
Oracle9iAS TopLink

Tutorials

Release 2 (9.0.3)

August 2002

Part No. B10062-01

Oracle9iAS TopLink Tutorials, Release 2 (9.0.3)

Part No. B10062-01

Copyright © 2002, Oracle Corporation. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and OracleMetaLink, Oracle Store, Oracle9i, Oracle9iAS Discoverer,
SQL*Plus, and PL/SQL are trademarks or registered trademarks of Oracle Corporation. Other names
may be trademarks of their respective owners.

iii

Contents

Send Us Your Comments .. vii

Preface.. ix

Intended Audience .. ix
Documentation Accessibility .. x
Structure ... x
Related Documents.. xi
Conventions... xii

1 Introductory Tutorial

Overview .. 1-1
Creating the Database Schema... 1-2
Creating a New Project .. 1-3

Setting the Project’s Classpath.. 1-6
Enabling Your Java Classes... 1-8

Generating the Class Definitions.. 1-10
Logging into the Database .. 1-13
Creating Tables.. 1-14

Creating Tables Using the Mapping Workbench .. 1-14
Creating the Table Definitions... 1-14
Creating the Tables on the Database .. 1-15

Importing Tables from the Database ... 1-16
Mapping Classes and Tables in the Descriptor .. 1-18

Mappings.. 1-18

iv

Descriptors.. 1-18
Mapping Classes to Tables .. 1-18
Preparing the Primary Keys .. 1-20
Setting the Sequence Table .. 1-20
Implementing Direct-to-field Mappings ... 1-22
Setting the Sequence Name ... 1-23
Creating One-to-one Mappings Between Objects.. 1-25

Foreign Key References .. 1-26
Creating One-to-many Mappings .. 1-28

Setting up Database Sessions ... 1-30
Logging into a Database .. 1-31
Creating the Tables in Code .. 1-31

Using Descriptors in an Application... 1-32
Transactions and Units of Work... 1-32
Reading and Writing Java Class Instances.. 1-33
Using a Unit of Work to Write an Object .. 1-34
Using a Session to Read an Object.. 1-35

Conclusion.. 1-37

2 Advanced Tutorial

Creating the Database Schema ... 2-2
Creating a New Project .. 2-7

Mapping Classes to Tables .. 2-8
Using the Automap Tool.. 2-8
Implementing Indirection ... 2-9

Preparing Java Code for Indirection .. 2-9
Implementing Indirection in the Mapping Workbench.. 2-11
Implementing Indirection in the Tutorial ... 2-11

Implementing a One-to-one self Relationship ... 2-12
Creating Other One-to-one Mappings... 2-14

Implementing a One-to-many Self-relationship .. 2-15
Creating Other One-to-many Mappings ... 2-16

Using Multiple Tables.. 2-16
Implementing Object Type Mapping ... 2-17
Implementing an Aggregate Object .. 2-18

v

Implementing a Direct Collection Mapping ... 2-20
Implementing a Many-to-many Mapping ... 2-21
Implementing Inheritance .. 2-23
Implementing a Transformation Mapping .. 2-25
Mapping the Remaining Attributes.. 2-26
Generating Code ... 2-27

Index

vi

vii

Send Us Your Comments

Oracle9iAS TopLink Tutorials, Release 2 (9.0.3)

Part No. B10062-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

� Did you find any errors?
� Is the information clearly presented?
� Do you need more information? If so, where?
� Are the examples correct? Do you need more examples?
� What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

� Electronic mail: iasdocs_us@oracle.com
� FAX: 650-506-7407 Attn: Oracle9i Application Server Documentation Manager
� Postal service:

Oracle Corporation
Oracle9i Application Server Documentation
500 Oracle Parkway, M/S 2op3
Redwood Shores, CA 94065
USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

 If you have problems with the software, please contact your local Oracle Support Services.

viii

ix

Preface

This document provides basic and advanced tutorials, illustrating how to use
TopLink Mapping Workbench.

This preface contains the following topics:

� Intended Audience

� Documentation Accessibility

� Structure

� Related Documents

� Conventions

Intended Audience
This document is intended for new Mapping Workbench users who want to quickly
build a Mapping Workbench project and use many of TopLink’s features.

This document assumes that you are familiar with the concepts of object-oriented
programming, the Enterprise JavaBeans (EJB) specification, and with your own
particular Java development environment.

The document also assumes that you are familiar with your particular operating
system (such as Windows, UNIX, or other). The general operation of any operating
system is described in the user documentation for that system, and is not repeated
in this manual.

x

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle Corporation is actively engaged with other
market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional information,
visit the Oracle Accessibility Program Web site at
http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations
that Oracle Corporation does not own or control. Oracle Corporation neither
evaluates nor makes any representations regarding the accessibility of these Web
sites.

Structure
This document includes the following chapters:

Chapter 1, "Introductory Tutorial"
This chapter describes how to create a simple Mapping Workbench project from a
database including: enabling Java classes, working with database tables, and
implementing mappings.

Chapter 2, "Advanced Tutorial"
This chapter includes information on advanced TopLink functions such as: self
relationships and advanced mapping types, inheritance, transformations, and
generating code.

xi

Related Documents
For more information, see these Oracle resources:

Oracle9iAS TopLink Getting Started
Provides installation procedures to install and configure TopLink. It also introduces
the concepts with which you should be familiar to get the most out of TopLink.

Oracle9iAS TopLink Tutorial
Provides tutorials illustrating the use of TopLink. It is written for developers who
are familiar with the object-oriented programming and Java development
environments.

Oracle9iAS TopLink Foundation Library Guide
Introduces TopLink and the concepts and techniques required to build an effective
TopLink application. It also gives a brief overview of relational databases and
describes who TopLink accesses relational databases from the object-oriented Java
domain.

Oracle9iAS TopLink Mapping Workbench Reference Guide
Includes the concepts required for using the TopLink Mapping Workbench, a
stand-alone application that creates and manages your descriptors and mappings
for a project. This document includes information on each Mapping Workbench
function and option and is written for developers who are familiar with the
object-oriented programming and Java development environments.

Oracle9iAS TopLink Container Managed Persistence for Application
Servers
Provides information on TopLink container-managed persistence (CMP) support
for application servers. Oracle provides an individual document for each
application server specifically supported by TopLink CMP.

Oracle9iAS TopLink Troubleshooting
Contains general information about TopLink’s error handling strategy, the types of
errors that can occur, and Frequently Asked Questions (FAQs). It also discusses

xii

troubleshooting procedures and provides a list of the exceptions that can occur, the
most probable cause of the error condition, and the recommended action.

In North America, printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

Customers in Europe, the Middle East, and Africa (EMEA) can purchase
documentation from

http://www.oraclebookshop.com/

Other customers can contact their Oracle representative to purchase printed
documentation.

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http://otn.oracle.com/admin/account/membership.html

If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://otn.oracle.com/docs/index.htm

Conventions
This section describes the conventions used in the text and code examples of this
documentation set. It describes:

� Conventions in Text

� Conventions in Code Examples

� Conventions for Microsoft Windows Operating Systems

xiii

Conventions in Text
We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Conventions in Code Examples
Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line
statements. They are displayed in a monospace (fixed-width) font and separated
from normal text as shown in this example:

SELECT username FROM dba_users WHERE username = ’MIGRATE’;

The following table describes typographic conventions used in code examples and
provides examples of their use.

Convention Meaning Example

Italics Italic typeface indicates book titles or
emphasis.

Oracle9i Database Concepts

Ensure that the recovery catalog and target
database do not reside on the same disk.

lowercase
monospace
(fixed-width)
font

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Enter sqlplus to open SQL*Plus.

The password is specified in the orapwd file.

Back up the datafiles and control files in the
/disk1/oracle/dbs directory.

The department_id and location_id
columns are in the hr.departments table.

Set the QUERY_REWRITE_ENABLED
initialization parameter to true.

Connect as oe user.

The JRepUtil class implements these
methods.

lowercase
italic
monospace
(fixed-width)
font

Lowercase italic monospace font
represents placeholders or variables.

You can specify the parallel_clause.

Run Uold_release.SQL where old_
release refers to the release you installed
prior to upgrading.

Convention Meaning Example

[] Brackets enclose one or more optional
items. Do not enter the brackets.

DECIMAL (digits [, precision])

xiv

{ } Braces enclose two or more items, one of
which is required. Do not enter the
braces.

{ENABLE | DISABLE}

| A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

{ENABLE | DISABLE}

[COMPRESS | NOCOMPRESS]

... Horizontal ellipsis points indicate either:

� That we have omitted parts of the
code that are not directly related to
the example

� That you can repeat a portion of the
code

CREATE TABLE ... AS subquery;

SELECT col1, col2, ... , coln FROM
employees;

 .
 .
 .

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

Other notation You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

 acctbal NUMBER(11,2);

 acct CONSTANT NUMBER(4) := 3;

Italics Italicized text indicates placeholders or
variables for which you must supply
particular values.

CONNECT SYSTEM/system_password

DB_NAME = database_name

UPPERCASE Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

SELECT last_name, employee_id FROM
employees;

SELECT * FROM USER_TABLES;

DROP TABLE hr.employees;

lowercase Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names
of tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

SELECT last_name, employee_id FROM
employees;

sqlplus hr/hr

CREATE USER mjones IDENTIFIED BY ty3MU9;

Convention Meaning Example

xv

Conventions for Microsoft Windows Operating Systems
The following table describes conventions for Microsoft Windows operating
systems and provides examples of their use.

Convention Meaning Example

Choose Start > How to start a program. To start the Oracle Database Configuration
Assistant, choose Start > Programs > Oracle -
HOME_NAME > Configuration and Migration
Tools > Database Configuration Assistant.

