Oracle9/ Application Server

Application Developer’s Guide

Release 2 (9.0.2)

January 2002
Part No. A95101-01

ORACLE

Oracle9i Application Server Application Developer’s Guide, Release 2 (9.0.2)
Part No. A95101-01
Copyright © 2002, Oracle Corporation. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and OracleMetaLink, Oracle Store, Oracle9i, Oracle9iAS Discoverer, and
PL/SQL are trademarks or registered trademarks of Oracle Corporation. Other names may be
trademarks of their respective owners.

Contents

Creating Applications: Overview

11 OVerview OFf OraClEIASot et ene e 1-2
11.1 J2EE ettt bbbt b et b et ne et 1-2
1.1.2 ENTErPriSe POMTAISoouiiiieiii ettt bt 1-2
1.1.3 WWITEIESS SUPPOIT ...ttt bbbttt b et b b 1-3
1.2 (D13 Lo o] g 1=T) A =T o 1SS 1-5
1.3 DeVEIOPMENT TOOIS ...ttt bbb bbb 1-6
1.4 What This Guide Covers and DS NOt COVEFcoiiiriririiiesiee e 1-6

The Sample Application

2.1 Requirements for the Sample Application ... 2-2
2.2 Screenshots of the Sample APPLICALION ... i 2-3
2.3 Database SCREMA ..o e 2-7

Application Design

3.1 DESIGN GOAIS ...ttt bbb a bbbt be e re s 3-2
3.2 CRAINING PAOES ..ottt sttt st b bbb et e et beebesbe b 3-3
3.3 Using Model-View-Controller (MVC) ..ot 3-4
3.3.1 Y AV O B T- o | = o DTSR RUPTUR PR 3-4
3.3.2 (670] 011 o] | [=1 SO STSRURPR 3-6
3.3.3 Model (BUSINESS LOGIC) .vvuvevireerieieeeiieeiesiestestese e seeseeesese e stestesaessesaesseseensesessessessenees 3-6
3.34 WHBWV ettt ettt ettt bbb bt b et bkt ettt e ARttt n ettt n e tenen 3-7

Implementing Business Logic

4.1 Objects Needed by the APPLICAtIONcvcveviiii s 4-2
4.2 Other Options Considered But NOt TaKeN ...t 4-3
421 Conditions that Favor USIiNg EJBS.........ccoiiiiiiiiiineeee e 4-3
4.2.2 Conditions that Favor Using SErVIEtS..........ccoovviireieiciscs e 4-3
4.2.3 Conditions that Favor Using Normal Java ODbJectScccocveiniieiencie e 4-3
4.3 (0] 11 (0] 1 1= OO PPRRRPRI 4-5
4.4 ACLION HANAIETS ... bbbttt 4-8
4.5 Employee Data (ENtity BEaN) ..ottt e 4-9
45.1 HOME INTEITACE ..o bbb 4-10
45.2 REMOLE INTEITACE ..ot 4-11
45.3 PEISISTENCE ...ttt ettt ettt sttt b et bbbt b et e 4-12
454 LOAA MELNOA ..ottt 4-12
455 (=0T o] (o) =121 1Y, Lo To 1= 0 - T3PS 4-12
4.5.6 Data Access Object for Employee Bean...........ccocoieiiieniiicieieicc e 4-14
456.1 INEEITACE ...ttt et 4-14
45.6.2 aa] o] (=T n =T o] - A o] o [SSSPSSRN 4-14
45.6.3 LOAd MELNOM ... e eee s 4-16
4.6 Benefit Data (Stateless SESSION BEAN)......c.ccvcvivriirieieieesise ettt 4-18
46.1 HOME INTEITACE ..o bbb 4-18
4.6.2 REMOLE INTEITACE ..o i 4-19
4.6.3 BENEFIL DELAIIS ... e 4-20
4.7 EmployeeManager (Stateless Session Bean)cceiveivivriiienescie e 4-21
4.7.1 HOME INTEITACE ...t et 4-22
47.2 REMOLE INTEITACE ..ot ere e 4-23
4.8 L)] 1Y O F= TSRS 4-25

Creating Presentation Pages

5.1 HTIML FIIES o sttt 5-1
5.2 SEBIVIBTS ..ttt b et b bRt teb et R e bt bt ae b e nens 5-2
5.2.1 Automatic Compilation of SErVIELS ..o 5-2
5.2.2 D 10 0] o] TSRS 5-3
5.2.3 Example: Calling @n BB ... 5-3
5.3]SOOSO PRSP OOPR 5-5
5.3.1 JLIE: Lo T T o =T LTSS 5-5

53.2
533

MiNimMal CoAING TN JSPS ...t e 5-5
Y U] o] [T O T 1Y o =TS 5-6

Interaction Between Clients and Business Logic Objects

6.1
6.2
6.2.1
6.2.2
6.2.3
6.2.4
6.3
6.4
6.4.1
6.4.2
6.4.3
6.5
6.5.1
6.5.2
6.5.3

Client Interface to BUSINESS Tier ODJECS.......cccviviiriiie e ene 6-2
Query EmMpPloyee OPeratioN..........ccoiiiiiiiiiiieie ettt e se e ene e 6-3
High-LeVel SEQUENCEccveiiieeieece ettt ne e sneenenns 6-3
Querying the Database and Retrieving Dataccococeevevveeinnsiene s 6-4
findByPrimaryKey Method ... 6-6
Getting BENEfit Data........ccceveiiieiicie s 6-7
Add and Remove Benefit OPerationsccccvvreierieieiniesese s enens 6-9
Add Benefit OPEIatioNcooouiiiiiiiii et st 6-10
High-Level Sequence Of EVENTS.......cccov ittt 6-10
Getting Benefits That the User Can Addccooveeieieciviinie s 6-11
Updating the Databaseccoiiiiiiiieie et 6-12
Removing Benefit OPerationccocviieiiieii s 6-14
High-Level SEquence Of EVENTS........cco it 6-14
Getting Benefits That the User Can REMOVE..........cccoeeiiiinenincieee e 6-15
Updating the Databaseccccvviviiiiiiie ettt ere e snens 6-16

Supporting Wireless Clients

7.1
7.2
7.2.1
7.2.2
7.3
7.3.1
7.3.2
7.3.3
7.4
7.4.1
7.4.2
7.5
7.5.1
7.5.2

Changes You Need To Make To Your Application.........ccccoceveveeiveiesnsinse e seseseesnenens 7-2
Presentation Data for Wireless CHENTS ..o 7-3
Screens for the Wireless APPlIiCatioN. ... 7-3
Differences Between the Wireless and the Browser Application............cccccoevevenee. 7-5
Deciding Where to Put the Presentation Data for Wireless Clients...........cc.cccccvevennnne. 7-7
Determining the Origin of @ REQUESTcoooiiiiiiiic s 7-7
Combining Presentation Data in the Same JSP Fileccccoovvevvvivicicce e 7-8
Separating Presentation Data into Separate Files.........ccccocvvveevviivcniencieiecce e, 7-10
Header Information in JSP Files for Wireless CHENtSccoceiiiiiiiniineicsceceee 7-12
SEtting the XIML TYPE ...eciii ettt st ne e e s 7-12
Setting the CONTENT TYPE ... sne e 7-12
OPEration DELAIIS.cceiiiciieti bbbttt 7-13
(O 11T o A @] o T-1 - L[] o SRS 7-13
QUEINYEMPIOYEEWITEIESS.JSP ..veviieieeicrieiete ettt 7-15

10

vi

7.5.3 Add and Remove Benefits OPerations.........c.coeieiiiiiiiniesinese e 7-16

7.6 AcCCeSSING the APPIICAtION ..o ere s 7-18
7.6.1 USING 8 SIMUIATOT ... e b bbb 7-18
7.6.2 Using an Actual Wireless CHENT ..o 7-18

Adding Web Cache to the Application

8.1 Choosing Which Pages t0 CaChe.........cceveieiiiiiicisie et 8-2
8.2 Analyzing the APPHCALIONcccvieiec e e s 8-3
8.2.1 Specifying the Pages t0 CaChe ... 8-3
8.2.2 INValidating PageS......covoieiiice et eeneens 8-4
8.2.3 Setting up Triggers on the Underlying Tables..........cccccooviiieiinccsi s, 8-7

Running in a Portal Framework

9.1 HOW Portal ProCesses REQUESESccvcuiiiieierireieese e eeteseste s sre e seeseensesseseenessesressesnens 9-2
9.2 Screenshots of the Application in a Portal ... 9-3
9.3 Changes You Need to Make to the Applicationcccccoceveveiicine s s 9-7
9.3.1 Set up a Provider and a Portal Pageccccovvveiceiieic e 9-7
9.3.2 Edit the APPHICAION ..o e 9-8
9.4 Update the Links Between Pages Within a Portlet..........c.cocoovviiini e, 9-9
9.4.1 The parameterizeLink Method ..o 9-9
9.4.2 The NeXt_Page ParamMeter..... ..o e 9-10
9.4.3 LinKiNg t0 the 1D PAgEcccciiiieiicese et 9-11
9.5 Use include instead of the forward Method............cccoocviviininin 9-12
9.6 Protect Parameter NAIMES..... ..ottt b e sb e s n e ee s 9-13
9.6.1 RELFEVING VAIUES ..ottt st nne s 9-14
9.6.2 SELHNG VAIUES ...ttt sa e e e e ane s 9-14
9.7 Make All Paths ADSOIULEcuouiiii e 9-15
9.7.1 - 1010 I [T 0] S I Vo SRRSO 9-15
9.7.2 S {012 4 > I Vo SRRSO 9-15

Enhancements to the Application

10.1 AddiNg SECUNILY FEALUIES.......cciuerieiiieeieeeteete s e st e s re e sre et sae e e e e enneneas 10-1
10.2 Publishing the Application as a Web Service.........ccociiiiiiniiic e 10-1

Configuration Files

Al XS] V4] 04121 A-1
A2 AefaUIT-WED-SITE.XIMILo et e s st e s s ebae e s sabe s A-2
A.3 AAtA-SOUICES. XMeiiiieii ettt s bt e e st e e e s st e e e sab b e e e e s e s sbbeeesbbaessabeeesbbeeas A-2

Vii

viii

Send Us Your Comments

Oracle9i Application Server Application Developer’s Guide, Release 2 (9.0.2)
Part No. A95101-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

Did you find any errors?

Is the information clearly presented?

Do you need more information? If so, where?

Are the examples correct? Do you need more examples?
What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

Electronic mail: iasdocs_us@oracle.com

FAX: 650-506-7407 Attn: Oracle9i Application Server Documentation Manager
Postal service:

Oracle Corporation

Oracle9i Application Server Documentation

500 Oracle Parkway, M/S 20p3

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.

Preface

Oracle9i Application Server Application Developer’s Guide describes how to create
modular, extensible, and maintainable J2EE applications. It highlights how to
structure your applications so that you get the maximum benefits from the features
in Oracle9i Application Server. You should use this guide along with the OC4J
User’s Guide.

This preface contains these topics:
« Intended Audience

« Documentation Accessibility
« Related Documentation

= Conventions

Xi

Intended Audience

Oracle9i Application Server Application Developer’s Guide is intended for
developers who perform the following tasks:

« Design and create J2EE (with EJB, JSP, and servlets) applications
« Enhance applications to support wireless clients
« Enable applications to run in a portal framework

To use this document, you need to be familiar with Java and have some exposure to
J2EE technology.

Documentation Accessibility

Xii

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle Corporation is actively engaged with other
market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional information,
visit the Oracle Accessibility Program Web site at

htt p: // waw or acl e. comd accessi bi |l ity/

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations
that Oracle Corporation does not own or control. Oracle Corporation neither
evaluates nor makes any representations regarding the accessibility of these Web
sites.

Related Documentation
For more information, see these Oracle resources:
« Oracle9i Application Server Concepts
« Oracle9i Application Server Documentation Library

« Oracle9i Application Server Platform-Specific Documentation on Oracle9i
Application Server Disk 1

In North America, printed documentation is available for sale in the Oracle Store at
http://oracl estore. oracl e. cont

Customers in Europe, the Middle East, and Africa (EMEA) can purchase
documentation from

ht t p: / / waw or acl ebookshop. cond

Other customers can contact their Oracle representative to purchase printed
documentation.

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http://otn. oracl e. cont adm n/ account / nenber shi p. ht n

If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://otn. oracl e. com docs/ i ndex. ht m

Conventions

This section describes the conventions used in the text and code examples of this
documentation set. It describes:

« Conventions in Text
« Conventions in Code Examples

« Conventions for Microsoft Windows Operating Systems

Xii

Conventions in Text

We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention Meaning Example

Bold Bold typeface indicates terms that are When you specify this clause, you create an
defined in the text or terms that appear in index-organized table.
a glossary, or both.

