class are incorrect, or if the connection cannot be established, a
DatabaseException is thrown.

After a connection is established, the application is free to use the session to access
the database. The isConnected() method returns true if the session is connected to
the database.

Database interaction
The application can interact with the database using the session’s querying methods
or by executing query objects. The interactions between the application and the
database are collectively called the query framework. Refer to "Using the query
framework" on page 1-22 for more information on querying.

Caching objects
Database sessions have an identity map, which maintains object identity and acts as
a cache. When an object is read from the database it is instantiated and stored in the
identity map. If the application queries for the same object, TopLink returns the
object in the cache rather than reading the object from the database again.

The initializeIdentityMaps() method can be called to flush all objects from the
cache.

The identity map can be customized for performance reasons. Refer to the
Oracle9iAS TopLink Mapping Workbench Reference Guide for more information on
using the identity map and caching.

Logging out of the database
The session can log out using the logout() method. Since logging in to the
database can be time consuming, log out only when all database interactions are
complete.

When the logout() method is called, the session is disconnected from the
relational database, and its identity maps are flushed. Applications that log out do
not have to register the descriptors again when they log back in to the database.

Caution: When using this method, make sure that none of the objects in
the cache are in use.

Understanding Database sessions

Working with Database Sessions 1-5

Logging SQL and messages
TopLink accesses the database by generating SQL strings. TopLink handles all SQL
generation internally, and applications that use the session methods or query objects
do not have to deal with SQL. For debugging purposes, programmers who are
familiar with SQL may wish to keep a record of the SQL used to access the
database.

The DatabaseSession class provides methods to allow the SQL generated to be
logged to a writer. SQL and message logging is disabled by default, but can be
enabled using the logMessages() method on the session. The default writer is a
stream writer to System.out, but the writer can be changed using the setLog()
method of the session.

The session can log:

� the state of the cache

� the state of a unit of work. This can be done using the printIdentityMaps()
and printRegisteredObjects() methods.

� debug print statements

� exceptions/error messages sent to system out

and any other output sent to the system log.

Profiler
TopLink offers a high-level logging service called the Profiler. Instead of logging
raw SQL statements, the profiler can be enabled to log a summary of each query
that is executed. This summary includes a performance breakdown of the query to
easily identify performance bottlenecks and has been extended to provide more
granularity with regards to the query information provided. A report that
summarizes the querying performance for an entire session can also be logged from
the profiler.

TopLink also provides a GUI browser for profiles that can be accessed through the
session console.

Refer to Appendix B, "TopLink Development Tools" for more information on the
profiler and session console.

Understanding Database sessions

1-6 Oracle9iAS TopLink Foundation Library Guide

Integrity checker
When a session is connected or descriptors are added to a session after it is
connected, TopLink initializes and validates the descriptor's information. The
integrity checker allows for the validation process to be customized.

By default, the integrity checker reports all errors discovered with the descriptors
during initialization. The integrity checker can be configured to:

� throw the first error that it encounters, including the error’s stack trace

� validate the state of the database schema to ensure it matches the information in
the descriptors

� disable the instance creation check

Example 1–1 Using the integrity checker

session.getIntegrityChecker().checkDatabase();
session.getIntegrityChecker().catchExceptions();
session.getIntegrityChecker().dontCheckInstantiationPolicy();
session.login();

Exception handlers
Exception handlers can be used on the session to handle database exceptions. An
implementor of the ExceptionHandler interface can be registered with the session.
When a database exception occurs during the execution of a query, the exception is
passed to the exception handler instead of being thrown. The exception handler can
then decide to handle the exception, retry the query, or throw an unchecked
exception. Exception handlers are typically used to handle connection timeouts or
database failures. See Oracle9iAS TopLink Troubleshooting for more information on
exceptions.

Example 1–2 Implementing an exception handler

session.setExceptionHandler(newExceptionHandler(){
public Object handleException(RuntimeException exception) {

if ((exception instanceof DatabaseException) &&
(exception.getMessage().equals("connection reset by peer."))) {
DatabaseException dbex = (DatabaseException) exception;
dbex.getAccessor().reestablishConnection (dbex.getSession());
return dbex.getSession().executeQuery(dbex.getQuery());

}
return null;

}

Understanding Database sessions

Working with Database Sessions 1-7

});

JTS and external transaction controllers
For detailed information on Java Transaction Service (JTS) and external transaction
controllers, see Java Transaction Service (JTS) on page 2-28.

Creating database sessions: examples

Example 1–3 Creating and using a session from a TopLink Mapping Workbench
project

import oracle.toplink.tools.workbench.*;
import oracle.toplink.sessions.*

// Create the project object.
Project project = ProjectXMLReader.read("C:\TopLink\example.xml");
DatabaseLogin loginInfo = project.getLogin();
loginInfo.setUserName("scott");
loginInfo.setPassword("tiger");

//Create a new instance of the session and login.
DatabaseSession session = project.createDatabaseSession();
try {

session.login();
} catch (DatabaseException exception) {
throw new RuntimeException("Database error occurred at login: " +
exception.getMessage());
System.out.println("Login failed");
}

// Do any database interaction using the query framework, transactions or units
of work.
...

// Log out when database interaction is over.
session.logout();
Creating and using a session from coded descriptors
import oracle.toplink.sessions.*;

//Create the project object.
DatabaseLogin loginInfo = new DatabaseLogin();
loginInfo.useJDBCODBCBridge();
loginInfo.useSQLServer();

Understanding Database sessions

1-8 Oracle9iAS TopLink Foundation Library Guide

loginInfo.setDataSourceName("MS SQL Server");
loginInfo.setUserName("scott");
loginInfo.setPassword("tiger");
Project project = new Project(loginInfo);

//Create a new instance of the session, register the descriptors, and login.
DatabaseSession session = project.createDatabaseSession();
session.addDescriptors(this.buildAllDescriptors());
try {

session.login();
} catch (DatabaseException exception) {

throw new RuntimeException("Database error occurred at login: " +
exeption.getMessage());
System.out.println("Login failed");
}

//Do any database interaction using the query framework, transactions or units
of work.
...
//Log out when database interaction is over.
session.logout();

Reference
Table 1–1 summarizes the most common public methods for the DatabaseSession
class:

� the Default column describes default settings of the descriptor element

� in the Method Names column, arguments are bold, methods are not

For a complete description of all available methods for the DatabaseSession class,
see the TopLink JavaDocs.

Table 1–1 Elements for DatabaseSession

Element Default Method Names

Construction methods not applicable Project.createDatabaseSession()

Log into the database user name and
password from
project login

login()

Log out of the database not applicable logout()

Executing predefined
queries

executeQuery(String queryName)

Using the Conversion Manager

Working with Database Sessions 1-9

Using the Conversion Manager
TopLink uses a class called the ConversionManager to convert database types to
Java types. This class, found in the oracle.toplink.internal.helper package,
is the central location for type conversion, and as such can provide the expert
developer with a mechanism for using custom types within TopLink.

Executing a query object executeQuery(DatabaseQuery query)

Reading from the database not applicable readAllObjects(Class domainClass,
Expression expression)
readObject(Class domainClass,
Expression expression)

SQL logging do not log SQL logMessages()

Debugging printIdentityMaps()

Identity maps (advanced) not applicable getFromIdentityMap(Vector primaryKey,
Class theClass)

Transactions not applicable beginTransaction()
commitTransaction()
rollbackTransaction()

Exception handlers throw exception setExceptionHandler(ExceptionHandler
handler)

JTS JDBC
transactions

setExternalTransactionController
(ExternalTransactionController
controller)

Unit of work not applicable acquireUnitOfWork()

Writing to the database not applicable deleteObject(Object domainObject)
writeObject(Object domainObject)

Table 1–1 Elements for DatabaseSession (Cont.)

Element Default Method Names

Using the Conversion Manager

1-10 Oracle9iAS TopLink Foundation Library Guide

Creating custom types with the Conversion Manager
To use custom types, create a subclass of the ConversionManager. Do one of the
following:

� Overload the public Object convertObject(Object sourceObject,
Class javaClass) method to call the conversion method that is written in the
subclass for the custom type.

� Delegate the conversion to the super class.

The conversion method, protected ClassX convertObjectToClassX(Object
sourceObject) throws ConversionException must be implemented to convert
incoming object to the required class.

Assigning custom classes to a TopLink session
Once the class has been written, assign it to TopLink. There are two common ways
to accomplish this:

� A TopLink session can be assigned a custom Conversion Manager through the
(getSession().getPlatform().setConversionManager(ConversionMana
ger)) platform.

� Set the Singleton to use the custom Conversion Manager by calling the static
method on the Conversion Manager
setDefaultManager(ConversionManager). By setting this before any session
are logged in, all TopLink sessions created in a particular VM will use the
custom Conversion Manager. See the ConversionManager class JavaDocs for
examples.

The Conversion Manager class loader
The Conversion Manager loads the classes included in a mapping project, as well as
classes throughout the library. TopLink provides storage of a class loader within the
Conversion Manager to facilitate this. The class loader in the Conversion Manager
is set to the System class loader by default.

Database login information

Working with Database Sessions 1-11

Resolving class loader exceptions
There are cases, particularly when TopLink is deployed within an application
server, when other class loaders are used for the deployed classes. In these cases, a
ClassNotFound exceptions may be thrown. To resolve this problem, do one of the
following:

� Call public void setShouldUseClassLoaderFromCurrentThread
(boolean useCurrentThread) on the default Conversion Manager before
logging in any sessions. This resolves the problem for most application servers,
and ensures that TopLink uses the correct ClassLoader.

� Set the default class loader to the class loader used by the ApplicationLoader;
for example, if the Session Manager is being used, the class Loader can be
passed into the getSession() call, which sets the required class loader on the
Conversion Manager.

� Call public static void setDefaultLoader
(ClassLoader classLoader) on the default Conversion Manager before any
sessions are logged in, passing in the ClassLoader that contains the deployed
classes.

Database login information
Java applications that access a database log in to the database through a JDBC
driver. To login successfully, the database typically requires a valid username and
password. In a TopLink application, this login information is stored in the
DatabaseLogin class. All sessions must have a valid DatabaseLogin instance
before logging in to the database.

This section describes the basic login properties and also the various advanced
configuration options available on DatabaseLogin. The advanced options are
normally not required unless the JDBC driver being used is not fully JDBC
compliant.

Creating a login object
The Project class you create must include a login object to access the database used
by the project. The most basic login mechanism involves creating an instance of
DatabaseLogin through its default constructor, as follows:

Databaselogin login = new Databaselogin
...

Database login information

1-12 Oracle9iAS TopLink Foundation Library Guide

The Project class provides the getLogin() instance method to return the project’s
login. This method returns an instance of DatabaseLogin. The DatabaseLogin
object can then be used directly or be provided with more information before
logging in.

However, if you create the project in the TopLink Mapping Workbench, the login
object is created automatically for you. In this case, you should only access the login
from your Project instance. This ensures that login information set in TopLink
Mapping Workbench, such as sequencing information, is used by the session, and
also prevents you from inadvertently over-writing the login information already
included in the project

Specifying database and driver information
The DatabaseLogin method assumes that the database being accessed is a generic
JDBC-compliant database. TopLink also provides custom support for most database
platforms. To take advantage of this support, you can call the useXDriver()
method for your specific platform along with the getLogin() instance method:

project.getLogin().useOracle();
The DatabaseLogin class has several helper methods, such as
useJConnectDriver(), that set the driver class, driver URL prefix, and database
information for common drivers. If one of these helper methods is used, only the
database instance-specific part of the JDBC driver URL needs to be specified, using
the setDatabaseURL() method. These helper methods also set any additional
settings required for that driver, such as binding byte arrays or using native SQL.
They are recommended for specifying your driver information. For example:

project.getLogin().useOracleThinJDBCDriver();
project.getLogin().setDatabaseURL("dbserver:1521:orcl");
By default, new DatabaseLogin objects use the Sun JDBC-ODBC bridge. However,
if you require a different driver, you can specify a different connection mechanism.

Using the Sun JDBC-ODBC bridge
If you are using the Sun JDBC-ODBC bridge, only the ODBC datasource name is
required. Call setDataSourceName() to specify it. A list of your installed data
sources can be found from the “ODBC Administrator” in your Windows control
panel. For example:

Caution: This basic method of database login should only be used
when the project was not created in the TopLink Mapping Workbench.

Database login information

Working with Database Sessions 1-13

project.getLogin().useJDBCODBCBridge();
project.getLogin().useOracle();
project.getLogin().setDataSourceName("Oracle");

Using a different driver
If you require a driver other than the Sun JDBC-ODBC bridge, you can specify a
different connection mechanism by calling the setDriverClass() and
setConnectionString() methods to indicate which driver to use.

For example:

project.getLogin().setDriverClass(oracle.jdbc.driver.OracleDriver.class);
project.getLogin().setConnectionString("jdbc:oracle:thin:@dbserver:1521:orcl");

Setting login parameters
If the database requires user and password information, the application must call
setUserName() and setPassword(). This must be done after the driver has been
specified. This is normally required when using the login from your TopLink
Mapping Workbench project, as the Mapping Workbench does not store the
password by default.

Example 1–4 Using setUserName() and setPassword()

project.getLogin().setUserName("userid");
project.getLogin().setPassword("password");

Properties such as the database name and the server name may be specified
through the setServerName() and setDatabaseName() methods. Most JDBC
drivers do not require the database and server name properties because they are
part of the database URL. Specifying them can cause connection failures, so avoid
setting them unless using JDBC-ODBC. Only some JDBC-ODBC bridges require
these properties to be set. They are usually set from the ODBC Data Source
Administrator, so they are normally not required.

Note: TopLink splits the URL into the driver portion and the database
portion when using this method. The setConnectionString() function
can also be used to set the entire URL.

Note: Refer to the documentation supplied with your driver to
determine the correct settings to use with these methods.

Database login information

1-14 Oracle9iAS TopLink Foundation Library Guide

Some JDBC drivers require additional properties that are not mentioned here. The
additional properties can be specified through the setProperty() method. Also,
some drivers fail to connect if properties are specified when not required. If a
connection always fails, check to make sure the properties are correct.

Table Creator/Qualifier
The setTableQualifier() method can be used to prepend a given string to all
tables accessed by the session. This is useful for setting the name of the table creator,
or owner, for databases such as Oracle and DB2. This should be used when a
common user such as DBA defined the entire schema. If some tables have a different
creator, the table name must be fully qualified with the creator in the descriptor.

Native SQL
By default, TopLink accesses the database using JDBC SQL. The JDBC syntax uses
“{“ escape clauses to print dates and binary data. If your driver does not support
this syntax you will get an error on execution of SQL that contains dates.

To use native SQL for database interaction, call the useNativeSQL() method. This
is required only if your JDBC driver does not support the JDBC standard SQL
syntax, such as Sybase JConnect 2.x. Because native SQL is database-specific, ensure
that you have set your database platform to the correct database.

Example 1–5 Using native SQL with a Sybase database

project.getLogin().useSybase();
project.getLogin().useNativeSQL();

Sequence number parameters
You can specify sequencing information in the DatabaseLogin by using the
following methods:

� setSequenceCounterFieldName()

� setSequenceNameFieldName()

� setSequencePreallocationSize()

Note: Do not set the login password directly using the setProperty()
method, as TopLink encrypts and decrypts the password. Use the
setPassword() method instead.

Database login information

Working with Database Sessions 1-15

� setSequenceTableName()

� useNativeSequencing()

If your application uses native sequencing rather than a sequence table, call the
useNativeSequencing() method. TopLink supports native sequencing on Oracle,
Sybase, SQL Server and Informix. The database platform must have been specified
to use native sequencing.

� When using native sequencing, the sequence pre-allocation size defaults to 1. If
Sybase, SQL Server or Informix native sequencing is used, then pre-allocation
cannot be used and the size must not be changed.

� When using native sequencing with Oracle, the name of the sequence object
used to generate the sequence numbers must be configured in each descriptor
using sequencing and the sequence pre-allocation size must match the
“increment” on the sequence object.

Example 1–6 Using native sequencing

project.getLogin().useOracle();
project.getLogin().useNativeSequencing();
project.getLogin().setSequencePreallocationSize(1);

Notes:

� Be sure to match the “increment” of the Oracle sequence and not the
“cache”. The cache refers to the sequences cached on the database
server, while the increment refers to the number of sequences that
can be cached on the database client.

� When using sequencing or native sequencing, the sequence
information must also be specified in each descriptor that makes use
of a generated id.

� It is recommended to always use pre-allocation and to only use
native sequencing in Oracle since native sequencing in other
databases does not support pre-allocation.

Note: Using the Project class to create a DatabaseLogin instance
automatically sets the sequencing information specified in TopLink
Mapping Workbench.

Database login information

1-16 Oracle9iAS TopLink Foundation Library Guide

Refer to the Oracle9iAS TopLink Mapping Workbench Reference Guide for more
information on sequence numbers.

Binding and parameterized SQL
By default, TopLink prints data inlined into the SQL it generates and does not use
parameterized SQL. The difference between parameter binding and printing data is
that some drivers have limits on the size of data that can be printed. Also,
parameterized SQL allows for the prepared statement to be cached to improve
performance. Many JDBC drivers do not fully support parameter binding or have
size or type limits. Refer to your database documentation for more information on
binding and binding size limits.

TopLink can be configured to use parameter binding for large binary data with the
useByteArrayBinding() method. Some JDBC drivers function better if large
binary data is read through streams. For this purpose, TopLink can also be
configured to use streams for binding by calling the useStreamsForBinding()
method. Binding can also be configured for large string data through the
useStringBinding() method.

TopLink supports full parameterized SQL and prepared statement caching, both of
which are configured through the bindAllParameters(),
cacheAllStatements() and setStatementCacheSize()methods. Refer to
Chapter 6, "Performance Optimization" for more information on parameterized
SQL.

Example 1–7 Using parameter binding with large binary data

project.getLogin().useByteArrayBinding();
project.getLogin().useStreamsForBinding();

project.getLogin().useStringBinding(50);
project.getLogin().bindAllParameters();

project.getLogin().cacheAllStatements();
project.getLogin().setStatementCacheSize(50);

Database login information

Working with Database Sessions 1-17

Batch writing
Batch writing can be enabled on the login with the useBatchWriting() method.
Batch writing allows for groups of insert/update/delete statements to be sent to the
database in a single batch, instead of one at a time. This can be a huge performance
benefit. TopLink supports batch writing for selected databases and for JDBC 2.0
batch compliant drivers in JDK 1.2.

Some JDBC 2.0 drivers do not support batch writing. TopLink can be configured to
support batch writing directly with the dontUseJDBCBatchWriting() method.

For more information, see Chapter 6, "Performance Optimization".

Example 1–8 Batch writing

project.getLogin().useBatchWriting();
project.getLogin().dontUseJDBCBatchWriting();

Data optimization
By default, TopLink optimizes data access from JDBC, through avoiding double
conversion by accessing the data from JDBC in the format that the application
requires. For example, longs are retrieved directly from JDBC instead of having the
driver return a BigDecimal that TopLink would then have to convert into a long.

Dates are also accessed as strings and converted directly to the date or Calendar
type used by the application. Some JDBC drivers cannot convert the data correctly
themselves so this optimization may have to be disabled. For example, some of the
WebLogic JDBC drivers cannot convert dates to strings in the correct format.

Oracle’s JDBC drivers were found to lose precision on floats in certain cases.

Note: The problems mentioned here may have been fixed in more
recent versions of the drivers. Please check your vendor documentation
for relevant updates.

Database login information

1-18 Oracle9iAS TopLink Foundation Library Guide

Cache isolation
By default, concurrency is optimized and the cache is not locked more than required
during reads or writes. The default settings allow for virtual concurrent reading and
writing and should never cause any problems. If the application uses no form of
locking then the last unit of work to merge changes wins. This feature allows for the
isolation level of changes to the cache to be configured for severe situations only. It
is not recommended that the default isolation level be changed.

Isolation settings are

� ConcurrentReadWrite: default

� SynchronizedWrite: allow only a single unit of work to merge into the cache
at once

� SynchronizedReadOnWrite: do not allow reading or other unit of work merge
while a unit of work is merging

Manual transactions
Sybase JConnect 2.x had problems with the JDBC auto-commit being used for
transactions. This could prevent the execution of some stored procedures.

The handleTransactionsManuallyForSybaseJConnect() method gives a
workaround to this problem. This problem may have been fixed in more recent
versions of Sybase JConnect.

External transactions and connection pooling
TopLink supports integration with an application server's JTS driver and connection
pooling. This support is enabled on the login. For more information, see Chapter 2,
"Developing Enterprise Applications".

Other database connections
By default, TopLink uses the JDBC 1.0 standard technique for loading a JDBC driver
and connecting to a database. That is, TopLink first loads and initializes the class by
calling java.lang.Class.forName(), then obtains a connection to the database
by calling java.sql.DriverManager.getConnection(). Some drivers do not
support this technique for connecting to a database. As a result, TopLink can be
configured in several ways to support these drivers.

Database login information

Working with Database Sessions 1-19

Direct connect drivers
Some drivers (for example, Castanet drivers) do not support using the
java.sql.DriverManager to connect to a database. TopLink instantiates these
drivers directly, using the driver’s default constructor, and obtains a connection
from the new instance. To configure TopLink to use this direct instantiation
technique, use the useDirectDriverConnect() method.

Example 1–9 Using useDirectDriverConnect()

project.getLogin().useDirectDriverConnect("com.foo.barDriver", "jdbc:foo:",
"server");

Using JDBC 2.0 data sources
The JDBC 2.0 specification recommends using a Java Naming and Directory
Interface (JNDI) naming service to acquire a connection to a database. TopLink
supports acquiring a database connection in this fashion. To take advantage of this
feature, construct and configure an instance of
oracle.toplink.jndi.JNDIConnector and pass it to the project login object
using the setConnector() method.

Example 1–10 Using JNDI

import oracle.toplink.sessions.*;
import oracle.toplink.jndi.*;

javax.naming.Context context = new javax.naming.InitialContext();
Connector connector = new JNDIConnector(context, "customerDB");
project.getLogin().setConnector(connector);

Custom database connections
TopLink also allows you to develop your own class that TopLink can use to obtain a
connection to a database. The class must implement the
oracle.toplink.sessions.Connector interface. This requires the class to
implement three methods:

� java.lang.Object clone() — The object must be “cloneable.”

� java.sql.Connection connect(java.util.Properties properties) —
This method receives a dictionary of properties (including the user name and
password) and must return a valid connection to the appropriate database.

� void toString(PrintWriter writer) — This method is used to print out
any helpful information on the TopLink log.

Database login information

1-20 Oracle9iAS TopLink Foundation Library Guide

After this class is implemented, it can be instantiated and passed to the project login
object, using the setConnector() method.

Example 1–11 Using the oracle.toplink.sessions.Connector interface

import oracle.toplink.sessions.*;
Connector connector = new MyConnector();
project.getLogin().setConnector(connector);

Building database logins: examples
The following examples illustrate database login.

Example 1–12 A simple login procedure that reads an XML deployment file generated
from TopLink Mapping Workbench

import oracle.toplink.tools.workbench.*;
import oracle.toplink.sessions.*;

Project project = XMLProjectReader.read("C:\TopLink\example.xml");
project.getLogin().setUserName("userid");
project.getLogin().setPassword("password");

DatabaseSession session = project.createDatabaseSession();session.login();

Example 1–13 A simple login procedure that uses a generated project

import oracle.toplink.sessions.*;
Project project = new ACMEProject();
project.getLogin().setUserName("userid");
project.getLogin().setPassword("password");
DatabaseSession session = project.createDatabaseSession();
session.login();

Example 1–14 A simple login procedure that builds a login directly

import oracle.toplink.sessions.*;
DatabaseLogin login = new DatabaseLogin();
login.useJConnectDriver();
login.setDatabaseURL("dbserver:5000:acme");
login.setUserName("userid");
login.setPassword("password");
Project project = new Project(login);
DatabaseSession session = project.createDatabaseSession();
session.login();

Database login information

Working with Database Sessions 1-21

Reference
Table 1–2 summarizes the most common public methods for the DatabaseLogin:

� the Default column describes default settings of the descriptor element

� in the Method Names column, arguments are bold, methods are not

For a complete description of all available methods for the DatabaseLogin, see the
TopLink JavaDocs.

Table 1–2 Elements for DatabaseLogin

Element Default Method Names

Construction
methods

not applicable Project getLogin()

User name and
password

some drivers / databases may
default to the OS login; most do not

setUserName(String name)
setPassword(String password)

Database platform generic JDBC usePlatform(DatabasePlatform platform)

Standard
JDBC-ODBC bridge
only

not applicable setDataSourceName(String dataSourceName)

Other JDBC 1.0
Drivers

not applicable setDriverClassName(String driverClassName)
setConnectionString(String url)

Performance do not use useBatchWriting()

(use JDBC if using JDK 1.2) dontUseJDBCBatchWriting()
useJDBCBatchWriting()

Creator/table
qualifiers

none setTableQualifier(String qualifier)

Parameter binding printing byte arrays inline useByteArrayBinding()

arrays useStreamsForBinding()

50 useStringBinding(int size)

print inline bindAllParameters()

do not cache cacheAllStatements()

Using the query framework

1-22 Oracle9iAS TopLink Foundation Library Guide

Using the query framework
The term query framework describes the mechanisms used to read and write to the
database. There are three ways to access the database.

Session queries TopLink provides methods for the DatabaseSession class that
read and write at the object level. Session queries are the simplest way to access the
database.

Query objects TopLink provides query object classes that encapsulate the
database operations. Query objects support more options than the session queries,
allowing complex operations to be performed.

Custom SQL queries TopLink internally generates SQL strings to access the
database. The application can also call SQL directly or use SQL to build query
objects. Use of custom SQL is discouraged in favor of session queries and query
objects, but applications can always use SQL to customize the TopLink session
queries or call stored procedures.

Session queries
The DatabaseSession class provides direct support for reading and modifying the
database by providing read, write, insert, update and delete operations. Each of
these operations can be performed by calling the appropriate session method. The
session queries are very easy to use and are flexible enough to perform most
database operations.

Sequence Number
information

do not use native sequencing useNativeSequencing()

‘SEQUENCE’ setSequenceTableName(String name)

‘SEQ_COUNT’ setSequenceCounterFieldName(String name)

‘SEQ_NAME’ setSequenceNameFieldName(String name)

50 setSequencePreallocationSize(int size)

JTS / EJB not pooled useExternalConnectionPooling()

JDBC transactions useExternalTransactionController()

Table 1–2 Elements for DatabaseLogin (Cont.)

Element Default Method Names

Using the query framework

Working with Database Sessions 1-23

The UnitOfWork class can also be used to modify objects. Using a UnitOfWork is
the preferred and optimal approach when modifications to the database are being
made. The UnitOfWork has been optimized to keep track of changes that are being
made to objects using object change sets. This enhancement allows the application
to access change sets describing modifications made to an object within the unit of
work or through event modification. Now, applications can check if any changes
occurred before deciding to commit or release the unit of work. The application
checks for changes by sending the hasChanged() message to the unit of work. Any
changes are committed to the database by calling the UnitOfWork’s commit
method.

The UnitOfWork’s ‘commit and merge’ algorithm has also been optimized to
improve performance.

Query objects
The application can create query objects to perform more complex querying criteria
than the session queries allow, if required. An application can create query objects
by instantiating the appropriate query object and providing it with querying
criteria. These criteria can be Expression objects or raw SQL strings.

Query objects can be used in one of four ways:

� They can be executed directly by calling the executeQuery() method on the
DatabaseSession.

� They can define new querying routines and add them to the session. These new
session queries are named so that they can be executed by name in a session.

� They can change the default querying behavior for read or write operations. An
application can customize how the session’s queries operate by supplying
query objects to the descriptor’s query manager.

� They can change the default querying behavior for complex relationship
mappings such as selection queries.

Using the query framework

1-24 Oracle9iAS TopLink Foundation Library Guide

Custom SQL queries
An application can also execute raw SQL strings and stored procedure calls. This is
useful for calling stored procedures in the database and for accessing raw data.

Custom SQL strings and stored procedure calls can be used in one of three ways.

� They can be executed directly using the executeSelectingCall() and
executeNonSelectingCall() session methods

� They can be executed through data-level queries by calling the
executeQuery() method on the DatabaseSession.

� They can change the default querying behavior for read or write operations. An
application can customize how the session’s queries operate by supplying
custom SQL to the descriptor’s query manager.

� They can change the default querying behavior for complex relationship
mappings such as selection queries.

Database exceptions
If an error is encountered during a database operation, a TopLink exception of type
DatabaseException is thrown. Interaction with the database should be performed
within a try-catch block to catch these exceptions.

try {
Vector employees = session.readAllObjects(Employee.class);
} catch (DatabaseException exception) {
// Handle exception
}

Refer to Oracle9iAS TopLink Troubleshooting for more information on handling
TopLink exceptions.

Write operations can also throw an OptimisticLockException on a write, update
or delete operation if optimistic locking is enabled.

For information on optimistic locking, see the Oracle9iAS TopLink Mapping
Workbench Reference Guide.

Using session queries

Working with Database Sessions 1-25

Querying on an inheritance hierarchy
When querying on a class that is part of an inheritance hierarchy, the session checks
the descriptor to determine the type of the class.

If the descriptor has been configured to read subclasses, which is the default, the
query returns instances of the class and its subclasses.

If the descriptor has been configured not to read subclasses, the query returns only
instances of the queried class. It does not return any instances of the subclasses.

If neither of these conditions apply, the class is a leaf class, and does not have any
subclasses. The query returns instances of the queried class.

Querying on interfaces
TopLink supports querying on an interface

� If there is only a single implementor of the interface, the query returns an
instance of the concrete class.

� If there are multiple implementors of the interfaces, the query returns instances
of all of the implementing classes.

Using session queries
Session queries enables you to read and write objects in a database.

The Session class and its subclasses, such as DatabaseSession and UnitOfWork,
provide methods to retrieve objects stored in a database. These methods are called
query methods, and allow queries to be made in terms of the object model rather
than the relational model.

Note: Descriptors must be defined for interfaces to allow querying on
them.

Using session queries

1-26 Oracle9iAS TopLink Foundation Library Guide

Reading objects from the database
The session provides the following methods to access the database:

� read operation: Use the readObject() methods to read a single object from the
database.

� read all operation: Use the readAllObjects() methods to read multiple objects
from the database.

� refresh operation: Use the refreshObject() method to refresh the object with
data from the database.

When looking for a specific object, it is preferable to use the readObject()
methods rather than the readAllObjects() method, because a read operation
based on the primary key may be able to find an instance in the cache and avoid
going to the database. A read all operation does not know how many objects are to
be retrieved, so even if it finds matching objects in the cache, it goes to the database
to find any others.

Read operation
The readObject() methods retrieve a single object from the database. The
application must specify the class of object to read. If no object matching the criteria
is found, null is returned.

For example, the simplest reading operation would be:

session.readObject(MyDomainObject.class);
This example returns the first instance of MyDomainObject found in the table used
for MyDomainObject.

Querying for the first instance of a class is not very useful. TopLink provides the
Expression class to specify querying parameters for a specific object.

Read all operation
The readAllObjects() methods retrieve a Vector of objects from the database.
The application must specify the class to read. An expression can be supplied to
provide query parameters to identify specific objects within the collection. If no
objects matching the criteria are found, an empty Vector is returned.

The readAllObjects() method returns the objects unordered.

Using session queries

Working with Database Sessions 1-27

Refresh operation
The refreshObject() method causes TopLink to update the object in memory
with any new data from the database. This operation refreshes any privately owned
objects as well.

Example 1–15 A typical use of readObject() using an expression

import oracle.toplink.sessions.*;
import oracle.toplink.expressions.*;

// Use an expression to read in the Employee whose last name is Smith. Create an
expression using the Expression Builder and use it as the selection criterion of
the search.
Employee employee = (Employee) session.readObject(Employee.class, new
ExpressionBuilder().get("lastName").equal("Smith"));

Example 1–16 A typical use of readAllObjects() using an expression

// Returns a Vector of employees whose employee salary > 10000.
Vector employees = session.readAllObjects(Employee.class,new
ExpressionBuilder.get("salary").greaterThan(10000));

Using expression builder
Applications need a flexible way to specify which objects are to be retrieved by a
read query. Specifying query parameters using SQL would require application
programmers to deal with relational storage mechanisms rather than the object
model. Also, querying using strings is static and inflexible.

TopLink provides a querying mechanism called an expression that allows queries
based on the object model. TopLink translates these queries into SQL and converts
the results of the queries into objects.

Expression support is provided by two public classes. The Expression class
represents an expression, which can be anything from a single constant to a
complex clause with boolean logic. Expressions can be manipulated, grouped
together and integrated in very flexible ways. The ExpressionBuilder serves as
the factory for constructing new expressions.

Using session queries

1-28 Oracle9iAS TopLink Foundation Library Guide

Expression components A simple expression normally consists of three parts:

� an attribute

� an operator

� a constant for comparison

The attribute represents a mapped attribute or query key of the persistent class. The
operator is an expression method that implements some sort of boolean logic, such
as between, greaterThanEqual or like. The constant refers to the value used to
select the object.

In the code fragment

expressionBuilder.get("lastName").equal("Smith");
the attribute is lastName, the operator is equal() and the constant is the string
“Smith”. The ExpressionBuilder is a stand-in for the object(s) to be read from the
database; in this case, employees.

Use expressions instead of SQL Using expressions to access the database has many
advantages over using SQL.

� Expressions are easier to maintain because the database is abstracted. Changes
to descriptors or database tables do not affect the querying structures in the
application.

� Expressions enhance readability by standardizing the query interface so that it
looks similar to traditional Java calling conventions. For example, to get the
street name from the Address object of the Employee class, write:

emp.getAddress().getStreet().equal("Meadowlands");
To use an expression to get the street name of an employee’s address from the
database, write:

emp.get("address").get("street")
.equal("Meadowlands");

� Expressions allow read queries to transparently query between two classes that
share a relationship. If these classes are stored in multiple tables in the database,
TopLink automatically generates the appropriate join statements to return
information from both tables.

Using session queries

Working with Database Sessions 1-29

� Using expressions to specify read queries simplifies complex operations. For
example, the following Java code retrieves all Employees living on
“Meadowlands Drive” whose salary is greater than $10,000:

ExpressionBuilder emp = new ExpressionBuilder();
Expression exp = emp.get("address").get("street") .equal("Meadowlands
Drive");
Vector employees = session.readAllObjects (Employee.class,
exp.and(emp.get("salary") .greaterThan(10000)));

TopLink automatically generates the appropriate SQL from that code:

SELECT t0.VERSION, t0.ADDR_ID, t0.F_NAME, t0.EMP_ID, t0.L_NAME, t0.MANAGER_
ID, t0.END_DATE, t0.START_DATE, t0.GENDER, t0.START_TIME, t0.END_TIME,
t0.SALARY FROM EMPLOYEE t0, ADDRESS t1 WHERE (((t1.STREET = 'Meadowlands')
AND (t0.SALARY > 10000)) AND (t1.ADDRESS_ID = t0.ADDR_ID))

Boolean logic Expressions use standard boolean operators such as AND, OR and
NOT. Multiple expressions can be combined to form more complex expressions. For
example, the following code fragment queries for projects managed by a selected
person, with a budget greater than or equal to $1,000,000.

ExpressionBuilder project = new ExpressionBuilder();
Expression hasRightLeader, bigBudget, complex;
Employee selectedEmp = someWindow.getSelectedEmployee();
hasRightLeader = project.get("teamLeader").equal(selectedEmp);
bigBudget = project.get("budget").greaterThanEqual(1000000);
complex = hasRightLeader.and(bigBudget);
Vector projects = session.readAllObjects(Project.class, complex);

Functions TopLink supports a wide variety of database functions and operators,
including like(), notLike(), toUpperCase(), toLowerCase(), toDate(),
rightPad() and so on. Database functions allow you to define more flexible
queries. For example, the following code fragment would match “SMITH”, “Smith”
and “smithers”:

emp.get("lastName").toUpperCase().like("SM%")
Most functions are accessed through methods such as toUpperCase on the
Expression class, but mathematical methods are accessed through the
ExpressionMath class. This avoids over-complicating the Expression class with too
many functions, while supporting mathematical functions similar to Java’s
java.lang.Math. For example:

ExpressionMath.abs(ExpressionMath.subtract(emp.get("salary"),emp.get("spouse").g
et("salary")).greaterThan(10000)

Using session queries

1-30 Oracle9iAS TopLink Foundation Library Guide

You may want to use a function in your database that TopLink does not support
directly. For simple functions, use the getFunction() operation, which treats its
argument as the name of a unary function and applies it. For example, the
expression

emp.get("lastName").getFunction("FOO").equal(42)
would produce the SQL

SELECT . . . WHERE FOO(EMP.LASTNAME) = 42
You can also create more complex functions and add them to TopLink. See
"Platform and user-defined functions" on page 1-36.

Expressions for one-to-one and aggregate object relationships Expressions can also use an
attribute that has a one-to-one relationship with another persistent class. A
one-to-one relation translates naturally into an SQL join that returns a single row.
For example, to access fields from an employee’s address:

emp.get("address").get("country").like("S%")
This example corresponds to joining the EMPLOYEE table to the ADDRESS table
based on the “address” foreign key and checking for the country name. These
relationships can be nested infinitely, so it is possible to ask for:

project.get("teamLeader").get("manager").get("manager").get("address").get("stre
et")

Expressions for one-to-many, many-to-many, direct collection and aggregate collection
relationships More complex relationships can also be queried, but this introduces
additional complications, because they do not map directly into joins that yield a
single row per object.

TopLink allows queries across one-to-many and many-to-many relationships, using
the anyOf operation. As its name suggests, this operation supports queries where
any of the items on the “many” side of the relationship satisfy the query criteria.

For example:

emp.anyOf("managedEmployees").get("salary").lessThan(0);
returns employees where at least one of the employees who they manage (a
one-to-many relationship) has a negative salary.

Similarly, we can query across a many-to-many relationship using:

emp.anyOf("projects").equal(someProject)

Using session queries

Working with Database Sessions 1-31

These queries translate into SQL and join the relevant tables, using a DISTINCT
clause to remove duplicates. For example:

SELECT DISTINCT . . . FROM EMP t1, EMP t2 WHERE t2.MANAGER_ID = t1.EMP_ID AND
t2.SALARY < 0

Creating expressions with the Expression Builder Expression objects should always be
created by calling get() or its related methods on an Expression or
ExpressionBuilder. The ExpressionBuilder acts as a stand-in for the objects
being queried. A query is constructed by sending it messages that correspond to the
attributes of the objects. ExpressionBuilder objects are typically named according
to the type of objects that they are used to query against.

Expression have been extended to support subqueries (SQL subselects) and parallel
selects. A SubQuery can be created using an ExpressionBuilder and Parallel Selects
allow for multiple heterogeneous expression builders to be used in defining a single
query. In this way, joins are allowed to be specified for unrelated objects at the object
level.

Parallel selects and sub-queries are discussed in more detail later in this chapter.

Example 1–17 A simple Expression built with the ExpressionBuilder

This example uses the query key “lastName” defined in the descriptor to reference
the field name “L_NAME”.

Expression expression = new ExpressionBuilder().get("lastName").equal("Young");

Example 1–18 An ExpressionBuilder example that uses the and() method

ExpressionBuilder emp = new ExpressionBuilder();
Expression exp1, exp2;
exp1 = emp.get("firstName").equal("Ken");
exp2 = emp.get("lastName").equal("Young");
return exp1.and(exp2);

Example 1–19 An ExpressionBuilder example that uses the notLike() method

Expression expression = new ExpressionBuilder().get("lastName").notLike("%ung");

Note: An instance of ExpressionBuilder is specific to a particular
query. Do not attempt to build another query using the same builder,
because it still has information related to the first query.

Using session queries

1-32 Oracle9iAS TopLink Foundation Library Guide

Sub-selects and sub-queries Occasionally queries need to make comparisons based on
the results of sub-queries. SQL supports this through sub-selects. Expressions
provide the notion of sub-queries to support sub-selects.

Sub-queries allow for Report Queries to be included in comparisons inside
expressions. A report query is the most SQL complete type of query in TopLink. It
queries data at the object level based on a class and expression selection criteria.
Report queries also allow for aggregation and group-bys.

Sub-queries allow for sophisticated expressions to be defined to query on
aggregated values (counts, min, max) and unrelated objects (exists, in,
comparisons). A sub-query is obtained through passing an instance of a report
query to any expression comparison operation, or through using the subQuery
operation on expression builder. The sub-query can have the same, or a different
reference class and must use a different expression builder. Sub-queries can be
nested or used in parallel. Sub-queries can also make use of custom SQL.

For expression comparison operations that accept a single value (equal,
greaterThan, lessThan) the sub-query’s result must return a single value. For
expression comparison operations that accept a set of values (in, exists) the
sub-query’s result must return a set of values.

Example 1–20 A sub-query expression using a comparison and count operation

This example queries all employees that have more than 5 managed employees.

ExpressionBuilder emp = new ExpressionBuilder();
ExpressionBuilder managedEmp = new ExpressionBuilder();
ReportQuery subQuery =new ReportQuery(Employee.class, managedEmp);
subQuery.addCount();
subQuery.setSelectionCriteria(managedEmp.get("manager") .equal(emp));
Expression exp = emp.subQuery(subQuery).greaterThan(5);

Example 1–21 A sub-query expression using a comparison and max operation

This example queries the employee with the maximum salary in Ottawa.

ExpressionBuilder emp = new ExpressionBuilder();
ExpressionBuilder ottawaEmp = new ExpressionBuilder();
ReportQuery subQuery = new ReportQuery(Employee.class, ottawaEmp);
subQuery.addMax("salary");
subQuery.setSelectionCriteria(ottawaEmp.get("address").get("city").equal("Ottawa
"));
Expression exp =
emp.get("salary").equal(subQuery).and(emp.get("address").get("city").equal("Otta
wa"));

Using session queries

Working with Database Sessions 1-33

Example 1–22 A sub-query expression using a not exists operation

This example queries all employees that have no projects.

ExpressionBuilder emp = new ExpressionBuilder();
ExpressionBuilder proj = new ExpressionBuilder();
ReportQuery subQuery = new ReportQuery(Project.class, proj);
subQuery.addAttribute("id");
subQuery.setSelectionCriteria(proj.equal(emp.anyOf("projects"));
Expression exp = emp.notExists(subQuery);

Parallel expressions Occasionally queries need to make comparisons on unrelated
objects. Expressions provide the notion of parallel expressions to support these
types of queries. The concept of parallel queries is similar to sub-queries in that
multiple expression builders are used. However a report query is not required.

The parallel expression must have its own expression builder and the constructor
for expression builder that takes a class as an argument must be used. The class
can be the same or different for the parallel expression and multiple parallel
expressions can be used in a single query. Only one of the expression builders will
be considered the primary expression builder for the query. This primary builder
will make use of the zero argument expression constructor and its class will be
obtained from the query.

Example 1–23 A parallel expression on two independent employees

This example queries all employees with the same last name as another employee of
different gender (possible spouse).

ExpressionBuilder emp = new ExpressionBuilder();
ExpressionBuilder spouse = new ExpressionBuilder(Employee.class);
Expression exp =
emp.get("lastName").equal(spouse.get("lastName")).and(emp.get("gender").notEqual
(spouse.get("gender")).and(emp.notEqual(spouse));

Parameterized expressions, finders Expressions can also create comparisons based on
variables instead of constants. This technique is useful for:

� customizing mappings

� creating re-usable queries

� defining EJB finders

Using session queries

1-34 Oracle9iAS TopLink Foundation Library Guide

In TopLink, a relationship mapping is very much like a query. It needs to know how
to retrieve an object or collection of objects based on its current context. For
example, a one-to-one mapping from Employee to Address needs to query the
database for an address based on foreign key information from the table of the
Employee. Each mapping contains a query, which in most cases is constructed
automatically based on the information provided in the mapping. You can also
specify these expressions yourself, using the mapping customization mechanisms
described in the Oracle9iAS TopLink Mapping Workbench Reference Guide.

The difference from a regular query is that these are used to retrieve data for many
different objects. TopLink allows these queries to be specified with arguments
whose values are supplied each time the query is executed. We also need a way to
refer directly to the potential values in the target database row without going
through the object accessing mechanism.

The following two lower-level mechanisms are provided by the methods
getParameter() and getField().

Expression getParameter() Returns an expression representing a parameter to the
query. The parameter is the fully qualified name of the field from the descriptor’s
row, or a generic name for the argument. This method is used to construct user
defined queries with parameters or to construct the selection criteria for a mapping.
It does not matter which Expression object this message is sent to, because all
parameters are global to the current query.

Expression getField() Returns an expression representing a database field with the
given name. Normally used to construct the selection criteria for a mapping. The
argument is the fully qualified name of the field. This method must be sent to an
expression that represents the table from which this field is derived. See also
"Data-level queries" on page 1-37.

Example 1–24 The use of a parameterized expression in a mapping

This example builds a simple one-to-many mapping from class PolicyHolder to
Policy. In this example, the SSN field of the POLICY table is a foreign key to the SSN
field of the HOLDER table.

OneToManyMapping mapping = new OneToManyMapping();
mapping.setAttributeName("policies");
mapping.setGetMethodName("getPolicies");
mapping.setSetMethodName("setPolicies");
mapping.setReferenceClass(Policy.class);

Using session queries

Working with Database Sessions 1-35

// Build a custom expression here rather than using the defaults
ExpressionBuilder policy = new ExpressionBuilder();
mapping.setSelectionCriteria(policy.getField("POLICY.SSN")).equal(policy.getPara
meter("HOLDER.SSN")));

Example 1–25 Building a more complex Expression that can be used to perform a
read query on a one-to-many mapping

ExpressionBuilder address = new ExpressionBuilder();
Expression exp = address.getField("ADDRESS.EMP_
ID").equal(address.getParameter("EMPLOYEE.EMP_ID"));
exp = exp.and(address.getField("ADDRESS.TYPE").equal(null));

Example 1–26 Using a parameterized expression in a custom query

The following example demonstrates how custom query is able to find an Employee
if it is given the employee’s first name.

ExpressionBuilder emp = new ExpressionBuilder();
Expression firstNameExpression;
firstNameExpression = emp.get("firstName").equal emp.getParameter("firstName"));
ReadObjectQuery query = new ReadObjectQuery();
query.setReferenceClass(Employee.class);
query.setSelectionCriteria(firstNameExpression);
query.addArgument("firstName");
Vector v = new Vector();
v.addElement("Sarah");
Employee e = (Employee) session.executeQuery(query, v);

Example 1–27 Using nested parameterized expressions

The following example demonstrates how custom query is able to find all
employees living in the same city as a given employee.

ExpressionBuilder emp = new ExpressionBuilder();
Expression addressExpression;
addressExpression =
emp.get("address").get("city").equal(emp.getParameter("employee").get("address")
.get("city"));
ReadObjectQuery query = new ReadObjectQuery(Employee.class);
query.setName("findByCity");
query.setReferenceClass(Employee.class);
query.setSelectionCriteria(addressExpression);
query.addArgument("employee");
Vector v = new Vector();
v.addElement(employee);
Employee e = (Employee) session.executeQuery(query, v);

Using session queries

1-36 Oracle9iAS TopLink Foundation Library Guide

Platform and user-defined functions Different databases provide different functions and
sometimes implement the same functions in different ways. For example, indicating
that an order by clause is ascending might be ASC or ASCENDING. TopLink
supports this by allowing functions and other operators that vary according to the
relational database.

While most platform-specific operators already exist in TopLink, it is possible to
add your own. For this, you must be aware of the ExpressionOperator class.

An ExpressionOperator has a selector and a Vector of strings. The selector is the
identifier (id) by which users refer to the function. The strings are the constant
strings that are used in printing this function. These strings are printed in
alternation with the function arguments. In addition, you can specify whether the
operator should be prefix or postfix. In a prefix operator, the first constant string
prints before the first argument; in a postfix, it prints afterwards.

Example 1–28 Creating a new expression operator: the toUpperCase operator

ExpressionOperator toUpper = new ExpressionOperator();
toUpper.setSelector(-1);
Vector v = new Vector();
v.addElement("UPPER(");
v.addElement(")");
toUpper.printAs(v);
toUpper.bePrefix();

// To add this operator for all database
ExpressionOperator.addOperator(toUpper);
// To add to a specific platform
DatabasePlatform platform = session.getLogin().getPlatform();
platform.addOperator(toUpper);

Example 1–29 This example shows how the user-defined function can be accessed
and queries for the firstname "foo" converted to upperCase "FOO"

ReadObjectQuery query = new ReadObjectQuery(Employee.class);
expression functionExpression = new
ExpressionBuilder().get("firstName").getFunction(ExpressionOperator.toUpper).equ
al("FOO");
query.setSelectionCriteria(functionExpression);
session.executeQuery(query);

Note: The getFunction() method can be called with a vector of
arguments.

Using session queries

Working with Database Sessions 1-37

Data-level queries In TopLink, expressions are used for internal queries as well as for
user-level queries. TopLink mappings build expressions internally and use them to
retrieve database results. The expressions are, necessarily, at the data level rather
than the object level, because they are part of what defines the object level.

It is also possible to build arbitrary data-level queries using TopLink. The main
operations to be aware of are getField() and getTable(). You can call getTable
to create a new table. You can either hold onto that table expression or subsequently
call getTable() with the table name to fetch it.

Note that tables are specific to the particular expression to which getTable() was
originally sent. The getField() message can be sent to expressions representing
either tables or objects. In either case, the field must be part of a table represented
by that object; otherwise, you will get an exception when executing the query.

In an object-level expression, you refer to attributes of objects, which may in turn
refer to other objects. In a data-level expression, you refer to tables and their fields.
You can also combine data-level and object-level expressions within a single query.

Example 1–30 Creating a data-level query

This example reads a many-to-many relationship using a link table and also checks
an additional field in the link table. Note the combination of object-level and
data-level queries, as we use the employee’s manager as the basis for the data-level
query. Also note the parameterization for the ID of the project.

ExpressionBuilder emp = new ExpressionBuilder();
Expression manager = emp.get("manager");
Expression linkTable = manager.getTable("PROJ_EMP");
Expression empToLink = emp.getField("EMPLOYEE.EMP_
ID").equal(linkTable.getField("PROJ_EMP.EMP_ID");
Expression projToLink = linkTable.getField("PROJ_EMP.PROJ_
ID").equal(emp.getParameter("PROJECT.PROJ_ID"));
Expression extra =
linkTable.getField("PROJ_EMP.TYPE").equal("W");
query.setSelectionCriteria((empToLink.and(projToLink)).and(extra));

Outer joins When querying, TopLink often uses joins to check values from other
objects or other tables within the same object. This works well under most
circumstances, but sometimes it is necessary to use a different type of join, known
as an “outer join”.

The most common circumstance is with a one-to-one relationship where one side of
the relationship may not be present. For example, Employee objects may have an

Using session queries

1-38 Oracle9iAS TopLink Foundation Library Guide

Address object, but if the Address is unknown, it is null at the object level, and has
a null foreign key at the database level.

Outer joins can also be used for one-to-many and many-to-many relationships for
cases where the relationship is empty.

At the object level this works fine, but when issuing a read that traverses the
relationship, objects may be missing. Consider the expression:

(emp.get("firstName").equal("Homer")).or(emp.get("address").
get("city").equal("Ottawa"))
In this case, employees with no address do not appear in the list, regardless of their
first name. While non-intuitive at the object level, this is fundamental to the nature
of relational databases and not easily changed. One way around the problem on
some databases is to use an outer join. In this example, employees with no address
show up in the list with null values in the result set for each column in the ADDRESS
table, which gives the correct result. We specify that an outer join is to be used by
using getAllowingNull() or anyOfAllowingNone() instead of get() or
anyOf().

For example:

(emp.get("firstName").equal("Homer")).or(emp.getAllowingNull
("address").get("city").equal("Ottawa"))
Outer joins are useful but do have limitations. Support for them varies widely
between databases and database drivers, and the syntax is not standardized.
TopLink currently supports outer joins for Sybase, SQL Server, Oracle, DB2, Access,
SQL Anywhere and the JDBC outer join syntax. Of these, only Oracle supports the
outer join semantics in ‘or’ clauses. Outer joins are also used with ordering (see
"Ordering for read all queries" on page 1-76) and for joining (see Chapter 6,
"Performance Optimization").

Reference Table 1–3 and Table 1–4 summarize the most common public methods for
ExpressionBuilder and Expression.

� the Default column describes default settings of the descriptor element

� in the Method Names column, arguments are bold, methods are not

For a complete description of all available methods for the ExpressionBuilder
and Expression, see the TopLink JavaDocs.

Using session queries

Working with Database Sessions 1-39

Table 1–3 Elements for ExpressionBuilder

Element ExpressionBuilder Method Names

Constructors ExpressionBuilder()
ExpressionBuilder(Class aClass)

Expression creation
methods

get(String queryKeyName)
getAllowingNull(String queryKeyName)
anyOf(String queryKeyName)
anyOfAllowingNone(String queryKeyName)
getField(String fieldName)
in(ReportQuery subQuery)

Table 1–4 Elements for Expression

Element Expression Method Names

Constructors Never use the Expression constructors. Always use an
ExpressionBuilder to create a new expression.

Expression operators equal(Object object)
notEqual(Object object)
greaterThan(Object object)
lessThan(Object object)
isNull()
notNull()

Logical operators and(Expression theExpression)
not()
or(Expression theExpression)

Key word searching equalsIgnoreCase(String theValue)
likeIgnoreCase(String theValue)

Aggregate functions
(for use with report
query)

minimum()
maximum()

Relationship
operators

anyOf(String queryKeyName)
anyOfAllowingNone(String queryKeyName)
get(String queryKeyName)
getAllowingNull(String queryKeyName)
getField(String fieldName)

Using session queries

1-40 Oracle9iAS TopLink Foundation Library Guide

Using query by example
TopLink’s advanced expression framework queries can now be defined through
providing example instances of the application’s object model. This allows for
highly dynamic queries to be easily defined through using the application’s own
object model. Query forms can be rapidly built through wiring an object model
instance to the query form and passing the instance directly to the TopLink query.
Query by example also provides a way for non-TopLink aware clients to define
dynamic queries.

Query by example builds an expression from an instance by comparing each
attribute to the current value in the instance. All types of direct mappings are
supported as well as most relationship mappings, so the instance's related objects
can also be queried. A policy object can also be used with the query. The policy can
specify

� which attributes to compare

� which values to ignore (for example, do not compare null or empty strings)

� which operator to use (for example, LIKE, key word search) and if AND or OR
should be used to combine the attribute comparisons.

Writing objects to the database
Although a DatabaseSession can write objects to the database directly, the
UnitOfWork is the preferred approach when writing to the database in TopLink.

Writing a single object to the database
The writeObject() method should be called when a significant change to the
object has occurred. It should also be called after the creation and initialization of
new application objects so that the new objects are found in subsequent database
queries.

The writeObject() method can be used on both new and existing instances stored
in the database. It determines whether to perform an insert or an update by
performing a does exist check. In essence, a ‘does exist’ check determines whether
the object already exists in the database. If the object already exists, an update
operation is performed. If it does not already exist, an insert operation is performed.

Note: It is strongly recommended that UnitOfWork be used when
writing to the database in TopLink, and that writeObject() not be used.

Using session queries

Working with Database Sessions 1-41

Privately owned objects are also written in the correct order to maintain referential
integrity.

Writing all objects to the database
The application can write multiple objects using the writeAllObjects() method.
It performs the same ‘does exist’ check as the writeObject() method and then
performs the appropriate insert or update operations.

Adding new objects to the database
The insertObject() method should be called only when dealing with new
objects. When using insertObject() instead of writeObject(), the ‘does exist’
check to the database is bypassed.

This method assumes that the object is a new instance and does not already exist in
the database. If the object already exists in the database, an exception occurs when
insertObject() is executed.

Modifying existing objects in the database
The updateObject() method should be called only when dealing with existing
objects. When using updateObject() instead of writeObject(), the ‘does exist’
check to the database is bypassed.

This method assumes that the object already exists in the database. If the object does
not already exist in the database, an exception occurs when updateObject() is
executed.

Deleting objects in the database
To delete a TopLink object from its table, call the method deleteObject() and pass
a reference to the object to delete.

An object must be loaded to be deleted. Any privately-owned data is also deleted
when a deleteObject() operation is performed.

Using transactions

1-42 Oracle9iAS TopLink Foundation Library Guide

Writing objects: Examples
The following examples show how to implement write and write all operations
in Java code.

Example 1–31 A typical use of writeObject()

//Create an instance of employee and write it to the database.
Employee susan = new Employee();
susan.setName("Susan");
...
//Initialize the susan object with all other instance variables.
session.writeObject(susan);

Example 1–32 A typical use of writeAllObjects()

// Read a Vector of all of the current employees in the database.
Vector employees = (Vector) session.readAllObjects(Employee.class);
...//Modify any employee data as necessary.
//Create a new employee and add it to the list of employees.
Employee susan = new Employee();
...
//Initialize the new instance of employee.
employees.add(susan);
//Write all employees to the database. The new instance of susan which is not
currently in the database will be inserted. All of the other employees which are
currently stored in the database will be updated.
session.writeAllObjects(employees);

Using transactions
A transaction is a set of database session operations that can either be committed or
rolled back as a single operation.

If one operation in a transaction fails, all operations in the transaction fail.
Transactions allow database operations to be performed in a controlled manner, in
which the database is modified only when all transaction operations have been
successful.

Transactions are closely related to the concept of a unit of work. If using a unit of
work, transactions do not have to be used.

Using transactions

Working with Database Sessions 1-43

Transaction operations
TopLink provides the following methods to support transaction processing:

� beginTransaction() – marks the beginning of a transaction

� commitTransaction() – signals the end of a transaction, and is used to
commit the set of transaction operations and modify the database

� rollbackTransaction() – once a transaction has been committed, there is no
way to undo it; however, if an error occurs during a transaction, the
rollbackTransaction() method can be used to undo the entire transaction
set.

Nesting transactions
TopLink allows nested transactions but uses a single transaction in the database
because JDBC does not support nested transactions. The inner transactions are
counted and ignored.

Implementing a transaction in Java code

To add transaction processing to a set of database operations:
1. Call beginTransaction() at the start of the transaction set.

2. Specify a try-catch block that calls rollbackTransaction() if a database
exception is thrown.

3. Call commitTransaction() at the end of the transaction set.

Example 1–33 This code updates all employee records. If an error occurs, the
transaction is rolled back using rollbackTransaction().

/** Updates the group of employee records*/
void writeEmployees(Vector employees, Session session)
{

Employee employee;
Enumeration employeeEnumeration = employees.elements();
try {

session.beginTransaction();
while (employeeEnumeration.hasMoreElements())
{

employee=(Employee) employeeEnumeration.nextElement();
session.writeObject(employee);

Using units of work

1-44 Oracle9iAS TopLink Foundation Library Guide

}
session.commitTransaction();

} catch (DatabaseException exception) {
// A database exception has been thrown, indicating that at least one
operation has failed. Roll back the Transaction if the application requires
that all operations must succeed or all must fail.

session.rollbackTransaction();
}

}

Using units of work
A unit of work is a session that simplifies the transaction process and stores
transaction information for its registered persistent objects. The unit of work enhances
database commit performance by updating only the changed parts of an object.

Units of work are the preferred method of writing to a database in TopLink. The
unit of work:

� Synchronizes changes to the databases and the object model

� Isolates edits of objects into their own transaction space

� Supports parallelism and nesting

� Sends a minimal amount of SQL to the database during the commit, by
updating only the exact changes down to the field level

� Maintains referential integrity by ordering the inserts, updates, and deletes

� Resolves bi-directional references

� Avoids database deadlock through ordering table access

Understanding the unit of work
To use a unit of work, the application typically acquires an instance of UnitOfWork
from the session and registers the persistent objects that are to change. The
registering process returns clones that can be modified.

After changes are made to the clones, the application uses the commit() method to
commit an entire transaction. The unit of work inserts new objects or updates
changed objects in the database according to the changes made to the clones.

Using units of work

Working with Database Sessions 1-45

Figure 1–1 The life cycle of a unit of work

When writing the objects to the database:

� If an error occurs, a DatabaseException is thrown and the unit of work is
rolled back to its original state.

� If no database error occurs, the original objects are updated with changes that
were made to the clones.

Example 1–34 The typical life cycle of a unit of work

// The application reads a set of objects from the database.
Vector employees = session.readAllObjects(Employee.class);

// The application decides that a specific employee will be edited.
. . .
Employee employee = (Employee) employees.elementAt(index)

try {
// Acquire a unit of work from the session.
UnitOfWork uow = session.acquireUnitOfWork()
// Register the object that is to be changed. The unit of work returns a
clone of the object. We make the changes to the clone. The unit of work also
makes a back-up copy of the original employee.
Employee employeeClone = (Employee)uow.registerObject(employee)
// We make changes to the employee clone by adding a new phoneNumber. If a
new object is referred to by a clone, then it does not have to be
registered. The unit of work determines that it is a new object at commit

Merge

Unit of Work

Edited
Clones

Registered
persistent
objects

Insert/
update

Commit

Using units of work

1-46 Oracle9iAS TopLink Foundation Library Guide

time.
PhoneNumber newPhoneNumber = newPhoneNumber("cell","212","765-9002");
employeeClone.addPhoneNumber(newPhoneNumber);
// We commit the transaction. This causes the unit of work to compare the
employeeClone with the back-up copy of the employee, begin a transaction,
and update the database with the changes.
// If all goes well, then the transaction is committed and the changes in
employeeClone are merged into employee.
// If there is an error updating the database, then the transaction is
rolled back and the changes are not merged into the original employee
object.
uow.commit();

} catch (DatabaseException ex) {
// The commit has failed. The database was not changed. The unit of work should
be thrown away and application-specific action taken.
}
// After the commit, the unit of work is no longer valid. It should not be used
further.

Creating a unit of work
To create a unit of work for a given session, call the acquireUnitOfWork() method
on the DatabaseSession class. The unit of work is valid until the application calls
the commit() or release() methods.

Registering existing objects with a unit of work
Registering objects tells the unit of work that the application will change those
objects. During registration, the unit of work creates and returns clones of the
original objects given. All changes are made by the application on those clones. The
original objects are left unchanged. If the commit() is successful, then the changes
made to the clones are merged into the original objects.

You should use units of work to keep track of only those objects that are going to be
changed. By registering objects that will not change, the unit of work is needlessly
performing cloning and other processing.

The unit of work maintains object identity on the registered clones. If the same
object is registered twice, the identical clone is returned.

When an object is read from the database using the unit of work, it is automatically
registered with that unit of work, and therefore should not be re-registered.

Using units of work

Working with Database Sessions 1-47

Only root-level objects should be registered. New objects that are referred to by a
clone do not have to be registered. At commit time, the unit of work determines that
these are new objects, and takes appropriate action.

The unit of work has two methods to explicitly register objects:

� registerObject(Object) -- returns a clone of the object

� registerAllObjects(Vector) -- returns a Vector of clones

When objects are registered, the unit of work determines if they are new or existing
(using the object's descriptor's “does exist” setting). If the objects are known to exist
the registerExistingObject() method can be used to eliminate the need for the
“does exist” check to be performed.

Reading objects using a unit of work
A unit of work is a Session and can be used for all database access during its
lifetime. It uses the same methods to read from the database that a session uses,
such as readObject() and readAllObjects(). These methods automatically
register the objects read in the unit of work and return clones, so the
registerObject() and registerAllObjects() methods do not have to be
called.

Creating new objects in a unit of work
New objects can be included in a unit of work. Unless a registered clone points to
them, the application must register these new objects so that they are written to the
database at commit time.

The registration is done in the same way that you register other objects, by using the
registerObject() call. If you do not register a newly created object, the commit()
call does not write that object to the database, because the unit of work has no way
of knowing that the new object exists.

Note: The registration of new objects still makes and returns a clone of
the object. This clone must be used for further edits and the new object
must be registered before being related to any other objects. An
alternative method, registerNewObject(), can be used to register a
new object without cloning. To avoid errors, new objects should be
registered immediately after creation, or the newInstance() factory
method can be used on the unit of work, which will instantiate and
register a new instance of your object.