File and directory
names

File and directory names are not case
sensitive. The following special characters
are not allowed: left angle bracket (<),
right angle bracket (>), colon (:), double
quotation marks ("), slash (/), pipe (|),
and dash (-). The special character
backslash (\) is treated as an element
separator, even when it appears in quotes.
If the file name begins with \\, then
Windows assumes it uses the Universal
Naming Convention.

c:\winnt"\"system32 is the same as
C:\WINNT\SYSTEM32

C:\> Represents the Windows command
prompt of the current hard disk drive.
The escape character in a command
prompt is the caret (^). Your prompt
reflects the subdirectory in which you are
working. Referred to as the command
prompt in this manual.

C:\oracle\oradata>

The backslash (\) special character is
sometimes required as an escape
character for the double quotation mark
(") special character at the Windows
command prompt. Parentheses and the
single quotation mark (’) do not require
an escape character. Refer to your
Windows operating system
documentation for more information on
escape and special characters.

C:\>exp scott/tiger TABLES=emp
QUERY=\"WHERE job=’SALESMAN’ and
sal<1600\"

C:\>imp SYSTEM/password
FROMUSER=scott TABLES=(emp, dept)

HOME_NAME Represents the Oracle home name. The
home name can be up to 16 alphanumeric
characters. The only special character
allowed in the home name is the
underscore.

C:\> net start OracleHOME_
NAMETNSListener

xvi

ORACLE_HOME
and ORACLE_
BASE

In releases prior to Oracle8i release 8.1.3,
when you installed Oracle components,
all subdirectories were located under a
top level ORACLE_HOME directory that by
default used one of the following names:

� C:\orant for Windows NT

� C:\orawin95 for Windows 95

� C:\orawin98 for Windows 98

This release complies with Optimal
Flexible Architecture (OFA) guidelines.
All subdirectories are not under a top
level ORACLE_HOME directory. There is a
top level directory called ORACLE_BASE
that by default is C:\oracle. If you
install Oracle9i release 1 (9.0.1) on a
computer with no other Oracle software
installed, then the default setting for the
first Oracle home directory is
C:\oracle\ora90. The Oracle home
directory is located directly under
ORACLE_BASE.

All directory path examples in this guide
follow OFA conventions.

Refer to Oracle9i Database Getting Starting
for Windows for additional information
about OFA compliances and for
information about installing Oracle
products in non-OFA compliant
directories.

Go to the ORACLE_BASE\ORACLE_
HOME\rdbms\admin directory.

Convention Meaning Example

Introductory Tutorial 1-1

1
Introductory Tutorial

In the introductory tutorial, you will create mappings from a simple database
application using TopLink Mapping Workbench. You will learn how to:

� Create a new project

� Enable and adding Java classes (provided with the tutorial)

� Create and import database tables

� Associate descriptors to tables

� Implement mappings

By the end of the tutorial, you will be able to store data from a Java class into a
relational database and access existing database information from Java classes.

Overview
This tutorial project will manage the employee database at the ACME Leisure
Company. The system tracks each employee’s name, address, and phone number.

The system use these classes:

� Employee – Represents both full-time ACME employees and temporary
contractors working on ACME projects. It includes the employee’s personal
information as well as references to his or her home address and phone
numbers.

� Address – Represents the employee’s home address. The class contains country,
street, city, province, and postal code information.

� PhoneNumber – Contains the telephone number(s) for each employee and
contractor (number, area code, and type information). The class also includes a
reference to the employee who owns the phone number.

Creating the Database Schema

1-2 Oracle9iAS TopLink Tutorials

The following figure illustrates the object model for this system.

Figure 1–1 The Simple ACME Object Model

Creating the Database Schema
The ACME employee system stores the employee data in three database tables. To
use this tutorial, create these tables in your database application.

Note: The column types listed here are generic; the actual column
types depend on the database used.

Table 1–1 The EMPLOYEE Table

Column name Column type Details

EMP_ID NUMERIC(15) Primary key

NAME VARCHAR(40)

ADDRESS_ID NUMERIC(15)

Table 1–2 The ADDRESS Table

Column name Column type Details

ADDRESS_ID NUMERIC(15) Primary key

COUNTRY VARCHAR(80)

STREET VARCHAR(80)

CITY VARCHAR(80)

PROVINCE VARCHAR(80)

P_CODE VARCHAR(20)

Creating a New Project

Introductory Tutorial 1-3

After creating these ACME database tables, you are ready to begin the tutorial.

Creating a New Project
TopLink Mapping Workbench stores project information in the .mwp file and
associated folders. You should always start a Mapping Workbench project in a new
folder.

To create a new project:
1. Start TopLink Mapping Workbench. From the Windows Start menu, select

Programs > Oracle9iAS TopLink > Mapping Workbench.

The splash screen appears, followed by the TopLink Mapping Workbench
screen.

Table 1–3 The PHONENUMBER Table

Column name Column type Details

EMP_ID NUMERIC(15) Primary key

AREA_CODE CHAR(3)

P_NUMBER CHAR(7)

TYPE VARCHAR(15) Primary key

Creating a New Project

1-4 Oracle9iAS TopLink Tutorials

Figure 1–2 Mapping Workbench

2. Click on the New Project button in the toolbar or select File > New Project
from the menu. The Create a New Project window appears.

Figure 1–3 Create New Project

3. From the Create New Project window:

� In the Database Name field, type INTRO_TUTORIAL_DB.

Creating a New Project

Introductory Tutorial 1-5

� In the Platform field, click on the browse button and select the appropriate
database platform. Contact your database administrator if you need
additional information.

4. Click OK. The Save As screen appears.

Figure 1–4 Save As

5. Select the folder in which to save the Employee project.

6. In the File Name: field, type Employee.mwp.

7. Click Save to save your work and return to the TopLink Mapping Workbench.

Creating a New Project

1-6 Oracle9iAS TopLink Tutorials

Figure 1–5 Mapping Workbench

8. Click on Save in the toolbar or select File > Save to save the project.

Setting the Project’s Classpath
Each TopLink project uses a classpath – a set of directories, .jar files, and .zip
files – when importing Java classes and defining object types.

1. In the Mapping Workbench, highlight the Employee project in the Project Tree
pane.

2. In the Properties pane on the right-hand side of the TopLink Mapping
Workbench screen, click on the General tab.

Note: TopLink Mapping Workbench does not automatically save
your work; remember to save periodically.

Creating a New Project

Introductory Tutorial 1-7

Figure 1–6 General Tab

3. Click on Add Entry. The Add Entry screen appears.

Figure 1–7 Add Entry

4. Browse to the <INSTALL_DIR>\tour\lib\tl_demo.jar directory and click on
Add.

Enabling Your Java Classes

1-8 Oracle9iAS TopLink Tutorials

Figure 1–8 General Tab with Classpath Information

5. Click on Save in the toolbar or select File > Save to save the project.

Enabling Your Java Classes
The Employee model uses three classes:

� Employee class has a name attribute and privately owned PhoneNumber and
Address relationships

� PhoneNumber class has attributes describing the phone number information
and a relationship that describes the owner of the PhoneNumber

� Address class has attributes describing the employee’s mailing address

You must enable the Employee, PhoneNumber, and Address classes (provided in
the oracle.toplink.demos.employee.domain package) for this tutorial, as
described in "Generating the Class Definitions" on page 1-10.

The following table shows how the classes relate to the database tables.

Table 1–4 Employee Classes and Database Tables

Column Class Attribute Database Type Java Type

EMPLOYEE Employee

EMP_ID id NUMERIC(15) BigDecimal

Enabling Your Java Classes

Introductory Tutorial 1-9

Example 1–1 Accessor Method Example

The following code example illustrates providing accessor methods.

// addPhoneNumber method of the Employee class allows the phoneNumber to set a
reference to the Employee that owns it.
public void addPhoneNumber(PhoneNumber phoneNumber)
{

getPhoneNumbers().addElement(phoneNumber);

NAME name CHAR(40) String

ADDRESS_ID address NUMERIC(15) Address

not applicable phoneNumbers not applicable Vector

ADDRESS Address

ADDRESS_ID id NUMERIC(15) BigDecimal

COUNTRY country VARCHAR(80) String

STREET street VARCHAR(80) String

CITY city VARCHAR(80) String

PROVINCE province VARCHAR(80) String

P_CODE postalCode VARCHAR(20) String

PHONE PhoneNumber

AREA_CODE areaCode CHAR(3) String

P_NUMBER number CHAR(7) String

EMP_ID owner NUMERIC(15) Employee

TYPE type VARCHAR(15) String

Note: It is good programming practice to supply each of the class
members in TopLink enabled classes with accessor methods. For
this tutorial, the get and set methods for each of the attributes are
provided. The Employee class should have an addPhoneNumber()
method to allow a new PhoneNumber to store a reference to its
parent.

Table 1–4 Employee Classes and Database Tables (Cont.)

Column Class Attribute Database Type Java Type

Enabling Your Java Classes

1-10 Oracle9iAS TopLink Tutorials

phoneNumber.setOwner(this);
}

Generating the Class Definitions
You must generate a TopLink descriptor for each Java class in the project.

To create descriptors from the class definition file:
1. From the TopLink Mapping Workbench screen, click on the Employee project.

2. Click on the Add/Update Class button or select Selected > Add/Update
Classes from the menu. The Select Classes screen appears.

Figure 1–9 Select Classes

3. Locate the oracle.toplink.tutorials.intro package. Click on the plus
sign () to expand that package (or double-click on the name to expand the
package).

Enabling Your Java Classes

Introductory Tutorial 1-11

Figure 1–10 Demo Classes

4. Highlight the Address class, and click the button or double-click on the
class.

TopLink copies the Address class to the Selected Classes pane.

Figure 1–11 Selected Class

5. Repeat step Step 4 for Employee and PhoneNumber classes in that package. (Or,
highlight both classes using Shift+click or Ctrl+click as necessary, and click the

 button once to import all of the remaining classes.)

Enabling Your Java Classes

1-12 Oracle9iAS TopLink Tutorials

6. Click OK to import the classes. TopLink creates a descriptor for each class and
an unmapped mapping for each attribute.

The descriptors and their attributes appear in the Project Tree pane on TopLink
Mapping Workbench screen.