Italics Italic typeface indicates book titles or Oracle9i Database Concepts

emphasis. Ensure that the recovery catalog and target

database do not reside on the same disk.

UPPERCASE Uppercase monospace typeface indicates You can specify this clause only for a NUMBER
nonospace elements supplied by the system. Such column.
(fixed-wi dt h) elementsinclude parameters, privileges, .
f ont datatypes, RMAN keywords, SQL EOALaE?Jg 22%‘ r::s ntge database by using the
keywords, SQL*Plus or utility commands, '
packages and methods, as well as Query the TABLE_NAME column in the USER _

system-supplied column names, database TABLES data dictionary view.
objects and structures, usernames, and Use the DBMS_ STATS.GENERATE_STATS

roles.
procedure.
| ower case Lowercase monospace typeface indicates Enter sql pl us to open SQL*Plus.
nonospace executables, filenames, directory names, . e .
(fixed-wi dth) andsample user-supplied elements. Such The password is specified in the or apwd file.
f ont elements include computer and database Back up the datafiles and control files in the

names, net service names, and connect / di sk1/ oracl e/ dbs directory.
identifiers, as well as user-supplied
database objects and structures, column . . .
names, packages and classes, usernames ﬁnd(lj ocattl on_tl dt(:ot:ILJmns are in the
and roles, program units, and parameter r.departments table.

values. Set the QUERY_REVRI TE_ENABLED
initialization parameter tot r ue.

The depart ment _i d, depart ment _nane,

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase. Connect as oe user.

Enter these elements as shown. The JRepUti | class implements these

methods.
| over case Lowercase italic monospace font You can specify the paral | el _cl ause.
;7;%156&% represents placeholders or variables. Run Uol d_r el ease. SQL where of d_
nospace r el ease refers to the release you installed
(fixed-w dth) . di
font prior to upgrading.

Xiv

Conventions in Code Examples

Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line
statements. They are displayed in a monospace (fixed-width) font and separated
from normal text as shown in this example:

SELECT usemame FROM dba_users WHERE usemame ='MIGRATE’;

The following table describes typographic conventions used in code examples and

provides examples of their use.

Convention Meaning Example

[1 Brackets enclose one or more optional DECIMAL (digits|, preci sion])
itemms. Do not enter the brackets.

{} Braces enclose two or more items, one of {ENABLE | DISABLE}

Other notation

Italics

which is required. Do not enter the
braces.

A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

Horizontal ellipsis points indicate either:

« That we have omitted parts of the
code that are not directly related to
the example

« That you can repeat a portion of the
code

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

Italicized text indicates placeholders or
variables for which you must supply
particular values.

{ENABLE | DISABLE}
[COMPRESS | NOCOMPRESS]

CREATE TABLE ... AS subquery;

SELECT col 1, col n FROM

employees;

col 2, ...,

acctbal NUMBER(11,2);

acct CONSTANT NUMBER(4) := 3;

CONNECT SYSTEMJyst em passwor d
DB_NAME = dat abase_nane

XV

Convention Meaning Example
UPPERCASE Uppercase typeface indicates elements SELECT | ast _name, enpl oyee_id FROM
supplied by the system. We show these enpl oyees;
terms in uppercase in order to distinguish * EROM .
them from terms you define. Unless terms SELECT * F USER_TABLES,
appear in brackets, enter them in the DROP TABLE hr. enpl oyees;
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.
| oner case Lowercase typeface indicates SELECT | ast _nane, enpl oyee_id FROM
programmatic elements that you supply. enpl oyees;
For example, lowercase indicates names
of tables, columns, or files. sgl plus hr/hr
. . CREATE USER njiones | DENT Fl ED BY t y3MB;
Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.
Conventions for Microsoft Windows Operating Systems
The following table describes conventions for Microsoft Windows operating
systems and provides examples of their use.
Convention Meaning Example

Choose Start >

File and directory
names

How to start a program.

File and directory names are not case
sensitive. The following special characters
are not allowed: left angle bracket (<),
right angle bracket (>), colon (:), double
quotation marks ("), slash (/), pipe (]).
and dash (-). The special character
backslash (\) is treated as an element
separator, even when it appears in quotes.
If the file name begins with \\, then
Windows assumes it uses the Universal
Naming Convention.

To start the Oracle Database Configuration
Assistant, choose Start > Programs > Oracle -
HOME_NAME > Configuration and Migration
Tools > Database Configuration Assistant.

c:\wi nnt"\"syst enB2 is the same as
C: \ W NNT\ SYSTEMB2

XVi

Convention

Meaning

Example

C\>

HOVE_NAVE

Represents the Windows command
prompt of the current hard disk drive.
The escape character in a command
prompt is the caret (©). Your prompt
reflects the subdirectory in which you are
working. Referred to as the command
prompt in this manual.

The backslash (\) special character is
sometimes required as an escape
character for the double quotation mark
(") special character at the Windows
command prompt. Parentheses and the
single quotation mark (’) do not require
an escape character. Refer to your
Windows operating system
documentation for more information on
escape and special characters.

Represents the Oracle home name. The
home name can be up to 16 alphanumeric
characters. The only special character
allowed in the home name is the
underscore.

C:\oracl e\ or adat a>

C.\>exp scott/tiger TABLES=enp
QUERY=\"WHERE job="SALESMAN’ and
sal<1600\"

C:\>imp SYSTEM/ password
FROMUSER=scott TABLES=(emp, dept)

C:\> net start Oracle HOVE

NANETNSListener

XVii

Convention

Meaning

Example

ORACLE_HOVE
and ORACLE
BASE

In releases prior to Oracle8i release 8.1.3,
when you installed Oracle components,
all subdirectories were located under a
top level ORACLE_HQOVE directory that by
default used one of the following names:

. C:\ orant for Windows NT
. C:. \ or awi n95 for Windows 95
. C: \ or awi n98 for Windows 98

This release complies with Optimal
Flexible Architecture (OFA) guidelines.
All subdirectories are not under a top
level ORACLE_HOVE directory. There is a
top level directory called ORACLE BASE
that by defaultis C: \ or acl e. If you
install Oracle9i release 1 (9.0.1) on a
computer with no other Oracle software
installed, then the default setting for the
first Oracle home directory is

C:.\ oracl e\ ora90. The Oracle home
directory is located directly under
ORACLE BASE.

All directory path examples in this guide
follow OFA conventions.

Refer to Oracle9i Database Getting Starting
for Windows for additional information
about OFA compliances and for
information about installing Oracle
products in non-OFA compliant
directories.

Go to the ORACLE BASE\ ORACLE
HOVA\ r dbns\ admi n directory.

Xviii

1

Creating Applications: Overview

When you create applications to be deployed on Oracle9i Application Server, you
might think of different ways to implement a feature. This guide walks you through
the design and implementation of a sample application, and in the process of doing
so, it discusses the available options for each feature and the advantages and
disadvantages of each option.

The resulting application is modular and extensible: you can easily add features,
add different client types (including wireless devices), and change the
implementation of a feature with minimal impact on other features.

The sample application used in this guide is called "Employee Benefit Application”.
It enables users to view data such as employee name, phone, email, and job ID.
Users can also add or remove their benefit elections. The application retrieves and
updates data in an Oracle database.

The sample application makes use of many different technologies, including
JavaServer Pages, servlets, Enterprise JavaBeans™, JDBC, portals, wireless devices,
web cache, web services, INDI, and JAAS.

Contents of this chapter:

« Section 1.1, "Overview of Oracle9iAS"
« Section 1.2, "Development Steps"

« Section 1.3, "Development Tools"

= Section 1.4, "What This Guide Covers and Does Not Cover"

Creating Applications: Overview 1-1

Overview of Oracle9iAS

1.1 Overview of Oracle9iAS

The Oracle9iAS platform supports many technologies; as a result, you have many
choices when you design and create your applications. The following sections
describe some of these key technologies.

1.1.1 J2EE

The J2EE support includes:

Enterprise JavaBeans, which enable your applications to use entity, session, and
message-driven beans. EJB comes with an EJB container that provides services
for you. Services include transaction, persistence, and lifecycle management.

Servlets, which enable you to generate dynamic responses to web requests.

JavaServer Pages (JSP), which enable you to mix Java and HTML to author web
applications easily. JSPs also enable you to generate dynamic responses to web
requests.

Servlets and JSPs run within a "web container”, which also provides services
similar to those provided by the EJB container.

Java Authentication and Authorization Service (JAAS), which enables you to
authenticate users (that is, it ensures that users are who they claim to be) and
authorizes users (that is, it checks that the user has access to an object before
executing or returning the object).

Java Message Service (JMS), which enables you to send and receive data and
events asynchronously.

Java Transaction APl (JTA), which enables your applications to participate in
distributed transactions and access transaction services from other components.

J2EE Connector Architecture, which enables you to connect and perform
operations on enterprise information systems.

For complete J2EE details (including specifications), see:

http://java. sun.conlj 2ee

1.1.2 Enterprise Portals

Portals in Oracle9iAS enable you to aggregate, or group, your applications into a
single web page. When users visit the page, they get a centralized location where

1-2 Oracle9i Application Server Application Developer’'s Guide

Overview of Oracle9iAS

they can see only the applications to which they have access with single sign-on

capabilities. These applications, when displayed within a portal framework, are
called portlets.

Figure 1-1 shows a picture of a portal.

Figure 1-1 A portal page

elcome to Employee Portal - Hetscape

File Edit “iew Go Communicator Help

Back Fopward Reload Home Search Metzcape Frint Security Shop Stop m
X W'thookmarks J‘ Location:ID&_pirefnull.acti0n=queryEmployee&_pirefnull.next_page=controller&_pirefnull.empID=125 j
ORACLE 2N 1 ——
. Welcome to Employee =2))
— A

Portal

Mawigator Home Help

January 2, 2002

Employee Search Product Mews JPDK Samples
Employee Benefit Application

Login

Employee Details

Employee ID; 125

First Name: Julia Last Narne: Nayer
Ermnail: JNAYER Phone Number. 650.124.1214
Hire Date: 1997-07-16 Job: ST _CLERK

Elected Benefits

MEDICAL CREDITS
DENTAL CREDITS
WISION CREDITS
LTD CREDITS

Actions

Add benefits to the ermployes
Eemove benefits from the employes

Query other employee
Home

’E == | |Document: Done

1.1.3 Wireless Support

Browser clients do their rendering based on HTML tags, and there is more or less a
standard set of tags and attributes that you can use. Wireless clients, on the other

Creating Applications: Overview 1-3

Overview of Oracle9iAS

hand, understand different sets of tags and attributes, depending on the wireless

device, and speak different protocols.

To make it easy for application developers, the wireless feature in Oracle9iAS comes
with adaptors and transformers. This enables you to write your application once,
and provide access to it from any wireless device. The way this works is that you
write the presentation data in XML according to a standard DTD (document type
definition), and the adaptors convert the XML on the fly to the markup language

preferred by the client.

You can write your application such that it supports both browsers and wireless
devices. Your application can check if a request is coming from a wireless client and
return the appropriate response (HTML or XML). The sample application shows

how to do that. See Chapter 7, "Supporting Wireless Clients" for details.

Figure 1-2 shows the Employee Benefit application running on a cell phone:

Figure 1-2 An application running on a cell phone

1. Enter employee ID and click OK.

| OPENWAVE

® -| Openwave

Query Employee
Enter Emp ID:

2. View employee information.

| OPENWAVE

&
Emp ID: 134
First Name:
Michael
La=t Hame: Rogers
Email: HMROGERS
Phone:
650.127.1834
Hire: 1998-08-26
Job: ST_CLERK

S T BN R e |
\\~ Back | ‘Henu |

1-4 Oracle9i Application Server Application Developer’'s Guide

Development Steps

1.2 Development Steps

Designing and developing an application with all these technologies can be a little
overwhelming. Here are some high-level steps to guide you (later chapters in this
book provide the details):

1.

Determine application requirements.

Be sure to separate the presentation (or client) tier requirements from the
business logic tier requirements. Separating the requirements by tier helps you
design your application in a modular fashion. Modularity promotes a clean
separation of functionality and enables you to reuse, update, or replace
modules without affecting the rest of the application.

See Section 2.1, "Requirements for the Sample Application” for details.

In the business logic tier, determine what objects you need and the interfaces of
these objects.

It helps to draw a sketch of the design based on the interfaces. Also determine
how the client tier can invoke methods in the objects.

When you determine what objects you need, you have many implementation
choices. For example, you can use servlets, JavaBeans, Enterprise JavaBeans, or
plain Java classes to implement your business logic.

See Chapter 4, "Implementing Business Logic" for details.
In the client tier, create the presentation data for the client.

The presentation data determine how the application looks to the users.
Typically, the presentation data is in HTML (for browsers) or XML (for wireless
devices). The HTML or XML tags can come from static files, JSPs, or other Java
classes.