Using units of work

1-48 Oracle9iAS TopLink Foundation Library Guide

The order that registerObject is called on a new object does not affect the order
in which objects are inserted. When the unit of work calculates its commit order, it
uses the foreign key information in one-to-one and one-to-many mappings. If you
are having constraint problems during insertion, make sure that your one-to-one
mappings are defined correctly.

Writing objects using a unit of work
All updates and inserts on the database are done inside the call to the UnitOfWork’s
commit() method. It is not valid to perform write, insert, and update operations on
a unit of work. The commit() method updates the database with the changes to the
cloned objects. Only those clones that have changed since they were registered are
updated or inserted into the database.

If an error occurs when writing the objects to the database, a DatabaseException
is thrown and the database is rolled back to its original state. If no database errors
occur, the original objects are updated with the new values from the clones.

Successfully committing to the database ends the unit of work. The unit of work
should not be used after a commit has been done.

Deleting objects through a unit of work
Deleting objects in a unit of work is done using the deleteObject() or
deleteAllObjects() method. If an object being deleted has not been registered,
then it is registered automatically.

When an object is deleted, its privately-owned parts are also deleted, because
privately-owned parts cannot exist without their owner. At commit time, SQL is
generated to delete the objects, taking database constraints into account.

If an object is deleted, then the object model must take the deletion of that object
into account. References to the object being deleted must be set to null.

Example 1–35 Deleting an object through a unit of work

// Acquire a unit of work.
UnitOfWork uow = session.acquireUnitOfWork();

Project project = (Project) uow.readObject(Project.class);

Employee leader = project.getTeamLeader();

// Because we are deleting the Employee who is currently the team leader, we

Using units of work

Working with Database Sessions 1-49

must set the Project’s teamLeader to be null. Otherwise, the object model will
be corrupted and the Project will be referring to a non-existent Employee.
// If the team leader is not set to null, then a QueryException will be thrown
during the merge. It is also likely that this would violate a database
constraint and a DatabaseException would be thrown during the commit.
project.setTeamLeader(null);

// Delete the leader employee at commit time.
uow.deleteObject(leader);

uow.commit();

Resuming a unit of work
Normally when a unit of work is committed, the clones of the registered objects
become invalid. If another edit is started, the objects must be re-registered in a new
unit of work and the new clones must be edited.

The unit of work also supports resuming, through the commitAndResume()and
commitAndResumeOnFailure() methods. The changes in the unit of work are
committed to the database; however, the unit of work is not invalidated. The same
unit of work and clones of registered objects can continue to be used for subsequent
edits and commits. If resume on failure is used and the unit of work commit fails,
the unit of work can still be used and the commit re-tried.

Reverting a unit of work
Reverting a unit of work with the revert() method essentially puts the unit of
work back in a state where all of the objects that were registered are still registered
but no changes have been made yet.

In certain circumstances, an application may want to abandon the changes made to
the clones in a unit of work, but does not want to abandon the unit of work. The
method revertAndResume() exists for this purpose. The revertAndResume()
method undoes all the changes made to the clones using the original objects as a
guide. It also deregisters all new objects, and removes from the deletion set all of the
objects for which deleteObject(Object) was called.

Executing queries from the unit of work
Like a session, a unit of work can execute queries using the executeQuery()
method. The results of these queries are automatically registered in the unit of work
and clones are returned to the caller.

Using units of work

1-50 Oracle9iAS TopLink Foundation Library Guide

Modify queries such as InsertObjectQuery or UpdateObjectQuery cannot be
executed, because database modification is done only on commit.

Nested and parallel units of work
An application can have multiple units of work operating in parallel by calling
acquireUnitOfWork() multiple times on the session. The units of work operate
independently of one another and maintain their own cache.

The application can also nest units of work by calling acquireUnitOfWork() on
the parent unit of work. This creates a child unit of work with its own cache.

The child unit of work should be committed or released before its parent. If a child
unit of work commits, it updates the parent unit of work rather than the database. If
the parent does not commit to the database, the changes made to the child are not
updated in the database.

Inside a unit of work
The unit of work keeps track of original objects that are registered with it, the
working copy clones and the back-up copy clones that it creates. The working copy
clones are returned when an object is registered.

After the user changes the clones and commits the unit of work, the working copy
clones are compared to the back-up copy clones. The changes are written to the
database. The working copy clones are compared to the back-up copy clone (not to
the original object) because another parallel unit of work may have changed the
original object. Comparing to the back-up copy clones assures us that only the
changes that were made in the current unit of work are written to the database and
merged into the parent session’s cache. The use of clones in the unit of work allows
parallel units of work, which is an absolute requirement to build multi-user
three-tier applications.

The creation of clones is highly optimized. When making clones, only mapped
attributes are considered. The cloning process stops at indirection objects and
continues only if the indirection objects are accessed. The cloning process is
configurable using the descriptor’s Copy Policy.

Using units of work

Working with Database Sessions 1-51

Advanced features
The Unit of Work offers a number of advanced features that enable you to optimize
certain functions

Read-only classes
Within a unit of work, a class can be declared read-only. Declaring a class read-only
tells the unit of work that instances of this class will never be modified. The unit of
work can save time during registration and merge because instances of read-only
classes do not require clones to be created or merged.

When an object is registered, the entire object tree is traversed and registered also.
When a read-only object is encountered during the tree traversal, that branch of the
tree is not traversed further. Therefore, any objects that are referred to by read-only
objects are not registered either.

Read-only classes are normally reference data objects; that is, objects that are not
changed in the current application.

An example of a reference data class would be the class Country. An Address can
refer to a Country but the Country objects are created, modified, or deleted in
another application. When modifying an Address, a Country object can be
assigned to the Address where the Country object would have been chosen from a
set of Country objects that are already stored in the database.

The user can set classes to be read-only for an individual unit of work immediately
after it is acquired. The methods addReadOnlyClass(Class) or
addReadOnlyClasses(Vector) can be used to change the set of read-only classes
for a specific unit of work.

A default set of read-only classes can be established for the duration of the
application by using the Project method
setDefaultReadOnlyClasses(Vector). All new units of work acquired after this
call will have the Vector set of read-only classes.

Nested units of work have the same set or a super set of read-only classes as their
parent. When a nested unit of work is acquired, it inherits the same set as its parent
unit of work. If a class is declared read-only, then its subclasses must also be
declared read-only.

Using units of work

1-52 Oracle9iAS TopLink Foundation Library Guide

Read-Only descriptors
TopLink’s support for read-only classes within a unit of work extends to include
descriptors (for information on Read-Only classes, see "Read-only classes" on
page 1-51). When a class is declared as read-only, its descriptors are also flagged as
read-only. In addition, you can flag a descriptor as read-only directly, either from
within code or from the Mapping Workbench. The functionality is the same as for
read-only classes, which improves performance by excluding read-only
descriptors/classes from write operations such as inserts, updates, and deletes.

Descriptors can be flagged as read-only by calling the setReadOnly() method on
the descriptor as follows:

descriptor.setReadOnly();
You can also flag a descriptor as read-only in the Mapping Workbench by checking
the Read Only check box for a specific descriptor.

Always Conform Descriptors
TopLink’s support for conforming queries in the unit of work can now be specified
in the descriptors (for information on conforming queries, see "In-memory querying
and unit of work conforming" on page 1-79). Conforming is specified at the query
level. This enables the results of the query to conform with any changes to the object
made within the unit of work including new objects, deleted objects and changed
objects.

A descriptor can be directly flagged to always conform results in the unit of work so
that all queries performed on this descriptor will, by default conform its results in
the unit of work. This can be specified either within code or from the Mapping
Workbench.

You can flag descriptors to always conform in the unit of work by calling the
method on the descriptor as follows:

descriptor.setShouldAlwaysConformResultsInUnitOfWork(true);
You can also flag descriptors to always conform from the Mapping Workbench by
checking the Conform Results in Unit Of Work check box for a descriptor.

Merging
When using the unit of work with a ClientSession in a three-tier application,
objects are often returned from the client through some sort of serialization
mechanism (for example, RMI or CORBA).

Using units of work

Working with Database Sessions 1-53

The unit of work is expecting all changes to be made to the “working copy” clone
that it returned when the original object was registered.

The changes to the object returned from the client must be propagated to the
“working copy” clone of the unit of work before the unit of work is committed. The
unit of work provides three methods, where each method takes a clone that was
returned from the serialization mechanism and merges the changes into the unit of
work’s working copy clone:

� mergeClone(Object) – merges the clone and all of its privately-owned parts
into the unit of work’s working copy clone

� deepMergeClone(Object) – merges the clone and all of its parts into the unit
of work’s working copy clone

� shallowMergeClone(Object) – merges only the attributes that are mapped
with direct mappings

Merge clone can be used with both existing and new objects. New objects can be
merged only once within a unit of work, because they are not cached and may not
have a primary key. If new objects are required to be merged twice, this can be done
through the setShouldNewObjectsBeCached() method and ensuring that the
objects have a valid primary key before being registered.

Validation
The unit of work validates object references when it commits. Objects registered in a
unit of work should not reference objects that have not been registered in the unit of
work. Doing this violates object transaction isolation and can lead to corrupting the
session's cache. In some cases the application may wish to turn this validation off,
or increase the amount of validation. This can be done through the
dontPerformValidation() and performFullValidation() methods.

Note: TopLink also supports a remote session. In this case, the unit of
work resides on the client, and TopLink handles the merging and
replication issues.

Using units of work

1-54 Oracle9iAS TopLink Foundation Library Guide

Troubleshooting the unit of work
When the unit of work detects an error during the merge, it throws a
QueryException stating the invalid object and the reason that it is invalid. In this
case, it may still be difficult for the application to figure out the problem, so the unit
of work provides the validateObjectSpace() method to allow your application
to pinpoint where the problem exists in the object model. The
validateObjectSpace() method can be called at any time on the unit of work
and provides the full stack of objects traversed to discover the invalid object.

Examples of units of work
The following examples show some typical units of work.

Example 1–36 Associating existing objects in a unit of work

// Get an employee read from the parent session of the unit of work.
Employee employee = (Employee)session.readObject(Employee.class)

// Acquire a unit of work.
UnitOfWork uow = session.acquireUnitOfWork();
Project project = (Project) uow.readObject(Project.class);

// When associating an existing object (read from the session) with a clone, we
must make sure we register the existing object and assign its clone into a unit
of work.

// INCORRECT: Cannot associate an existing object with a unit of work clone. A
QueryException will be thrown. project.setTeamLeader(employee);

// CORRECT: Instead register the existing object then associate the clone.
Employee employeeClone = (Employee)uow.registerObject(employee);
project.setTeamLeader(employeeClone);
uow.commit();

Example 1–37 Resolving issues involved in adding a new object when a bidirectional
relationship exists

// Get an employee read from the parent session of the unit of work.
Employee manager = (Employee)session.readObject(Employee.class);

// Acquire a unit of work.
UnitOfWork uow = session.acquireUnitOfWork();

// Register the manager to get its clone

Using units of work

Working with Database Sessions 1-55

Employee managerClone = (Employee)uow.registerObject(manager);

// Create a new employee
Employee newEmployee = new Employee();
newEmployee.setFirstName("Spike");
newEmployee.setLastName("Robertson");

// INCORRECT: Should not be associating the new employee with the original
manager. This would cause a QueryException when TopLink detects this error
during the merge.
newEmployee.setManager(manager);

// CORRECT: associate the new object with the clone. Note that in this example,
the setManager method is maintaining the bidirectional managedEmployees
// relationship and adding the new employee to its managedEmployees. At commit
time, the unit of work will detect that this is a new object and will take the
appropriate action.
newEmployee.setManager(managerClone);

// INCORRECT: Do not register the newEmployee, as this would create two copies.
This would cause a QueryException when TopLink detects this error during the
merge.
// uow.registerObject(newEmployee);
// In the call to setManager, above, the managerClone’s managedEmployees may not
have been maintained through the setManager method. If it were not the case, the
registerObject should have been called before the new employee was related to
the manager. If the developer was unsure if this was the case, the
registerNewObject method could be called to be sure that the newEmployee is
registered in the unit of work. The registerNewObject method registers the
object, but does not make a clone.
uow.registerNewObject(newEmployee);

// Commit the unit of work
uow.commit();

Reference
Table 1–5 summarizes the most common public methods for the UnitOfWork:

� the Default column describes default settings of the descriptor element

� in the Method Names column, arguments are bold, methods are not

For a complete description of all available methods for the UnitOfWork, see the
TopLink JavaDocs.

Working with locking policies

1-56 Oracle9iAS TopLink Foundation Library Guide

Working with locking policies
Locking policy is an important component of any multi-user TopLink application.
When users share objects in an application, a locking policy ensures that two or
more users do not attempt to modify the same object or its underlying data
simultaneously. If the object is new, deleted, or changed, normal insert, delete, or
update overrides the feature.

Many record locking strategies are employed by relational databases. TopLink
includes support for the following locking policies:

Optimistic Lock All users have read access to the object. When a user attempts to
write a change, the application checks to ensure the object has not changed since the
last read.

Optimistic Read Lock Like an optimistic lock, the optimistic read lock checks to
ensure the object has not changed since the last read when the user attempts to
write a change. However, the optimistic read lock also forces a read of any related
tables that contribute information to the object.

Pessimistic The first user who accesses an object with the purpose of updating locks
the object until the update is complete. No other user can read or update the object
until the first user releases the lock.

Table 1–5 Elements for UnitOfWork

Element Default Method Names

Registering objects not applicable registerObject(Object object)

Nested units of work not applicable acquireUnitOfWork()

Query objects not applicable executeQuery(DatabaseQuery query)

Reading from the
database

not applicable readAllObjects(Class domainClass,
Expression expression)
readObject(Class domainClass, Expression
expression)

Writing to the
database

not applicable deleteObject(Object domainObject)

Read-only classes
(advanced)

all classes are
read-write

addReadOnlyClass(Class theClass)

Merging clones not applicable mergeClone(Object rmiClone)

Working with locking policies

Working with Database Sessions 1-57

No locking The application does not verify that data is current.

Using optimistic lock
Optimistic locking, also known as write locking, allows unlimited read access to an
object. However, a client can only write an object to the database if the object has
not changed since the client last read it.

TopLink’s support for optimistic record locking uses the descriptor, and can be
applied in the following two ways:

� Version locking policies enforce optimistic locking by using version fields (or
write lock fields) that are updated each time a record is written; a version field
must be added to the table for this purpose

� Field locking policies do not require additional fields, but require UnitOfWork
in order to be implemented.

Advantages and disadvantages
The advantages of optimistic locking are:

� It prevents users and applications from editing data that has been changed.

� Users can be notified immediately if there has been a locking violation when
updating the object.

� It does not require the database resource to be locked up.

� It prevents database deadlocks.

Note: When building a TopLink application you are most likely to use
either optimistic locking or optimistic read locking as they are the safest
and most efficient of these locking strategies.

Note: In a three-tier application, if objects are edited on the client
outside the context of a unit of work, then the write lock value must be
stored in the object and passed to the client. If it is only stored in the
cache on the server, then lock conflicts may be missed as other clients
update the same cache.

Working with locking policies

1-58 Oracle9iAS TopLink Foundation Library Guide

The disadvantage of optimistic locking is

� It cannot prevent users and applications from editing data that is being
changed; if two applications have the same data open, the first one to commit
the changes succeeds while the other process fails.

Version locking policies
There are two types of version locking policies available in TopLink,
VersionLockingPolicy and TimestampLockingPolicy. Each of these requires an
additional field in the database to operate:

� For VersionLockingPolicy, add a numeric field to the database.

� For TimestampLockingPolicy, add a timestamp field to the database.

TopLink records the version as it reads an object from a table. When the client
attempts to write the object, the version of the object is compared with the version
in the table record. If the versions are the same, the updated object is written to the
table, and the version of both the table record and the object are updated. If the
versions are different, the write is disallowed and an error is raised.

The two version locking policies have different ways of writing the version fields
back to the database:

� VersionLockingPolicy increments the value in the version field by one.

� TimestampLockingPolicy inserts a new timestamp into the row. The
timestamp is configurable to get the time from the server or the local machine.

For both policies, the values of the write lock field can be stored in either the
identity map or in a writable mapping within the object.

If the value is stored in the identity map, then by default an attribute mapping is not
required for the version field. If the application does map the field, it must make the
mappings read-only to allow TopLink to control writing the fields.

Field locking policies
TopLink support for field locking policies does not require any additional fields in
the database. Field locking policy support includes:

� AllFieldsLockingPolicy

� ChangedFieldsLockingPolicy

� SelectedFieldsLockingPolicy

Working with locking policies

Working with Database Sessions 1-59

All of these policies compare the current values of certain mapped fields with their
previous values. When using these policies, a UnitOfWork must be used for
updating the database. Each policy handles its field comparisons in a specific way
defined by the policy.

� Whenever an object using AllFieldsLockingPolicy is updated or deleted,
all the fields in that table are compared in the where clause. If any value in that
table has been changed since the object was read, the update or delete fails. This
comparison is only on a per table basis. If an update is performed on an object
that is mapped to multiple tables (including multiple table inheritance), only
the changed table(s) appear in the where clause.

� Whenever an object using ChangedFieldsLockingPolicy is updated, only
the modified fields are compared. This allows for multiple clients to modify
different parts of the same row without failure. Using this policy, a delete
compares only on the primary key.

� Whenever an object using SelectedFieldsLockingPolicy is updated or
deleted, a list of selected fields is compared in the update statement. Updating
these fields must be done by the application either manually or though an
event.

Whenever any update fails because optimistic locking has been violated, an
OptimisticLockException is thrown. This should be handled by the application
when performing any database modification operations. The application must
refresh the object and reapply its changes.

Java implementation of optimistic locking
Use the API to set optimistic locking in code. All of the API is on the descriptor:

� useVersionLocking(String) sets this descriptor to use version locking, and
increments the value in the specified field name for every update or delete

� useTimestampLocking(String) sets this descriptor to use timestamp locking
and writes the current server time in the specified field name for every update
or delete

� useChangedFieldsLocking() tells this descriptor to compare only modified
fields for an update or delete

� useAllFieldsLocking() tells this descriptor to compare every field for an
update or delete

� useSelectedFieldsLocking(Vector) tells this descriptor to compare the
field names specified in this vector of Strings for an update or delete

Working with locking policies

1-60 Oracle9iAS TopLink Foundation Library Guide

The following example illustrates how to implement optimistic locking using the
VERSION field of EMPLOYEE table as the version number of the optimistic lock

descriptor.useVersionLocking("VERSION");

This code stores the optimistic locking value in the identity map. If the value should
be stored in a non-read only mapping, then the code would be:

descriptor.useVersionLocking("VERSION", false);

The false indicates that the lock value is not stored in the cache but is stored in the
object.

Advanced optimistic locking policies
TopLink includes the previously described optimistic locking policies, and all of
these policies implement the OptimisticLockingPolicy interface. This interface
is referenced throughout the TopLink code. It is possible to create more policies by
implementing this interface and implementing the methods defined.

Using optimistic read lock
Optimistic read lock is an advanced type of optimistic lock that not only checks the
version of the object, but also forces optimistic lock checking on an unchanged
object by issuing an SQL "UPDATE … SET VERSION = ? WHERE … VERSION = ?"
statement to the database. Optimistic read locking also allows modification of
version field along with optimistic lock checking. An optimistic lock exception is
thrown if the “VERSION” field has changed.

This feature is supported in UnitOfWork API as follows:

UnitOfWork.forceUpdateToVersionField(Object cloneFromUOW, boolean
shouldModifyVersionField)
UnitOfWork.removeForceUpdateToVersionField(Object cloneFromUOW);
This feature can only be used on objects that implement a version locking policy or
timestamp locking policy. When an object that implements a version locking policy
is updated, the version value is incremented or set to the current timestamp. For
more information on version locking policies, see "Version locking policies" on
page 1-59.

When is an object considered changed? UnitOfWork considers an object changed when
its direct-to-field mapping's attribute or aggregate object mapping's attribute is
modified. If an object is added to or removed from the relationship of the source
object, or an object in the relationship is changed, UnitOfWork does not consider

Working with locking policies

Working with Database Sessions 1-61

this a changed in the source object and does not check optimistic locking for the
source object when it commits.

Working with version fields
Optimistic read lock enables a UnitOfWork to either force an update to the version
or leave the version without an update using the forceUpdateToVersionField
function as follows:

UnitOfWork.forceUpdateToVersionField(cloneObject, true|false);
Using the true switch causes the version to be incremented, while the false switch
leaves the version non-incremented. Whether or not the version should be
incremented depends on the circumstances.

Leaving the version field unmodified Leave the version unmodified when the
application logic depends on an unchanged object in the current application but the
object may have changed in another application. Forcing optimistic lock checking
on the object guarantees the validity of data committed in the current application.

TopLink-generated SQL for this feature typically follows the format “UPDATE …
SET VERSION = 10 WHERE … VERSION = 10”.

Example 1–38 Optimistic lock leaving the version field unmodified

In this example, a thread is calculating a mortgage rate based on the current interest
rate (the “mortgage rate” thread). If the interest rate used by this thread is adjusted
by another thread (the “interest rate” thread) while the calculation is happening. the
calculation becomes invalid, because the mortgage rate thread does not take into
account the changes made by the interest rate thread. To avoid this, the mortgage
rate thread forces optimistic lock checking on the interest rate to guarantee a valid
calculation.

The following code calculates the mortgage rate:

try {
UnitOfWork uow = session.acquireUnitOfWork();
MortgageRate cloneMortgageRate = (MortgageRate)
uow.registerObject(mortgageRate);
InterestRate cloneInterestRate = (InterestRate)
uow.registerObject(interestRate);
cloneMortgageRate.setRate(cloneInterestRate
.getRate() - cloneMortgageRate.getDiscount());
/* Force optimistic lock checking on interestRate to guarantee a valid
calculation, but with no version update*/
uow.forceUpdateToVersionField(cloneInterestRate, false);

Working with locking policies

1-62 Oracle9iAS TopLink Foundation Library Guide

uow.commit();
}(OptimisticLockException exception) {

/* Refresh the out-of-date object */
session.refreshObject(exception.getObject());
/* Retry… */

}
This code adjusts the interest rate:

try {
UnitOfWork uow = session.acquireUnitOfWork();
InterestRate cloneInterestRate = (InterestRate)
uow.registerObject(interestRate);
cloneInterestRate.setRate(cloneInterestRate
.getRate() + 0.005);
uow.commit();

}(OptimisticLockException exception) {
/* Refresh out-of-date object */
session.refreshObject(exception.getObject());
/* Retry… */

}

Modifying the version field This feature is applied in situation where application
requires marking an unchanged object as changed when it modifies the object's
relationship.

TopLink-generated SQL for this feature typically follows the format “UPDATE …
SET VERSION = 11 WHERE … VERSION = 10”.

Example 1–39 Optimistic lock modifying the version field

A thread (the “bill” thread) is calculating an invoice for a customer. If another
thread (the “service” thread) adds a service to the same customer or modifies the
current service, the bill thread must be informed so that the changes are reflected on
the invoice. This is accomplished as follows:

� The service thread marks the customer object as changed.

� The bill thread forces optimistic lock checking on the customer object.

This code represents the service thread. It adds a service to the customer and
updates the version:

try {
UnitOfWork uow = session.acquireUnitOfWork();
Customer cloneCustomer = (Customer uow.registerObject(customer);
Service cloneService = (Service uow.registerObject(service);
/* Add a service to customer */

Working with locking policies

Working with Database Sessions 1-63

cloneService.setCustomer(cloneCustomer);
cloneCustomer.getServices().add(cloneSerVice);
/* Modify the customer version to inform other application that the customer
has changed */
uow.forceUpdateToVersionField(cloneCustomer, true);
uow.commit();

}
(OptimisticLockException exception) {

/* Refresh out-of-date object */
session.refreshObject(exception.getObject());
/* Retry… */

}

Notice that the service thread forces a version update. The following code
represents the bill thread, and calculates a bill for the customer. Notice that it does
not force an update to the version:

try {
UnitOfWork uow = session.acquireUnitOfWork();
Customer cloneCustomer = (Customer) uow.registerObject(customer);
Bill cloneBill = (Bill) uow.registerObject(new Bill());
cloneBill.setCustomer(cloneCustomer);
/* Calculate services' charge */
int total = 0;
for(Enumeration enum = cloneCustomer.getServices().elements();
enum.hasMoreElements();) {

total += ((Service) enum.nextElement()).getCost();
}
cloneBill.setTotal(total);
/* Force optimistic lock checking on the customer to guarantee a valid
calculation */
uow.forceUpdateToVersionField(cloneCustomer, false);
uow.commit();
}(OptimisticLockException exception) {

/* Refresh the customer and its privately owned parts */
// session.refreshObject(cloneCustomer);
/* If the customer's services are not private owned then use a
ReadObjectQuery to refresh all parts */
ReadObjectQuery query = new ReadObjectQuery(customer);
/* Refresh the cache with the query's result and cascade refreshing to all
parts including customer's services */
query.refreshIdentityMapResult();
query.cascadeAllParts();
/* Refresh from the database */
query.dontCheckCache();

Working with locking policies

1-64 Oracle9iAS TopLink Foundation Library Guide

session.executeQuery(query);
/* Retry… */

}

Pessimistic locking
Pessimistic locking means that objects are locked before they are edited, which
ensures that only one client is editing the object at any given time.

Pessimistic locking differs from optimistic locking in that locking violations are
detected at edit time, not commit time. The TopLink implementation of pessimistic
locking uses database row-level locks. Depending on the database, a lock attempt
on a locked row either fails or is blocked until the row is unlocked.

Pessimistic locking, unlike optimistic locking, prevents users from editing data that
is being changed. While acquiring a pessimistic lock on an object, the object must be
refreshed to reflect it’s most recent state, but optimistic locking only requires
refreshing objects when a lock violation has been detected. As a result, optimistic
locking is typically more efficient.

For information on optimistic locking, see the Oracle9iAS TopLink Mapping
Workbench Reference Guide.

Advantages and disadvantages
The advantages of pessimistic locking are:

� Pessimistic locking can prevent users and applications from editing data that is
being changed or has been changed.

� Users are notified immediately on locking violations.

The disadvantages of pessimistic locking are that it:

� is not fully supported by all databases.

� uses extra database resources.

� can cause deadlocks.

� can cause excessive locking.

Working with locking policies

Working with Database Sessions 1-65

Pessimistic locks exist only for the duration of the current transaction. A database
transaction must be held open from the point of the first lock request until the
commit. When the transaction is committed or rolled back, all of the locks are
released. When using the unit of work, a transaction is automatically started when
the first lock is attempted, and committed or rolled back when the unit of work is
committed or released. If you are not using the unit of work you must manually
begin a transaction on the session.

TopLink offers two methods of locking, WAIT and NO_WAIT. When refreshing an
object in WAIT mode, the transaction must wait until the lock on the object is free
before obtaining a lock on that object. In NO_WAIT mode, an exception is thrown if
the object is being locked.

Example 1–40 Using pessimistic locking within a unit of work with refresh and WAIT
for lock

import oracle.toplink.sessions.*;
import oracle.toplink.queryframework.*;
...
UnitOfWork uow = session.acquireUnitOfWork();
Employee employee = (Employee) uow.readObject(Employee.class);

// Note: This will cause the unit of work to begin a transaction. In a 3-Tier
model this will also cause the ClientSession to acquire its write connection
from the ServerSession's pool.
uow.refreshAndLockObject(employee, ObjectLevelReadQuery.LOCK);
// Make changes to object

Note: TopLink uses database row-level locking to implement
pessimistic locking. Although this is the standard way of implementing
pessimistic locking in the database, not all databases support row-level
locking functionality. Please consult your database documentation to see
if row-level locking and the SELECT ... FOR UPDATE [NO WAIT] API
is supported.

Note: Using pessimistic locking requires that TopLink maintains an
open transaction and database locks for a longer period than if optimistic
locking were used. This can lead to database deadlocks. Also, when
using the ServerSession, it decreases the concurrency of connection
pooling, which affects the overall scalability of your application.

Working with locking policies

1-66 Oracle9iAS TopLink Foundation Library Guide

...
uow.commit();
...

Example 1–41 Using pessimistic locking within a unit of work with refresh and NO
WAIT for the lock

import oracle.toplink.sessions.*;
import oracle.toplink.queryframework.*;
import oracle.toplink.exceptions.*;
...
UnitOfWork uow = session.acquireUnitOfWork();
Employee employee = (Employee) uow.readObject(Employee.class);

try {
employee = (Employee)

uow.refreshAndLockObject(employee,
ObjectLevelReadQuery.LOCK_NOWAIT);

} catch (DatabaseException dbe) {
// Some databases throw an exception instead of returning nothing.
employee = null;
}
if (employee == null) {

// Lock could not be obtained
uow.release();
throw new Exception("Locking error.");

} else {
// Make changes to object
...
uow.commit();

}
...

Example 1–42 Using pessimistic locking within a unit of work with ReadObjectQuery
and ReadAllQuery

import oracle.toplink.sessions.*;
import oracle.toplink.queryframework.*;

...
UnitOfWork uow = session.acquireUnitOfWork();

ReadObjectQuery query = new ReadObjectQuery();
query.setReferenceClass(Employee.class);
query.acquireLocks();

Working with locking policies

Working with Database Sessions 1-67

// or acquireLocksWithoutWaiting()query
.refreshIdentityMapResult();
Employee employee = (Employee) uow.executeQuery(query);

// Make changes to object
...

uow.commit();
...

UnitOfWork uow = session.acquireUnitOfWork();
ReadAllQuery query = new ReadAllQuery();
query.setReferenceClass(Employee.class);
query.setSelectionCriteria(new
ExpressionBuilder().get("salary").greaterThan(25000));
query.acquireLocks();
// or acquireLocksWithoutWaiting()query
.refreshIdentityMapResult();
// NOTE: the objects are registered when they are obtained by using unit of
work. TopLink will update all the changes to registered objects when unit of
work commit.
Vector employees = (Vector) uow.executeQuery(query);

// Make changes to objects
...
uow.commit();

...

Example 1–43 Using pessimistic locking with a Session using ReadAllQuery

import oracle.toplink.sessions.*;
import oracle.toplink.sessions.queryframework.*;
...
// It must begin a transaction or the lock request will throw an exception
session.beginTransaction();
ReadAllQuery query = new ReadAllQuery();
query.setReferenceClass(Employee.class);
query.setSelectionCriteria(new
ExpressionBuilder().get("salary").greaterThan(25000));
query.acquireLocks();
// or acquireLocksWithoutWaiting()query.refreshIdentityMapResult();
Vector employees = (Vector) session.executeQuery(query);
// Make changes to objects
...
// Update objects to reflect changes
for (Enumeration enum = employees.elements();

Session event manager

1-68 Oracle9iAS TopLink Foundation Library Guide

employees.hasMoreElements(); {
session.updateObject(enum.nextElement());

}
session.commitTransaction();
...

Reference
Table 1–6 summarizes the most common public methods for Pessimistic
Locking:

� the Default column describes default settings of the descriptor element

� in the Method Names column, arguments are bold, methods are not

For a complete description of all available methods for Pessimistic Locking, see
the TopLink JavaDocs.

Session event manager
The session event manager handles information about session events. Applications
can register with the session event manager to receive session event data.

Session events
As with descriptor events, DatabaseSessions, UnitsOfWork, ClientSessions,
ServerSessions, and RemoteSessions raise SessionEvents when most session
operations are performed. These events are useful when debugging or when
coordinating the actions of multiple sessions. For more information on descriptor
events, see the Oracle9iAS TopLink Mapping Workbench Reference Guide.

Objects can register as listeners for these events by implementing the
SessionEventListener interface and registering with the SessionEventManager
using addListener(). Alternatively, objects can subclass SessionEventAdapter

Table 1–6 Elements for Pessimistic Locking

Element Default Method Names

Lock mode (for
ObjectLevelRead
Query)

No lock acquiredLocks()
acquiredLocksWithoutWaiting()

Refresh and lock (for
Session)

not applicable refreshAndLockObject(Object object, short
lockMode)

Session event manager

Working with Database Sessions 1-69

and override only the methods for events required by your application. Currently,
there is no support in TopLink Mapping Workbench for session events.

Events supported by the SessionEventManager include:

� PreExecuteQuery: raised before the execution of every query on the Session

� PostExecuteQuery: raised after the execution of every query on the Session

� PreBeginTransaction: raised before a database transaction is started

� PostBeginTransaction: raised after a database transaction is started

� PreCommitTransaction: raised before a database transaction is committed

� PostCommitTransaction: raised after a database transaction is committed

� PreRollbackTransaction: raised before a database transaction is rolled back

� PostRollbackTransaction: raised after a database transaction is rolled back

� PreLogin: raised before the Session is initialized and the connections acquired.

� PostLogin: raised after the Session is initialized and the connections have been
acquired.

The following are raised only on a UnitOfWork:

� PostAcquireUnitOfWork: raised after a UnitOfWork is acquired

� PreCommitUnitOfWork: raised before UnitOfWork is committed

� PrepareUnitOfWork: raised after the UnitOfWork has flushed its SQL but
before it has committed its transaction

� PostCommitUnitOfWork: raised after UnitOfWork is committed

� PreReleaseUnitOfWork: raised on a UnitOfWork before it is released

� PostReleaseUnitOfWork: raised on a UnitOfWork after it is released

� PostResumeUnitOfWork: raised on a unitOfWork after resuming

The following are three-tier events and are raised only in client/server sessions:

� PostAcquireClientSession: raised after a client session has been acquired

� PreReleaseClientSession: raised before releasing a client session

� PostReleaseClientSession: raised after releasing a client session

� PostConnect: raised after a new connection is established with the database

� PostAcquireConnection: raised after a connection is acquired

Session event manager

1-70 Oracle9iAS TopLink Foundation Library Guide

� PreReleaseConnection: raised before a connection is released

The following are database access events:

� OutputParametersDetected: raised after a stored procedure call with output
parameters is executed, allowing for a result set and output parameters to be
retrieved from a single stored procedure

� MoreRowsDetected: raised when a ReadObjectQuery detects more than one
row returned from the database; you may want to raise this as a possible error
condition in your application

Using the session event manager: examples
The following examples show how to use the session event manager.

Example 1–44 Registering a listener with the SessionEventManager

public void addSessionEventListener(SessionEventListener listener)
{

// Register specified listener to receive events from mySession
mySession.getEventManager().addListener(listener);

}

Example 1–45 Using SessionEventAdapter to listen for specific session events

. . .SessionEventAdapter myAdapter = new SessionEventAdapter() {
// Listen for PostCommitUnitOfWork events
public void postCommitUnitOfWork(SessionEvent event) {
// Call my handler routine

unitOfWorkCommitted();
}

};
mySession.getEventManager().addListener(myAdapter);
. . .

Reference
Table 1–7 summarizes the most common public methods for the
SessionEventManager class and Table 1–8 the SessionEvent class:

� the Default column describes default settings of the descriptor element

� in the Method Names column, arguments are bold, methods are not

Query objects

Working with Database Sessions 1-71

For a complete description of all available methods for the SessionEventManager
and the SessionEvent class, see the TopLink JavaDocs.

Query objects
Applications normally query and modify the database using session methods such
as readObject(), or unit of work methods such as commit(). Internally, these
session methods simply create a query object, initialize it with the given parameters,
and use it to access the database. Query objects are Java abstractions of SQL calls.

The application can also create custom query objects to use with the session or the
descriptor’s query manager. Custom query objects can be used to:

� Create new query operations

� Create named queries that are registered with the session

� Customize the session’s default database operations, such as readObject()
and writeObject()

These techniques are useful for improving application performance or for creating
complex queries.

Table 1–7 Elements of the SessionEventManager

Element Default Method Names

Listener registration not applicable addListener(SessionEventListener listener)
removeListener(SessionEventListener listener)

Table 1–8 Elements of the SessionEvent

Element Default Method Names

All events getSession()
getEventCode()

Query events getQuery()
getResult()

Output parameters
event

getProperty("call")

Query objects

1-72 Oracle9iAS TopLink Foundation Library Guide

Query object components
TopLink uses query objects to store information about a database query. The query
object stores the following information:

� Name of the query

� Class that the query accesses

� Arguments for the query

Query types
Read queries can be performed using the following query objects:

� ReadAllQuery: reads a collection of objects from the database

� ReadObjectQuery: reads a single object from the database

� ReportQuery: reads information about objects from the database

Write queries can be performed using the following query objects:

� DeleteObjectQuery: removes an object from the database

� InsertObjectQuery: inserts new objects into the database

� UpdateObjectQuery: updates existing objects in the database

� WriteObjectQuery: writes either a new or existing object to the database,
determining whether to perform an insert or an update

Raw SQL can be performed using the following query objects:

� ValueReadQuery: return a single data value; can be used for querying the size
of a cursored stream

� DirectReadQuery: return a collection of column values; can be used for direct
collection queries

� DataReadQuery: execute a selecting raw SQL string

� DataModifyQuery: execute a non-selecting raw SQL string

Query objects

Working with Database Sessions 1-73

Creating query objects
Query objects are created by instantiating the object and calling either the
setSelectionCriteria(), setSQLString(), or setCall() method to describe
how the query is performed. The setSelectionCriteria() method passes an
expression to the query object, the setSQLString() method passes raw SQL to the
query object, and the setCall() method passes a database call to the query object.

When the application calls executeQuery() to use a query object, it can pass
arguments to the query object. The arguments describe which objects should be
returned by the query. Arguments can be added to a query using addArgument().
The arguments must be added in the same order that they are passed into the
executeQuery() method.

After initialization, the query object may be registered with the session using the
addQuery() method. The query must be named when it is registered. Once
registered, the application can execute the query using its name.

Executing queries
To execute a query, the Session method executeQuery() is used with optional
arguments. This method is overloaded to provide support for up to three arguments
or a vector of arguments.

Queries executed with the executeQuery(Query) method do not have to be
registered with the session or descriptor.

Example 1–46 A named read query with two arguments

// Define two expressions that map to the first and last name of the employee.
ExpressionBuilder emp = new ExpressionBuilder();
firstNameExpression = emp.get("firstName").equal(emp.getParameter("firstName"));
lastNameExpression = emp.get("lastName").equal(emp.getParameter("lastName"));

// Create the appropriate query and add the arguments.
ReadObjectQuery query = new ReadObjectQuery();
query.setReferenceClass(Employee.class);
query.setSelectionCriteria(firstNameExpression.and(lastNameExpression));
query.addArgument("firstName");
query.addArgument("lastName");

// Add the query to the session.
session.addQuery("getEmployeeWithName", query);

Query objects

1-74 Oracle9iAS TopLink Foundation Library Guide

// The query can now be executed by referencing its name and providing a first
and last name argument.
Employee employee = (Employee) session.executeQuery("getEmployeeWithName",
"Bob", "Smith");

Query timeout
TopLink supports setting timeout on query objects. A query timeout value can be
set in seconds to force a hung or long executing query to abort after the specified
time has elapsed. A DatabaseException is thrown following the timeout.

Example 1–47 Timeout on query objects

// Create the appropriate query and set timeout limits
ReadAddQuery query = new ReadAllQuery();
query.setReferenceClass(Employee.class);
query.setQueryTimeout(2);
try{

Vector employees = (Vector)
session.executeQuery(query);

} catch (DatabaseException ex) {
// timeout occurs

}

Read query objects
TopLink provides two different query classes for reading objects from the database.
ReadAllQuery and ReadObjectQuery objects return persistent classes from the
database:

� All read query objects must call the setReferenceClass() method to specify
what class should be read from the database.

� Read query objects can call setSelectionCriteria() to specify an
Expression that gives the criteria for the read.

Example 1–48 A simple ReadAllQuery

// Returns a Vector of employees whose employee ID is > 100.
ReadAllQuery query = new ReadAllQuery();
query.setReferenceClass(Employee.class);
query.setSelectionCriteria(new ExpressionBuilder.get("id").greaterThan(100));
Vector employees = (Vector) session.executeQuery(query);

Query objects

Working with Database Sessions 1-75

Example 1–49 A named ReadObjectQuery

// Create the appropriate query and add the arguments.
ReadObjectQuery query = new ReadObjectQuery();
query.setReferenceClass(Employee.class);

// Add the query to the session.
session.addQuery("getAnEmployee", query);

// Query for the first employee in the database.
Employee employee = (Employee) session.executeQuery("getAnEmployee");

Parameterized SQL
Parameterized SQL can be enabled on individual queries. This is done through the
bindAllParameters() and cacheStatement() methods. This causes TopLink to
use a prepared statement, binding all of the SQL parameters and caching the
prepared statement. If this query is re-executed, the SQL prepare can be avoided
(which can improve performance). For more information, see Chapter 6,
"Performance Optimization".

Ordering for read all queries
After a ReadAllQuery, the resulting collection of objects can be ordered using the
addOrdering(), addAscendingOrdering(), and addDescendingOrdering()
methods. Attribute names or query keys and expressions can be used to order on.

Example 1–50 Providing ordering for a read all query using the lastName and
firstName query keys in ascending order

ReadAllQuery query = new ReadAllQuery();
query.setReferenceClass(Employee.class);
query.addAscendingOrdering ("lastName");
query.addAscendingOrdering ("firstName");
Vector employees = (Vector) session.executeQuery(query);

Example 1–51 Providing ordering for a read all query using the street address,
descending case-insensitive order of cities, and manager’s last name

ReadAllQuery query = new ReadAllQuery();
query.setReferenceClass(Employee.class);
ExpressionBuilder emp = new ExpressionBuilder();
query.addOrdering (emp.getAllowingNull("address").get("street"));
query.addOrdering
(emp.getAllowingNull("address").get("city").toUpperCase().descending());

Query objects

1-76 Oracle9iAS TopLink Foundation Library Guide

query.addOrdering(emp.getAllowingNull("manager").get("lastName"));
Vector employees = (Vector) session.executeQuery(query);

Specifying the collection class
By default, a ReadAllQuery returns its result objects in a Vector. The results can be
returned in any collection class that implements the Collection or Map interface. For
more information, see the Oracle9iAS TopLink Mapping Workbench Reference Guide .

Using cursoring for a ReadAllQuery
The ReadAllQuery class has a number of methods for cursored stream and
scrollable cursor support. For more information, see "Cursored streams and
scrollable cursors" on page 1-93.

Query optimization
TopLink supports both joining and batch reading as ways to optimize database
reads. Using these techniques, you can dramatically decrease the number of times
the database is accessed during a read operation. The methods
addJoinedAttribute() and addBatchReadAttribute() are used to configure
query optimization. See Chapter 6, "Performance Optimization" for more
information.

Query return maximum rows
A maximum rows size can be set on any read query to limit the size of the result set
so that, at most, the specified number of objects is returned. This can be used to
catch queries that could return an excessive number of objects.

Example 1–52 Setting the maximum returned object size on read query

ReadAllQuery query = new ReadObjectQuery();
query.setReferenceClass(Employee.class);
query.setMaxRows(5);
Vector employees = (Vector) session.executeQuery(query);

Note: The use of getAllowingNull to use an outer join for the address
and manager relationships. If we did not do this, then employees
without an address or manager would not appear in the list. For more
information, see "Outer joins" on page 1-37.

Query objects

Working with Database Sessions 1-77

Partial object reading
TopLink supports querying partial objects. Any read query can return just a subset
of the object's attributes instantiated. This can improve read performance when the
full object is not required.

Because the partial objects are not full objects, they cannot be cached or edited. In
addition, TopLink does not automatically include the primary key information in
the partially populated object, so it must be explicitly specified as a partial attribute
if you want to re-query or edit the object.

The addPartialAttribute() method is used to configure partial object reading.
For more information, see Chapter 6, "Performance Optimization".

Refreshing the identity map cache during a read query
A query can also use the refreshIdentityMapResult() method to force the
identity map to refresh with the results of the query.

Example 1–53 Refreshing the result of a query in the identity map

ReadAllQuery query = new ReadObjectQuery();
query.setReferenceClass(Employee.class);
query.setSelectionCriteria(new
ExpressionBuilder().get("lastName").equal("Smith"));
query.refreshIdentityMapResult();
Employee employee = (Employee) session.executeQuery(query);

Read query classes that refresh the identity map can also configure the refresh
operations to cascade to the object’s privately owned parts or all the object’s parts.
When the refreshObject() method is called on the session, it refreshes the object
and all of its privately owned parts. When a read query is created and refreshing is
used, only the object’s attributes are refreshed; the privately owned parts are not
refreshed. To make the read query also refresh the object’s parts, the
cascadePrivateParts()or cascadeAllParts() methods should be called.
Normally, an object should not be refreshed without refreshing its privately owned
parts because if its privately owned parts have changed on the database, the object
is inconsistent within the database.

Query objects

1-78 Oracle9iAS TopLink Foundation Library Guide

Example 1–54 Performing a refresh query that also refreshes the object’s privately
owned parts

ReadAllQuery query = new ReadAllQuery();
query.setReferenceClass(Employee.class);
query.refreshIdentityMapResult();
query.cascadePrivateParts();
Vector employees = (Vector) session.executeQuery(query);

In-memory querying and unit of work conforming
In-memory querying can be configured at the query level for both read object and
read all queries.

Not all expression features are supported in memory. The following in-memory
query features are supported:

� checkCacheByPrimaryKey() — default; if a read object query contains an
expression that compares more than the primary key, a cache hit can still be
obtained through processing the expression against the object in memory

� checkCacheThenDatabase() — any read object query can be configured to
query the cache completely before resorting to accessing the database

� checkCacheOnly() — any read object or read all query can be configured to
query only the cache and return the result from the cache without accessing the
database

� conformResultsInUnitOfWork() — any read object or read all query within
the context of a unit of work can be configured to conform the results with the
changes to the object made within the unit of work; includes new objects,
deleted objects and changed objects

In-memory querying enables you to perform queries on the cache rather than the
database. In-memory querying supports the following relationships:

� one-to-many

� many to many

� aggregate collection

� direct collection

Query objects

Working with Database Sessions 1-79

The following table identifies the supported options:

Conforming results in a unit of work
Query results can be conformed in the unit of work across one-to-many as well as a
combination of one-to-one and one-to-many relationships. The following is an
example of a query across two levels of relationships - one-to-many and one-to-one.

Expression exp =
bldr.anyOf("managedEmployees").get("address").get("city").equal("Perth");

Table 1–9 Supported in-memory queries

Type Supported Unsupported

Comparators equal(..)

notEqual(..)

lessThan(..)

lessThanOrEqual(..)

greaterThan(..)

greaterThanOrEqual(..)

between(...)

notBetween(...)

isNull()

notNull()

in(...)

like(..)

Logical operators or(..)

and(..)

Joining get(..)

getAllowingNull(..)

anyOf(..)

anyOfAllowingNone(..)

Note : The relationships themselves must be in memory for in
memory traversal to work (that is, all value holders in memory should
be triggered for in memory querying to work across relationships)

Query objects

1-80 Oracle9iAS TopLink Foundation Library Guide

Handling exceptions resulting from in-memory queries
In-memory queries may fail for a number of reasons, the most common being that
the query expression is too complex to be executed in memory. Other reasons
include untriggered valueholders where indirection is being used. All object models
using indirection should first trigger valueholders before conforming on the
relevant objects. When in-memory queries fail, they generate exceptions.

Exceptions thrown by the conform feature are masked by default. However,
TopLink includes an API that allows for exceptions to be thrown rather than
masked. The API is:

uow.setShouldThrowConformExceptions(ARGUMENT)
ARGUMENT is an integer with one of the following values:

0 Do not throw conform exceptions (default)

1 Throw only valueholder exceptions

2 Throw all conform exceptions

Disabling the identity map cache update during a read query
You can disable the identity map cache update normally performed by a read query
by calling the dontMaintainCache() method. This is typically done for
performance reasons, such as reading objects that will not be needed later by the
application.

Note: When relationships in a query use indirection for performance
reasons, the use of in-memory querying requires that all valueholders be
triggered so that the objects will be available in the cache.

Note: When building new applications, consider specifying that all
conform exceptions should be thrown. This provides a more detailed
feedback for unsuccessful in-memory queries.

Query objects

Working with Database Sessions 1-81

Example 1–55 Disabling the identity map cache update so that large groups of
objects can be quickly read from the database

This example demonstrates how code reads Employee objects from the database
and writes the information to a flat file.

// Reads objects from the employee table and writes them to an employee file.
void writeEmployeeTableToFile(String filename, Session session)
{

Vector employeeObjects;
ReadAllQuery query = new ReadAllQuery();
query.setReferenceClass(Employee.class);
query.setSelectionCriteria(new
ExpressionBuilder.get("id").greaterThan(100));

query.dontMaintainCache();
Vector employees = (Vector) session.executeQuery(query);

// Write all of the employee data to a file.
Employee.writeToFile(filename, employees);
}

Internal query object caches
Read query objects can maintain an internal cache of the objects previously returned
by the query. This internal cache is disabled by default. Use the
cacheQueryResults() method to enable the internal cache.

Example 1–56 Caching the result of a query in the internal query object cache

ReadObjectQuery query = new ReadObjectQuery();
query.setReferenceClass(Employee.class);
query.cacheQueryResults();

// Will read from the database.
Employee employee = (Employee) session.executeQuery(query);

// Will not read from the database a second time; will read from the query
object’s cache instead.
Employee employee = (Employee) session.executeQuery(query);

Query objects

1-82 Oracle9iAS TopLink Foundation Library Guide

Write query objects
A write query can be executed using a WriteObjectQuery instance instead of
using the writeObject() method of the session. Likewise, the
DeleteObjectQuery, UpdateObjectQuery and InsertObjectQuery objects can
be used instead of the respective Session methods.

Example 1–57 Writing an object to the database using a WriteObjectQuery object

WriteObjectQuery writeQuery = new WriteObjectQuery();
writeQuery.setObject(domainObject);
session.executeQuery(writeQuery);

Example 1–58 Using other write query objects using similar syntax

InsertObjectQuery insertQuery= new InsertObjectQuery();
insertQuery.setObject(domainObject2);
session.executeQuery(insertQuery);

UpdateObjectQuery updateQuery= new UpdateObjectQuery();
updateQuery.setObject(domainObject2);
session.executeQuery(updateQuery);

DeleteObjectQuery deleteQuery = new DeleteObjectQuery();
deleteQuery.setObject(domainObject2);
session.executeQuery(deleteQuery);

Non-cascading write queries
By default, all write queries also write all privately owned parts. To write the object
without its privately owned parts, call the dontCascadeParts() method. This is
useful for optimization if it is known that only the object’s direct attributes have
changed. It can also be used to resolve referential integrity dependencies when
writing large groups of independent newly-created objects. This is not required if a
unit of work is used, because the unit of work internally resolves referential
integrity.

Example 1–59 Performing a non-cascading write query

// theEmployee is an existing employee read from the database.
theEmployee.setFirstName("Bob");
UpdateObjectQuery query = new UpdateObjectQuery();
query.setObject(theEmployee);
query.dontCascadeParts();
session.executeQuery(query);

Query objects

Working with Database Sessions 1-83

Disabling the identity map cache during a write query
A write query can be configured not to update the identity map cache by calling the
dontMaintainCache() method. This is typically done for performance reasons,
such as inserting objects that will not be needed later by the application.

Example 1–60 Disabling the identity map so that large groups of objects can be
quickly inserted into the database

The code reads all the objects from a flat file and writes new copies of the objects
into a table.

// Reads objects from an employee file and writes them to the
employee table.
void createEmployeeTable(String filename, Session session)
{

Vector employeeObjects;
Enumeration employeeEnumeration;
Employee employee;
InsertObjectQuery query;
// Read the employee data file.
employeeObjects = Employee.parseFromFile(filename);
employeeEnumeration = employeeObjects.elements();
while (employeeEnumeration.hasMoreElements()) {

employee = (Employee)
employeeEnumeration.nextElement();
query = new InsertObjectQuery();
query.setObject(employee);
query.dontMaintainCache();
session.executeQuery(query);

}
}

Using query objects to customize the default database operations
TopLink provides default querying behavior for each of the read and write
operations. This default behavior is sufficient for most applications. If the
application requires custom query behavior for a particular persistent class, it can
provide its own query objects that are used when one of the database operations is
performed. See the Oracle9iAS TopLink Mapping Workbench Reference Guide, for more
information.

Query objects

1-84 Oracle9iAS TopLink Foundation Library Guide

Creating custom query operations
Applications can define their own custom queries in addition to using the standard
read and write operations. If the custom query is specific to a persistent class, it
should be registered with that class’ descriptor. If the custom query is not specific to
a particular class, it should be registered with the session. Registered queries are
then executed by calling one of the executeQuery() methods of
DatabaseSession or UnitOfWork.

Using Query Redirectors
You can combine query redirectors with the TopLink query framework to perform
very complex operations, including operations that might not otherwise be possible
within the query framework. To create a redirector, implement the
oracle.toplink.queryframework
.QueryRedirector interface. The Object invokeQuery(DatabaseQuery
query, DatabaseRow arguments, Session session) method is executed by
the query mechanism, which then waits for appropriate results for the Query type
to be returned. This method is invoked each time the query is executed.

TopLink provides one pre-implemented redirector, the
MethodBasedQueryRedirector. To use this redirector, create a static invoke
method on a class, and use the setMethodName(String) API to instruct the query
on what method to invoke to get the results for the query.

Reference
Table 1–10 and Table 1–11 summarize the most common public methods for query
object:

� the Default column describes default settings of the descriptor element

� in the Method Names column, arguments are bold, methods are not

For a complete description of all available methods for query object, see the
TopLink JavaDocs.

Note: If the query is executed on a UnitOfWork, the results are
registered with that UnitOfWork, so any objects retrieved in the invoke
must come from the Session Cache.

Query by example

Working with Database Sessions 1-85

Query by example
Query by example allows for queries to be specified by providing sample instances
of the persistent objects to be queried. Query by example is an intuitive form of
expressing a query, but limited in the complexity of queries that can be defined.

Table 1–10 Elements for query objects

Element Default Method Names

Selection
specification
(one of these)

not applicable setSelectionCriteria(Expresssion
expression)

Parameterized SQL dynamic SQL bindAllParameters()
cacheStatement()

Predefined queries not applicable addArgument(String argumentName)

Table 1–11 Elements specific to read query objects (ReadObjectQuery and
ReadAllQuery)

Element Default Method Names

Read queries not applicable setReferenceClass(Class aClass)

Read queries –
refreshing the
identity map

do not refresh refreshIdentityMapResult()

Read queries –
in-memory querying

check cache by
primary key

checkCacheByExactPrimaryKey()
checkCacheByPrimaryKey()
checkCacheThenDatabase()
checkCacheOnly()
conformResultsInUnitOfWork()
setCacheUsage(int usage)

Read queries –
pessimistic locking

do not lock acquireLocks()
acquireLocksWithoutWaiting()

Read queries – partial
object reading

full objects addPartialAttribute(String attributeName)

Read queries –
query optimization

not optimized addBatchReadAttribute (StringattributeName)
addJoinedAttribute(StringattributeName)

ReadAllQuery–
ordering

addOrdering(Expression ordering)

Query by example

1-86 Oracle9iAS TopLink Foundation Library Guide

To define a query by example, a Read Object or a Read All Query is provided with a
sample persistent object instance and an optional Query By Example Policy. The
sample instance contains the data to be queried on and the query by example policy
contains optional configuration settings (such as which operators to use and which
attributes to ignore or consider).

Defining a sample instance
To create a sample instance (example object), any valid constructor can be used.
Only the attributes on which the query is to be based should be set. All other
attributes must be not set, or set to null. A default set of values other than null is
ignored; these include zero, empty string, and false. To configure other values to be
ignored or to force attributes to be included, you must use a query by example
policy.

Any attribute that uses a direct mapping can be queried on. One-to-one
relationships can also be queried on, including nesting. However, other relationship
mappings cannot be queried on. The query is composed using AND to tie the
attribute comparisons together.

Example 1–61 Using query by example; this example queries the employee named
Bob Smith

ReadObjectQuery query = new ReadObjectQuery();
Employee employee = new Employee();
employee.setFirstName("Bob");
employee.setLastName("Smith");
query.setExampleObject(employee);

Employee result = (Employee) session.executeQuery(query);

Example 1–62 Using query by example; this example queries across the employee’s
address

ReadAllQuery query = new ReadAllQuery();
Employee employee = new Employee();
Address address = new Address();
address.setCity("Ottawa");
employee.setAddress(address);
query.setExampleObject(employee);

Vector results = (Vector) session.executeQuery(query);

Query by example

Working with Database Sessions 1-87

Defining a query by example policy
Providing a sample instance (example object) allows for a large set of queries to be
defined, but is limited to using equals and only ignoring null and default primitive
values. The query by example policy allows for a larger set of queries to be defined.

The query by example policy provides the following options:

� Usage of like or other operations per class type of the attribute values compared

� “Ignore set” of attribute values to not include in comparisons

� Forced inclusion of attributes even if the attribute value is in the ignore set

� Usage of isNull or notNull for attribute values

To specify a query by example policy, an instance of QueryByExamplePolicy is
provided to the query.

Example 1–63 Query by example policy; this example uses like for Strings and
includes the salary even if it is zero

ReadAllQuery query = new ReadAllQuery();
Employee employee = new Employee();
employee.setFirstName("B%");
employee.setLastName("S%");
employee.setSalary(0);
query.setExampleObject(employee);
QueryByExamplePolicy policy = new QueryByExamplePolicy();
policy.addSpecialOperation(String.class, "like");
policy.alwaysIncludeAttribute(Employee.class, "salary");
query.setQueryByExamplePolicy(policy);
Vector results = (Vector) session.executeQuery(query);

Example 1–64 Query by example policy; this example uses key words for Strings, and
ignores -1

ReadAllQuery query = new ReadAllQuery();
Employee employee = new Employee();
employee.setFirstName("bob joe fred");
employee.setLastName("smith mc mac");
employee.setSalary(-1);
query.setExampleObject(employee);
QueryByExamplePolicy policy = new QueryByExamplePolicy();
policy.addSpecialOperation(String.class, "containsAnyKeyWords");
policy.excludeValue(-1);
query.setQueryByExamplePolicy(policy);

Query by example

1-88 Oracle9iAS TopLink Foundation Library Guide

Vector results = (Vector) session.executeQuery(query);

Combining query by example with expressions
Query by example can be combined with expressions to gain added complexity in
the breadth of queries that can be defined. This is done through giving the query
both a sample instance (example object) and an expression.

Example 1–65 Combining query by example with expressions; this example uses an
example object and an expression

ReadAllQuery query = new ReadAllQuery();
Employee employee = new Employee();
employee.setFirstName("Bob");
employee.setLastName("Smith");
query.setExampleObject(employee);
ExpressionBuilder builder = new ExpressionBuilder();
query.setSelectionCriteria(builder.get("salary"). between(100000,200000);
Vector results = (Vector) session.executeQuery(query);

Reference
Table 1–12 summarizes the most common public methods for query by example:

� the Default column describes default settings of the descriptor element

� in the Method Names column, arguments are bold, methods are not

For a complete description of all available methods for query by example, see the
TopLink JavaDocs.

Table 1–12 Elements for QueryByExamplePolicy

Element Default Method Names

Special operations not applicable addSpecialOperation(Class theClass, String
operation)

Forced inclusion none alwaysIncludeAttribute(java.lang.Class
exampleClass, java.lang.String
attributeName)

includeAllValues()

Attribute exclusion none excludeValue(Object value)

excludeDefaultPrimitiveValues()

Report query

Working with Database Sessions 1-89

Report query
Report query provides developers with a way to access information on a set of
objects instead of the objects themselves. It provides the ability to select disperse
data from a set of objects and their related objects. Report query supports all
database reporting functions and features. Although the report query returns data
(not objects), it does allow for this data to be queried and specified at the object
level.

The result of a ReportQuery is a collection of ReportQueryResult objects that are
similar in structure and behavior to a DatabaseRow or a Hashtable.

Report query features:

� A subset of the object's attributes and its related object's attributes can be
specified, allowing for querying of light-weight information

� Complex object-level expressions can be used for the selection criteria and
ordering criteria

� Support for database aggregate functions: SUM, MIN, MAX, AVG, and COUNT

� Support for group by expressions

� Support for requesting the primary key attributes to be retrieved with each
ReportQueryResult. This makes it easy to request the real object from a
light-weight result

Example 1–66 Using a report query to query reporting information on employees

This example reports the total and average salaries for Canadian employees
grouped by their city.

import oracle.toplink.queryframework.*;
...
ExpressionBuilder emp = new ExpressionBuilder();
ReportQuery query = new ReportQuery(emp);

Null equality setShouldUseEqualityForNulls(boolean flag)

Note: TopLink report queries do not support multiple references to the
same attribute in a single result set.

Table 1–12 Elements for QueryByExamplePolicy (Cont.)

Element Default Method Names

Report query

1-90 Oracle9iAS TopLink Foundation Library Guide

query.setReferenceClass(Employee.class);
query.addMaximum("max-salary", emp.get("salary"));
query.addAverage("average-salary", emp.get("salary"));
query.addAttribute("city", emp.get("address").get("city"));

query.setSelectionCriteria(emp.get("address"). get("country").equal("Canada"));
query.addOrdering(emp.get("address").get("city"));
query.addGrouping(emp.get("address").get("city"));
Vector reports = (Vector) session.executeQuery(query);

Reference
Table 1–13 summarizes the most common public methods for report query:

� the Default column describes default settings of the descriptor element

� in the Method Names column, arguments are bold, methods are not

For a complete description of all available methods for the report query, see the
TopLink JavaDocs.

Report query

Working with Database Sessions 1-91

Table 1–13 Elements for report queries

Element Default Method Names

Adding items to
select

nothing
selected

addAttribute(String itemName)
addAttribute(String itemName, Expression
attributeExpression)
addAverage(String itemName)
addAverage(String itemName, Expression
attributeExpression)
addMaximum(String itemName)
addMaximum(String itemName, Expression
attributeExpression)
addMinimum(String itemName)
addMinimum(String itemName, Expression
attributeExpression)
addSum(String itemName)
addSum(String itemName, Expression
attributeExpression)
addStandardDeviation(String itemName)
addStandardDeviation(String itemName, Expression
attributeExpression)
addVariance(String itemName)
addVariance(String itemName, Expression
attributeExpression)
addCount()
addCount(String itemName)
addCount(String itemName, Expression
attributeExpression)
addItem(String itemName, Expression
attributeExpression)
addFunctionItem(String itemName, Expression
attributeExpression, String functionName)

Group by not grouped addGrouping(String attributeName)
addGrouping(Expression expression)

Retrieving primary
keys

not retrieved retrievePrimaryKeys()
dontRetrievePrimaryKeys()
setShouldRetrievePrimaryKeys(boolean
shouldRetrievePrimaryKeys)

Note: ReportQuery inherits from ReadAllQuery so it also supports
most ReadAllQuery properties)

Cursored streams and scrollable cursors

1-92 Oracle9iAS TopLink Foundation Library Guide

Cursored streams and scrollable cursors
Working with large collections of persistent objects usually reduces the performance
of an application. The two main factors that affect the performance of large
collections of persistent objects are:

� The time it takes to read the collections in from the database

� The large amount of memory needed to hold the collections in memory

TopLink provides the CursoredStream and ScrollableCursor classes as a
means of dealing more efficiently with large collections returned from queries more
efficiently.

CursoredStream is a TopLink version of the standard Java InputStream class and
provides forward streaming across a query result of objects.

ScrollableCursor is a TopLink version of the Iterator/ListIterator interface
from JDK 1.2. It provides both forward and backward scrolling when used with a
JDBC 2.0 compliant driver. ScrollableCursor is best used in JDK 1.2 but can be
used in JDK 1.1 and implement the Enumeration interface.

Java streams
Java streams are used to access files, devices, and collections as a sequence of
objects. A stream monitors its internal position; it also provides methods for getting
and putting objects at the current position and for advancing the position.

A stream can be thought of as a view of a collection. The collection can be a file,
device, or a Vector. A stream provides access to a collection one element at a time,
in sequence.

Streams provide access to objects one at a time, making it possible to implement
stream classes in which the stream does not contain all of the objects of a collection
at the same time. This is a very useful technique you can use to build TopLink
applications, because TopLink applications often include queries that generate large
which are time-consuming to collect.