Figure 1–12 Mapping Workbench with Employee Project

User-interface elements called out in Figure 1–12:

1. Package

2. Class/descriptors

7. Save your changes. Click on the Save Project button or select File > Save
from the menu.

Note: If an error occurs during this operation, check that the given
classes are included in the CLASSPATH and that JDK has been
installed correctly.

Logging into the Database

Introductory Tutorial 1-13

Logging into the Database
You can enter database table information directly from TopLink Mapping
Workbench or import the tables from the database. You must log into the database
to obtain the table information and to generate table files.

1. Click on the INTRO_TUTORIAL_DB database object in the Project Tree pane.
The Database Properties pane appears on the right-hand side of the TopLink
Mapping Workbench screen.

Figure 1–13 Database Properties

2. Click on Add to create a new database login. Contact your database
administrator for the necessary database login information.

3. In the toolbar, click the Login to Database button or select Selected > Login
from the menu. The database icon changes to .

Note: TopLink Mapping Workbench supports connecting to the
database through JDBC. Make sure you have installed, configured,
and tested your JDBC driver before attempting to connect.

Creating Tables

1-14 Oracle9iAS TopLink Tutorials

If TopLink Mapping Workbench is unable to connect to the database, contact your
database administrator to ensure that the database login parameters have been
entered correctly and your JDBC driver has been installed correctly. If problems
persist, test your driver connectivity. See the Oracle9iAS TopLink Troubleshooting
Guide for details.

Creating Tables
You can enter database table information (as specified in "Creating the Database
Schema" on page 1-2) directly from TopLink Mapping Workbench or import the
tables from the database.

� To create the tables from TopLink Mapping Workbench, continue with
"Creating Tables Using the Mapping Workbench" on page 1-14.

� To create the tables by importing from the database, continue with "Importing
Tables from the Database" on page 1-16.

Creating Tables Using the Mapping Workbench
Use this procedure to create the database tables from the TopLink Mapping
Workbench.

Creating the Table Definitions
Use this procedure to use the Mapping Workbench to create table definitions. Later
you can create the actual tables on the database.

To create the tables:
1. Click on the database in the Project Tree pane and click on the Add a New

Table to the Database button or right-click on the database in the project
tree pane, and choose Add New Table. The New Table dialog box appears.

2. Type ADDRESS for the table name, and click OK.

Caution: Do not use this procedure if you plan to import the
tables from a database.

Note: Leave the Catalog and Schema fields blank.

Creating Tables

Introductory Tutorial 1-15

3. Click on the Fields tab in the Properties pane.

4. Click on the Add button to add each database field for the ADDRESS table. Refer
to the tables in "Creating the Database Schema" on page 1-2 for the correct field
information. Be sure to indicate the primary key(s) for each table.

Figure 1–14 Database Fields Tab

5. Save your changes. Click on the Save Project button or select File > Save
from the menu.

Repeat this procedure for the EMPLOYEE and PHONE tables.

Creating the Tables on the Database
After defining the tables in TopLink Mapping Workbench, you can automatically
create the tables on the database.

To create tables on the database:
1. Right-click on one of the database tables in the tree pane, and select Create on

Database > All Tables from the pop-up menu.

Note: Use the scroll bar to view additional fields for each database
field (such as the Primary Key).

Note: To use the Create on Database option you must be logged
into the database.

Creating Tables

1-16 Oracle9iAS TopLink Tutorials

If the Confirm Replace window appears, it means that an existing table on the
database has the same name. Check with your database administrator before
replacing any table.

The existing table may have been created:

� by someone else doing the tutorial previously (in which case you could
click the Yes to All button safely)

or

� by someone using the same database name for a business project (in which
case you should not replace it)

The system displays a message indicating that the three tables were created.

2. Click OK to close the dialog and return to the TopLink Mapping Workbench
screen.

3. In the toolbar, click the Logout of Database button or select Selected > Log
Out from the menu.

4. Save your changes. Click on the Save Project button or select File > Save
from the menu.

Continue with "Mapping Classes and Tables in the Descriptor" on page 1-18.

Importing Tables from the Database
Use this procedure if you have already created tables in your database and want to
import these tables directly into the Mapping Workbench.

Tip: TopLink Mapping Workbench can generate Data Definition
Language (DDL) creation scripts that can be used to create tables
on the desired database. See the Oracle9iAS TopLink Mapping
Workbench Reference Guide for more information. If the table creation
fails, there may have been a problem with the DDL, or you may not
have permission to create tables on the database. Make sure you set
the target database to the correct database platform on login. The
DDL may not be compatible with some databases, so you may have
to edit the generated DDL and execute the DDL manually.

Caution: Do not use this procedure if you plan to create the tables
directly from Mapping Workbench.

Creating Tables

Introductory Tutorial 1-17

To import tables from the database:
1. Click the Login to Database button or select Selected > Login from the

menu.

2. Click on the database in the Project Tree pane and click on the Add/Update
Existing Tables from Database button or right-click on the database choose
Add/Update Existing Tables From Database from the pop-up menu.

The Import tables from database window appears.

Figure 1–15 Import Tables from Database

User-interface elements called out in Figure 1–15:

1. Use the filters to specify database tables to select for import.

2. The Available Tables displays the database tables that match the filter.

3. Click on the Get Table Names button to display all tables in the database.

4. Click on the ADDRESS table in the Available Tables pane and then click the
 button. The ADDRESS table moves to the Selected Tables pane.

Note: You may use the table filters to specify which database
tables are available for import. For this tutorial, leave the filters as
their default values.

Mapping Classes and Tables in the Descriptor

1-18 Oracle9iAS TopLink Tutorials

5. Repeat step Step 4 for the EMPLOYEE and PHONE tables.

6. Click OK to add the selected tables to the Employee project.

7. To display the details of the imported tables, choose a table in the Project Tree
pane and click on the Fields tab in the Properties pane.

8. In the toolbar, click the Logout of Database button or select Selected > Log
Out from the menu.

9. Save your changes. Click on the Save Project button or select File > Save
from the menu.

Continue with "Mapping Classes and Tables in the Descriptor" on page 1-18.

Mapping Classes and Tables in the Descriptor
When you create a new project and generate class definitions, TopLink Mapping
Workbench automatically creates descriptors. However, these descriptors do not
contain any information about how the classes are associated with the tables. This
section describes how to store associations in a descriptor, which can then be used
by a Java application to make the classes persistent.

This section contains procedures to map the classes to tables for the ACME project.
After the mapping the descriptors, you can access the database from a Java
application.

Mappings
The TopLink mapping describes the way an attribute is stored in, and retrieved
from, a database. For example, the name attribute of the Employee class maps to the
NAME column of the EMPLOYEE table.

Descriptors
A descriptor stores the class-to-table mappings for a class. TopLink Mapping
Workbench stores the descriptors in XML files in the Descriptor directory. At run
time, TopLink creates instances of the Descriptor class for each of the descriptor
files and stores them in a database session.

Mapping Classes to Tables

To map Java classes to a table:
1. Click on the Address descriptor from the Project Tree pane.

Mapping Classes and Tables in the Descriptor

Introductory Tutorial 1-19

2. Click on the Descriptor Info tab of the Properties pane.

3. In the Associated Table drop-down, select the Address table.

Figure 1–16 Descriptor Info Tab

4. Repeat steps 1 – 3 to map:

� Employee class to the EMPLOYEE table

� PhoneNumber class to the PHONE table

5. Save your changes. Click on the Save Project button or select File > Save
from the menu.

Although you have mapped the descriptors to specific database tables, the class
attributes have not yet been mapped to the tables’ columns. You will map the
attributes later in this tutorial.

Note: A warning message appears indicating that the primary key
fields are unmapped. This will be addressed later in the tutorial.

Mapping Classes and Tables in the Descriptor

1-20 Oracle9iAS TopLink Tutorials

Preparing the Primary Keys
A table’s primary key is the field (or fields) used to uniquely identify its records.
The PHONE table has a compound primary key (EMP_ID and TYPE fields).

Database tables often use a sequence number as the primary key. Sequence numbers
are sequential, artificially-generated fields, outside of the problem domain, that
uniquely identify a record. TopLink supports sequence numbers through the
database’s native support, such as in Oracle and Sybase, or by maintaining a
sequence table. If sequence numbers are enabled for a class, they are generated and
incremented whenever an object is inserted into a database.

To specify the primary key:
1. In the Project Tree pane, click the ADDRESS database table.

2. On the Field tab of the Properties pane, make sure the ADDRESS_ID column is
selected as a Primary Key.

Figure 1–17 Database Table Field Tab

3. Repeat steps 1 – 2 for the other tables:

� EMPLOYEE table – Set the EMP_ID field as the primary key.

� PHONENUMBER table – Set both the EMP_ID and TYPE fields as primary keys.

4. Save your changes. Click on the Save Project button or select File > Save
from the menu.

Setting the Sequence Table
The ACME system uses sequence numbers for the EMPLOYEE and ADDRESS tables.
You must explicitly create a sequence table, then apply it to your project.

Mapping Classes and Tables in the Descriptor

Introductory Tutorial 1-21

To create a sequence table:
1. Click on the database in the Project Tree pane and log into the database by

clicking the Login button or by right-clicking on the Database in the Project
Tree and choosing Login from the pop-up menu.

2. Click on the Database in the Project Tree pane and click the Add Table button
. The New Table dialog box appears.

Figure 1–18 New Table

3. Create a table named SEQUENCE.

4. Add the following fields to the table:

� SEQ_NAME (TEXT type)

� SEQ_COUNT (INTEGER type)

Figure 1–19 Database Table Fields Tab

5. Set the SEQ_NAME field as the primary key.

6. Log out of the database by right-clicking on the Database in the project tree and
choosing Log Out from the pop-up menu.