JSPs and other Java classes can output the presentation data programmatically.
In JSP files, you embed commands to invoke methods on the Java objects that
implement your business logic. You can then display the values that the
methods return.

See Chapter 5, "Creating Presentation Pages" for details.
Implement the business logic.

You can do this with EJBs, servlets, or other Java classes.
See Chapter 4, "Implementing Business Logic" for details.

Package, deploy, and run your application.

Creating Applications: Overview 1-5

Development Tools

1.3 Development Tools

To create applications for Oracle9iAS, you can use text editors such as emacs or vi,
or you can use IDEs (integrated development environment).

If you use a text editor, you also need additional tools such as a Java compiler (for
example, javac), a Java archive tool (for example, jar), and a packaging tool so that
you can compile your files and build JAR and EAR files.

If you use IDEs, they can automate the tasks listed above for you. Oracle provides
an IDE called Oracle9i JDeveloper. JDeveloper has support for each stage in the
development lifecycle: it contains UML modelling and generation tools, debugging
tools, profiling tools, and tuning tools.

JDeveloper is closely integrated with Oracle9iAS: you can deploy applications on
Oracle9iAS from JDeveloper.

1.4 What This Guide Covers and Does Not Cover

This guide shows a complete application, clients (browsers and wireless devices),
and database schema. It describes the logic behind the application design.

It also shows how to deploy/configure the application.

It does not describe the details for the APls that the application uses. For that
information, refer to the Oracle9iAS J2EE Users Guide.

This guide assumes the reader has some concept of servlets, JSPs, portals, web
services, wireless devices, and introductory knowledge of EJBs. If you need more
information on these topics, see the Oracle9iAS library for a list of books.

To read the Java specifications, see:

http://java. sun.com

1-6 Oracle9i Application Server Application Developer’'s Guide

2

The Sample Application

This chapter describes the sample application, "Employee Benefit Application”,
used in this guide.

Contents of this chapter:
« Section 2.1, "Requirements for the Sample Application"
« Section 2.2, "Screenshots of the Sample Application"

= Section 2.3, "Database Schema"

The Sample Application 2-1

Requirements for the Sample Application

2.1 Requirements for the Sample Application

The Employee Benefit application enables users to view employee information
(such as first name, last name, email, and phone number), and add and remove
benefits. A typical user of the application is an employee who manages benefits for
other employees in a company.

The functional requirements for the sample application are:

« Display data from the employees, employee_benefit_items, and benefits tables
on the Info page (Figure 2-1). The database schema for these tables is listed in
Section 2-4, "Database schema".

= Enable the user to add benefits.

= Enable the user to remove benefits.

Miscellaneous:

« Application must be able to run within a portal.
Clients for the application:

= \Web browsers

= Wireless clients (mobile phones and PDAS)

2-2 Oracle9i Application Server Application Developer’s Guide

Screenshots of the Sample Application

2.2 Screenshots of the Sample Application

When the user invokes the application, the first page prompts the user to enter an
employee ID (Figure 2-1).

When the user clicks the Query Employee button, the application queries the
database for the specified employee ID. If found, the application displays
information for that employee, including which benefits the employee has currently
elected (Figure 2-1).

If the employee ID does not match an employee, the application displays an error
page (Figure 2-3).

On the Info page, the user can add or remove benefits by selecting the Add or
Remove Benefit link. The application then displays the Add or Remove Benefits
page (Figure 2-2). The user selects which benefits to add or remove, and clicks the
Add Selected Benefits or Remove Selected Benefits button. If successful, the
application displays the Success page, and the user can click the "Query the Same
Employee" link to see the updated benefits.

For screen shots of the application running on a wireless device, see Chapter 7,
"Supporting Wireless Clients".

The Sample Application 2-3

Screenshots of the Sample Application

Figure 2-1 ID page and Info page

ID page

Info page

Query Employee - Netscape
File Edit “iew Go Communicator Help

Back Fopward Reload Home Search Metzcape Frint Security Shop Stop m

wtv Bookmarks J" Location:Ihttp:.-".-"iasdoc:s‘l.us.oracle.com:8889.-"empbft.-"c:ontrolIer?action=queryEmployee j

Query Employee

Actions
Home

’E == | |Document: Done

Employee Benefit Application

Ermployee |0 | Query Employee

File Edit “iew Go Communicator Help

uery Employee - Hetscape

Back Fopward Reload Home Search Metzcape Frint Security Shop Stop m

W'thookmarks . Location:I89.-"empbft.-"c:ontroller;isessionid=PJADMHIJANND?action=queryEmployee&empID=144 j

Employee Details

Elected Benefits

Actions

’E == | |Document: Done

Employee Benefit Application

Employee ID: 144

First Name: Peter Last Marne: Vargas
Ermnail: PYARGAS Phone Number. 650.121.2004
Hire Date: 1998-07-09 Job: ST _CLERK

AD+D CREDITS
SPOUSE AFTER-TAX LIFE

Add benefits to the employee » Displays the Add Benefits page

Eemove benefits from the employes _—> Dlsplays the Remove Benefits page

Query other employes
Home

S R B A

2-4 Oracle9i Application Server Application Developer’s Guide

Screenshots of the Sample Application

Figure 2-2 Add Benefits Page, Remove Benefits Page, and Success Page

Add Benefits page Remove Benefits page

Add Benefits to Employee - Netscape

emove Benefits from Employee - Hetscape
File Edit “iew Go Communicator Help
Back Fopward Reload Home Search Metzcape Frint Securi ' Back

File Edit “iew Go Communicator Help

Fopward Reload Home Search Metzcape Frint Security

w!v Bookmarks Location:Ic:s‘l.us.oracle.c:om:888Sa"empbft.-"controller?emplD=‘I 44 '

w!v Bookmarks J" Location:Is.oracle.c:om:8889.-"empbft.-"c:ontroller?emplD=‘| 44kaction=
Employee Benefit Application Employee Benefit Application

Select Available Benefits Select Elected Benefits
[MEDICAT CREDITS [4D+D CREDITS
[DENTAL CREDITS [SPOUSE AFTER-TAX LIFE
[VISIOW CREDITS
[T LTD CREDITS Actions
[EMPLOYEE LIFE CREDITS
[N CHIOLD AFTER-TAX LIFE Remave Selected Benefits |
[GROUFP LEGAL
Actions [=B=| |Document: Dane =| =i

Add Selected Benefits | J

=
= |Qocument: Dane 5 12 VAN

Success page

peration Completed - Hetscape

File Edit “iew Go Communicator Help

Back Fopward Reload Home Search Metzcape Frint Security Shop Stop m

W'!vBookmarks J" Location:Is.oracle.c:om:8889.-"empbft.-"c:ontroller?benefits=1&benefits=2&benefits=3&emplD=‘|44&acti0n=addBenefitToEmponee LI

Employee Benefit Application

Successful Operation

The operation was completed successfully.

Actions

Query the same employes

Quenry other employee
Home
| == |Document: Done

S 22 B 2 4

The Sample Application 2-5

Screenshots of the Sample Application

Figure 2-3 Error page

Invalid Employee ID - Hetscape
File Edit “iew Go Communicator Help

Back Fopward Reload Home Search Metzcape Frint Security Shop Stop m

W'thookmarks J‘ Location:Ihttp:.-".-"iasdoc:s‘l.us.oracle.c:om:8889.-"empbft.-"c:ontroller?action=queryEmployee&emplD=1445 j

Employee Benefit Application

Invalid Employee ID
The employee D is invalid, please enter an ID between 100 and 206,

Actions

Ciuery other employee
Home

’E == | |Document: Done

2-6 Oracle9i Application Server Application Developer’s Guide

Database Schema

2.3 Database Schema

The Employee Benefit sample application uses the common hr schema that comes
with Oracle9i database and Oracle9iAS Metadata Repository. The application uses
the hr.employees table, plus two additional tables (benefits and employee_benefit_
items) that you install. You install these tables in the default tablespace of the hr

schema.

Table 2—-1 Tables in the hr schema

Table name

Description

employees

benefits

employee_benefit_items

Contains fields such as: employee_id, first_name, last_name,
phone, email, and department.

Contains fields such as benefit_id, benefit_name, and benefit_

description.

Maps employees with benefits. The table has fields such as

employee_id, employee_id, and election_date. An employee can
have multiple benefits. This is the table that the application
updates when employees update their benefit elections.

The application retrieves data from all three tables, but updates only the employee
benefit_items table.

Figure 2—-4 Database schema

EMPLOYEES

PK

Employee_ID
First_name
Last name
Email
Phone_number
Hire_date
Job_id

Salary
Commission_pct
Manager_id
Department_id

EMPLOYEE_BENEFIT_ITEMS

A

PK Employee_id
PK Benefit_id
Election_date

BENEFITS

v

PK Benefit_id
Benefit_name
Benefit_description

The Sample

Application 2-7

Database Schema

2-8 Oracle9i Application Server Application Developer’s Guide

3

Application Design

There are several ways to design the architecture of the application described in
Chapter 2, "The Sample Application”. One way is to "chain" the pages, where page 1
calls page 2, page 2 calls page3, and so on. Another way is to use the
model-view-controller (MVC) design pattern.

Contents of this chapter:

« Section 3.1, "Design Goals"

« Section 3.2, "Chaining Pages"

« Section 3.3, "Using Model-View-Controller (MVC)"

Application Design 3-1

Design Goals

3.1 Design Goals

You want to design your application such that changes to one part of the
application has minimal or no impact on other parts. This enables you to:

Add features without redesigning your application

Add new client types (such as wireless devices)

Change client interfaces with minimal impact to your business logic
Change business logic without changing presentation data

Change your database schema or data source with minimal impact on your
application

3-2 Oracle9i Application Server Application Developer’s Guide

Chaining Pages

3.2 Chaining Pages

In the chaining pages design, pages in the application are linked sequentially. Page
1 has a link that calls page 2, page 2 has a link that calls page 3, and so on.
Graphically:

Figure 3-1 Chaining pages

page 1 page 2 page 3
[myApp/page?2 [myApp/page3

Each page can be generated differently. For example, the page 1 can be a plain
HTML file, page 2 can be generated by a servlet, while page 3 can be generated by a
JSP. The pages contain links or form elements (if the user needs to enter some
values) to enable the user to get to the next page. In any case, the link to the next
page is hardcoded on each page. See Chapter 5, "Creating Presentation Pages" for a
discussion of generating HTML or other markup language.

Advantages of this design are that it is straightforward and easy to understand.
This design is manageable for small applications that are unlikely to get bigger or
whose pages are unlikely to change.

Disadvantages of this design are that there is no central point to handle client
requests and it is difficult to move pages around. If pages get moved, added, or
removed from the application, the application becomes less organized because you
have to track down the code that one page calls and move it to another page, or
change dependencies so that a page can be called from a different page.

Application Design 3-3

Using Model-View-Controller (MVC)

3.3 Using Model-View-Controller (MVC)

A better way of designing this application is to use the MVC
(model-view-controller) design pattern. MVC enables the application to be
extensible and modular by separating the application into three parts:

« the business logic part, which implements data retrieval and manipulation
« the user interface part, which is what the application users see
« the controller part, which routes requests to the proper objects.

By separating an application into these parts, the MVC design pattern enables you
to modify one part of the application without disturbing the other parts. This means
that you can have multiple developers working on different parts of the application
at the same time without getting into each other’s domain. Each developer knows
the role that each part plays in the application. For example, the user interface part
cannot contain any code that has to do with business logic, and vice versa.

MVC also makes it easy to transform the application into a portlet or to have
wireless devices access the application.

For more details on MVC, see:

http://java. sun. coni j 2ee/ bl ueprint s/ desi gn_pat t erns/ nodel _vi ew_control | er/i ndex. ht m

3.3.1 MVC Diagram

The following figure shows a high-level structure of the sample application. When
the application receives a request from a client, it processes the request in the
following manner:

1. The client sends a request, which is handled by the controller.

2. The controller determines the action specified by the request, and looks up the
class for the action. The class must be a subclass of the AbstractActionHandler
class.

3. The controller creates an instance of the class and invokes a method on that
instance.

4. The instance processes the request. Typically, it forwards the request to a JSP
page.

5. The JSP page gets an instance of the Enterprise JavaBean appropriate for the
action and invokes the method to perform the action.

6. The JSP page then extracts the data that the method returned for presentation.

3-4 Oracle9i Application Server Application Developer’s Guide

Using Model-View-Controller (MVC)

Figure 3-2 Application architecture

Client
A
1
Request
CONTROLLER
A
(" N 6
Controller Servlet
Response
A
3 ActionHandler Interface 4 VIEW
Forward
AbstractActionHandler class JSP Page
ActionHandler implementation
- J
4 I 5
Access EJB Remote EJB Home Access

EJB Implementation

MODEL !

Data Access Object interface

Data Access Object implementation

Database

Application Design 3-5

Using Model-View-Controller (MVC)

3.3.2 Controller

The controller is the first object in the application that receives requests from clients.
All requests for any page in the application must first go through the controller.