Streams allow the query results to be retrieved from tables in smaller numbers as
needed, resulting in a performance increase.

Cursored streams and scrollable cursors

Working with Database Sessions 1-93

Supporting streams
Cursored stream support is provided by calling the useCursoredStream() method
of the ReadAllQuery class.

CursoredStream stream;
ReadAllQuery query = new ReadAllQuery();
query.setReferenceClass(Employee.class);
query.useCursoredStream();
stream = (CursoredStream) session.executeQuery(query);

Instead of getting a Vector containing the results of the query, an instance of
CursoredStream is returned.

Using cursored streams and scrollable cursors: examples
Consider the following two code fragments:

Example 1–67 Using a vector

ReadAllQuery query = new ReadAllQuery();
query.setReferenceClass(Employee.class);
Enumeration employeeEnumeration

Vector employees = (Vector) session.executeQuery(query);
employeeEnumeration = employee.elements();

while (employeeEnumeration.hasMoreElements())
{
Employee employee = (Employee) employeeEnumeration.nextElement();
employee.doSomeWork();
}

Example 1–68 Using a cursored stream

ReadAllQuery query = new ReadAllQuery();
query.setReferenceClass(Employee.class);
query.useCursoredStream();

CursoredStream stream = (CursoredStream) session.executeQuery(query);
while (! stream.atEnd())
{

Employee employee = (Employee) stream.read();
employee.doSomeWork();
stream.releasePrevious();

Cursored streams and scrollable cursors

1-94 Oracle9iAS TopLink Foundation Library Guide

}
stream.close();

The first code fragment returns a Vector that contains all the employee objects. If
ACME has 10,000 employees, then the Vector contains references to 10,000
Employee objects.

The second code fragment returns a CursoredStream instance rather than a
Vector. The CursoredStream collection appears to contain all 10,000 objects, but it
initially contains a reference to only the first 10 Employee objects. It will retrieve the
rest of the objects of the collection as they are needed. In many cases, the application
never needs to read all the objects.

This results in a significant performance increase; most applications start up faster.

The releasePrevious() message is optional. This releases any previously read
objects, which frees up system memory. Released read objects are only removed
from the cursored stream storage; they are not released from the identity map.

Optimizing streams
The performance of CursoredStream objects can be customized by providing a
threshold and page size to the useCursoredStream(int, int) method.

The threshold specifies the number of objects to initially read into the stream. The
default threshold is 10.

The page size specifies the number of elements to be read into the stream when the
threshold is reached. Larger page sizes result in faster overall performance, but can
introduce delays into the application when each page has to be loaded. The default
page size is 5.

A cursored stream used with the dontMaintainCache() option greatly improves
performance when dealing with a batch-type operation. A batch operation performs
simple operations on large numbers of objects and then discards the objects.
Cursored streams create the required objects only as needed, and the
dontMaintainCache() option ensures that these transient objects are not cached.

Java iterators
In JDK 1.2, an Iterator interface is defined for iterating over a collection. The
ListIterator interface extends the Iterator interface to provide backward
scrolling and positioning. ScrollableCursor implements the ListIterator
interface to allow scrolling over a large collection result set from the database
without requiring to read in all of the data. Scrollable cursors can traverse their

Cursored streams and scrollable cursors

Working with Database Sessions 1-95

contents, both absolutely and relatively. To use the ScrollableCursor object, the
underlying JDBC driver must be compatible with JDBC 2.0 specifications.

Supporting scrollable cursor
Scrollable cursored stream support is provided by calling the
useScrollableCursor()or the useScrollableCursor
(int threshold) method of the ReadAllQuery class.

ScrollableCursor cursor;
ReadAllQuery query = new ReadAllQuery();
query.setReferenceClass(Employee.class);
query.useScrollableCursor();
cursor = (ScrollableCursor) session.executeQuery(query);
Instead of getting a Vector containing the results of the query, an instance of
ScrollableCursor is returned.

Example 1–69 Using a scrollable cursor

ReadAllQuery query = new ReadAllQuery();
query.setReferenceClass(Employee.class);
query.useScrollableCursor();
ScrollableCursor cursor = (ScrollableCursor) session.executeQuery(query);
while (cursor.hasNext())
{

Employee employee = (Employee) cursor.next();
employee.doSomeWork();

}
cursor.close();

Traversing scrollable cursors
The relative(int i) method advances the row number in relation to the current
row by i rows. The absolute(int i) method places the cursor at an absolute
row position, 1 being the first row. In addition to the absolute(int i) and
relative(int i) methods, scrollable cursors provide several other means of
moving through their contents.

Example 1–70 Traversing a scrollable cursor

// Traversing a scrollable cursor.
ReadAllQuery query = new ReadAllQuery();
query.setReferenceClass(Employee.class);
query.useScrollableCursor();

SQL and stored procedure call queries

1-96 Oracle9iAS TopLink Foundation Library Guide

ScrollableCursor cursor = (ScrollableCursor) session.executeQuery(query);

if (cursor.isAfterLast()) {
while (cursor.hasPrevious()) {

System.out.println(cursor.previous().toString());
}

}
cursor.close();

The hasPrevious() and previous() methods are provided to traverse from the
last row towards the first and retrieve the object from the row. The afterLast()
method places the cursor after the last row in the result set. Therefore, the first call
to previous()places the cursor at the last row and returns that object.

SQL and stored procedure call queries
TopLink supports generating SQL for all database operations and provides an
expression framework that supports defining simple and complex queries at the
object level. Occasionally, your application may require a very complex query using
custom SQL or the use of a stored procedure on the database. TopLink allows for all
database operations to be customized through SQL or stored procedure calls.

The customization of descriptor and mapping database operations is discussed in
Chapter 3, "Working with Enterprise JavaBeans", Chapter 5, "SDK for XML and
Non-relational Database Access", and Chapter 6, "Performance Optimization".

SQL Queries
You can provide an SQL string to any query instead of an expression. In this case,
the SQL string must return all of the data required to build an instance of the class
being queried. The SQL string can be a complex SQL query, or a stored procedure
call. You can invoke SQL queries through the session read methods, or through a
read query instance.

Example 1–71 A session read object query is used with custom SQL

Employee employee = (Employee) session.readObject(Employee.class, "SELECT * FROM
EMPLOYEE WHERE EMP_ID = 44");

SQL and stored procedure call queries

Working with Database Sessions 1-97

Example 1–72 A read all query is used with SQL

ReadAllQuery query = new ReadAllQuery();
query.setReferenceClass(Employee.class);
query.setSQLString("EXEC PROC READ_ALL_EMPS");
Vector employees = (Vector) session.executeQuery(query);

Data-level queries
TopLink provides the following data-level queries that you can use to query or
modify data (not objects) in the database:

� DataReadQuery -- used for reading rows of data

� DirectReadQuery -- used for reading a single column of data

� ValueReadQuery -- used for reading a single value of data

� DataModifyQuery -- used for modifying data

Example 1–73 A session method is used with custom SQL to query user and time
information

Vector rows = session.executeSQL("SELECT USER, SYSDATE FROM DUAL");

Example 1–74 A data modify query is used with SQL to switch the database

DataModifyQuery query = new DataModifyQuery();
query.setSQLString("USE SALESDATABASE");
session.executeQuery(query);

Example 1–75 A direct read query is used with SQL to read all ids of employees

DirectReadQuery query = new DirectReadQuery();
query.setSQLString("SELECT EMP_ID FROM EMPLOYEE");
Vector ids = (Vector) session.executeQuery(query);

Stored procedure calls
You can provide a StoredProcedureCall object to any query instead of an
expression or SQL string. The procedure must return all of the data required to
build an instance of the class being queried.

SQL and stored procedure call queries

1-98 Oracle9iAS TopLink Foundation Library Guide

Output parameters
Output parameters can be used to define a read object query if they return the
correct fields to build the object. The StoredProcedureCall object allows for
output parameters to be used. Output parameters allow for additional information
to be returned from a stored procedure. Some databases do not support returning
result sets from stored procedures, so output parameters are the only way to return
data. Sybase and SQL Server do support returning result sets from stored
procedures so output parameters are normally not required for these databases.

Example 1–76 Stored procedure call with an output parameter

StoredProcedureCall call = new StoredProcedureCall();
call.setProcedureName("CHECK_VALID_POSTAL_CODE");
call.addNamedArgument("POSTAL_CODE");
call.addNamedOutputArgument("IS_VALID");
ValueReadQuery query = new ValueReadQuery();
query.setCall(call);
query.addArgument("POSTAL_CODE");
Vector parameters = new Vector();
parameters.addElement("L5J1H5");
Number isValid = (Number) session.executeQuery(query,parameters);

Cursor output parameters
Oracle does not support returning a result set from a stored procedure, but does
support returning a cursor as an output parameter. When using the Oracle JDBC
drivers, you can configure a StoredProcedureCall object to pass a cursor to
TopLink as a normal result set.

Example 1–77 Stored procedure with a cursored output parameter

StoredProcedureCall call = new StoredProcedureCall();
call.setProcedureName("READ_ALL_EMPLOYEES");
call.useNamedCursorOutputAsResultSet("RESULT_CURSOR");
ReadAllQuery query = new ReadAllQuery();
query.setReferenceClass(Employee.class);
query.setCall(call);
Vector employees = (Vector) session.executeQuery(query);

Output parameter event
You can use stored procedures for a TopLink operation that does not allow for
output parameter to be returned. When the stored procedure returns an error code
indicating that the application wants to check for an error condition, TopLink raises

SQL and stored procedure call queries

Working with Database Sessions 1-99

the session event OutputParametersDetected to allow the application to process
the output parameters.

Example 1–78 Stored procedure with reset set and output parameter error code

StoredProcedureCall call = new StoredProcedureCall();
call.setProcedureName("READ_EMPLOYEE");
call.addNamedArgument("EMP_ID");
call.addNamedOutputArgument("ERROR_CODE");
ReadObjectQuery query = new ReadObjectQuery();
query.setCall(call);
query.addArgument("EMP_ID");
ErrorCodeListener listener = new ErrorCodeListener();
session.getEventManager().addListener(listener);
Vector args = new Vector();
args.addElement(new Integer(44));
Employee employee = (Employee) session.executeQuery(query, args);

Reference
Table 1–14 summarizes the most common public methods for the stored
procedure call:

� the Default column describes default settings of the descriptor element

� in the Method Names column, arguments are bold, methods are not

For a complete description of all available methods for the stored procedure
call, see the TopLink JavaDocs.

Table 1–14 Elements for stored procedure call

Element Default Method Names

Selection
specification (one
of these)

not applicable setProcedureName(String name)

Input parameters same name addNamedArgument(String name)
addNamedArgument(String dbName, String
javaName)
addNamedArgumentValue(String dbName, Object
value)
addUnnamedArgument(String javaName)
addUnnamedArgumentValue(Object value)

SQL and stored procedure call queries

1-100 Oracle9iAS TopLink Foundation Library Guide

Output
parameters

same name addNamedInOutputArgument(String name)
addNamedInOutputArgument(String dbName, String
javaName, String javaName, Class type)
addNamedInOutputArgumentValue(String dbName,
Object value, String javaName, Class type)
public void addUnnamedInOutputArgument(String
inArgumentFieldName, String
outArgumentFieldName, Class type)
public void
addunnamedInOutputArgumentValue(Object
inArgumentValue, String outArgumentFieldName,
Class type)

Output
parameters

same name addNamedOutputArgument(String name)
addNamedOutputArgument(String dbName, String
javaName)
addNamedOutputArgument(String dbName, String
javaName, Class javaType)
addUnnamedOutputArgument(String javaName)
public void addunnamedOutputArgument(String
argumentFieldName, Class type)

Cursor output
parameters

not applicable useNamedCursorOutputAsResultSet(String
argumentName)
useUnnamedCursorOutputAsResultSet()

Table 1–14 Elements for stored procedure call (Cont.)

Element Default Method Names

Developing Enterprise Applications 2-1

2
Developing Enterprise Applications

An enterprise application is an application that is designed to provide services to a
broad range of users across an entire business. This chapter describes how to
develop enterprise applications using TopLink, and discusses

� Three-tier and enterprise applications

� Client and server sessions

� Remote sessions

� Session broker

� Java Transaction Service (JTS)

� TopLink support for Java Data Objects (JDO)

� Distributed Cache Synchronization

This chapter also illustrates some of the TopLink features that enable it to integrate
with industry-leading enterprise application servers.

Three-tier and enterprise applications
Three-tier applications are an extension of the client server paradigm that separates
an application into three tiers instead of two. These tiers include the client, the
application server and the database server. This model allows for application logic
to be performed on both the server and client tiers and is scalable to Internet
deployment.

An enterprise application is one that integrates multiple heterogeneous systems. An
enterprise application may need to integrate with multiple database servers, a
legacy application or mainframe application. An enterprise application may also be
required to support multiple heterogeneous clients such as RMI, HTML, XML,

Three-tier and enterprise applications

2-2 Oracle9iAS TopLink Foundation Library Guide

CORBA, DCOM, or telephony. The three-tier model allows for complex enterprise
applications to be built through integrating with other systems in the application
server tier. There are many different types of enterprise architectures.

TopLink can be used in any enterprise architecture that makes use of Java. TopLink
has direct support for multiple different enterprise architectures and application
server features. TopLink is not an application server but provides application server
components. TopLink can also be used in a Java client and a Java supporting
database server.

TopLink is certified 100% pure Java and can be used in any Java VM including:

� all Java application servers

� Java supporting databases such as Oracle 9i and DB2 UDB

� Java-compatible browsers such as Netscape and Internet Explorer

� server Java platforms such as AS/400, OS/390, and UNIX

Table 2–1 lists the features that TopLink supports for various enterprise
architectures. This table can be used to determine the relevant TopLink features for
your applications architecture.

Table 2–1 TopLink’s features for enterprise architectures

Architecture TopLink Features

HTML, servlets, JPSs � Client Server sessions

� Session Manager

RMI � Client Server sessions

� Remote sessions

� Session Manager

CORBA � Client Server sessions

� Remote sessions

� Session Manager

EJB Session Beans � Client Server sessions

� Remote sessions

� Session Manager

� JTS and external connection pooling support

Client and server sessions

Developing Enterprise Applications 2-3

Client and server sessions
Client and Server sessions provide the ability for multiple clients to share persistent
resources. They provide a shared live object cache, read and write connection
pooling, parameterized named queries and share descriptor metadata. Client and
server sessions should be used in any application server architecture that supports
shared memory and is required to support multiple clients.

Both the client and server sessions reside on the server. Clients can communicate
through any communication mechanism to the application server. On the
application server the client always communicates with a client session that in turn
communicates to the database through the server session. Figure 2–1 shows how
the client and server sessions are used. Client and server sessions are independent
of the communications mechanism and should be used in architectures including
HTML, Servlet, JSP, RMI, CORBA, DCOM and EJB.

EJB Entity Beans � TopLink for Java Foundation Library bean-managed
persistence

� JTS and external connection pooling support

� TopLink CMP for BEA WebLogic Server

� TopLink CMP for IBM WebSphere Server

Java Transaction Service (JTS) � JTS and external connection pooling support

Multiple databases � Session Broker

� JTS support

Multiple Application Servers
(clustering)

� Distributed cache synchronization

Java supporting databases � Oracle9i support

XML � TopLink SDK for XML

Enterprise Information
System (EIS) access

(non-relational/legacy
databases)

� TopLink SDK for EIS

Table 2–1 TopLink’s features for enterprise architectures (Cont.)

Architecture TopLink Features

Client and server sessions

2-4 Oracle9iAS TopLink Foundation Library Guide

Figure 2–1 Client and Server session usage

For a client to read objects from the database, it must acquire a ClientSession
from the ServerSession or Server interface. This allows all client sessions to use
the same shared object cache of the server session.

For a client to write objects to the database, it must acquire a ClientSession from
the ServerSession or Server interface, and then acquire a UnitOfWork within
that client session. The unit of work acts as an exclusive transactional object space.
The unit of work ensures that any changes committed to the database through the
unit of work are reflected in the server session’s shared cache.

The server session or Server acts as the session manager for the three-tiered clients.
The client session acts as a normal database session that is exclusive to each client or
request.

For the most part, the client sessions are not used any differently than a normal
TopLink database session. The client session supports all querying protocol that the
database session supports.

Clients

Client
Session

Client
Session

Client
Session

Server

Client
Session

Server
Session

Communications Mechanism

Client and server sessions

Developing Enterprise Applications 2-5

Client sessions have two restrictions that are required to allow a shared object cache.

� All changes to the database must be done using a unit of work.

� All clients must be able to share a common database login for reading (different
logins are supported for writing).

Users who have special security access (such as managers accessing salary
information) cannot share the same cache as users who do not have access to that
information. If multiple security levels exist, then a different server session must be
used for each security level. Alternatively, non-shared database sessions could be
used for each user with special security access.

Client sessions
A client session represents the dialog of one client with the server. The client
session’s lifecycle should mirror the lifecycle of the client. In a stateful three-tier
model, the client session should exist until the client disconnects from the
application server. In a stateless three-tier model, the client session should exist for
the duration of one request of a client to the server. The client has exclusive access to
the client session and should call the release() method on the client session object
when it disconnects from the server. If notification of a disconnect cannot be
guaranteed, the application server should time-out the connection to the client and
force the client session to be released. If the client session garbage collects, it will
automatically release itself.

Client sessions have many of the same properties as normal database sessions, but
cannot use the following session properties:

transactions Client sessions should not explicitly begin transactions, but instead
should leverage the TopLink unit of work.

schema creation Client sessions should not use the SchemaManager.

adding descriptors Client sessions cannot add descriptors.

write or delete Client sessions should not explicitly write or delete from the
database. The client must acquire a unit of work (see Chapter 6, "Performance
Optimization") to be able to modify the database.

Client and server sessions

2-6 Oracle9iAS TopLink Foundation Library Guide

Server sessions
The server session manages the client session, shared cache and connection pools.
Although the server session is a TopLink session it should only be used to manage
the servers client sessions. For this purpose the Server interface is provided. The
Server interface does not implement the session API but only the public API
required for the server session such as configuring connection pools and acquiring
client sessions.

Servers can create new client sessions using the acquireClientSession()
method.

Caching database information on the server
The data returned when a client reads an object is automatically cached on the
server. This allows all client sessions to share a single cache stored in the server
session’s identity maps.

Ideally the SoftCacheWeakIdentityMap should be used. This identity map
guarantees object identity. Because it uses weak references, it does not in itself
impose memory requirements on the server. The SoftCacheWeakIdentityMap is
available only if your VM supports the Java 2 API.

If the virtual machine (VM) being used does not implement the Java 2 API, then
both the FullIdentityMap and CacheIdentityMap could be used. When using a
full identity map, a reference is kept for all of the objects read in by all of the clients
even after the reference is no longer needed. This imposes memory requirements on
the server.

A possible solution to this problem is for the server system to periodically instruct
TopLink to flush the cache. This can be done on a per instance or class basis, or for
the identity map as a whole.

Another solution would be to use a cache identity map with a very large cache size.
Objects that have been in the cache for a long period of time are eventually
discarded. Note that this may lead to a loss of object identity. It is the responsibility
of the server application to make sure that this does not occur by removing
unnecessary references to objects in memory. Optimistic locking can also be used
with a cache identity map to ensure that objects written to the database are not in an
invalid state.

Client and server sessions

Developing Enterprise Applications 2-7

Providing client read access
Once the client acquires a client session, it can send read requests to the server. If the
server can satisfy the read request with information from its object cache, it returns
the information back to the client. If the server cannot satisfy the request with
information from its cache, it reads from the database and stores the information in
its cache. Subsequent request for that information returns information from the fast
object cache instead of performing resource intensive database operations.

This server structure allows for all clients and client sessions to share the same
object cache and the same database connection pool for reading. The server should
deal with each client request in a separate thread so that the database connection
pool can be used concurrently by multiple clients.

Figure 2–2 illustrates how multiple clients can read from the database using the
server session.

Figure 2–2 Multiple client sessions reading the database using the server session

To read objects from the database:
1. Create a ServerSession object and call login() on it. This should be done

only once, when the application server starts.

Clients

Client
Session

Client
Session

Server

Client
Session

Server Session

Shared Cache Connection Pool

Database

Client and server sessions

2-8 Oracle9iAS TopLink Foundation Library Guide

2. Acquire a ClientSession from the ServerSession by calling
acquireClientSession().

3. Execute read operations on the ClientSession object.

You should never use the ServerSession object for reading objects from the
database.

Providing client write access
When the client wants to write to the database, it must acquire its own object
transaction space. This is because the client and server sessions allow all clients to
share the same object cache and the same objects (see Figure 2–3).

The client session disables all database modification methods so that objects cannot
be written or deleted. The client must obtain a unit of work from the client session
to perform database modification.

The unit of work ensures that objects are edited under a separate object transaction
space. This allows clients to perform object transactions in parallel. Once completed,
the unit of work performs the changes in the database and then merges all of the
changes into the shared TopLink cache in the session to make the changes available
to all other users. Refer to Chapter 1, "Working with Database Sessions" for more
information on unit of work.

Caution: While client sessions are thread-safe, they should not be used
to write across multiple threads. Multi-thread writes from the same client
session can result in errors being thrown and a loss of data.

Client and server sessions

Developing Enterprise Applications 2-9

Figure 2–3 Writing with client sessions and server sessions

To write to the database:
1. Create a ServerSession object and call login() on it (this should be done

only once, when the application server starts).

2. Call acquireClientSession()to acquire a ClientSession object from the
ServerSession.

3. Acquire a UnitOfWork object from the ClientSession object. Refer to
Chapter 6 for more information on unit of work.

4. Perform any updates that are required, then commit the UnitOfWork.

Concurrency
To have concurrent clients logged in at the same time, the server must spawn a
dedicated thread of execution for each client. The RMI and CORBA application
servers do this automatically. Dedicated threads enable each client to perform its
desired work without having to wait for the completion of other clients. TopLink

Client Reading

Client
Session

Server

Database

Client Writing

Client
Session

Connection
Pool

Server Session
Shared
CacheExclusive

Connection

Unit of Work
Edited
Objects

If database write
is successful

Client and server sessions

2-10 Oracle9iAS TopLink Foundation Library Guide

ensures that these threads do not interfere with each other when they make changes
to the identity map or perform database transactions.

TopLink addresses thread safety issues by using a concurrency manager for all of its
critical components. The concurrency manager ensures that no two threads interfere
with each other when altering critical data. Concurrency management is applied to
crucial functions that include updating the cache when creating new objects,
performing a transaction in the database, and accessing value holders.

Connection pooling
Connection pooling allows for the number of connections used by the server and
client sessions to be managed and shared among multiple clients. This reduces the
number of connections required by the application server, allowing for a larger
number of clients to be supported.

Multiple connections can also be allocated for reading. Although a single
connection can support multiple threads reading asynchronously, some JDBC
drivers may perform better when multiple connections are allocated. If multiple
connections are used for reading, TopLink balances the load across all of the
connections using a least-busy algorithm.

By default, TopLink uses a connection pool to manage the connections between
client and server sessions:

� The default write connection pool has a minimum of five connections and a
maximum of 10.

� The default read connection pool has two connections.

� The minimum and maximum number of connections can be configured.

The default number of connections is fairly low to maintain compatibility with
JDBC drivers that do not support many connections. A larger number of
connections should be used for both reading and writing if supported by the JDBC
driver.

Some JDBC drivers do not support concurrency so may require a thread to have
exclusive access to a JDBC connection when reading. The server session should be
configured to use exclusive read connection pooling in these cases.

The server session also supports multiple write connection pools and non-pooled
connections. If your application server or JDBC driver also supports connection
pooling, the server session can be configured to integrate with this connection
pooling.

Client and server sessions

Developing Enterprise Applications 2-11

ServerSession connection options
The server session contains a pool of read connections and a pool of write
connections that the client session may use. The number and behavior of each can
be customized using the following ServerSession methods:

� addConnectionPool(String poolName, JDBCLogin login, int
minNumberOfConnections, int maxNumberOfConnections): creates a new
connection pool and adds it to the pools managed by the ServerSession

� useReadConnectionPool(int minNumberOfConnections, int
maxNumberOfConnections): configures the read connection pool

� useExclusiveReadConnectionPool(int minNumberOfConnections, int
maxNumberOfConnections): configures the read connection pool to allow only
a single thread to access each connection

� setMaxNumberOfNonPooledConnections(int maxNumber): sets the
maximum number of non-pooled connections

Connection options
TopLink provides a connection policy object that allows the application to
customize the way connections are used within a server session object.

ClientSession connection options
There are four ways of getting connections from within a ClientSession object
(these correspond to the four acquireClientSession() methods on the
ServerSession):

� Acquire a ClientSession using the zero argument version of
acquireClientSession(). This makes use of the default connection pool.

� Acquire a ClientSession by passing in a poolName as an argument to
acquireClientSession(). This returns a ClientSession that uses a
connection from the pool, poolName.

� Acquire a ClientSession by passing a DatabaseLogin object as an argument
to acquireClientSession(). This returns a ClientSession that uses the
DatabaseLogin object to obtain a connection.

These methods use a lazy database connection by default. This means that the
connection is not allocated until a UnitOfWork is committed to the database. If you
do not want to use a lazy database connection, but instead require that the database
connection be established immediately, you must acquire a ClientSession by

Client and server sessions

2-12 Oracle9iAS TopLink Foundation Library Guide

passing a ConnectionPolicy object as an argument to acquireClientSession().
This allows you to use any of the three connection options (by setting up the
ConnectionPolicy object properly) but also allows you to specify a lazy
connection.

Connection policies
The ConnectionPolicy class provides the following methods for configuring a
client connection:

� setPoolName(String poolName): Sets up a connection from the connection
pool. Alternatively, this can also be accomplished using
ConnectionPolicy(String poolName)

� setLogin(DatabaseLogin login): Sets up a connection by loggin directly
into the database. Alternatively, this can also be accomplished using
ConnectionPolicy(DatabaseLogin login) of the connection policy
constructor.

� useLazyConnection(): specifies a lazy connection

� setLazyConnection(boolean isLazy): specifies a lazy connection

� dontUseLazyConnection(): specifies an active connection

� If no database connections are available when a request for one is made, the
application waits for one to become available.

Reference
Table 2–2 and Table 2–3 summarize the most common public methods for client
and server session:

� the Default column describes default settings of the descriptor element

� in the Method Names column, arguments are bold, methods are not

For a complete description of all available methods for client and server
session, see the TopLink JavaDocs.

Remote sessions

Developing Enterprise Applications 2-13

Remote sessions
A remote session is a session that unlike other sessions actually resides on the client
and talks to a server session on the server. Remote sessions handle object identity,
proxies and the communication between the client and server layer.

Figure 2–4 shows the TopLink client/server split. Much of the application logic
runs on the client. The middle, dotted layer is implemented by TopLink and the
application interacts with the remote session.

Table 2–2 Elements for ClientSession

Element Default Method Names

Executing a query object * executeQuery(DatabaseQuery query)

Reading from the
database *

not applicable readAllObjects(Class domainClass, Expression expression)
readObject(Class domainClass, Expression expression)

Release * release()

Unit of work * not applicable acquireUnitOfWork()

* Required property

Table 2–3 Elements for ServerSession

Element Default Method Names

Acquire Client Sessions not applicable acquireClientSession()

Logging no logging logMessages()

Login / logout not applicable login()
logout()

Remote sessions

2-14 Oracle9iAS TopLink Foundation Library Guide

Figure 2–4 A model of a remote session for a three-tier application

The remote session can interact to a database session or a client session (see
Figure 2–5). This set-up is done on the server side, by the user. Interaction between
the remote session and the database session is not very useful in a distributed
environment, because only a single user can interact with the database. However, if
the remote session interacts with the client session, then multiple remote sessions
can interact with the single database. The remote session can also reap the benefits
of connection pooling.

Remote Clients

Client
Session

Client
Session

Server

Client
Session

Server Session

Shared Cache Connection Pool
Database

Remote sessions

Developing Enterprise Applications 2-15

Figure 2–5 The remote session and a database or a client session

Architectural overview
The model consists of the following layers (see Figure 2–6):

� the application layer – client side application talking to remote session

� the transport layer – a session broker-specific layer

� the server layer – an application server setup talking to the TopLink server

The request from the client application to the server travels down through the
layers of distributed system. A client making a request to the server session actually
makes use of the remote session as a conduit to the server session. The client holds
reference to a remote session. If necessary, the remote session forwards a request to
the server session via the transport and server layer.

Relational
Database

Server Application

Server
Session

Client
Session

Client
Session

Remote
Session
Controller

Remote
Session
Controller

write connection

read

read

write connection

Remote sessions

2-16 Oracle9iAS TopLink Foundation Library Guide

Figure 2–6 An architectural overview of the remote session

Application layer
The application layer consists of the application and the remote session. The remote
session is a subclass of the session. The remote session handles all the public
protocols of the session, giving the appearance of working with the local database
session.

The remote session maintains its own identity map and a hash table of all the
descriptors read from the server. If the remote session is able to handle a request by
itself, the request is not passed to the server. For example, a request to read an object
that has already been read is processed by the remote session. However, if the object
is being read for the first time, the request is passed to the server session.

The remote session interacts to the transport layer through a remote connection.

Transport layer
The transport layer is responsible for carrying the semantics of the invocation. It is a
broker-dependant layer that hides all of the broker-related dependencies from the
application and server layer.

It consists of a remote connection that is an abstract entity. All the requests to the
server are forwarded though the remote connection. Each remote session holds on
to a single remote connection. The remote connection marshals and unmarshals all
requests and responses on the client side.

Application

Session

Server

Remote
Session

Transport

RMI
Connection

Stub

Skeleton

Remote
Session
Controller

Remote sessions

Developing Enterprise Applications 2-17

In an RMI system, the remote connection interacts with an RMI stub/skeleton layer
to talk to the server layer.

Remote session supports communicating over RMI and CORBA. It includes
deployment classes and stubs for RMI, WebLogic RMI, VisiBroker, OrbixWeb,
WebLogic EJB and Oracle 9i EJB.

Server layer
The server layer consists of a remote session controller dispatcher, a remote session
controller, and a session. The remote session controller dispatcher marshals and
unmarshals all responses and requests from the server side. This is a server side
component.

The remote session controller dispatcher is an interface between the session and
transport layers. It hides the broker-specific transport layer from the session.

Accessibility issues
The accessibility of the server running on a remote machine is a very sensitive issue
because security of the server is very important. In such an environment, registering
a remote session controller dispatcher as service can be detrimental as anyone can
get access to the service and therefore to the entire database. The recommended
set-up is to run some sort of server manager as a service that holds the remote
controller session dispatcher. All the clients talk to the server manager and it
implements the security model for accessing the remote session controller
dispatcher.

On the client side, the user can get access to the server manager as it is a public
service running on the server. Once the client gets access to the server manager, it
can ask for the remote session controller dispatcher. The manager returns one if it
qualifies the security model built into the server manager.

A remote connection is then created using the remote session controller dispatcher
on the client side. Once the connection is created, the remote session is acquired
from the remote connection. The API for the remote session is same as for the
session. For the user, there is no difference between working on a session or a
remote session.

The remote session maintains lots of processing behavior so as to minimize its
interaction with the server session. It maintains an identity map to preserve the
identity of an object. At runtime, the remote session builds its knowledge base by
reading descriptors and mappings from the server side only when they are needed.
These descriptors and mappings are light-weight because not all of the information

Remote sessions

2-18 Oracle9iAS TopLink Foundation Library Guide

is passed on to the remote session. The information needed to traverse an object tree
and to extract primary keys from the given object is passed with the mappings and
descriptors.

Queries
Only read queries are publicly available on the client side. Object modification is
done only through the unit of work.

Refreshing
Normal refreshing calls on the remote session force database hits and possible cache
updates provided that the data were previously modified in the database. It could
lead to poor performance and may refresh on queries when it is not desired; for
example, the server session cache is positively known to be synchronized with the
database.

Refresh operations against the server session cache are supported on the remote
session. The descriptor can be configured to always remotely refresh the objects in
the cache on all queries. This ensures that all queries against the remote session
refresh the objects from the server session cache, without the database access.

Cache hits on remote sessions still occur on read object queries based on the
primary keys. If these are not desired, the remote session cache hits on read object
queries based on the primary key can be disabled.

Example 2–1 Remote session refreshes on the server session cache

// Remote session begin transaction
remoteSession.beginTransaction();

// Get the PolicyHolder descriptor
Descriptor holderDescriptor = remoteSession.getDescriptor(PolicyHolder.class);

// Set refresh on the server session cache
holderDescriptor.alwaysRefreshCachedOnRemote();

// Disable remote cache hits, ensure all queries go to the server session cache
holderDescriptor.disableCacheHitsOnRemote();

Indirection
Indirection objects are supported on the remote session. This is a special kind of
value holder that can be invoked remotely on the client side. When invoked, the

Remote sessions

Developing Enterprise Applications 2-19

value holder first checks to see if the requested object exists on the remote session. If
not, then the associated value holder on the server is instantiated to get the value
that is then passed back to the client. Remote value holders are used automatically;
the application’s code does not change.

Cursored streams
Cursored streams are supported remotely and are used in the same way as on the
server.

Unit of work
All object modifications must be done through the unit of work that is acquired
from the remote session. For the user, this unit of work is the same as a normal unit
of work acquired from the client session or the database session.

Creating a remote connection using RMIConnection
The goal of the following example is to create a remote TopLink session on a client
that communicates with a remote session controller on a server using RMI. Once the
connection has been created, the client application can use the remote session as it
would any other TopLink session.

We will assume we have created an object on the server called RMIServerManager
(not part of TopLink). This class has a method that instantiates and returns a
RMIRemoteSessionController (a TopLink server side interface).

The following client-side code gets a reference to our RMIServerManager and then
uses this to get the RMIRemoteSessionController running on the server. The
reference to the session controller is then used in creating our RMIConnection from
which we get a remote session.

Example 2–2 Client acquiring RMIRemoteSessionController from Server

RMIServerManager serverManager = null;
// Set the client security manager
try {

System.setSecurityManager(new RMISecurityManager());
} catch(Exception exception) {
System.out.println("Security violation " + exception.toString());

Note: Scrollable cursors are not currently supported for remote sessions.

Session broker

2-20 Oracle9iAS TopLink Foundation Library Guide

}
// Get the remote factory object from the Registry
try {

serverManager = (RMIServerManager) Naming.lookup("SERVER-MANAGER");
} catch (Exception exception) {
System.out.println("Lookup failed " + exception.toString());

}
// Start RMIRemoteSession on the server and create an RMIConnection
RMIConnection rmiConnection = null;
try {

rmiConnection = new
RMIConnection(serverManager.createRemoteSessionController());
} catch (RemoteException exception) {
System.out.println("Error in invocation " + exception.toString());

}
// Create a remote session which we can then use as a normal TopLink Session
Session session = rmiConnection.createRemoteSession();

The following code is used by RMIServerManager to create and return and instance
of an RMIRemoteSessionController to the client. The controller sits between the
remote client and the local TopLink session.

Example 2–3 Server creating RMIRemoteSessionController for Client

RMIRemoteSessionController controller = null;
try {

// Create instance of RMIRemoteSessionControllerDispatcher which implements
RMIRemoteSessionController. The constructor takes a TopLink session as a
parameter.
controller = new RMIRemoteSessionControllerDispatcher (localTOPLinkSession);

}
catch (RemoteException exception) {

System.out.println("Error in invocation " + exception.toString());
}
return controller;

Session broker
The session broker is the mechanism provided by TopLink for multiple database
access. Using the session broker, you can store the objects within an application on
multiple databases.

The session broker:

� provides transparent multiple database access through a single TopLink session

Session broker

Developing Enterprise Applications 2-21

� allows objects within an application to have references to objects stored on other
databases

� allows for the application to have a single session view of multiple databases

� supports objects having references across databases

� transparently controls on which databases objects are stored

� manages single unit of work and transaction across multiple databases

� supports two-phase commit when integrated with a compliant JTS driver;
otherwise, uses a two stage algorithm

Two-phase/two-stage commits
A two-phase commit is supported through integration with a compliant JTS driver
(refer to the section "Java Transaction Service (JTS)" on page 2-28 for more details).
A true two-phase commit is guaranteed to entirely pass or entirely fail even if a
failure occurs during the commit.

If there is no integration with a JTS driver, the broker uses a two-stage commit
algorithm. A two-stage commit differs slightly from a two-phase commit. The
two-stage commit performed by the session broker is guaranteed except for failure
during the final commit of the transaction, after the SQL statement has been
successfully executed.

Using the session broker
After the session broker is set up and logged in, it is interacted with just like a
session, making the multiple database access transparent. However, creating and
configuring a SessionBroker is slightly more involved than creating a regular
DatabaseSession.

Before using the SessionBroker, the sessions must be registered with it. To register
a session with a SessionBroker, use the registerSession(String name,
Session session) method. Before registration, all of the session's descriptors
must have already been added to the session but not yet initialized. The sessions
should not yet be logged in, as the session broker logs them in.

Example 2–4 Setting up two sessions with a session broker

Project p1 = ProjectReader.read(("C:\Test\Test1.project"));
Project p2 = ProjectReader.read(("C:\Test\Test2.project"));

Session broker

2-22 Oracle9iAS TopLink Foundation Library Guide

//modify the user name and password if they are not correct in the
.project file
p1.getLogin().setUserName("User1");
p1.getLogin().setPassword("password1");
p2.getLogin().setUserName("User2");
p2.getLogin().setPassword("password2");
DatabaseSession session1 = p1.createDatabaseSession();
DatabaseSession session2 = p2.createDatabaseSession();

SessionBroker broker = new SessionBroker();
broker.registerSession("broker1", session1);
broker.registerSession("broker2", session2);

broker.login();

When the login method is performed on the session broker, both sessions are logged
in and the descriptors in both sessions are initialized. After login, the session broker
is treated like a regular session. TopLink handles the multiple database access
transparently.

Example 2–5 Writing to the database using the session broker

UnitOfWork uow = broker.acquireUnitOfWork();
Test test = (Test) broker.readObject(Test.class);
Test testClone = uow.registerObject(test);
. . .
//change and manipulate the clone and any of its references
. . .
uow.commit();

//log out when finished
broker.logout();

Using the session broker in a three-tier architecture
Using the session broker in a three-tier architecture is very similar to the way it is
used in two-tier. However, the client sessions must also be registered with a
SessionBroker. The ServerSessions are set up in a similar way.

Example 2–6 Setting up the session broker in a three-tier architecture

Project p1 = ProjectReader.read(("C:\Test\Test1.project"))

Project p2 =

Session broker

Developing Enterprise Applications 2-23

ProjectReader.read(("C:\Test\Test2.project"));

Server sSession1 = p1.createServerSession();
Server sSession2 = p2.createServerSession();

SessionBroker broker = new SessionBroker();
broker.registerSession("broker1", sSession1);
broker.registerSession("broker2", sSession2);
broker.login();

A client session can then be acquired from the server session broker, through the
acquireClientSessionBroker() method.

Example 2–7 A sample client request code

Session clientBroker = broker.acquireClientSessionBroker();
return clientBroker;

Creating multiple projects in the Mapping Workbench
The session broker is designed to work with a project assigned to each session
within the broker. There are a few ways to accomplish this in TopLink, but the
following steps show the recommended approach.

1. Map your entire object model as you would normally in one single project.

2. Make a copy of the entire project, either by using the Save as menu option or by
making a file copy.

3. In one of the projects, deactivate all the descriptors that do not reside on the
database for which this project is being built.

4. Repeat Step 3 for the other project. You should now have one project split into
two.

Note: Some of the items may show up as having errors; you can ignore
these errors.

Note: This example assumes that only two projects are used however,
the technique is identical for more than two projects.

Session broker

2-24 Oracle9iAS TopLink Foundation Library Guide

Limitations
Using the session broker is not the same thing as linking databases at the database
level. If your database allows linking, that is the recommended approach to
providing multiple database access.

The session broker has the following limitations:

� Multiple table descriptor cannot be split across databases.

� Each class can live on only one database.

� Cannot use joins through expressions across databases.

� Many-to-many join tables and direct collection tables must be on the same
database as the source object (<link>“Advanced use” describes a work-around
using an amendment to the descriptor).

Advanced use
Many-to-many join tables and direct collection tables must be on the same database
as the source object, because a join across both databases would be required on a
read. However, it is possible to get around this by using the setSessionName(
String sessionName) method on ManyToManyMapping and
DirectCollectionMapping.

This method can be used to tell TopLink that the join table or direct collection table
is on the same database as the target table.

Descriptor desc = session1.getDescriptor(Employee.class);
((ManyToManyMapping)desc.getObjectBuilder().getMappingForAttributeName("projects
")).setSessionName("broker2");

A similar method exists on DatabaseQuery that is used mostly for data queries
(that is, non-object queries).

Reference
Table 2–4 summarizes the most common public methods for SessionBroker:

� the Default column describes default settings of the descriptor element

� in the Method Names column, arguments are bold, methods are not

For a complete description of all available methods for SessionBroker, see the
TopLink JavaDocs.

Java Transaction Service (JTS)

Developing Enterprise Applications 2-25

Java Transaction Service (JTS)
This section describes how TopLink for Java can be integrated with a transaction
service satisfying the Java Transaction Service (JTS) API to participate in distributed
transactions.

Review of transactions and transaction management
One of the important properties of databases is that transactions are atomic: a
transaction either succeeds completely, or does not take effect at all. We get this
automatically from most databases, but problems arise when we need to talk to
more than one database at a time.

Consider the situation where we have bank accounts in two different databases. To
transfer money from a checking account to a savings account, we want to withdraw
money from an account in database A, and deposit it in an account in database B.
We can use separate transactions for each database, but if a failure occurs on one
database but not the other, then the balances will be incorrect. We need a single,
unifying transaction that spans both databases.

Because updating information takes time and there is always a period during the
transaction when the information is inconsistent, updating multiple databases may
inevitably lead to situations where the information stored is inconsistent. A
transaction can be described in more formal terms as a related set of operations with
four properties. These are known by the acronym, “ACID”:

Atomicity All operations are considered as a unit, that is either all the operations
complete, leaving the information in its consistent amended state (known as
committing), or all the operations are undone, leaving the information in its original
consistent state (known as rollback).

Table 2–4 Elements for the SessionBroker

Element Default Method Names

Writing objects not applicable acquireUnitOfWork()

Acquiring client
sessions

not applicable acquireClientSessionBroker()

Database connection not applicable login()
logout()

Java Transaction Service (JTS)

2-26 Oracle9iAS TopLink Foundation Library Guide

Constancy The operations take the information held from one consistent state to
another in a predictable fashion.

Isolation The partially updated states of the information are not visible outside the
transaction itself.

Durability The outcome of the transaction is not reversed (partially or completely)
after the transaction is completed.

Distributed transactions
When we described the banking transaction in the "Review of transactions and
transaction management" on page 2-28, it was assumed that all of the information
necessary to complete the transaction was available locally. However, there are
many valid business reasons why information must be stored on different
machines. Information may be distributed according to geography. For example, the
Sales database may be divided into 'Northern Region' and 'Southern Region'. The
information may be divided along departmental lines, with the Accounting
department holding billing information while the Stock department holds
inventory details. Whatever the reasons for distributing the information, the
business user still requires that all of the ACID properties of 'regular' transactions
are also true of distributed transactions.

Transaction managers
In a non-distributed transaction, it is up to the single database to ensure the ACID
properties of a transaction. In a distributed transaction there has to be careful
co-operation between the various resources; thus The Open Group (formerly
X/Open) has defined a formal model for Distributed Transaction Processing (DTP)
known as the three box model. This model recognizes that there are three distinct
components in a distributed transaction.

Java Transaction Service (JTS)

Developing Enterprise Applications 2-27

Figure 2–7 The Open Group DTP processing model for distributed transactions

The application implements the business logic and does not have direct access to a
database. Rather, it interacts with resource managers via a programming interface,
typically SQL for relational databases. In addition, the application interacts with a
transaction manager to begin and end a transaction. This sets up the transaction
context within which all the components operate.

The resource managers have direct access to information and other
database-specific resources. Typically a resource manager is a database, but it can be
anything that is capable of transactional work (for example, a secure printer). The
interface to the resource manager does not reveal any transaction details; rather, the
resource manager interacts with the transaction manager to determine the current
transaction context.

The transaction manager is dedicated to coordinating the activities of all of the
participants in the transaction. It provides the TX interface so that applications can
initiate transactional work. It co-ordinates the resource managers via the XA
interface. The prime responsibility of the transaction manager is to guide the
two-phase commit process that allows outstanding changes held by all the resource
managers to be properly written to backing-store.

Two-phase commit with presumed rollback
The two-phase commit with presumed rollback model (2-PC) allows resource managers
to make temporary changes during the transaction so that they can be applied at the
end of the transaction (committed) or undone (rolled back). During the transaction
there is no ambiguity if a failure occurs -- all temporary changes are undone. When

Application

Resource
Managers
(e.g., a database)

Transaction
Manager

e.g., SQL

XA

TX

Java Transaction Service (JTS)

2-28 Oracle9iAS TopLink Foundation Library Guide

the transaction is committed by the application, then the temporary changes are
made permanent in two phases.

In phase one, each resource (represented by a resource manager) is told to prepare.
At this stage it must store in a secure way the changes it is about to make together
with a secure record of its action. If it fails to do this, then it must vote rollback. If it
succeeds in securing its records, then it must vote commit and wait for the final
decision of the transaction manager. Once a resource has voted to commit, it gives
up the right to rollback.

When all resources have voted on the outcome of the transaction or a failure has
occurred, the transaction manager decides the final outcome of the transaction.

� If any resource votes to rollback, or a failure occurs, then the transaction
manager rolls the transaction back by informing each participant.

� If the transaction manager receives a commit vote from every participant, then
it takes the commit decision and records this securely.

� When the commit or rollback decision is taken, the transaction reaches that
conclusion whatever failures may occur.

In phase two, each resource is told to commit. The resources must then make their
temporary changes permanent and forget the record of their action made when they
voted to commit. Once they have forgotten the secure record of the transaction, they
can report done to the transaction manager. When the transaction manager has
received done from all participants, it can forget the secure record of the transaction
in its turn, and the transaction is complete.

Relationship between OMG Object Transaction Service (OTS) and
Java Transaction Service (JTS)

The OMG Object Transaction Service defines interfaces that allow multiple,
distributed objects to provide and participate in distributed ACID transactions. It is
upon this specification that the Java Transaction Service (JTS) is based.

� For more information about OTS, please consult the OMG documentation at
www.omg.org/docs.

� For more information about JTS, please consult the Sun documentation at
java.sun.com/products/jts.

http://www.omg.org/docs/orbos/01-11-08.pdf
http://java.sun.com/products/jts/
http://java.sun.com/products/jts/

Java Transaction Service (JTS)

Developing Enterprise Applications 2-29

JTS transaction synchronization
Transaction synchronization allows interested parties to get notification from the
transaction manager about the progress of the commit. For each transaction started,
an application may register a javax.transaction.Synchronization callback
object that implements the following methods:

� beforeCompletion method is called prior to the start of the two-phase
transaction complete process. This call is executed in the same transaction
context of the caller who initiates the begin.

� afterCompletion method is called after the transaction has completed. The
status of the transaction is supplied as the parameter. This method is executed
without a transaction context.

The Synchronization interface described can be thought of as a lightweight
‘listener’ to the lifecycle of the global external transaction. It is through this interface
that TopLink can participate in a global external transaction by registering a
Synchronization callback object for a unit of work.

TopLink unit of work and the synchronization interface
The TopLink Session must be configured with an instance of a class that
implements the ExternalTransactionController interface (from package
oracle.toplink.sessions).

TopLink includes an external transaction controller for JTS 0.95. This controller is
also compatible with JTS and JTA up to and including the JTA 1.0.1 specification.
The controllers included with TopLink are found in the oracle.toplink.jts and
oracle.toplink.jts.wls packages. These packages include generic JTS Listener and
Manager classes, as well as classes that specifically support a number of databases
and application servers including

� Inprise

� Oracle9i

� OS390

� BEA WebLogic Server

� IBM WebSphere Server

If your JTS driver is not compatible with these versions you can build your own
implementor of the ExternalTransactionController interface.

Java Transaction Service (JTS)

2-30 Oracle9iAS TopLink Foundation Library Guide

When using the JTS transaction controller, the transaction manager must be set in
the JTSSynchronizationListener class. The transaction manager is required to
give TopLink access to the global JTS transaction. Unfortunately there is no
standard way to access the transaction manager so you must consult your JTS
driver documentation to determine how to access this. When using the WebLogic
JTS controller this is not required.

Example 2–8 Configuring ExternalTransactionController on the TopLink session

... (appropriate import stmts)
Project project = Project.read("C:\myDir\myProj.project");
// login specifics (database URL, etc) comes from the project
DatabaseLogin login = project.getLogin();
/* set External behaviours: connectionPooling,
Transaction mgmt, Transaction controller.
Must be done before Session is created
*/
login.useExternalTransactionController();
login.useExternalConnectionPooling();
ServerSession session = project.createServerSession();
// The transaction manager must be set
JTSSynchronizationListener.setTransactionManagerjtsTransactionManager);
session.setExternalTransactionController(new
JTSExternalTransactionController());
...

Writing to a database in three-tier environment
Use a Unit of Work to write to a database that uses JTS externally-controlled
transactions. To do this successfully, however, you must ensure that there is only
one unit of work associated with a given transaction. To do so, check for a
transaction and associated unit of work as follows:

UnitOfWork uow = serverSession.getActiveUnitOfWork();
The following logic is executed:

� If there is no current external transaction in progress return null;

� If there is a current external transaction and it has an associated unit of work,
return this unit of work;

� If there is a current external transaction and it has no associated unit of work
associated with current external transaction

� create a client session

Java Transaction Service (JTS)

Developing Enterprise Applications 2-31

� acquire a new unit of work

� returns this unit of work

External connection pools and external transaction control
From the example on the previous page, we can see that in addition to providing an
ExternalTransactionController for the Session, the DatabaseLogin needs
two additional properties configured:

� useExternalTransactionController() - To interact correctly with a JTS
service, we need to indicate to the DatabaseLogin object that transaction
control is being managed by an external entity.

� useExternalConnectionPooling() - It is common among JTS
implementations that access to the service is ‘wrapped’ and presented as a
'regular' JDBC driver. For example, the WebLogic JTS service is available as
"weblogic.jdbc.jts.Driver". This driver (and its corresponding connection
string "jdbc:weblogic:jts:{a_pool_name}" implements a pool of JDBC
connections that can be configured separately from the login information
(please consult the WebLogic product documentation for more information).

A user acquires a UnitOfWork from the TopLink session using the standard API
acquireUnitOfWork(). Within acquireUnitOfWork(), registration of a
Synchronization object with the current transaction is delegated to the ETC. If no
global external transaction exists, the unit of work begins its own JTS transaction. In
this case, if the unit of work is committed it also commits the JTS transaction that it
began.

Note: While there are other ways to write to a database through a JTS
external controller, using the method described here ensures that all units
of work are completed successfully.

Note: For some JTS implementations, it is not necessary to configure all
three properties. If you are using a JTS service from a vendor not
mentioned here, please contact Technical Support for information on the
appropriate configuration settings for your particular JTS
implementation.

Java Transaction Service (JTS)

2-32 Oracle9iAS TopLink Foundation Library Guide

The user manipulates the UnitOfWork in the usual fashion, registering objects and
altering clone copies (see "Using units of work" on page 1-44). At this point, there
are two scenarios to consider.

Scenario 1 The user calls uow.commit() before the completion of the global external
transaction – that is, neither Synchronization callbacks has yet occurred (see
Figure 2–8).

Figure 2–8 External transaction exists when UnitOfWork is called

At uow.commit() time, a flag is set in the UnitOfWork indicating that a merge is
pending. In the beforeCompletion callback, the appropriate SQL is sent to the
database; if during this operation an OptimisticLockException (or some other
RuntimeException) is thrown, the UnitOfWork is marked ‘dead’ and the global
external transaction is rolled back using the standard JTS APIs.

If the afterCompletion callback indicates success, the clones are merged with the
TopLink Session. If the afterCompletion callback indicates failure (and possibly
the beforeCompletion callback is not even invoked), the merge is not done and
the UnitOfWork is released.

Scenario 1 No global external transaction exists when the user acquires a unit of
work (see Figure 2–9).

Java Transaction Service (JTS)

Developing Enterprise Applications 2-33

Figure 2–9 No external transaction exists when UnitOfWork is called

In this case, the beforeCompletion callback or the afterCompletion callback
causes the unit of work to commit and if successful the afterCompletion callback
causes the unit of work to merge its changes into the session cache. If the JTS
transaction fails or is rolled back, the unit of work is released.

Extending TopLink’s JTS capabilities
Since the JTS specification is new, vendors have implemented their JTS service
against a changing backdrop, the JTS specification itself. To accommodate this,
TopLink’s JTS integration implementation is flexible to allow for local
modifications.

A example of an implementation of a JTS External Transaction Controller is found
in the package oracle.toplink.jts. Unfortunately, there needs to be different
concrete implementations of the AbstractSynchronizationListener interface

Table 2–5 Public API for JTS

Class or Interface API

oracle.toplink.sessions.DatabaseSession (I)

ExternalTransactionController
getExternalTransactionController()
setExternalTransactionController(

ExternalTransactionController etc)

oracle.toplink.sessions.DatabaseLogin (C)

dontUseExternalConnectionPooling()
useExternalConnectionPooling()
usesExternalConnectionPooling()
dontUseExternalTransactionController()
useExternalTransactionController()
usesExternalTransactionController()

Java Transaction Service (JTS)

2-34 Oracle9iAS TopLink Foundation Library Guide

because the JTS specification has been changing recently. A vendor-specific
implementation suitable for BEA WebLogic's JTS implementation is found in the
package oracle.toplink.jts.wls.

In the package oracle.toplink.jts., two abstract classes form the basis of any
local modifications:

Extensions to TopLink’s JTS capabilities thus are always a pair of concrete classes
that extend the named classes. A subclass of
AbstractExternalTransactionController must implement the abstract
methods from Table 2–6.

The register method performs a simple function – it delegates the call; it must
invoke the static register method on the specific subclass of
AbstractSynchronizationListener that is ‘paired’ with the controller class – for
example, the JTSExternalTransactionController implements register as
follows:

public void register(UnitOfWork uow, SynchronizationListener sl, Session
session) throws Exception {

JTSSynchronizationListener.register(uow, sl, session);
}

A subclass of AbstractSynchronizationListener must implement the two
abstract methods from Table 2–6 as well as the static register method mentioned
above.

Abstract methods of AbstractSynchronizationListener requiring concrete
implementation for local JTS modifications

/** This method must be re-written for the concrete implementations of
XXXSynchronizationListener as the various revisions of JTS that vendors have

Table 2–6 Public API for JTS local modifications

Class or Interface API

oracle.toplink.jts.AbstractExternalTransactionController (A)

register(UnitOfWork uow,
Session session) throws Exception

oracle.toplink.jts.AbstractSynchronizationListener (A)

rollbackGlobalTransaction()
boolean wasTransactionCommitted(
int status)

Java Transaction Service (JTS)

Developing Enterprise Applications 2-35

written their JTS implementations against have different ways of referring
to/dealing with the 'Transaction' object
*/
public abstract void rollbackGlobalTransaction();
/** Examine the status flag to see if the Transaction committed. This method
must be re-written for the concrete implementations of
XXXSynchronizationListener as the various revisions of JTS that vendors have
written their JTS implementations against have different status codes
*/

public abstract boolean wasTransactionCommited(int status);

For example, the JTSSynchronizationListener implements register as
follows:

Prototypical implementation of register for JTS service

...
import javax.transaction.*;
...
public static void register(UnitOfWork uow, SynchronizationListener sl, Session
session) throws Exception {

Transaction tx = tm.getTransaction();
JTSSynchronizationListener jsl = new JTSSynchronizationListener(uow,
sl,session,tx);
tx.registerSynchronization(jsl);

}

In the previous example implementation, the current global transaction is acquired
from tm, a static variable local to JTSSynchronizationListener that must be set
to an instance of a class that implements the
javax.transaction.TransactionManager interface.

For the abstract methods, the JTSSynchronizationListener implements
rollbackGlobalTx and txCommited as follows:

Example 2–9 Example implementation of rollbackGlobalTransaction and
wasTransactionCommited for JTS service

public void rollbackGlobalTransaction() {
try {

((Transaction) globalTx).setRollbackOnly();
}
catch (SystemException se) {
}

}
public boolean wasTransactionCommited(int status) {

Java Transaction Service (JTS)

2-36 Oracle9iAS TopLink Foundation Library Guide

if (status == Status.STATUS_COMMITTED)return true;
else return false;

}

To contrast, the WebLogicJTSSynchronization implements these methods as
follows:

Example 2–10 Concrete implementation of register for WebLogic's JTS service

...import weblogic.jts.common.*;
import weblogic.jts.internal.*;
import weblogic.jndi.*;
import javax.naming.*;
import java.util.*;
import java.io.*;
...
public static void register(UnitOfWork uow, Session session) throws

Exception {
Context ctx = null;
Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY, WEBLOGIC_FACTORY);
env.put(Context.PROVIDER_URL,providerUrl);
// these statics are null by default; check if someone set them
if (principal != null)env.put(Context.SECURITY_PRINCIPAL,
principal);
if (credentials != null) env.put(Context.SECURITY_CREDENTIALS,credentials);
if (authentication != null)env.put(Context.SECURITY_AUTHENTICATION,
authentication);
ctx = new InitialContext(env);
Current current = (Current)ctx.lookup("javax.jts.UserTransaction");
WebLogicJTSSynchronization wjs = new
WebLogicJTSSynchronization(uow,session,current);
current.getControl().getCoordinator()
.registerSynchronization(wjs);
}

public void rollbackGlobalTransaction() {
((Current) globalTx).setRollbackOnly();

}
public boolean wasTransactionCommited(int status) {
if (status == Synchronization.COMPLETION_COMMITTED)
return true;
else
return false;

}

TopLink support for Java Data Objects (JDO)

Developing Enterprise Applications 2-37

TopLink support for Java Data Objects (JDO)
TopLink provides an enterprise-proven architecture for the persistence of Java
objects and JavaBeans to relational databases, object-relational databases and
enterprise information systems. The TopLink architecture and API have evolved
through over a decade of development and usage across many vertical markets,
countries and applications. Included in this persistence architecture is support for
Java Data Objects (JDO).

JDO is an API for transparent database access. The JDO architecture defines a
standard API for data contained in local storage systems and heterogeneous
enterprise information systems, such as ERP, mainframe transaction processing, and
database systems. JDO enables programmers to create code in Java that
transparently accesses the underlying data store without using database-specific
code.

TopLink provides basic JDO support based on JDO Proposed final draft 1.0
specification (for information on the specification, see the Sun Microsystems web
site at java.sun.com.

TopLink's support for JDO includes much of the JDO API, but does not require the
class to be enhanced or modified by JDO Reference Enhancer aspects of the JDO
specification and other JDO products.

Understanding the JDO API
The JDO API consists of four main interfaces:

PersistenceManagerFactory A factory that generates PersistenceManagers. It has
configuration and login API.

PersistenceManager The main point of contact from the application. It provides
API for accessing the transaction, queries and object life cycle API
(makePersistent, makeTransactional, deletePersistent).

Transaction Defines basic begin, commit, rollback API.

Caution: JDO is a persistence specification that is in the proposal stage.
As such, it may undergo major changes in future editions, or even be
abandoned altogether. As a result, a thorough and proper evaluation of
JDO compared to other architectures supported by TopLink is strongly
recommended before putting a JDO-based architecture into production.

http://java.sun.com/
http://java.sun.com/
http://java.sun.com/

TopLink support for Java Data Objects (JDO)

2-38 Oracle9iAS TopLink Foundation Library Guide

Query Defines API for configuring the query (filter, ordering, parameters, and
variables) and for executing the query.

Figure 2–10 Understanding the JDO API

JDO implementation
TopLink implements the main JDO interfaces PersistenceManagerFactory,
PersistenceManager, and Transaction. It extends the query functionality to
include the complete TopLink query framework. The supported APIs are listed in
the reference tables of their respective implementation class. JDO APIs that are not
listed in the reference tables are not supported.

For more information on the TopLink query framework, see "Using the query
framework" on page 1-22.

JDOPersistenceManagerFactory
The JDOPersistenceManagerFactory class implements a
JDOPersistenceManagerFactory. This factory creates PersistenceManagers.

To create a JDOPersistenceManagerFactory, the constructor takes a session name
string or a TopLink session or project. If the factory is constructed from a project, a
new DatabaseSession is created and attached to the PersistenceManager every
time it is obtained through the getPersistenceManager method.

TopLink support for Java Data Objects (JDO)

Developing Enterprise Applications 2-39

The PersistenceManager is not multi-threaded. For multi-threaded application,
each thread should have its own PersistenceManager. The
JDOPersistenceManagerFactory should be constructed from a ServerSession not
DatabaseSession or Project to make use of the lighter weight client session and more
scalable connection pooling.

Creating a JDOPersistenceManagerFactory The following code creates a factory from a
TopLink session named “jdoSession” that is managed by SessionManager. The
SessionManager manages a singleton instance of TopLink ServerSession or
DatabaseSession named “jdoSession”. Refer to SessionManager documentation for
more info.

JDOPersistenceManagerFactory factory= new
JDOPersistenceManagerFactory("jdoSession");
//Create a persistence manager factory from an instance of
TopLink ServerSession or DatabaseSession that is managed by
the user.//

ServerSession session = (ServerSession) project.createServerSession();
JDOPersistenceManagerFactory factory= new JDOPersistenceManagerFactory(session);
//Create a persistence manager factory with ties to a
DatabaseSession that is created from TopLink project.//

JDOPersistenceManagerFactory factory= new JDOPersistenceManagerFactory(new
EmployeeProject());

Obtaining PersistenceManager New PersistenceManagers are created by calling the
getPersistentManager method. If the factory is constructed from a Project
instance, it can also configure the userid and password using
getPersistentManager(String userid, String password).

Reference Table 2–7 summarizes the most common public methods for
PersistenceManagerFactory:

� the Default column describes default settings of the descriptor element

� in the Method Names column, arguments are bold, methods are not

Note: DatabaseSession is typically used for single-threaded
applications. ServerSession should be used for multi-threaded
application.

TopLink support for Java Data Objects (JDO)

2-40 Oracle9iAS TopLink Foundation Library Guide

For a complete description of all available methods for
PersistenceManagerFactory, see the TopLink JavaDocs.

Table 2–7 Elements for PersistenceManagerFactory

Element Default Method Names

Construct a factory from a session
named “default” that is managed
by SessionManager

JDOPersistenceManagerFactory()

Construct a factory from a session
name that is managed by
SessionManager

JDOPersistenceManagerFactory(String sessionName)

Construct a factory from a user
session

JDOPersistenceManagerFactory(Session session)

Construct a factory from a project JDOPersistenceManagerFactory(Project project)

Query mode that specifies whether
cached instances are considered
when evaluating the filter
expression

false getIgnoreCache()setIgnoreCache(boolean
ignoreCache)

Transaction mode that allows
instances to be read outside a
transaction

true getNontransactionalRead()
setNontransactionalRead(boolean
nontransactionalRead)

These settings are enable only if the
factory is constructed from a
TopLink Project

user name,
password, url,
driver from
project login

getConnectionUserName()setConnectionUserName(Str
ing userName)getConnectionPassword()
setConnectionPassword(String
password)getConnectionURL()
setConnectionURL(String
URL)getConnectionDriverName()
setConnectionDriverName(String driverName)

Access PersistenceManager. The
user id and password are set only if
the factory is constructed from a
TopLink Project. Otherwise, use
default values.

User id,
password from
session login or
project login

getPersistenceManager()
getPersistenceManager(String userid, String
password)

Non-configurable properties getProperties()

Collection of supported option
String

supportedOptions()

TopLink support for Java Data Objects (JDO)

Developing Enterprise Applications 2-41

JDOPersistenceManager
The JDOPersistenceManager class implements a JDOPersistenceManager, the
primary interface for JDO-aware application components. The
JDOPersistenceManager is the factory for the Query interface and contains methods
for accessing transactions and managing the persistent life cycle instances. The
JDOPersistenceManager instance can be obtained from
JDOPersistenceManagerFactory.