7. Click on the Project in the Project Tree pane.

Mapping Classes and Tables in the Descriptor

1-22 Oracle9iAS TopLink Tutorials

8. Click the project’s Sequencing tab in the Properties pane.

Figure 1–20 Sequencing Tab

9. Select Use Custom Sequence Table and use the drop lists to choose the Name,
Seq. Name Field, and Seq. Counter Field, as shown in Figure 1–20.

10. Save your changes. Click on the Save Project button or select File > Save
from the menu.

Implementing Direct-to-field Mappings
The Address class does not reference any other classes. Its attributes map directly to
database fields as a direct-to-field mapping.

To map the Address class attributes directly to the ADDRESS columns:
1. Expand the Address descriptor in the Project Tree pane.

2. Click on the city attribute.

3. Click the Direct-to-field mapping button in the mapping toolbar. The
Direct-to-Field mapping tab appears in the Properties pane.

4. Use the Database field drop-down list to select the CITY field.

Note: You will set the individual sequence names for each table
later.

Mapping Classes and Tables in the Descriptor

Introductory Tutorial 1-23

Figure 1–21 Direct-to-Field Mapping General Tab

5. Repeat steps 2 – 4 to map the remaining attributes in the ADDRESS table.

� Map the COUNTRY attribute to COUNTRY field

� Map the ID attribute to ADDRESS_ID field

� Map the POSTALCODE attribute to P_CODE field

� Map the PROVINCE attribute to PROVINCE field

� Map the STREET attribute to STREET field

6. Save your changes. Click on the Save Project button or select File > Save
from the menu.

Setting the Sequence Name
The Address and Employee classes use non-native sequencing for primary keys.

Note: The sequence name is the value of a row stored in the
sequence table. When you create tables for your own projects, you
must insert this row into the table using TopLink’s
SchemaManager. Refer to the Oracle9iAS TopLink Mapping
Workbench Reference Guide for more information.

Mapping Classes and Tables in the Descriptor

1-24 Oracle9iAS TopLink Tutorials

To set the sequencing for the Address and Employee classes:
1. Select the Address descriptor in the Project Tree pane.

2. Click the Descriptor Info in the Properties pane.

3. Select the Use Sequencing check box.

4. In the Name field, type ACME_ADDRESS and use the drop lists to choose the
Table and Field, as in Figure 1–22.

Figure 1–22 Descriptor Info Tab

5. Save your changes. Click on the Save Project button or select File > Save
from the menu.

6. Repeat steps 1 – 4 to set the sequencing for the Employee class. Use ACME_
EMPLOYEE as the Name, and choose EMPLOYEE and EMP_ID from the Table and
Field drop-down lists, respectively.

7. Save your changes. Click on the Save Project button or select File > Save
from the menu

Mapping Classes and Tables in the Descriptor

Introductory Tutorial 1-25

When the descriptors are registered with a database session, this information is
entered into the SEQUENCE table. The session tracks the sequencing information.

Creating One-to-one Mappings Between Objects
In the Employee class, the name and id attributes map directly to the EMPLOYEE
table columns. The phoneNumbers and address attributes refer to other Java
classes rather than referring directly to columns in the database.

1. Map the name attribute as direct-to-field to the NAME field.

2. Map the id attribute as a direct-to-field mapping to the EMP_ID field (the
primary key).

There is only one home address associated with each employee, so the address
attribute requires a one-to-one mapping with the Address class. Figure 1–23
illustrates a sample one-to-one mapping.

Figure 1–23 One-to-one Mappings

To create a one-to-one mapping
1. Click on the Employee’s address attribute in the Project Tree pane, then click

the One-to-one Mapping button in the mapping toolbar.

The Properties pane displays the appropriate information for a one-to-one
relationship to be specified.

Mapping Classes and Tables in the Descriptor

1-26 Oracle9iAS TopLink Tutorials

Figure 1–24 One-to-One Mapping General Tab

2. Select the Use Indirection check box.

3. Ensure that the Private Owned check box is enabled.

This allows the Address object to be created, updated, or deleted automatically
when the Employee owning it is changed.

4. Use the Reference Descriptor drop-down list in the to select Address as the
reference descriptor.

Foreign Key References
One-to-one mappings use the relational database concept of foreign keys to access
other classes stored in the database. You must specify the foreign key information in
the descriptor so that TopLink knows how to search for a referenced object, as
illustrated in Figure 1–23.

1. Click the Table Reference tab.

2. Create a new table reference by clicking the New button.

3. In the New Reference Dialog, create a reference whose:

� Name is EMPLOYEE_ADDRESS

Mapping Classes and Tables in the Descriptor

Introductory Tutorial 1-27

� Source table is EMPLOYEE

� Target database is ADDRESS

Select the On Database option if you want to create the reference on the
database when you create the tables. TopLink doesn’t require that you actually
have the constraint on the database, but you may wish to do this for other
reasons. Consult your database administrator for more information.

4. Select EMPLOYEE_ADDRESS from the Table Reference drop-down list.

5. Click the Add button to define the foreign key fields.

� In the Source column, choose ADDRESS_ID (foreign key).

� In the Target column, choose ADDRESS_ID (primary key).

� Leave the Target Foreign Key option unchecked.

Figure 1–25 One-to-One Mapping Table Reference Tab

6. Save your changes. Click on the Save Project button or select File > Save
from the menu.

Tip: If you leave the Name field blank, TopLink automatically
builds the name as <SourceTable>_<TargetTable>.

Note: The mapping is from the EMPLOYEE table, ADDRESS_ID
attribute to the ADDRESS table.

Mapping Classes and Tables in the Descriptor

1-28 Oracle9iAS TopLink Tutorials

Creating One-to-many Mappings
To map an attribute to a Java collection such as a Vector, the application must make
a one-to-many mapping for the class owning the collection, and a one-to-one
mapping back from the class being referenced. The one-to-one mapping in the
referenced class is implemented as a foreign key to the source class.

Figure 1–26 One-to-many Mappings

In this tutorial, the Employee project requires:

� A one-to-many mapping from the phoneNumbers attribute of the Employee
class to the PhoneNumber class

� A one-to-one mapping from the owner attribute of the PhoneNumber class back
to the Employee class

To map the phoneNumbers attribute:
1. Expand the Employee class in the Project tree pane.

2. Select the phoneNumbers attribute.

3. Click the One-to-many Mapping button in the mapping toolbar. The
Properties pane changes to allow the appropriate information for a
one-to-many relationship to be specified.

4. Use the Reference Descriptor drop-down list to choose PhoneNumber.

Mapping Classes and Tables in the Descriptor

Introductory Tutorial 1-29

Figure 1–27 One-to-many Mapping General Tab

5. Click the Table Reference tab, and add a new reference by clicking on New.

� Create a new reference named PHONE_EMPLOYEE with a source table of
PHONE and target table of EMPLOYEE and click on OK.

� In the Table Reference drop-down list, select the PHONE_EMPLOYEE.

� Click the Add button on the Table Reference tab to add a foreign key
relationship. Set the Source (foreign key) field to EMP_ID and the Target
(primary key) field to EMP_ID.

Figure 1–28 One-to-many Mapping Table Reference Tab

Setting up Database Sessions

1-30 Oracle9iAS TopLink Tutorials

6. Save your changes. Click on the Save Project button or select File > Save
from the menu.

To map the PhoneNumber class to the Employee class:
After mapping the Employee descriptor, use this procedure to map the one-to-one
back reference:

1. Map the owner attribute of the PhoneNumber descriptor as a one-to-one
mapping to the Employee class (refer to "Creating One-to-one Mappings
Between Objects" on page 1-25).

2. Select EMPLOYEE as the Reference Descriptor.

3. Map the remaining attributes in the Phone descriptor as direct-to-field
mappings (refer to "Implementing Direct-to-field Mappings" on page 1-22).

4. Remove all unmapped attributes in the Employee descriptor. Right-click on the
attribute and select Remove from the pop-up menu.

You can also remove attributes by selecting Selected >Remove from the menu.

Setting up Database Sessions
A database session in TopLink for Java represents an application’s dialog with a
relational database. The DatabaseSession class keeps track of the following
information:

� project and login – contains the login and configuration information about the
session

� descriptors — maintain the associations between tables and persistent classes

� identity maps — used for caching and maintaining identity

Note: Leave the remaining attributes of the Employee descriptor
as unmapped. They will be used in the Advanced tutorial.

Note: You do not need to create a new table reference. You can
select the same PHONE_EMPLOYEE reference you created when you
mapped the one-to-many from Employee to PhoneNumber.

Setting up Database Sessions

Introductory Tutorial 1-31

� the database accessor — handles low-level communication between the session
and the relational database

An application uses the session to log in to the database and perform read and write
operations on the objects stored therein. The session’s lifetime is normally the same
as the lifetime of the application.

A test class has been included with TopLink so that you can test the descriptor
mappings that you have created for this introductory tutorial. This class, Demo,
among other things, tests the validity of the descriptors and logs into the database.

Logging into a Database
To log into a database, an application must first read the project file into a Project
instance. The Project creates the DatabaseSession and connects through login.
The code fragment in the following Example 1–2, "Logging in and Creating a Project
Example Code" illustrates this approach.

Example 1–2 Logging in and Creating a Project Example Code

The following code example illustrates creating the EMPLOYEE project.

...
import oracle.toplink.sessions.*;
...
Project builderProject = oracle.toplink.tools.workbench.
XMLProjectReader.read(“C:\\toplink\\tutorials\\intro\\Employee.xml”);
DatabaseSession session = builderProject.createDatabaseSession();
session.login(); // or, session.login(userName, password);
...

See the loginToDatabase() method, in the Demo class, for a complete method.

Creating the Tables in Code
You can use TopLink Mapping Workbench to create database tables. TopLink can
also create tables using the SchemaManager class. To use this method of creating
tables, you must have already obtained a valid login.

The following examples illustrates how to create the EMPLOYEE table after having
logged in to the database. The method createTables() on the Demo class contains
sample code that uses the schema manager to create all the required tables for the
introductory tutorial.