In the controller, you map each request type with a class to handle the request. For
example, the sample application has the following mappings:

Table 3-1 Mappings in the controller for the sample application

Action Class

queryEmployee empbft.mvc.handler.QueryEmployee
addBenefitToEmployee empbft.mvc.handler.AddBenefitToEmployee
removeBenefitFromEmployee empbft.mvc.handler.RemoveBenefitFromEmployee

The action is a query string parameter passed to the controller. The controller gets
the value of the act i on parameter to determine the type.

When the controller receives a request, it looks up the value of the act i on
parameter, determines the class for the request, creates an instance of the class, and
sends the request to that instance.

You can hardcode the mapping in the controller code itself, or you can set up the
controller to read the mapping information from a database or XML file. It is more
flexible to use a database or XML file.

By having a controller as the first point of contact in your application, you can add
functionality to your application easily. You just need to add a mapping and write
the new classes to implement the new functionality.

In the sample application, the controller object is a servlet. The pages in the
application have links to this servlet.

Using the controller object frees you from "chaining" pages in your application,
where you have to keep track of which page calls which other pages, and adding or
removing pages can be a non-trivial task.

3.3.3 Model (Business Logic)

The model represents the objects that implement your business logic. The objects
process client data and return a response. The model also includes data from the
database. Objects in the model can include Enterprise JavaBeans, JavaBeans, and
regular Java classes. Views and controllers invoke objects in the model.

3-6 Oracle9i Application Server Application Developer’s Guide

Using Model-View-Controller (MVC)

3.3.4 View

After the controller has read the request, objects in the model perform all the actual
work in processing the request. For example, the objects can extract values from the
query string and validate the request, authenticate the client, begin a transaction,
and query databases. In the sample application, the EmployeeManager session
bean calls the Employee entity bean to query the database and get information for
an employee.

Although it is tempting to encode presentation data in your business logic, it is a
better practice to separate the presentation data into its own file. For example, if you
write the presentation data in a JSP file, you can edit the HTML markup in the file
or change the format of the data without changing the model code. The page can
then format the data accordingly. JSP files do not care how the methods get their
data.

Typically, objects in the model read and update data in databases. If your
application accesses databases, consider using DAO (data access objects) to separate
the database access portion of your application from the rest of the model. This
enables you to isolate the SQL statements that you send to the database.

Using DAOs gives you the flexibility to change your data source. If you update
your database (for example, if you rename tables in the database or change the
structure of tables in the database), you can update your SQL statements in the data
access objects without changing the rest of your application.

The sample application uses a DAO to connect to the database. The DAO sets up a
connection to the database, executes the required SQL statements on the database,
and returns the data.

For additional information on how to create a "clean" model, you might want to
read the J2EE blueprints page and the Design Patterns Catalog page on the Sun site:

http://java. sun.conij 2ee/ bl ueprints
http://java. sun.conij 2ee/ bl ueprints/ desi gn_patterns/catal og. htm

The view includes presentation data such as HTML tags along with business data
returned by the model. The presentation data and the business data are sent to the
client in response to a request. The HTML tags usually have data and form elements
(such as text fields and buttons) that the user can interact with, as well as other
presentation elements.

The presentation data and the business data should come from different sources.
The business data should come from the model, and the presentation data should

Application Design 3-7

Using Model-View-Controller (MVC)

come from JSP files. This way, you have a separation between presentation and
business data.

One benefit of coding the business and presentation data separately is that it makes
it easy to extend the application to support different client types. For example, you
might need to extend your application to support wireless devices. Wireless devices
read WML or other markup language, depending on the device. If you embed your
presentation data in your business logic, it would be difficult to track which tag is
for which client type. With the separation, you can reuse the same business objects
with new presentation data.

In addition, new clients of the application might not even be graphical at all. They
might not be interested in getting display tags. They might only be interested in
getting a result, which they can process however they like.

The files for the presentation data should not contain any business logic code, other
than invoking objects on the model side of the application. This enables you to
change the implementation of the business logic and database schema without
modifying the client code.

In the sample application, client types include browsers, different types of wireless
devices, non-web clients (such as other applications), and SOAP clients. You can
add clients or change how the data is presented to the clients just by changing the
"view." The data can be HTML, WML, or any other markup language.

In the sample application, all the presentation code is in JSP files. The JSP files call
on EJBs and servlets to process requests.

3-8 Oracle9i Application Server Application Developer’s Guide

A4

Implementing Business Logic

Recall that the Employee Benefit sample application follows the MVC design
pattern. This chapter discusses the model (M) and the controller (C) in the
application. The view (V) is covered in Chapter 5, "Creating Presentation Pages".

The business logic for the Employee Benefit application consists of listing the
employee information, adding benefits, and removing benefits (see Section 2.1,
"Requirements for the Sample Application") for a specific employee.

The database schema for the application, which you might find useful to review, is
shown in Section 2.3, "Database Schema".

Section 4.1, "Objects Needed by the Application”

Section 4.2, "Other Options Considered But Not Taken"

Section 4.3, "Controller"
Section 4.4, "Action Handlers"

Section 4.5, "Employee Data (Entity Bean)"

Section 4.6, "Benefit Data (Stateless Session Bean)"

Section 4.7, "EmployeeManager (Stateless Session Bean)"

Section 4.8, "Utility Classes"

Implementing Business Logic 4-1

Objects Needed by the Application

4.1 Objects Needed by the Application

JSP pages contain presentation data and they also invoke business logic objects to
perform certain operations (query employee information, add benefits, and remove
benefits). These objects can be plain Java classes or EJB objects.

The Employee Benefit application uses EJBs because it might offer more functions to
users in the future. The EJB container provides services that the application might
need.

What EJB objects does the application need?
= An object to manage employee data

The application needs to query the database and display the retrieved data.
This can be an entity bean.

= An object to contain master benefit data

The application uses this object to determine which benefits a user does not
have.

« Asession bean to manage the employee entity beans
= A data access object (DAO)

DAOs are used to connect to the data source. The EJBs do not connect to the
data source directly.

= A Controller and ActionHandler objects

These objects are needed to implement the MV C design pattern for the
application.

« Utility objects

The application uses utility objects to perform specific tasks. It has a class to
print debugging messages, and a class to define constants used by other classes
in the application.

4-2 Oracle9i Application Server Application Developer's Guide

Other Options Considered But Not Taken

4.2 Other Options Considered But Not Taken

The application could have used plain Java classes to hold data and not used EJBs at
all. But if the application grows and contains more features, it might be easier to use
EJBs because it comes with a container that provides services such as persistence
and transactions.

Another advantage of using EJB is that it is easier to find developers who are
familiar with the EJB standard. It takes longer for developers to learn a
"home-grown" proprietary system.

Here are some guidelines to help you choose among EJBs, servlets, and normal Java
objects.

4.2.1 Conditions that Favor Using EJBs

Choose EJBs when:

You need to model complex business logic.
You need to model complex relationships between business objects.

You need to access your component from different client types such as JSPs and
servlets.

You need J2EE services.

4.2.2 Conditions that Favor Using Servlets
Choose servlets when:

You need to maintain state but do not require J2EE services (HttpSession
object).

You do not need to dedicate servlet instances to individual clients. In large
deployments with thousands of concurrent users, maintaining one stateful
session bean instance for each client may be a bottleneck. Servlets provide a
lighter weight alternative.

You need to temporarily store state of business process within a single HTTP
request and the request involves multiple beans.

4.2.3 Conditions that Favor Using Normal Java Objects
Choose normal Java objects when:

Implementing Business Logic 4-3

Other Options Considered But Not Taken

= You do not need built-in web and EJB services such as transactions, security,
persistence, resource pooling.

= You need the following features that are not allowed in EJBs:
« accessing a local disk using the java.io package
= Creating threads
= using the synchronized keyword
« using the java.awt or javax.swing packages
« listening to a socket or creating a socket server
« modifying the socket factory
« using native libraries (JNI)

« reading or writing static variables

4-4 Oracle9i Application Server Application Developer's Guide

Controller

4.3 Controller

The Controller servlet is the first object that handles requests for the application. It
contains a mapping of actions to classes, and all it does is route requests to the
corresponding class.

The init method in the servlet defines the mappings. In this case, the application
hardcodes the mappings in the file. It would be more flexible if the mapping
information comes from a database or a file.

When the Controller gets a request, it runs the doGet or the doPost method. Both
methods call the process method, which looks up the value of the action parameter
and calls the corresponding class.

package enpbft. mvc;

i nport javax.servlet.*;
inport javax.servlet.http.*;
inport java.io.*,;

inport java.util.HashMap;
inport empbft.util.*;

/** M/C Controller servliet. Inplenments the controller
in an Mdel View Control pattern.
*/
public class Controller extends HttpServl et
{
/* Private static String here, not String creation out of the execution
path and hence help to inprove perfornmance. */
private static final String CONTENT_TYPE = "text/htm";

[** Hashtable of registered ActionHandl er object. */
private HashMap m actionHandl ers = new HashMap();

[** ActionHandl er Factory, responsible for instantiating ActionHandl ers. */
private ActionHandl er Factory mahf = ActionHandl erFactory. getlnstance();

[** Servlet Initialization nethod.
@aram - ServletConfig
@hrows - Servl et Exception

*/

public void init(ServletConfig config) throws ServletException
{

super.init(config);

Implementing Business Logic 4-5

Controller

/I Regi ster ActionHandlers in Hashtable, Action nane, inplenentation String

/I This really ought to cone froma configuration file or database etc....

this. mactionHandl ers. put (Sessi onHel per. ACTI ON_QUERY_EMPLOYEE,
"enpbft. nvc. handl er. Quer yEnpl oyee");

this. mactionHandl ers. put (Sessi onHel per. ACTI ON_ADD BENEFI T_TO EMPLOYEE,
"enpbft.nvc. handl er. AddBenef i t ToEnpl oyee");

this. mactionHandl ers. put (Sessi onHel per. ACTI ON_REMOVE_BENEFI T_FROM EMPLOYEE,
"enpbft. nvc. handl er. RenmoveBenef i t FronEnpl oyee") ;

}

[** doGet. Handle an MV/C request. This method expects a paranmeter "action”
http://local host/ WC Control | er ?acti on=dosonet hi ng&
apar anrdat a&anot her par anenor edat a
@aram - HtpServl et Request request,
@aram - HtpServl et Response response,
*/
public void doGet(HttpServl et Request request, HtpServletResponse response)
throws Servl et Exception, |COException
{
process(request, response);

}

[** doPost. Handle an MVC request. This method expects a paraneter "action"
http://local host/ WC Control | er ?acti on=dosonet hi ng&
apar anrdat a&anot her par anenor edat a
@aram - HtpServl et Request request,
@aram - HtpServl et Response response,
*/
public void doPost (HtpServl et Request request, HttpServletResponse response)
throws ServletException, |COException

{ process(request, response);
}
private void process(HtpServlet Request request, HtpServletResponse response)
{
try
{

/1 Get the action fromthe request paraneter
String | _action = request. get Paranet er (Sessi onHel per. ACTI ON_PARAMETER) ;

[I'Find the inplenmenation for this action

if (I_action == null) | _action = Sessi onHel per. ACTI ON_QUERY_EMPLOYEE;
String | _actionlnpl = (String) this.mactionHandl ers. get(l_action);

4-6 Oracle9i Application Server Application Developer’s Guide

Controller

if (I_actionlnpl == null) {
throw new Exception("Action not supported.”);

}
ActionHandl er | _handler = this.mahf.createActi onHandl er (I _actionlnpl);
| _handl er. perfornmAction(request, response);

}

cat ch(Exception e)

{
e.printStackTrace();

}

}
}

Implementing Business Logic 4-7

Action Handlers

4.4 Action Handlers

The process method of the Controller servlet looks up the class that is mapped to
the request and calls createActionHandler in the ActionHandlerFactory class to
instantiate an instance of the mapped class.

The Employee Benefit application maps three actions to three classes. These classes
must be subclasses of the AbstractActionHandler abstract class, which implements
the ActionHandler interface, and must implement the performAction method.
Figure 4-1 shows the relationship between these classes.

The performAction method checks whether the request came from a browser or a
wireless device, and forwards the request to the appropriate JSP file. For browsers
the JSP file returns HTML, while for wireless devices the JSP file returns XML. For
example, the performAction method in QueryEmployee.java forwards requests
from browsers to the queryEmployee.jsp file, but for requests from wireless devices
the method forwards the requests to the queryEmployeeWireless.jsp file.

Figure 4-1 Action handlers

«interface»
ActionHandler

Zﬁ

«abstract class»

AbstractActionHandler
AddBenefitToEmployee QueryEmployee RemoveBenefitFromEmployee

4-8 Oracle9i Application Server Application Developer’s Guide

Employee Data (Entity Bean)

4.5 Employee Data (Entity Bean)

Employee data can be mapped to an Employee entity bean. The home and remote
interfaces for the bean declare methods for retrieving employee data and adding
and removing benefits.