Inserting JDO objects New JDO objects are made persistent using the
makePersistent() or makePersistentAll() methods. If the user does not
manually begin the transaction, TopLink will begin and commit the transaction
when either makePersistent() or makePersistentAll() is invoked. Note that if
the object is already persisted, calling these methods has no effect.

Example 2–11 Persist a new employee named Bob Smith

Server serverSession = new EmployeeProject().createServerSession();
PersistenceManagerFactory factory = new
JDOPersistenceManagerFactory(serverSession);
PersistenceManager manager = factory.getPersistenceManager();
Employee employee = new Employee();
employee.setFirstName("Bob");
employee.setLastName("Smith");
manager.makePersistent(employee);

Updating JDO Objects JDO objects are modified using a transactional instance. The
object is modified within a transaction context by manually beginning and
committing the transaction.

A transactional object is an object that is subject to the transaction boundary.
Transactional objects can be obtained several ways, including

� using getObjectById()

� executing a transactional-read query

� Using the TopLink extended API getTransactionalObject()

The transactional-read query is a query that is executed when the
nontransactionalRead flag of the current transaction is false. The current
transaction is obtained from the PersistenceManager by calling
currentTransaction().

TopLink support for Java Data Objects (JDO)

2-42 Oracle9iAS TopLink Foundation Library Guide

Example 2–12 Update an employee

The following example illustrates how to add a new phone number to an employee
object, modify its address and increase its salary by 10%.

Transaction transaction = manager.currentTransaction();
if(!transaction.isActive()) {
transaction.begin();
}
// Get the transactional instance of the employee//
Object id = manager.getTransactionalObjectId(employee);
Employee transactionalEmployee = manager.getObjectById(id, false);
transactionalEmployee.getAddress().setCity("Ottawa");
transactionalEmployee.setSalary((int) (employee.getSalary() * 1.1));
transactionalEmployee.addPhoneNumber(new PhoneNumber("fax", "613", "3213452"));

transaction.commit();

Deleting Persistent Objects JDO objects are deleted using either
deletePersistent() or deletePersistentAll(). The objects can be
transactional or non-transactional. If the user does not manually begin the
transaction, TopLink will begin and commit the transaction when
deletePersistent () or deletePersistentAll () is invoked.

It is important to understand that deleting objects using deletePersistent() or
deletePersistentAll() is similar to deleting objects using UnitOfWork. When
an object is deleted, its privately-owned parts are also deleted, because
privately-owned parts cannot exist without their owner. At commit time, SQL is
generated to delete the objects, taking database constraints into account. If an object
is deleted, then the object model must take the deletion of that object into account.
References to the object being deleted must be set to null or removed from the
collection. Modifying references to the object is done through its transactional
instance.

Example 2–13 Deleting a team leader from a project

Transaction transaction = manager.currentTransaction();
if(!transaction.isActive()) {
transaction.begin();
}
Object id = manager.getTransactionalObjectId(projectNumber);
Project transactionalProject = (Project) manager.getObjectById(id);
Employee transactionalEmployee = transactionalProject.getTeamLeader();
// Remove team leader from the project//
transactionalProject.setTeamLeader(null);

TopLink support for Java Data Objects (JDO)

Developing Enterprise Applications 2-43

// Remove owner that is the team leader from phone numbers//
for(Enumeration enum = transactionalEmployee.getPhoneNumbers().elements();
enum.hasMoreElements();) {

((PhoneNumber) enum.nextElement()).setOwner(null);
}
manager.deletePersistent(transactionalEmployee);
transaction.commit();

Example 2–14 Deleting a Phone Number

Transaction transaction = manager.currentTransaction();
if(!transaction.isActive()) {
transaction.begin();
}
Object id = manager.getTransactionalObjectId(phoneNumber);
PhoneNumber transactionalPhoneNumber = (PhoneNumber) manager.getObjectById(id);
transactionalPhoneNumber.getOwner().getPhoneNumbers().remove(transactionalPhoneN
umber);
manager.deletePersistent(phoneNumber);
transaction.commit();

Obtaining Query TopLink does not support the JDO Query language but instead
includes support within JDO for the more advanced TopLink query framework (for
information on the TopLink query framework, see "Using the query framework" on
page 1-22). A key difference is that, while the JDO query language requires results
to be returned as a collection of candidate JDO instances (either a
java.util.Collection,or anExtent, the result type returned by the TopLink query
framework depends on the type of query used. For example, if a ReadAllQuery is
used, the result is a Vector.

The query factory is supported through the following APIs.

� Standard API:

newQuery();
newQuery(Class persistentClass);

� TopLink extended API:

newQuery(Class persistentClass, Expression expressionFilter);

Note: Obtaining Query from a different newQuery() API could result in
JDOUserException or getting the query implicitly created from the
supported API.

TopLink support for Java Data Objects (JDO)

2-44 Oracle9iAS TopLink Foundation Library Guide

A ReadAllQuery is created with the Query instance by default.

Reference Table 2–8 and Table 2–9 summarize the most common public methods for
the Query API and TopLink extended API:

� the Default column describes default settings of the descriptor element

� in the Method Names column, arguments are bold, methods are not

For a complete description of all available methods for the Query API and TopLink
extended API, see the TopLink JavaDocs.

Table 2–8 Elements for Query API

Element Default Method Name

Release resource to
allow garbage
collection

close()

Transaction currentTransaction()

Delete objects deletePersistent(Object
object)deletePersistentAll(Collection
objects)deletePersistentAll(java.lang.Object
[] objects)

Mark objects as no
longer needed in the
cache

evict(Object
object)evictAll()evictAll(Collection
objects)evictAll(Object[] objects)

Extent getExtent(Class queryClass, boolean
readSubclasses)

Cache mode for
queries

Ignore cache
from the
persistence
manager factory

getIgnoreCache()setIgnoreCache(boolean
ignoreCache)

Obtain transactional
state of object

getObjectById(Object object, boolean
validate)getTransactionalObjectId
(Object object)

A
PersistenceManager
instance can be used
until it is closed

isClosed()

TopLink support for Java Data Objects (JDO)

Developing Enterprise Applications 2-45

JDOQuery
The JDOQuery class implements the JDO Query interface. It defines API for
configuring the query (filter, ordering, parameters, and variables) and for executing
the query. TopLink extends the query functionality to include the full TopLink
query framework (for information on the TopLink query framework, see "Using the
query framework" on page 1-22). Users can customize the query to use advanced
features such as batch reading, stored procedure calls, partial object reading, query
by example, and so on. TopLink currently does not support the JDO query
language, but users can use either SQL or EJBQL in the JDO Query interface. For
more information on EJBQL support, see Chapter 4, "EJBQL Support".

Insert objects makePersistent(Object
object)makePersistentAll(Collection
objects)makePersistentAll
(Object[] objects)

Make objects subject
to transactional
boundaries by
registering them to
UnitOfWork

makeTransactional(Object
object)makeTransactionalAll(Collection
objects)makeTransactionalAll
(Object[] objects)

Query factory newQuery()newQuery(Class queryClass)

Refreshing objects refresh(Object object)refreshAll()refreshAll
(Collection objects)refreshAll
(Object[] objects)

Table 2–9 Elements for TopLink extended API

Element Default Method Name

Obtain transactional
object

getTransactionalObject(Object object)

Query factory newQuery(Class queryClass, Expression
expression)

Reading objects readAllObjects(Class
domainClass)readAllObjects(Class
domainClass)readObject(Class domainClass,
Expression expression)

Table 2–8 Elements for Query API (Cont.)

Element Default Method Name

TopLink support for Java Data Objects (JDO)

2-46 Oracle9iAS TopLink Foundation Library Guide

Each JDOQuery instance is associated with a TopLink query. When the JDO Query
is obtained from the PersistenceManager by calling a supported newQuery method,
a new ReadAllQuery is created and associated with the query. JDO Query can reset
its TopLink query to a specific type by calling asReadObjectQuery(),
asReadAllQuery(), or asReportQuery.

Customizing the query using the TopLink Query Framework Much of the TopLink query
framework functionality is provided through the public API. In addition, users can
build complex functionality into their queries by customizing their own query.
Users can create customized a TopLink query and associate it with the JDO Query
by calling setQuery().

Using a customized TopLink query gives users the complete functionality of
TopLink query framework. An example for using customize query is using a
DirectReadQuery with custom SQL to read the id column of the employee.

Example 2–15 Use a ReadAllQuery to read all employees who live in New York

Expression expression = new
ExpressionBuilder().get("address").get("city").equal("New York");
Query query = manager.newQuery(Employee.class, expression);
Vector employees = (Vector) query.execute();

Example 2–16 Use a ReadObjectQuery to read the employee named Bob Smith

Expression exp1 = new ExpressionBuilder().get("firstName").equal("Bob");
Expression exp2 = new ExpressionBuilder().get("lastName").equal("Smith ");
JDOQuery jdoQuery = (JDOQuery) manager.newQuery(Employee.class);
jdoQuery.asReadObjectQuery();
jdoQuery.setFilter(exp1.and(exp2));
Employee employee = (Employee) jdoQuery.execute();

Example 2–17 Use a ReportQuery to report employee's salary

JDOQuery jdoQuery = (JDOQuery) manager.newQuery(Employee.class);
jdoQuery.asReportQuery();
jdoQuery.addCount();
jdoQuery.addMinimum("min_salary ",
jdoQuery.getExpressionBuilder().get("salary"));

Note: TopLink extended APIs are configured for a specific TopLink
query type. Exception could be thrown if methods are used with the
wrong query type. See Table 2–10 for correct usage.

TopLink support for Java Data Objects (JDO)

Developing Enterprise Applications 2-47

jdoQuery.addMaximum("max_salary",
jdoQuery.getExpressionBuilder().get("salary"));
jdoQuery.addAverage("average_salary",
jdoQuery.getExpressionBuilder().get("salary"));
// Return a vector of one DatabaseRow that contains reported info
Vector reportQueryResults = (Vector) jdoQuery.execute();

Example 2–18 Use a customized DirectReadQuery to read employee 's id column.

DirectReadQuery TopLinkQuery = new DirectReadQuery();
topLinkQuery.setSQLString("SELECT EMP_ID FROM EMPLOYEE");
JDOQuery jdoQuery = (JDOQuery) manager.newQuery();
jdoQuery.setQuery(topLinkQuery);
// Return a Vector of DatabaseRows that contain ids
Vector ids = (Vector)jdoQuery.execute(query);

Reference Table 2–10 and Table 2–11 summarize the most common public methods
for the JDO Query API and TopLink extended API:

� the Default column describes default settings of the descriptor element

� in the Method Names column, arguments are bold, methods are not

For a complete description of all available methods for the JDO Query API and
TopLink extended API, see the TopLink JavaDocs.

Table 2–10 Elements for JDO Query API

Element Default Method Name

Close Cursor result close(Object queryResult)

Declare query
parameters

declareParameters(String parameters)

Execute query execute()execute(Object arg1)execute(Object
arg1, Object arg2)execute(Object arg1,
Object arg2, Object
arg3)executeWithArray(java.lang.Object[]
arg1)executeWithMap(Map arg1)

Cache mode for
query result

Ignore cache
from the
persistence
manager

getIgnoreCache()setIgnoreCache(boolean
ignoreCache)

PersistenceManager getPersistenceManager()

TopLink support for Java Data Objects (JDO)

2-48 Oracle9iAS TopLink Foundation Library Guide

ReadObjectQuery,
ReadAllQuery,
ReportQuery

setClass(Class queryClass)

ReadAllQuery setOrdering(String ordering)

Table 2–11 Elements for TopLink Extended API

Element Default Method Name

Convert query asReadAllQuery()asReadObjectQuery()
asReportQuery()

Access TopLink
query

ReadAllQuery getQuery()setQuery(DatabaseQuery newQuery)

ReadObjectQuery,
ReadAllQuery,
ReportQuery

acquireLocks()
acquireLocksWithoutWaiting()
addJoinedAttribute(String attributeName)
addJoinedAttribute(Expression
attributeExpression)
addPartialAttribute(String attributeName)
addPartialAttribute(Expression
attributeExpression)
checkCacheOnly()
dontAcquireLocks()
dontRefreshIdentityMapResult()
dontRefreshRemoteIdentityMapResult()
getExampleObject()
getExpressionBuilder()
setQueryByExampleFilter(Object exampleObject)
setQueryByExamplePolicy(QueryByExamplePolicy
newPolicy)
setShouldRefreshIdentityMapResult
(boolean shouldRefreshIdentityMapResult)
shouldRefreshIdentityMapResult()

ReadObjectQuery checkCacheByExactPrimaryKey()
checkCacheByPrimaryKey()
checkCacheThenDatabase()
conformResultsInUnitOfWork()
getReadObjectQuery()

Table 2–10 Elements for JDO Query API (Cont.)

Element Default Method Name

TopLink support for Java Data Objects (JDO)

Developing Enterprise Applications 2-49

ReadAllQuery addAscendingOrdering(String queryKeyName)
addDescendingOrdering(String queryKeyName)
addOrdering(Expression orderingExpression)
addBatchReadAttribute(String attributeName)
addBatchReadAttribute(Expression
attributeExpression)
addStandardDeviation(String itemName)
addStandardDeviation(String itemName,
Expression attributeExpression)
addSum(String itemName)
addSum(String itemName, Expression
attributeExpression)
addVariance(String itemName)
addVariance(String itemName, Expression
attributeExpression)
getReadAllQuery()
useCollectionClass(Class concreteClass)
useCursoredStream()
useCursoredStream(int initialReadSize, int
pageSize)
useCursoredStream(int initialReadSize, int
pageSize, ValueReadQuery sizeQuery)
useDistinct()useMapClass(Class concreteClass,
String methodName)
useScrollableCursor()
useScrollableCursor(int pageSize)

Table 2–11 Elements for TopLink Extended API (Cont.)

Element Default Method Name

TopLink support for Java Data Objects (JDO)

2-50 Oracle9iAS TopLink Foundation Library Guide

addAttribute(String itemName)
addAttribute(String itemName, Expression
attributeExpression)
addAverage(String itemName)
addAverage(String itemName, Expression
attributeExpression)
addCount()
addCount(String itemName)
addCount(String itemName, Expression
attributeExpression)
addGrouping(String attributeName)
addGrouping(Expression expression)
addItem(String itemName, Expression
attributeExpression)
addMaximum(String itemName)
addMaximum(String itemName, Expression
attributeExpression)
addMinimum(String itemName)
addMinimum(String itemName, Expression
attributeExpression)
getReportQuery()

Table 2–11 Elements for TopLink Extended API (Cont.)

Element Default Method Name

TopLink support for Java Data Objects (JDO)

Developing Enterprise Applications 2-51

JDOTransaction
The JDOTransaction class implements the JDO Transaction interface, and defines
the basic begin, commit, and rollback APIs, and synchronization callbacks within
the UnitOfWork. It supports the optional non-transactional read JDO feature.

Read Modes The read mode of a JDO transaction is set by calling the
setNontransactionalRead() method.

DatabaseQuery addArgument(String argumentName)
bindAllParameters()
cacheStatement()
cascadeAllParts()
cascadePrivateParts()
dontBindAllParameters()
dontCacheStatement()
dontCascadeParts()
dontCheckCache()
dontMaintainCache()
dontUseDistinct()
getQueryTimeout()getReferenceClass()
getSelectionCriteria()
refreshIdentityMapResult()
setCall(Call call)
setEJBQLString(String ejbqlString)
setFilter(Expression selectionCriteria)
setQueryTimeout(int queryTimeout)
setSQLString(String sqlString)
setShouldBindAllParameters(boolean
shouldBindAllParameters)
setShouldCacheStatement(boolean
shouldCacheStatement)
setShouldMaintainCache(boolean
shouldMaintainCache)
shouldBindAllParameters()
shouldCacheStatement()
shouldCascadeAllParts()
shouldCascadeParts()
shouldCascadePrivateParts()
shouldMaintainCache()

Table 2–11 Elements for TopLink Extended API (Cont.)

Element Default Method Name

TopLink support for Java Data Objects (JDO)

2-52 Oracle9iAS TopLink Foundation Library Guide

The read modes are:

Non-Transactional Read Non-transactional reads provide data from the database,
but do not attempt to update the database with any changes made to the data when
the transaction is committed. This is the default transaction mode from
PersistenceManagerFactory. Non-transactional reads support nested Units of Work.

When queries are executed in non-transactional read mode, their results are not
subject to the transactional boundary. To update objects from the queries' results,
users must modify objects through their transactional instances.

To enable non-transactional read mode, set the non-transactional read flag to true.

Transactional Read Transactional reads provide data from the database and writes
any changes to the object back to the database when the transactions commits.
When transactional read is used, TopLink uses the same UnitOfWork for all data
store interaction (begin, commit, rollback). This can cause the cache to grow very
large over time, so this mode should be only used with short-lived
PersistenceManager instances to allow the UnitOfWork be garbage collected.

When queries are executed in transactional read mode, their results are
transactional instances and they are subject to the transactional boundary. Objects
can be updated from the result of a query that is executed in transactional mode.

Because the same UnitOfWork is used in this mode, the transaction is always active
and must be released when the read mode is changed from transactional read to
non-transactional read.

To enable transactional read mode, set the non-transactional read flag to false.

Note: If the transaction is active when changing read mode, an
exception will be thrown.

Caution: It is important to ensure that all changes are committed before
calling the TopLink extended API release() to release the transaction
and its UnitOfWork and setting the non-transactional read mode to true.
Failure to do so can result in a loss of the transaction.

Distributed Cache Synchronization

Developing Enterprise Applications 2-53

Synchronization A Synchronization listener can be registered with the transaction to
be notified at transaction completion. The beforeCompletion and
afterCompletion methods are called when the pre-commit and post-commit
events of the UnitOfWork are triggered respectively.

Running the TopLink JDO demo
TopLink includes a demo that illustrates some of the JDO functionality.
oracle.toplink.demos.employee.jdo.JDODemo is based on the project
oracle.toplink.demos
.employee.relational.EmployeeProject and is configured to connect to a
Microsoft Access database. The database connection code is in the applyLogin()
method of the EmployeeProject class. You may have to modify this method if you
do not have a Microsoft Access database, or if the connection information for your
database is different from what is specified in this code. When the database
connection is setup properly, you can start running the JDO demo.

Distributed Cache Synchronization
Within a distributed application environment, the correctness of the data that is
available to clients is very important. This issue increases in complexity as the
number of servers within an environment increases. To reduce the occurrences of
incorrect data (“stale” data) being delivered to clients, TopLink provides a cache
synchronization feature. This feature ensures that any client connecting to a cluster
of servers is able to retrieve its changes, made through a UnitOfWork, from any
other server in the cluster (provided that no changes have been made in the
interim).

When enabled in a distributed application, changes made in one transaction on a
particular node of the application is broadcast to all other nodes within the
distributed application. This prevents stale data from spanning transactions and
greatly reduces the chance that a transaction will begin with stale data.

Cache Synchronization in no way eliminates the need for an effective locking policy
but does reduce the number of Optimistic lock exceptions and can therefore
dramatically decrease the amount of work that must be repeated by the application.

Cache synchronization complements the implemented locking policies and can
propagate changes synchronously or asynchronously.

Distributed Cache Synchronization

2-54 Oracle9iAS TopLink Foundation Library Guide

Controlling the sessions: the Cache Synchronization Manager
The Cache Synchronization Manager offers several options for controlling the
synchronized sessions:

With the Session properties set, the session automatically connects to all other
sessions that are on the same network when the session logs in. Any changes made
as a result of the session is then broadcast to all other servers on the same network.

Using Cache Synchronization Manager options
The Cache Synchronization Manager enables you to specify two important
functions: the update method for the servers in the caching service, and the error
handling method used to control communication errors.

Table 2–12 Properties for CacheSynchronizationManager

Use this code fragment... To...

setIsAsynchronous
(boolean isAsynchronous)

Set propagation mode. See "Synchronous versus
asynchronous updates" on page 2-59.

setShouldRemoveConnectionOnError
(boolean removeConnection)

Drop connections in the event of a communication
error. See "Error handling" on page 2-59.

addRemoteConnection
(RemoteConnection connection)

Add new connections to the synchronized cache.
See "Advanced options: Managing connections"
on page 2-59.

getRemoteConnections() Get remote connections. See "Advanced options:
Managing connections" on page 2-59.

removeAllRemoteConnections() ‘Remove all remote connections from the cache
synchronization service. See "Advanced options:
Managing connections" on page 2-59.

removeRemoteConnection
(RemoteConnection connection)

Remove a specific remote connection. See
"Advanced options: Managing connections" on
page 2-59.

connectToAllRemoteServers() Connect to all servers participating in cache
synchronization. See "Deprecated options:
Connecting to all remote servers" on page 2-59.

Distributed Cache Synchronization

Developing Enterprise Applications 2-55

Synchronous versus asynchronous updates The CacheSynchronizationManager enables
you to specify how other sessions are updated when changes are made on a given
node:

� If the changes are sent synchronously, the current transaction does not commit
until the changes have been sent.

� If the changes are sent asynchronously, the changes may not have reached all
servers before the transaction completes the commit.

Error handling The Cache Synchronization Manager offers very simple error
handing: you can set it to drop connections in the event of a communications error.

Advanced options: Managing connections The Cache Synchronization Manager
includes several advanced API options for managing connections. These options are
listed in Table 2–12, and enable you to get or add connections, as well as remove
specific connections or all connections from a cache synchronization service. Note
that these options are considered advanced functionality that is not typically
required to run a cache synchronization pool.

Deprecated options: Connecting to all remote servers The Cache Synchronization
manager continues to support the connectToAllRemoteServers functionality.
However, this support should be considered only as a service to legacy applications,
and not added to new ones.

Using a clustering service
The clustering services for cache synchronization have the following attributes:

Multicast Group IP The IP used by the sessions for multicast communications. All
sessions that share the same Multicast group IP and address will send changes to
each other

Multicast Port Port used for Multicast communication

Time To Live This is the number of 'hops' that a multicast packet will make on the
network before stopping. This has more to do with network configuration than the
number of nodes connected

announcementDelay This setting is used by the ClusteringService to determine
how long to wait between making the Remote Service available and announcing its
existence. This is required in systems where there is propagation delay when
binding the services into JNDI.

Distributed Cache Synchronization

2-56 Oracle9iAS TopLink Foundation Library Guide

Implementing a custom Clustering Service You can implement a custom Clustering
Service to support cache synchronization. This advanced option must respond and
be usable as a Foundation Library supplied Clustering Service. Custom Clustering
services, include the all of the components of a regular clustering service (multicast
group IP, multicast port, and Time to Live Setting).

Configuring cache synchronization
To configure an TopLink Session to use Cache Synchronization, set the Session to
use a Cache Synchronization Manager with a particular Clustering Service in the
Session properties. This class controls the interaction with other Sessions including
accepting changes and connections from Sessions and sending information to all
other Sessions.

The Cache Synchronization Manager requires the URL of the naming service. The
Clustering Services are organized by communication framework then by naming
service. The implementations shipped with the Foundation Library are as follows:

If you need to implement your own proprietary communications protocol, consult
the RMIRemoteSessionControllerDispatcher and RMIRemoteConnection
classes shipped with TopLink.

The Session may also be configured through code.

Example 2–19 Using a simple URL for RMI registry

session.setCacheSynchronizationManager(new
oracle.toplink.remote.CacheSynchronizationManager ());
// simple URL used for RMI registry
session.getCacheSynchronizationManager().setLocalHostURL("localhost:1099");
session.getCacheSynchronizationManager().setClusteringServiceClassType(oracle.to
plink.remote.rmi.RMIClusteringService.class);

Table 2–13 Cache Synchronization implementations shipped with the Foundation
Library

Name Naming Service Type Framework

RMIClusteringService RMI registry RMI

RMIJNDIClusteringService JNDI RMI

CORBAJNDIClusteringService JNDI One for each of Sun, Orbix
and Visibroker corba

JMSClusteringService JNDI JMS

Distributed Cache Synchronization

Developing Enterprise Applications 2-57

Example 2–20 Setting up clustering with a non-default multicast group

session.setCacheSynchronizationManager(new oracle.toplink.remote.
CacheSynchronizationManager());
//simple URL used for RMI registry
session.getCacheSynchronizationManager(). setLocalHostURL("localhost:1099");
// Set up Clustering Service with non default multicast group. Note that the
multicast group must start with 226.x.x.x and can not be 226.0.0.1. The port can
be any value. Set the same multicast IP and port number for all sessions that
you wish to synchronize
RMIClusteringService clusteringService = new RMIClusteringService("226.3.4.5",
3456, session);
session.getCacheSynchronizationManager().setClusteringService(clusteringService)
;

Connecting the sessions

To start the framework for synchronizing the sessions:
1. Instantiate a CacheSynchronizationManager.

2. Add this manager to the current ServerSession.

3. Instantiate a RemoteSessionDispatcher, and add this dispatcher to the
CacheSynchronizationManager.

4. Make the RemoteSessionDispatcher available in a global space such as the
RMI registry.

This session is now able to receive synchronization updates and new
connections from other servers.

To connect the servers:
1. Create a RemoteConnection for the communications framework.

2. Retrieve the RemoteSessionDispatcher of a session that is to be synchronized
with.

3. Add this RemoteConnection to the CacheSynchronizationManager.

The current server connects to the owner session of the dispatcher, and adds
that server to the list of servers to synchronize with.

The distributed session is automatically notified of this session’s existence, and
adds this session to its list of synchronization participants.

Distributed Cache Synchronization

2-58 Oracle9iAS TopLink Foundation Library Guide

Example 2–21 Adding the RemoteSessionDispatcher to the current Session

CacheSynchronizationManager synchManager = new CacheSynchronizationManager();
getSession().setCacheSynchronizationManager(synchManager);
RMIRemoteSessionControllerDispatcher controller = new
oracle.toplink.remote.rmi.RMIRemoteSessionControllerDispatcher(getSession());
synchManager.setSessionRemoteController(controller);
//Lookup and connect to another Session
RemoteConnection connection = new
RMIConnection((RMIRemoteSessionController)registry.lookup("Server2"));
//connect to the distributed session and notify that server of this session’s
existence
getSession().getCacheSynchronizationManager().addRemoteConnections(connection);
//Here I am making the current Server available in the Registry your
implementation of distributing the RemoteSessionDispathcer may differ
registry.rebind("Server1", controller);

Using Java Messaging Service
Java Messaging Service (JMS) is a a specification that provides developers with a
pre-implementation and specification of many common messaging protocols. JMS
can also be used to build a more scalable cache synchronization implementation.

TopLink integrates with the JMS publish/subscribe mechanism. For more
information on this mechanism, consult the JMS specification available on the Sun
web site (http:\www.sun.com).

Preparing to use JMS
A JMS service must be set up outside of TopLink before TopLink can leverage the
service. To set the service up the developer must

� Start the JMS service.

� Create a JMS connection factory and note the name. The factory name will be
used in TopLink to call the factory.

� Create a JMS topic and note the name. The topic name will be used in TopLink
to refer to the topic.

These steps are completed in the software that provides the JMS service. For more
information on completing these steps, see the documentation provided with that
software.

Distributed Cache Synchronization

Developing Enterprise Applications 2-59

Setting up JMS in the session configuration file
JMS messaging is typically established in the session configuration file (for example
sessions.xml) although it can also be set up in code.

The following example illustrates the use of all JMS options in a typical
sessions.xml file:

<cache-synchronization-manager>
<clustering-service>oracle.toplink.remote.jms
.JMSClusteringService</clustering-service>
<should-remove-connection-on-error>false
</should-remove-connection-on-error>
<!-- both of the following tags are user specified and must correspond to
the settings that the user has made, manually, to the JMS Service -->
<jms-topic-connection-factory-name> TopicConectionFactory
</jms-topic-connection-factory-name>
<jms-topic-name> TopLinkCacheSynchTopic
</jms-topic-name>
<!-both of the following tags may be required if TopLink is not running in
the same VM as the JNDI service -->
<naming-service-url>t3://localhost:7001
</naming-service-url>
<naming-service-initial-context-factory>weblogic.jndi.WLInitialContextFactor
y
</naming-service-initial-context-factory>

</cache-synchronization-manager>

Setting up JMS in Java
JMS support includes new API calls. The following API is required to implement
JMS in Java:

public void setTopicConnectionFactoryName(String jndiName);
public void setTopicName(String topicName);
If the JMS is not running on the same virtual machine as the JNDI service, you may
also have to include the following:

public void setLocalHostURL(String jndiServiceURL);
public void setInitialContextFactoryName(String initialContextFactoryName);
The following example illustrates a typical implementation of JMS:

this.session.setCacheSynchronizationManager(new
oracle.toplink.remote.CacheSynchronizationManager());
JMSClusteringService clusteringService = new
oracle.toplink.remote.jms.JMSClusteringService(this.session);
clusteringService.setLocalHostURL("t3://localhost:7001");

Distributed Cache Synchronization

2-60 Oracle9iAS TopLink Foundation Library Guide

clusteringService.setTopicConnectionFactoryName("TopicConectionFactory");
clusteringService.setTopicName("TopLinkCacheSynchTopic");
this.session.getCacheSynchronizationManager().setClusteringService(clusteringSer
vice);

Working with Enterprise JavaBeans 3-1

3
Working with Enterprise JavaBeans

Enterprise JavaBeans (EJB) is a component architecture for creating scalable,
multi-tier, distributed applications. EJB makes it possible to create
dynamically-extensible applications.

This chapter describes TopLink features that provide support for Enterprise
JavaBeans. It discusses

� The EJB specification

� Using the session bean model

� Using the entity bean model

� TopLink and container-managed persistent entity beans

In summary, TopLink can be used in conjunction with session beans and
bean-managed persistence entity beans designed in accordance with versions 1.0,
1.1, or 2.0 of the Enterprise JavaBean specification.

Container-managed persistence (CMP) for entity beans is provided by specialized
products such as TopLink CMP for BEA WebLogic Server and TopLink CMP for
IBM WebSphere Server. For information on additional support for other EJB servers,
please contact Oracle Support.

The EJB specification
Enterprise JavaBeans (EJBs) represent a standard in enterprise computing
developed by Sun Microsystems and its partners. EJB provides a component-based
architecture for developing and deploying distributed object-oriented applications
in Java. It is important to note the EJB is not itself a product. Enterprise JavaBeans is
a specification that describes a framework for developers to use to create distributed
business applications and for vendors to use to design application servers. Sun

Using the session bean model

3-2 Oracle9iAS TopLink Foundation Library Guide

Microsystems has partnered with industry to specify the EJB framework and many
vendors have responded with widespread support for EJB.

Additional information
The EJB home page can be found at www.java.sun.com/products/ejb.

The specification in PDF format is available at
www.javasoft.com/products/ejb/docs.html.

Additional information about EJB can also be found at
www.javasoft.com/products/ejb/white_paper.html.

Using the session bean model
Session beans are intended to model a process, operation, or service and as such are
not themselves persistent. To perform the service they model, session beans can use
persistence mechanisms. Under the session bean model, a client application invokes
methods on a session bean that in turn performs operations on TopLink-enabled
Java objects. All TopLink-related operations are carried out on behalf of the client by
the session beans.

http://www.java.sun.com/products/ejb
http://www.javasoft.com/products/ejb/docs.html
http://www.javasoft.com/products/ejb/white_paper.html

Using the session bean model

Working with Enterprise JavaBeans 3-3

Figure 3–1 Basic view of TopLink Session bean architecture

The EJB specification describes session beans as either stateless or stateful.

� Stateful beans maintain a “conversational” state with a client; that is, they retain
information between method calls issued by a particular client. Manipulation of
persistent objects can occur across multiple method calls. In between those
invocations, the EJB Server may decide to passivate (or serialize) the session
bean out of the Java VM's memory-space to satisfy some run-time characteristic:
performance, memory-footprint, maximum number of beans, and so on. Later,
the bean can be activated (un-serialized) and brought back into memory.

� Stateless beans, on the other hand, retain no data between method calls. For
stateless session beans, any manipulation of persistent objects must be fully
completed within a single method-call.

For more information about Session Beans, activation and passivation, please
consult the EJB specification.

Using the session bean model

3-4 Oracle9iAS TopLink Foundation Library Guide

Session beans and DatabaseSessions
Both stateful session beans and stateless session beans can be used with a TopLink
DatabaseSession. However, the way in which TopLink DatabaseSessions are
handled may be different depending on which type of bean is used.

For stateless beans, no information is stored between method calls from the client,
so the bean’s connection to the DatabaseSession must be re-established for each
client method call. Each method call that would require use of TopLink would
consist of first obtaining a DatabaseSession, making the appropriate calls, and
then releasing the reference to the DatabaseSession.

For stateful beans, the DatabaseSession could be considered a part of the
conversational state associated with the bean, and could be retained between calls.
However, DatabaseSession instances are not fully serializable and will not
survive passivation. If the DatabaseSession is to be maintained between method
calls, it must be released during the passivation process and re-obtained during the
activation process.

There are a variety of strategies available for managing session bean access to
DatabaseSessions. One option available is to make use of the SessionManager
class which is described in the following sections.

Interactions with JTS
Many EJB Servers provide a Java Transaction Service (JTS) compliant JDBC driver
for use with EJBs. TopLink now has the ability to use such a JTS service. The
DatabaseLogin must be configured correctly in order to support JTS and session
beans.

Please see Chapter 2, "Developing Enterprise Applications" for more information on
how to configure TopLink sessions for JTS.

Example 3–1 Configuring DatabaseLogin for interoperability with JTS and EJB

DatabaseLogin login = null;
project = null;

//note that useExternalConnectionPooling and useExternalTransactionController
must be set before Session is created
project = new SomeProject();
login = project.getLogin();
login.useExternalConnectionPooling();
login.useExternalTransactionController();

Using the session bean model

Working with Enterprise JavaBeans 3-5

// usually, other login configuration such as user, password, JDBC URL comes
from the project but these can also be set here
session = new Session(project);

// other session configuration, as necessary: logging, ETC
session.SetExternalTransactionController(new
SomeJTSExternalTransactionController());
session.login();

Using session beans with TopLink’s three-tier application model
There are several ways to design and implement session beans that make use of
TopLink. Here we describe one possible model that uses TopLink’s three-tier feature
to allow efficient use of database connections. Please refer to Chapter 2,
"Developing Enterprise Applications" for a general overview of the TopLink client
and server session.

Essentially, the three-tier model can be used to create a ServerSession that is to be
shared among the various session beans. When the session bean needs to access a
TopLink Session, the bean obtains a ClientSession from the shared
ServerSession. Using the TopLink three-tier feature provides several benefits:

� Reduction of overhead: TopLink project, descriptor, and login information is
shared amongst beans

� Future compatibility with other servers: all login information is isolated from the
beans, which contain no EJB Server-specific information

� Shared read cache: efficiency is increased by using a shared cache for reading
objects

Using the Session Manager
The TopLink Session Manager is a static utility class that provides developers with
any easy way to build a series of sessions that are maintained under a single entity.
Use the Session Manager to ensure that a ServerSession is always available for
any session bean.

The SessionManager class, oracle.toplink.tools.sessionmanagement.
SessionManager, is contained in the tl_tools.jar and can be used to create and
manage TopLink sessions defined in an external XML file.

The SessionManager supports the following session types:

Using the session bean model

3-6 Oracle9iAS TopLink Foundation Library Guide

� ServerSession (for more information, see "Client and server sessions" on
page 2-3)

� DatabaseSession (for more information, see "Understanding Database
sessions" on page 1-2)

� SessionBroker (for more information, see "Session broker" on page 2-24

The Session Manager has two main functions: to create instances of these classes,
and to ensure that only a single instance of a session with a particular name is
returned to the application for any single instance of a SessionManager.

TopLink offers a managed approach for the developer by providing static methods
to make a single instance of the SessionManager available globally.

To use this method, instantiate a SessionManager as follows:

SessionManager.getManager().

Retrieving a session from a SessionManager
The following call is simplest way to retrieve a session from a session manager:

getSession(String sessionName)
Retrieving a session this way uses all defaults. If no session exists within the current
instance of SessionManager, the Session Manager attempts to load a session from
an XML file called sessions.xml. This file, which must be on the root of the class
path, contains all of the configuration information for the named session. This
allows developers to update the configuration of a session without modifying
application code.

Using the default configuration file: sessions.xml
By default, SessionManager attempts to create a new session using the
specifications contained in a file called sessions.xml. This file can define one or
more session configurations by name that the SessionManager makes available at
runtime. This XML file has a DTD provided that can be found in the installation at
<INSTALL_DIR>\TopLink\core\sessions_4_5.dtd. The DTD is also
documented in Appendix A, "Sessions.xml DTD".

Note: While this is the simplest way to retrieve a session, it is not the
only way. A session can also be loaded by specifying an XMLLoader to
use, the name of the session, the class loader and some flags as defined in
the Java Docs. Refer to the Java Docs for specifics on the API that
supports this type of custom call.

Using the session bean model

Working with Enterprise JavaBeans 3-7

The following is an example sessions.xml file. Although it does not show all of
the configuration options available it does highlight the most common ones.

<?xml version = "1.0" encoding = "US-ASCII"?>
<!DOCTYPE toplink-configuration PUBLIC "-//Oracle Corp.//DTD TopLink for
JAVA//EN" >
<toplink-configuration>

<session>
<name>default</name>
<project-class>MyProject</project-class>
<session-type><server-session/></session-type>
<connection-pool>

<is-read-connection-pool>false</is-read-connection-pool>
<name>BopPool</name>
<login>

<user-name>user</user-name>
<password>password</password>

</login>
</connection-pool>
<enable-logging>true</enable-logging>
<logging-options>

<log-debug>true</log-debug>
<log-exceptions>true</log-exceptions>
<log-exception-stacktrace>true</log-exception-stacktrace>
<print-thread>true</print-thread>
<print-session>true</print-session>
<print-connection>true</print-connection>
<print-date>true</print-date>

</logging-options>
</session>

</toplink-configuration>

Note that the DOC_TYPE indicator is a specific reference to the DTD packaged in the
core tl_core.jar. If this entry is not exactly as listed the DTD may not be found.

Using the XMLLoader
The XMLLoader is a mechanism that offers two important features:

� It enables a developer to specify a custom session configuration to be loaded
rather than the standard default configuration.

� It enables a developer to control whether or not the session configuration file is
re-read when successive sessions are created.

Using the session bean model

3-8 Oracle9iAS TopLink Foundation Library Guide

The XMLLoader also enables different sessions, and even different class loaders, to
be loaded from different configuration files.

Specifying a custom session configuration file Developers can store customized session
configuration information in XML files other than sessions.xml. XMLLoader
enables the developer to specify this custom configuration file rather than the
default sessions.xml file. For example:

XMLLoader loader = new XMLLoader("MySession.xml");
This code creates a new XMLLoader that loads the session configuration from the
specified, MySession.xml. Note that the file must exist before the
getSession(...) call is invoked on the SessionManager. By default, the XML file
is opened using a ClassLoader's ability to lookup resources as streams. The
ClassLoader used for this is the one returned from the default ConversionManager.

Reusing the XML file If the XMLLoader instance is maintained, the configuration file
is read the first time the get session () call is made but is not reparsed with each
subsequent get session () call. If either a different XMLLoader is used to call a
session or the API to refresh the configuration file is invoked, the configuration file
is be re-parsed, but sessions already in the SessionManager do not change.

Loading Session Broker Using the XMLLoader method to load SessionBroker enables
several different sessions from different files to be combined under a single
SessionBroker. The developer can make repeated calls to getSession(XMLLoader,
String sessionBrokerName, Class anyObjectClass), passing in a different
XMLLoader for each file required for the session broker. When all required sessions
are loaded in this manner, a completed SessionBroker is returned.

Example 3–2 Retrieving a named ServerSession

SessionManager.getManager().getSession("employeeSession"); !

Example 3–3 A complex call using XMLLoader

XMLLoader loader = new XMLLoader("Sessions.xml");
SessionManager.getManager().getSession(loader, "SessionName", SessionBeanClass);

Note: If the developer attempts to load a SessionBroker without all
required sessions loaded in to the SessionManager, null is returned.

Using the entity bean model

Working with Enterprise JavaBeans 3-9

Using the entity bean model
Entity beans represent a “business entity.” Entity beans may be shared by many
users and are long-lived, able to survive a server failure. Essentially, entity beans are
persistent data objects – objects with durable state that exist from one moment in
time to the next.

TopLink provides a extensive framework for providing developers with Bean
Managed Persistence enabled beans. Within the enterprise package TopLink
provides a class oracle.toplink.ejb.bmp.BMPEntityBase. This class provides
developers with a starting point when developing beans. The BMPEntityBase class
provides implementation for all EJB spec required methods except
ejbPassivate(). ejbPassivate() is excluded because of special requirements.
By sub classing the BMPEntityBase, developers have a TopLink enabled entity
bean.

To use the BMPEntityBase, developers must create the sessions.xml file as
explained in "Using the Session Manager" on page 3-5. The second requirement is
to add a oracle.toplink.ejb.bmp.BMPWrapperPolicy to each descriptor that
represents an EntityBean. This BMPWrapperPolicy provides TopLink with the
information to create Remote objects for entity beans and to extract the data out of a
Remote object. After this is done, the user must create the home and remote
interfaces, create deployment descriptors, and deploy the beans.

If a more customized approach is required, TopLink provides a hook into its
functionality through the oracle.toplink.ejb.bmp.BMPDataStore class. With
this class it is possible to easily translate EJB required functionality into simple calls.
The BMPDataStore provides implementations of load, store, multiple finders and
remove functionality. When using the BMPDataStore, a sessions.xml file is
required for use with the SessionManager. A single instance of BMPDataStore
should exist for each bean type that is deployed within a session. When creating a
BMPDataStore, pass in the session name of the session that the BMPDataStore
should use to persist the beans and the class of the Bean type being persisted. Store
the BMPDataStore in a global location so that each instance of a Bean type uses the
correct Store.

If using a customized implementation, the full functionality of the ServerSession
and the UnitOfWork is available to developers.

TopLink and container-managed persistent entity beans

3-10 Oracle9iAS TopLink Foundation Library Guide

TopLink and container-managed persistent entity beans
Because entity beans represent persistent data, bean developers must have some
mechanism for making their beans persistent. In most cases this means mapping
beans to a relational database. The EJB specification describes a type of entity bean
-- container-managed persistent entity bean. For this type of bean, the designer does
not have to include calls to any particular persistence mechanism in the bean itself.
The EJB Server and its tools use meta-information in the deployment descriptor to
describe how the bean is to be persisted to a database. This is commonly referred to
as automatic persistence.

Also available from Oracle are:

� TopLink CMP for BEA WebLogic Server, a separate product based upon
TopLink for Java, that provides container-managed persistent entity beans for
the BEA WebLogic Server.

� TopLink CMP for IBM WebSphere Application Server, a separate product based
upon TopLink for Java, that provides container-managed persistent entity beans
for the IBM WebSphere server.

Please contact Oracle for more information concerning our support of EJB and the
use of TopLink for container-managed persistent entity beans.

EJBQL Support 4-1

4
EJBQL Support

Version 2.0 of the EJB specification presents a new query language, called EJBQL.
EJBQL is similar to SQL, but differs in that it presents queries from an object model
perspective, as opposed to a database perspective.

This chapter discusses the following:

� Why use EJBQL?

� EJBQL structure

� Using EJBQL with TopLink

EJBQL is designed to be compiled to the target language of the persistent data store
used by a persistence manager. What differentiates it primarily from SQL is that it
includes path expressions that enable navigation over the relationships defined for
entity beans and dependent objects. The complete EJB specification, including
EJBQL can be found at http://java.sun.com/products/ejb/2.0.html.

Why use EJBQL?
TopLink uses EJBQL to enable users to declare queries using the attributes of each
abstract entity bean in the object model. This offers the following advantages:

� There is no need to know the database structure (tables, fields).

� Relationships can be used in a query, via navigation from attribute to attribute.

� Users can construct queries using the attributes of the entity beans instead of
using database tables and fields.

� Queries are database-independent so they are portable.

� Users can use “SELECT” to specify the query's reference class (entity bean
which you are querying against)

http://java.sun.com/products/ejb/2.0.html

EJBQL structure

4-2 Oracle9iAS TopLink Foundation Library Guide

� EJBQL includes support for an attribute level “SELECT” to pick a specific field
out of a result set, and answer it.

EJBQL structure
An EJBQL query can contain any of the following components:

FROM clause The FROM clause defines the scope of the query. All identification
variables used in the rest of the query are defined in this clause. This clause may
also contain the key words IN and AS. Queries must contain a FROM clause to be
valid.

SELECT clause The SELECT defines the return values of the EJBQL query. Return
values can be either an attribute, or Entity bean or Java object.

WHERE clause The WHERE clause is a conditional expression used to restrict the
results of a query. The WHERE clause is optional.

A note about notation The examples in this section use a modified Backus-Naur Form
(BNF). For more information on BNF, see "About Backus Naur Form" on page D-1.

Basic structure
All EJBQL statements follow the same basic structure:

SELECT selectClause FROM fromClause [WHERE whereExpression]

The FROM clause
The FROM clause defines the scope of the query by declaring identification
variables. The FROM clause designates the domain of the query, which may be
constrained by path expressions. This is a mandatory part of the EJBQL statement,
and must be in the following syntax:

FROM {identification variabledeclaration}+

The {identification variabledeclaration}+ argument resolves to
{AbstractSchemaName entityBeanVariable}, and may be followed by any
number of either of the following:

AbstractSchemaName entityBeanVariable, IN(entityBeanVariablePath) [AS]
oneToManyVariable

EJBQL structure

EJBQL Support 4-3

This syntax requires entityBeanVariablePath to be specified using the following
syntax:

entityBeanVariable[.oneToOneRelationshipAttribute]*.oneToManyRelationshipAttribu
te

The FROM clause defined
There are two components to the FROM clause.

FROM {AbstractSchemaName entityBeanVariable} AbstractSchemaName is the name
specified as an alias for the entity bean using the tag abstract-schema-name in the
ejb-jar.xml file. For example:

<abstract-schema-name>EmployeeBean</abstract-schema-name>
As indicated, there is always at least one {AbstractSchemaName
entityBeanVariable} element, and there may be more. If a FROM clause contains
more than one AbstractSchemaName expression, the expressions must be
separated by commas

[oneToManyVariable IN entityBeanVariablePath] This sub clause associates the
oneToManyVariable with the oneToManyRelationshipAttribute at the end of
the entityBeanVariablePath. This element is optional.

Using the FROM clause: a few examples

A simple example The simplest query consists of only select and from clauses:

SELECT OBJECT(employee) FROM EmployeeBean employee
This query declares employee as a variable representing the EmployeeBean entity
bean, and returns all employees in the database.

Using IN to query reference classes The IN keyword designates that the preceding
identifier will evaluate to a collection. You can include IN in FROM clause queries to
search reference classes:

SELECT OBJECT(employee) FROM EmployeeBean employee, IN(employee.phoneNumbers)
phoneNumber

Note: If a FROM clause contains more than one identification
variabledeclaration, the expressions must be separated by commas.

EJBQL structure

4-4 Oracle9iAS TopLink Foundation Library Guide

In addition to employee, this declares phoneNumber as a variable representing
PhoneNumber. This is because employee.phoneNumbers is a one-to-many
relationship whose reference class is PhoneNumber.

SELECT OBJECT(employee) FROM EmployeeBean employee,
IN(employee.manager.phoneNumbers) phoneNumber
This declares phoneNumber as a variable representing PhoneNumber. In this case,
manager is the owner of the one-to-many relationship. This implies that
phoneNumber will be related to the manager of the employee(s) in the result set, as
opposed to the employees themselves.

Using AND The AND operator enables you to combine logical arguments in your
query. For example, the following query searches employees with the last name,
“Smith”, and the phone number area code, “613”:

SELECT OBJECT(employee) FROM EmployeeBean employee, IN(employee.phoneNumbers)
phoneNumber
WHERE employee.lastName = "Smith" AND
phoneNumber.areaCode = "613"

Using AS The FROM clause can contain an AS used to designate an identifier for the
rest of the query. The following two queries are semantically equivalent.

SELECT OBJECT(employee) FROM EmployeeBean AS employee WHERE employee.id = 12
SELECT OBJECT(employee) FROM EmployeeBean employee WHERE employee.id = 12

The SELECT clause
The SELECT clause defines the types of values to be returned by the query. The
return type must be a container-managed relationship (CMR) or a
container-managed field (CMF) field for the bean associated with the query.

The SELECT clause defines the types of values to be returned by the query. For
TopLink, this defines the reference class and attribute (if specified) returned by the
query. It must conform to the following syntax:

SELECT OBJECT(<entity bean variable.>)
SELECT entityBeanVariable{.attribute}+

Using the SELECT clause: a few examples

A simple example This example returns a collection of EmployeeBeans:

SELECT OBJECT(employee) from EmployeeBean employee

EJBQL structure

EJBQL Support 4-5

Adding attributes Adding an attribute to the end of the entityBeanVariable
enables you select only that attribute from the result set. For example, this query
returns a collection of the areaCodes of the associated PhoneNumbers:

SELECT phoneNumber.areaCode FROM PhoneNumber phoneNumber

Using DISTINCT Adding the DISTINCT keyword to a query specifies that the query
must eliminate duplicate values from the result set.

SELECT DISTINCT OBJECT(employee) FROM EmployeeBean employee

The WHERE clause
The WHERE clause is by far the most complex and powerful of the clauses in
EJBQL. It is used to define the selection criteria of a query, and consists of a
combination of one or more of the following:

� Literals

� Identification variables

� Path expressions

� Input parameters

� Conditional expressions

� Logical

� Boolean and Comparison operators

The Range expressions IN, LIKE and BETWEEN are specified and are modeled on the
equivalent SQL behavior. There are also NULL tests and several Functional
Expressions (ABS, CONCAT, LENGTH, SQRT, SUBSTRING).

The WHERE clause is an optional part of the EJBQL statement, and must be in the
following syntax:

WHERE conditionalExpression
The WHERE syntax requires conditionalExpression to be defined using the
following syntax:

conditionalTerm [OR conditionalTerm]*
The conditionalExpression syntax requires conditionalTerm to be defined
using the following syntax:

conditionalFactor [AND conditionalFactor]*

EJBQL structure

4-6 Oracle9iAS TopLink Foundation Library Guide

Using constants
The WHERE clause supports the use of String, Integers, Floats, … in defining the
selection criteria for the query. Strings are delimited by quotation marks
("<string>").

Comparison Operators
EJBQL supports “=”, “<", “>”, “>=”, “<=”, and “<>” comparison operators for
arithmetic functions. It also supports “=” and “<>” for non-arithmetic comparisons

= The = operator checks to see if the value or string on the left side of the expression
is equal to the value or string on the right. It supports both arithmetic and
non-arithmetic comparisons:

Arithmetic example The employee whose id = 25001

SELECT OBJECT(emp) FROM EmployeeBean emp WHERE emp.id = 25001

Non arithmetic example Any employee whose first name is Bob

SELECT OBJECT(emp) FROM EmployeeBean emp WHERE emp.firstName = "Bob"

< The < operator checks to see if the value on the left side of the expression is less
than the value on the right.

Example All employees whose id is less than 25001

SELECT OBJECT(emp) FROM EmployeeBean emp WHERE emp.id < 25001

> The > operator checks to see if the value on the left side of the expression is
greater than the value on the right.

Example All employees whose id is greater than 25001

SELECT OBJECT(emp) FROM EmployeeBean emp WHERE emp.id > 25001

<= The <= operator checks to see if the value on the left side of the expression is less
than or equal to the value on the right.

EJBQL structure

EJBQL Support 4-7

Example All employees whose id is less than or equal to 25001

SELECT OBJECT(emp) FROM EmployeeBean emp WHERE emp.id <= 25001

>= The >= operator checks to see if the value on the left side of the expression is
greater than or equal to than the value on the right.

Example All employees whose id is greater than or equal to 25001

SELECT OBJECT(emp) FROM EmployeeBean emp WHERE emp.id >= 25001

< > The <> operator checks to see if the value on the left side of the expression is not
equal to than the value on the right.

Arithmetic example All employees whose id does not equal 25001

SELECT OBJECT(emp) FROM EmployeeBean emp WHERE emp.id <> 25001

Non arithmetic example Any employee who does not live in Ottawa

SELECT OBJECT(emp) FROM EmployeeBean emp WHERE emp.address.city <> "Ottawa"

Logical operators
EJBQL supports AND, OR, and NOT as logical operators. The precedence order is
NOT, AND then OR. This can be modified with brackets which take precedence
over all other operators.

AND Use of the AND operator enables you to combine two or more conditions into a
single query.

Example This will return all employees with the first name “Sandra” and the last
name “Smitty”:

SELECT OBJECT(emp) FROM EmployeeBean emp WHERE emp.firstName = "Sandra" AND
emp.lastName = "Smitty"

OR Use of the OR operator enables you to search for records that contain one or more
of the specified values or strings. Use of OR does not imply exclusivity; returned
records will satisfy at least one of the specified conditions, but may satisfy more.

Note: This can also be represented as:
FROM EmployeeBean emp WHERE NOT(emp.id = 25001)

EJBQL structure

4-8 Oracle9iAS TopLink Foundation Library Guide

Example This will return all employees who have an id of 25001 OR 25002

SELECT OBJECT(emp) FROM EmployeeBean emp WHERE emp.id = 25001 OR emp.id = 25002
This can be extended to multiple ORs

FROM EmployeeBean emp WHERE emp.id = 25001 OR emp.id = 25002 OR emp.id = 25003

NOT A NOT can be added to further modify the query result set by specifying
conditions that must not be met by the selected records.

Example The following will return all employees whose first name is not Bob

SELECT OBJECT(emp) FROM EmployeeBean emp WHERE NOT (emp.firstName = "Bob")
The query could also have been written as follows:

SELECT OBJECT(emp) FROM EmployeeBean emp WHERE emp.firstName <> "Bob"

Figure 4–1 Result Set Using “=” and “NOT” or “< >”

Combining operators Operators can be combined to create more complex queries. For
example, the following will return any employees who meet the following criteria:

� They have a first name of John OR

� They have a first name of Bob and a last name of Smith

SELECT OBJECT(emp) FROM EmployeeBean emp WHERE emp.firstName = "John" OR
emp.firstName = "Bob" AND emp.lastName = "Smith"

EJBQL structure

EJBQL Support 4-9

Figure 4–2 Result Set Using “OR”

This query is slightly different because of the brackets. Only employees who have a
last name of Smith with a first name of John or Bob will be returne.d

SELECT OBJECT(emp) FROM EmployeeBean emp WHERE (emp.firstName = "John" OR
emp.firstName = "Bob") AND emp.lastName = "Smith"

Figure 4–3 Result Set using “=” and “OR”

Null Comparison Expressions: Null
The null comparison operator enable you to search for records with no content for a
specified field.

Example All employees whose first name is not included in the database:

SELECT OBJECT(emp) FROM EmployeeBean emp WHERE emp.firstName IS NULL;
Similarly, by adding the NOT logical operator, you can search for all employees
whose first name appears in the database:

SELECT OBJECT(emp) FROM EmployeeBean emp WHERE emp.firstName IS NOT NULL;

Range Expressions
Similar to SQL, EJBQL supports a number of Range expressions. They are LIKE,
BETWEEN and IN. You can also modify these expression with NOT.

LIKE LIKE enables you to use pattern matching to search for records containing a
specific patterns. Support for pattern matching for LIKE is as follows:

_ signifies that a match must be made for a single character. For example, the
expression 12_4 will match 1234 but not 12334.

EJBQL structure

4-10 Oracle9iAS TopLink Foundation Library Guide

% signifies that a match should be made for a range of characters. For example,
the expression 12%4 will match 1234, 1299994 but not 124.

Examples All employees whose first name starts with “Ji”

SELECT OBJECT(emp) FROM EmployeeBean emp WHERE emp.firstName LIKE "Ji%"
Similarly, you can search for All employees whose first name does not start with
“Ji”

SELECT OBJECT(emp) FROM EmployeeBean emp WHERE emp.firstName NOT LIKE "Ji%"

BETWEEN Lets you choose a contiguous range of numeric values. Always includes
the modifier AND.

Examples Any employee aged 26 to 36 inclusive

SELECT OBJECT(emp) FROM EmployeeBean emp WHERE emp.age BETWEEN 26 AND 36
Similarly, you can search for any employee not aged 55 to 65 inclusive

SELECT OBJECT(emp) FROM EmployeeBean emp WHERE emp.age NOT BETWEEN 55 AND 65

IN Lets you specify a group of values used as criteria for the search.

Example You can use IN to search for any employee whose salary is a specific
amount:

SELECT OBJECT(emp) FROM EmployeeBean emp WHERE emp.salary IN (30000, 40000,
50000)
Similarly, you can search for any employee not earning those specific salaries:

SELECT OBJECT(emp) FROM EmployeeBean emp WHERE emp.salary NOT IN (30000, 40000,
50000)

Functional Expressions
EJBQL also supports several functions: CONCAT; SUBSTRING; LENGTH; SQRT; and ABS.

ABS The ABS operator represents the mathematical absolute value of the selected
field.

Note: The EJBQL implementation in TopLink does not support the
LOCATE function because it is not currently supported in the Expression
framework.

EJBQL structure

EJBQL Support 4-11

Example Any employee whose salary's absolute value is 35000

SELECT OBJECT(emp) FROM EmployeeBean emp WHERE ABS(emp.salary) = 35000

CONCAT CONCAT enables you to combine variables together and search using the
result.

Example The full name of any employees whose first name is "John".

SELECT OBJECT(emp) FROM EmployeeBean emp WHERE CONCAT(emp.firstName,
emp.lastName) LIKE "John%"

LENGTH LENGTH enables you to search for data that is a specific number of
characters in length.

Example Any employee whose first name is 5 letters long

SELECT OBJECT(emp) FROM EmployeeBean emp WHERE LENGTH(emp.firstName) = 5

SQRT The SQRT operator represents the mathematical operatoion, square root. It
enables you to search for data the square root of which satisfies some criteria.

Example Any employee whose salary's square root is 200

SELECT OBJECT(emp) FROM EmployeeBean emp WHERE SQRT(emp.salary) = 200

SUBSTRING SUBSTRING enables you to extract a portion of a given string for use in a
WHERE clause. SUBSTRING includes numeric arguments as follows:

� The first number represents the start position in the string.

� The second number represents the number of characters in the string to be
considered.

Example Any employee record for which the first two characters of the
firstName field are “bo”.

SELECT OBJECT(emp) FROM EmployeeBean emp WHERE SUBSTRING(emp.firstName, 0, 2) =
"Bo"

Input Parameters
Input parameters enable you to take advantage of finders written on the home
interface of an EJB in which parameters have been specified. Input parameters can
be linked to the EJBQL using “?” followed by the index (integer) of the required
parameter in the finder method.

Using EJBQL with TopLink

4-12 Oracle9iAS TopLink Foundation Library Guide

A simple example A finder with one parameter:

Finder: employeeHome.findByLastName(lastNameParameter)

EJBQL: SELECT OBJECT(emp) FROM EmployeeBean emp WHERE emp.lastName
= ?1

“?1” is replaced at run-time with the lastNameParameter passed from the client.

A complex example A finder can contain more than one parameter. For example:

Finder: employeeHome.findBy(firstName,lastName)

EJBQL: This finder can accommodate three EJBQL statements:

SELECT OBJECT(emp) FROM EmployeeBean emp WHERE emp.firstName =
?1
SELECT OBJECT(emp) FROM EmployeeBean emp WHERE emp.lastName =
?2
SELECT OBJECT(emp) FROM EmployeeBean emp WHERE emp.firstName =
?1 AND emp.lastName = ?2

Combining Clauses
You can include all three types of clauses in your queries to make them more
effective.

Multiple clauses: a few examples
The following clause returns telephone numbers whose area code are “613”:

SELECT OBJECT(phone) FROM PhoneNumber phone
WHERE phone.areaCode = "613"

The following return telephone numbers whose area code are “613” and whose
employee first name starts with “Bo”.

SELECT OBJECT(phone) FROM PhoneNumber phone
WHERE phone.areaCode = "613" AND phone.owner.firstName LIKE "Bo%"

Using EJBQL with TopLink
EJBQL can be used several different ways in conjunction with TopLink. It may be
specified when mapping an object and its attributes to a table via the Mapping
workbench. It can also be built and used dynamically at run time via a ReadQuery
or the TopLink session.

Using EJBQL with TopLink

EJBQL Support 4-13

For information on using EJBQL queries with the TopLink Mapping Workbench, see
the Oracle9iAS TopLink Mapping Workbench Reference Guide.

ReadAllQuery
The basic API for using a ReadAll query with EJBQL is:

setEJBQLString("...")

A reference class will also be required if no SELECT clause is provided. The query
can then be executed as any other query would be executed.

Example 1 A simple ReadAllQuery using EJBQL
ReadAllQuery theQuery = new ReadAllQuery();
theQuery.setReferenceClass(EmployeeBean.class);
theQuery.setEJBQLString("SELECT OBJECT(emp) FROM EmployeeBean emp");
…
Vector returnedObjects = (Vector)aSession.executeQuery(theQuery);

Example 2 A simple ReadAllQuery using EJBQL and passing arguments
The query is defined as in Example 1 but a vector of arguments is created, filled and
passed into the executeQuery method

// First define the query
ReadAllQuery theQuery = new ReadAllQuery();
theQuery.setReferenceClass(EmployeeBean.class);
theQuery.setEJBQLString("SELECT OBJECT(emp) FROM EmployeeBean emp WHERE
emp.firstName = ?1");
...
// Next define the Arguments
Vector theArguments = new Vector();
theArguments.add("Bob");
...
// Finally execute the query passing in the arguments
Vector returnedObjects = (Vector)aSession.executeQuery(theQuery, theArguments);

Session
EJBQL can be executed directly against the session. This will return a Vector of the
objects specified by the reference class. The basic API is as follows:

aSession.readAllObjects(<ReferenceClass>, <EJBQLCall>)
// <EJBQLCall> is the EJBQL string to be executed and <ReferenceClass> is the
return class type.

Using EJBQL with TopLink

4-14 Oracle9iAS TopLink Foundation Library Guide

// Call ReadAllObjects on a session.
Vector theObjects = (Vector)aSession.readAllObjects(EmployeeBean.class, new
EJBQLCall("SELECT OBJECT (emp) from EmployeeBean emp));

SDK for XML and Non-relational Database Access 5-1

5
SDK for XML and Non-relational Database

Access

A software development kit (SDK) is a programming package that enables a
programmer to develop applications for a specific platform. TopLink provides an
SDK for non-relational database access and eXtensible Markup Language (XML)
support. This chapter discusses the SDK and includes sections on

� Using the TopLink SDK

� Using TopLink XML support

Using the TopLink SDK
The TopLink SDK allows you to extend TopLink to access objects stored on
non-relational data stores. To take advantage of the SDK you need to develop a
number of classes that can be used by TopLink to access your particular data store.
You also need to take advantage of a number of new TopLink Mappings and use
many of the customization hooks provided by TopLink that are not used by a
typical application that accesses objects stored on a relational database.

There are four major steps to taking advantage of the TopLink SDK:

� Build an Accessor that holds a connection to your non-relational data store.

� Build the TopLink Calls that read/write the appropriate data from/to your
non-relational data store. These Calls interact with your data store via the
Accessor and convert the data to/from TopLink DatabaseRows.

� Build the TopLink Descriptors and Mappings that map your object model to the
DatabaseRows used by the Calls.

� Connect to the data store and use TopLink to read and write your objects.

Using the TopLink SDK

5-2 Oracle9iAS TopLink Foundation Library Guide

Accessor
If necessary, TopLink uses your implementation of the interface
oracle.toplink.internal.databaseaccess.Accessor to maintain a
“connection” to your non-relational data store. Development of this Accessor is
optional – its use is determined by how you decide to gain visibility to a given
connection to your data store. For example, instead of using a TopLink Accessor,
you could store the connection in a well-known Singleton and have your Calls use
that Singleton to gain access to your data store.

If you do not define your own Accessor, the TopLink SDK simply creates an
instance of oracle.toplink.sdk.SDKAccessor and uses it during execution. The
SDKAccessor is an implementation of the Accessor interface. It has little or no
implementation behind the protocol required by the Accessor interface.