Using Descriptors in an Application

1-32 Oracle9iAS TopLink Tutorials

Example 1–3 Creating Tables

The following code example illustrates creating the EMPLOYEE table.

import oracle.toplink.tools.schemaframework.*;
import java.math.*;

// Create table definition which supplies information about the table to be
created.
TableDefinition employeeTable = new TableDefinition();
employeeTable.setName("EMPLOYEE");
employeeTable.addIdentityField("EMP_ID", BigDecimal.class, 15);
employeeTable.addField("NAME", String.class, 40);
employeeTable.addField("ADDRESS_ID", BigDecimal.class, 15);

// Create the table in the database.
SchemaManager schemaManager = new SchemaManager(session);
schemaManager.replaceObject(employeeTable);

// Create an empty table named SEQUENCE if it is not already there. This is
used to hold the sequence number information such as name and counter.
schemaManager.createSequences();

Using Descriptors in an Application
After creating the descriptor files, you must write Java code to register the files with
the TopLink session. After registering the files, the application can read and write
Java class instances from the database.

� To read instances from the database, use the database session object.

� To write instances to the database, use a unit of work object.

Transactions and Units of Work
A transaction is a set of database operations that can either be committed (accepted)
or rolled back (undone). Transactions can be as simple as inserting an object into a
database, but also allow complex operations to be committed or rolled back as a
single unit. Unsuccessful transactions can be discarded, leaving the database in its
original state.

A unit of work is an object that simplifies the transaction process and stores
transaction information for its registered persistent objects. The unit of work
enhances database commit performance by updating only the changed portions of

Using Descriptors in an Application

Introductory Tutorial 1-33

an object. Units of work are the preferred method of writing to a database in
TopLink.

To use a unit of work, create an instance of UnitOfWork and register the desired
persistent objects. The registering process returns clones that can be modified. After
changes are made to the clones, use the commit() method to commit an entire
transaction. The unit of work inserts new objects or updates changed objects in the
database, as illustrated in Figure 1–29.

If an error occurs when writing the objects to the database, a DatabaseException
is thrown and the unit of work is rolled back to its original state. If no database error
occurs, the original objects are updated with the new values from the clones.

Figure 1–29 Unit of Work Example

Reading and Writing Java Class Instances
Sessions can read instances from the database using the readObject() method.
Database sessions can write instances to the database using the writeObject()
method, but note that write is neither required nor used when using a unit of work.
An application typically uses the session to read the instances of a given class from
the database and determines which of the instances require changes. The instances
requiring changes are then registered with a unit of work. After the changes have
been made, the unit of work is used to commit only the changed objects to the
database.

Using Descriptors in an Application

1-34 Oracle9iAS TopLink Tutorials

This model provides the optimum performance for most applications. Read
performance is optimized by using the session because the unit of work does not
have to keep track of objects that do not change. Write performance is optimized
because the unit of work keeps track of transaction information and writes only the
changed portions of an instance to the database.

Using a Unit of Work to Write an Object
After the descriptors have been registered with the session, you are ready to read
and write objects to the database. Objects are registered with a unit of work and
then committed to the database.

The code fragment in the following example is a continuation of the fragment in
"Logging into a Database" on page 1-31, Example 1–3 and uses the session created
there.

Example 1–4 Unit of Work Example

The following code example illustrates using a unit of work to write an object.

//Create an Employee object for the company president, as well as the associated
personal information objects.
Employee president = new Employee();

Address presidentHome = new Address();
presidentHome.setStreet("601-1140 Meadowlands Dr.");
presidentHome.setCity("Ottawa");
presidentHome.setPostalCode("K2E 6J6");
presidentHome.setProvince("ON");
presidentHome.setCountry("Canada");

PhoneNumber homePhone = new PhoneNumber();
homePhone.setType("Home");
homePhone.setAreaCode("555");
homePhone.setNumber("555-1234");

PhoneNumber businessPhone = new PhoneNumber();
businessPhone.setType("Business");
businessPhone.setAreaCode("555");
businessPhone.setNumber("555-5678");

president.setName("John Smith");
president.setAddress(presidentHome);
president.addPhoneNumber(homeNumber);
president.addPhoneNumber(businessPhone);

Using Descriptors in an Application

Introductory Tutorial 1-35

//Register objects with a new unit of work. Registered objects will return a
clone which should be used to make changes to the object.
UnitOfWork unitOfWork;
unitOfWork = session.acquireUnitOfWork();
Employee tempPresident = (Employee)unitOfWork.registerObject(president);

//Register any other objects, or change registered objects.
tempPresident.setName("Johnny Smith");

//Commit the objects to the database.
unitOfWork.commit();

Using a Session to Read an Object
To change the information in the database, the application must create an
Expression that contains information about the query to be made. The session
then searches the database for an object that matches the query and returns the
instance. The returned object is registered with the unit of work and the application
makes changes to the object. The application then commits the change to the
database using the commit() method.

Example 1–5 Session Example

The following code example illustrates using a session to read an object.

//Import the Expression classes.
import oracle.toplink.expressions.*;

//Import the other classes. Create a session and login. Create a query
expression to find the database object.
ExpressionBuilder builder = new ExpressionBuilder();
Expression expression = builder.get("name").equal("John Smith");

//Read the object from the database using the query expression.
Employee president = (Employee) session.readObject(Employee.class, expression);

//Register the object with a new unit of work.
UnitOfWork unitOfWork = session.acquireUnitOfWork();
Employee tempPresident = (Employee)unitOfWork.registerObject(president);

//Make the change to the object.
tempPresident.setName("Johnny Smith");

Using Descriptors in an Application

1-36 Oracle9iAS TopLink Tutorials

//Commit the change to the database. Only the NAME field is actually updated.
unitOfWork.commit();

Conclusion

Introductory Tutorial 1-37

Conclusion
This tutorial explained the basic steps required to create a Java project that accesses
a relational database through TopLink. The main concepts explained include:

� creating Java classes which represent database tables

� using TopLink Mapping Workbench to create tables on the database

� creating descriptors for those classes using TopLink Mapping Workbench

� registering the descriptors with the TopLink session

� logging in to the database and doing simple read and write operations

Conclusion

1-38 Oracle9iAS TopLink Tutorials

Advanced Tutorial 2-1

2
Advanced Tutorial

In this advanced tutorial, we will improve the ACME Employment Management
System (built in the introductory tutorial) to manage additional information. You
will update the introductory application with new project information and reuse
existing components from previous applications.

You will also learn how to:

� Work with self-relationships

� Create the following advanced mapping types: object type mappings, aggregate
object mappings, direct collection mappings, and many-to-many mappings

� Implementing indirection and value holders

� Use inheritance

� Create transformations

� Work with the Automap tool

� Use multiple tables for one class

� Create and generate code

This advanced tutorial will add the ability to track employees’ current projects,
managers, and contract period. You will reuse components from the introductory
tutorial.

In addition to the Employee, Address, and PhoneNumber classes from the
introductory tutorial (see "Overview" on page 1-1), the advanced tutorial uses these
classes:

� EmploymentPeriod – Defines the contract term for contractors and the hire date
for ACME employees. Each Employee class has an EmploymentPeriod.

Creating the Database Schema

2-2 Oracle9iAS TopLink Tutorials

� Responsibility List – Each Employee has a collection of text that describes the
employee’s job.

� Project – Maintains information about a particular project and the people
working on it. The Project class contains two subclasses: LargeProject and
SmallProject. Each Employee can be involved in more than one project.

� Team Leader – Each Project can have a team leader (the Employee responsible
for the project.

� Manager – Each Employee may have a manager and a collection of managed
employees.

Figure 2–1 illustrates the object model for the advanced tutorial.

Figure 2–1 The Advanced Tutorial Object Model

Creating the Database Schema
The advanced ACME employee system stores the employee data in the following
database tables. To use this tutorial, create these tables in your database application.
Table 2–9 describes how each class relates to the database tables.

The column types listed here are generic; the actual column types depend on the
database used.

Creating the Database Schema

Advanced Tutorial 2-3

Table 2–1 The EMPLOYEE Table

Column name Column type Details

EMP_ID NUMERIC(15) Primary key

F_NAME VARCHAR(40)

L_NAME VARCHAR(40)

ADDR_ID NUMERIC(15)

GENDER CHAR(1)

START_DATE DATE

END_DATE DATE

START_TIME TIME

END_TIME TIME

MANAGER_ID NUMERIC(15)

VERSION NUMERIC(15)

Table 2–2 The SALARY Table

Column name Column type Details

EMP_ID NUMERIC(15) Primary key

SALARY NUMERIC(10)

Table 2–3 The ADDRESS Table

Column name Column type Details

ADDRESS_ID NUMERIC(15) Primary key

COUNTRY VARCHAR(80)

STREET VARCHAR(80)

CITY VARCHAR(80)

PROVINCE VARCHAR(80)

P_CODE VARCHAR(20)

Creating the Database Schema

2-4 Oracle9iAS TopLink Tutorials

Table 2–4 The PHONE Table

Column name Column type Details

EMP_ID NUMERIC(15) Primary key

AREA_CODE CHAR(3)

P_NUMBER CHAR(7)

TYPE VARCHAR(15) Primary key

Table 2–5 The PROJECT Table

Column name Column type Details

PROJ_ID NUMERIC(15) Primary key

DESCRIP VARCHAR(200)

PROJ_NAME VARCHAR(30)

PROJ_TYPE CHAR(1)

LEADER_ID NUMERIC(15)

VERSION NUMERIC(15)

Table 2–6 The LPROJECT Table

Column name Column type Details

PROJ_ID NUMERIC(15) Primary key

BUDGET NUMERIC(10,2)

MILESTONE TIMESTAMP

Table 2–7 The RESPONS Table

Column name Column type Details

EMP_ID NUMERIC(15) Primary key

DESCRIP VARCHAR(200)