Each instance of the bean represents data for one employee and the instances can be
shared among clients. The EJB container instantiates entity beans and waits for
requests to access the beans. By sharing bean instances and instantiating them
before they are needed, the EJB container uses instances more efficiently and
provides better performance. This is important for applications with a large number
of clients.

Entity beans are less useful if the employees table is very large. The reason is that
you are using a lot of fine-grained objects in your application.

Internally, the Employee bean stores employee data in a member variable called
m_emp of type EmployeeModel. This class has methods for getting individual data
items (such as email, job ID, phone).

Figure 4-2 Employee classes

+ it I ejb.Empl Bean

L

- m_emp : MutahleEmployeeiModel
- m_ctx ; EntityContext
- m_dao : EmployeeDAD

L

3+ Constructord
+ ejbFindByPrimarykeyiint empld) : Integer

<<lnterfaces> L + getDetails() : Employeeiodel

it | ejh.EntityBean + ejbActivated : void

+ ejhload() : void

+ ejbPassivated) : void
+ ejbRemoved : void
+ ejbStored) void
+ setEntityContext(EntityContext ot vaid
+ unsetEntityContexd() void
+ addBenefits(int henefits[) : void
+ removeBenefits(int henefits[) : void

I <<Interfacesx
+ emphft.com t I ejb.Empl
<<Interfaces>

=
r+getDetaiIso:EmployeeModeI E+ phft.comg it I ejb.Empl Home

+ addBenefits{int henefits[) : void —
+ remaoveBenefits(int henefits[) : void

1
+ findByPrimarykey(int employeelD) : Employee

Implementing Business Logic 4-9

Employee Data (Entity Bean)

Figure 4-3 EmployeeModel class

R —

["#rm_id : integer
m_benefits ; Callection
- m_firstMame : String
- m_lastMame : String
- m_email : String
- m_phoneMumber : String
- m_hireDate : Date
- m_johld : String
—

J+ Constructoriint id, Collection benefits, .}
+ Constructord

+ getldd :int

+ getBenefitzd : Collection

+ zetBenefits{Collection benefits) ; vaid
+ getFirsthamed) : String

+ getlastMamed) : String

+ getEmail) : String

+ getPhoneMumberd ; String

+ getHireDatel) : Date

+ getlobldd : String

+toStringd ; String

+ capy(Employeeiodel other) : vaid

45.1 Home Interface

The Employee entity bean has the following home interface:

package enpbft.conponent. enpl oyee.] b;
i nport java.rm . RenoteException;
inport javax.ejh.*;

public interface Enpl oyeeHone extends EJBHome

{
public Enpl oyee findByPrinmaryKey(int enpl oyeel D)
throws RenoteException, FinderException;

}

The findByPrimaryKey method, which is required for all entity beans, enables
clients to find an Employee object. It takes an employee ID as its primary key.

It is implemented in the EmployeeBean class as ejbFindByPrimaryKey. To find an
Employee object, it uses a data access object (DAO) to connect to the database and
perform a query operation based on the employee ID.

See Section 4-6, "EmployeeDAO classes" for details on DAOs.

4-10 Oracle9i Application Server Application Developer’s Guide

Employee Data (Entity Bean)

45.2 Remote Interface

The Employee bean’s remote interface declares the methods for executing business
logic operations:

package enpbft.conponent. enpl oyee.] b;
inport java.rni.RenoteException;

inport javax.ejb. EJBObj ect;

i nport enpbft.conponent.enpl oyee. hel per. *;

public interface Enpl oyee extends EJBOhj ect

{
public Enpl oyeeModel getDetails() throws RenoteException;
public void addBenefits(int benefits[]) throws RenoteException;
public void remveBenefits(int benefits[]) throws RenoteException;
}

The addBenefits and removeBenefits methods access the database using a DAO
and perform the necessary operations. See Section 4.5.6, "Data Access Object for
Employee Bean" for details.

The getDetails method returns an instance of EmployeeModel, which contains
employee information. The query operation calls this method to get and display
employee data. JSP pages call getEmployeeDetails method in
EmployeeManagerBean, which call this method (Figure 4-4). Section 6.2, "Query
Employee Operation" contains details on the query operation.

Figure 4-4 Getting employee details

JSP EmployeeManager Employee

» getEmployeeDetails(id)

\—getEmponee(id)*
, Employee

, EmployeeModel getbetails()

 EmployeeModel

*How getEmployee(id) works is described later.

Implementing Business Logic 4-11

Employee Data (Entity Bean)

45.3 Persistence

The Employee entity bean uses bean-managed persistence (BMP), rather than
container-managed persistence. The bean controls when it updates data in the
database.

It uses BMP because the employees-to-benefits is a many-to-many relationship, and
an old version of Oracle9iAS (release 1022) does not support M:M relationship.

45.4 Load Method

The Employee entity bean implements the ejbLoad method, although the bean uses
bean-managed persistence. The ejbLoad method queries the database (using the
DAO) and updates the data in the bean with the new data from the database. This
ensures that the bean’s data is synchronized with the data in the database.

ejbLoad is called after the user adds or removes benefits.

/1 from Enpl oyeeBean. j ava
public void ejbLoad() {
try {
if (mdao == null)
m dao = new Enpl oyeeDAQ npl ();
Integer id = (Integer)mctx.getPrimryKey();
this.menp = mdao. | oad(id.intValue());
} catch (Exception e) {
throw new EJBExcepti on("\ nException in | oadi ng enpl oyee.\n"
+ e. get Message());
}
}

See also Section 4.5.6.3, "Load Method", which describes the load method in the
DAO.

4.5.5 EmployeeModel Class

The implementation of the Employee bean uses a variable of type EmployeeModel,
which contains all the employee details such as first name, last name, job ID, and so
on. The following code snippet from EmployeeBean shows m_emp as a class
variable:

public class Enpl oyeeBean inplenents EntityBean

{
private Enpl oyeeModel m enp;

4-12 Oracle9i Application Server Application Developer’s Guide

Employee Data (Entity Bean)

}

Code snippet from EmployeeModel:

public class Enpl oyeeModel inplenents java.io.Serializable
{

protected int mid;

protected Col | ection mbenefits;

private String mfirstNang;

private String ml astNane;

private String memail;

private String m phoneNunber;

private Date m hireDate;

private String mjobld;

Figure 4-5 Employee and EmployeeModel

Employee entity bean

EmployeeModel m_emp

A

EmployeeModel

— intm_id

— Collection m_benefits
— String m_firstName

— String m_lastName

— String m_email

— String m_phoneNumber
— String m_hireDate

— String m_jobld

Implementing Business Logic 4-13

Employee Data (Entity Bean)

4.5.6 Data Access Object for Employee Bean

Data access objects (DAO) are the only classes in the application that communicate
with the database, or in general, with a data source. The entity and session beans in
the application do not communicate with the data source. See Figure 3-2.

By de-coupling business logic from data access logic, you can change the data
source easily and independently. For example, if the database schema or the
database vendor changes, you only have to update the DAO.

DAOs have interfaces and implementations. EJBs access DAQOs by invoking
methods declared in the interface. The implementation contains code specific for a
data source.

For details on DAOSs, see:

http://java. sun. conlj 2ee/ bl ueprint s/ desi gn_pat t erns/ dat a_access_obj ect/i ndex. ht m

45.6.1 Interface

The EmployeeDAO interface declares the interface to the data source. Entity and
session beans and other objects in the application call these methods to perform
operations on the data source.

package enpbft.conponent. enpl oyee. dao;
i nport enpbft. conponent . enpl oyee. hel per. Enpl oyeeMdel ;

public interface Enpl oyeeDAO {
public Enpl oyeeMbdel |oad(int id) throws Exception;
public Integer findByPrimaryKey(int id) throws Exception;
public void addBenefits(int enpld, int benefits[]) throws Exception;
public void renoveBenefits(int enpld, int benefits[]) throws Exception;

4.5.6.2 Implementation

The implementation of the DAO is called EmployeeDAOImpl. It uses JDBC to
connect to the database and execute SQL statements on the database. If the data
source changes, you need to update only the implementation, not the interface.

Employee and Benefit objects get an instance of the DAO and invoke the DAQO’s
methods. The following example shows how the addBenefits method in the
Employee bean invokes a method in the DAO.

/1 from Enpl oyeeBean. j ava

4-14 Oracle9i Application Server Application Developer’s Guide

Employee Data (Entity Bean)

public void addBenefits(int benefits[])

{
try {
if (mdao == null) mdao = new Enpl oyeeDAQ npl ();
m dao. addBenefits(m enp.getld(), benefits);
ej bLoad();
} catch (Exception e) {
throw new EJBException ("\nData access exception in adding benefits.\n"
+ e. get Message());
}
}

The addBenefits method in the EmployeeDAOImMpl class looks like the following:

public void addBenefits(int enpld, int benefits[]) throws Exception

{
String queryStr = null;
PreparedStatement stmt = null;

try {
get DBConnection();
for (int i =0; i < benefits.length; i ++) {
queryStr = "I NSERT | NTO EMPLOYEE_BENEFI T_| TEMS "
+ " (ENMPLOYEE_|I D, BENEFIT_ID, ELECTI ON DATE) "
+ " VALUES (" + enpld + ", " + benefits[i] + ", SYSDATE)";

stm = dbConnecti on. prepareSt at ement (queryStr);
int resultCount = stnt.executeUpdate();
if (resultCount !'=1) {
throw new Exception("Insert result count error:" + resultCount);

}

}
} catch (SQLException se) {
throw new Excepti on(
"\ nSQL Exception while inserting enployee benefits.\n"
+ se. get Message());

} finally {
closeStatement (stnt);

cl oseConnection();

}

The methods in EmployeeDAOImMpl use JDBC to access the database. Another
implementation could use a different mechanism such as SQLJ to access the data
source.

Implementing Business Logic 4-15

Employee Data (Entity Bean)

4.5.6.3 Load Method

After the Employee bean adds or removes benefits for an employee, it calls the load
method in EmployeeDAOImpl:

/'l from Enpl oyeeBean. j ava
public void addBenefits(int benefits[])
{
try {
if (mdao == null)
m dao = new Enpl oyeeDAQ npl ();
m dao. addBenefits(menp.getld(), benefits);
ej bLoad();
} catch (Exception e) {
throw new EJBException ("\nData access exception in adding benefits.\n"
+ e. get Message());

/1 al so from Enpl oyeeBean. j ava
public void ejblLoad()

{
try {
if (mdao == null)
m dao = new Enpl oyeeDAQ npl ();
Integer id = (Integer) mctx.getPrinaryKey();
this.menp = mdao.load(id.intValue());
} catch (Exception e) {
throw new EJBException("\ nException in | oadi ng enpl oyee.\n"
+ e. get Message());
}
}

The ejbLoad method in the Employee bean invokes load in the DAO object. By
calling the load method after adding or removing benefits, the application ensures
that the bean instance contains the same data as the database for the specified
employee.

/'l from Enpl oyeeDAQ npl . j ava

public Enpl oyeeMobdel load(int id) throws Exception

{
Enpl oyeeMbdel details = sel ect Enpl oyee(id);
details.setBenefits(selectBenefitltem(id));
return details;

4-16 Oracle9i Application Server Application Developer’s Guide

Employee Data (Entity Bean)

Note that the EJB container calls ejbLoad in the Employee bean automatically after
it runs the findByPrimaryKey method. See Section 6.2, "Query Employee
Operation" for details.

Figure 4-6 EmployeeDAO classes

+ empbft.comg it I dao.Empl DAOImpl

- dbConnection : Connection

= J+ Constructord
“=Interface=> + load(int id : MutableEmployeetodel

+ emphit.comg t / tao.Empl DAO + findByPrimarykey(int id : Integer
- employeeExists(int id) : boolean
- selectEmployeedint id) : MutableEmployeehadel
- selectBenefititemiint id) : Callection
+ addBenefits(int empld, int benefits) ; vaid
+ removeBenefits(int empld, int benefits[l) : vaid
- getDBCannection : void
- tloseCaonnectiond ; void
- tloseResultSetiResultSet resulf) void
- tloseStatementiPreparedStatement stmt) © void

+ loadiint id) : MutableEmploveemaodel

+ findByPrimarykeyiint id) : Integer

+ addBenefits(int empld, int benefits) ; vaid

+ remaveBenefits(int empld, int benefits[l) : vaid

F Y

Implementing Business Logic 4-17

Benefit Data (Stateless Session Bean)

4.6 Benefit Data (Stateless Session Bean)

BenefitCatalog is a stateless session bean. It contains master benefit information
such as benefit ID, benefit name, and benefit description for each benefit in the
benefits table in the database.