If you do define your own Accessor, you must implement the Accessor interface.
You can accomplish this by subclassing SDKAccessor and implementing those
methods that are supported by your data store, ignoring the others. This is
particularly useful if you want TopLink to take advantage of any support for
transaction processing offered by your data store.

Data Store Connection
When logging in, a TopLink Session uses your Accessor to establish a connection to
your data store by calling the method connect(DatabaseLogin, Session).

The DatabaseLogin passed in holds a number of settings, including the user id
and password set by your application. See the documentation on DatabaseLogin
for information on other settings. Other, user-defined, properties can be stored in
the DatabaseLogin by your application and used by your Accessor to configure its
connection.

TopLink occasionally queries the status of your Accessor's connection to your data
store by calling the method isConnected(). This method returns true if the
Accessor still has a connection. It is optional whether the Accessor actually “pings”

Note: You should have a thorough understanding of the base TopLink
product and how it interacts with a typical relational database before
attempting to customize TopLink to interact with a non-relational data
store. The SDK takes advantage of many of the advanced features of
TopLink that are not typically used when storing objects in a relational
database.

Using the TopLink SDK

SDK for XML and Non-relational Database Access 5-3

your data store to establish the viability of the connection, as this can cause serious
performance degradation.

If your Accessor's connection has timed out or been temporarily disconnected, your
application can attempt to reconnect by calling the method
reestablishConnection(Session). TopLink does not call this method directly –
it is called by your application whenever it makes sense for the application to
attempt a reconnect.

When logging out, a TopLink Session uses your Accessor to disconnect from your
data store by calling the method disconnect(Session).

Call Execution
During execution of your application, the TopLink Session holds on to your
Accessor and uses it whenever a Call needs to be executed by calling the method
executeCall(Call, DatabaseRow, Session). Typically, the implementation of
this executeCall method simply logs the activity back to the Session, if necessary,
and delegates the actual interaction with the data store to the Call by calling the
method Call.execute(DatabaseRow, Accessor), passing itself in as a
parameter.

Transaction Processing
If any of your Calls need to be executed together, within the context of a transaction,
TopLink indicates to your Accessor that your connection should begin a transaction
by calling the method beginTransaction(Session). If any Exceptions occur
during the execution of the Calls contained within the transaction, TopLink rolls
back the transaction by calling rollbackTransaction(Session). If all the Calls
execute successfully, TopLink commits the transaction by calling
commitTransaction(Session).

Calls
TopLink Calls are the hooks where TopLink calls out to your code for reading and
writing your non-relational data. To write a Call for the TopLink SDK, develop a
class that implements the interface oracle.toplink.sdk.SDKCall (which extends
the interface oracle.toplink.queryframework.Call). This requires you to
implement a number of methods. Alternatively, you can subclass
oracle.toplink.sdk.AbstractSDKCall and, at least initially, simply implement
a single method, execute(DatabaseRow, Accessor). Most of your development
effort will be concentrated on implementing this method.

Using the TopLink SDK

5-4 Oracle9iAS TopLink Foundation Library Guide

The outline about assorted Calls is noticeably lacking in sample code, because the
code for Calls will be specific to your particular data store.

If you would like to see an example implementation of these Calls, review the code
for the XML Calls in the package oracle.toplink.xml. These are also discussed in
the following section, "Using TopLink XML support" on page 5-28.

At a minimum, you must implement the following calls for every persistent Class
that is stored in the non-relational data store:

� Read Object Call

� Read All Call

� Insert Call

� Update Call

� Delete Call

� Does Exist Call

Depending on the capabilities of your data store, you may need to implement any
number of the following custom Calls:

� Named Session Call

� Named Descriptor Call

If you want to use TopLink relationship Mappings (for example,
oracle.toplink.tools.workbench
.OneToOneMapping or oracle.toplink.sdk
.SDKObjectCollectionMapping) you must also implement the appropriate Calls
for reading the reference object(s) for each of the Mappings.

If appropriate, any of the calls can be divided into multiple Calls and combined into
a single query.

Read Object Call
A Read Object Call reads the data required to build a single object for a specified
primary key. The DatabaseRow passed into a Read Object Call is populated with
values for the primary key fields for the object to be read from the data store. The
Call returns a single DatabaseRow for the object specified by the primary key.

Using the TopLink SDK

SDK for XML and Non-relational Database Access 5-5

Read All Call
A Read All Call reads the data required to build a collection of all the objects
(instances) for a particular Class. The DatabaseRow passed into a simple,
Class-level Read All Call is empty. The Call returns a collection of all the
DatabaseRows for the appropriate Class.

Insert Call
An Insert Call takes a DatabaseRow of the data for a newly created object and
inserts it on the appropriate data store. The DatabaseRow passed into an Insert Call
contains values for all the mapped fields for the object to be inserted on the data
store. The Call returns a count of the number of rows inserted, typically one.

Update Call
An Update Call takes a DatabaseRow of the data for a recently modified object and
writes it to the appropriate data store. The DatabaseRow passed into an Update Call
is populated with values for the primary key fields for the object to be updated on
the data store. The Call’s associated ModifyQuery contains another DatabaseRow
that contains values for all the mapped fields for the object to be updated on the
data store. The Call returns a count of the number of rows updated, typically one.

Delete Call
A Delete Call deletes the data from the appropriate data store for a specified
primary key. The DatabaseRow passed into a Delete Call is populated with values
for the primary key fields for the object to be deleted from the data store. The Call
returns a count of the number of rows deleted, typically one.

Does Exist Call
A Does Exist Call simply checks for the existence of data for a specified primary
key. This allows TopLink to determine whether an Insert or Update should be
performed for that primary key. The DatabaseRow passed into a Does Exist Call is
populated with values for the primary key fields for the object to be inserted or
updated on the data store. The Call returns a null if the object does not exist on the
data store and a DatabaseRow if the object does exist.

Custom Call
A custom Call can be written for any other capabilities of your non-relational data
store. Like a normal TopLink Call, a custom Call can be parameterized. Custom
Calls can be stored in named queries in the TopLink DatabaseSession or in any

Using the TopLink SDK

5-6 Oracle9iAS TopLink Foundation Library Guide

TopLink Descriptor. The DatabaseRow passed into a Custom Call is populated with
values for the parameters defined for the query.

The Call returns whatever is appropriate for the containing query.

Database Row
The DatabaseRows that are passed into your Calls and returned by your Calls are
like the normal DatabaseRows used by TopLink for relational database activity
(these are very similar to hash tables, containing simple key/value pairs), with the
additional capability of holding nested DatabaseRows or nested direct values. This
allows TopLink to manipulate non-normalized, hierarchical data.

Nested DatabaseRows and direct values are manipulated via a
oracle.toplink.sdk.SDKFieldValue. Within the TopLink SDK, any field in a
DatabaseRow can have a value that is an instance of SDKFieldValue. An
SDKFieldValue can hold one or more nested DatabaseRows or direct values.
(“Direct values” are objects that do not have TopLink Descriptors and are typically
placed directly into the containing object without any mapping – for example,
Strings, Dates, Numbers.) It can also have a data type name indicating the “type” of
elements held in the nested collection. Whether this data type name is required is
determined by the data store’s requirements for nested data elements.

Nested DatabaseRows, themselves, can also contain nested DatabaseRows, and so
on. There is no limit to the nesting.

Table 5–1 Query types and return values for custom calls

Query Return value

DataModifyQuery Row count

DeleteAllQuery Row count

DeleteObjectQuery Row count

InsertObjectQuery Row count

UpdateObjectQuery Row count

DataReadQuery Vector of DatabaseRows

DirectReadQuery Vector of DatabaseRows

ValueReadQuery Vector of DatabaseRows

ReadAllQuery Vector of DatabaseRows

ReadObjectQuery DatabaseRow

Using the TopLink SDK

SDK for XML and Non-relational Database Access 5-7

FieldTranslator
There may be times when the names of fields expected by your TopLink Descriptors
and DatabaseMappings are different from those generated by your data store, and
vice versa. This is particularly true when dealing with aggregate objects. The
aggregate Descriptor is defined in terms of a single set of field names. But a number
of different AggregateMappings may reference the same aggregate Descriptor, each
expecting a different set of field names for the aggregate data. If this is the case, and
you are subclassing oracle.toplink.sdk.AbstractSDKCall, then you can take
advantage of the SDK FieldTranslator to handle this situation. If you are not
subclassing AbstractSDKCall, you can still take advantage of the SDK
FieldTranslators by building them into your own Calls. Alternatively, you can create
your own mechanism for translating field names between TopLink and your data
store on a per-Call basis.

The interface oracle.toplink.sdk.FieldTranslator defines a simple read and
write protocol for translating the field names in a DatabaseRow. The default
implementation of this interface, appropriately named
oracle.toplink.sdk.DefaultFieldTranslator, performs no translations at all.

Another implementation, oracle.toplink.sdk.SimpleFieldTranslator,
provides a mechanism for translating the field names in a DatabaseRow, either
before the row is written to the data store or after the row is read from the data
store. SimpleFieldTranslator also allows for wrapping another FieldTranslator and
having the read and write translations processed by the wrapped FieldTranslator
also.
A SimpleFieldTranslator also translates the field names of any nested
DatabaseRows contained in SDKFieldValues.

Building a SimpleFieldTranslator is straightforward.

/* Add translations for the first and last name field names. F_NAME on the data
store will be converted to FIRST_NAME for TopLink, and vice versa. Likewise for
L_NAME and LAST_NAME.
*/
AbstractSDKCall call = new EmployeeCall();
SimpleFieldTranslator translator = new SimpleFieldTranslator();
translator.addReadTranslation("F_NAME", "FIRST_NAME");
translator.addReadTranslation("L_NAME", "LAST_NAME");
call.setFieldTranslator(translator);
AbstractSDKCall has some convenience methods that allow you to perform the
same operation, without building your own translator.

AbstractSDKCall call = new EmployeeCall();
call.addReadTranslation("F_NAME", "FIRST_NAME");

Using the TopLink SDK

5-8 Oracle9iAS TopLink Foundation Library Guide

call.addReadTranslation("L_NAME", "LAST_NAME");

If your Calls are all subclasses of AbstractSDKCall, you can take advantage of the
convenience methods in SDKDescriptor that sets the same field translations for all
the Calls in the DescriptorQueryManager.

descriptor.addReadTranslation("F_NAME", "FIRST_NAME");
descriptor.addReadTranslation("L_NAME", "LAST_NAME");

SDKDataStoreException
If your Call should encounter a problem while accessing your non-relational data
store, it should throw a oracle.toplink.sdk.SDKDataStoreException (or a
subclass of your own creation). This Exception has state for holding an error code, a
Session, an internal Exception, a DatabaseQuery, and an Accessor. An Exception
handler can use this state to recover from the thrown Exception or to provide useful
information to the user or developer concerning the cause of the Exception.

Descriptors and Mappings
Once you have developed your Calls, you can use them to define the Descriptors
and Mappings that TopLink will use to read and write your objects. Instead of using
the normal TopLink Descriptors, you will need to use a subclass of Descriptor,
oracle.toplink.sdk.SDKDescriptor, that provides support for the new
mappings supplied by the SDK. Along with the new Mappings that allow
non-normalized data to be accessed, most of the typical TopLink Mappings are
supported by the SDK.

SDKDescriptor
The TopLink SDK supports most of the properties of the standard Descriptor:

� Basic Properties

� DescriptorQueryManager

� Sequence Numbers

� Inheritance

For more information on other supported and unsupported properties, see "Other
supported properties" on page 5-10 and "Unsupported properties" on page 5-10.

Basic Properties The code needed to build a basic SDKDescriptor is nearly identical
to that used to build a normal Descriptor.

Using the TopLink SDK

SDK for XML and Non-relational Database Access 5-9

SDKDescriptor descriptor = new SDKDescriptor();
descriptor.setJavaClass(Employee.class);
descriptor.setTableName("employee");
descriptor.setPrimaryKeyFieldName("id");

The Java class is required. The table name is usually required. Whether you use
and/or allow multiple table names will be determined by how the data is stored on
your data store and translated by your Calls. It is probably easiest to map the
Descriptor to a single table and use your Calls to merge together the data that might
be spread across multiple tables into a single table (this would be somewhat
analogous to a relational “view”). The primary key field name is also required – it is
used by TopLink to maintain object identity.

DescriptorQueryManager The major difference between building an SDKDescriptor
and building a standard Descriptor is that you need to define all the custom Queries
for the Descriptor's QueryManager. Typically, to do this, you would build a TopLink
DatabaseQuery and put it in the Descriptor's QueryManager.

ReadObjectQuery query = new ReadObjectQuery();
query.setCall(new EmployeeReadCall());
descriptor.getQueryManager().setReadObjectQuery
(query);

But SDKDescriptor has a number of convenience methods that simplify setting all
these Calls.

descriptor.setReadObjectCall(new EmployeeReadCall());
descriptor.setReadAllCall(new EmployeeReadAllCall());

descriptor.setInsertCall(new EmployeeInsertCall());
descriptor.setUpdateCall(new EmployeeUpdateCall());
descriptor.setDeleteCall(new EmployeeDeleteCall());

descriptor.setDoesExistCall(new EmployeeDoesExistCall());

These Calls are instances of the Calls described in the section "Calls" on page 5-3. In
addition to the standard CRUD (Create-Read-Update-Delete) operations
represented by these Calls, you can also add custom Calls to an SDKDescriptor that
allow your application to query your data store using selection criteria that can be
set dynamically.

descriptor.addReadAllCall("readByLastName", new EmployeesByLastNameCall(),
"lastName");
descriptor.addReadObjectCall("readByID", new EmployeeByIDCall(), "employeeID");

Using the TopLink SDK

5-10 Oracle9iAS TopLink Foundation Library Guide

Custom Calls can be invoked by your application at run time with a parameter
value that will be passed into the Call via a DatabaseRow. The Call is expected to
communicate with your data store and return a DatabaseRow with the appropriate
data to build an instance of the appropriate object (in this example, an Employee),
as defined by the Mappings in the Descriptor.

Sequence Numbers If your data store provides support for sequence numbers, you
can configure your Descriptor to use sequence numbers.

descriptor.setSequenceNumberName("employee");
descriptor.setSequenceNumberFieldName("id");

To take advantage of sequence numbers you will also need to define a number of
custom queries to be used by TopLink for querying and updating the sequence
numbers. Custom queries are maintained by the TopLink DatabasePlatform. See the
TopLink JavaDocs for more information.

Inheritance The SDKDescriptor supports TopLink inheritance settings.

largeProjectDescriptor.setParentClass(Project.class);

Whether you configure subclass Descriptors to use tables in addition to the table(s)
defined in the superclass Descriptor is determined by how your data store can store
the data. Initially, you should try to define a single table in the root class Descriptor
and not define any additional tables in the subclass Descriptors. Then your Calls can
build up DatabaseRows for a single table, simply leaving out the fields that are not
required for the particular subclass Descriptor.

Other supported properties The SDKDescriptor supports most other Descriptor
properties without any special consideration, namely:

� Interfaces

� Copy Policy

� Instantiation Policy

� Wrapper Policy

� Identity Maps

� Descriptor Events

Unsupported properties There are a few Descriptor properties that are currently
unsupported by the TopLink SDK:

Using the TopLink SDK

SDK for XML and Non-relational Database Access 5-11

� Query Keys

� Optimistic Locking

Standard mappings
The TopLink SDK provides support for many of the DatabaseMappings in the base
TopLink class library. In addition to the standard Mappings, the SDK provides four
new Mappings that provide support for non-normalized, hierarchical data. For
more information, see "SDK Mappings" on page 5-15.

Direct Mappings The TopLink SDK supports all the base TopLink direct mappings:

� "Direct-to-field mappings" on page 7-2

� "Type conversion mappings" on page 7-3

� "Object type mappings" on page 7-4

� "Serialized object mappings" on page 7-6

� "Transformation mappings" on page 7-7

The only Mapping that warrants special consideration is the
SerializedObjectMapping. Any Read Calls that support Descriptors that have a
SerializedObjectMapping must return the data for the SerializedObjectMapping as
either a byte array (byte[]) or as a hexadecimal string representation of a byte
array. Likewise, TopLink will pass the data for the SerializedObjectMapping to any
Write Call as a byte array (byte[]).

Relationship Mappings The TopLink SDK provides support for a number of the base
TopLink relationship mappings. Any functionality offered by unsupported
Mappings can be found in alternative Mappings.

Private relationships The TopLink SDK provides full support for private
relationships. Whenever an object is written to the database, its private objects are
also written to the database. Likewise, whenever an object is removed from the
database, its private objects are also removed.

Your Calls do not need to be aware of private relationships. TopLink will invoke the
appropriate Calls to write and delete the private objects when necessary. TopLink
determines the appropriate Call for a particular private object by getting it from the
object's DescriptorQueryManager.

Indirection The TopLink SDK provides full support for TopLink indirection, in all
its various forms (basic, indirect container, and proxy). Indirection can be used to

Using the TopLink SDK

5-12 Oracle9iAS TopLink Foundation Library Guide

improve the performance of TopLink relationship mappings by delaying the
reading of reference objects until they are actually needed by the original object or
any of its client objects.

Your Calls do not need to be aware of indirection. TopLink will invoke the
appropriate Call to read in reference objects when they are needed by the
application. TopLink determines the appropriate Call for a particular (indirect)
relationship by getting the custom selection query from the relationship's Mapping.

Container Policy The TopLink SDK also supports TopLink container policies. A
container policy allows you to specify which concrete class TopLink should use for
storing query results; whether for a DatabaseQuery or for a CollectionMapping.

Calls do not need to be aware of the container policy. For ease of development, and
to support JDK 1.1.x, your Calls simply use a java.util.Vector to handle any
collection of DatabaseRows. TopLink converts any Vector of DatabaseRows into the
appropriate Collection (or Map) of business objects and vice versa. TopLink
determines the appropriate concrete container class by getting the container policy
from the appropriate DatabaseQuery or DatabaseMapping.

AggregateObjectMapping Due to limitations of the AggregateObjectMapping, the
TopLink SDK does not support this Mapping. Nearly equivalent behavior is
provided with "SDKAggregateObjectMapping" on page 5-15.

OneToOneMapping The OneToOneMapping is fully supported by the TopLink
SDK. You will need to provide the Mapping with a custom selection query.

ReadObjectQuery query = new ReadObjectQuery();
query.setCall(new ReadAddressForEmployeeCall());
mapping.setCustomSelectionQuery(query);

The Read Call used for the custom selection query will need to be aware of whether
the mapping uses a source foreign key or a target foreign key. It will also need to
know which field(s) holds the primary and/or foreign key value(s). As a result, it
may be useful to construct the Call with the Mapping as parameter (since the
Mapping contains this information).

query.setCall(new ReadAddressForEmployeeCall(mapping));

VariableOneToOneMapping The VariableOneToOneMapping is fully supported by
the TopLink SDK. As with the OneToOneMapping, you must provide the Mapping
with a custom selection query.

Using the TopLink SDK

SDK for XML and Non-relational Database Access 5-13

DirectCollectionMapping The DirectCollectionMapping is fully supported by the
TopLink SDK. You should use a DirectCollectionMapping if your data store requires
you to perform an additional query to fetch the direct values related to a given
object.

If the direct values are included, in an hierarchical fashion, within the DatabaseRow
for a given object, you should use "SDKDirectCollectionMapping" on page 5-18.

Provide the DirectCollectionMapping with several custom queries. Because the
objects contained in a direct collection do not have a Descriptor, you need to
provide the mapping with the queries that TopLink uses to insert and delete the
reference objects.

The mappings are required in addition to the custom selection query.

DirectReadQuery readQuery = new DirectReadQuery();
readQuery.setCall(new ReadResponsibilitiesForEmployeeCall());
mapping.setCustomSelectionQuery(readQuery);

DataModifyQuery insertQuery = new DataModifyQuery();
insertQuery.setCall(new InsertResponsibilityForEmployeeCall());
mapping.setCustomInsertQuery(insertQuery);

DataModifyQuery deleteAllQuery = new DataModifyQuery();
deleteAllQuery.setCall(new DeleteResponsibilitiesForEmployeeCall());
mapping.setCustomDeleteAllQuery(deleteAllQuery);

The Mapping does not need a custom update query because, if any of the reference
objects change, all of them are simply deleted and re-inserted.

The Read and Delete Calls used for the this Mapping will need to be aware of which
field(s) holds the primary key value(s). As a result, it may be useful to construct
these Calls with the Mapping as parameter (since the Mapping contains this
information).

readQuery.setCall(new ReadResponsibilitiesForEmployeeCall(mapping));
deleteAllQuery.setCall(new DeleteResponsibilitiesForEmployeeCall(mapping));

OneToManyMapping The OneToManyMapping is fully supported by the TopLink
SDK. You should use a OneToManyMapping if, like a typical relational model, the
reference objects have foreign keys to the source object (target foreign keys). But if
the foreign keys are “forward-pointing” (source foreign keys) and are included, in
an hierarchical fashion, within the DatabaseRow for a given object, you should use
"SDKAggregateObjectMapping" on page 5-15.

Using the TopLink SDK

5-14 Oracle9iAS TopLink Foundation Library Guide

You will need to provide the Mapping with a custom selection query.

ReadAllQuery readQuery = new ReadAllQuery();
readQuery.setCall(new ReadManagedEmployeesForEmployeeCall());
mapping.setCustomSelectionQuery(readQuery);

Optionally, you can provide the Mapping with a custom delete-all query. If this
query is present, TopLink will use it as a performance optimization to delete all the
components in the relationship with a single query instead of deleting them
one-by-one, when appropriate (for example, when the relationship is private to the
containing object).

DeleteAllQuery deleteAllQuery = new DeleteAllQuery();
deleteAllQuery.setCall(new DeleteManagedEmployeesForEmployeeCall());
mapping.setCustomDeleteAllQuery(deleteAllQuery);

The Read and Delete Calls used for the this Mapping must be aware of which
field(s) holds the primary key value(s). As a result, it may be useful to construct
these Calls with the Mapping as parameter (since the Mapping contains this
information).

readQuery.setCall(new ReadManagedEmployeesForEmployeeCall(mapping));
deleteAllQuery.setCall(new DeleteManagedEmployeesForEmployeeCall(mapping));

AggregateCollectionMapping The AggregateCollectionMapping is fully
supported by the TopLink SDK. The AggregateCollectionMapping is very similar to
the OneToManyMapping; but it does not require a “back reference” Mapping from
each of the target objects to the source object.

As with the OneToManyMapping, you need to provide the Mapping with a custom
selection query and, optionally, a delete-all query.

ManyToManyMapping Because the ManyToManyMapping is very closely tied to
the relational implementation of many-to-many relationships, it is not supported by
the TopLink SDK. A many-to-many relationship can be mapped with the TopLink
SDK by using various combinations of the other collection Mappings
(OneToManyMapping, SDKObjectCollectionMapping, etc.).

StructureMapping Because the StructureMapping is tied to the object-relational
data model, it is not supported by the TopLink SDK. Nearly identical behavior is
provided with "SDKAggregateObjectMapping" on page 5-15.

Using the TopLink SDK

SDK for XML and Non-relational Database Access 5-15

ReferenceMapping Because the ReferenceMapping is tied to the object-relational
data model, it is not supported by the TopLink SDK. Nearly identical behavior can
be found in the OneToOneMapping.

ArrayMapping Because the ArrayMapping is tied to the object-relational data
model, it is not supported by the TopLink SDK. Nearly identical behavior is
provided with "SDKDirectCollectionMapping" on page 5-18.

ObjectArrayMapping Because the ObjectArrayMapping is tied to the
object-relational data model, it is not supported by the TopLink SDK. Nearly
identical behavior is provided with "SDKDirectCollectionMapping" on page 5-18.

NestedTableMapping Because the NestedTableMapping is tied to the
object-relational data model, it is not supported by the TopLink SDK. Nearly
identical behavior is provided with "SDKObjectCollectionMapping" on page 5-23.

SDK Mappings
The TopLink SDK provides four new Mappings that provide support for
non-normalized, hierarchical data:

� SDKAggregateObjectMapping

� SDKDirectCollectionMapping

� SDKAggregateCollectionMapping

� SDKObjectCollectionMapping

SDKAggregateObjectMapping The SDKAggregateObjectMapping is similar in most
ways to the standard AggregateObjectMapping. But there are several differences:

� All the fields used by the reference (aggregate) Descriptor to build the
aggregate object are contained in a single, nested DatabaseRow, not in the base
DatabaseRow. The base DatabaseRow has a single field mapped to the
aggregate object attribute that contains an SDKFieldValue. This SDKFieldValue
holds the nested DatabaseRow, and this nested DatabaseRow contains all the
fields needed by the reference Descriptor to build an instance of the aggregate
object.

� There is no need for field name translations. If necessary, the appropriate Call
can translate the field names, when it is converting data from the data store's
native format to a TopLink DatabaseRow (and vice versa), as described in
"FieldTranslator" on page 5-7.

Using the TopLink SDK

5-16 Oracle9iAS TopLink Foundation Library Guide

� There is no need for the isNullAllowed flag. Since the all the fields used to
build the aggregate object are contained in a single field in the base
DatabaseRow, there is no need to indicate whether multiple null field values
should result in a null object placed in the attribute or a new instance of the
aggregate object with all attributes set to null. If the attribute is null, the field
value in the base DatabaseRow will be null. If the attribute contains an instance
of the aggregate object with all null attributes, the field value in the base
DatabaseRow will be an SDKFieldValue with a single, nested DatabaseRow
whose field values will all be null.

The code for building an SDKAggregateObjectMapping is similar to that for the
AggregateObjectMapping. You need to specify an attribute name, a reference class,
and a field name.

SDKAggregateObjectMapping mapping = new SDKAggregateObjectMapping();
mapping.setAttributeName("period");
mapping.setReferenceClass(EmploymentPeriod.class);
mapping.setFieldName("period");
descriptor.addMapping(mapping);

Because the data used to build the aggregate object is already nested within the base
DatabaseRow (in other words, a separate query is not required to fetch the data for
the aggregate object), the SDKAggregateObjectMapping does not require any
custom queries. But any Read Call that builds the base DatabaseRow to be returned
to TopLink must build the DatabaseRow properly. Likewise, any Write Calls must
know what to expect in the DatabaseRows passed in by TopLink. Table 5–2
demonstrates an example of the values that would be contained in a typical
DatabaseRow with data for an aggregate object.

Table 5–2 Field names and mappings for SDKAggregateObjectMapping

Field Name Field Value

employee.id 1

employee.firstName "Grace"

employee.lastName "Hopper"

Using the TopLink SDK

SDK for XML and Non-relational Database Access 5-17

In the example, an SDKAggregateObjectMapping maps the attribute period to the
field employee.period and specifies the reference class as EmploymentPeriod.
The value in the field employee.period is an SDKFieldValue with a single, nested
DatabaseRow. This nested row will be used by the EmploymentPeriod Descriptor to
build the aggregate object. The names of the fields in the nested DatabaseRow must
match those expected by the EmploymentPeriod Descriptor.

The code in your Read Calls that builds the DatabaseRow to be returned to TopLink
is straightforward.

DatabaseRow row = new DatabaseRow();
row.put("employee.id", new Integer(1));
row.put("employee.firstName", "Grace");
row.put("employee.lastName", "Hopper");

DatabaseRow nestedRow = new DatabaseRow();
nestedRow.put("employmentPeriod.startDate", "1943-01-01");
nestedRow.put("employmentPeriod.endDate", "1992-01-01");
Vector elements = new Vector();
elements.addElement(nestedRow);

SDKFieldValue value = SDKFieldValue.forDatabaseRows(elements,
"employmentPeriod");
row.put("employee.period", value);

The code in your Write Calls that deconstructs the DatabaseRow generated by
TopLink is also straightforward.

Integer id = (Integer) row.get("employee.id");
String firstName = (String) row.get("employee.firstName");
String lastName = (String) row.get("employee.lastName");

employee.period SDKFieldValue

 elements=[
DatabaseRow(employmentPeriod.startDate="1
943-01-01"
employmentPeriod.endDate="1992-01-01"
)

]
elementDataTypeName="employmentPeriod"
 isDirectCollection=false

Table 5–2 Field names and mappings for SDKAggregateObjectMapping (Cont.)

Field Name Field Value

Using the TopLink SDK

5-18 Oracle9iAS TopLink Foundation Library Guide

SDKFieldValue value = (SDKFieldValue) row.get("employee.period");
DatabaseRow nestedRow = (DatabaseRow) value.getElements().firstElement();
String startDate = (String) nestedRow.get("employmentPeriod.startDate");
String endDate = (String) nestedRow.get("employmentPeriod.endDate");

SDKDirectCollectionMapping The SDKDirectCollectionMapping is similar to the
standard DirectCollectionMapping in that it represents a collection of objects that
are not TopLink-enabled (the objects are not associated with any TopLink
Descriptors; for example, Strings). But an SDKDirectCollectionMapping is different
from the standard DirectCollectionMapping in that the data representing the
collection of objects is nested within the base DatabaseRow – a separate query to the
data store is not required to gather up the data, the way it is for a standard
DirectCollectionMapping.

The code for building an SDKDirectCollectionMapping is straightforward. You
need to specify the attribute and the field names. Optionally, you specify the
element data type name. Whether the element audiotape name is required is
determined by your data store. If your data store needs something to indicate the
“type” of each element in the direct collection, then this setting can be used.
Alternatively, this information can be determined by your Call.

SDKDirectCollectionMapping mapping = new SDKDirectCollectionMapping();
mapping.setAttributeName("responsibilitiesList");
mapping.setFieldName("responsibilities");
mapping.setElementDataTypeName("responsibility");
//optional
descriptor.addMapping(mapping);

The SDKDirectCollectionMapping also has a container policy that allows you to
specify the concrete implementation of the Collection interface that holds the direct
collection.

mapping.useCollectionClass(Stack.class);

The SDKDirectCollectionMapping also allows you to specify the Class of objects to
be placed in the direct collection or the DatabaseRow. If possible, TopLink will
convert the objects contained by the direct collection before setting the attribute in
the object or before passing the collection to your Call.

// Strings stored on the data store will be converted to Classes and vice versa
mapping.setAttributeElementClass(Class.class);
mapping.setFieldElementClass(String.class);

Using the TopLink SDK

SDK for XML and Non-relational Database Access 5-19

Because the data used to build the direct collection is already nested within the base
DatabaseRow (in other words, a separate query is not required to fetch the data for
the direct collection), the SDKDirectCollectionMapping does not require any custom
queries. But any Read Call that builds the base DatabaseRow to be returned to
TopLink must build the DatabaseRow properly. Likewise, any Write Calls must
know what to expect in the DatabaseRows passed in by TopLink.

Table 5–3 demonstrates examples of the values that would be contained in a typical
DatabaseRow with data for a direct collection.

In the example, an SDKDirectCollectionMapping maps the attribute
responsibilitiesList to the field employee.responsibilities. The value in
the field employee.responsibilities is an SDKFieldValue that contains a
collection of Strings that make up the direct collection.

The code in your Read Calls that builds the DatabaseRow to be returned to TopLink
is straightforward.

DatabaseRow row = new DatabaseRow();
row.put("employee.id", new Integer(1));
row.put("employee.firstName", "Grace");
row.put("employee.lastName", "Hopper");

Vector responsibilities = new Vector();
responsibilities.addElement("find bugs");
responsibilities.addElement("develop compilers");
SDKFieldValue value = SDKFieldValue.forDirectValues(responsibilities,
"responsibility");

Table 5–3 Field names and values for SDKAggregateObjectMapping

Field Name Field Value

employee.id 1

employee.firstName "Grace"

employee.lastName "Hopper"

employee. responsibilities SDKFieldValue
 elements=[
 "find bugs"
 "develop compilers"
]
 elementDataTypeName="responsibility"
 isDirectCollection=true

Using the TopLink SDK

5-20 Oracle9iAS TopLink Foundation Library Guide

row.put("employee.responsibilities", value);

The code in your Write Calls that deconstructs the DatabaseRow generated by
TopLink is also straightforward.

Integer id = (Integer) row.get("employee.id");
String firstName = (String) row.get("employee.firstName");
String lastName = (String) row.get("employee.lastName");

SDKFieldValue value = (SDKFieldValue) row.get("employee.responsibilities");
Vector responsibilities = value.getElements();

SDKAggregateCollectionMapping The SDKAggregateCollectionMapping is more akin
to the SDKAggregateObjectMapping than the standard
AggregateCollectionMapping. The SDKAggregateCollectionMapping is
used for an attribute that is a collection of aggregate objects that are all constructed
from data contained in the base DatabaseRow. (The standard
AggregateCollectionMapping is more like a OneToManyMapping for a private
relationship.)

All the data used by the reference (aggregate) Descriptor to build the aggregate
collection is contained in a collection of nested DatabaseRows, not in the base
DatabaseRow. The base DatabaseRow has a single field mapped to the aggregate
collection attribute that contains an SDKFieldValue. This SDKFieldValue holds the
nested DatabaseRows, and these nested DatabaseRows each contain all the fields
needed by the reference Descriptor to build a single element in the aggregate
collection.

The code for building an SDKAggregateCollectionMapping is similar to that for the
SDKAggregateObjectMapping. You need to specify an attribute name, a reference
class, and a field name.

SDKAggregateCollectionMapping mapping = new SDKAggregateCollectionMapping();
mapping.setAttributeName("phoneNumbers");
mapping.setReferenceClass(PhoneNumber.class);
mapping.setFieldName("phoneNumbers");
descriptor.addMapping(mapping);

The SDKAggregateCollectionMapping also has a container policy that allows you
to specify the concrete implementation of the Collection interface that holds the
direct collection.

mapping.useCollectionClass(Stack.class);

Using the TopLink SDK

SDK for XML and Non-relational Database Access 5-21

Because the data used to build the aggregate collection is already nested within the
base DatabaseRow (in other words, a separate query is not required to fetch the
data for the aggregate collection), the SDKAggregateCollectionMapping does not
require any custom queries. But any Read Call that builds the base DatabaseRow to
be returned to TopLink must build the DatabaseRow properly. Likewise, any Write
Calls must know what to expect in the DatabaseRows passed in by TopLink.

Table 5–4 demonstrates examples of the values that would be contained in a typical
DatabaseRow with data for an aggregate collection.

In the example, an SDKAggregateCollectionMapping maps the attribute
phoneNumbers to the field employee.phoneNumbers and specifies the reference
class as PhoneNumber. The value in the field employee.phoneNumbers is an
SDKFieldValue with a collection of nested DatabaseRows. These nested rows are
used by the PhoneNumber Descriptor to build the elements of the aggregate
collection. The names of the fields in the nested DatabaseRows must match those
expected by the PhoneNumber Descriptor.

Table 5–4 Field names and values for SDKAggregateCollectionMapping

Field Name Field Value

employee.id 1

employee.firstName “Grace”

employee.lastName “Hopper”

employee. phoneNumbers SDKFieldValue
elements=[
DatabaseRow(
phone.areaCode="888"
phone.number="555-1212"
phone.type="work"
)
DatabaseRow(
phone.areaCode="800"
phone.number="555-1212"
phone.type="home"
)
]
elementDataTypeName="phone"
isDirectCollection=false

Using the TopLink SDK

5-22 Oracle9iAS TopLink Foundation Library Guide

The code in your Read Calls that builds the DatabaseRow to be returned to TopLink
is straightforward.

DatabaseRow row = new DatabaseRow();
row.put("employee.id", new Integer(1));

row.put("employee.firstName", "Grace");
row.put("employee.lastName", "Hopper");

Vector elements = new Vector();

DatabaseRow nestedRow = new DatabaseRow();
nestedRow.put("phone.areaCode", "888");
nestedRow.put("phone.number", "555-1212");
nestedRow.put("phone.type", "work");
elements.addElement(nestedRow);

nestedRow = new DatabaseRow();
nestedRow.put("phone.areaCode", "800");
nestedRow.put("phone.number", "555-1212");
nestedRow.put("phone.type", "work");
elements.addElement(nestedRow);

SDKFieldValue value = SDKFieldValue.forDatabaseRows(elements, "phone");
row.put("employee.phoneNumbers", value);

The code in your Write Calls that deconstructs the DatabaseRow generated by
TopLink is also straightforward.

Integer id = (Integer) row.get("employee.id");
String firstName = (String) row.get("employee.firstName");
String lastName = (String) row.get("employee.lastName");

SDKFieldValue value = (SDKFieldValue) row.get("employee.phoneNumbers");
Enumeration enum = value.getElements().elements();
while (enum.hasMoreElements()) {DatabaseRow nestedRow = (DatabaseRow)
enum.nextElement();
String areaCode = (String) nestedRow.get("phone.areaCode");
String number = (String) nestedRow.get("phone.number");
String type = (String) nestedRow.get("phone.type");
// do stuff with the values
}

Using the TopLink SDK

SDK for XML and Non-relational Database Access 5-23

SDKObjectCollectionMapping The SDKObjectCollectionMapping is similar to the
standard OneToManyMapping, with one important difference. While the standard
OneToManyMapping is used to map a collection of target objects that are stored on
the database with foreign keys pointing back to the source object's primary key, the
SDKObjectCollectionMapping is used to map a collection of target objects that are
constructed from a collection of foreign keys contained in the base DatabaseRow
that reference the target objects' primary keys. In other words, the foreign keys in a
OneToManyMapping are “back-pointing”; the foreign keys in an
SDKObjectCollectionMapping are “forward-pointing”.

All the foreign keys used by the mapping to reference the target objects are
contained in a collection of nested DatabaseRows, not in the base DatabaseRow. The
base DatabaseRow has a single field mapped to the object collection attribute that
contains an SDKFieldValue. This SDKFieldValue holds the nested DatabaseRows,
and these nested DatabaseRows each contain all the fields needed to build a foreign
key to an element object's primary key.

The code for building an SDKObjectCollectionMapping is similar to that for the
OnetoManyMapping. You need to specify an attribute name, a reference class, a
field name, and the source foreign key/target key relationships. Optionally, you
specify the reference data type name. Whether the reference data type name is
required is determined by your data store. If your data store needs something to
indicate the “type” of each reference in the collection of foreign keys, then this
setting can be used. Alternatively, this information can be determined by your Call.
Because a separate query is required to read in the reference objects contained in the
collection, you must build a custom selection query.

SDKObjectCollectionMapping mapping = new SDKObjectCollectionMapping();
mapping.setAttributeName("projects");
mapping.setReferenceClass(Project.class);
mapping.setFieldName("projects");
mapping.setSourceForeignKeyFieldName("projectId");
mapping.setReferenceDataTypeName("project"); // optional
mapping.setSelectionCall(new ReadProjectsForEmployeeCall());
descriptor.addMapping(mapping);

The SDKObjectCollectionMapping also has a container policy that allows you to
specify the concrete implementation of the Collection interface that holds the
collection of objects.

mapping.useCollectionClass(Stack.class);

Using the TopLink SDK

5-24 Oracle9iAS TopLink Foundation Library Guide

Any Read Call that builds the base DatabaseRow to be returned to TopLink must
build the DatabaseRow properly. Likewise, any Write Calls must know what to
expect in the DatabaseRows passed in by TopLink. Table 5–5 demonstrates an
example of the values that would be contained in a typical DatabaseRow with data
for a collection of foreign keys.

In the example, an SDKObjectCollectionMapping maps the attribute projects to
the field employee.projects and specifies the reference class as Project. The
value in the field employee.projects is an SDKFieldValue with a collection of
nested DatabaseRows.

Nested rows contain foreign keys that will be used by the Mapping's custom
selection query to read in the elements of the object collection. The names of the
fields in the nested DatabaseRows must match those expected by the custom
selection query's Call.

The code in your Read Calls that builds the DatabaseRow to be returned to TopLink
is straightforward.

DatabaseRow row = new DatabaseRow();
ow.put("employee.id", new Integer(1));
row.put("employee.firstName", "Grace");
row.put("employee.lastName", "Hopper");

Vector elements = new Vector();

Table 5–5 Field names and values for SDKObjectCollectionMapping

Field Name Field Value

employee.id 1

employee.firstName “Grace”

employee.lastName “Hopper”

employee.projects SDKFieldValue
 elements=[
 DatabaseRow(
 project.projectId=42
)
 DatabaseRow(
 project.projectId=17
)
]
 elementDataTypeName="project"
 isDirectCollection=false

Using the TopLink SDK

SDK for XML and Non-relational Database Access 5-25

DatabaseRow nestedRow = new DatabaseRow();
nestedRow.put("project.projectId", new Integer(42));
elements.addElement(nestedRow);

nestedRow = new DatabaseRow();
nestedRow.put("project.projectId", new Integer(17));
elements.addElement(nestedRow);

SDKFieldValue value = SDKFieldValue.forDatabaseRows(elements, "project");
row.put("employee.projects", value);
The code in your Write Calls that deconstructs the DatabaseRow generated by
TopLink is also straightforward.
Integer id = (Integer) row.get("employee.id");
String firstName = (String) row.get("employee.firstName");
String lastName = (String) row.get("employee.lastName");

SDKFieldValue value = (SDKFieldValue row.get("employee.projects");
Enumeration enum = value.getElements().elements();
while (enum.hasMoreElements(DatabaseRow nestedRow = (DatabaseRow)
enum.nextElement();
Object projectId = nestedRow.get("project.projectId");
// do stuff with the foreign key
}

Sessions
After you have developed your Accessor and your Calls and have mapped your
object model to your data store, you can configure and log in to a DatabaseSession
and read and write your objects. There are several steps to configuring and logging
in to a DatabaseSession for the TopLink SDK:

� If necessary, build an instance of your custom Platform.

� Build an instance of SDKLogin, with this Platform if necessary.

� Build up a TopLink Project with this Login, populating it with your Descriptors.

� Acquire a Session from this TopLink Project and log in.

SDKPlatform
If you are using sequence numbers and you would like TopLink to manage them for
you, you may need to create your own subclass of
oracle.toplink.sdk.SDKPlatform. If you are not using sequences numbers, you
can simply use the default behavior in SDKPlatform and ignore this section.

Using the TopLink SDK

5-26 Oracle9iAS TopLink Foundation Library Guide

TopLink uses the Platform classes to isolate the database platform-specific
implementations of two major activities:

� SQL generation

� Sequence number generation

Since the TopLink SDK is generally unconcerned with SQL generation, probably the
only reason you might want to develop your own Platform is if your data store
provided a mechanism for generating sequence numbers. If this is the case, you will
need to create your subclass and override the appropriate methods for building the
Calls that will read and update sequence numbers.

The sequence number Read Call should be built and returned by the method
buildSelectSequenceCall(). This Call will be invoked by TopLink when
TopLink needs to read the value of a specific sequence number. The DatabaseRow
passed into the Call will contain one field: the field name will be the
sequenceNameFieldName (as set in the SDKLogin); the field value will be the name
of the sequence number whose current value should be returned by the Call.

The sequence number Update Call should be built and returned by the method
buildUpdateSequenceCall(). This Call will be invoked by TopLink when
TopLink needs to update the value of a specific sequence number. The
DatabaseRow passed into the Call will contain two fields:

� The first field name will be the sequenceNameFieldName (as set in the
SDKLogin); the field value will be the name of the sequence number whose
value should be updated by the Call.

� The second field name will be the sequenceCounterFieldName (again, as set
in the SDKLogin); the field value will be the new value of the sequence number
identified by the first field.

SDKLogin
Once you have established whether you need a custom Platform, you can construct
and configure your SDKLogin with it.

SDKLogin login = new SDKLogin(new EmployeePlatform());

If you do not need a custom Platform, you can simply use the default constructor
for SDKLogin.

SDKLogin login = new SDKLogin();
If you are using a custom Accessor to maintain a connection to your data store, you
will need to configure the Login to use it. This will allow TopLink to construct a

Using the TopLink SDK

SDK for XML and Non-relational Database Access 5-27

new instance of your Accessor whenever a connection to the data store is required.
If you are not using a custom Accessor, you do not need to set this property, and the
Login will be configured to use the SDKAccessor class by default.

login.setAccessorClass(EmployeeAccessor.class);
After these settings are configured, you can configure the values of the more
standard Login properties.

login.setUserName("user");
login.setPassword("password");

login.setSequenceTableName("sequence");
login.setSequenceNameFieldName("name");
login.setSequenceCounterFieldName("count");

You can also store other, non-TopLink-related properties, in the Login. These
properties can be used by your custom Accessor when it connects to the data store.

login.setProperty("foo", aFoo);
Foo anotherFoo = (Foo) login.getProperty("foo");

TopLink Project
After you have configured your Login, you can build your TopLink Project. You
create an instance of oracle.toplink.sessions.Project, passing it your Login.
Then you add your Descriptors to the Project.

Project project = new Project(login);
project.addDescriptor(buildEmployeeDescriptor());
project.addDescriptor(buildAddressDescriptor());
project.addDescriptor(buildProjectDescriptor());
// etc.

Session
Finally, after you have your TopLink Project built, you can obtain a DatabaseSession
(or ServerSession) and log in.

DatabaseSession session = project.createDatabaseSession();
session.login();

Now you can use the Session to query for objects, acquire a UnitOfWork, modify
objects, and so on.

Vector employees = session.readAllObjects(Employee.class);
Employee employee = (Employee) employees.firstElement();
UnitOfWork uow = session.acquireUnitOfWork();

Using TopLink XML support

5-28 Oracle9iAS TopLink Foundation Library Guide

Employee employeeClone = uow.registerObject(employee);
employeeClone.setSalary(employeeClone.getSalary() + 50);
uow.commit();

When you are finished with the Session, you can log out.

session.logout();

Unsupported features
Currently, there are three major Session features that are unsupported by the
TopLink SDK:

� Expressions. Although TopLink Expressions are not supported, there is no limit
to the flexibility of your custom Read Calls. The selection criteria for these Calls
are only limited by the capabilities of your data store. The selection criteria can
be parameterized by adding arguments to the Read Queries.

� Pessimistic Locking

� Cursored Streams and Scrollable Cursors

Using TopLink XML support
TopLink enables you to read and write objects from and to XML files. In fact,
TopLink itself reflectively uses this capability to store the Descriptors, Mappings,
and other objects that make up a TopLink Project. This capability to perform
Object-XML (O-X) Mapping allows your applications to deal exclusively with
objects instead of having to deal with the intricacies of XML parsing and
deconstruction. This can be particularly helpful for applications that deal with
exchanging data with other applications (for example, legacy applications or
business partner applications).

Getting Started
There are not many differences between configuring your application to use
standard TopLink and configuring it to use the XML extension in its default
configuration.

Configure your Login using an XMLFileLogin.
XMLFileLogin login = new XMLFileLogin();
login.setBaseDirectoryName("C:\Employee Database");

// set up the sequences

Using TopLink XML support

SDK for XML and Non-relational Database Access 5-29

login.setSequenceRootElementName("sequence");
login.setSequenceNameElementName("name");
login.setSequenceCounterElementName("count");

// create the directories if they don't already exist
login.createDirectoriesAsNeeded();

Build your Project.
Project project = new Project(login);
project.addDescriptor(buildEmployeeDescriptor());
project.addDescriptor(buildAddressDescriptor());
project.addDescriptor(buildProjectDescriptor());
// etc.

Build your Descriptors using XMLDescriptors.
XMLDescriptor descriptor = new XMLDescriptor();
escriptor.setJavaClass(Employee.class);
descriptor.setRootElementName("employee");
descriptor.setPrimaryKeyElementName("id");
descriptor.setSequenceNumberName("employee");
descriptor.setSequenceNumberElementName("id");
// etc.

Build your Mappings
Limit yourself, at least initially, to using the standard Direct Mappings and the
following relationship Mappings:

� OneToOneMapping

� VariableOneToOneMapping

� SDKAggregateObjectMapping

� SDKDirectCollectionMapping

� SDKAggregateCollectionMapping

� SDKObjectCollectionMapping

For the XML extension, OneToOneMappings and SDKObjectCollectionMappings
require custom selection queries:

// 1:1 mapping
OneToOneMapping addressMapping = new OneToOneMapping();
addressMapping.setAttributeName("address");

Using TopLink XML support

5-30 Oracle9iAS TopLink Foundation Library Guide

addressMapping.setReferenceClass(Address.class);
addressMapping.privateOwnedRelationship();
addressMapping.setForeignKeyFieldName("addressId");
// build the custom selection query
ReadObjectQuery addressQuery = new ReadObjectQuery();
addressQuery.setCall(new XMLReadCall(addressMapping));
addressMapping.setCustomSelectionQuery(addressQuery);
descriptor.addMapping(addressMapping);
// 1:n mapping

SDKObjectCollectionMapping projectsMapping = new SDKObjectCollectionMapping();
projectsMapping.setAttributeName("projects");
projectsMapping.setReferenceClass(Project.class);
projectsMapping.setFieldName("projects");
projectsMapping.setSourceForeignKeyFieldName("projectId");
projectsMapping.setReferenceDataTypeName("project");
// use convenience method to build the custom selection query
projectsMapping.setSelectionCall(new XMLReadAllCall(projectsMapping));
descriptor.addMapping(projectsMapping);

Build your DatabaseSession and log in.
DatabaseSession session = project.createDatabaseSession();session.login();

Build your sequences, if necessary.
(new XMLSchemaManager(session)).createSequences();

Use the Session
You can now use the session to query for objects, acquire a UnitOfWork, modify
objects, and so on.

Vector employees = session.readAllObjects(Employee.class);
Employee employee = (Employee) employees.firstElement();
UnitOfWork uow = session.acquireUnitOfWork();
Employee employeeClone = uow.registerObject(employee);
employeeClone.setSalary(employeeClone.getSalary() + 50);
uow.commit();

When you are finished with the Session, you can log out.

session.logout();

Using TopLink XML support

SDK for XML and Non-relational Database Access 5-31

Customizations
There are two main areas of the XML extension that can be customized in a
straightforward fashion:

� If you want to change where and/or how the XML documents are stored, you
will need to develop your own implementation of the XMLAccessor interface.

� If you want to change how XML documents are translated into DatabaseRows,
and vice versa, you will need to develop you own implementation of the
XMLTranslator interface.

Implementation details
The classes that implement the support for O-X mapping are in the package
oracle.toplink.xml. These classes actually make up a simple example of how to
use the TopLink SDK as described in the previous section. In addition to
implementing the various SDK interfaces, the XML package defines its own set of
interfaces that you can implement to slightly alter how your objects are mapped to
XML documents without re-implementing the entire SDK suite of interfaces and
subclasses.

The XML extension has its own set of implementations of the various SDK
interfaces and subclasses:

� XMLFileAccessor

� XMLCall

� XMLDescriptor

� XMLPlatform

� XMLFileLogin

� XMLSchemaManager

The XML extension also defines it own set of interfaces that allow you to plug in
your own implementation classes to easily alter the way your objects are mapped to
XML documents:

� XMLAccessor

� XMLTranslator

� XML Zip File Extension

Using TopLink XML support

5-32 Oracle9iAS TopLink Foundation Library Guide

XMLFileAccessor
The XMLFileAccessor is a subclass of the SDKAccessor that defines how XML
documents are stored in a native file system. As a subclass of SDKAccessor, the
XMLFileAccessor is not required to implement any of the Accessor protocol; and, in
fact, it only implements the method connect(DatabaseLogin, Session). The
XMLFileAccessor uses the standard SDK method of Call execution, and does not
support transaction processing, which is a limitation typical of native file systems.

XMLAccessor implementation
In addition to the Accessor interface, the XMLFileAccessor implements the
XMLAccessor interface. The XMLAccessor interface defines the protocol necessary
for fetching Streams of data for reading and writing XML documents. The
XMLFileAccessor implements this protocol by wrapping Files in Streams that can
be used by the XMLCalls to read or write XML documents.

The XMLAccessor methods defined for fetching a Stream (either a
java.io.Reader or java.ioWriter) typically requires three parameters:

� A root element name

� A DatabaseRow

� A Vector of DatabaseFields (the ordered primary key element names)

The XMLFileAccessor takes the values of these three parameters and resolves them
to a File that will be wrapped with a Stream (either a java.io.FileReader or a
java.io.FileWriter) to be returned to the XMLCall for processing. The File name
is calculated in the following fashion:

� The base directory is determined by the configuration of the XMLFileLogin. The
base directory, as handled by TopLink, is analogous to a relational database that
contains a collection of related tables. If the base directory name is not specified,
the current working directory is used (for example, C:\EmployeeDB).

� The subdirectory will have the same name as the XML root element name. The
root element name, as handled by TopLink, is analogous to the table name in
the relational model. In other words, all the XML documents in the same
directory will have the same root element name (for example,
C:\EmployeeDB\employee).

� The file name root is determined by the Vector of DatabaseFields and the
DatabaseRow. The filename, as handled by TopLink, is analogous to a row
within a table in the relational model. The Vector indicates which fields in the
DatabaseRow make up the primary key. The values in these fields in the

Using TopLink XML support

SDK for XML and Non-relational Database Access 5-33

DatabaseRow (which should all be Strings at this point) are concatenated
together in the same order as they are listed in the Vector. This composite String
forms the root of the file name (for example,
C:\EmployeeDB\employee\1234).

� The file name extension is determined by the configuration of the
XMLFileLogin. This extension is optional and arbitrary - in some cases it simply
allows the native file system to associate other applications with the files if
necessary. If the file name extension is not specified, the default is “.xml” (for
example, C:\EmployeeDB\employee\1234.xml).

Directory creation
The XMLFileAccessor has one other setting that is configured via the
XMLFileLogin: createsDirectoriesAsNeeded. If this property is set to true, the
Accessor will lazily create directories as they are required, including the base
directory. If this property is set to false, which is the default, the Accessor throw an
XMLDataStoreException if it encounters a request for an XML document that
resolves to a file in a directory that does not exist.

XMLCall
XMLCall and its subclasses are the layer between the Call interface used by TopLink
DatabaseQueries and the XML document accessing protocol provided by an
XMLAccessor. The XMLFileAccessor implements the XMLAccessor protocol and is
used by the XMLCalls; while the XMLCalls implement the Call interface and are
used by the standard TopLink DatabaseQueries. The DatabaseQueries are used by
your client application and your Descriptors to read and write objects.

All the XMLCalls have two properties in common:

� XMLStreamPolicy

� XMLTranslator

XMLStreamPolicy
The XMLStreamPolicy is yet another interface that defines a protocol for fetching
Streams of data for reading and writing XML documents. The default
implementation used by the XMLCalls is XMLAccessorStreamPolicy. This
implementation simply delegates every request for a Stream to the XMLAccessor.
This policy allows the default behavior to be overridden on a per-Call basis. For
example, in certain situations, you might want to specify a specific File that holds
an XML document instead of relying on the XMLFileAccessor to resolve which File

Using TopLink XML support

5-34 Oracle9iAS TopLink Foundation Library Guide

to use. (In fact, this behavior is already provided by XMLFileStreamPolicy and
supported by the methods XMLCall.setFile(File) and
XMLCall.setFileName(String).)

XMLTranslator
The XMLTranslator is the object used by the XMLCalls to translate an XML
document into a TopLink DatabaseRow and vice versa. This is another pluggable
interface that allows you to modify the behavior of the XMLCalls. The XMLCalls'
default implementation of XMLTranslator is DefaultXMLTranslator.

XMLTranslator implementations
There are a number of subclasses of XMLCall that provide concrete
implementations of Call (and SDKCall). The main difference among these classes is
their respective implementations of the method Call.execute(DatabaseRow,
Accessor).

Six of these subclasses are used for manipulating objects:

� XMLReadCall

� XMLReadAllCall

� XMLInsertCall

� XMLUpdateCall

� XMLDeleteCall

� XMLDoesExistCall

Four subclasses are used to manipulate un-mapped DatabaseRows (for example,
raw data):

� XMLDataReadCall

� XMLDataInsertCall

� XMLDataUpdateCall

� XMLDataDeleteCall

Object-Level Calls With a few exceptions, the following object-level Calls all require
an association with a DatabaseQuery to operate successfully. This happens
automatically when you build a DatabaseQuery and configure it to use a custom
call, which is required when using the TopLink SDK and/or the TopLink XML

Using TopLink XML support

SDK for XML and Non-relational Database Access 5-35

extension. The Read Calls that are associated with a relationship Mapping do not
require an associated DatabaseQuery.

XMLReadCall Given an object-level DatabaseQuery or a OneToOneMapping, an
XMLReadCall gets the appropriate XML document and converts it to a
DatabaseRow to be mapped to the appropriate object. If the XMLReadCall has a
reference to a OneToOneMapping, it will extract the foreign key for the Mapping's
relationship from the DatabaseRow passed in to the method
execute(DatabaseRow, Accessor). If no Mapping is present, the XMLReadCall
extracts the primary key for the Query's associated Descriptor from the
DatabaseRow. This key is then used to find the appropriate XML document.

XMLReadAllCall Given an object-level DatabaseQuery or an
SDKObjectCollectionMapping, an XMLReadAllCall gets the appropriate XML
documents and converts them to a Vector of DatabaseRows to be mapped to the
appropriate objects. If the XMLReadAllCall has a reference to an
SDKObjectCollectionMapping, it extracts the foreign keys for the Mapping's
relationship from the DatabaseRow passed in to the method
execute(DatabaseRow, Accessor). The foreign keys are then used to find the
appropriate XML documents. If no Mapping is present, the XMLReadAllCall
determines the root element name for the Query's associated Descriptor and returns
all the DatasebaseRows for that root element name (a true read all).

XMLInsertCall An XMLInsertCall takes the DatabaseRow passed in to the method
execute(DatabaseRow, Accessor) and uses the primary key in it to find the
appropriate XML document Stream. It then takes the “modify row” from the
associated ModifyQuery, converts it to an XML document, and writes it out.

If the XML document already exists, an XMLDataStoreException is thrown.

XMLUpdateCall Like an XMLInsertCall, an XMLUpdateCall takes the
DatabaseRow passed in to the method execute(DatabaseRow, Accessor) and
uses the primary key in it to find the appropriate XML document Stream. It then
takes the “modify row” from the associated ModifyQuery, converts it to an XML
document, and writes it out.

If the XML document does not already exist, an XMLDataStoreException is thrown.

XMLDeleteCall An XMLDeleteCall takes the DatabaseRow passed in to the
method execute (DatabaseRow, Accessor) and uses the primary key in it to
find the appropriate XML document Stream. It then deletes this Stream.

Using TopLink XML support

5-36 Oracle9iAS TopLink Foundation Library Guide

If the XML document already existed, the Call returns a row count of one; if not, the
Call returns a row count of zero.

XMLDoesExistCall An XMLDoesExistCall takes the DatabaseRow passed in to the
method execute(DatabaseRow, Accessor) and uses the primary key in it to find
the appropriate XML document Stream. If the document exists, it is converted to a
DatabaseRow that can be used to verify the object's existence; otherwise a null is
returned.

Data Calls Because XMLDataCalls are not associated with a DatabaseQuery, like the
"Object-Level Calls" on page 5-34, a bit more up-front configuration is required.
Every XMLDataCall requires a root element name and a set of ordered primary key
element names. At run time, these settings are passed to the XMLStreamPolicy (and,
usually, on to the XMLFileAccessor), along with the appropriate DatabaseRow, to
determine the appropriate XML document Stream.

XMLDataReadCall call = new XMLDataReadCall();
call.setRootElementName("employee");
call.setPrimaryKeyElementName("id");

XMLDataReadCall An XMLDataReadCall takes the DatabaseRow passed in to the
method execute (DatabaseRow, Accessor) and uses the primary key in it to
find the appropriate XML document Stream and convert it to a DatabaseRow. To
provide a consistent result object, this single DatabaseRow is returned inside a
Vector.

If the XMLDataReadCall does not have any primary key element names set, it
performs a simple read-all for all the XML documents with the specified root
element name. These are converted and returned as a Vector of DatabaseRows.

XMLDataReadCalls can be further configured to specify which fields in the
resulting DatabaseRow(s) should be returned and what their types should be.

XMLDataReadCall call = new XMLDataReadCall();
call.setRootElementName("employee");
call.setPrimaryKeyElementName("id");
call.setResultElementName("salary");
call.setResultElementType(java.math.BigDecimal.class);

XMLDataInsertCall An XMLDataInsertCall takes the DatabaseRow passed in to
the method execute(DatabaseRow, Accessor) and uses the primary key in it to
find the appropriate XML document Stream. It then takes that same row, converts it
to an XML document, and writes it out.

Using TopLink XML support

SDK for XML and Non-relational Database Access 5-37

If the XML document already exists, an XMLDataStoreException is thrown.

XMLDataUpdateCall An XMLDataUpdateCall takes the DatabaseRow passed in to
the method execute(DatabaseRow, Accessor) and uses the primary key in it to
find the appropriate XML document Stream. It then takes that same row, converts it
to an XML document, and writes it out.

If the XML document does not already exist, an XMLDataStoreException is thrown.

XMLDataDeleteCall An XMLDataDeleteCall takes the DatabaseRow passed in to
the method execute(DatabaseRow, Accessor) and uses the primary key in it to
find the appropriate XML document Stream. It then deletes this Stream.

If the XML document already existed, the Call returns a row count of one; if not, the
Call returns a row count of zero.

XMLDescriptor
XMLDescriptor is a subclass of SDKDescriptor that adds two bits of helpful
behavior:

� It automatically initializes its QueryManager with a set of default
DatabaseQueries that are already configured to use the appropriate XMLCalls.
If you are using TopLink's default support for XML documents, no further
modification of these Calls is required.

� It adds methods that are named more in accordance with XML concepts than
relational ones. The method setRootElementName(String) replaces the
method setTableName(String); setPrimaryKeyElementName(String)
replaces setPrimaryKeyFieldName(String); and so on.

XMLPlatform
XMLPlatform is a subclass of SDKPlatform that implements the methods required
to support sequence numbers: buildSelectSequenceCall() and
buildUpdateSequenceCall(). These methods build and return the XMLDataCalls
that allow TopLink to use sequence numbers that are maintained in XML
documents.

The root element name for these XML documents and the names of the elements
used to hold the sequence name and sequence counter can be set by your
application via the XMLFileLogin.

Using TopLink XML support

5-38 Oracle9iAS TopLink Foundation Library Guide

XMLFileLogin
XMLFileLogin is a subclass of SDKLogin that allows for the configuration of the
XMLFileAccessor and XMLPlatform. The XMLFileLogin is used to configure the
following settings:

� The base directory name for the XML files. This is the directory under which the
root element name sub-directories are located. For more information on file
name resolution, see "XMLFileAccessor" on page 5-32. The default is the
current working directory.

login.setBaseDirectoryName("C:\Employee Database");
� The file name extension for the XML files. The default is ".xml".

login.setFileExtension(".xml");
� Whether directories for the XML files should be created as needed. The default

is false.

login.setCreatesDirectoriesAsNeeded(true);
� Sequence number settings.

login.setSequenceRootElementName("sequence");
login.setSequenceNameElementName("name");
login.setSequenceCounterElementName("count");

XMLSchemaManager
XMLSchemaManager is a subclass of SDKSchemaManager that provides support
for building the XML-based sequences required by your TopLink DatabaseSession.
After you have built your TopLink Project and used it to create a DatabaseSession,
you can log in and create the required sequences with the XMLSchemaManager.

DatabaseSession session = project.createDatabaseSession();
session.login();
SchemaManager manager = new XMLSchemaManager(session);
manager.createSequences();

XMLAccessor
XMLAccessor is an interface that extends the
oracle.toplink.internal.databaseaccess.Accessor interface and, by
default, is used by the XMLCalls to access the appropriate Stream for a given XML
document.

You can provide your own implementation of this interface if you want TopLink to
read and write your XML documents from and to something other than the native

Using TopLink XML support

SDK for XML and Non-relational Database Access 5-39

file system. If for example, your XML documents are accessed via a messaging
service such the Java Messaging Service (JMS), you could develop an
implementation of XMLAccessor that would translate the method calls into the
appropriate invocations of the messaging service, whether it be reading, writing, or
deleting an XML document. Once you have developed your custom Accessor, you
could configure an XMLLogin to use it.

XMLLogin login = new XMLLogin();
login.setAccessorClass(XMLJMSAccessor.class);
login.setUserName("user");
login.setPassword("password");
// etc.