Creating the Database Schema

Advanced Tutorial 2-5

Table 2–8 The PROJ_EMP Table Between PROJECT and EMPLOYEE

Column name Column type Details

EMP_ID NUMERIC(15) Primary key

PROJ_ID NUMERIC(15) Primary key

Table 2–9 Relationships Between Classes and Database Table

Column Class Attribute Database Type Java Type

EMPLOYEE Employee

EMP_ID id NUMERIC(15) BigDecimal

F_NAME firstName VARCHAR(40) String

L_NAME lastName VARCHAR(40) String

ADDR_ID address NUMERIC(15) Address

not applicable phoneNumbers not applicable Vector

GENDER gender CHAR(1) String

START_TIME normalHours[0] TIME Time

END_TIME normalHours[1] TIME Time

MANAGER_ID manager NUMERIC(15) Employee

not applicable managedEmployees not applicable Vector

not applicable projects not applicable Vector

see Employment
Period

period not applicable EmploymentPeriod

SALARY Employee

EMP_ID not applicable NUMERIC(15) not applicable

SALARY salary NUMERIC(10) int

EMPLOYEE EmploymentPeriod

START_DATE startDate DATE Date

END_DATE endDate DATE Date

RESPONS Employee

EMP_ID not applicable NUMERIC(15) not applicable

Creating the Database Schema

2-6 Oracle9iAS TopLink Tutorials

DESCRIP responsibilitiesList VARCHAR(200) String

PROJECT LargeProject and
SmallProject

PROJ_ID id NUMERIC(15) BigDecimal

DESCRIP description VARCHAR(200) String

LEADER_ID teamLeader NUMERIC(15) Employee

PROJ_NAME name VARCHAR(30) String

PROJ_TYPE not applicable CHAR(1) not applicable

VERSION not applicable NUMERIC(15) not applicable

LPROJECT LargeProject

PROJ_ID not applicable NUMERIC(15) not applicable

BUDGET budget NUMERIC(10,2) double

MILESTONE milestoneVersion TIMESTAMP TimeStamp

ADDRESS Address

ADDRESS_ID id NUMERIC(15) BigDecimal

COUNTRY country VARCHAR(80) String

STREET street VARCHAR(80) String

CITY city VARCHAR(80) String

PROVINCE province VARCHAR(80) String

P_CODE postalCode VARCHAR(20) String

PHONE PhoneNumber

AREA_CODE areaCode CHAR(3) String

P_NUMBER number CHAR(7) String

EMP_ID owner NUMERIC(15) Employee

TYPE type VARCHAR(15) String

PROJ_EMP *Relation Table*

PROJ_ID not applicable NUMERIC(15) not applicable

EMP_ID not applicable NUMERIC(15) not applicable

Table 2–9 Relationships Between Classes and Database Table (Cont.)

Column Class Attribute Database Type Java Type

Creating a New Project

Advanced Tutorial 2-7

Creating a New Project
1. Create a new project for the Advanced Tutorial as described in "Creating a New

Project" on page 1-3.

� For the database name, use ADVANCED_TUTORIAL_DB.

� For the project name, use Advanced Tutorial.

2. Set the project’s class path to include the
oracle.toplink.tutorials.advanced package. See "Setting the Project’s
Classpath" on page 1-6.

3. Enable the following classes in the oracle.toplink.tutorials.employee
package and generate a TopLink descriptor for each Java class as described in
"Generating the Class Definitions" on page 1-10:

� Address

� Employee

� EmploymentPeriod

� LargeProject

� PhoneNumber

� Project

� SmallProject

Table 2–9 shows how the classes relate to the database tables.

4. Log into the database as described in "Logging into the Database" on page 1-13
to create or import the database information.

Select one of the following methods to add database information:

� Creating Tables Using the Mapping Workbench

� Importing Tables from the Database

Refer to Table 2–1 through Table 2–8 for complete database information.

Using the Automap Tool

2-8 Oracle9iAS TopLink Tutorials

Mapping Classes to Tables
Map the each Java class in the Advanced tutorial to a database table as described in
"Mapping Classes to Tables" on page 1-18.

Ensure that the primary keys are correctly indicated, as specified in Table 2–1
through Table 2–8.

Using the Automap Tool
TopLink can automatically map class attributes to similarly named database. This
Automap function only creates mappings for unmapped attributes – it does not
change previously defined mappings.

You can automap classes for an entire project or for specific tables.

To Automap the Address descriptor:
1. Choose the Address class in the Project Tree pane and click on the Descriptor

Info tab in the Properties pane.

2. In the Associated Table drop-down list, select the ADDRESS table.

Map this class... To this database table...

Address ADDRESS

Employee EMPLOYEE

LargeProject LPROJECT

PhoneNumber PHONENUMBER

Project PROJECT

Note: A warning message appears indicating that you have not
yet mapped the attributes. This will be addressed later in the
tutorial

Note: Although Automap correctly maps most one-to-one and
direct-to-field mappings, you should examine each mapping for
valid and correct information. You may need to add or change
some mappings.

Implementing Indirection

Advanced Tutorial 2-9

You must associate the class with a table before using the Automap tool.

3. Right-click on the Address class in the Project Tree pane and select Automap
from the pop-up menu.

You can also automap descriptors by selecting Selected > Automap from the
menu.

The system automatically maps each attribute to the appropriate database table. Do
not Automap any other classes. You will manually map these classes later in this
tutorial.

Implementing Indirection
Indirection allows you to retrieve objects from the database as needed.

� With indirection off, when an object is retrieved from the database all of the
other objects that it references are also retrieved.

� With indirection turned on, each object is retrieved from the database only when
asked for.

Using indirection can be a great performance benefit and is strongly recommended.
See the Oracle9iAS TopLink Mapping Workbench Reference Guide for more information.

Preparing Java Code for Indirection
To prepare your object model for indirection, you must alter the application slightly:

� Replace each relationship reference with a ValueHolderInterface. This
interface is located in the oracle.toplink.indirection package and allows
for indirection to be used.

� Instantiate all variables with indirection references to empty value holders.
Normally, this is done in the constructor of the object.

� Modify the get methods for these variables to extract the value from the value
holder.

� Modify the set methods for these variables to insert the value into the value
holder.

Indirection can be implemented using direct access or method access.

� For method access, TopLink requires additional get and set methods that
provide access to the value holders.

Implementing Indirection

2-10 Oracle9iAS TopLink Tutorials

� For direct access, TopLink can access the value holders directly – the additional
get and set methods are not required.

If the instance variable returns a Vector instead of an object then the value holder
should be defined in the constructor as follows:

addresses = new ValueHolder(new Vector());

In the following examples, the Employee class uses indirection with method access
for its one-to-one mapping to Address. The class definition is modified so that the
address attribute of Employee is a ValueHolderInterface instead of an Address.
In both examples, the application uses the getAddress() and setAddress()
methods to access the Address object.

Example 2–1 Indirection Examples

The following example illustrates code before using indirection.

protected Address address;
public Employee() {

address = null;
}
public Address getAddress() {

return address;
}
public void setAddress(Address address) {

this.address = address;
}

The following example illustrates the same code after using indirection.

protected ValueHolderInterface address;
public Employee() {

address = new ValueHolder();
}
public Address getAddress() {

return (Address)address.getValue();
}
public void setAddress(Address address) {

this.address.setValue(address);
}

The indirection example could also use method access instead of direct access. This
would be implemented by adding getAddressValueHolder() and
setAddressValueHolder() methods.

Implementing Indirection

Advanced Tutorial 2-11

Implementing Indirection in the Mapping Workbench
After modifying the code, update the TopLink Mapping Workbench descriptors to
use indirection.

To implement indirection in the Workbench:
1. Map the one-to-one and one-to-many mappings for each class as normal.

2. On the General tab for each mapping, select the Use Indirection option.

Figure 2–2 General Tab of a Mapping

Implementing Indirection in the Tutorial
The following attributes in the Advanced tutorial sample code have been
implemented using ValueHolderInterfaces:

Employee

address
manager
managedEmployees

Implementing a One-to-one self Relationship

2-12 Oracle9iAS TopLink Tutorials

projects
responsibilitiesList
phoneNumbers

PhoneNumber

owner

Project

teamLeader

When you create mappings for these attributes, be sure to enable the Use
Indirection option.

Implementing a One-to-one self Relationship
Some object models require a class to reference another instance of the same class.
In the advanced tutorial, the Manager attribute in the Employee class references
another employee (see Figure 2–1).

To map the manager attribute:
1. Click on the Employee’s manager attribute in the Project Tree pane, then click

the One-to-one mapping button in the mapping toolbar.

The Properties pane displays the appropriate information for a one-to-one
relationship to be specified.

2. Use the Reference Descriptor drop-down list in the to select Employee as the
reference descriptor.

Implementing a One-to-one self Relationship

Advanced Tutorial 2-13

Figure 2–3 One-to-one Mapping General Tab

3. Select the Use Indirection option. See "Implementing Indirection in the
Tutorial" on page 2-11.

4. Click the Table Reference tab.

Figure 2–4 One-to-one Mapping Table Reference Tab

5. Create a new table reference by clicking the New button.

6. In the New Reference Dialog, create a reference whose:

� Name is EMPLOYEE_EMPLOYEE

Implementing a One-to-one self Relationship

2-14 Oracle9iAS TopLink Tutorials

� Source table is EMPLOYEE

� Target database is EMPLOYEE

7. Select EMPLOYEE_EMPLOYEE (created in step 5 from the Table Reference
drop-down list.

8. Click the Add button to define the foreign key fields.

� In the Source column, choose MANAGER_ID (foreign key) field.

� In the Target column, choose EMP_ID (primary key) field.

� Leave the Target foreign key option unchecked.

9. Click on Save in the toolbar or select File > Save Project to save the project.

Creating Other One-to-one Mappings
The Advanced tutorial also includes a one-to-one mapping for the following
attributes:

� address attribute in the Employee descriptor

� owner attribute in the PhoneNumber descriptor

� teamLeader attribute in the Project descriptor

Create these mappings as shown in "Creating One-to-one Mappings Between
Objects" on page 1-25. Refer to Table 2–9 for the correct relationships. Enable
indirection for each of these mappings, as indicated in "Implementing Indirection in
the Tutorial" on page 2-11.