The application could have saved the benefit information to entity bean objects, but
it uses a session bean instead. The reason for this is that the master benefit
information does not change within the application. It is more efficient for a session
bean to retrieve the data only once when the EJB container creates the bean.

Because the benefit information does not change, the BenefitCatalog bean does not
need a data access object (DAO) to provide database access. The bean itself
communicates with the database.

Each instance of the session bean contains all the benefit information. You can create
and pool multiple instances for improved concurrency and scalability. If the
application used entity beans and you mapped a benefit to a bean, it would have
required one instance per benefit.

The bean is stateless so that one bean can be shared among many clients.

Figure 4-7 BenefitCatalog classes

[l <<Interfaces>
+ emphft.component.benefit.ejb.BenefitCatalog

I
|

=F
+ getBenefitzd : Collection
+ refreshi) ; vaid

3

<<Interface=>

+ emphft.component.benefit.ejb.BenefitCatalogHome

'r+ created) | BenefitCatalog

+ emphft.component.benefit.ejb.BenefitCatalogBean

1
e m_benefits : Caollection

+ Constructord

<dlnterfaces> L el
: i 5 }47 + ejbActivated : void
javax.ejh.SessionBean + ejbPassivateq : void
+ ejbRemoved : void
+ zetSessionContextiSessionContext ot © void
+ getBenefitz : Collection

- retrieveBenefitzd : Collection
+ refreshi) ; vaid

4.6.1 Home Interface
The BenefitCatalog session bean has the following home interface:

4-18 Oracle9i Application Server Application Developer’s Guide

Benefit Data (Stateless Session Bean)

package enpbft.conponent. benefit.ejb;
inport java.rm .RenoteException;

i nport javax.ej b. EJBHone;

i nport javax.ejb. CreateException;

public interface BenefitCatal ogHome extends EJBHone
{

public BenefitCatal og create() throws RenoteException, CreateException;

}

The create method, which is implemented in BenefitCatalogBean as ejbCreate,
queries the benefits table in the database to get a master list of benefits. The
returned data (benefit ID, benefit name, benefit description) is saved to a
BenefitModel object. Each record (that is, each benefit) is saved to one
BenefitModel object.

The application gets a performance gain by retrieving the benefit data when the EJB
container creates the bean, instead of when it needs the data. The application can
then query the bean when it needs the data.

4.6.2 Remote Interface
The BenefitCatalog session bean has the following remote interface:

package enpbft.conponent. benefit.ejb;
inport java.rm . RenoteException;

i nport javax.ejb. EJBOhj ect;

inport java.util.Collection;

public interface BenefitCatal og extends EJBObj ect

{
public Collection getBenefits() throws RenoteException;

public void refresh() throws RenoteException;

}

The getBenefits method returns a Collection of BenefitModels. This is the master
list of all benefits. This method is called by the EmployeeManager bean (by the
getUnelectedBenefititems method) when the application needs to display a user’s
unelected benefits. It compares a user’s elected benefits against the master list, and
displays the benefits that are not elected. The user then selects benefits to add from
this list.

Implementing Business Logic 4-19

Benefit Data (Stateless Session Bean)

4.6.3 Benefit Details

The BenefitCatalog bean contains a Collection of BenefitModels. The BenefitModel
class contains the details (benefit ID, benefit name, and benefit description) for each
benefit.

The BenefitCatalog bean contains a class variable called m_benefits of type
Collection. Data in the Collection are of type BenefitModel. Each BenefitModel
contains information about a benefit (such as benefit ID, name, and description).
Benefitltem is a subclass of BenefitModel.

Figure 4-8 Benefititem and BenefitModel classes

—+ empbft.component.benefithelper.BenefitModel + M 0 I it | helper.Benefititem
#Fm_id : integer 4 [+ Constructordint id, Date election, .3
m_name : String + getElection() : Date
m_desc ; String +toStringd ; String

_I+ Constructoriint id, String name, ..}
+ getldd ;int

+ getMamed : String

+ getDesc(: String

+toStringd ; String

+ copy(Benefitodel other) : void

+ campareTaiOhject oy © int

JSPs call methods in BenefitModel to display benefit information. For example,
queryEmployee.jsp calls the getName method to display benefit name.

<%
Col l ection benefits = enp. getBenefits();
if (benefits == null || benefits.size() == 0) {
%
<tr><td>None</td></tr>
<%
} else {
Iterator it = benefits.iterator();
while (it.hasNext()) {
Benefitltemitem= (Benefitltemit.next();
%
<tr><td><%it em get Nane() %</t d></tr>
<%
} /] end of while
} Il end of if
%

4-20 Oracle9i Application Server Application Developer’s Guide

EmployeeManager (Stateless Session Bean)

4.7 EmployeeManager (Stateless Session Bean)

EmployeeManager is a stateless session bean that manages access to the Employee
entity bean. It is the only bean that JSPs can access directly; JSPs do not directly
invoke the other beans (Employee and BenefitCatalog). To invoke methods on
these beans, the JSPs go through EmployeeManager.

Generally, a JSP should not get an instance of an entity bean and invoke methods on
the bean directly. It needs an intermediate bean that manages session state with
clients and implements business logic that deals with multiple beans. Without this
intermediate bean, you need to write the business logic on JSPs, and JSPs should
have any business logic at all. A JSP’s sole responsibility is to present data.

It is stateless because it does not contain data specific to a client.

EmployeeManager contains methods (defined in the remote interface) that JSPs can
invoke to execute business logic operations. These methods invoke methods in the
Employee and BenefitCatalog beans.

Table 4-1 Methods in EmployeeManager for business logic operations

Operation Method

Query and display employee data getEmployeeDetails(emplD)

Add benefits getUnelectedBenefitltems(emplD)

Remove benefits getEmployeeDetails(emplID), which returns

EmployeeModel, then getBenefits() on the
EmployeeModel

Examples:
In addBenefitToEmployee.jsp:

<%
int empld = Integer. parselnt(request.getParaneter(
Sessi onHel per. EMP_I D_PARAVETER)) ;
Enpl oyeeManager ngr = Sessi onHel per. get Enpl oyeeManager (request);
Col I ection unel ected = ngr. getUnel ectedBenefitltens(enmpld);

%...

In removeBenefitFromEmployee.jsp:

<%
int enpld = Integer. parselnt(request.getParaneter(

Implementing Business Logic 4-21

EmployeeManager (Stateless Session Bean)

Sessi onHel per. EMP_| D_PARAVETER)) ;
Enpl oyeeManager ngr = Sessi onHel per. get Enpl oyeeManager (request);
Col l ection el ected = ngr.get Enpl oyeeDet ai | s(enpl d). get Benefits();

%...

Figure 4-9 EmployeeManager classes

E+ phft.comg it I ejb.Empl M Bean

—
+ Constructord
+ ejhCreated) ; vaid

zzinterface>> i + ejbActivated : void
javax.ejh.SessionBean }47 + gjbPassivated : void
== + ejbRemaoved : void

+ zetSessionContextiSessionContext ot © void
+ getEmplaoyeedint id) : Employee

+ getEmployeeDetails(int id) : Employeefodel

+ getlUnelectedBenefititernsiint id) - Collection

<<Interfaces>
+emy ; I + 1 eihEmnl)

+ getEmplayeedint id) : Employes
+ getEmployeeDetails(int id) : Employeeiodel
+ getlUnelectedBenefititernsdint id) . Collection

=T

<<Interfaces>
+emy g I " 1 ail Erminl ' Home

+ created) | EmployeeManager

4.7.1 Home Interface
The EmployeeManager has the following home interface:

package enpbft.conponent. enpl oyee.] b;

inport java.rm . RenoteException;
inport javax.ejb.*;
public interface Enpl oyeeManager Hone ext ends EJBHone
{
public Enpl oyeeManager create() throws RenoteException, CreateException;
}

The create method does nothing.

4-22 Oracle9i Application Server Application Developer’s Guide

EmployeeManager (Stateless Session Bean)

4.7.2 Remote Interface
The EmployeeManager has the following remote interface:

package enpbft.conponent. enpl oyee.] b;

i nport java.rm . RenoteException;

i nport javax.ejb. EJBObj ect;

inport java.util.Collection;

i nport enpbft.conmponent . enpl oyee. hel per. *;

public interface Enpl oyeeManager extends EJBObj ect

{
public Enpl oyee get Enpl oyee(int id) throws RenoteException;
public Enpl oyeeMbdel get Enpl oyeeDetails(int id) throws RenoteException;
public Coll ection getUnel ectedBenefitltens(int id) throws RenoteException;

}

getUnelectedBenefititems in EmployeeManager invokes methods on the
BenefitCatalog bean and returns a Collection to the JSP, which iterates through and
displays the contents of the Collection.

Methods in EmployeeManager also return non-bean objects to the application. For
example, queryEmployee.jsp invokes the getEmployeeDetails method, which
returns an EmployeeModel. The JSP can then invoke methods in EmployeeModel
to extract the employee data.

/'l from queryEnpl oyee. j sp

<%
int id = Integer.parselnt(enpld);
Enpl oyeeManager mgr = Sessi onHel per. get Enpl oyeeManager (request) ;
Enpl oyeeMbdel enp = ngr. get Enpl oyeeDetai | s(id);

" ce
<t abl e>
<tr><td>Enpl oyee I D </td><td col span=3><%i d%</ b></td></tr>

<tr><td>First Nane: </td><td><%enp. getFirstNane() %</ b></td>
<td>Last Nane: </td><td><%enp. getLastNanme() %</ b></td></tr>

Similarly, in removeBenefitFromEmployee.jsp, the page calls getEmployeeDetails
to get an EmployeeModel, then it calls the getBenefits method on the
EmployeeModel to list the benefits for the employee. The user can then select
which benefits should be removed.

/'l from renoveBenefit FronEnpl oyee.j sp
<%

Implementing Business Logic 4-23

EmployeeManager (Stateless Session Bean)

int empld = Integer. parselnt(request.getParaneter(

Sessi onHel per. EMP_| D_PARAMETER)) ;
Enpl oyeeManager ngr = Sessi onHel per. get Enpl oyeeManager (request);
Col l ection el ected = ngr.get Enpl oyeeDet ai | s(enpl d). get Benefits();

%...

<h4>Sel ect El ected Benefits</h4>
<%
Iterator i = elected.iterator();
while (i.hasNext()) {
Benefitltemb = (Benefitlten) i.next();

%
<i nput type=checkbox name=henefits val ue=<%bh. get | d() %><%b. get Nane() %

<%
} I/ end while
%

4-24 Oracle9i Application Server Application Developer’s Guide

Utility Classes

4.8 Utility Classes
The application uses these utility classes:
« AppJNDINames defines constants used to locate beans and classes.

« Debug contains methods that write messages to the window where you started
OC4).

« SessionHelper defines constants used to identify names of parameters in the
query string.

Figure 4-10 Utility classes

<<Interfacesx

+ empbft.util. AppJNDINames

+ final BEMEFIT CATALOG EJBHOME : String

+ final EMPLOYEE EJBHOME : String

+ final EMPLOYEE MAMAGER EJBHOME : String
+ final EMPBFT DATASOURCE : String

E + emphft.util.Debug

+ final isOn : boolean

+ printin{Ohiect orig, String msd) : void
+ printin{String mso) : void

+ emphft.util.SessionHelper

|
+ final ACTION PARAMETER : String

+ final EMP |D PARAMETER : String

+ final BEMEFIT PARAMETER ; String

+ final EMPLOYEE MAMAGER ATTRIBUTE : String
1

+ getEmployeeiananeriHitnServietRequest red) : EmployeeManager '

Implementing Business Logic 4-25

Utility Classes

4-26 Oracle9i Application Server Application Developer’s Guide

D

Creating Presentation Pages

You can create the presentation pages, which can contain data from business logic
plus presentation elements, using different methods:

Contents of this chapter:

« Section 5.1, "HTML Files"
= Section 5.2, "Servlets"

= Section 5.3, "JSPs"

5.1 HTML Files

This option is valid for static pages only. If your pages have dynamic data, you have
to generate the pages programmatically.

Creating Presentation Pages 5-1

Servlets

5.2 Servlets

Servlets enable you to generate pages programmatically. Using servlets, you can call
business logic objects to obtain data, then assemble the page by adding in
presentation elements. You can then send the completed page to the client.

Servlets can call methods in themselves and methods in other objects. Servlets can
retrieve or update data in databases using JDBC or SQLJ.

Disadvantages of using servlets:

« Presentation elements are embedded with the business logic. This means that
when you want to change the presentation code, you have to be careful not to
change the business logic as well. In addition, the person editing the
presentation code should have some knowledge of Java and not just HTML.

« Because presentation elements are embedded with the business logic,
Oracle9iAS has to recompile the servlet when you change the presentation
elements in the servlet.

= Another issue when using servlets to generate presentation elements is that you
have to use the println method frequently. This makes the code look less tidy.