XMLTranslator
XMLTranslator is an interface that is used by the XMLCalls to convert XML
documents to TopLink DatabaseRows and vice versa. Each XMLCall has its own
XMLTranslator. By default, this is an instance of DefaultXMLTranslator. This can be
overridden by your own custom implementation of XMLTranslator. The protocol
defined by XMLTranslator is very simple:

� The method read(java.io.Reader) takes a Reader that streams over an XML
document, converts that document into a DatabaseRow, and returns that
DatabaseRow.

� The method write(java.io.Writer, DatabaseRow) takes a DatabaseRow
and converts it into an XML document and writes that document out on the
Writer.

DefaultXMLTranslator
The default XMLTranslator used by the XMLCalls, DefaultXMLTranslator, performs
a fairly straightforward set of translations to convert a DatabaseRow into an XML
document and vice versa. Here is a summary of the translations, expressed in terms
of converting a DatabaseRow into an XML document (the reverse set of translations
are just the opposite):

� All the fields in the DatabaseRow must have the same table name; otherwise, an
XMLDataStoreException is thrown. This table name is used for the root element
name of the XML document.

<?xml version="1.0"?>
<employee>
<!-- field values will go here -->
</employee>

Using TopLink XML support

5-40 Oracle9iAS TopLink Foundation Library Guide

� Each field in the DatabaseRow becomes an XML element. The field name
becomes the element name, while the field value becomes the element content.

<?xml version="1.0"?>
<employee>

<id>1</id>
<firstName>Grace</firstName>
<lastName>Hopper</lastName>

</employee>
� Any field in the DatabaseRow with a value of null becomes an empty XML

element with an attribute named null whose value is "true".

<managedEmployees null="true"/>
� If the value of a field in the DatabaseRow is an SDKFieldValue, the elements of

the SDKFieldValue are converted into nested XML elements. If the elements of
the SDKFieldValue are also DatabaseRows, these are translated recursively,
using the same set of translations.

SDKAggregateObjectMapping
<?xml version="1.0"?>
<employee>

<id>1</id>
<firstName>Grace</firstName>
<lastName>Hopper</lastName>
<period>

<employmentPeriod>
<startDate>1943-01-01</startDate>
<endDate>1992-01-01</endDate>

</employmentPeriod>
</period>

</employee>

SDKDirectCollectionMapping
<?xml version="1.0"?>
<employee>

<id>1</id>
<firstName>Grace</firstName>
<lastName>Hopper</lastName>
<responsibilities>

<responsibility>find bugs</responsibility>
<responsibility>develop compilers</responsibility>

</responsibilities>
</employee>

Using TopLink XML support

SDK for XML and Non-relational Database Access 5-41

SDKObjectCollectionMapping

<?xml version="1.0"?>
<employee>

<id>1</id>
<firstName>Grace</firstName>
<lastName>Hopper</lastName>
<phoneNumbers>

<phone>
<areaCode>888</areaCode>
<number>555-1212</number>
<type>work</type>

</phone>
<phone>

<areaCode>800</areaCode>
<number>555-1212</number>
<type>home</type>

</phone>
</phoneNumbers>

</employee>

The DefaultXMLTranslator delegates the actual translating to two other classes:

� DatabaseRowToXMLTranslator

� XMLToDatabaseRowTranslator

DatabaseRowToXMLTranslator The DatabaseRowToXMLTranslator performs the
translations previously mentioned, building and XML document from a
DatabaseRow and writing it onto a Stream.

XMLToDatabaseRowTranslator The XMLToDatabaseRowTranslator performs the
reverse of the translations previously described, reading the XML document from a
Stream and building a DatabaseRow. To accomplish this conversion, the
XMLToDatabaseRowTranslator uses the Xerces XML parser to parse the XML
document.

Using TopLink XML support

5-42 Oracle9iAS TopLink Foundation Library Guide

DatabaseLogin.setXMLParserJARFileNames(new String[] {"xerces.jar",
"toplinksdkxerces.jar"});

XML Zip File Extension
The XML Zip file extension is an enhancement to the XML implementation of the
SDK. This extension adds the flexibility of maintaining the XML data store in a
group of archive files rather than in the directory/file structure of the standard XML
data store. The format is very similar to the standard XML data store however, the
directories, which essentially represent tables, are now replaced with archive files.
The contents of the archive files are the XML documents.

Using the Zip file extension
Using the XML Zip file extension is straightforward. In most situations it only
requires the addition of one line of code.

Configure XMLLogin Typically, you need only configure your XMLLogin to use a
different Accessor.

XMLLogin login = new XMLLogin();
login.setAccessorClass(XMLZipFileAccessor.class);

Note: The XMLToDatabaseRowTranslator is in a separate package from
the other XML classes (oracle.toplink.xml.xerces) so that it can be
loaded dynamically if necessary. If your application, or any third-party
class library used by your application, uses an XML parser, you may
need to configure TopLink to use a custom class loader.

This custom class loader allows TopLink to use the specific version of
Xerces shipped with TopLink, without interfering with any other parser
your application may be using.

To activate this custom class loader, configure TopLink to use the classes
in the JAR files shipped with TopLink instead of the classes found by the
system class loader. Call a static method defined in DatabaseLogin and
pass in the names of the two JAR files shipped with TopLink that contain
the Xerces parser and the TopLink classes that use the Xerces parser.

Using TopLink XML support

SDK for XML and Non-relational Database Access 5-43

Configure direct file access with Zip File extension
There is one other difference that you may encounter if you are configuring
XMLCalls to access files directly. To access an XML document within an archive file,
the call needs to know both the archive file location and the name of the XML
document entry within the archive. Therefore, the setFileName() message sent to
an XMLCall needs to include both the archive file and the XML document entry
name.

XMLReadCall call = new XMLReadCall();
call.setFileName("C:/Employee DataStore/employee.zip", "1.xml");

Implementation details
Only two classes make up the Zip file extension, these classes are in the package
oracle.toplink.xml.zip.

� XMLZipFileAccessor

� XMLZipFileStreamPolicy

XMLZipFileAccessor The XMLZipFileAccessor extends the XMLFileAccessor. It
essentially performs the same function as its standard XML package counterpart
with the exception of using the XMLZipFileStreamPolicy rather than the
XMLFileStreamPolicy used in the XMLFileAccessor. There is no added functionality
– it simply subclasses XMLFileAccessor to provide substitutability in the
XMLLogin.

XMLZipFileStreamPolicy This class is the most significant change from the
standard XML package. It handles the XML archive files. It returns streams for
reading and writing from individual archive entries. It does not provide any
additional functionality over its standard XML package counterpart, the
XMLFileStreamPolicy. It transparently provides the same functionality, whilst
handling the added complication of getting read/write streams from within an
archive file.

Using TopLink XML support

5-44 Oracle9iAS TopLink Foundation Library Guide

Performance Optimization 6-1

6
Performance Optimization

Designing for peak efficiency ensures that your TopLink application is fast, smooth,
and accurate. This chapter discusses how to optimize TopLink-enabled applications.
It discusses

� Basic performance optimization

� TopLink writing optimization features

� Schema optimization

Basic performance optimization
Performance consideration should be factored into every part of the development
cycle. This means that you should be aware of performance issues in your design
and implementation. This does not mean, however, that you should try to optimize
performance in the first iteration. Optimizations that complicate the design or
implementation should be left until the final iteration of your application. However,
you should plan for these performance optimizations from your first iteration to
make it easier to integrate them later.

The single most important aspect of performance optimization is knowing what to
optimize. To improve the performance of your application, you must fully
understand exactly what areas of your application have performance problems. You
must also fully understand the causes of performance problems.

TopLink provides a diverse set of features to optimize performance. Most of these
features can be turned on or off in the descriptors and/or database session and
result in a global system performance improvement, without any changes to
application code.

When optimizing the performance of your application, you should first check to see
if a TopLink feature can solve the optimization problem. If no such feature is

TopLink reading optimization features

6-2 Oracle9iAS TopLink Foundation Library Guide

present then you should consider more complex optimizations, such as those
provided in the later sections of this chapter.

TopLink reading optimization features
Certain read and write operations can be optimized through TopLink. The
following two key concepts are used to optimize reading:

� changing how much data is read from the database

� changing the way the data is queried from the database

Table 6–1 lists the read optimization features provided with TopLink.

Table 6–1 Read optimization features

Feature Effect on performance

Unit of Work Tracks object changes within the unit of work. Only register objects
that will change to minimize the amount of tracking required.

Object indirection “Value holders” are used to stand in for real domain objects to avoid
reading them until they are accessed.

The usage of value holders is strongly recommended as they provide
a major performance benefit.

Weak identity map Client-side caching of objects read from database. The client-side
cache holds only objects referenced by the application. Avoids
database calls by reading objects from cache. Efficient use of memory.

The benefit of caching with the weak identity map may not be as
great as the soft cache weak identity map, but it uses less memory.

Soft cache weak
identity map

Client-side caching of objects read from database. The client-side
cache holds only objects referenced by the application and releases
objects not referenced by the application when memory becomes low.
Avoids database calls by reading objects from cache. Efficient use of
memory.

Gives the benefit of caching, but does not cause memory problems.

Full identity map Client side caching of objects read from the database. This permits
database calls to be avoided if the object has already been read in.

Caution: Ensure that the cache size does not grow too large, as this
may cause severe performance problems.

Cache identity map Client side cache that will always use only a fixed amount of
memory.

Gives the benefit of caching, but does not cause memory problems.

TopLink reading optimization features

Performance Optimization 6-3

Reading Case 1: Displaying names in a list - optimized through partial object reading
and report query

An application often asks the user to choose a particular element from a list. The list
displays only a subset of the information contained in the objects, and therefore it is
wasteful to query all of the information for all of the objects from the database. It is
possible to query only the information required to display in the list, and then,
when the user chooses one, read only that object from the database.

TopLink has two features, partial object reading and report query, that allow the
performance of these types of operations to be optimized.

Partial object reading
Partial object reading is a query designed to extract only the required information
from a selected record in a database, rather than all of the information the record
contains.

When using partial object reading, the object is not fully populated, so it cannot be
cached. Consequently, the object cannot be edited. Because the primary key is
required to re-query the object (so it can be edited for example), and because
TopLink does not automatically include the primary key information in a partially
populated object, the primary key must be explicitly specified as a partial attribute.

No identity map Cache lookup can be avoided completely for objects that do not need
to be cached.

Batch reading and
joining

Both of these features can be used to dramatically reduce the number
of database accesses that are required to perform a read query.
Reduces database access by batching many queries into a single
query that reads more data.

Partial object
reading

Allows reading of a subset of a result set of the object's attributes.
Reduces the amount of data that needs to be read from the database
to improve performance.

Report query Similar to partial object reading, but returns only the data instead of
the objects. Gives the same performance benefit as partial object
reading.

The report query also supports complex reporting functions such as
aggregation functions and “group by”. Complex results can be
computed on the database instead of reading the objects into the
application and computing the result in memory.

Table 6–1 Read optimization features (Cont.)

Feature Effect on performance

TopLink reading optimization features

6-4 Oracle9iAS TopLink Foundation Library Guide

Example 6–1 No optimization

/* Read all the employees from the database, ask the user to choose one and
return it. This must read in all the information for all of the employees.*/
List list;

// Fetch data from database and add to list box.
Vector employees = (Vector) session.readAllObjects(Employee.class);
list.addAll(employees);

// Display list box.
....

// Get selected employee from list.
Employee selectedEmployee = (Employee) list.getSelectedItem();

return selectedEmployee;

Example 6–2 Optimization through partial object reading

/* Read all the employees from the database, ask the user to choose one and
return it. This uses partial object reading to read just the last name of the
employees. Note that TopLink does not automatically include the primary key of
the object. If this is needed to select the object for a query, it must be
specified as a partial attribute so that it can be included. In this way, the
object can easily be read for editing. */
List list;
// Fetch data from database and add to list box.
ReadAllQuery query = new ReadAllQuery(Employee.class);
query.addPartialAttribute("lastName");
// add this if the primary key is required for re-querying the object
query.addPartialAttribute("id");
/* TopLink does not automatically include the primary key of the object. If this
is needed to select the object for a query, it must be specified as a partial
attribute so that it can be included.*/
query.addPartialAttribute("id");
query.dontMaintainCache();
Vector employees = (Vector) session.executeQuery(query);
list.addAll(employees);

// Display list box.
....
// Get selected employee from list.
Employee selectedEmployee =
(Employee)session.readObject(list.getSelectedItem());
return selectedEmployee;

TopLink reading optimization features

Performance Optimization 6-5

Example 6–3 Optimization through report query

/* Read all the employees from the database, ask the user to choose one and
return it. This uses the report query to read just the last name of the
employees. It then uses the primary key stored in the report query result to
read the real object.*/
List list;
// Fetch data from database and add to list box.
ExpressionBuilder builder = new ExpressionBuilder();
ReportQuery query = new ReportQuery (Employee.class, builder);
query.addAttribute("lastName");
query.retrievePrimaryKeys();
Vector reportRows = (Vector) session.executeQuery(query);
list.addAll(reportRows);

// Display list box.
....

// Get selected employee from list.
Employee selectedEmployee = (Employee)
((ReportResult)list.getSelectedItem()).readObject;

return selectedEmployee;

Conclusion
Although the differences between the two examples are slight, there is a substantial
performance improvement by using partial objects and report query.

In the example called "No optimization" on page 6-4, all of the full employee
objects are created even though only the employee's last name is displayed in the
list. All of the data that makes up an employee object must be read.

In the example called "Optimization through partial object reading" on page 6-4,
partial object reading is used to read only the last name (and the primary key, if
specified) of the employees. Read employee objects are still created, but only the last
name (and primary key) is set. The other employee attributes are left as null or as
their constructor defaults. This reduces the amount of data read from the database.

Note: If query.dontMaintainCache() is not included in this example,
a query exception is thrown.

TopLink reading optimization features

6-6 Oracle9iAS TopLink Foundation Library Guide

In this example, the report query is used to read only the last name of the
employees. This reduces the amount of data read from the database and avoids
instantiating any employee instances.

Specifying fewer partial attributes and querying larger objects improves the overall
performance gain of these optimizations.

Reading Case 2: Batch reading objects
The amount of data read by your application affects performance, but how that data
is read also affects performance.

Reading a collection of rows from the database is significantly faster than reading
each row individually. The most common performance problem is reading a
collection of objects that have a one-to-one reference to another object. If this is done
without optimizing how the objects are read, N + 1 database calls are required. That
is, one read operation is required to read in all of the source rows, and one call for
each target row is required in the one-to-one relationship.

The next three examples show a two-phase query that reads the addresses of a set of
employees individually, and then reads them using TopLink’s query optimization
features. The optimized read accesses the database only twice, so it is significantly
faster.

Example 6–4 No optimization

/*Read all the employees, and collect their address’ cities. This takes N + 1
queries if not optimized. */

// Read all of the employees from the database. This requires 1 SQL call.
Vector employees = session.readAllObjects(Employee.class,new
ExpressionBuilder().get("lastName").equal("Smith"));

//SQL: Select * from Employee where l_name = ‘Smith’

// Iterate over employees and get their addresses.
// This requires N SQL calls.
Enumeration enum = employees.elements();
Vector cities = new Vector();
while(enum.hasMoreElements()) Employee employee = (Employee) enum.nextElement();
cities.addElement(employee.getAddress().getCity());

//SQL: Select * from Address where address_id = 123, etc }

TopLink reading optimization features

Performance Optimization 6-7

Example 6–5 Optimization through joining

/* Read all the employees, and collect their address’ cities. Although the code
is almost identical because joining optimization is used it only takes 1 query.
*/

// Read all of the employees from the database, using joining. This requires 1 SQL
call.
ReadAllQuery query = new ReadAllQuery();
query.setReferenceClass(Employee.class);
query.setSelectionCriteria(new
ExpressionBuilder().get("lastName").equal("Smith"));
query.addJoinedAttribute("address");
Vector employees = session.executeQuery(query);

// SQL: Select E.*, A.* from Employee E, Address A where E.l_name = ‘Smith’ and
E.address_id = A.address_id Iterate over employees and get their addresses. The
previous SQL already read all of the addresses so no SQL is required.
Enumeration enum = employees.elements();
Vector cities = new Vector();
while (enum.hasMoreElements()) {
Employee employee = (Employee) enum.nextElement();

cities.addElement(employee.getAddress().getCity());

Example 6–6 Optimization through batch reading

/* Read all the employees, and collect their address’ cities. Although the code
is almost identical because batch reading optimization is used it only takes 2
queries. */

// Read all of the employees from the database, using batch reading. This
requires 1 SQL call, note that only the employees are read.
ReadAllQuery query = new ReadAllQuery();
query.setReferenceClass(Employee.class);
query.setSelectionCriteria(new
ExpressionBuilder().get("lastName").equal("Smith"));
query.addBatchReadAttribute("address");
Vector employees = (Vector)session.executeQuery(query);

// SQL: Select * from Employee where l_name = ‘Smith’

// Iterate over employees and get their addresses.
// The first address accessed will cause all of the addresses to be read in a
single SQL call.
Enumeration enum = employees.elements();
Vector cities = new Vector();

TopLink reading optimization features

6-8 Oracle9iAS TopLink Foundation Library Guide

while (enum.hasMoreElements()) {
Employee employee = (Employee) enum.nextElement();
cities.addElement(employee.getAddress()
.getCity());
// SQL: Select distinct A.* from Employee E, Address A where E.l_name =
‘Smith’ and E.address_id = A.address_i

}

Conclusion
By using TopLink query optimization, a number of queries are reduced to a single
query. This leads to much greater performance.

It may seem that because joining requires only a single query that batch reading
would never be required. The advantage of batch reading is that it allows for
delayed loading through value holders and has much better performance where the
target objects are shared. For example, if all of the employees lived at the same
address, batch reading would read much less data than joining, because batch
reading uses a SQL DISTINCT to filter duplicate data. Batch reading is also
supported for one-to-many relationships where joining is supported only for
one-to-one relationships.

Although this technique is very efficient, it should only be used when all of the
desired objects (such as addresses) are required. Otherwise the resources spent
reading all of the objects could hurt performance.

Reading Case 3: Using complex custom SQL queries
TopLink provides a high-level query mechanism. This query mechanism is
powerful, but currently does not support everything possible through raw SQL. If
you have a complex query required by your application, and the query must be
done optimally, the best solution in many cases is to use raw SQL.

Reading Case 4: Viewing objects
Some parts of an application may require information from a variety of objects
rather than from just one object. This can be very difficult to implement and very
performance intensive. In such situations, it may be advantageous to define a new
read-only object to encapsulate this information and map it to a view on the
database. Set the object to be read-only by using the addDefaultReadOnlyClass()
API in the oracle.toplink.sessions.Project class.

TopLink reading optimization features

Performance Optimization 6-9

Example 6–7 No optimization

/* Gather the information to report on an employee and return the summary of the
information. In this situation a hashtable is used to hold the report
information. Notice that this reads a lot of objects from the database, but uses
very little of the information contained in the objects. This may take 5 queries
and read in a large number of objects.*/

public Hashtable reportOnEmployee(String employeeName)
{
Vector projects, associations;
Hashtable report = new Hashtable();
// Retrieve employee from database.
Employee employee = session.readObject(Employee.class, new
ExpressionBuilder.get("lastName").equal(employeeName));
// Get all of the projects affiliated with the employee.
projects = session.readAllObjects(Project.class, "SELECT P.* FROM PROJECT P,
EMPLOYEE E WHERE P.MEMBER_ID = E.EMP_ID AND E.L_NAME = " + employeeName);
// Get all of the associations affiliated with the employee.associations
=session.readAllObjects(Association.class, "SELECT A.* FROM ASSOC A,
EMPLOYEE E WHERE A.MEMBER_ID = E.EMP_ID AND E.L_NAME = " + employeeName);

}

report.put("firstName", employee.getFirstName());
report.put("lastName", employee.getLastName());
report.put("manager", employee.getManager());
report.put("city", employee.getAddress().getCity());
report.put("projects", projects);
report.put("associations", associations);
return report;}

Example 6–8 Optimization through view object

CREATE VIEW NAMED EMPLOYEE_VIEW AS (SELECT F_NAME = E.F_NAME, L_NAME = E.L_
NAME,EMP_ID = E.EMP_ID, MANAGER_NAME = E.NAME, CITY = A.CITY, NAME = E.NAME
FROM EMPLOYEE E, EMPLOYEE M, ADDRESS A
WHERE E.MANAGER_ID = M.EMP_ID
AND E.ADDRESS_ID = A.ADDRESS_ID)
Then, define a descriptor for the EmployeeReport class:

� Define the descriptor as normal; however, set tableName to be EMPLOYEE_VIEW.

� Map only the attributes required for the report; in the case of
numberOfProjects and associations, a transformation mapping can be used to
get the required data.

TopLink writing optimization features

6-10 Oracle9iAS TopLink Foundation Library Guide

Now, the report can be queried from the database like any other TopLink-enabled
object.

Example 6–9 With optimization

/* Return the report for the employee.*/
public EmployeeReport reportOnEmployee(String employeeName)
{

EmployeeReport report;
report = (EmployeeReport) session.readObject(EmployeeReport.class, new
ExpressionBuilder.get("lastName").equal
(employeeName));
return report;}

TopLink writing optimization features
Table 6–2 lists the write optimization features provided with TopLink.

Table 6–2 Write optimization features

Feature Effect on performance

Unit of Work Minimal update of object changes on commit of the unit of work.
Improves performance by updating only the changed fields and
objects.

Tracks object changes within the unit of work. Minimizes the amount of
tracking required (which can be expensive) by registering only those
objects that will change.

Note: The unit of work supports marking classes as read-only, which
allows the unit of work to avoid tracking changes of objects that will
not be changed.

Parameterized
SQL

The session or an individual query can be configured to use a prepared
statement and cache the statement, thus avoiding the SQL prepare call
on subsequent executions of the query.

Performance improves in situations when the same SQL statement is
executed many times.

Batch writing Supported in both JDK 1.1 and JDK 1.2. Allows for all of the insert,
update, and delete commands from a transaction to be grouped into a
single database call. Performance improves dramatically because the
number of calls to the database is reduced.

Sequence number
preallocation

Sequence numbers are cached (pre-allocated) on the client side to
dramatically improve insert performance.

TopLink writing optimization features

Performance Optimization 6-11

Writing Case 1: Batch writes
TopLink also provides several write optimization features. The most common write
performance problem is a batch job that inserts a large volume of data into the
database.

Consider a batch job that requires to load a large amount of data from one database
and migrate the data into another. Assume that the objects are simple employee
objects that use generated sequence numbers as their primary key, and have an
address that also uses a sequence number. The batch job requires to load 10,000
employees from the first database and insert them into the target database.

First lets approach the problem naively and have the batch job read all of the
employees from the source database, and then acquire a unit of work from the
target database, register all of the objects and commit the unit of work.

Example 6–10 No optimization

/* Read all the employees, acquire a unit of work and register them. */

// Read all of the employees from the database. This requires 1 SQL call, but
will be very memory intensive as 10,000 objects will be read.
Vector employees = sourceSession.readAllObjects(Employee.class);

//SQL: Select * from Employee

// Acquire a unit of work and register the employees.
UnitOfWork uow = targetSession.acquireUnitOfWork();
uow.registerAllObjects(employees);
uow.commit();

//SQL: Begin transaction
//SQL: Update Sequence set count = count + 1 where name = 'EMP'
//SQL: Select count from Sequence
//SQL: ... repeat this 10,000 times + 10,000 times for the addresses ...
//SQL: Commit transaction
//SQL: Begin transaction
//SQL: Insert into Adresss (...) values (...)

Does exist
alternatives

“Does exist” call on write object can be avoided in certain situations by
checking the cache for “does exist” or assuming existence.

Table 6–2 Write optimization features (Cont.)

Feature Effect on performance

TopLink writing optimization features

6-12 Oracle9iAS TopLink Foundation Library Guide

//SQL: ... repeat this 10,000 times
//SQL: Insert into Employee (...) values (...)
//SQL: ... repeat this 10,000 times
//SQL: Commit transaction}

This batch job would have extremely poor performance and would cause 60,000
SQL executions. It also reads huge amounts of data into memory that can cause
memory performance issues. There are a number of TopLink optimization that can
be used to optimize this batch job.

Batching and cursoring
The first performance problem is that loading from the source database may cause
memory problems. To optimize the problem, a cursored stream should be used to
read the employees from the source database. Also, a cache identity map should be
used in both the source and target databases, not a full identity map (a weak
identity map could be used in JDK 1.2).

The cursor should be streamed in groups of 100 using the releasePrevious()
method after each read. Each batch of 100 employees should be registered in a new
unit of work and committed. Although this does not change the amount of SQL
executed, it does fix the memory problems. You should be able to notice a memory
problem in a batch job through noticing the performance degrading over time and
possible disk swapping occurring.

Sequence number pre-allocation
SQL select calls are more expensive than SQL modify calls, so the biggest
performance gain is in reducing any select being issued. In this example, selects are
used for the sequence numbers. Using sequence number pre-allocation dramatically
improves the performance.

In TopLink, the sequence pre-allocation size can be configured on the login; it
defaults to 50. In the non-optimized example, we used a pre-allocation size of 1 to
demonstrate this point. Because batches of 100 are used, a sequence pre-allocation
size of 100 should also be used. Because both employees and address use sequence
number, we can get even better pre-allocation by having them share the same
sequence. In this case, we set the pre-allocation size to 200. This optimization
reduces the number of SQL execution from 60,000 to 20,200.

TopLink writing optimization features

Performance Optimization 6-13

Batch writing
TopLink supports batch writing on batch compliant databases in JDK 1.1 and
through batch compliant JDBC 2.0 drivers in JDK 1.2. Batch writing allows for a
group of SQL statements to be batched together into a single statement and sent to
the database as a single database execution. This reduces the communication time
between the application and the server and can lead to huge performance increases.

Batch writing can be enabled on the login through the useBatchWriting()
method. In our example, each batch of 100 employees can be batched into a single
SQL execution. This reduces the number of SQL execution from 20,200 to 300.

Parameterized SQL
TopLink supports parameterized SQL and prepared statement caching. Using
parameterized SQL can improve write performance by avoiding the prepare cost of
a SQL execution through reusing the same prepared statement for multiple
executions.

Batch writing and parameterized SQL cannot be used together, because batch
writing does not use individual statements. The performance benefits of batch
writing are much greater than parameterized SQL; therefore, if batch writing is
supported by your database, it is strongly suggested that you use batch writing and
not use parameterized SQL.

Parameterized SQL avoids only the prepare part of the SQL execution, not the
execute; therefore, it normally does not give a huge performance gain. However, if
your database does not support batch writing, parameterized SQL can improve
performance. In this example, the number of SQL executions is still 20,200, but the
number of SQL prepares is reduced to 4.

Multi-processing
Multiple processes and even multiple machines can be used to split the batch job
into several smaller jobs.

Splitting the batch job across ten threads leads to performance increases. In this
case, the read from the cursored stream could be synchronized and parallel units of
work could be used on a single machine.

Even if the machine has only a single processor, this can lead to a performance
increase. During any SQL execution the thread must wait for a response from the
server, but in this waiting time the other threads can be processing.

The final optimized example does not show multi-processing as normally the other
features are enough to improve the performance.

TopLink writing optimization features

6-14 Oracle9iAS TopLink Foundation Library Guide

Example 6–11 Fully optimized

/* Read each batch of employees, acquire a unit of work and register them. */
targetSession.getLogin().useBatchWriting();
targetSession.getLogin().setSequencePreallocationSize(200);

// Read all of the employees from the database, into a stream. This requires 1
SQL call, but none of the rows will be fetched.
ReadAllQuery query = new ReadAllQuery();
query.setReferenceClass(Employee.class);
query.useCursoredStream();
CursoredStream stream;
stream = (CursoredStream) sourceSession.executeQuery(query);
//SQL: Select * from Employee. Process each batch

while (! stream.atEnd()) {
Vector employees = stream.read(100);

// Acquire a unit of work to register the employees
UnitOfWork uow = targetSession.acquireUnitOfWork();
uow.registerAllObjects(employees);
uow.commit();

}
//SQL: Begin transaction
//SQL: Update Sequence set count = count + 200 where name = 'SEQ'
//SQL: Select count from Sequence where name = 'SEQ'
//SQL: Commit transaction
//SQL: Begin transaction
//BEGIN BATCH SQL: Insert into Address (...) values (...)

//... repeat this 100 times
//Insert into Employee (...) values (...)
//... repeat this 100 times

//END BATCH SQL:
//SQL: Commit transactionJava optimization

In most client-server database applications, most of the performance problems come
from the communications between the client and the server. This means that
optimizing Java code is normally not as important as optimizing database
interactions. However, you should still try to write clean, optimized Java code, since
very poorly optimized Java code does affect the performance of your application.

Schema optimization

Performance Optimization 6-15

Optimization check list
The following is a general checklist to keep in mind when developing Java
applications.

� Do not make code more complicated than necessary.

� Write encapsulated code so that complex behavior can be easily optimized
within the encapsulation.

� Use instance or static variables to cache the results of expensive computations.

� Use hash tables for large collections that are looked up by key.

� Always provide default sizes to vectors and hash tables if only a few elements
will be added to them.

� Postpone executing expensive tasks until absolutely necessary.

� Make use of multi-tasking to perform background jobs.

� When performing a lot of String manipulations, use a StringBuffer instead
of the + operator for appending Strings.

� Consider lazy initialization in cases where the value’s initialization in the
constructor is normally not required.

� If using RMI or CORBA, avoid fine-grain remote message sends.

Schema optimization
When designing your database schema and object model, optimization is very
important. The key element to remember in the design of your object model and
database schema is to avoid complexity. The most common object-relational
performance problem is when the database schema is derived directly from a
complex object model. This normally produces an over-normalized database
schema that can be slow and difficult to query.

Although it is best to design the object model and database schema together, there
should not be a direct one-to-one mapping between the two.

Schema optimization

6-16 Oracle9iAS TopLink Foundation Library Guide

Schema Case 1: Aggregation of two tables into one
A common schema optimization technique is to de normalize two tables into one.
This can improve read and write performance by requiring only one database
operation instead of two.

This technique is demonstrated through analyzing the ACME Member Location
Tracking System.

Domain
In the ACME Member Location Tracking System, employees and addresses are
always looked up together.

Problem Querying a member based on address information requires an expensive
database join. Reading a member and its address requires two read statements.
Writing a member requires two write statements. This unnecessarily adds
complexity to the system and results in poor performance.

Solution Since members are always read and written with their address information,
considerable performance can be gained through combining the MEMBER and

Table 6–3 Original schema

Elements Details

Title ACME Member Location Tracking System

Classes Member, Address

Tables MEMBER, ADDRESS

Relationships Source Instance Variable Mapping Target

Member address one-to-one Address

Table 6–4 Optimized schema

Elements Details

Classes Member, Address

Tables MEMBER

Relationships Source Instance Variable Mapping Target

Member address aggregate Address

Schema optimization

Performance Optimization 6-17

ADDRESS tables into a single table, and changing the one-to-one relationship to an
aggregate relationship.

This allows all of the information to be read in a single operation, and doubles the
speed of updates and inserts as only one row from one table is modified.

Schema Case 2: Splitting one table into many
This example demonstrates how a table schema can be further normalized to
provide performance optimization.

Frequently, relational schemas can stuff too much data into a particular table. The
table may contain a large number of columns, but only a small subset of those may
be frequently used.

By splitting the large table into two or even several smaller tables, the amount of
data traffic can be significantly reduced, improving the overall performance of the
system.

Table 6–5 Original schema

Elements Details

Title ACME Employee Workflow System

Classes Employee, Address, PhoneNumber, EmailAddress, JobClassification,
Project

Tables EMPLOYEE, PROJECT, PROJ_EMP

Relationships Source Instance Variable Mapping Target

Employee address aggregate Address

Employee phoneNumber aggregate EmailAddress

Employee emailAddress aggregate EmailAddress

Employee job aggregate JobClassification

Employee projects many-to-many Project

Table 6–6 Optimized schema

Elements Details

Classes Employee, Address, PhoneNumber, EmailAddress, JobClassification,
Project

Schema optimization

6-18 Oracle9iAS TopLink Foundation Library Guide

Domain
This system is responsible for assigning employees to projects within an
organization. The most-common operation is to read a set of employees and
projects, assign some employees to different projects, and update the employees.
Occasionally the employee’s address or job classification is used to determine which
project would be the best placement for the employee.

Problem When a large volume of employees is read from the database at one time,
their aggregate parts must also be read. Because of this, the system suffers from a
general read performance problem. The only solution is to reduce the amount of
data traffic to and from the server.

Solution In this system, normalize the EMPLOYEE table into the EMPLOYEE,
ADDRESS, PHONE, EMAIL, and JOB tables.

Since normally only the employee information is read, the amount of data
transferred from the database to the client is reduced by splitting the table. This
improves your read performance by reducing the amount of data traffic by 25%.

Schema Case 3: Collapsed hierarchy
When models are designed in an object-oriented design and then transformed into a
relational model, a common mistake is to make a large hierarchy of tables on the
database. This makes it necessary to perform a large number of joins and makes
querying difficult. Normally it is a good idea to collapse some of the levels in your
inheritance hierarchy into a single table.

Tables EMPLOYEE, ADDRESS, PHONE, EMAIL, JOB, PROJECT, PROJ_EMP

Relationships Source Instance Variable Mapping Target

Employee address one-to-one Address

Employee phoneNumber one-to-one EmailAddress

Employee emailAddress one-to-one EmailAddress

Employee job one-to-one JobClassification

Employee projects many-to-many Project

Table 6–6 Optimized schema (Cont.)

Elements Details

Schema optimization

Performance Optimization 6-19

Domain
In this system, the clients of the company are assigned to its sales force
representatives. The managers track which sales representatives are under them.

Problem The system suffers from over-complexity, which hinders the development
and performance of the system. Large expensive joins are required to do almost
anything, making every database operation expensive.

Solution By collapsing the three-level table hierarchy into one, the complexity of the
system is reduced. All of the expensive joins in the system are eliminated and

Table 6–7 Original schema

Elements Details

Title ACME Sales Force System

Classes Tables

Person PERSON

Employee PERSON, EMPLOYEE

SalesRep PERSON, EMPLOYEE, REP

Staff PERSON, EMPLOYEE, STAFF

Client PERSON, CLIENT

Contact PERSON, CONTACT

Table 6–8 Optimized schema

Elements Details

Classes Tables

Person <none>

Employee EMPLOYEE

SalesRep EMPLOYEE

Staff EMPLOYEE

Client CLIENT

Contact CLIENT

Schema optimization

6-20 Oracle9iAS TopLink Foundation Library Guide

simplified queries allow read performance to be further optimized leading to
greatly improved system performance.

Schema Case 4: Choosing one out of many
A common situation is for an object to have a collection of other objects where only
one of the other objects in the collection is commonly used. In this situation, it is
desirable to add an instance variable just for this special object. This way, the
important object can be accessed and used without requiring the instantiation of all
of the other objects in the collection.

Domain
This system is used by an international shipping company, which wants to be able
to track the location of its packages as they travel from their source to their
destination. When a package is moved from one location to another, a location is
created in real-time on the database. The application normally receives a request for
the current location of a particular package and displays this for the user.

Table 6–9 Original schema

Elements Details

Title ACME Shipping Package Location Tracking System

Classes Package, Location

Tables PACKAGE, LOCATION

Relationships Source Instance Variable Mapping Target

Package locations one-to-many Location

Table 6–10 Optimized schema

Elements Details

Classes Package, Location

Tables PACKAGE, LOCATION

Relationships Source Instance Variable Mapping Target

Package locations one-to-many Location

Package currentLocation one-to-one Location

Schema optimization

Performance Optimization 6-21

Problem A package could accumulate many locations as it travels to its destination,
so reading all of these locations from the database is expensive.

Solution By adding a specific instance variable for just the current location and a
one-to-one mapping for the instance variable, the current location can be accessed
without reading in all of the other locations. This drastically improves the
performance of the system.

Schema optimization

6-22 Oracle9iAS TopLink Foundation Library Guide

Mapping Implementation 7-1

7
Mapping Implementation

Mapping enables you to relate objects in your application to data in a database. This
chapter discusses how you can use Java code to implement mappings in
TopLink-based applications. It discusses

� Direct mappings

� Relationship mappings

� Object relational mappings

For detailed descriptions of these mappings, see the Oracle9iAS TopLink Mapping
Workbench Reference Guide.

Direct mappings
Direct mappings define how a persistent object refers to objects that do not have
descriptors, such as the JDK classes and primitives. There are several types of direct
mappings, including

� Direct-to-field mappings

� Type conversion mappings

� Object type mappings

� Serialized object mappings

� Transformation mappings

Direct mappings

7-2 Oracle9iAS TopLink Foundation Library Guide

Direct-to-field mappings
In Java, use the DirectToFieldMapping class to create direct-to-field mappings.
The mapping requires you to set the following:

� Attribute mapped, set by sending the setAttributeName() message

� Field to store the value of the attribute, set by sending the setFieldName()
message

The optional setGetMethodName() and setSetMethodName() messages allow
TopLink to access the attribute through user-defined methods rather than directly
through the attribute. You do not have to define the accessors when using Java 2.

The Descriptor class provides the addDirectMapping() method that can create a
new DirectToFieldMapping, set the attribute and field name parameters, and
register the mapping with the descriptor.

Example 7–1 Creating a direct-to-field mapping in Java and registering it with the
descriptor.

// Create a new mapping and register it with the descriptor.
DirectToFieldMapping mapping = new DirectToFieldMapping();
mapping.setAttributeName("city");
mapping.setFieldName("CITY");
descriptor.addMapping(mapping);

Example 7–2 Creating a mapping that uses method access.

This mapping example assumes persistent class has getCity() and setCity()
methods defined.

// Create a new mapping and register it with the descriptor.
DirectToFieldMapping mapping = new DirectToFieldMapping();
mapping.setAttributeName("city");
mapping.setFieldName("CITY");
mapping.setGetMethodName("getCity");
mapping.setSetMethodName("setCity");
descriptor.addMapping(mapping);

Example 7–3 Using the two overloaded versions of the descriptor’s
addDirectMapping() method

// Alternate method which does the same thing.
descriptor1.addDirectMapping("city", "CITY");
descriptor2.addDirectMapping("city", "getCity",

Direct mappings

Mapping Implementation 7-3

Reference
Table 7–1 summarizes the most common public methods for direct-to-field
mapping:

� the Default column describes default settings of the descriptor element

� in the Method Names column, arguments are bold, methods are not

For a complete description of all available methods for direct-to-field mapping, see
the TopLink JavaDocs.

Type conversion mappings
Create type conversion mappings with the TypeConversionMapping class. The
following elements are required for a type conversion mapping:

� The attribute mapped, set by sending the setAttributeName() message

� The field to store the value of the attribute, set by setFieldName() message

� The Java type stored in the attribute, set by sending the
setAttributeClassification() message

� The database type to be written, set by sending the
setFieldClassification() message

The optional setGetMethodName() and setSetMethodName() messages allow
TopLink to access the attribute through user-defined methods rather than directly
through the attribute. You do not have to define the accessors when using Java 2.

Example 7–4 Creating a type conversion mapping and registering it with the
descriptor

// Create a new mapping and register it with the descriptor.
TypeConversionMapping typeConversion = new TypeConversionMapping();
typeConversion.setFieldName("J_DAY");
typeConversion.setAttributeName("joiningDate");
typeConversion.setFieldClassification(java.sql.Date.class);

Table 7–1 Elements for direct-to-field mapping

Element Default Method Names

Attribute to be mapped * not applicable setAttributeName(String name)

Field to be mapped * not applicable setFieldName(String name)

* Required property

Direct mappings

7-4 Oracle9iAS TopLink Foundation Library Guide

typeConversion.setAttributeClassification(java.util.Date.class);
descriptor.addMapping(typeConversion);

Reference
Table 7–2 summarizes the most common public methods for type conversion
mapping:

� the Default column describes default settings of the descriptor element

� in the Method Names column, arguments are bold, methods are not

For a complete description of all available methods for type conversion mapping,
see the TopLink JavaDocs.

Object type mappings
Object type mappings are instances of the ObjectTypeMapping class. The following
elements are required for an object type mapping:

� The attribute mapped, set by sending the setAttributeName() message

� The field to store the value of the attribute, set by setFieldName() message

� A set of values and their conversions, added by sending the
addConversionValue() message

The optional setGetMethodName() and setSetMethodName() messages allow
TopLink to access the attribute through user-defined methods rather than directly.
You do not have to define the accessors when using Java.

Table 7–2 Elements for type conversion mapping

Element Default Method Names

Attribute to be
mapped *

not applicable setAttributeName(String name)

Field to be mapped * not applicable setFieldName(String name)

Attribute/field
classification *

attribute type setAttributeClassification(Class aClass)
setFieldClassification(Class aClass)

* Required

Direct mappings

Mapping Implementation 7-5

The following two methods are useful in a legacy environment, or you want to
change the values of the fields:

� addToAttributeOnlyConversionValue
(Object fieldValue, Object attributeValue) – adds conversion value
only for the field value to attribute value. This is a one-way mapping from the
field to the attribute. This can be used if multiple database values are to
mapped to the same object value. When written to the database, the value
entered by addConversionValue(Object fieldValue, Object
attributeValue) is used and therefore the original values in the database
change.

� setDefaultAttributeValue
(Object defaultAttributeValue) – the default value can be used if the
database can store values in addition to those that have been mapped. Any
value retrieved from database that is not mapped is substituted for the default
value. When writing to the database, the value entered by
addConversionValue(Object fieldValue, Object attributeValue) is
used and therefore the original values in the database change.

Example 7–5 Creating an object type mapping and registering it with the descriptor

// Create a new mapping and register it with the descriptor.
ObjectTypeMapping typeMapping = new ObjectTypeMapping();
typeMapping.setAttributeName("gender");
typeMapping.setFieldName("GENDER");
typeMapping.addConversionValue("M", "Male");
typeMapping.addConversionValue("F", "Female");
typeMapping.setNullValue("F");
descriptor.addMapping(typeMapping);

Reference
Table 7–3 summarizes the most common public methods for object type mapping:

� the Default column describes default settings of the descriptor element

� in the Method Names column, arguments are bold, methods are not

For a complete description of all available methods for object type mapping, see the
TopLink JavaDocs.

Direct mappings

7-6 Oracle9iAS TopLink Foundation Library Guide

Serialized object mappings
Serialized object mappings are instances of the SerializedObjectMapping class.
The following elements are required for a serialized object mapping:

� The attribute mapped, set by sending the setAttributeName() message

� The field that stores the value of the attribute, set by the setFieldName()
message

The optional setGetMethodName() and setSetMethodName() messages allow
TopLink to access the attribute through user-defined methods rather than directly
through the attribute. You do not have to define accessors when using Java 2.

Example 7–6 Creating a serialized object mapping and registering it with the
descriptor.

// Create a new mapping and register it with the descriptor.
SerializedObjectMapping serializedMapping = new SerializedObjectMapping();
serializedMapping.setAttributeName("jobDescription");
serializedMapping.setFieldName("JOB_DESC");
descriptor.addMapping(serializedMapping);

Reference
Table 7–4 summarizes the most common public methods for serialized object
mapping:

� the Default column describes default settings of the descriptor element

� in the Method Names column, arguments are bold, methods are not

For a complete description of all available methods for serialized object mapping,
see the TopLink JavaDocs.

Table 7–3 Elements for object type mapping

Element Default Method Names

Attribute to be mapped * not applicable setAttributeName(String name)

Field to be mapped * not applicable setFieldName(String name)

* Required property

Direct mappings

Mapping Implementation 7-7

Transformation mappings
Transformation mappings enable you to create specialized translations between
how a value is represented in Java and in the database. Use transformation
mappings only when mapping multiple fields into a single attribute.
Transformation mapping is often appropriate when values from multiple fields are
used to create an object.

Implementing transformation mappings in Java
Transformation mappings are instances of the TransformationMapping class. The
following elements are typically required for a mapping:

� The attribute mapped, set by sending the setAttributeName() message; not
required for write-only mappings

� The method to be invoked that sets the value of the attribute from information
in the database row; set by sending the setAttributeTransformation()
message that expects one or two parameters, a DatabaseRow and optionally a
Session

� A set of methods associated to fields in the database, where the value for each
field is the result of invoking the associated method; associations are made by
sending the addFieldTransformation() message, passing along the database
field name and the method name

The optional setGetMethodName() and setSetMethodName() messages allow
TopLink to access the attribute through user-defined methods rather than directly.

Table 7–4 Elements for serialized object mapping

Element Default Method Names

Attribute to be mapped * not applicable setAttributeName(String name)

Field to be mapped * not applicable setFieldName(String name)

* Required property

Note: Because of the complexity of transformation mappings, it may be
easier in some cases to perform the transformation with get/set methods
of a direct-to-field mapping.

Direct mappings

7-8 Oracle9iAS TopLink Foundation Library Guide

Example 7–7 Creating a transformation mapping and registering it with the
descriptor.

This particular example provides custom support for two of the fields number of
fields can be mapped using this approach.

// Create a new mapping and register it with the descriptor.
TransformationMapping transformation1 = new TransformationMapping();
transformation1.setAttributeName ("dateAndTimeOfBirth");
transformation1.setAttributeTransformation ("buildDateAndTime");
transformation1.addFieldTransformation("B_DAY", "getDateOfBirth");
transformation1.addFieldTransformation("B_TIME", "getTimeOfBirth");
descriptor.addMapping(transformation1);
// Define attribute transformation method to read from the database row
public java.util.Date buildDateAndTime(DatabaseRow row) {

java.sql.Date sqlDateOfBirth = (java.sql.Date)row.get("B_DAY");
java.sql.Time timeOfBirth = (java.sql.Time)row.get("B_TIME");
java.util.Date utilDateOfBirth = new java.util.Date(

sqlDateOfBirth.getYear(),
sqlDateOfBirth.getMonth(),
sqlDateOfBirth.getDate(),
timeOfBirth.getHours(),
timeOfBirth.getMinutes(),
timeOfBirth.getSeconds());

return utilDateOfBirth;
}

// Define a field transformation method to write to the database
public java.sql.Time getTimeOfBirth()
{

return new java.sql.Time this.dateAndTimeOfBirth.getHours(),
this.dateAndTimeOfBirth.getMinutes(), this.dateAndTimeOfBirth.getSeconds());

}

// Define a field transformation method to write to the database
public java.sql.Date getDateOfBirth()
{

return new java.sql.DateOfBirth this.dateAndTimeOfBirth.getYear(),
this.dateAndTimeOfBirth.getMonth(), this.dateAndTimeOfBirth.getDate());

}

Example 7–8 Creating a transformation mapping using indirection

// Create a new mapping and register it with the descriptor.
TransformationMapping transformation2 = new
transformation2.setAttributeName("designation");

Direct mappings

Mapping Implementation 7-9

transformation2.setGetMethodName ("getDesignationHolder");
transformation2.setSetMethodName ("setDesignationHolder");
transformation2.setAttributeTransformation ("getRankFromRow");
transformation2.addFieldTransformation("RANK", "getRankFromObject");
transformation2.useIndirection();
descriptor.addMapping(transformation2);

//Define an attribute transformation method to read from database row.
public String getRankFromRow()
{

Integer value = new Integer(((Number)row.get("RANK)).intValue());
String rank = null;
if (value.intValue() == 1) {

rank = "Executive";
}
if (value.intValue() == 2) {

rank = "Non-Executive";
}
return rank;

}
//Define a field transformation method to write to the database.
public Integer getRankFromObject()
{

Integer rank = null;

if (getDesignation().equals("Executive"))
rank = new Integer(1);
if (getDesignation().equals("Non-Executive"))
rank = new Integer(2);
return rank;

}

//Provide accessor methods for the indirection.
private ValueHolderInterface designation;
public ValueHolderInterface getDesignationHolder()
{

return designation;
}
public void setDesignationHolder(ValueHolderInterface value)
{

designation = value;
}

Relationship mappings

7-10 Oracle9iAS TopLink Foundation Library Guide

Reference
Table 7–5 summarizes the most common public methods for transformation
mapping:

� the Default column describes default settings of the descriptor element

� in the Method Names column, arguments are bold, methods are not

For a complete description of all available methods for transformation mapping, see
the TopLink JavaDocs.

Relationship mappings
Relational mappings define how persistent objects reference other persistent objects.
These mappings include all of the following:

� Aggregate object mappings

� One-to-one mappings

� Variable one-to-one mappings

� Direct collection mappings

� Direct map mappings

� One-to-many mappings

� Many-to-many mappings

Table 7–5 Elements for transformation mapping

Element Default Method Names

Attribute to be
mapped

not applicable setAttributeName(String name)

Transformations not applicable addFieldTransformation(String fieldName,
String methodName)
setAttributeTransformation(String
methodName)

Relationship mappings

Mapping Implementation 7-11

Aggregate object mappings
Aggregate object mappings are instances of the AggregateObjectMapping class.
This mapping is associated to an attribute in each of the parent classes. The
following elements are required for an aggregate object mapping to be viable:

� The attribute mapped, set by sending the setAttributeName() message

� The target (child) class, set by sending the setReferenceClass() message

The optional setGetMethodName() and setSetMethodName() messages allow
TopLink to access the attribute through user-defined methods rather than directly.

By default the mapping allows null references to its target class, so it does not create
an instance of the target object. To prevent a parent from having a null reference,
send the dontAllowNull() message, which results in an instance of the child with
its attributes set to null.

The following modifications to the target (child) class descriptor are required:

� an indication that all information will come from its parent’s row(s); this is
accomplished by sending the descriptorIsAggregate() message to the
descriptor

� no table or primary key information

Example 7–9 Creating an aggregate object mapping for the Employee source class
and registering it with the descriptor.

// Create a new mapping and register it with the source descriptor.
AggregateObjectMapping aggregateMapping = new AggregateObjectMapping();
aggregateMapping.setAttributeName("employPeriod");
aggregateMapping.setReferenceClass(Period.class);
descriptor.addMapping(aggregateMapping);

Example 7–10 Creating the descriptor of the Period aggregate target class.

The aggregate target descriptor does not need a mapping to its parent, and does not
need any table or primary key information.

// Create a descriptor for the aggregate class. The table name and primary key
are not specified in the aggregate descriptor.
Descriptor descriptor = new Descriptor();
descriptor.setJavaClass(Period.class);
descriptor.descriptorIsAggregate();

Relationship mappings

7-12 Oracle9iAS TopLink Foundation Library Guide

// Define the attribute mappings or relationship mappings.
descriptor.addDirectMapping("startDate", "START_DATE");
descriptor.addDirectMapping("endDate", "END_DATE");
return descriptor;

Example 7–11 Creating an aggregate object mapping for the Project which is another
source class that contains a Period.

The field names must be translated in the Project descriptor as shown in Table 7–1.
No changes need to be made to the Period class descriptor to implement this
second parent.

// Create a new mapping and register it with the parent descriptor.
AggregateObjectMapping aggregateMapping = new AggregateObjectMapping();
aggregateMapping.setAttributeName("projectPeriod");
aggregateMapping.setReferenceClass(Period.class);
aggregateMapping.addFieldNameTranslation("S_DATE", "START_DATE");
aggregateMapping.addFieldNameTranslation("E_DATE", "END_DATE");
descriptor.addMapping(aggregateMapping);

Reference
Table 7–6 summarizes the most common public methods for aggregate object
mapping:

� the Default column describes default settings of the descriptor element

� in the Method Names column, arguments are bold, methods are not

For a complete description of all available methods for aggregate object mapping,
see the TopLink JavaDocs.

Table 7–6 Elements for aggregate object mapping

Element Default Method Names

Attribute to be mapped * not applicable setAttributeName(String name)

Set parent class * not applicable setReferenceClass(Class aClass)

* Required property

Relationship mappings

Mapping Implementation 7-13

One-to-one mappings
One-to-one mappings, are instances of the OneToOneMapping() class, that require
the following:

� The attribute mapped, set by sending the setAttributeName() message

� The reference class, set by sending the setReferenceClass() message

� Foreign key information, normally specified by sending the
setForeignKeyFieldName() message and passing the foreign key field from
the source table that references the primary key of the target table.

If the mapping has a bi-directional relationship where the two classes in the
relationship reference each other with one-to-one mappings, then to properly set up
the foreign key information:

� One mapping must send the setForeignKeyFieldName() message.

� The other must send the setTargetForeignKeyFieldName() message.

It is also possible to set up composite foreign key information by sending the
addForeignKeyFieldName() and addTargetForeignKeyFieldName() messages.

Example 7–12 Creating a simple one-to-one mapping and registering it with the
descriptor.

// Create a new mapping and register it with the descriptor.
OneToOneMapping oneToOneMapping = new OneToOneMapping();
oneToOneMapping.setAttributeName("address");
oneToOneMapping.setReferenceClass(Address.class);
oneToOneMapping.setForeignKeyFieldName("ADDRESS_ID");
descriptor.addMapping(oneToOneMapping);

Note: If the target primary key is composite, send the
addForeignKeyFieldName() message for each of the foreign fields
and target primary key fields that make up the relationship.

Note: Indirection is enabled by default, requiring that the attribute be a
ValueHolderInterface.

Relationship mappings

7-14 Oracle9iAS TopLink Foundation Library Guide

Example 7–13 Implementing a bidirectional mapping between two classes that
reference each other.

The foreign key is stored in the Policy’s table referencing the composite primary key
of the Carrier.

// In the Policy class, which will hold the foreign key, create the mapping
which references the Carrier class.
OneToOneMapping carrierMapping = new OneToOneMapping();
carrierMapping.setAttributeName("carrier");
carrierMapping.setReferenceClass(Carrier.class);
carrierMapping.addForeignKeyFieldName("INSURED_ID", "CARRIER_ID");
carrierMapping.addForeignKeyFieldName("INSURED_TYPE", "TYPE");
descriptor.addMapping(carrierMapping);. . .
// In the Carrier class, create the mapping which references the Policy class.
OneToOneMapping policyMapping = new OneToOneMapping();
policyMapping.setAttributeName("masterPolicy");
policyMapping.setReferenceClass(Policy.class);
policyMapping.addTargetForeignKeyFieldName("INSURED_ID", "CARRIER_ID");
policyMapping.addTargetForeignKeyFieldName("INSURED_TYPE", "TYPE");
descriptor.addMapping(policyMapping);

Reference
Table 7–7 summarizes the most common public methods for one-to-one mapping:

� the Default column describes default settings of the descriptor element

� in the Method Names column, arguments are bold, methods are not

For a complete description of all available methods for one-to-one mapping, see the
TopLink JavaDocs.

Table 7–7 Elements for one-to-one mapping

Element Default Method Names

Attribute to be
mapped *

not applicable setAttributeName(String name)

Foreign key indicator
(at least one of
these) *

not applicable addForeignKeyFieldName(
String foreignKeyFieldName,
String targetKeyFieldName)

Referenced class * not applicable setReferenceClass(Class referenceClass)

* Required property

Relationship mappings

Mapping Implementation 7-15

Variable one-to-one mappings
Variable one-to-one mappings are instances of the VariableOneToOneMapping()
class. The following elements are required for a variable one-to-one mapping:

� The attribute mapped, set by sending the setAttributeName() message

� The reference class, set by sending the setReferenceClass() message

� Foreign key and target query key information, normally specified by sending
the setForeignQueryKeyName() message and passing the source foreign key
field name and the target abstract query key name on the interface descriptor.

If the mapping uses a class indicator field:

� A type indicator field must be specified.

� The class indicator values are specified on the mapping so that mapping can
determine the class of object to create.

Example 7–14 Defining a variable one-to-one mapping using a class indicator field.

VariableOneToOneMapping variableOneToOneMapping = new VariableOneToOneMapping();
variableOneToOneMapping.setAttributeName("contact");
variableOneToOneMapping.setReferenceClass (Contact.class);
variableOneToOneMapping.setForeignQueryKeyName ("C_ID", "id");
variableOneToOneMapping.setTypeFieldName("TYPE");
variableOneToOneMapping.addClassIndicator(Email.class, "Email");
variableOneToOneMapping.addClassIndicator(Phone.class, "Phone");
variableOneToOneMapping.dontUseIndirection();
variableOneToOneMapping.privateOwnedRelationship();

Note: If the target implementor descriptors’ primary keys are
composite, send the addForeignQueryKeyName() message for each of
the foreign key fields and target query keys that make up the
relationship.

Note: Indirection is enabled by default, requiring that the attribute be a
ValueHolderInterface.

Relationship mappings

7-16 Oracle9iAS TopLink Foundation Library Guide

Example 7–15 Defining a variable one-to-one mapping using a unique primary key

VariableOneToOneMapping variableOneToOneMapping = new VariableOneToOneMapping();
variableOneToOneMapping.setAttributeName("contact");
variableOneToOneMapping.setReferenceClass (Contact.class);
variableOneToOneMapping.setForeignQueryKeyName ("C_ID", "id");
variableOneToOneMapping.dontUseIndirection();
variableOneToOneMapping.privateOwnedRelationship();

Reference
Table 7–8 summarizes the most common public methods for variable one-to-one
mapping:

� the Default column describes default settings of the descriptor element

� in the Method Names column, arguments are bold, methods are not

For a complete description of all available methods for variable one-to-one
mapping, see the TopLink JavaDocs.

Direct collection mappings
Direct collection mappings are instances of the DirectCollectionMapping class.
The following elements are required for a direct collection mapping:

� The attribute mapped, set by sending the setAttributeName() message

� The database table that holds the values to be stored in the collection, set by
sending the setReferenceTableName() message

Table 7–8 Elements for variable one-to-one mapping

Element Default Method Names

Attribute to be
mapped *

not applicable setAttributeName(String name)

Field to query key
mapping *

none setForeignQueryKeyName(String
foreignKeyName, String abstractQueryKeyName)
addForeignQueryKeyName(String
foreignKeyName, String abstractQueryKeyName)

Referenced class * not applicable setReferenceClass(Class referenceClass)

Read only read / write readWrite()
readOnly()
setIsReadOnly(boolean isReadOnly)

* Required property

Relationship mappings

Mapping Implementation 7-17

� The field in the reference table from which the values are read and placed into
the collection; this is called the direct field and is set by sending the
setDirectFieldName() message

� Foreign key information, which is specified by sending the
setReferenceKeyFieldName() message and passing the name of the field
that is a foreign reference to the primary key of the source object.

Example 7–16 Creating a simple direct collection mapping.

DirectCollectionMapping directCollectionMapping = new DirectCollectionMapping();
directCollectionMapping.setAttributeName ("responsibilitiesList");
directCollectionMapping.setReferenceTableName ("RESPONS");
directCollectionMapping.setDirectFieldName("DESCRIP");
directCollectionMapping.setReferenceKeyFieldName ("EMP_ID");
directCollectionMapping.useCollectionClass (Vector.class); // the default
descriptor.addMapping(directCollectionMapping);

Reference
Table 7–9 summarizes the most common public methods for direct collection
mapping:

� the Default column describes default settings of the descriptor element

� in the Method Names column, arguments are bold, methods are not

For a complete description of all available methods for direct collection mapping,
see the TopLink JavaDocs.

Note: If the target primary key is composite, send the
addReferenceKeyFieldName() message for each of the fields that
make up the key.

Table 7–9 Elements for direct collection mapping

Element Default Method Names

Attribute to be
mapped *

not applicable setAttributeName(String name)

Primary key
information *

not applicable addReferenceKeyFieldName(String
referenceKey, String sourceKey)

* Required property

Relationship mappings

7-18 Oracle9iAS TopLink Foundation Library Guide

Aggregate collections
Aggregate collection mappings are used to represent the aggregate relationship
between a single-source object and a collection of target objects. Unlike the TopLink
one-to-many mappings, in which there should be a one-to-one back reference
mapping from the target objects to the source object, there is no back reference
required for the aggregate collection mappings because the foreign key relationship
is resolved by the aggregation.

To implement an aggregate collection mapping:

� The descriptor of the target class must declare itself to be an aggregate
collection object. Unlike the aggregate object mapping, in which the target
descriptor does not have a specific table to associate with, there must be a target
table for the target object.

� The descriptor of the source class must add an aggregate collection mapping
that specifies the target class.

When to use aggregate collections
Although similar in behavior to 1-many mappings, an aggregate collection is not a
replacement for 1-many mappings, and great care should be exercised when
choosing an aggregate collection over a one-to-many mapping. aggregate
collections should only be used in situations where the target collections are
reasonable in size and having a one-to-one mapping from the target to the source is
difficult.

Reference table
information *

not applicable setDirectFieldName(String fieldName)
setReferenceTableName(String tableName)

Indirection use indirection useBasicIndirection()
useTransparentCollection()
dontUseIndirection()

Method access direct access setGetMethodName(String name)
setSetMethodName(String name)

Collection Type Vector useCollectionClass(Class)

Table 7–9 Elements for direct collection mapping (Cont.)

Element Default Method Names

* Required property

Relationship mappings

Mapping Implementation 7-19

Consider using a one-to-many relationship rather than an aggregate collection,
because one-to-many relationships offer better performance and are more robust
and scalable.

In addition, aggregate collections are privately owned by the source of the
relationship and should not be shared or referenced by other objects.

Aggregate collections and inheritance
Aggregate collection descriptors can make use of inheritance. The subclasses must
also be declared as aggregate collection. The subclasses can have their own mapped
tables, or share the table with their parent class.

In a Java Vector, the owner references its parts. In a relational database, the parts
reference their owners. Relational databases use this implementation to make
querying more efficient.

Java implementation
Aggregate collection mappings are instances of the
AggregateCollectionMapping class. The following elements are required for an
aggregate collection mapping:

� The attribute mapped, set by sending the setAttributeName() message

� The reference class, set by sending the setReferenceClass() message.

� Foreign key information, which is specified by sending the
addTargetForeignKeyFieldName() message and passing the field name of
the target foreign key and the source the primary key in the source table.

Notes:

� If the source primary key is composite, send the
addTargetForeignKeyFieldName() message to each of the fields
that make up the key.

� Indirection is enabled by default for an aggregate collection
mapping, requiring that the attribute implement
ValueHolderInterface.

Relationship mappings

7-20 Oracle9iAS TopLink Foundation Library Guide

Example 7–17 Creating a simple aggregate collection mapping and registering it with
the descriptor

// In the PolicyHolder class, create the mapping which references the Phone
class
AggregateCollectionMapping phonesMapping = new AggregateCollectionMapping();
phonesMapping.setAttributeName("phones");
phonesMapping.setGetMethodName("getPhones");
phonesMapping.setSetMethodName("setPhones");
phonesMapping.setReferenceClass("Phone.class");
phonesMapping.dontUseIndirection();
phonesMapping.privateOwnedRelationship;
phonesMapping.addTargetForeignKeyFieldName ("INS_PHONE.HOLDER_
SSN","HOLDER.SSN");
descriptor.addMapping(phonesMapping);

Reference
Table 7–10 summarizes the most common public methods for aggregate collection
mapping:

� the Default column describes default settings of the descriptor element

� in the Method Names column, arguments are bold, methods are not

For a complete description of all available methods for aggregate collection
mapping, see the TopLink JavaDocs.

Table 7–10 Properties for aggregate collection mapping

Property Default Method Names

Attribute to be mapped not applicable setAttributeName(String name)

Foreign key indicator not applicable addTargetForeignKeyFieldName (String
targetForeignKeyFieldName, String
sourceKeyFieldName)

Referenced class not applicable setReferenceClass(Class aClass)

Indirection use indirection useBasicIndirection()
useTransparentCollection()
dontUseIndirection()

Method access direct access setGetMethodName(String name)
setSetMethodName(String name)

Privately owned
relationship

privately owned privateOwnedRelationship()

Relationship mappings

Mapping Implementation 7-21

Direct map mappings
Direct map mappings store instances that implement java.util.Map. Unlike
one-to-manys or many to manys, the keys and values of the map in this type of
mapping are Java objects that do not have descriptors. The object type stored in the
key and the value of direct map are Java primitive wrapper types such as String
objects.

Support for primitive data types such as int is not provided since Java maps only
hold objects.