Note: If you leave the Name field blank, TopLink automatically
builds the name as <SourceTable>_<TargetTable>.

Note: The mapping is from the EMPLOYEE table, MANAGER_ID field
to the EMP_ID field.

Implementing a One-to-many Self-relationship

Advanced Tutorial 2-15

Implementing a One-to-many Self-relationship
Some object models require a class to reference another instance of the same class.
In the advanced tutorial, a manager can have a collection of managed employees
(see Figure 2–1).

To map the managedEmployee attribute:
1. Click on the Employee’s managedEmployees attribute in the Project Tree pane,

then click the One-to-many mapping button in the mapping toolbar.

The Properties pane displays the appropriate information for a one-to-many
relationship to be specified.

2. Use the Reference Descriptor drop-down list to choose Employee.

Figure 2–5 One-to-many Mapping General Tab

3. Select the Use Indirection option, and choose ValueHolder. See "Implementing
Indirection in the Tutorial" on page 2-11.

4. Click the Table Reference tab. Use the Table Reference drop-down list to select
the EMPLOYEE_EMPLOYEE table (previously created in "To map the manager
attribute:" on page 2-12).

Using Multiple Tables

2-16 Oracle9iAS TopLink Tutorials

� Click the Add button on the Table Reference tab to add a foreign key
relationship.

� Set the Source (foreign key) field to MANAGER_ID.

� Set the Target (primary key) field to EMP_ID.

Figure 2–6 One-to-many Mapping Table Reference Tab

5. Click on Save in the toolbar or select File > Save Project to save the project.

Creating Other One-to-many Mappings
The Advanced tutorial also includes a one-to-many mapping for the phoneNumbers
attribute in the Employee descriptor. Create this mapping as shown in "Creating
One-to-many Mappings" on page 1-28. Refer to Table 2–9 for the correct
relationship.

Enable indirection for this mapping, as indicated in "Implementing Indirection in
the Tutorial" on page 2-11.

Using Multiple Tables
In TopLink, it is possible to spread classes across two or more tables. In the
advanced tutorial, the Employee class is stored in multiple tables: although most
information is in the EMPLOYEE table, salary information is stored in the SALARY
table.

To map the Employee class to multiple tables:
1. Click on the Employee descriptor in the Project Tree pane.

2. Click on the Multi-table Info tab in the Properties pane.

Implementing Object Type Mapping

Advanced Tutorial 2-17

If the Multi-table info tab is not visible, right-click on the Employee descriptor
and select Set Advanced Properties > Multi-table Info from the pop-up menu.

3. In the Additional Tables pane, click on Add and add the SALARY table.

Figure 2–7 Multi-table Info Tab

4. Click on Save in the toolbar or select File > Save Project to save the project.

Implementing Object Type Mapping
In TopLink, you can match a fixed number of database values to Java objects
through object type mappings. In the advanced tutorial, each employee’s gender is
stored as a single letter in the database field (i.e., M or F), but the value is the full
name (i.e., Male or Female).

To map the gender attribute:
1. Expand on the Employee descriptor in the Project Tree pane.

2. Select the gender attribute and click on the Object-type Mapping button in
the mapping toolbar.

Implementing an Aggregate Object

2-18 Oracle9iAS TopLink Tutorials

Figure 2–8 Object-type Mapping Tab

3. In the Database Field, select the GENDER field from the EMPLOYEE table.

4. Select Character as the Database Type and String as the Object Type.

5. Click on Add and create the following database mappings:

6. Click on Save in the toolbar or select File > Save Project to save the project.

Implementing an Aggregate Object
In TopLink, two objects are related by aggregation if there is one-to-one relationship
between the objects and all the attributes of the second object can be retrieved from

Database Value Object Value

F Female

M Male

Implementing an Aggregate Object

Advanced Tutorial 2-19

the same table(s) as the owning object. In the advanced tutorial, the
EmploymentPeriod is an aggregate descriptor and the period attribute is an
aggregate object.

To map an aggregate object:
1. Click on the EmploymentPeriod descriptor in the Project Tree pane.

2. Click on the Aggregate Descriptor button in the mapping toolbar. The
descriptor ’s icon in the Project Tree pane changes to an aggregate descriptor

.

3. Map the startDate and EndDate attributes of the EmploymentPeriod as
direct-to-field mappings.

4. Expand the Employee descriptor in the Project Tree pane.

5. Select the period attribute of the Employee descriptor.

6. Click on the Aggregate Mapping button in the mapping toolbar.

Figure 2–9 Aggregate Mapping General Tab

7. Use the Reference Descriptor drop-down list to select the EmploymentPeriod
aggregate descriptor.

8. Click on the Fields tab.

Note: The Database Field fields are disabled because the
aggregate descriptor is not associated with a database table.

Implementing a Direct Collection Mapping

2-20 Oracle9iAS TopLink Tutorials

Figure 2–10 Aggregate Mapping Fields Tab

9. Use the Fields drop-down list to map each field as follows:

� endDate – END_DATE

� startDate – START_DATE

10. Click on Save in the toolbar or select File > Save Project to save the project.

Implementing a Direct Collection Mapping
Direct collection mappings store collections of Java objects that are not
TopLink-enabled. In the advanced tutorial, the responsibilitiesList attribute is
a direct collection.

To map a direct collection:
1. Expand on the Employee descriptor in the Project Tree pane.

2. Click on the responsibilitiesList attribute of the Employee descriptor.

3. Click on the Direct Collect button in the mapping toolbar.

4. To specify where to place the strings in the direct collection, use the Target
Table and Direct Field drop-down lists to specify the DESCRIP field on the
RESPONS databases table.

5. Select the Use Indirection option and choose ValueHolder. See "Implementing
Indirection in the Tutorial" on page 2-11.

Implementing a Many-to-many Mapping

Advanced Tutorial 2-21

Figure 2–11 Direct Collection Mapping General Tab

6. Click the Table Reference tab, and add a new table reference by clicking the
New button.

� Create a reference named RESPONS_EMPLOYEE, with a source table of
RESPONS and target table of EMPLOYEE and click OK.

� In the Table Reference drop-down list, select the RESPONS_EMPLOYEE.

� Click the Add button on the Table Reference tab to add a foreign key
relationship.

� Set the Source (foreign key) field to EMP_ID (from the RESPONS table).

� Set the Target (primary key) field to EMP_ID (from the EMPLOYEE table).

7. Click on Save in the toolbar or select File > Save Project to save the project.

Implementing a Many-to-many Mapping
Many-to-many mappings represent relationships between a collection of source
objects and a collection of target objects. In the advanced tutorial, the projects
attribute uses a many-to-many-mapping (for example, many employees can have
many projects).

Implementing a Many-to-many Mapping

2-22 Oracle9iAS TopLink Tutorials

To map a many-to-many mapping:
1. Expand the Employee descriptor in the Project Tree pane.

2. Click on the projects attribute of the Employee descriptor.

3. Click on the Many-to-many Mapping button in the mapping toolbar.

4. Use the Reference Descriptor drop-down list to select the Project descriptor.

5. Use the Relation Table drop-down list to select the PROJ_EMP table (the class to
map to).

6. Ensure that the Use Indirection field is selected. See "Implementing Indirection
in the Tutorial" on page 2-11.

Figure 2–12 Many-to-many Mapping General Tab

7. Click the Source Reference tab, and add a new reference by clicking the New
button.

� Create a new reference named PROJ_EMP_EMPLOYEE, with a source table of
PROJE_EMP and target table of EMPLOYEE, and click OK.

Implementing Inheritance

Advanced Tutorial 2-23

� In the Table Reference drop-down list, select the PROJ_EMP_EMPLOYEE
reference.

� Click the Add button on the Source Reference tab to add a foreign key
relationship.

� Set the Foreign Key field to EMP_ID (from the PROJ_EMP table).

� Set the Primary Key field to EMP_ID (from the EMPLOYEE table).

8. Click the Target Reference tab, and add a new reference by clicking the New
button.

� In the Table Reference drop-down list, select the PROJ_EMP_PROJECT
reference.

� Click the Add button on the Source Reference tab to add a foreign key
relationship.

� Set the Source Field field to PROJ_ID (from the PROJ_EMP table).

� Set the Target Field field to PROJ_ID (from the PROJECT table).

9. Click on Save in the toolbar or select File > Save Project to save the project.

Implementing Inheritance
Inheritance describes how a child class inherits the characteristics of its parent class.
TopLink uses multiple implementations to support database inheritance.

In the advanced tutorial, the LargeProject and SmallProject classes inherit the
characteristics of the Project class. Use the following procedures to set the
Project descriptor to implement inheritance, then enable the two subclasses.

To implement inheritance in the Project descriptor:
1. Click on the Project descriptor in the Project Tree pane.

2. Click on the Inheritance tab in the Properties pane.

If the Inheritance tab is not visible, right-click on the Project descriptor and
select Advanced Properties > Inheritance from the pop-up menu or Selected >
Advanced Properties > Inheritance from the menu.

3. Ensure that the Is Root Descriptor field is selected.

4. Select the Use Class Indicator Field option and use the drop-down list to select
PROJ_TYPE.

Implementing Inheritance

2-24 Oracle9iAS TopLink Tutorials

5. Select the Use Class Indicator Dictionary field and use the Indicator Type
drop-down list to select a String type.

To implement inheritance in each subclass:
1. Click on the SmallProject descriptor in the Project Tree pane.

2. Click on the Inheritance tab in the Properties pane.

If the Inheritance tab is not visible, right-click on the Project descriptor and
select Advanced Properties > Inheritance from the pop-up menu or Selected >
Advanced Properties > Inheritance from the menu.

3. In the Parent Descriptor drop-down list, select the Project class.

4. Click on Save in the toolbar or select File > Save Project to save the project.

Repeat this procedure for the LargeProject descriptor.