Servlets are a good choice for implementing state machines or controllers. State
machines or controllers receive requests, make decisions based on parameters in the
requests, and redirect the requests to the appropriate JSP for assembling the final
display page to return to the clients. In the sample application, the controller is a
servlet; see Section 4.3, "Controller".

See Oracle9iAS Servlet Developer’s Guide for details on servlets.

5.2.1 Automatic Compilation of Servlets

5-2 Oracle9i Appli

One advantage to updating servlets is that Oracle9iAS has an auto-compile feature
for servlets. You can place the uncompiled .java files for the servlets in the $J2EE_
HOME/default-web-apps/WEB-INF/classes directory, and Oracle9iAS will compile
the files for you. To enable the auto-compile feature, set the development attribute
of the orion-web-app tag to "true". This tag is found in $J2EE_
HOME/home/config/global-web-application.xml.

<ori on- web- app
j sp- cache-directory="./persistence"
servl et -webdir="/servl et"
devel oprent ="t rue"

cation Server Application Developer’'s Guide

Servlets

5.2.2 Example

For example, the following doGet() method in a servlet sends HTML data to the
client:

public void doGet (H tpServl et Request req, HttpServletResponse res)
throws Servl et Exception, |COException {
Il Set the content type of the response
res. set Cont ent Type("text/plain");

/] Get a print witer streamto wite output to the response
PrintWiter out = res.getWiter();

/1 Send HTM. to the output stream

out. println("<HTM.><HEAD>") ;

out. println("<TlI TLE>Enpl oyee Benefit Application</ Tl TLE></ HEAD>");
out. println("<BODY>");

out.printIn("<p> .. nore data here ...");

/1 Close the HTM. tags

out. println("</BODY></ HTM.>");

5.2.3 Example: Calling an EJB

Here is an example of a servlet that calls an EJB object. Note how the servlet simply
invokes methods on the EJB instance to get data. In this case, the servlet calls
getName() and getPrice() methods on the EJB instance and embeds the return
values within the presentation code.

inport java.util.*;

inport java.io.lOException;

i nport java.rm . RenoteException;
inport javax.servlet.*;

inport javax.servlet.http.*;

inport javax.ejb.*;

i nport javax.nam ng.*;

i nport javax.rni. Portabl eRenot eChj ect;

public class ProductServlet extends HtpServlet {
Pr oduct Home hone;

public void init() throws ServletException {

try {
Context context = new Initial Context();

Creating Presentation Pages 5-3

Servlets

}

home = (Product Hone) Port abl eRenpt e(hj ect .
nar row(cont ext . | ookup("M/Product"), ProductHone. cl ass);
}
cat ch(Nam ngException e) {
throw new Servl et Exception("Error |ooking up home", e);

}

public void doGet (H tpServl et Request request, HttpServletResponse response)

}

throws Servl et Exception, |COException {
response. set Cont ent Type(“text/htm");
Servl et Qut put Stream out = response. get Qut put Strean();

try {
Col l ection products = hone. findAll();

out.println("<htm>");

out.println("<head><title>My products</title></head>");

out. println("<body>");

out.println("<table border=\"2\">");

out. println("<tr><td>Nane</td><t d>Pri ce</td></tr>");

Iterator iterator = products.iterator();

while (iterator.hasNext())

{
Product product = (Product)Portabl eRenpt eQhj ect.

narrow(iterator.next(), Product.class);
out.println("<tr><td>" + product.getName() + "</td><td>" +
product.getPrice() + "</td></tr>");

}

out.println("</table>");

out.println("</body>");

out.println("</htm>");

}
cat ch(Renot eException e) {

out.printIn("Error commnicating with EJB-server: " + e.getMessage());
}

cat ch(Fi nder Exception e) {
out.printIn("Error finding products: " + e.getMessage());
}
finally {
out.close();
} [l finally
/1 doGet nethod

5-4 Oracle9i Application Server Application Developer’s Guide

JSPs

5.3 JSPs

Like servlets, JSP files enable you to combine HTML tags with Java commands. You
do not have the println statements in JSP files like you do in servlets. Instead, you
write your HTML tags as usual, but you add in special tags for JSP commands.

JSPs can do everything that servlets can do. For example, JSPs can invoke other
classes and connect to the database to retrieve data or update data in the database.

See Oracle9iAS Support for JavaServer Pages Reference for details on JSPs.

5.3.1 Tag Libraries

In addition, JSPs enable you to define custom tags in tag libraries. Tag libraries
enable you to define the behavior of your custom tags. Your JSPs can then access the
tag libraries and use the custom tags. This enables you to standardize presentation
and behavior across all your JSP files.

Here are few examples of how you can use custom tags and tag libraries. You can
use them to:

« Send email. Tag libraries can hide the details of JavaMail API.
= Access web services.

« Access UltraSearch tags.

« Upload or download content from a file or database.

See Oracle9iAS JSP Tag Libraries and Utilities Reference for details on tag libraries.

5.3.2 Minimal Coding in JSPs

Although you can use as much Java in your JSPs as you like, the file can be difficult
to read and debug if it is interleaved with JSP scriptlets and HTML. You will get a
cleaner design for your application if you place all the business logic code outside
the JSP files. The JSP scriptlets in your files can call out to Enterprise JavaBeans and
other Java classes to run business logic. These objects then return the data or status
to your JSP file, where you can extract the data and display the data using HTML or
XML.

Another benefit of excluding business logic code from your JSPs is that you can
have web page designers who might not be familiar with Java work on the JSP
page. They can design the look of the page, using placeholders for the real data.
Your developers, who might not want to bother with HTML, can be working on the
business logic in other files simultaneously.

Creating Presentation Pages 5-5

JSPs

5.3.3 Multiple Client Types

If you are supporting different client types (browsers and wireless clients), you can
have two versions of JSP files: one that returns HTML and one that returns XML.
One important note is that both files make the same calls to the same objects to
perform business logic. This is what the sample application does.

In the Employee Benefit application, all the presentation code, even the pages for
error conditions, are written in JSP files, and the JSP files do not contain any
business logic code. The application uses one file for browsers (for example,
addBenefitToEmployee.jsp) and a similar file for wireless clients (for example,
addBenefitToEmployeeWireless.jsp). The wireless version of the file contains XML
instead of HTML.

5-6 Oracle9i Application Server Application Developer’s Guide

S

Interaction Between Clients and Business

Logic Objects

Previous chapters describe the JSP client files and the business logic objects. This
chapter describes how these objects interact with each other: it shows how the JSP
files access objects and retrieve data from the objects.

Contents of this chapter:

Section 6.1, "Client Interface to Business Tier Objects"
Section 6.2, "Query Employee Operation"

Section 6.3, "Add and Remove Benefit Operations"
Section 6.4, "Add Benefit Operation"

Section 6.5, "Removing Benefit Operation”

Interaction Between Clients and Business Logic Objects 6-1

Client Interface to Business Tier Objects

6.1 Client Interface to Business Tier Objects

Although some methods in the business tier objects are declared public, client tier
objects (that is, the JSP files) should access only some of these objects and methods.
The methods are declared public so that other business tier objects can invoke them.

JSP files do not invoke methods on the Employee bean or the BenefitCatalog bean
directly. Instead, the files invoke methods on an EmployeeManager bean, and these
methods invoke methods on the Employee or BenefitCatalog objects. The
EmployeeManager class has methods to execute the business logic operations. See
Section 4.7, "EmployeeManager (Stateless Session Bean)" for details.

To get a reference to the EmployeeManager bean, the JSP files reference the
SessionHelper class, which is a "regular” Java class. The SessionHelper class
contains the getEmployeeManager static method which returns an instance of
EmployeeManager. The SessionHelper class instantiates and stores the session
bean in an attribute of HttpSession class. For example:

/1 from addBenefit ToEnpl oyee. j sp
<%
int empld = Integer. parselnt(request.getParaneter(
Sessi onHel per. EMP_| D_PARAMETER)) ;
Enpl oyeeManager ngr = Sessi onHel per. get Enpl oyeeManager (request);
Col I ection unel ected = ngr. get Unel ect edBenefitltens(enmpld);

%...

6-2 Oracle9i Application Server Application Developer’s Guide

Query Employee Operation

6.2 Query Employee Operation

Typically, the user accesses the application through a link on an external page. The
link’s URL looks like this:

http://<host >/ enpbft/control | er?acti on=quer yEnpl oyee

The user then sees the ID page (Figure 2-1).

6.2.1 High-Level Sequence

Figure 6-1 diagrams the query operation. The numbers in the figure correspond to
the steps that follow the figure. This figure covers requests from browsers only. See
Section 7.5.1, "Query Operation" for requests from wireless clients.

Figure 6-1 Query Operation

Request without employee ID
action=queryEmployee

Bl

B4
Request with employee ID

action=queryEmployee

B2, B5

(ActionHandler)

QueryEmployee.java Info page
ID page
Employee ipfo)
- 1 (
ID valid or null? uer Add Benefit
B3 Remove Benefit
No Yes ID = null
B6 Valid ID T

error.jsp queryEmployee.jsp

B1: The Controller servlet handles the request to the application.

B2: The value of the action parameter is quer yEnpl oyee, so the Controller
invokes the performAction method in the QueryEmployee class.

Interaction Between Clients and Business Logic Objects 6-3

Query Employee Operation

B3: The performAction method forwards the request to the queryEmployee.jsp file,
which displays an ID page (Figure 2-1).

B4: The user then enters an employee ID and clicks Query. The request still has the
same value in the action parameter (quer yEnpl oyee), but it also has an employee
ID parameter. The request is again handled by the QueryEmployee class.

B5: The performAction method in the QueryEmployee class and the
queryEmployee.jsp file validate the employee ID entered by the user.

B6: For valid employee IDs, the JSP file queries the database to retrieve data for the
specified employee ID.

6.2.2 Querying the Database and Retrieving Data

To get employee details, queryEmployee.jsp invokes the
getEmployeeDetails(employeeld) method in EmployeeManager. The method
returns an EmployeeModel object, which contains the data. The JSP then retrieves
values from the EmployeeModel object to display the employee data.

/'l from quer yEnpl oyee. j sp
<%

int id = Integer.parselnt(enpld);
Enpl oyeeManager mgr = Sessi onHel per. get Enpl oyeeManager (request) ;
Enpl oyeeMbdel enp = ngyr. get Enpl oyeeDetai | s(id);

%...

<h4>Enpl oyee Detail s</h4>

<t abl e>

<tr><td>Enpl oyee I D </td><td col span=3><%i d%</td></tr>
<tr><td>First Nane: </td><td><%enp.getFirstName()%</td><td>Last Nane:
</t d><t d><%enp. get Last Narme() %</ b></td></tr>

<tr><td>Email: </td><td><%enp. get Emai | () %</ b></t d><t d>Phone Nunber:
</t d><t d><%enp. get PhoneNunber () %</ b></td></tr>

<tr><td>H re Date:

</t d><t d><%enp. get H reDate().toString() %</ b></td><t d>Joh:

</t d><t d><%enp. get Jobl d() %</ b></td></tr>

</tabl e>

The getEmployeeDetails method in EmployeeManager starts off the following
sequence:

1. Itcalls getEmployee to get an instance of the desired employee.

6-4 Oracle9i Application Server Application Developer’s Guide

Query Employee Operation

getEmployee invokes findByPrimaryKey on the Employee class. This calls
ejbFindByPrimaryKey in EmployeeBean.

ejbFindByPrimaryKey calls findByPrimaryKey in EmployeeDAOImpl, which
returns an int.

This int enables the EJB container to return an Employee bean from
findByPrimraryKey, as declared in the Employee home interface.

Note that findByPrimaryKey in the Employee class is a special method. When
you invoke this method, the EJB container automatically calls ejbLoad for you.
ejbLoad calls load in EmployeeDAOImpl, which returns an EmployeeModel.
This is used to populate the m_emp class variable.

getEmployeeDetails then calls getDetails with the Employee bean returned
from step 1.

getDetails returns an EmployeeModel to the JSP.

Interaction Between Clients and Business Logic Objects 6-5

Query Employee Operation

Figure 6-2 getEmployeeDetails

QueryEmployee.jsp EmployeeManager Employee EmployeeDAOImpl

— » getEmployeeDetails

1l
2 ' .
getEmployee ——» findByPrimaryKey 3
ejbFindByPrimaryKey —— findByPrimaryKey
P int L
_Employee 4 b
Database
; 5
ejbLoad > load
6 <« EmployeeModel

(populates m_emp)

getDetails
7 EmployeeModel

A

6.2.3 findByPrimaryKey Method

The EmployeeBean class implements the ejbFindByPrimaryKey(int empld)
method. This method calls the EmployeeDAOImpl class to retrieve data from the
database.