Direct map mappings are instances of the DirectMapMapping class. The following
elements are required for a direct map mapping:

� The attribute mapped, set by sending the setAttributeName() message

� The database table that holds the keys and values to be stored in the map, set by
sending the setReferenceTableName() message

� The field in the reference table from which the keys are read and placed into the
map; this is called the direct key field and is set by sending the
setDirectKeyFieldName() message

� Foreign key information, which is specified by sending the
setReferenceKeyFieldName() message and passing the name of the field
that is a foreign reference to the primary key of the source object

� The field in the reference table from which the values are read and placed into
the map; this is called the direct field and is set by sending the
setDirectFieldName() message

� The Java type of key in map from which the keys are converted from keys read
from the database placed into the map; this is set by sending the
setKeyClass() message

Collection type Vector useCollectionClass(Class)

Note: If the target primary key is composite, you must send the
addReferenceKeyFieldName() message for each of the fields that
make up the key

Table 7–10 Properties for aggregate collection mapping (Cont.)

Property Default Method Names

Relationship mappings

7-22 Oracle9iAS TopLink Foundation Library Guide

� The Java type of value in map from which the values are converted from values
read from the database placed into the map; this is set by sending the
setValueClass() message

Example 7–18 Creating a simple direct map mapping.

DirectMapMapping directMapMapping = new DirectMapMapping();
directMapMapping.setAttributeName("cities");
directMapMapping.setReferenceTableName("CITY_TEMP");
directMapMapping.setReferenceKeyFieldName("RECORD_ID");
directMapMapping.setDirectKeyFieldName("CITY");
directMapMapping.setDirectFieldName("TEMPERATURE");
directMapMapping.setKeyClass(String.class);
directMapMapping.setValueClass(Integer.class);

descriptor.addMapping(directMapMapping);

Reference
Table 7–11 summarizes the most common public methods for direct map mapping:

� the Default column describes default settings of the descriptor element

� in the Method Names column, arguments are bold, methods are not

For a complete description of all available methods for direct map mapping, see the
TopLink JavaDocs.

Table 7–11 Elements for direct map mapping

Element Default Method Names

Attribute to be
mapped *

not applicable setAttributeName(String name)

Primary key
information *

not applicable addReferenceKeyFieldName(String
referenceKey, String sourceKey)

Reference table
information *

not applicable setDirectFieldName(String fieldName)
setReferenceTableName(String tableName)

Indirection use indirection useBasicIndirection()
dontUseIndirection()
useTransparentMap()

Method access direct access setGetMethodName(String name)
setSetMethodName(String name)

* Required property

Relationship mappings

Mapping Implementation 7-23

One-to-many mappings
One-to-many mappings are instances of the OneToManyMapping class. The
following elements are required for a one-to-many mapping:

� The attribute mapped, set by sending the setAttributeName() message

� The reference class, set by sending the setReferenceClass() message

� Foreign key information, which is specified by sending the
setTargetForeignKeyFieldName() message and passing a field in the target
object’s associated table that refers to the primary key in the owning object’s
table.

� A one-to-one mapping in the target class back to the source class; (see "Elements
for direct-to-field mapping" on page 7-3 for more information)

Example 7–19 Creating a simple one-to-many mapping and registering it with the
descriptor

// In the Employee class, create the mapping which references the Phone class.
oneToManyMapping = new OneToManyMapping();
oneToManyMapping.setAttributeName("phoneNumbers");
oneToManyMapping.setReferenceClass(PhoneNumber.class);
oneToManyMapping.setTargetForeignKeyFieldName("EMPID");
descriptor.addMapping(oneToManyMapping);
. . .
// In the Phone class, which will hold the foreign key, create the mapping which
references the Employee class.
OneToOneMapping oneToOneMapping = new OneToOneMapping();
oneToOneMapping.setAttributeName("owner");
oneToOneMapping.setReferenceClass(Employee.class);
oneToOneMapping.setForeignKeyFieldName("EMPID");
descriptor.addMapping(oneToOneMapping);

Note: If the target primary key is composite, send the
addTargetForeignKeyFieldName() message for each of the fields that
make up the key.

Note: Indirection is enabled by default for a one-to-many mapping,
requiring that the attribute implement ValueHolderInterface.

Relationship mappings

7-24 Oracle9iAS TopLink Foundation Library Guide

Reference
Table 7–12 summarizes the most common public methods for one-to-many
mapping:

� the Default column describes default settings of the descriptor element

� in the Method Names column, arguments are bold, methods are not

For a complete description of all available methods for one-to-many mapping, see
the TopLink JavaDocs.

Many-to-many mappings
Many-to-many mappings are instances of the ManyToManyMapping class. The
following elements are required for a many-to-many mapping:

� The attribute mapped, set by sending the setAttributeName() message

� The reference class, set by sending the setReferenceClass() message

� The relation table, set by sending the setRelationTableName() message

Table 7–12 Elements for one-to-many mapping

Property Default Method Names

Attribute to be
mapped *

not applicable setAttributeName(String name)

Foreign key
indicator *

not applicable addTargetForeignKeyFieldName(String
targetForeignKeyFieldName,
String sourceKeyFieldName)

Referenced class * not applicable setReferenceClass(Class aClass)

Indirection use indirection useBasicIndirection()
useTransparentCollection()
dontUseIndirection()

Method access direct access setGetMethodName(String name)
setSetMethodName(String name)

Privately owned
relationship

independent privateOwnedRelationship()
setIsPrivateOwned(Boolean
isPrivateOwned)

Collection Type Vector useCollectionClass(Class)

* Required property

Relationship mappings

Mapping Implementation 7-25

� Foreign key information, which is specified by sending the
setSourceRelationKeyFieldName() and
setTargetRelationKeyFieldName() messages; if the source or target
primary keys are composite, send the addSourceRelationKeyFieldName() or
addTargetRelationKeyFieldName() messages

Example 7–20 Code that creates a simple many-to-many mapping

// In the Employee class, create the mapping which references the Project class.
ManyToManyMapping manyToManyMapping = new ManyToManyMapping();
manyToManyMapping.setAttributeName("projects");
manyToManyMapping.setReferenceClass(Project.class);
manyToManyMapping.setRelationTableName("PROJ_EMP");
manyToManyMapping.setSourceRelationKeyFieldName ("EMPID");
manyToManyMapping.setTargetRelationKeyFieldName ("PROJID");
descriptor.addMapping(manyToManyMapping);

Reference
Table 7–13 summarizes the most common public methods for many-to-many
mapping:

� the Default column describes default settings of the descriptor element

� in the Method Names column, arguments are bold, methods are not

For a complete description of all available methods for many-to-many mapping, see
the TopLink JavaDocs.

Table 7–13 Elements for many-to-many mapping

Element Default Method Names

Attribute to be
mapped *

not applicable setAttributeName(String name)

Referenced class * not applicable setReferenceClass(Class aClass)

Relation table * not applicable setRelationTableName(String tableName)

Relation keys * not applicable addSourceRelationKeyFieldName(
String sourceRelationKey, String
sourceKey)
addTargetRelationKeyFieldName(
String targetRelationKey, String
targetKey)

* Required property

Object relational mappings

7-26 Oracle9iAS TopLink Foundation Library Guide

Object relational mappings
Relational mappings define how persistent objects reference other persistent objects.
Object relational mappings allow for an object model to be persisted into an
object-relational data-model. TopLink does not directly support these mappings –
they must be defined in code through amendment methods.

TopLink enables you to leverage the following object relational mapping types:

� Array mappings

� Object array mappings

� Structure mappings

� Reference mappings

� Nested table mappings

Array mappings
In an object-relational data-model, structures can contain arrays (collections of other
data types). These arrays can contain primitive data types or collections of other
structures. TopLink stores the arrays with their parent structure in the same table.

TopLink supports arrays of primitive data through the ArrayMapping. This is
similar to DirectCollectionMapping – it represents a collection of primitives in
Java. However, the ArrayMapping does not require an additional table to store the
values in the collection.

Indirection use indirection useBasicIndirection()
useTransparentCollection()
dontUseIndirection()

Privately owned
relationship

independent privateOwnedRelationship()

Method access direct access setGetMethodName(String name)
setSetMethodName(String name)

Collection Type Vector useCollectionClass(Class)

Table 7–13 Elements for many-to-many mapping (Cont.)

Element Default Method Names

* Required property

Object relational mappings

Mapping Implementation 7-27

Implementing array mappings in Java
Array mappings are instances of the ArrayMapping class. You must associate this
mapping to an attribute in the parent class. TopLink requires the following elements
for an array mapping:

� Attribute mapped, set by sending the setAttributeName() message.

� Field mapped, set by sending the setFieldName() message.

� Name of the array, set by sending the setStructureName() message.

Example 7–21 Creating an array mapping for the Employee source class and
registering it with the descriptor

// Create a new mapping and register it with the source descriptor.
ArrayMapping arrayMapping = new ArrayMapping();
arrayMapping.setAttributeName("responsibilities");
arrayMapping.setStructureName("Responsibilities_t");
arrayMapping.setFieldName("RESPONSIBILITIES");
descriptor.addMapping(arrayMapping);

Reference
Table 7–14 summarizes the most common public methods for array mapping:

� the Default column describes default settings of the descriptor element

� in the Method Names column, arguments are bold, methods are not

For a complete description of all available methods for array mapping, see the
TopLink JavaDocs.

Table 7–14 Elements for array mapping

Element Default Method Names

Attribute to be
mapped *

not applicable setAttributeName(String name)

Set parent class * not applicable setReferenceClass(Class
referenceClass)

User-defined data
type *

not applicable setStructureName(String
structureName)

Field to be mapped * not applicable setFieldName(String fieldName)

* Required property

Object relational mappings

7-28 Oracle9iAS TopLink Foundation Library Guide

Object array mappings
In an object-relational data-model, object arrays allow for an array of object types or
structures to be embedded into a single column in a database table or an object
table.

Implementing object array mappings in Java
Object array mappings are instances of the ObjectArrayMapping class. You must
associate this mapping to an attribute in the parent class. TopLink requires the
following elements for an array mapping:

� Attribute mapped, set by sending the setAttributeName() message.

� Field mapped, set by sending the setFieldName() message.

� Name of the array, set by sending the setStructureName () message.

Use the optional setGetMethodName() and setSetMethodName() messages to
access the attribute through user-defined methods rather than directly.

Example 7–22 Creating an object array mapping for the Insurance source class and
registering it with the descriptor.

// Create a new mapping and register it with the source descriptor.
ObjectArrayMapping phonesMapping = new ObjectArrayMapping();
phonesMapping.setAttributeName("phones");
phonesMapping.setGetMethodName("getPhones");
phonesMapping.setSetMethodName("setPhones");
phonesMapping.setStructureName("PHONELIST_TYPE");
phonesMapping.setReferenceClass(Phone.class);
phonesMapping.setFieldName("PHONES");
descriptor.addMapping(phonesMapping);

Method access direct access setGetMethodName(String name)

setSetMethodName(String name)

Read only read / write readWrite()

readOnly()

setIsReadOnly(boolean readOnly)

Table 7–14 Elements for array mapping (Cont.)

Element Default Method Names

* Required property

Object relational mappings

Mapping Implementation 7-29

Reference
Table 7–15 summarizes the most common public methods for object array mapping:

� the Default column describes default settings of the descriptor element

� in the Method Names column, arguments are bold, methods are not

For a complete description of all available methods for object array mapping, see
the TopLink JavaDocs.

Structure mappings
In an object-relational data-model, structures are user defined data-types or
object-types. This is similar to a Java class – it denies attributes or fields in which
each attribute is either:

� a primitive data type

� another structure

� reference to another structure

TopLink maps each structure to a Java class defined in your object model and
defines a descriptor for each class. A StructureMapping maps nested structures,
similar to an AggregateObjectMapping. However, the structure mapping supports

Table 7–15 Elements for object array mapping

Element Default Method Names

Attribute to be
mapped *

not applicable setAttributeName(String name)

Set parent class * not applicable setReferenceClass(Class
referenceClass)

User-defined data
type *

not applicable setStructureName(String structureName)

Field to be mapped * not applicable setFieldName(String fieldName)

Method access direct access setGetMethodName(String name)

setSetMethodName(String name)

Read only read / write readWrite()

readOnly()

setIsReadOnly(boolean readOnly)

* Required property

Object relational mappings

7-30 Oracle9iAS TopLink Foundation Library Guide

null values and shared aggregates without requiring additional settings (because of
the object-relational support of the database).

Implementing structure mappings in Java
Structure mappings are instances of the StructureMapping class. You must
associate this mapping to an attribute in each of the parent classes. TopLink requires
the following elements for an array mapping:

� Attribute mapped, set by sending the setAttributeName() message.

� Field mapped, set by sending the setFieldName() message.

� Target (child) class, set by sending the setReferenceClass() message.

Use the optional setGetMethodName() and setSetMethodName() messages to
access the attribute through user-defined methods rather than directly.

You must make the following changes to the target (child) class descriptor:

� Send the descriptorIsAggregate() message to indicate it is not a root level.

� Remove table or primary key information.

Example 7–23 Creating a structure mapping for the Employee source class and
registering it with the descriptor

// Create a new mapping and register it with the source descriptor.
StructureMapping structureMapping = new StructureMapping();
structureMapping.setAttributeName("address");
structureMapping.setReferenceClass(Address.class);
structureMapping.setFieldName("address");
descriptor.addMapping(structureMapping);

Example 7–24 Creating the descriptor of the Address aggregate target class.

The aggregate target descriptor does not need a mapping to its parent, or any table
or primary key information.

// Create a descriptor for the aggregate class. The table name and primary key
are not specified in the aggregate descriptor.
ObjectRelationalDescriptor descriptor = new ObjectRelationalDescriptor ();
descriptor.setJavaClass(Address.class);
descriptor.setStructureName("ADDRESS_T");
descriptor.descriptorIsAggregate();

// Define the field ordering
descriptor.addFieldOrdering("STREET");

Object relational mappings

Mapping Implementation 7-31

descriptor.addFieldOrdering("CITY");
...

// Define the attribute mappings or relationship mappings.
...

Reference
Table 7–16 summarizes the most common public methods for structure mapping:

� the Default column describes default settings of the descriptor element

� in the Method Names column, arguments are bold, methods are not

For a complete description of all available methods for structure mapping, see the
TopLink JavaDocs.

Reference mappings
In an object-relational data-model, structures reference each other through refs – not
through foreign keys (as in a traditional data-model). Refs are based on the target
structure’s ObjectID.

TopLink supports refs through the ReferenceMapping. They represent an object
reference in Java, similar to a OneToOneMapping. However, the reference mapping
does not require foreign key information.

Table 7–16 Elements for structure mapping

Element Default Method Names

Attribute to be
mapped *

not applicable setAttributeName(String name)

Set parent class * not applicable setReferenceClass(Class aClass)

Field to be mapped * not applicable setFieldName(String fieldName)

Method access direct access setGetMethodName(String name)

setSetMethodName(String name)

Read only read / write readWrite()

readOnly()

setIsReadOnly(boolean readOnly)

* Required property

Object relational mappings

7-32 Oracle9iAS TopLink Foundation Library Guide

Implementing reference mappings in Java
Reference mappings are instances of the ReferenceMapping class. You must
associate this mapping to an attribute in the source class. TopLink requires the
following elements for a reference mapping:

� Attribute mapped, set by sending the setAttributeName() message.

� Field mapped, set by sending the setFieldName() message.

� Target class, set by sending the setRefrenceClass () message.

Use the optional setGetMethodName() and setSetMethodName() messages to
access the attribute through user-defined methods rather than directly.

Example 7–25 Creating a reference mapping for the Employee source class and
registering it with the descriptor.

// Create a new mapping and register it with the source descriptor.
ReferenceMapping referenceMapping = new ReferenceMapping();
referenceMapping.setAttributeName("manager");
referenceMapping.setReferenceClass(Employee.class);
referenceMapping.setFieldName("MANAGER");
descriptor.addMapping(refrenceMapping);

Reference
Table 7–17 summarizes the most common public methods for reference mapping:

� the Default column describes default settings of the descriptor element

� in the Method Names column, arguments are bold, methods are not

For a complete description of all available methods for reference mapping, see the
TopLink JavaDocs.

Table 7–17 Elements for reference mapping

Property Default Method Names

Attribute to be
mapped *

not applicable setAttributeName(String name)

Set parent class * not applicable setReferenceClass(Class aClass)

Field to be mapped * not applicable setFieldName(String fieldName)

* Required property

Object relational mappings

Mapping Implementation 7-33

Nested table mappings
Nested table types model an unordered set of elements. These elements may be
built-in or user-defined types. Nested tables typically represent a one-to-many or
many-to-many relationship of references to another independent structure. They
support querying and joining better than Varrays that are inlined to the parent
table.

TopLink supports nested table through the NestedTableMapping. They represent a
collection of object references in Java, similar to a OneToManyMapping or
ManyToManyMapping. However, the nested table mapping does not require foreign
key information (like a one-to-many mapping) or the relational table (like a
many-to-many mapping).

Implementing nested table mappings in Java
Nested table mappings are instances of the NestedTableMapping class. This
mapping is associated to an attribute in the parent class. The following elements are
required for a nested table mapping to be viable:

� The attribute mapped, set by sending the setAttributeName() message

� The field mapped, set by sending the setFieldName() message

Method access direct access setGetMethodName(String name)

setSetMethodName(String name)

Indirection use indirection useBasicIndirection()

dontUseIndirection()

Privately owned
relationship

independent independentRelationship()

privateOwnedRelationship()

setIsPrivateOwned(boolean
isPrivateOwned)

Read only read / write readWrite()

readOnly()

setIsReadOnly(boolean readOnly)

Table 7–17 Elements for reference mapping (Cont.)

Property Default Method Names

* Required property

Object relational mappings

7-34 Oracle9iAS TopLink Foundation Library Guide

� The name of the array structure, set by sending the setStructureName()
message

Use the optional setGetMethodName() and setSetMethodName() messages to
allow TopLink to access the attribute through user-defined methods rather than
directly.

Example 7–26 Creating a nested table mapping for the Insurance source class and
registering it with the descriptor.

// Create a new mapping and register it with the source descriptor.
NestedTableMapping policiesMapping = new NestedTableMapping();
policiesMapping.setAttributeName("policies");
policiesMapping.setGetMethodName("getPolicies");
policiesMapping.setSetMethodName("setPolicies");
policiesMapping.setReferenceClass(Policy.class);
policiesMapping.dontUseIndirection();
policiesMapping.setStructureName("POLICIES_TYPE");
policiesMapping.setFieldName("POLICIES");
policiesMapping.privateOwnedRelationship();
policiesMapping.setSelectionSQLString("select p.* from policyHolders ph,
table(ph.policies) t, policies p where ph.ssn=#SSN and ref(p) = value(t)");
descriptor.addMapping(policiesMapping);

Reference
Table 7–18 summarizes the most common public methods for nested table
mapping:

� the Default column describes default settings of the descriptor element

� in the Method Names column, arguments are bold, methods are not

For a complete description of all available methods for nested table mapping, see
the TopLink JavaDocs.

Table 7–18 Elements for nested table mapping

Element Default Method Names

Attribute to be
mapped *

not applicable setAttributeName(String name)

Set parent class * not applicable setReferenceClass(Class
referenceClass)

* Required property

Object relational mappings

Mapping Implementation 7-35

User-defined data
type *

not applicable setStructureName(String
structureName)

Field to be mapped * not applicable setFieldName(String fieldName)

Method access direct access setGetMethodName(String name)

setSetMethodName(String name)

Indirection use indirection useIndirection()

dontUseIndirection()

setUsesIndirection(boolean
usesIndirection)

Privately owned
relationship

independent independentRelationship()

privateOwnedRelationship()

setIsPrivateOwned(Boolean
isPrivateOwned)

Read only read / write readWrite()

readOnly()

setIsReadOnlylar(boolean readOnly)

Table 7–18 Elements for nested table mapping (Cont.)

Element Default Method Names

* Required property

Object relational mappings

7-36 Oracle9iAS TopLink Foundation Library Guide

Descriptor Implementation 8-1

8
Descriptor Implementation

A descriptor is a TopLink object that describes how an object’s attributes and
relationships are to be represented in relational database table(s). A “TopLink
descriptor” is not the same as an “EJB deployment descriptor”, although it plays a
similar role.

Most descriptors can be created in the Mapping Workbench, but you may also have
reasons to specify them in native Java code. This chapter illustrates

Implementing primary keys in Java
If a single field constitutes the primary key, send the setPrimaryKeyFieldName()
message to the descriptor. For a composite primary key, send the
addPrimaryKeyFieldName() message for each field that makes up the primary
key.

� Implementing primary keys in Java � Implementing identity maps in Java

� Implementing inheritance in Java � Implementing query keys in Java

� Implementing interfaces in Java � Implementing indirection in Java

� Setting the copy policy using Java � Implementing proxy indirection in Java

� Implementing multiple tables in Java
code

� Implementing object-relational descriptors
in Java

� Implementing sequence numbers in
Java

� Changing Java classes to use indirection

� Overriding the instantiation policy
using Java code

� Setting the wrapper policy using Java code

� Implementing locking in Java � Implementing events using Java

Implementing inheritance in Java

8-2 Oracle9iAS TopLink Foundation Library Guide

Alternatively, you could use a convenience method,
setPrimaryKeyFieldNames(), sending a Vector of the fields used as the
primary key.

Example 8–1 Setting a single-field primary key in Java.

// Define a new descriptor and set the primary key.
descriptor.setPrimaryKeyFieldName("ADDRESS_ID");

Example 8–2 Setting a composite primary key in Java.

// Define a new descriptor and set the primary key.
descriptor1.addPrimaryKeyFieldName("PHONE_NUMBER");
descriptor1.addPrimaryKeyFieldName("AREA_CODE");

Implementing inheritance in Java
To implement an inheritance hierarchy completely in Java, you must modify the
descriptors for the superclass and its subclasses. The inheritance implementation for
a descriptor is encapsulated in an InheritancePolicy object, which is accessed by
sending getInheritancePolicy() to the descriptor.

� Unless a class extraction method is used, send the
setClassIndicatorFieldName() message to the InheritancePolicy of the
root class. The parameter is a string indicating the table column that holds the
subclass type information.

� In the root class, define the values that are written to the database which
indicate the class type. You can do this by:

� Sending the addClassIndicator() message for each of the instantiable
subclasses in the hierarchy. This message requires two parameters — the
indicator value and the subclass it represents.

� Sending the useClassNameAsIndicator() message. This causes the full
name of the class to be stored in the class indicator field.

� Send the setParentClass() message to the descriptor for each subclass.

� The root and branch classes can be configured so that queries return only
instances of itself by calling the dontReadSubclassesOnQueries() method.

� Descriptors that inherit table names from a parent are not sent the
setTableName() and addTableName() messages for the tables they inherit.
Only the root class defines the primary key.

Implementing inheritance in Java

Descriptor Implementation 8-3

Queries for inherited superclasses can require multiple queries to obtain all of the
rows for all of the subclasses. This is only required if the superclass is configured to
read subclasses and its subclasses define additional tables. This situation can be
optimized by providing TopLink with a view to execute the query against. This
view can internally perform an outer join or union on all of the subclass tables and
return a single result set with all of the data. This view can be set through the
setReadAllSubclassesViewName() method.

Using TopLink’s default inheritance mechanism may not always be possible. In this
case the inheritance mechanism can be further customized. Instead of using a class
indicator field and mapping, a class extraction method may be used. This method
takes the objects row and returns the class to be used for that row. The
setClassExtractionMethodName() method is used to accomplish this.

Normally queries for inherited classes also require filtering of the tables rows; by
default, TopLink generates this from the class indicator information. However, if the
class extraction method is given, the filtering expressions must be specified. These
can be set for concrete classes through setOnlyInstancesExpression() and for
branch classes through setWithAllSubclassesExpression().

Figure 8–1 shows an example of an inheritance hierarchy. The Vehicle-Bicycle
branch demonstrates how all subclass information can be stored in one table. The
FueledVehicle-Car branch demonstrates how subclass information can be stored
in two tables.

Implementing inheritance in Java

8-4 Oracle9iAS TopLink Foundation Library Guide

Figure 8–1 Inheritance hierarchy

Root

FueledVehicle

Integer fuelCapacity;

String fuelType;

Vehicle

Number id;

Integer passengerCapacity;

Branch

Leaf

Java Inheritance Hierarchy:

NonFueledVehicle

Integer fuelCapacity;

String fuelType;

Bicycle

String description;

Car

String description

249

250

263

Gasoline

Diesel

Gasoline

4

25

1

ID FUEL_T
YPE

CAP

FUEL_VEH table

249

250

251

Car

Fueled

Bicycle

4

25

1 10-speed

ID TYPE
CAP

BIC
Y_D

ES

VEHICLE table

Relational Database
Inheritance Hierarchy:

249

250

263

Toyota Hatchback

Chrysler 2-door

Oldsmobile 4-door

ID DESCRIP

CAR table

Implementing inheritance in Java

Descriptor Implementation 8-5

The Car and Bicycle classes are leaf classes, so queries done on them return
instances of Car and Bicycle respectively.

FueledVehicle is a branch class. By default, branch classes are configured to read
instances and subclass instances. Queries for FueledVehicle return instances of
FueledVehicle and also return instances of Car.

NonFueledVehicle is a branch class and is configured to read subclasses. Because
it does not have a class indicator defined in the root, it cannot be written to the
database. Queries done on NonFueledVehicle return instances of its subclasses.

Vehicle is a root class, which is configured to read instances of itself and instances
of its subclass by default. Queries made on the Vehicle class return instances of
any of the concrete classes in the hierarchy.

Implementing inheritance in Java

8-6 Oracle9iAS TopLink Foundation Library Guide

Example 8–3 Implementing descriptors for the different classes in the inheritance
hierarchy.

// Vehicle is a root class. Because it is the root class, it must add the class
indicators for its subclasses.
public static Descriptor descriptor()
{
Descriptor descriptor = new Descriptor();
descriptor.setJavaClass(Vehicle.class);
descriptor.setTableName("VEHICLE");
descriptor.setPrimaryKeyFieldName("ID");

// Class indicators must be supplied for each of the subclasses in the hierarchy
that can have instances.
InheritancePolicy policy = descriptor.getInheritancePolicy();
policy.setClassIndicatorFieldName("TYPE");
policy.addClassIndicator(FueledVehicle.class, "Fueled");
policy.addClassIndicator(Car.class, "Car");
policy.addClassIndicator(Bicycle.class, "Bicycle");

descriptor.addDirectMapping("id", "ID");
descriptor.addDirectMapping("passengerCapacity", "CAP");

return descriptor;
}

// FueledVehicle descriptor; it is a branch class and a subclass of Vehicle.
Queries made on this class will return instances of itself and instances of its
subclasses.
public static Descriptor descriptor()
{
Descriptor descriptor = new Descriptor();
descriptor.setJavaClass(FueledVehicle.class);
descriptor.addTableName("FUEL_VEH");
descriptor.getInheritancePolicy().setParentClass(Vehicle.class);
descriptor.addDirectMapping("fuelCapacity", "FUEL_CAP");
descriptor.addDirectMapping("fuelType", "FUEL_TYPE");
return descriptor;
}

// Car descriptor; it is a leaf class and subclass of FueledVehicle.
public static Descriptor descriptor()
{
Descriptor descriptor = new Descriptor();
descriptor.setJavaClass(Car.class);
descriptor.addTableName("CAR");

Implementing inheritance in Java

Descriptor Implementation 8-7

descriptor.getInheritancePolicy().setParentClass(FueledVehicle.class);

// Next define the attribute mappings.
descriptor.addDirectMapping("description", "DESCRIP");
descriptor.addDirectMapping("fuelType", "FUEL_VEH.FUEL_TYPE");
return descriptor;
}

// NonFueledVehicle descriptor; it is a branch class and a subclass of Vehicle.
Queries made on this class will return instances of its subclasses.
public static Descriptor descriptor()
{
Descriptor descriptor = new Descriptor();
descriptor.setJavaClass(NonFueledVehicle.class);
descriptor.getInheritancePolicy().setParentClass(Vehicle.class);
return descriptor;
}

// Bicycle descriptor; it is a leaf class and subclass of NonFueledVehicle.
public static Descriptor descriptor()
{
Descriptor descriptor = new Descriptor();
descriptor.setJavaClass(Bicycle.class);
descriptor.getInheritancePolicy().setParentClass(NonFueledVehicle.class);
descriptor.addDirectMapping("description", "BICY_DES");
return descriptor;
}

// FueledVehicle class; If a class extraction method is used, the following
would need to be added to specify that only the branch class itself needs to be
returned. This example is just specifying the class indicator field, which can
also be specified in Mapping Workbench in the Descriptor Advanced Properties
dialog.
public void addToDescriptor(Descriptor descriptor)
{
ExpressionBuilder builder = new ExpressionBuilder();
descriptor.getInheritancePolicy().setOnlyInstancesExpression(builder.getField("V
EHICLE.TYPE").equal("F"));
}

// FueledVehicle class; If a class extraction method is used, the following
would need to be added to specify that the branch class and its subclasses need
to be returned. This example can also be specified in Mapping Workbench in the
Descriptor Advanced Properties dialog.
public void addToDescriptor (Descriptor descriptor)

Implementing interfaces in Java

8-8 Oracle9iAS TopLink Foundation Library Guide

{
ExpressionBuilder builder = new ExpressionBuilder();
descriptor.getInheritancePolicy().withAllSubclassesExpression(builder.getField("
VEHICLE.TYPE").equal("F"));
}

Reference
Table 8–1 summarizes the most common public methods for InheritancePolicy:

� the Default column describes default settings of the descriptor element

� in the Method Names column, arguments are bold, methods are not

For a complete description of all available methods for InheritancePolicy, see
the TopLink JavaDocs.

Implementing interfaces in Java
Descriptors can their own parent interfaces. They can set multiple interfaces if they
have implemented multiple interfaces. The query keys are defined in a normal way
except that they must define the abstract query key from the interface descriptor in
their descriptors. An abstract query key on the interface descriptor enables it to
write expression queries on the interface.

Example 8–4 Using an abstract query key on the interface descriptor.

ExpressionBuilder contact = new
ExpressionBuilder();session.readObject(Contact.class,
contact.get("id").equal(2));

Table 8–1 Elements for the inheritance policy

Element Default Method Names

Class indicators use indicator
mapping

setClassIndicatorFieldName
(String fieldName)

Parent classes not applicable setParentClass(Class parentClass)

Implementing multiple tables in Java code

Descriptor Implementation 8-9

Setting the copy policy using Java
The Descriptor class provides three methods that can be used to determine how
an object is cloned:

� useInstantiationCopyPolicy() — the default method; TopLink creates a
new instance of the object using the technique indicated by the descriptor's
instantiation policy. The default behavior is to use the default constructor. The
new instance is then populated by using the descriptor's mappings to copy
attributes from the original object.

� useCloneCopyPolicy() — TopLink calls the clone() method of the object;
you must ensure that the clone method is written correctly and returns a logical
shallow clone of the object

� useCloneCopyPolicy(String) — this method is called by passing in a string
that contains the name of a method that clones the object; you must ensure that
the method specified returns a logical shallow clone of the object

Implementing multiple tables in Java code
To define a multiple table descriptor, call the addTableName() method for each
table the descriptor maps to. If the descriptor inherits its primary table and is only
defining a single additional one, then the descriptor is mapped normally to this
table.

Primary keys match
Normally the primary key is defined only for the primary table of the descriptor.
The primary table is the first table specified through addTableName(). The primary
key is not defined for the additional tables and is required to be the same as in the
primary table. If the additional table’s key is different, refer to the next example.

By default, all the fields in a mapping are assumed to be part of the primary table. If
a mapping’s field is for one of the additional tables it must be fully qualified with
the field’s table name.

Note: Descriptor.useInstantiationCopyPolicy() replaces
Descriptor.useConstructorCopyPolicy() available in previous
versions of TopLink. The old method is still supported, but it has been
deprecated.

Implementing multiple tables in Java code

8-10 Oracle9iAS TopLink Foundation Library Guide

Example 8–5 Implementing a multiple table descriptor where the primary keys match.

//Define a new descriptor that uses three tables.
Descriptor descriptor = new Descriptor();
descriptor.setJavaClass(Employee.class);
descriptor.addTableName("PERSONNEL"); // Primary table
descriptor.addTableName("EMPLOYMENT");
descriptor.addTableName("USERS");

descriptor.addPrimaryKeyFieldName("PER_NUMBER");
descriptor.addPrimaryKeyFieldName("DEP_NUMBER");

descriptor.addDirectMapping("id", "PER_NUMBER");
descriptor.addDirectMapping("firstName", "F_NAME");
descriptor.addDirectMapping("lastName", "L_NAME");

OneToOneMapping department = new OneToOneMapping();
department.setAttributeName("department");
department.setReferenceClass(Department.class);
department.setForeignKeyFieldName("DEP_NUMBER");
descriptor.addMapping(department);
// Mapping the primary key fields in the additional tables is not required
descriptor.addDirectMapping("salary", "EMPLOYMENT.SALARY");

AggregateObjectMapping period = new AggregateObjectMapping();
period.setAttributeName(period);
period.setReferenceClass(EmployementPeriod.class);
period.addFieldNameTranslation("EMPLOYMENT.S_DATE", "S_DATE");
period.addFieldNameTranslation("EMPLOYMENT.E_DATE", "E_DATE");
descriptor.addMapping(period);

descriptor.addDirectMapping("userName", "USERS.NAME");
descriptor.addDirectMapping("password", "USERS.PASSWORD");

Primary keys are named differently
If the additional tables primary key is named differently then call the descriptor
method addMultipleTablePrimaryKeyName(), which provides:

� The field of the primary key from the primary table

� The additional table name

� The field in the additional table that the primary key maps to

Implementing multiple tables in Java code

Descriptor Implementation 8-11

Example 8–6 Implementing a multiple table descriptor where the additional table
primary keys are named differently.

//Define a new descriptor that uses three tables.
Descriptor descriptor = new Descriptor();
descriptor.setJavaClass(Employee.class);
descriptor.addTableName("PERSONNEL");
// Primary table
descriptor.addTableName("EMPLOYMENT");
descriptor.addTableName("USERS");

descriptor.addPrimaryKeyFieldName("PER_NUMBER");
descriptor.addPrimaryKeyFieldName("DEP_NUMBER");

descriptor.addMultipleTablePrimaryKeyName("PERSONEL.PER_NUMBER",
"USERS.PERSONEL_NO");
descriptor.addMultipleTablePrimaryKeyName("PERSONEL.DEP_NUMBER",
"USERS.DEPARTMENT_NO");

// Assumed EMPLOYMENT uses same primary key
descriptor.addDirectMapping(id, PER_NUMBER);

OneToOneMapping department = new OneToOneMapping();
department.setAttributeName("department");
department.setReferenceClass(Department.class);
department.setForeignKeyFieldName("DEP_NUMBER");
descriptor.addMapping(department);

// Primary key does not have to be mapped for additional tables.
...

Tables related by foreign key relationships
For TopLink to support read, insert, update and delete operations on an object
mapped to multiple tables:

� The foreign key information must be explicitly specified on the descriptor

� The foreign keys and primary keys must be mapped in the object

The API is addMultipleTableForeignKeyFieldName(). This method builds the
join expression and adjusts the table insertion order to respect the foreign key
constraints.

The following example shows the setup of a descriptor for an object mapped to
multiple tables where the tables are related by a foreign key relationship from the

Implementing multiple tables in Java code

8-12 Oracle9iAS TopLink Foundation Library Guide

primary table to the secondary table. The
addMultipleTableForeignKeyFieldName() method is used to specify the
direction of the foreign key relationship.

If the foreign key is in the secondary table and refers to the primary table then the
order of the arguments to addMultipleTableForeignKeyFieldName() is
reversed.

Example 8–7 Implementing multiple tables where a foreign key from the primary table
to the secondary table is used to join the tables.

Descriptor descriptor = new Descriptor();
descriptor.setJavaClass(Employee.class);
Vector vector = new Vector();
vector.addElement("EMPLOYEE");
vector.addElement(ADDRESS");
descriptor.setTableNames(vector);
descriptor.addPrimaryKeyFieldName("EMPLOYEE.EMP_ID");
// Map the foreign key field of the employee table and the primary key of the
address table.
descriptor.addDirectMapping("employee_addressID", "EMPLOYEE.ADDR_ID");
descriptor.addDirectMapping("address_addressID", "ADDRESS.ADDR_ID");

// Setup the join from the address table to the country employee table to the
address table by specifying the FK info to the descriptor. Set the foreign key
info from the address table to the country table.
descriptor.addMultipleTableForeignKeyFieldName("EMPLOYEE.ADDR_ID",
"ADDRESS.ADDR_ID");

Non-standard table relationships
Occasionally the join condition can be non-standard. In this case, the descriptors
query manager can be used to provide a custom multiple table join expression. The
getQueryManager() method is called on the descriptor to obtain its query
manager, and the setMultipleTableJoinExpression() method is used to
customize the join expression.

Note: The foreign key field in the primary table and the primary key in
the secondary table must be mapped. This allows read, insert, update
and delete operation to be performed on the Employee object.

Implementing multiple tables in Java code

Descriptor Implementation 8-13

Simply specifying the join expression allows TopLink to perform read operations
for the object. Insert operations can also be supported if the table insertion order is
specified and the primary key of the additional tables is mapped manually.

The insertion order is required so as not to violate foreign key constraints when
inserting to the multiple tables. The insert order can be specified using the
descriptor method setMultipleTableInsertOrder().

The following example shows the use of the
setMultipleTableJoinExpression() and setMultipleTableInsertOrder()
methods. In addition, it shows the use of a custom join expression without
specifying the table insert order.

Example 8–8 Implementing multiple tables where a join expression and the table
insert order are specified.

Using this method allows only read and insert operations to be performed on
Employee objects. Note that the primary key of the secondary table and the foreign
key of the primary table must be mapped and maintained by the application for
insert operations to work.

Descriptor descriptor = new Descriptor();
descriptor.setJavaClass(Employee.class);
Vector vector = new Vector();
vector.addElement("EMPLOYEE");
vector.addElement(ADDRESS");
descriptor.setTableNames(vector);

// Specify the primary key information for each table.
descriptor.addPrimaryKeyFieldName("EMPLOYEE.EMP_ID");

// Map the foreign key field of the employee table and the primary key of the
address table.
descriptor.addDirectMapping("employee_addressID", "EMPLOYEE.ADDR_ID");
descriptor.addDirectMapping("address_addressID", "ADDRESS.ADDR_ID");
// Setup the join from the employee table to the address table using a custom
join expression and specifying the table insert order.
ExpressionBuilder builder = new ExpressionBuilder();

Note: Using these methods does not support update or delete
operations because of the lack of primary key information for the
secondary table(s). If update and delete operations are required they
could be done with custom SQL, or the foreign key information can be
specified explicitly as explained in the previous section.

Implementing sequence numbers in Java

8-14 Oracle9iAS TopLink Foundation Library Guide

descriptor.getQueryManager().setMultipleTableJoinExpression(builder.getField("EM
PLOYEE.ADDR_ID").equal(builder.getField("ADDRESS.ADDR_ID")));
Vector tables = new Vector(2);
tables.addElement(new DatabaseTable("ADDRESS"));
tables.addElement(new DatabaseTable("EMPLOYEE"));
descriptor.setMultipleTableInsertOrder(tables);
...

Example 8–9 Mapping a multiple table descriptor where a custom join expression is
required.

In this example only read operations are supported.

//Define a new descriptor that uses three tables.
Descriptor descriptor = new Descriptor();
descriptor.setJavaClass(Employee.class);
descriptor.addTableName("PERSONNEL");
// Primary table
descriptor.addTableName("EMPLOYMENT");
descriptor.addPrimaryKeyFieldName("PER_NO");
descriptor.addPrimaryKeyFieldName("DEP_NO");

ExpressionBuilder builder = new ExpressionBuilder();
descriptor.getQueryManager().setMultipleTableJoinExpression((builder.getField("P
ERSONEL.EMP_NO").equal(builder.getField("EMPLOYMENT.EMP_NO")));
descriptor.addDirectMapping("personelNumber", "PER_NO");

OneToOneMapping department = new OneToOneMapping();
department.setAttributeName("department");
department.setReferenceClass(Department.class);
department.setForeignKeyFieldName("DEP_NO");
descriptor.addMapping(department);
// The primary key field on the EMPLOYMENT does not have to be mapped.
...

Implementing sequence numbers in Java
To implement sequence numbers using Java code, send the
setSequenceNumberFieldName() message to the descriptor to register the name of
the database field that holds the sequence number. The setSequenceNumberName()
method also holds the name of the sequence. This name can be one of the entries in
the SEQ_NAME column or the name of the sequence object (if you are using Oracle
native sequencing).

Overriding the instantiation policy using Java code

Descriptor Implementation 8-15

Example 8–10 Implementing sequence numbers using Java code.

// Set the sequence number information.
descriptor.setSequenceNumberName("EMP_SEQ");
descriptor.setSequenceNumberFieldName("EMP_ID");

Overriding the instantiation policy using Java code
The Descriptor class provides the following methods to specify how objects get
instantiated.

� useDefaultConstructorInstantiationPolicy() instructs TopLink to
use the default constructor to create new instances of objects built from the
database. This method can be private, protected, or default/package.

� useFactoryInstantiationPolicy(Object, String) instructs
TopLink to send the message specified by the String parameter to an object
factory specified by the Object parameter to create objects from the database.
The object factory method that is used can be public, private, protected, or
default/package, and requires no arguments.

� useMethodInstantiationPolicy(String) instructs TopLink to send the
message contained in the string parameter to create objects that are populated
with data from the database. This method can be a public, static method on the
descriptor class, or it can be private, protected, or default/package. It must
return a new instance of the class.

� useFactoryInstantiationPolicy(Class factoryClass, String
methodName) instructs TopLink to send the message contained in the String
parameter to an instance of the specified factoryClass. This method must be
return a new instance of the descriptor class. TopLink instantiates the factory by
invoking the default constructor of the specified factoryClass. Both the
factoryClass default constructor and the method invoked on the factory can
be private, protected, or default/package.]

Notes:

� The sequence field must be in the first (primary) table if multiple
tables are used.

� If you use Sybase, SQL Server or Informix native sequencing, this
has no direct meaning but should still be set for compatibility
reasons.

Implementing locking in Java

8-16 Oracle9iAS TopLink Foundation Library Guide

� useFactoryInstantiationPolicy(Class factoryClass, String
methodName, String factoryMethodName) instructs TopLink to send
the message contained in the first String parameter, methodName, to an
instance of the specified factoryClass. This method must return a new
instance of the descriptor class. TopLink instantiates the factory by invoking the
second String, methodName, on the specified factoryClass. This method
must be a static method on the factoryClass and must return an instance of
the factoryClass. The factory class static factory method and the method
invoked on the factory can be private, protected, or default/package.

Implementing locking in Java
Use the API to set optimistic locking completely in code. All of the API is on the
descriptor:

� useVersionLocking(String) sets this descriptor to use version locking, and
increments the value in the specified field name for update or delete

� useChangedFieldsLocking() tells this descriptor to compare only modified
fields for an update or delete

� useTimestampLocking(String) sets this descriptor to use timestamp locking
and writes the current server time in the field every update or delete

� useAllFieldsLocking() tells this descriptor to compare every field for an
update or delete

� useSelectedFieldsLocking(Vector) tells this descriptor to compare the
field names specified in this vector of Strings for an update or delete

Example 8–11 Implementing optimistic locking using the VERSION field of
EMPLOYEE table as the version number of the optimistic lock.

// Set the field that control optimistic locking. No mappings are set for fields
which are version fields for optimistic locking.
descriptor.useVersionLocking("VERSION");
The code in the example above, stores the optimistic locking value in the identity
map. If the value should be stored in a non-read only mapping, then the code
would be:

descriptor.useVersionLocking("VERSION", false);

The false indicates that the lock value is not stored in the cache but is stored in the
object.

Implementing query keys in Java

Descriptor Implementation 8-17

Implementing identity maps in Java
To change the identity map type for a descriptor from the default to specify it
explicitly as full identity map), useNoIdentityMap(), useCacheIdentityMap(),
useWeakIdentityMap(), useSoftCacheWeakIdentityMap(),
useHardCacheWeakIdentityMap()or useFullIdentityMap() message to the
descriptor.

To change the size of the identity map from the default of 100, use the
setIdentityMapSize() message.

Example 8–12 Changing the default identity map parameters

// Set any identity map parameters.
descriptor.useCacheIdentityMap();
descriptor.setIdentityMapSize(10);

Implementing query keys in Java
Register query keys with a descriptor using the addQueryKey() method of the
Descriptor class. Direct query keys can also be defined with the
addDirectQueryKey() method, specifying the name of the query key and the
name of the table field. Abstract query keys are registered to interface descriptors
through the addAbstractQueryKey() method.

Example 8–13 Implementing a query key.

// Add a query key for the foreign key field using the direct method
direct descriptor.addDirectQueryKey("managerId", "MANAGER_ID");

// The same query key could also be added through the add method
DirectQueryKey directQueryKey = new DirectQueryKey();
directQueryKey.setName("managerId");
directQueryKey.setFieldName("MANAGER_ID");
descriptor.addQueryKey(directQueryKey);

// Add a one-to-one query key for the large project that the employee is a
leader of (this assumes only one project)
OneToOneQueryKey lprojectQueryKey = new OneToOneQueryKey();
lprojectQueryKey.setName("managedLargeProject");
lprojectQueryKey.setReferenceClass(LargeProject.class);
ExpressionBuilder builder = new ExpressionBuilder();
projectQueryKey.setJoinCriteria(builder.getField("PROJECT.LEADER_
ID").equal(builder.getParameter("EMPLOYEE.EMP_ID")));

Implementing indirection in Java

8-18 Oracle9iAS TopLink Foundation Library Guide

descriptor.addQueryKey(lprojectQueryKey);

// Add a one-to-many query key for the projects that the employee multiple
projects)
OneToManyQueryKey projectsQueryKey = new OneToManyQueryKey();
projectsQueryKey.setName("managedProjects");
projectsQueryKey.setReferenceClass(Project.class);
ExpressionBuilder builder = new ExpressionBuilder();
projectsQueryKey.setJoinCriteria(builder.getField("PROJECT.LEADER_
ID").equal(builder.getParameter("EMPLOYEE.EMP_ID")));
descriptor.addQueryKey(projectsQueryKey);
// Next define the mappings.
...

Implementing indirection in Java
To create indirection objects in code, the application must replace the relationship
reference with a ValueHolderInterface. It must also call the useIndirection()
method of the mapping if the mapping does not use indirection by default.
Likewise, call the dontUseIndirection() method to disable indirection.
ValueHolderInterface is defined in the oracle.toplink.indirection.

Example 8–14 A mapping that does not use indirection.

// Define the One-to-One mapping. Note that One-to-One mappings have indirection
enabled by default, so the "dontUseIndirection()" method must be called if
indirection is not used.
OneToOneMapping oneToOneMapping = new OneToOneMapping();
oneToOneMapping.setAttributeName("address");
oneToOneMapping.setReferenceClass(Address.class);
oneToOneMapping.setForeignKeyFieldName("ADDRESS_ID");
oneToOneMapping.dontUseIndirection();
oneToOneMapping.setSetMethodName("setAddress");
oneToOneMapping.setGetMethodName("getAddress");
descriptor.addMapping(oneToOneMapping);

The following code illustrates a mapping using indirection.

// Define the One-to-One mapping. One-to-One mappings have indirection enabled
by default, so the "useIndirection()" method is unnecessary if indirection is
used.
OneToOneMapping oneToOneMapping = new OneToOneMapping();
oneToOneMapping.setAttributeName("address");
oneToOneMapping.setReferenceClass(Address.class);

Implementing object-relational descriptors in Java

Descriptor Implementation 8-19

oneToOneMapping.setForeignKeyFieldName("ADDRESS_ID");
oneToOneMapping.setSetMethodName("setAddressHolder");
oneToOneMapping.setGetMethodName("getAddressHolder");
descriptor.addMapping(oneToOneMapping);

Implementing proxy indirection in Java
To enable proxy indirection in Java code, use the following API for
ObjectReferenceMapping:

� useProxyIndirection() – indicates that TopLink should use proxy
indirection for this mapping. When the source object is read from the database,
a proxy for the target object is created and used in place of the “real” target
object. When any method other than toString() is called on the proxy, the
“real” data will be read from the database.

Example 8–15 Using proxy indirection.

// Define the 1:1 mapping, and specify that Proxy Indirection should be used
OneToOneMapping addressMapping = new OneToOneMapping();
addressMapping.setAttributeName("address");
addressMapping.setReferenceClass(AddressImpl.class);
addressMapping.setForeignKeyFieldName("ADDRESS_ID");
addressMapping.setSetMethodName("setAddress");
addressMapping.setGetMethodName("getAddress");
addressMapping.useProxyIndirection();
descriptor.addMapping(addressMapping);
. . .

Implementing object-relational descriptors in Java
Use the ObjectRelationalDescriptor class to define object-relational
descriptors. This descriptor subclass contains the following additional properties:

� Structure name: Name of the object-type structure representing the class

� Field ordering: Field index of the object-type (required because object-type can
be returned through JDBC as indexed arrays)

The demo application provided in <INSTALL_DIR>\examples\core\examples
\sessions\remote\rmi illustrates an object-relational data model and
descriptors.

Changing Java classes to use indirection

8-20 Oracle9iAS TopLink Foundation Library Guide

Example 8–16 Creating an object-relational descriptor.

import oracle.toplink.objectrelational.*;
ObjectRelationalDescriptor descriptor = new ObjectRelationalDescriptor()
descriptor.setJavaClass(Employee.class);
descriptor.setTableName("EMPLOYEES");
descriptor.setStructureName("EMPLOYEE_T");
descriptor.setPrimaryKeyFieldName("OBJECT_ID");

descriptor.addFieldOrdering("OBJECT_ID");
descriptor.addFieldOrdering("F_NAME");
descriptor.addFieldOrdering("L_NAME");
descriptor.addFieldOrdering("ADDRESS");
descriptor.addFieldOrdering("MANAGER");
descriptor.addDirectMapping("id", "OBJECT_ID");
descriptor.addDirectMapping("firstName", "F_NAME");
descriptor.addDirectMapping("lastName", "L_NAME");
//Refer to the mappings section for examples of object relational mappings.
...

Changing Java classes to use indirection
Attributes using indirection must conform to the ValueHolderInterface. You can
change your attribute types in the Class Editor without re-importing your Java
classes. Ensure that you change the attribute types in your Java code as well.
Attributes that are typed incorrectly will be marked as deficient.

In addition to changing the attribute’s type, you may also need to change its
accessor methods. If you use method access, TopLink requires accessors to the
indirection object itself, so your get method returns an instance that conforms to
ValueHolderInterface and your set method accepts one argument that conforms
to the same. If the instance variable returns a Vector instead of an object then the
value holder should be defined in the constructor as follows:

addresses = new ValueHolder(new Vector());
In any case, the application uses the getAddress() and setAddress() methods to
access the Address object. When indirection is used, TopLink uses the
getAddressHolder() and setAddressHolder() methods when saving and
retrieving instances to and from the database.

Implementing events using Java

Descriptor Implementation 8-21

Example 8–17 Implementing the Employee class using indirection with method
access for a one-to-one mapping to Address.

The class definition is modified so that the address attribute of Employee is a
ValueHolderInterface instead of an Address and appropriate get and set
methods are supplied.

// Initialize ValueHolders in Employee Constructor
public Employee() {
address = new ValueHolder();
}
protected ValueHolderInterface address;

// ’Get’ and ‘Set’ accessor methods registered with the mapping and used by
TopLink.
public ValueHolderInterface getAddressHolder() {
return address;
}
public void setAddressHolder(ValueHolderInterface holder) {
address = holder;
}

// ‘Get’ and ‘Set’ accessor methods used by the application to access the
attribute.
public Address getAddress() {
return (Address) address.getValue();
}
public void setAddress(Address theAddress) {
address.setValue(theAddress);
}

Setting the wrapper policy using Java code
The Descriptor class provides methods that are used in conjunction with the
wrapper policy:

� setWrapperPolicy(oracle.toplink.descriptors.WrapperPolicy) can
be invoked to provide a wrapper policy for the descriptor

� getWrapperPolicy() returns the wrapper policy for a descriptor

Implementing events using Java
In this example, we check to see if there is a lock conflict whenever an instance of
Employee is built from information in the database:

Implementing events using Java

8-22 Oracle9iAS TopLink Foundation Library Guide

//In the employee class, declare the event method which will be invoked when the
event occurs.
public void postBuild(DescriptorEvent event) {

// Uses objects row to integrate with some application level locking
service.
if ((event.getRow().get("LOCKED")).equals("T")) {

LockManager.checkLockConflict(this);
}

}

Registering event listeners
TopLink only supports registering events to call methods on the domain object. If
you want an object other than the domain object to handle these events, you must
register it as a listener with the descriptor’s event manager. If you want a
LockManager to receive events for all Employees, you could modify your
descriptor amendment to register the LockManager as the listener. Any object you
register as a listener must implement the DescriptorEventListener interface.
The amendment method is shown in the following example.

Example 8–18 Registering event listeners

public static void addToDescriptor(Descriptor descriptor)
{

descriptor.getEventManager().addListener
(LockManager.activeManager());

}

Reference
Table 8–2 summarizes the most common public methods for
DescriptorEventManager:

� the Default column describes default settings of the descriptor element

� in the Method Names column, arguments are bold, methods are not

For a complete description of all available methods for DescriptorEventManager,
see the TopLink JavaDocs.

Implementing events using Java

Descriptor Implementation 8-23

Table 8–2 Elements for the descriptor event manager

Element Default Method Names

Events selectors
Defaults come from
listener interface
implementation

All events take
DescriptorEvent

All events take (String methodName)

postBuild setPostBuildSelector

postRefresh setPostRefreshSelector

preWrite setPreWriteSelector

postWrite setPostWriteSelector

preDelete setPreDeleteSelector

postDelete setPostDeleteSelector

preInsert setPreInsertSelector

postInsert setPostInsertSelector

preUpdate setPreUpdateSelector

postUpdate setPostUpdateSelector

aboutToInsert setAboutToInsertSelector

aboutToUpdate setAboutToUpdateSelector

postClone setPostCloneSelector

postMerge setPostMergeSelector

Listener registration Source object if it
implements the
listener interface

addListener (DescriptorEventListener
listener)

Descriptor-Event
reference (available
methods on
Descriptor-Event)

getSource()
getSession()
getQuery()
getDescriptor()

only;
aboutToInsert/
Update,

/ Build

getRow()

only; postMerge /
Clone / write events
within a unit of work

getOriginalObject()

Implementing events using Java

8-24 Oracle9iAS TopLink Foundation Library Guide

Sessions.xml DTD A-1

A
Sessions.xml DTD

A document type definition or DTD is file that defines how the markup tags in an
XML documents should be interpreted. Following is the DTD for TopLink’s
sessions.xml file.

sessions.xml dtd
<?xml version='1.0' encoding='UTF-8' ?>

<!--This is the root element and exists only for XML structure-->

<!ELEMENT toplink-configuration (session* , session-broker*)>

<!--This element used if a session broker must be configured-->

<!ELEMENT session-broker (name , session-name+)>

<!--This is the element that represents the session name-->

<!ELEMENT session-name (#PCDATA)>

<!--This is the node element that describes a particular session for use within
toplink-->

<!ELEMENT session (name , (project-class | project-xml) , session-type , login? ,
cache-synchronization-manager? , event-listener-class*, profiler-class?,
external-transaction-controller-class?, exception-handler-class?, connection-pool*,
enable-logging?, logging-options?)>

<!--This is the type of session that is being configured-->

<!ELEMENT session-type (server-session | database-session)>

<!ELEMENT server-session EMPTY>

<!ELEMENT database-session EMPTY>

sessions.xml dtd

A-2 Oracle9iAS TopLink Foundation Library Guide

<!--This is the class name that this session will load to provide login and
mapping information-->

<!ELEMENT project-class (#PCDATA)>

<!--This is the file that contains the project that this session will load to provide
login and mapping information-->

<!ELEMENT project-xml (#PCDATA)>

<!--This is the element that is used if the session will be synchronized with
others-->

<!ELEMENT cache-synchronization-manager (clustering-service , multicast-port? ,
multicast-group-address? , packet-time-to-live? , is-asynchronous? ,
should-remove-connection-on-error? , (jndi-user-name , jndi-password)? ,
naming-service-url)>

<!--This is the name of the clustering service that will be used for connecting
sessions for Cache Synchronization-->

<!ELEMENT clustering-service (#PCDATA)>

<!--This is the IP that the Clustering Service will be listening for new session
anouncements-->

<!ELEMENT multicast-group-address (#PCDATA)>

<!--This is the multicast port the the clustering service will be listening on for
announcements of new sessions-->

<!ELEMENT multicast-port (#PCDATA)>

<!ATTLIST multicast-port e-dtype NMTOKEN #FIXED 'number'>

<!--Set to true if synchronization should not wait until all sessions have been
synchronised before returning-->

<!ELEMENT is-asynchronous (#PCDATA)>

<!--Set to true if the connection should be removed from this session if a
communication error occurs-->

<!ELEMENT should-remove-connection-on-error (#PCDATA)>

<!--The URL to the global Namespace for the Synchronization connection.
Usually the URL of the JNDI service-->

<!ELEMENT naming-service-url (#PCDATA)>

<!--The maximum number of hops a packet will be broadcast-->

sessions.xml dtd

Sessions.xml DTD A-3

<!ELEMENT packet-time-to-live (#PCDATA)>

<!ATTLIST packet-time-to-live e-dtype NMTOKEN #FIXED 'number' >

<!--This element used if a user name is required to access the JNDI service in the
case of Cache Synchronization-->

<!ELEMENT jndi-user-name (#PCDATA)>

<!--This element used if a password is required to access the JNDI service in the
case of Cache Synchronization-->

<!ELEMENT jndi-password (#PCDATA)>

<!--This describes one of possibly many event-listeners that can be registered on
the session-->

<!ELEMENT event-listener-class (#PCDATA)>

<!--This element represents the class name of the profiler that will be used by the
session-->

<!ELEMENT profiler-class (#PCDATA)>

<!--This is the class that the session will use as the external transaction
controller-->

<!ELEMENT external-transaction-controller-class (#PCDATA)>

<!--This is the class that the session will use to handle exceptions generated from
within the session-->

<!ELEMENT exception-handler-class (#PCDATA)>

<!--SQL will be logged to the Session writer which, by default, is System.out-->

<!ELEMENT enable-logging (#PCDATA)>

<!--This element used to specify the extra logging options-->

<!ELEMENT logging-options (log-debug? , log-exceptions? ,
log-exception-stacktrace? , print-thread? , print-session? , print-connection? ,
print-date?)>

<!--Debug messages will be logged-->

<!ELEMENT log-debug (#PCDATA)>

<!--exceptions will be logged-->

<!ELEMENT log-exceptions (#PCDATA)>

sessions.xml dtd

A-4 Oracle9iAS TopLink Foundation Library Guide

<!--exceptions stack traces will be logged when they occur-->

<!ELEMENT log-exception-stacktrace (#PCDATA)>

<!--Each line of the log will contain the connection id-->

<!ELEMENT print-connection (#PCDATA)>

<!--each line of the log will contain the date-->

<!ELEMENT print-date (#PCDATA)>

<!--each line of the log will contain the session id-->

<!ELEMENT print-session (#PCDATA)>

<!--each line of the log will contain the thread id-->

<!ELEMENT print-thread (#PCDATA)>

<!--This the node element that stores the information for the connection pools-->

<!ELEMENT connection-pool (is-read-connection-pool , name , max-connections? ,
min-connections? , login)>

<!ELEMENT is-read-connection-pool (#PCDATA)>

<!--The max number of connections that will be created in the pool-->

<!ELEMENT max-connections (#PCDATA)>

<!ATTLIST max-connections e-dtype NMTOKEN #FIXED 'number' >

<!--The min number of connections that will aways be in the pool-->

<!ELEMENT min-connections (#PCDATA)>

<!ATTLIST min-connections e-dtype NMTOKEN #FIXED 'number' >

<!--This is the node element that represents the login for a particular connection
pool. The read and write connection pools will use the login from the project-->

<!ELEMENT login (license-path? , driver-class? , (connection-url | datasource)? ,
(non-jts-connection-url | non-jts-datasource)? , platform-class? , user-name? ,
password? , uses-native-sequencing? , sequence-preallocation-size? ,
sequence-table? , sequence-name-field? , sequence-counter-field? ,
(should-bind-all-parameters , should-cache-all-statements?)? ,
uses-byte-array-binding? , uses-string-binding? , uses-streams-for-binding? ,
should-force-field-names-to-uppercase? , should-optimize-data-conversion? ,
should-trim-strings? , uses-batch-writing? , uses-jdbc20-batch-writing? ,

sessions.xml dtd

Sessions.xml DTD A-5

uses-external-connection-pool? , uses-native-sql? ,
uses-external-transaction-controller?)>

<!--Obsolete. The contents of this element are ignored at runtime. -->

<!ELEMENT license-path (#PCDATA)>

<!--This is the element that represents the platform class name-->

<!ELEMENT platform-class (#PCDATA)>

<!--This is the element that represents the database driver class name-->

<!ELEMENT driver-class (#PCDATA)>

<!--This is the URL that will be used to connect to the database-->

<!ELEMENT connection-url (#PCDATA)>

<!--This is the URL of a datasource that may be used by the session to connect to
the database-->

<!ELEMENT datasource (#PCDATA)>

<!--This element is used in the login as well as the Cache Synchronization
feature-->

<!ELEMENT user-name (#PCDATA)>

<!--This element is used in the login as well as the Cache Synchronization
feature-->

<!ELEMENT password (#PCDATA)>

<!--Set to true if the login should use native sequencing-->

<!ELEMENT uses-native-sequencing (#PCDATA)>

<!--Sets the sequencing pre-allocation size. This is the number of sequences that
will be retrieved from the database each time-->

<!ELEMENT sequence-preallocation-size (#PCDATA)>

<!ATTLIST sequence-preallocation-size e-dtype NMTOKEN #FIXED 'number' >

<!--The name of the sequence table-->

<!ELEMENT sequence-table (#PCDATA)>

<!--The field within the sequence table the stores that the sequence name-->

<!ELEMENT sequence-name-field (#PCDATA)>

sessions.xml dtd

A-6 Oracle9iAS TopLink Foundation Library Guide

<!--The field within the sequence table that stores the -->

<!ELEMENT sequence-count-field (#PCDATA)>

<!--Set to true if all queries should bind all parameters-->

<!ELEMENT should-bind-all-parameters (#PCDATA)>

<!--Set to true if all statements should be cached-->

<!ELEMENT should-cache-all-statements (#PCDATA)>

<!--Set to true if byte arrays should be bound-->

<!ELEMENT uses-byte-array-binding (#PCDATA)>

<!--Set to true if strings should be bound-->

<!ELEMENT uses-string-binding (#PCDATA)>

<!--Set to true if streams should be used when binding attributes-->

<!ELEMENT uses-streams-for-binding (#PCDATA)>

<!--Set to true if field names should be converted to uppercase when generating
SQL-->

<!ELEMENT should-force-field-names-to-uppercase (#PCDATA)>

<!--Set to true if the session should optimize data conversions-->

<!ELEMENT should-optimize-data-conversion (#PCDATA)>

<!--Set to true if the connection should use native SQL-->

<!ELEMENT uses-native-sql (#PCDATA)>

<!--Set to true if trailing white spaces should be removed from strings-->

<!ELEMENT should-trim-strings (#PCDATA)>

<!--Set to true if the connection should batch the statements-->

<!ELEMENT uses-batch-writing (#PCDATA)>

<!--Set to true if the connection should use jdbc2.0 batch writing-->

<!ELEMENT uses-jdbc20-batch-writing (#PCDATA)>

<!--Set to true if the connection should use an external connection pool-->

<!ELEMENT uses-external-connection-pool (#PCDATA)>

<!--Set to true if the session will be using an external transaction controller-->

sessions.xml dtd

Sessions.xml DTD A-7

<!ELEMENT uses-external-transaction-controller (#PCDATA)>

<!--Genereic element used to describe a string that represents the name of an
item-->

<!ELEMENT name (#PCDATA)>

<!--This element used if a non-jts connection is required (usually only required
in an Application server when CacheSync is used-->

<!ELEMENT non-jts-connection-url (#PCDATA)>

<!--This element used if a non-jts connection is required (usually only required
in an Application server when CacheSync is used-->

<!ELEMENT non-jts-datasource (#PCDATA)>

sessions.xml dtd

A-8 Oracle9iAS TopLink Foundation Library Guide

TopLink Development Tools B-1

B
TopLink Development Tools

TopLink provides development tools that make the development, testing and
debugging of TopLink applications easier. This section introduces these tools and
discusses

� The Schema Manager

� Session management services

� The stored procedure generator

� The Session Console

� The Performance Profiler

The Schema Manager
The schema manager creates and modifies tables in a database from a Java
application. The schema manager can also create sequence numbers on an existing
database and generate stored procedures.