To complete the inheritance:
1. Click on the Project descriptor in the Project Tree pane.

2. Click on the Inheritance tab in the Properties pane.

3. For each descriptor:

� Select the Include column.

� Enter an Indicator Value (S for SmallProject and L for LargeProject).

Implementing a Transformation Mapping

Advanced Tutorial 2-25

Figure 2–13 Inheritance Tab

Implementing a Transformation Mapping
Use transformation mappings for specialized translations between how a value is
represented in Java and in the database. The method takes a database row as an
argument and are called whenever an object is written to the database. The method
returns the value from the object that should be written to the field.

In the advanced tutorial, the transformation method corresponds to a single
argument method on the Employee class and extracts the values from the fields and
places them into the NormalHours array.

To map the normalHours attribute:
1. Expand on the Employee descriptor in the Project Tree pane.

2. Click on the normalHours attribute of the Employee descriptor.

Note: To have the root class store instances of itself in the table, it
must include a value-subclass pair for itself. For the advanced
tutorial this is not required because Project is an abstract class.

Mapping the Remaining Attributes

2-26 Oracle9iAS TopLink Tutorials

3. Click on the Transformation Mapping button in the mapping toolbar.

4. Click on the Add button to create the following Object->Field Methods:

� Database Field: START_TIME, Method: getStartTime

� Database Field: END_TIME, Method: getEndTime

5. Use the Database Row -> Object Method drop-down list to select the
bulidNormalHours method.

Figure 2–14 Transformation Mapping Tab

6. Click on Save in the toolbar or select File > Save Project to save the project.

Mapping the Remaining Attributes
The remaining attributes for each descriptor are simple direct-to-field mappings.
Use Table 2–9 to map each attribute.

Generating Code

Advanced Tutorial 2-27

Generating Code
To use your project with the Foundation Library, you must either generate
deployment XML or export the project to Java source code.

In this tutorial, we will create a deployment XML file that can be read in at runtime.
The code generator creates a single subclass that can be used instead of reading
directly from the files.

To export to Java source code:
1. Right-click on the project in the Project Tree pane and select Export Project to

Java Source from the pop-up menu. The Choose an Export File window
appears.

You can also export the project by selecting File > Export to Java Source or
Selected > Export to Java Source from the menu.

2. Select a directory location and file name (.java) and click OK.

Congratulations! You have completed the Advanced Tutorial and are now familiar
with the TopLink’s advanced topics and functions.

A completed version of this tutorial is included with a standard installation of
TopLink in the following directory:

<INSTALL_DIR>\workbench\demos\employee\EmployeeDemo.mwp

Generating Code

2-28 Oracle9iAS TopLink Tutorials

Index-1

Index
A
accessors

database, 1-31
Java methods, 1-9

ACME Employee Management System
database schema, 2-2

ADDRESS table, 1-2, 2-3
add/update classes, 1-10
advanced tutorial

about, 2-1
Aggregate Mapping Fields tab, 2-20
Aggregate Mapping General tab, 2-19
aggregate object mappings, 2-18
automap, 2-8

B
Builder JDBC Server, 1-4

C
class definitions, generating, 1-10
classes

advanced tutorial, 2-2
DatabaseException, 1-33
enabling, 1-8
Expression, 1-35
introductory tutorial, 1-1
linking to tables, 1-18
SchemaManager, 1-31
TableDefinition, 1-32
ValueHolderInterface, 2-9

classpath

adding, 1-7
setting, 1-6

class-table relationships, 1-8, 2-5
creating

database tables, 1-14
database tables in Mapping Workbench, 1-14
new projects, 1-3, 2-7

D
data definition language (DDL) creation

scripts, 1-16
Database Fields tab, 1-15, 1-20, 1-21
database login, 1-13, 1-31
Database properties, 1-13
database schema

advanced tutorial, 2-2
introductory tutorial, 1-2

database sessions, 1-30
database tables

creating, 1-14
creating in Java, 1-31
creating in Mapping Workbench, 1-14
importing, 1-16

DatabaseException class, 1-33
databases

accessors, 1-31
logging in, 1-13, 1-31

Descriptor Info tab, 1-19, 1-24
descriptors

about, 1-18, 1-30
automapping, 2-8
using in an application, 1-32

Direct Collection Mapping General tab, 2-21

Index-2

direct collection mappings, 2-20
direct-to-field mapping, 1-22
Direct-to-field Mapping tab, 1-23, 2-11

E
EMPLOYEE table, 1-2, 2-3
enabling Java classes, 1-8
Expression class, 1-35

F
foreign keys in one-to-one mappings, 1-26

G
General (Project) tab, 1-7
generating class definitions, 1-10
generating code, 2-27

I
identity maps, 1-30
importing database tables, 1-16
indirection

about, 2-9
implementing in Mapping Workbench, 2-11

inheritance, 2-23
Inheritance tab, 2-25
introductory tutorial

about, 1-1
database schema, 1-2, 2-2

J
Java class instances, 1-33
Java classes, persistent, 1-18
Java source code, generating, 2-27
JDBC driver, 1-13, 1-14
JDBC Server, 1-4

K
keys

foreign, 1-26
primary, 1-20

L
LARGEPROJECT table, 2-4
linking classes and tables, 1-18
logging into a database, 1-13, 1-31

M
Many to Many Mapping General tab, 2-22
many-to-many mappings, 2-21
mapping classes and tables, 1-18
Mapping Workbench, 1-4
mappings

about, 1-18
aggregate objects, 2-18
direct collection, 2-20
direct-to-field, 1-22
many-to-many, 2-21
object type, 2-17
one-to-many, 1-28, 2-15
one-to-one, 1-25, 2-12
transformation, 2-25

maps, identity, 1-30
multiple tables, 2-16

N
new project, creating, 1-3
non-native sequencing, 1-23

O
object model

advanced tutorial, 2-2
object type mappings, 2-17
Object-type Mapping tab, 2-18
one-to-many mapping, 1-28
One-to-many Mapping General tab, 1-29, 2-15
One-to-many Mapping Table Reference tab, 1-29,

2-16
one-to-many mappings

about, 2-15
creating, 1-28

one-to-one mapping, 1-25
One-to-one Mapping General tab, 1-26, 2-13
One-to-one Mapping Table Reference tab, 1-27,

Index-3

2-13
one-to-one mappings

creating, 1-25, 2-12
foreign key references, 1-26

P
persistent Java classes, 1-18
PHONENUMBER table, 1-3, 2-4
primary keys

tables, 1-20
privately owned classes, 1-26
PROJ_EMP table, 2-5
PROJECT table, 2-4
projects

creating, 1-3, 2-7

R
records, 1-20
RESPONS table, 2-4

S
SALARY table, 2-3
sequence number, 1-20
sequence table, setting, 1-20
sequencing

classes, 1-24
non-native, 1-23
setting, 1-23

Sequencing tab, 1-22
server, Builder JDBC, 1-4
setting

sequence table, 1-20
sequencing, 1-23

SQL (DDL) creation scripts, 1-16
starting the Mapping Workbench, 1-3

T
table files

creating in code, 1-31
creating in Mapping Workbench, 1-14
importing, 1-16

table-class relationships, 1-8, 2-5
table-class, linking, 1-18
tables

ADDRESS, 1-2, 2-3
creating in code, 1-31
EMPLOYEE, 1-2, 2-3
EMPLOYEE2, 2-3
LARGEPROJECT, 2-4
PHONENUMBER, 1-3, 2-4
PROJ_EMP, 2-5
PROJECT, 2-4
RESPONS, 2-4

tables, database
creating, 1-14
creating in Mapping Workbench, 1-14
importing, 1-16
linking to classes, 1-18
primary keys, 1-20

transactions, 1-32
Transformation Mapping tab, 2-26
transformation mappings, 2-25
tutorials

advanced, 2-1
introductory, 1-1

U
units of work

about, 1-32
reading an object, 1-35
using, 1-34

V
value holders, 2-9

Index-4

	Oracle9iAS TopLink Tutorials
	Contents
	Send Us Your Comments
	Preface
	Intended Audience
	Documentation Accessibility
	Structure
	Related Documents
	Conventions

	1 Introductory Tutorial
	Overview
	Creating the Database Schema
	Creating a New Project
	Setting the Project’s Classpath

	Enabling Your Java Classes
	Generating the Class Definitions

	Logging into the Database
	Creating Tables
	Creating Tables Using the Mapping Workbench
	Creating the Table Definitions
	Creating the Tables on the Database

	Importing Tables from the Database

	Mapping Classes and Tables in the Descriptor
	Mappings
	Descriptors
	Mapping Classes to Tables
	Preparing the Primary Keys
	Setting the Sequence Table
	Implementing Direct-to-field Mappings
	Setting the Sequence Name
	Creating One-to-one Mappings Between Objects
	Foreign Key References

	Creating One-to-many Mappings

	Setting up Database Sessions
	Logging into a Database
	Creating the Tables in Code

	Using Descriptors in an Application
	Transactions and Units of Work
	Reading and Writing Java Class Instances
	Using a Unit of Work to Write an Object
	Using a Session to Read an Object

	Conclusion

	2 Advanced Tutorial
	Creating the Database Schema
	Creating a New Project
	Mapping Classes to Tables

	Using the Automap Tool
	Implementing Indirection
	Preparing Java Code for Indirection
	Implementing Indirection in the Mapping Workbench
	Implementing Indirection in the Tutorial

	Implementing a One-to-one self Relationship
	Creating Other One-to-one Mappings

	Implementing a One-to-many Self-relationship
	Creating Other One-to-many Mappings

	Using Multiple Tables
	Implementing Object Type Mapping
	Implementing an Aggregate Object
	Implementing a Direct Collection Mapping
	Implementing a Many-to-many Mapping
	Implementing Inheritance
	Implementing a Transformation Mapping
	Mapping the Remaining Attributes
	Generating Code

	Index