The session console inspects descriptors of a project file. The session console can
connect to the database through TopLink, run custom SQL clauses, and view a log
of query performance. It is a good practice to test your TopLink Mapping
Workbench project with the session console before doing further development.

The Profiler generates a log of query performance against a TopLink session. This
helps to pinpoint performance bottlenecks and makes debugging easier.

The Schema Manager

B-2 Oracle9iAS TopLink Foundation Library Guide

Using the Schema Manager to create tables
TopLink provides a high-level mechanism for the creation of database tables. This
mechanism is database-independent and uses Java types rather than database
types.

TopLink provides the TableDefinition class for the creation of new database
table schema in an independent format. TopLink can then take this generic table
definition and create the appropriate table and fields on the database. TopLink
determines at runtime which database is being used and creates the appropriate
fields for that database.

The schema manager’s purpose is to allow for the database to be easily recreated
and modified during development and testing. It also makes it possible for the
schema to be ported, with 100% accuracy, to any other database.

TopLink’s table creation mechanism does not take into account any optimization
features provided on the given database and therefore should be used for
prototyping purposes only.

Creating a table definition
The TableDefinition class encapsulates all the information necessary to create a
new table, including the names and properties of a table and all of its fields.

TableDefinition has the following methods:

setName()
addField()
addPrimaryKeyField()
addIdentityField()
addForeignKeyConstraint()

All table definitions must call the setName() method to set the name of the table
that is being described by the TableDefinition.

Adding fields to a table definition
Fields are added to the TableDefinition using the addField() method. The
primary key of the table is added to the table definition using the
addPrimaryKeyField() method instead of the addField() method. These
methods have the definitions shown in the following example.

The Schema Manager

TopLink Development Tools B-3

Example B–1 Adding fields to a table definition

addField(String fieldName, Class type);
addField(String fieldName, Class type, int fieldSize)
addField(String fieldName, Class type, int fieldSize,

intfieldSubsize);
addPrimaryKeyField(String fieldName, Class type);
addPrimaryKeyField(String fieldName, Class type,

int fieldSize);
addForeignKeyConstraint(String name, String sourceField,

String targetField, String targetTable)

When declaring a field, the first parameter, fieldName, is the name of the field to be
added to the table. The second parameter, type, is the type of field to be added. To
maintain compatibility among different databases, a Java class is specified for the
second parameter instead of a database field type. TopLink translates the Java class
to the appropriate database field type based on the database upon which it is
created. For example, the String class translates to the CHAR type when
connecting to dBase. However, if connecting to Sybase the String class translates to
VARCHAR.

If the field must specify a size, then the second method would be used and the size
would be specified as the fieldSize parameter. If the field specifies a sub-size, the
third method would be used to specify the fieldSubSize parameter.

Some databases require that a sub-size be specified for a given field type whereas
another database vendor does not. TopLink automatically checks for this and
removes or adds the sub-size if necessary. This allows the table creation mechanism
to remain generic across multiple database vendors.

Defining Sybase and SQL Server sequence numbers
If the field being added to the database is a generated sequence number that uses
Sybase’s or SQL Server's native sequencing, use one of the addIdentityField()
methods instead of the addField() method. The addIdentityField() methods
have the following definitions:

addIdentityField(String fieldName, Class type)
addIdentityField(String fieldName, Class type, int fieldSize)

The Schema Manager

B-4 Oracle9iAS TopLink Foundation Library Guide

Example of table definition
The following example shows the table creation mechanism taken from the TopLink
Employee Demo.

Example B–2 Creating a TableDefinition for the EMPLOYEE table

public static TableDefinition employeeTable()
{
TableDefinition definition;
definition = new TableDefinition();
definition.setName("EMPLOYEE");
definition.addIdentityField("EMP_ID", BigDecimal.class, 15);
definition.addField("VERSION", Integer.class);
definition.addField("F_NAME", String.class, 40);
definition.addField("L_NAME", String.class, 40);
definition.addField("START_DATE", java.sql.Date.class);
definition.addField("END_DATE", java.sql.Date.class);
definition.addField("START_TIME", java.sql.Time.class);
definition.addField("END_TIME", java.sql.Time.class);
definition.addField("GENDER",String.class,10);
definition.addField("ADDRESS_ID", BigDecimal.class, 15);
definition.addField("MANAGER_ID", BigDecimal.class, 15);
definition.addForeignKeyConstraint("employee_manager", "MANAGER_ID", "EMP_ID",
"EMPLOYEE");
definition.addForeignKeyConstraint("employee_address","ADDRESS_ID", "ADDRESS_
ID", "ADDRESS");
return definition;}

Creating tables on the database
Tables are created by passing the initialized TableDefinition object to the
DatabaseSession’s schema manager.

TopLink provides two separate methods for creating tables.

� The createObject() method creates a new table on the database based on the
table definition.

SchemaManager schemaManager = new SchemaManager(session);
schemaManager.createObject(Tables.employeeTable());

� The replaceObject() method destroys and recreates the schema entity on the
database.

schemaManager.replaceObject(Tables.addressTable());

The Schema Manager

TopLink Development Tools B-5

Creating the sequence table
TopLink can automatically create a sequence table if required by the application.
This can be done by calling the createSequences() method of the schema
manager:

schemaManager.createSequences();
This configures the sequence table as defined in the session’s DatabaseLogin and
creates/inserts sequences for each sequence name of all registered descriptors in the
session. If Oracle native sequencing is used, Oracle sequence objects are created.

Using the Schema Manager to manage Java and database type conversions
Table B–1 through Table B–5 list the field types that match a given class for each
database supported by TopLink. This list is specific to the Schema Manager and
does not apply to mappings (TopLink automatically performs conversion between
any database types within mappings).

Table B–1 DB2 field types

Class Data Type

java.lang.Boolean SMALLINT

java.lang.Byte SMALLINT

java.lang.Byte[] BLOB

java.lang.Integer INTEGER

java.lang.Float FLOAT

java.lang.Long INTEGER

java.lang.Double FLOAT

java.lang.Short SMALLINT

java.lang.String VARCHAR

java.lang.Character CHAR

java.lang.Character[] CLOB

java.math.BigDecimal DECIMAL

java.math.BigInteger DECIMAL

java.sql.Date DATE

java.sql.Time TIME

The Schema Manager

B-6 Oracle9iAS TopLink Foundation Library Guide

java.sql.Timestamp TIMESTAMP

Table B–2 dBASE field types

Class Data Type

java.lang.Boolean NUMBER

java.lang.Byte NUMBER

java.lang.Byte[] BINARY

java.lang.Long NUMBER

java.lang.Integer NUMBER

java.lang.Float NUMBER

java.lang.Double NUMBER

java.lang.Short NUMBER

java.lang.String CHAR

java.lang.Character CHAR

java.lang.Character[] MEMO

java.math.BigDecimal NUMBER

java.math.BigInteger NUMBER

java.sql.Date DATE

java.sql.Time CHAR

java.sql.Timestamp CHAR

Table B–3 Oracle field types

Class Data Type

java.lang.Boolean NUMBER

java.lang.Byte NUMBER

java.lang.Byte[] LONG RAW

java.lang.Integer NUMBER

Table B–1 DB2 field types (Cont.)

Class Data Type

The Schema Manager

TopLink Development Tools B-7

java.lang.Long NUMBER

java.lang.Float NUMBER

java.lang.Double NUMBER

java.lang.Short NUMBER

java.lang.String VARCHAR2

java.lang.Character CHAR

java.lang.Character[] LONG

java.math.BigDecimal NUMBER

java.math.BigInteger NUMBER

java.sql.Date DATE

java.sql.Time DATE

java.sql.Timestamp DATE

Table B–4 Sybase field types

Class Data Type

java.lang.Boolean BIT default 0

java.lang.Byte SMALLINT

java.lang.Byte[] IMAGE

java.lang.Integer INTEGER

java.lang.Long NUMERIC

java.lang.Float FLOAT(16)

java.lang.Double FLOAT(32)

java.lang.Short SMALLINT

java.lang.String VARCHAR

java.lang.Character CHAR

java.lang.Character[] TEXT

java.math.BigDecimal NUMERIC

Table B–3 Oracle field types (Cont.)

Class Data Type

The Schema Manager

B-8 Oracle9iAS TopLink Foundation Library Guide

java.math.BigInteger NUMERIC

java.sql.Date DATETIME

java.sql.Time DATETIME

java.sql.Timestamp DATETIME

Table B–5 Microsoft Access field types

Class Data Type

java.lang.Boolean SHORT

java.lang.Byte SHORT

java.lang.Byte[] LONGBINARY

java.lang.Integer LONG

java.lang.Long DOUBLE

java.lang.Float DOUBLE

java.lang.Double DOUBLE

java.lang.Short SHORT

java.lang.String TEXT

java.lang.Character TEXT

java.lang.Character[] LONGTEXT

java.math.BigDecimal DOUBLE

java.math.BigInteger DOUBLE

java.sql.Date DATETIME

java.sql.Time DATETIME

java.sql.Timestamp DATETIME

Table B–4 Sybase field types (Cont.)

Class Data Type

Session management services

TopLink Development Tools B-9

Session management services
TopLink provides statistics reporting and runtime configuration systems. There are
two publicly-available APIs, oracle.toplink.service.RuntimeServices and
oracle.toplink.services.DevelopmentServices.

RuntimeServices
The RuntimeServices API facilitates the monitoring of a running in-production
system. It gives access to a number of statistical functions and reporting, as well as
logging functions. Typical uses for RuntimeServices include turning logging on or
off and generating real-time reports on the number and type of objects in a given
cache or sub-cache.

For more information, see the topic on the RuntimeServices class in the JavaDoc for
the TopLink Foundation Library API.

DevelopmentServices
The DevelopmentServices API enables developers to make potentially dangerous
changes to a running non-production application. For example,
DevelopmentServices API can be used to change the states of selected objects and
modify and reinitialize identity maps.

This can be particularly useful for stress and performance testing pre-production
applications, as well as offering the opportunity fast and easy prototyping.

For more information, see the topic on the RuntimeServices class in the JavaDoc for
the TopLink Foundation Library API.

Using session management services
The session management service classes can be instantiated by passing a session to
the constructor. After the service is instantiated, a graphical interface or an
application can be attached to the object to provide statistical feedback and runtime
option settings.

TopLink also ships with the session management services implemented as MBeans
that can be deployed in applications and interfaced according to the MBean
specification. TopLink does not currently provide any GUI interfaces into this API.

Example B–3 Implementing session management services as MBeans

import oracle.toplink.services.RuntimeServices;

The stored procedure generator

B-10 Oracle9iAS TopLink Foundation Library Guide

import oracle.toplink.publicinterface.Session;
...
...
RuntimeServices service = newRuntimeServices ((session) session);
java.util.List classNames = service.getClassesInSession();

Session management services and BEA WebLogic Server TopLink support for BEA
WebLogic Server automatically deploys the session management services to the
JMX server. The JMX Mbeans can be retrieved with the following object names:

WebLogicObjectName("TopLink_Domain:Name=Development <Session><Name>
Type=Configuration");
WebLogicObjectName("TopLink_Domain:Name=Runtime <Session><Name>
Type=Reporting");

The <Session><Name> is the session and name under which the required session
configuration stored in the toplink-ejb-jar.xml file.

The stored procedure generator
It is now possible to generate stored procedures based on the dynamic SQL
generated for descriptors and mappings. After the stored procedures are generated,
they can be attached to the mappings and descriptors of the domain object. In other
words, the access to the database is through stored procedures and no longer
through SQL.

The stored procedure generator is split into two sections that are performed at
development time. The first is the generation of the stored procedures, and the
second is the attachment of the procedures to the descriptors and mappings.

Generation of stored procedures
Stored procedures can be generated for all descriptors and most relationship
mappings.

There are two exceptions to this rule:

� Many to many mappings are not supported by the stored procedure generator.

Note: Because of the nature of this feature, it has a number of
limitations. It should be used only where database access is restricted to
stored procedures, and not to enhance performance.

The Session Console

TopLink Development Tools B-11

� Stored procedures for Read operations are not generated for the Oracle
platform.

As well as descriptors and mappings, stored procedures are also generated for
updates and selects of sequence numbers.

To tell TopLink to use these stored procedures whenever actions are performed on
this class, an amendment class is created. This class contains a method that attaches
the stored procedures to each descriptor.

Example B–4 Stored procedures generated directly on the database

An amendment class called com.demo.Tester is created in the file
C:/temp/Tester.java.

SchemaManager manager = new SchemaManager(session);
manager.outputDDLToDatabase();
manager.generateStoredProceduresAndAmendmentClass("C:/temp/",
"com.demo.Tester");

Example B–5 Generating stored procedures to a file

SchemaManager manager = new SchemaManager(session);
manager.outputDDLToFile("C:\Temp\test.sql");
manager.generateStoredProceduresAndAmendmentClass("C:/temp/",
"com.demo.Tester");

Attaching the stored procedures to the descriptors
After the stored procedures are created successfully on the database and the
amendment file is created, the descriptors can be told to use these descriptors.

� Before logging in, call a method on the generated amendment class:

Session session = project.createDatabaseSesssion();
com.demo.Tester.amendDescriptors(project);
This method sets up all the descriptors to use the procedures that were
generated previously.

The Session Console
The session console is a tool to test descriptors, test logging in to the database, and
view the performance of reading objects described by the descriptors from the
database. Ideally, you should create a project using TopLink Mapping Workbench
and use the session console to test the project file before doing further development.

The Session Console

B-12 Oracle9iAS TopLink Foundation Library Guide

Requirements
Make sure toplink.jar, toplinksdk.jar, toplinksdkxerces.jar, xerces.jar,
and tools.jar are in your CLASSPATH (see Oracle9iAS TopLink Getting Started).

The session console is compatible with Swing (JFC) 1.02, Swing 1.03, and Java 2.

� If you are using JDK 1.1, you must install Swing and ensure that it is on your
CLASSPATH correctly.

� The JDK 1.2 (Java 2) version of TopLink provides a version of the session
console that is compatible with the JDK 1.2 version of Swing. Make sure you are
using the JDK 1.2 version of TopLink when using JDK 1.2.

Using session console features
1. Start the session console.

� If you are using IBM VisualAge for Java, run
oracle.toplink.tools.sessionconsole
.SessionConsole in the “TopLink Development Tools” project.

OR

� If you are using Windows or Windows NT, run Session Console in the
“TopLink for Java Foundation Library” application group.

OR

� If you are using Windows or Windows NT, run the “SessionConsole.cmd”
file from the <INSTALL_DIR>\core directory.

OR

� Enter the following text at the command line:

<INSTALL_DIR>\core\SessionConsole

2. Select File > Load Project, then select the deployed XML project file you want
to load (for example, Employee.xml).

3. Click the Login tab, fill in the Login information, and click the Login button.

The Session Console

TopLink Development Tools B-13

Figure B–1 TopLink Session Inspector—Login

4. To test reading all of the objects described by a descriptor from the database,
select a descriptor and click the “Execute Query” button from the “Query” tab.

The session console executes the ReadAllQuery and displays the results in the
Results pane.

The Session Console

B-14 Oracle9iAS TopLink Foundation Library Guide

Figure B–2 TopLink Session Inspector—Query

5. To view the performance of executing queries, check the Profile checkbox in the
Log pane, and then repeat Step 4 for one or more descriptors.

6. Click the Browse Profile button in the Log pane to see the results. The total
time is measured in milliseconds.

Figure B–3 TopLink Profile Browser

The Performance Profiler

TopLink Development Tools B-15

7. If you are using IBM VisualAge for Java, inspect the object that was read.

1. Click the Cache tab.

2. Select a descriptor that has objects displayed in the Cache pane.

3. Select the object to be inspected and click the Inspect (VA) button.

8. If desired, execute SQL clauses in the SQL pane and view the result in the
Result pane. Type the SQL clause, highlight this clause, and click either the
Select button or the Update button.

For example, an SQL clause to select all fields from Employee:

SELECT * FROM EMPLOYEE

Launching the session console from code
The session console can also be launched from code. When debugging, you can
launch the session console in your application. The session console can browse any
of the TopLink sessions.

Example B–6 Launching the session console

SessionConsole.browse(toplinkSession);

The Performance Profiler
The performance profiler detects performance bottlenecks in a TopLink application.
When it is enabled, the profiler logs a summary of the performance statistics for
every query executed. The profiler also allows for a summary of all executed
queries to be logged for a profile session.

The profiler currently logs the following information:

� The query type and arguments

� The total execution time of the query (in milliseconds)

� The total number of objects affected

� The number of objects handled per second

� The number of milliseconds per object

Note: If your database contains important information, do not execute
any SQL clause that modifies the database.

The Performance Profiler

B-16 Oracle9iAS TopLink Foundation Library Guide

� The total time spent in the object cache

� The total time spent on preparing the SQL

� The total time spent on executing the SQL

� The total time spent on fetching rows

Using the profiler
To invoke the profiler from the database session, use the setProfiler(new
PerformanceProfiler()) method. To end a profiling session, use the
clearProfiler() method.

The profiler is an instance of the PerformanceProfiler class, found in
oracle.toplink.tools.profiler It can be accessed by calling the session’s
getProfiler() function.

The profiler supports the following public API:

� logProfile(): sets whether, after each query execution, the profile result
should be logged; by default this is true

� dontLogProfile(): sets log profile to false

� setShouldLogProfile(boolean value): sets log profile to ‘passed’ in
boolean value

� logProfileSummaryByClass(): logs the profile summary by class

� logProfileSummaryByQuery(): logs the profile summary by query

Example B–7 The execution of a read query

session.setProfiler(new PerformanceProfiler());
Vector employees = session.readAllObjects(Employee.class);

The output generated by the profiler for the code is:

Begin Profile of{
ReadAllQuery(oracle.toplink.demos.employee.domain.Employee)Profile(ReadAllQuery,
,# of obj=12,time=1399,sql execute=217,prepare=495,row
fetch=390,time/obj=116,obj/sec=8)
} End Profile

The Performance Profiler

TopLink Development Tools B-17

Browsing the profiler results
The profiler results can be browsed graphically using the profile browser. The
profile browser can be launched from code from your application. The profile
browser is found in the
oracle.toplink.tools.sessionconsoleConsole package.

Example B–8 Launching the profile browser

ProfileBrowser.browseProfiler(session.getProfiler());

The Performance Profiler

B-18 Oracle9iAS TopLink Foundation Library Guide

TopLink Session Configuration File C-1

C
TopLink Session Configuration File

The TopLink session configuration file, called sessions.xml, is a Java
ResourceBundle that is read in using the locale. It may be necessary to rename the
sessions.xml file to a locale specific name. For example TopLink_en_
US.properties instead of sessions.xml.

Each TopLink project belongs to a TopLink session. To deploy beans that belong to
different projects, add an appropriate TopLink session information section in the
sessions.xml file as demonstrated in the Account Demo's sample

Contents of the sessions.xml file
The XML Jar Location
XMLJarLocation = SPECIFY_JAR_LOCATION_HERE
The TopLink session information for the beans in the Account Demo
session.YOUR_SESSION_NAME.projectClass = examples.ejb.cmp.account.AccountProject
session.YOUR_SESSION_NAME.platform =
oracle.toplink.internal.databaseaccess.OraclePlatform
session.YOUR_SESSION_NAME.profile = false
session.YOUR_SESSION_NAME.logProfile = false
session.YOUR_SESSION_NAME.logMessages = true
session.YOUR_SESSION_NAME.logDebug = true
session.YOUR_SESSION_NAME.logExceptions = true
session.YOUR_SESSION_NAME.useExternalConnectionPooling = true
session.YOUR_SESSION_NAME.useExternalTransactionController = true
session.YOUR_SESSION_NAME.externalTransactionController =
oracle.toplink.jts.was.WebSphereJTSExternalTransactionController
session.YOUR_SESSION_NAME.writePoolMax = 1
session.YOUR_SESSION_NAME.writePoolMin = 1
session.YOUR_SESSION_NAME.readPoolMax = 1
session.YOUR_SESSION_NAME.readPoolMin = 1
session.YOUR_SESSION_NAME.amendmentClass =

Contents of the sessions.xml file

C-2 Oracle9iAS TopLink Foundation Library Guide

examples.ejb.cmp.order.SessionAmendment
session.YOUR_SESSION_NAME.amendmentMethod = configureSession

This code contains the following variables:

YOUR_SESSION_NAME The toplink_session_name environment variable set in
the bean's deployment descriptor.

XMLJarLocation The property XMLJarLocation points to the directory in which
your .jar files have been saved.

projectClass It is necessary to have a TopLink project class file. You can generate
a project class file using the TopLink Session Console.

platform The database platform. This can also be specified in the TopLink project.

� For Oracle databases set this to
oracle.toplink.internal.databaseaccess.OraclePlatform

� For DB2 databases set this to
oracle.toplink.internal.databaseaccess.DB2Platform

� For Sybase databases set this to
oracle.toplink.internal.databaseaccess.SybasePlatform

� For SQL Server databases set this to
oracle.toplink.internal.databaseaccess.SQLServerPlatform

logProfile This flag indicates whether or not to use the profiler. The profiler can
be used to log a summary of each query that is executed. This may be used during
development but for optimized performance it is recommended that this be
disabled during production.

logDebug Set debug messages logging. Debug messages will be dumped through
TopLink to the session's log. By default this is System.out, but can be set to any
Writer.

logExceptions Toggle exception logging.

useExternalConnectionPooling If set to true then a DataSource must be set for
the bean. This DataSource is used for all database connections. If this is set to false
then TopLink uses its own internal connection pooling.

Converting from TOPLink.properties file to sessions.xml

TopLink Session Configuration File C-3

useExternalTransactionController If set to true then TopLink database calls are
synchronized with the container's “Transaction Manager”.

externalTransactionController This is specific to your application server and
coordinates with the appropriate JTS. For example, for IBM WebSphere set this to
oracle.toplink.jts.was
.WebSphereJTSExternalTransactionController

writePoolMax This is set only when an external transaction controller is not being
used. It indicates the maximum number of write connections in the TopLink
connection pool.

writePoolMin This is set only when an external transaction controller is not being
used. It indicates the minimum/initial number of write connections in the TopLink
connection pool.

readPoolMax This is set only when an external transaction controller is not being
used. It indicates the maximum number of read connections in the TopLink
connection pool.

readPoolMin This is set only when an external transaction controller is not being
used. It indicates the minimum/initial number of read connections in the TopLink
connection pool.

amendmentClass The class that contains the public class that amends the session.

amendmentMethod A public static method that takes a
oracle.toplink.threetier.ServerSession as a parameter. This method is run
when the TopLink session is created during bean deployment.

Converting from TOPLink.properties file to sessions.xml
The sessions.xml file is similar in function to the TOPLink.properties files from
previous version of TopLink. If you are upgrading from a version of TopLinkhat
used the TOPLink.properties file, the following table, which identifies settings in
the TopLink.properties file and their equivalents in the sessions.xml file, will
be of use to you.

Converting from TOPLink.properties file to sessions.xml

C-4 Oracle9iAS TopLink Foundation Library Guide

Table C–1 TopLink.properties and sessions.xml equivalents

Element TopLink.properties sessions.xml

Session name <toplink-configuration>

<session>
<name>YOUR_SESSION_NAME
</name>

xml.jar location XMLJarLocation=[INSTALL_
DIR}\TopLink\core\lib\xerces.jar

not required

Use SessionManager and XMLLoader API
to specify the parser JAR location and
options such as classloader, etc.

Project class and
session name

session.YOUR_SESSION_NAME
.projectClass=examples.ejb
.cmp.account.AccountProject

<session>

<project-class>
examples.ejb.cmp.account
.AccountProject
</project-class>

</session>

Platform class session.YOUR_SESSION_NAME
.platform=TOPLink.Private
.DatabaseAccess
.OraclePlatform

<login>

<platform-class>
oracle.toplink.internal.databaseaccess
.OraclePlatform
</platform-class>

Note: You will need to change the existing
platform class name to the new
oracle.toplink.* class name. This can be
done by running the package rename tool
on the TOPLink.properties file.

Profiling session.YOUR_SESSION_NAME
.profile=true

session.YOUR_SESSION_NAME
.logProfile=true

<session>

<profiler-class>
oracle.toplink
.profiler.PerformanceProfiler</profiler
-class>

Converting from TOPLink.properties file to sessions.xml

TopLink Session Configuration File C-5

Message
logging

session.YOUR_SESSION_NAME
.logMessages=true

session.YOUR_SESSION_NAME
.logDebug=true

session.YOUR_SESSION_NAME
.logExceptions=true

<session>

<log-messages>true
</log-messages>

<logging-options>

<log-debug>true
</log-debug>

<log-exceptions>true
</log-exceptions>

</logging-options>

External
connection
pooling

session.YOUR_SESSION_
NAME.useExternalConnectionPooling=true

<login>

<uses-external-connection-pool>
true</uses-external-connection-pool>

Table C–1 TopLink.properties and sessions.xml equivalents (Cont.)

Element TopLink.properties sessions.xml

Converting from TOPLink.properties file to sessions.xml

C-6 Oracle9iAS TopLink Foundation Library Guide

External
transaction
collector

session.YOUR_SESSION_NAME
.useExternalTransactionController=true

session.YOUR_SESSION_NAME
.externalTransactionController=oracle.toplink.jt
s.was.WebSphereJTSExternalTransactionControl
ler

<session>

<login>

<uses-external-transaction-controller>t
rue
</uses-external-transaction-controller
>

</login>

<external-transaction-controller-class>
oracle.toplink.jts.was.WebSphereJTSEx
ternalTransactionController
</external-transaction-controller-class
>

Connection
pooling

session.YOUR_SESSION_NAME
.writePoolMax=1

session.YOUR_SESSION_NAME
.writePoolMin=1

session.YOUR_SESSION_NAME
.readPoolMax=1

session.YOUR_SESSION_NAME.
readPoolMin=1

<session>

…

<connection-pool>

<is-read-connection-pool>true
</is-read-connection-pool>

<name>sampleReadConnectionPool</nam
e>

<min-connections>1
</min-connections>

<max-connections>1
</max-connections>

</connection-pool>

Amendment
class and
amendment
method

session.YOUR_SESSION_
NAME.amendmentClass=examples.ejb
.cmp.order.SessionAmendment

session.YOUR_SESSION_
NAME.amendmentMethod=
configureSession

These options are not present in the
Sessions.xml for TopLink, as the
Sessions.xml allows for a greater degree of
control over session configuration. If you
wish to customize your session in code the
you may use the Session 'preLogin' event.
A session event class can be specified in the
Sessions.xml file to register a listener for
the preLogin, and other session events. For
more information on using this API, please
consult your TopLink documentation.

Table C–1 TopLink.properties and sessions.xml equivalents (Cont.)

Element TopLink.properties sessions.xml

EJBQL Syntax D-1

D
EJBQL Syntax

Oracle TopLink supports the syntax for EJBQL as described in the Enterprise
JavaBeans Specification v2.0. This section discusses the syntax for implementing
EJBQL.

About Backus Naur Form
Backus Naur Form (BNF) is a formal notation used to describe the syntax of a given
language. It includes the following elements:

Table D–1 BNF notation elements

Element Use

::= meaning “is defined as”

| meaning “or”

< > angle brackets used to contain the name of undefined elements. For example,
consider the following code

<INSTALL_DIR>\TopLink\core\sessions_4_5.dtd

The angle brackets indicate that the text within is not defined by the code, but
rather, requires the user to insert the appropriate string.

[] optional elements

[]* optional elements of which type there can be 0-n.

{ }+ elements, of which type there can be 1-n.

EJBQL language definition

D-2 Oracle9iAS TopLink Foundation Library Guide

EJBQL language definition
The syntax for EJBQL is defined in the Enterprise JavaBeans Specification v2.0 The
following is the EJBQL BNF extracted from the Enterprise JavaBeans Specification
Version 2.0 dated July, 2001.

EJB QL ::= select_clause from_clause [where_clause]

from_clause ::= FROM identification_variable_declaration [, identification_
variable_declaration]*

identification_variable_declaration ::=
collection_member_declaration |
range_variable_declaration

collection_member_declaration ::=
IN (collection_valued_path_expression) [AS] identifier

range_variable_declaration ::=
abstract_schema_name [AS] identifier

single_valued_path_expression ::= {
single_valued_navigation |
identification_variable}.cmp_field |
single_valued_navigation

single_valued_navigation ::=
identification_variable.[single_valued_cmr_
field.]*
single_valued_cmr_field

collection_valued_path_expression ::=
identification_variable.[single_valued_cmr_
field.]*
collection_valued_cmr_field

select_clause ::= SELECT [DISTINCT] {
single_valued_path_expression |
OBJECT (identification_variable)}

where_clause ::= WHERE conditional_expression
conditional_expression ::=

conditional_term |
conditional_expression OR conditional_term

conditional_term ::=
conditional_factor |
conditional_term AND conditional_factor

conditional_factor ::=
[NOT] conditional_test

conditional_test :: =
conditional_primary

EJBQL language definition

EJBQL Syntax D-3

conditional_primary ::=
simple_cond_expression |
(conditional_expression)

simple_cond_expression ::=
comparison_expression |
between_expression |
like_expression |
in_expression |
null_comparison_expression |
empty_collection_comparison_expression |
collection_member_expression

between_expression ::=
arithmetic_expression [NOT] BETWEEN

arithmetic_expression AND arithmetic_expression
in_expression ::=

single_valued_path_expression [NOT] IN
(string_literal [, string_literal]*)

like_expression ::=
single_valued_path_expression [NOT] LIKE
pattern_value [ESCAPE escape-character]

null_comparison_expression ::=
single_valued_path_expression IS [NOT] NULL

empty_collection_comparison_expression ::=
collection_valued_path_expression IS [NOT] EMPTY

collection_member_expression ::= {
single_valued_navigation |
identification_variable |
input_parameter}
[NOT] MEMBER [OF] collection_valued_path_expression

comparison_expression ::=
string_value { =|<>} string_expression |
boolean_value { =|<>} boolean_expression} |
datetime_value { = | <> | > | < } datetime_expression |
entity_bean_value { = | <> } entity_bean_expression |
arithmetic_value comparison_operator single_value_designator

arithmetic_value ::=
single_valued_path_expression |
functions_returning_numerics

single_value_designator ::=
scalar_expression

comparison_operator ::=
= | > | >= | < | <= | <>

scalar_expression ::=
arithmetic_expression

arithmetic_expression ::=

EJBQL language definition

D-4 Oracle9iAS TopLink Foundation Library Guide

arithmetic_term |
arithmetic_expression { + | - } arithmetic_term

arithmetic_term ::=
arithmetic_factor |
arithmetic_term { * | / } arithmetic_factor

arithmetic_factor ::=
{ + |- } arithmetic_primary

arithmetic_primary ::=
single_valued_path_expression |
literal |
(arithmetic_expression) |
input_parameter |
functions_returning_numerics

string_value ::=
single_valued_path_expression |
functions_returning_strings

string_expression ::=
string_primary |
input_expression

string_primary ::= single_valued_path_expression |
literal |
(string_expression) |
functions_returning_strings

datetime_value ::=
single_valued_path_expression

datetime_expression ::=
datetime_value |
input_parameter

boolean_value ::=
single_valued_path_expression

boolean_expression ::=
single_valued_path_expression |
literal |
input_parameter

entity_bean_value ::=
single_valued_navigation |
identification_variable

entity_bean_expression ::=
entity_bean_value |
input_parameter

functions_returning_strings ::=
CONCAT (string_expression, string_expression) |
SUBSTRING (string_expression, arithmetic_expression, arithmetic_
expression)

functions_returning_numerics::=

EJBQL language definition

EJBQL Syntax D-5

LENGTH (string_expression) |
LOCATE (string_expression, string_expression[, arithmetic_expression]) |
ABS (arithmetic_expression) |
SQRT (arithmetic_expression)

EJBQL language definition

D-6 Oracle9iAS TopLink Foundation Library Guide

Index-1

Index
A
addConversionValue() method, 7-4
addDirectMapping() method, 7-2
addField() method, B-2
addFieldTransformation() method, 7-7
addForeignKeyConstraint() method, B-2
addIdentityField() method, B-2
addPrimaryKeyField() method, B-2
addPrimaryKeyFieldName, 8-1
addTableName method, 8-9
addToAttributeOnlyConversionValue()

method, 7-5
aggregate collection mapping, 7-20
aggregate object mapping, 7-12

example, 7-11
in Java, 7-11

AggregateObjectMapping class, 7-11
AllFieldsLockingPolicy, 1-58, 1-59
application server, 2-5
array mapping, 7-27
array mappings

about, 7-26
implementing in Java, 7-27

B
batch reading, 6-3
batch writing, 1-17, 6-10
beans

enterprise Java beans, 3-1
entity bean model, 3-9
session beans, 3-2
stateful beans, 3-3
stateless, 3-3

bi-directional relationship
in one-to-one mappings, 7-13

binding, 1-16
binding and parameterized SQL

binding string data, 1-16
binding using parameters, 1-16
binding using streams, 1-16
explained, 1-16

boolean logic in expressions, 1-29
bridge

JDBC-ODBC, 1-12
other than Sun JDBC-ODBC, 1-13

C
cache

internal query object cache, 1-81
isolation, 1-18
using identity maps, 1-2

cache identity map, 6-2
caching

three-tier, 2-6
using the readObject () method, 1-26

cascading write queries
compared to non-cascading, 1-82

ChangedFieldsLockingPolicy, 1-58, 1-59
class loader

in Conversion Manager, 1-10
resolving exceptions, 1-11

classes
AggregateObjectMapping, 7-11
CursoredStream, 1-92

described, 1-92
optimizing, 1-94

Index-2

classes (cont.)
DatabaseException, 1-24
DatabaseLogin

creating the sequence table, B-5
described, 1-11

DatabaseSession
creating, 1-3
creating tables on database, B-4
described, 1-2
logging SQL and messages, 1-5
public methods, 1-8
session query operations, 1-22

DataModifyQuery
described, 1-72

DataReadQuery
described, 1-72

DeleteObjectQuery, 1-82
described, 1-72

DirectCollectionMapping, 7-16
DirectReadQuery

described, 1-72
DirectToFieldMapping, 7-2
Expression, 1-27
ExpressionBuilder, 1-31
InsertObjectQuery, 1-82, 1-83

and Unit of Work, 1-50
described, 1-72

ManyToManyMapping, 7-24
NestedTableMapping, 7-33
ObjectRelationalDescriptor, 8-19
ObjectTypeMapping, 7-4
OneToManyMapping, 7-23
OneToOneMapping, 7-13
OptimisticLockException, 1-59
PerformanceProfiler, B-16
ReadAllQuery

described, 1-72
ReadObjectlQuery

described, 1-72
ReadObjectQuery, 1-75
ReportQuery

described, 1-72
ScrollableCursor, 1-92
SerializedObjectMapping, 7-6
TableDefinition, B-2

classes (cont.)
TransformationMapping, 7-7
TypeConversionMapping, 7-3
UnitOfWork, 1-40

using to modify databases, 1-23
UpdateObjectQuery, 1-82

described, 1-72
example, 1-82

ValueReadQuery
described, 1-72

VariableOneToOneMapping, 7-15
WriteObjectQuery

described, 1-72
clearProfiler() method, B-16
client sessions, 2-3, 2-5
collection class, 1-76
composite primary key, 7-14
concurrency, 2-9
connection policies, 2-12
connection pooling

described, 2-10
ServerSession, 2-11

container-managed persistent entity beans, 3-10
Conversion Manager

assigning a custom Conversion Manager to a
session, 1-10

assigning a custom Conversion Manager to all
subsequent sessions, 1-10

class loader, 1-10
described, 1-9
using, 1-9
using custom types, 1-10

copy policy
implementing in Java, 8-9

CORBA
message optimization, 6-15
TopLink support for, 2-2
Toplink transport layer support, 2-17

createObject() method, B-4
cursored streams

described, 1-92
example, 1-93
optimizing, 1-94
ReadAllQuery methods, 1-76
usage example, 2-19

Index-3

CursoredStream class, 1-92
cursors, scrollable

traversing, 1-95
using, 1-95

custom query objects
creating, 1-84

custom SQL, 1-24
custom SQL queries

in TopLink query framework, 1-24
custom types

assigning to a TopLink session, 1-10
custom types, using with Conversion

Manager, 1-10

D
data optimization, 1-17
database access

non-relational, 2-3
using stored procedures, B-10

database and Java type conversion tables, B-5
database exceptions, 1-24
database login, 1-11

example, 1-20
database sessions, defined, 1-2
database, logging out, 1-4
DatabaseException class, 1-24
DatabaseLogin class, using to store login

information, 1-11
DatabaseRow, 7-7
DatabaseSession class

creating tables on a database, B-4
described, 1-2
instantiating, 1-3
logging SQL and messages, 1-5
public methods, 1-8
session queries, 1-22

data-level query
example, 1-37, 1-97

DataModifyQuery, 1-72
DataReadQuery, 1-72
DataSources, using JDBC2.0, 1-19
DB2 field types, B-5
dBASE field types, B-6
delete operation, 1-41

DeleteObjectQuery
defined, 1-72
example, 1-82

development tools
profiler

described, B-1
using, B-15

schema manager
described, B-1
using, B-2

session console
described, B-1
using, B-11

direct collection mapping, 7-17
direct collection mappings

example, 7-17
in Java code, 7-16

direct connect drivers, 1-19
direct map mapping, 7-22
DirectCollectionMapping class, 7-16
DirectReadQuery, 1-72
direct-to-field mappings, 7-3

in Java code, 7-2
DirectToFieldMapping class, 7-2
Distributed Transaction Processing (DTP), 2-26
does exist write object, 6-11
drivers, direct connect, 1-19
DTP see Distributed Transaction Processing, 2-26

E
EJB Entity Beans, 2-3
EJB see Enterprise Java Beans, 3-1
EJB Session Beans, 2-2, 2-17
enterprise applications, 2-1
Enterprise Java Beans (EJB), 3-1
enterprise Java beans, in TopLink for BEA

WebLogic, 3-1
entity bean model, 3-9
entity beans

container managed, 3-10
features, 2-3

event
implementing in Java, 8-21

event manager, 1-68

Index-4

events
listeners, 8-22
registering listeners, 8-22

events, session, 1-68
examples

identity maps, 8-17
multiple tables, 8-14
optimistic locking, 1-60
performance optimization, 6-6, 6-8
read query, B-17
report query, 1-89
scrollable cursors, 1-95
serialized object mapping, 7-6
session broker, 2-21
session event manager, 1-70
SQL queries, 1-96
stored procedure call, 1-98
stored procedures, generating, B-11
transformation mapping, 7-8
type conversion mapping, 7-3
unit of work, 1-45, 1-48, 1-54
variable one-to-one mapping, 7-15, 7-16
write, write all, 1-42

exception handlers, 1-6
exceptions

database, 1-24
Expression class, 1-27
expression components, 1-28
ExpressionBuilder, 1-31
expressions

parameterized, 1-33
using Boolean logic, 1-29

F
field locking policies, 1-57, 1-59, 8-16
field types

DB2, B-5
dBASE, B-6
Microsoft Access, B-8
Oracle, B-6
Sybase, B-7

fields, adding to a table definition, B-3

foreign keys, 1-34
addForeignKeyConstraint(), B-2
direct collection mappings, 7-17
one-to-one mappings, 7-13

framework, query, 1-22
full identity map, 6-2

G
getInheritancePolicy(), 8-2
getWrapperPolicy(), 8-21

H
HTML, 2-2

I
identity maps, 1-2, 1-4, 1-77

cache identity map, 6-2
example, 1-77
full identity map, 6-2
implementing in Java, 8-17
soft cache identity map, 6-2
soft cache weak identity map, 6-2
weak identity map, 6-2

indirection, 2-18, 6-2
implementing in Java, 8-18
in transformation mapping, 7-8

example, 7-8
Java class requirements, 8-20
one-to-many mappings, 7-13
specifying for classes in Java, 8-20

Informix
using native sequencing, 1-15

inheritance
class extraction methods, 8-3
creating hierarchy in Java, 8-2
implementing in Java, 8-2
leaf classes, 1-25
querying on hierarchy, 1-25
transformed to relational model, 6-18

InheritancePolicy method, 8-8
in-memory query, 1-78
insert operation, 1-40, 1-41

Index-5

InsertObjectQuery, 1-72
instantiation policy

implementing in Java, 8-15
methods, 8-15
overridinging in Java, 8-15

integrity checker, 1-6
interfaces

implementing in Java, 8-8
internal query object cache, 1-81
isolation, cache, 1-18
OTS see, 2-28
Iterator interface, 1-94
iterator interface, 1-92

J
Java and database type conversion tables, B-5
Java Messaging Service

described, 2-58
setting up in Java, 2-59
setting up in session configuration file, 2-59

Java optimization, 6-14
Java streams, 1-92
Java Transaction Service (JTS), 2-3, 2-25, 2-28

example, 2-25
JavaBeans, 3-1
JConnect (Sybase), 1-18
JDBC2.0 DataSources, 1-19
JDBC-ODBC bridge, 1-12
JMS, see Java Messaging Service
joining, 6-3
joins, outer, 1-37
JPS, 2-2
JTS (Java Transaction Service)

TopLink feature support, 2-3
TopLink integration, 2-25

JTS implementation
extending in Toplink, 2-34
in BEA WebLogic, 2-34

K
keys

foreign, 7-13, B-2
primary, B-2
primary, composite, 7-14

L
leaf classes, 1-25
listeners, event, 8-22
ListIterator interface, 1-92
locking

pessimistic, 1-64
locking policies

implementing in Java, 8-16
logging into the database, 1-11
logging out, 1-4
login class

creating for projects created in Mapping
Workbench, 1-12

creating for projects not created in Mapping
Workbench, 1-11

login parameters
setting in code, 1-13

M
manager, session events, 1-68
manual transactions, 1-18
many-to-many mapping, 7-25

example, 7-25
Java, 7-24

ManyToManyMapping class, 7-24
mapping

attribute, 7-12
direct-to-field, 7-3
many-to-many, 7-25
object type, 7-5
relationship, 7-12
serialized object, 7-6
transformation, 7-8
transformation, properties, 7-10
type conversion, 7-3, 7-4

Index-6

Mapping Workbench
multiple projects, 2-23
sessions, registering, 1-3

methods
addDirectMapping(), 7-2
addField(), B-2
addForeignKeyConstraint(), B-2
addIdentityField(), B-2
addPrimaryKeyField(), B-2
addTableName, 8-9
addToAttributeOnlyConversionValue(), 7-5
clearProfiler(), B-16, B-17
copy policy, 8-9
createObject(), B-4
instantiation, 8-15
replaceObject(), B-4
setDefaultAttributeValue(), 7-5
setName(), B-2
setProfiler(), B-16, B-17
wrapper policy, 8-21

Microsoft Access field types, B-8
multiple tables

implementing in Java, 8-9
implementing in Java when primary keys are

named differently, 8-10
implementing in Java when primary keys

match, 8-9
implementing in Java when related by foreign

key, 8-11
implementing in Java, non-standard table

relationships, 8-12
multi-processing, 6-13

N
native sequencing, 1-15

Oracle, B-5
SQL Server, B-3
Sybase, B-3

nested table mapping, 7-34
nested table mappings

about, 7-33
Java, 7-33

NestedTableMapping class, 7-33

non-cascading write queries
compared to cascading, 1-82
creating using dontCascadeParts ()

method, 1-82
non-relational database access, 2-3
non-standard table relationships

implementing in Java, 8-12
Normally, 8-3

O
object array mapping, 7-29

about, 7-28
object array mappings

implementing in Java, 7-28
object identity, 1-2, 1-4
object indirection, 6-2
object model, 1-25, 1-27, 6-15
object reading, partial, 6-3
Object Transaction Service, 2-28
Object Transaction Service (OTS), 2-28
object type mapping, 7-5

example, 7-5
object, cache, 1-58, 1-81
object-relational descriptors

implementing in Java, 8-19
ObjectRelationalDescriptor class, 8-19
objects

query, 1-71, 1-85
ObjectTypeMapping class, 7-4
one-to-many mapping, 7-24

example, 7-23
Java, 7-23

OneToManyMapping class, 7-23
one-to-one mapping, 7-14

example, 7-13
Java, 7-13
variable class relationships, 7-16

OneToOneMapping class, 7-13
operators

boolean logic, 1-29
optimistic locking, 1-57

database exception, 1-24
field locking policy, 1-58
version locking policy, 1-58

Index-7

OptimisticLockException class, 1-59
optimization

data, 1-17
Java, 6-14
performance, 6-1
schema, 6-15

Oracle
field types, B-6
remote session support for, 2-17
using native sequencing, 1-15

OrbixWeb, 2-17
outer joins, 1-37

P
parameter binding, 1-16
parameterized expressions

described, 1-33
example, 1-34

parameterized SQL
described, 1-16
enabling on queries, 1-75
TopLink optimization features, 6-10

partial object reading, 6-3
Performace Profiler, B-15
performance optimization

described, 6-1
examples, 6-3
using Performance Profiler, B-15

PerformanceProfiler class, B-16
persistent entity beans, 3-10
pessimistic locking

described, 1-64
example, 1-65

pooling, connection, 2-10
primary key

addPrimaryKeyField(), B-2
composite, 7-14
implementing in Java, 8-1

Profiler, 1-5
profiler development tool, B-1, B-15
proxy indirection

implementing in Java, 8-19

Q
queries

cascading, 1-82
SQL, 1-96

query
in-memory, 1-78
report, 6-3

query by example, 1-85
query framework, 1-22
query keys

implementing in Java, 8-17
query methods, 1-25
query objects

creating, overview, 1-73
DataModifyQuery

described, 1-72
DataReadQuery

described, 1-72
defined, 1-81
DeleteObjectQuery

described, 1-72
DirectReadQuery

described, 1-72
examples, 1-73, 1-74
in TopLink query framework, 1-23
InsertObjectQuery

described, 1-72
ReadAllQuery

described, 1-72
ReadObjectQuery

described, 1-72
relationship to database, 1-4
ReportQuery

described, 1-72
UpdateObjectQuery

described, 1-72
using, 1-71
using in place of session methods, 1-82
ValueReadQuery

described, 1-72
WriteObjectQuery

described, 1-72
query timeout example, 1-74
query, report, 1-89

Index-8

R
read all operation, 1-26
read operation, 1-26
read query example, B-16, B-16, B-17
ReadAllQuery, 1-72
reading, batch, 6-3
readObject()

example, 1-27
reference mapping, 7-32

example, 7-32
in Java, 7-32

ReferenceMapping class, 7-31
refresh operation, 1-27
relational mappings

about, 7-26
relationship

bi-directional, 7-13
variable class, 7-16

remote connection using RMI
example, 2-19

remote session, 2-13
replaceObject() method, B-4
report query

use case, 6-3
using, 1-89

ReportQuery, 1-72
RMI

message optimization, 6-15
remote session support, 2-17
TopLink features, 2-2

S
samples. see examples
schema creation, 2-5
schema manager, B-5
schema manager development tool, B-1
schema, optimization, 6-15
scrollable cursors

and cursored streams, 1-92
traversing, 1-95
using, 1-95
using for ReadAllQuery, 1-76

ScrollableCursor class, 1-92

SDK for non-relational database access, 2-3
SelectedFieldsLockingPolicy, 1-58, 1-59
sequence numbers

implementing in Java, 8-14
preallocation, 6-12
specifying, 1-14
SQL Server, B-3
Sybase, B-3
write optimization features, 6-10

sequence table, 1-15
serialized object mappings, 7-6

example, 7-6
Java, 7-6

SerializedObjectMapping class, 7-6
server layer, 2-17
server sessions

described, 2-3
overview of use, 2-6

ServerSession connection options, 2-11
servlets, 2-2
Session, 7-7
session bean model, 3-2
session beans

model, 3-2
remote session support for, 2-17
TopLink EJB features, 2-2

session broker, 2-20
session console development tool, B-1, B-11
session event manager, 1-68
session queries, 1-22

in TopLink query framework, 1-22
session, remote, 2-13
SessionManager

retrieving a session, 3-6
session location, 3-6

sessions, database, 1-1, 1-2
sessions, logging out, 1-4
setAttributeClassification(), 7-3
setAttributeName(), 7-3, 7-4, 7-6, 7-7
setAttributeTransformation(), 7-7
setDefaultAttributeValue(), 7-5
setFieldClassification(), 7-3
setFieldName(), 7-2, 7-3, 7-4, 7-6
setGetMethodName(), 7-2, 7-3, 7-4, 7-6, 7-7
setName() method, B-2

Index-9

setPrimaryKeyFieldName, 8-1
setProfiler() method, B-16, B-17
setSequenceNumberFieldName, 8-14
setSetMethodName(), 7-2, 7-3, 7-4, 7-6, 7-7
setWrapperPolicy(), 8-21
soft cache weak identity map, 6-2
SQL, 1-14, 1-27

binding and parameterizing, 1-16
custom, 1-24
parameterized, 6-10
queries, 1-96

SQL DISTINCT, 6-8
SQL queries

in TopLink query framework, 1-24
SQL Server

native sequencing, 1-15
SQL, parameterized, 1-75
stateful and stateless beans compared, 3-3
stateful beans, 3-3
stateful three-tier model, 2-5
stateless and stateful beans compared, 3-3
stateless beans, 3-3
stateless three-tier model, 2-5
stored procedures, 1-97
stored procedures, generating, B-10
streams, cursored, 1-94, 2-19
streams, Java, 1-92
structure mapping, 7-31
structure mappings

Java, 7-30
StructureMapping class, 7-29
Swing, B-12
Sybase

field types, B-7
JConnect2.x, 1-18
using native sequencing, 1-15

T
table definition, adding fields, B-3
TableDefinition

creating for the EMPLOYEE table, B-4
TableDefinition class, B-2
TableDefinition, creating, B-4

tables
creator/qualifier, 1-14

The Open Group, 2-26
three box model, 2-26
three-tier applications, 2-1

migrating to scalable architecture, 1-2
TimestampLockingPolicy, 1-58
transactions, 1-42, 2-5
transactions, manual, 1-18
transformation mappings

example, 7-8
indirection, 7-8
properties, 7-10

TransformationMapping class, 7-7
transport layer, 2-16
troubleshooting, unit of work, 1-54
two-phase commit with presumed rollback, 2-27
two-phase/two-stage commits, 2-21
type conversion mappings, 7-4

example, 7-3
TypeConversionMapping class, 7-3

U
unit of work, 1-3, 1-42, 1-44, 1-46, 1-47, 1-48, 1-49,

1-50, 1-51, 2-5, 6-2, 6-10
troubleshooting, 1-54
validation, 1-53

unit of work, remote sessions, 2-19
unit of work, three-tier, 2-8
UnitOfWork class, 1-23, 1-40
update operation, 1-40, 1-41
UpdateObjectQuery, 1-72
useAllFieldsLocking, 1-59
useAllFieldsLocking, 8-16
useChangedFieldsLocking, 1-59
useChangedFieldsLocking, 8-16
useCloneCopyPolicy(), 8-9
useCloneCopyPolicy(String), 8-9
useConstructorCopyPolicy(), 8-9
useDefaultConstructorInstantiationPolicy(), 8-15
useFactoryInstantiationPolicy(), 8-15
useMethodInstantiationPolicy(), 8-15
useProxyIndirection(), 8-19
useSelectedFieldsLocking, 1-59

Index-10

useSelectedFieldsLocking, 8-16
useTimestampLocking, 1-59
useTimestampLocking, 8-16
useVersionLocking, 1-59
useVersionLocking, 8-16

V
validation, 1-53
ValueReadQuery, 1-72
variable class relationships, 7-16
variable one-to-one mapping, 7-16
VariableOneToOneMapping class, 7-15
version fields, 1-57, 1-58
version locking policies, 1-57, 1-58, 1-59, 8-16
VersionLockingPolicy, 1-58
VisiBroker, 2-17

W
weak identity map, 6-2
weak identity map, soft cache, 6-2
WebLogic, 2-17, 2-31, 2-34, 3-1
wrapper policy

implementing in Java, 8-21
setting in Java, 8-21

write all operation, 1-41
write query objects, 1-82
WriteObjectQuery, 1-72
writing, batch, 1-17, 6-10

X
X/Open (The Open Group), 2-26

	Oracle9iAS Toplink Foundation Library Guide
	Contents
	Send Us Your Comments
	Preface
	1 Working with Database Sessions
	Understanding Database sessions
	DatabaseSession class
	Creating a database session
	Registering TopLink Mapping Workbench descriptors with a session
	Registering Java descriptors with a session
	Registering descriptors after login
	Connecting to the database
	Database interaction
	Caching objects
	Logging out of the database

	Logging SQL and messages
	Profiler
	Integrity checker
	Exception handlers
	JTS and external transaction controllers
	Creating database sessions: examples
	Reference

	Using the Conversion Manager
	Creating custom types with the Conversion Manager
	Assigning custom classes to a TopLink session
	The Conversion Manager class loader
	Resolving class loader exceptions

	Database login information
	Creating a login object
	Specifying database and driver information
	Using the Sun JDBC-ODBC bridge
	Using a different driver

	Setting login parameters
	Table Creator/Qualifier
	Native SQL
	Sequence number parameters
	Binding and parameterized SQL
	Batch writing
	Data optimization
	Cache isolation
	Manual transactions
	External transactions and connection pooling
	Other database connections
	Direct connect drivers
	Using JDBC�2.0 data sources
	Custom database connections

	Building database logins: examples
	Reference

	Using the query framework
	Session queries
	Query objects
	Custom SQL queries
	Database exceptions
	Querying on an inheritance hierarchy
	Querying on interfaces

	Using session queries
	Reading objects from the database
	Read operation
	Read all operation
	Refresh operation
	Using expression builder
	Using query by example

	Writing objects to the database
	Writing a single object to the database
	Writing all objects to the database
	Adding new objects to the database
	Modifying existing objects in the database
	Deleting objects in the database
	Writing objects: Examples

	Using transactions
	Transaction operations
	Nesting transactions
	Implementing a transaction in Java code

	Using units of work
	Understanding the unit of work
	Creating a unit of work
	Registering existing objects with a unit of work
	Reading objects using a unit of work
	Creating new objects in a unit of work
	Writing objects using a unit of work
	Deleting objects through a unit of work
	Resuming a unit of work
	Reverting a unit of work
	Executing queries from the unit of work
	Nested and parallel units of work
	Inside a unit of work
	Advanced features
	Read-only classes
	Read-Only descriptors
	Always Conform Descriptors
	Merging
	Validation

	Troubleshooting the unit of work
	Examples of units of work
	Reference

	Working with locking policies
	Using optimistic lock
	Advantages and disadvantages
	Version locking policies
	Field locking policies
	Java implementation of optimistic locking
	Advanced optimistic locking policies

	Using optimistic read lock
	Working with version fields

	Pessimistic locking
	Advantages and disadvantages
	Reference

	Session event manager
	Session events
	Using the session event manager: examples
	Reference

	Query objects
	Query object components
	Query types
	Creating query objects
	Executing queries
	Query timeout
	Read query objects
	Parameterized SQL
	Ordering for read all queries
	Specifying the collection class
	Using cursoring for a ReadAllQuery
	Query optimization
	Query return maximum rows
	Partial object reading
	Refreshing the identity map cache during a read query
	In-memory querying and unit of work conforming
	Conforming results in a unit of work
	Handling exceptions resulting from in-memory queries

	Disabling the identity map cache update during a read query
	Internal query object caches
	Write query objects
	Non-cascading write queries
	Disabling the identity map cache during a write query
	Using query objects to customize the default database operations
	Creating custom query operations
	Using Query Redirectors
	Reference

	Query by example
	Defining a sample instance
	Defining a query by example policy
	Combining query by example with expressions
	Reference

	Report query
	Reference

	Cursored streams and scrollable cursors
	Java streams
	Supporting streams
	Using cursored streams and scrollable cursors: examples
	Optimizing streams
	Java iterators
	Supporting scrollable cursor
	Traversing scrollable cursors

	SQL and stored procedure call queries
	SQL Queries
	Data-level queries
	Stored procedure calls
	Output parameters
	Cursor output parameters
	Output parameter event

	Reference

	2 Developing Enterprise Applications
	Three-tier and enterprise applications
	Client and server sessions
	Client sessions
	Server sessions
	Caching database information on the server
	Providing client read access
	Providing client write access
	Concurrency
	Connection pooling
	ServerSession connection options

	Connection options
	ClientSession connection options

	Connection policies
	Reference

	Remote sessions
	Architectural overview
	Application layer
	Transport layer
	Server layer

	Accessibility issues
	Queries
	Refreshing
	Indirection
	Cursored streams
	Unit of work
	Creating a remote connection using RMIConnection

	Session broker
	Two-phase/two-stage commits
	Using the session broker
	Using the session broker in a three-tier architecture
	Creating multiple projects in the Mapping Workbench
	Limitations
	Advanced use
	Reference

	Java Transaction Service (JTS)
	Review of transactions and transaction management
	Distributed transactions
	Transaction managers
	Two-phase commit with presumed rollback
	Relationship between OMG Object Transaction Service (OTS) and Java Transaction Service (JTS)
	JTS transaction synchronization
	TopLink unit of work and the synchronization interface
	Writing to a database in three-tier environment
	External connection pools and external transaction control

	Extending TopLink’s JTS capabilities

	TopLink support for Java Data Objects (JDO)
	Understanding the JDO API
	JDO implementation
	JDOPersistenceManagerFactory
	JDOPersistenceManager
	JDOQuery
	JDOTransaction

	Running the TopLink JDO demo

	Distributed Cache Synchronization
	Controlling the sessions: the Cache�Synchronization�Manager
	Using Cache Synchronization Manager options
	Using a clustering service

	Configuring cache synchronization
	Connecting the sessions
	Using Java Messaging Service
	Preparing to use JMS
	Setting up JMS in the session configuration file
	Setting up JMS in Java

	3 Working with Enterprise JavaBeans
	The EJB specification
	Additional information

	Using the session bean model
	Session beans and DatabaseSessions
	Interactions with JTS
	Using session beans with TopLink’s three-tier application model
	Using the Session Manager
	Retrieving a session from a SessionManager
	Using the default configuration file: sessions.xml
	Using the XMLLoader

	Using the entity bean model
	TopLink and container-managed persistent entity beans

	4 EJBQL Support
	Why use EJBQL?
	EJBQL structure
	Basic structure
	The FROM clause
	The FROM clause defined
	Using the FROM clause: a few examples

	The SELECT clause
	Using the SELECT clause: a few examples

	The WHERE clause
	Using constants
	Comparison Operators
	Logical operators
	Null Comparison Expressions: Null
	Range Expressions
	Functional Expressions
	Input Parameters

	Combining Clauses
	Multiple clauses: a few examples

	Using EJBQL with TopLink
	ReadAllQuery
	Session

	5 SDK for XML and Non�relational Database Access
	Using the TopLink SDK
	Accessor
	Data Store Connection
	Call Execution
	Transaction Processing

	Calls
	Read Object Call
	Read All Call
	Insert Call
	Update Call
	Delete Call
	Does Exist Call
	Custom Call
	Database Row
	FieldTranslator
	SDKDataStoreException

	Descriptors and Mappings
	SDKDescriptor
	Standard mappings
	SDK Mappings

	Sessions
	SDKPlatform
	SDKLogin
	TopLink Project
	Session
	Unsupported features

	Using TopLink XML support
	Getting Started
	Configure your Login using an XMLFileLogin.
	Build your Project.
	Build your Descriptors using XMLDescriptors.
	Build your Mappings
	Build your DatabaseSession and log in.
	Build your sequences, if necessary.
	Use the Session

	Customizations
	Implementation details
	XMLFileAccessor
	XMLAccessor implementation
	Directory creation

	XMLCall
	XMLStreamPolicy
	XMLTranslator
	XMLTranslator implementations

	XMLDescriptor
	XMLPlatform
	XMLFileLogin
	XMLSchemaManager
	XMLAccessor
	XMLTranslator
	DefaultXMLTranslator
	SDKAggregateObjectMapping
	SDKDirectCollectionMapping

	XML Zip File Extension
	Using the Zip file extension
	Configure direct file access with Zip File extension
	Implementation details

	6 Performance Optimization
	Basic performance optimization
	TopLink reading optimization features
	Reading Case 1: Displaying names in a list - optimized through partial object reading and report ...
	Partial object reading
	Conclusion

	Reading Case 2: Batch reading objects
	Conclusion

	Reading Case 3: Using complex custom SQL queries
	Reading Case 4: Viewing objects

	TopLink writing optimization features
	Writing Case�1: Batch writes
	Batching and cursoring
	Sequence number pre-allocation
	Batch writing
	Parameterized SQL
	Multi-processing

	Optimization check list

	Schema optimization
	Schema Case 1: Aggregation of two tables into one
	Domain

	Schema Case 2: Splitting one table into many
	Domain

	Schema Case 3: Collapsed hierarchy
	Domain

	Schema Case 4: Choosing one out of many
	Domain

	7 Mapping Implementation
	Direct mappings
	Direct-to-field mappings
	Reference

	Type conversion mappings
	Reference

	Object type mappings
	Reference

	Serialized object mappings
	Reference

	Transformation mappings
	Implementing transformation mappings in Java
	Reference

	Relationship mappings
	Aggregate object mappings
	Reference

	One-to-one mappings
	Reference

	Variable one-to-one mappings
	Reference

	Direct collection mappings
	Reference

	Aggregate collections
	When to use aggregate collections
	Aggregate collections and inheritance
	Java implementation
	Reference

	Direct map mappings
	Reference

	One-to-many mappings
	Reference

	Many-to-many mappings
	Reference

	Object relational mappings
	Array mappings
	Implementing array mappings in Java
	Reference

	Object array mappings
	Implementing object array mappings in Java
	Reference

	Structure mappings
	Implementing structure mappings in Java
	Reference

	Reference mappings
	Implementing reference mappings in Java
	Reference

	Nested table mappings
	Implementing nested table mappings in Java
	Reference

	8 Descriptor Implementation
	Implementing primary keys in Java
	Implementing inheritance in Java
	Reference

	Implementing interfaces in Java
	Setting the copy policy using Java
	Implementing multiple tables in Java code
	Primary keys match
	Primary keys are named differently
	Tables related by foreign key relationships
	Non-standard table relationships

	Implementing sequence numbers in Java
	Overriding the instantiation policy using Java code
	Implementing locking in Java
	Implementing identity maps in Java
	Implementing query keys in Java
	Implementing indirection in Java
	Implementing proxy indirection in Java
	Implementing object-relational descriptors in Java
	Changing Java classes to use indirection
	Setting the wrapper policy using Java code
	Implementing events using Java
	Registering event listeners
	Reference

	A Sessions.xml DTD
	sessions.xml dtd

	B TopLink Development Tools
	The Schema Manager
	Using the Schema Manager to create tables
	Creating a table definition
	Adding fields to a table definition
	Defining Sybase and SQL Server sequence numbers
	Example of table definition
	Creating tables on the database
	Creating the sequence table

	Using the Schema Manager to manage Java and database type conversions

	Session management services
	RuntimeServices
	DevelopmentServices
	Using session management services

	The stored procedure generator
	Generation of stored procedures
	Attaching the stored procedures to the descriptors

	The Session Console
	Requirements
	Using session console features
	Launching the session console from code

	The Performance Profiler
	Using the profiler
	Browsing the profiler results

	C TopLink Session Configuration File
	Contents of the sessions.xml file
	Converting from TOPLink.properties file to sessions.xml

	D EJBQL Syntax
	About Backus Naur Form
	EJBQL language definition

	Index