/1 from Enpl oyeeBean. j ava
public Integer ejbFindByPrimaryKey(int enpld) throws FinderException
{
try {
if (mdao == null) mdao = new Enpl oyeeDAQ npl ();
Integer findReturn = mdao. findByPrimaryKey(enpld);
return findReturn;
} catch (Exception e) {
throw new Fi nder Exception ("\nSQ. Exception in find by prinmary key.\n"
+ e. get Message());

6-6 Oracle9i Application Server Application Developer’s Guide

Query Employee Operation

}

In the EmployeeDAOImpI class the findByPrimaryKey(int id) method queries the
database for the specified employee ID. It executes a SELECT statement on the
database and returns the employee ID if it finds an employee. If it does not find an
employee, it throws an exception.

6.2.4 Getting Benefit Data

For benefit data, where a user can have more than one benefit, the application
iterates over the Collection.

/'l from queryEnpl oyee. j sp
<h4>El ect ed Benefits</h4>

<t abl e>

<%

Col I ection benefits = enp. getBenefits();

if (benefits == null || benefits.size() == 0) {
%

<tr><td>None</td></tr>

<%

} else {

Iterator it = benefits.iterator();
while (it.hasNext()) {
Benefitltemitem= (Benefitltemit.next();

%
<tr><td><%item get Nane() %</t d></tr>
<%
} /] end of while
} Il end of if
%
</tabl e>

Interaction Between Clients and Business Logic Objects 6-7

Query Employee Operation

Figure 6-3 Sequence Diagram for Query Employee

EmD‘EVEE w<Semlatsr

Controller

\ <eFactorys>

Factory ‘

new

REREISS
error

<<ActionHandlerdmpl>>
Tequest QueryEmployee

createsctionHandler

2 JSPx>
quervEmployee

SessionHelper

response

[invalid empld] fonvard

+ [walid empld] fanvard

' xSateless Session Beans> |

response

aetEmployeeDetails

a4

6-8 Oracle9i Application Server Application Developer’s Guide

tﬂmployee

getDetails

findByP rimangKey

B
<imples
EmployeeDAOImpl

new
[findByF imanskey
MutableEmployeeModel
Toad ’

setBensfits

EmployeeModel

Add and Remove Benefit Operations

6.3 Add and Remove Benefit Operations

For the add and remove operations, the JSPs send which benefit to add or remove,
plus the employee ID, to the EmployeeManager. The EmployeeManager adds or
removes the benefit and returns the status of the operation.

The add and remove benefits operations follow similar sequences in presenting a
list of benefits to the user, and executing the add or remove operation on the
database.

« To add benefits, the user clicks the Add Benefit link on the Info page
(Figure 2-1). The URL behind this link looks like:

<a href="/enpbft/controller?enpl D=<%i d¥%&anp; act i on=addBenef i t TOEnpl oyee" >
Add benefits to the enpl oyee

= To remove benefits, the user clicks the Remove Benefit link on the Info page
(Figure 2-1). The URL behind this link looks like:

<a
href ="/ empbft/control | er ?enpl D=<%i d%&anp; act i on=r emoveBenef i t Fr onEnpl oyee"
> Renmove benefits fromthe enpl oyee

See the following sections for details on the add and remove operations.

Interaction Between Clients and Business Logic Objects 6-9

Add Benefit Operation

6.4 Add Benefit Operation

6.4.1 High-Level

Sequence of Events

Figure 6-4 shows the events that occur when a user selects the add benefit option:

Figure 6-4 Add Benefits Operation

Info page

Add Benefit —1

action = addBenefitToEmployee

(ActionHandler) 4
—>» Controller ——>» AddBenefitToEmployee.java —>» emp.addBenefits

benefits = null

action = addBenefitToEmployee

A
benefits = null
forward
3
addBenefitToEmployee.jsp
List of benefits Submit
to add

The Controller servlet handles the request first. It gets the value of the action
parameter (addBenef i t TOEnpl oyee) and invokes the performAction
method in the corresponding class, AddBenefitTOEmployee.

The performAction method checks the value of the benefits parameter. It is null
at first, so it forwards the request to addBenefitTOEmployee.jsp (or
addBenefitToEmployeeWireless.jsp). The JSP displays a list of benefits that the
user can add. See Section 6.4.2, "Getting Benefits That the User Can Add".

The user selects the desired benefits to add and submits the request. The action
parameter in the request still has the same value (addBenef i t TOEnpl oyee),
but this time, it has a benefits parameter that specifies which benefits to add.

The Controller invokes the AddBenefitToEmployee class to process the
request. The class sees that the benefits parameter is not null, and it calls the

6-10 Oracle9i Application Server Application Developer’'s Guide

Add Benefit Operation

addBenefits method in the Employee class to add the benefits. See Section 6.4.3,
"Updating the Database".

6.4.2 Getting Benefits That the User Can Add

To show a list of benefits that the user can add, the addBenefitToEmployee.jsp page
gets a list of benefits that the user does not have. The JSP file gets an instance of
EmployeeManager, then invokes the getUnelectedBenefitltems method.

/1 from addBenefit ToEnpl oyee. j sp
<%
int enpld = Integer. parselnt(request.getParaneter(
Sessi onHel per. EMP_I D_PARAVETER)) ;
Enpl oyeeManager ngr = Sessi onHel per. get Enpl oyeeManager (request);
Col I ection unel ected = ngr. get Unel ectedBenefitltens(enmpld);

%...

The getUnelectedBenefitltems method gets the master list of all benefits from
BenefitCatalog, then it gets a list of benefits for the employee. It compares the two
lists and returns a list of benefits that the employee does not have.

/1 from Enpl oyeeManager Bean. j ava
public Col l ection getUnel ectedBenefitltens(int id) throws RenoteException
{
Col l ection allBenefits = null;
Initial Context initial = new Initial Context();
(hj ect objref = initial.lookup(AppJNDI Nanmes. BENEFI T_CATALOG EJBHOME) ;
Benefit Cat al ogHone home = (Benefit Cat al ogHone)
Port abl eRenot ethj ect . narrow(obj ref, Benefit Cat al ogHone. cl ass);
BenefitCatal og catal og = hone.create();
al I Benefits = catal og. getBenefits();

Il ... exceptions omtted ...

Col I ection unelected = new ArrayList();
Enpl oyeeMobdel enp = this. get Enpl oyeeDetail s(id);
ArrayList eb = (ArrayList) enp.getBenefits();
if (eb!=null & 'eb.isEmty()) {
Iterator i = allBenefits.iterator();
while (i.hasNext()) {
BenefitMdel b = (BenefitMdel)i.next();
if (Collections.binarySearch(eb, b) < 0)
unel ect ed. add(b) ;

Interaction Between Clients and Business Logic Objects 6-11

Add Benefit Operation

}

return unel ected;

}

return all Benefits;

6.4.3 Updating the Database

To add the benefits the user selected, the AddBenefitToEmployee object gets the
Employee object and executes the addBenefits method:

/1 from AddBenefit ToEnpl oyee. j ava
String benefits[] = req.getParaneter Val ues(Sessi onHel per. BENEFI T_PARAVETER) ;

int benefitIDs[] = new int[benefits.length];
for (int i =0; i < benefits.length; i++) {
benefitIDs[i] = Integer.parselnt(benefits[i]);
}
int enpld = Integer. parselnt(req.getParaneter (Sessi onHel per. EMP_I D_PARAMETER)) ;
Enpl oyeeManager mgr = Sessi onHel per. get Enpl oyeeManager (req);
try {
Enpl oyee enp = nyr. get Enpl oyee(enpl d) ;
enp. addBenefits(benefitlDs);
} catch (RenoteException e) {
throw new Servl et Exception (
"\ nRenot e exception while getting enpl oyee and addi ng benefits.\n"
+ e. get Message());
}

forward(req, res, wireless ? "/successWreless.jsp" : "/success.jsp");

The addBenefits method in the Employee object uses the EmployeeDAOImpl class
to connect to the database.

/1 from Enpl oyeeBean. j ava
public void addBenefits(int benefits[])
{
try{
if (mdao == null) mdao = new Enpl oyeeDAQ npl ();
m dao. addBenefits(m enp.getld(), benefits);
ej bLoad();
} catch (Exception e) {
throw new EJBException ("\nData access exception in adding benefits.\n"
+ e. get Message());

6-12 Oracle9i Application Server Application Developer’'s Guide

Add Benefit Operation

After adding the benefits in the database, the addBenefits method calls the ejbLoad
method to synchronize the Employee bean with the data in the database.

The addBenefits method in EmployeeDAOImMpl connects to the database and
sends an INSERT statement.

Figure 6-5 Sequence Diagram for Adding Benefits

Emplgyee

<xSemletss

Controller

<<Fastory>>
ActionHandlerFactory

request |

createfctionHandler

=
I;J AddBenefitToEmployee

T

<a)5Pzx
addBenefit ToEmployee

performAction

response

PEYErS
success
=——— libenefit = null] fonad

[beneits == null] fonward |

SessionHelper
———— |[==5tateless Session Baanss
i EmployeeManager
lagetEmployeehtanager Sl

1 getlinelectedBenefititems

benefits = null]

i

[benefits 1= null]

< <Entitys>
Employee

[benefits 1= null]

EmployeeDAOImpl

response

addBenefits

T

e

<<Gtateless Session Bean>>
BenefitCatalog

create

oo’

" new

getEmployee

findByPrimanyKey|

—

(zee guery employee
sequence for mare details)
getDatails

g

getBenefits

getEmplayeaDatails

Interaction Between Clients and Business Logic Objects 6-13

Removing Benefit Operati

on

6.5 Removing

Benefit Operation

6.5.1 High-Level Sequence of Events

Figure 6-6 shows the events that occur when a user selects some benefits to remove
and clicks the Submit button.

Figure 6-6 Remove Benefits Operation

Info page

Remove Benéefit 1

action = removeBenefitFromEmployee

1 (ActionHandler) 4
——» Controller —— RemoveBenefitFromEmployee.java ___benefits = null

List of benefits to re

A
i emp.removeBenefits
benefits = null
2
forward
3 removeBenefitFromEmployee.jsp
action = removeBenefitFromEmployee
move
Submit

6-14 Oracle9i Applicati

The Controller servlet handles the request first. It gets the value of the action
parameter (r emoveBenef i t Fr onEnpl oyee) and invokes the performAction
method in the corresponding class, RemoveBenefitFromEmployee.

The performAction method checks the value of the benefits parameter. It is null
at first, so it forwards the request to removeBenefitFromEmployee.jsp (or
removeBenefitFromEmployeeWireless.jsp). The JSP displays a list of benefits
that the user can remove. See Section 6.5.2, "Getting Benefits That the User Can
Remove".

The user selects the desired benefits to remove and submits the request. The
action parameter in the request still has the same value

(removeBenefi t Fr omEnpl oyee), but this time, it has a benefits parameter
that specifies which benefits to remove.

on Server Application Developer’s Guide

Removing Benefit Operation

4. The Controller invokes the RemoveBenefitFromEmployee class to process the
request. The class sees that the benefits parameter is not null, and it calls the
removeBenefits method in the Employee class to remove the benefits. See
Section 6.4.3, "Updating the Database".

6.5.2 Getting Benefits That the User Can Remove

To get a list of benefits that the user can remove, the
removeBenefitFromEmployee.jsp gets an EmployeeModel, which contains all the
data for an employee, then it calls the getBenefits method in EmployeeModel. It
then iterates through the list to display each benefit.

<%

int enpld = Integer. parselnt(request.getParaneter(

Sessi onHel per. EMP_I D_PARAVETER)) ;

Enpl oyeeManager ngr = Sessi onHel per. get Enpl oyeeManager (request);

Col l ection el ected = ngr. get Enpl oyeeDet ai | s(enpl d). get Benefits();

if (elected == null || elected.size() == 0) {
%
<h4>No Benefits to Renove</h4>
<p>The enpl oyee has not el ected any benefits.</p>
<h4>Act i ons</ h4>
<a href="./control | er ?act i on=quer yEnpl oyee&anp; enpl D=<%enpl d%" >Query the same
enpl oyee</ a>

Query ot her enpl oyee</ a>

Home</ a>

<%

} else {
%
<h4>Sel ect El ected Benefits</h4>
<%

Iterator i = elected.iterator();
while (i.hasNext()) {
Benefitltemb = (Benefitlten) i.next();

%
<i nput type=checkbox nane=benefits val ue=<%bh. getld() %><%:h. get Name() %

<%
} /1 End of while
%

<h4>Act i ons</ h4>
<input type=submt value="Renove Sel ected Benefits">
<i nput type=hi dden nane=enpl D val ue=<%enpl d%>
<i nput type=hi dden nane=action
val ue=<%Sessi onHel per. ACTI ON_REMOVE_BENEFI T_FROM EMPLOYEE%>>

Interaction Between Clients and Business Logic Objects 6-15

Removing Benefit Operation

<%
} /1 End of if
%

6.5.3 Updating the Database

To remove the benefits the user selected, the RemoveBenefitFromEmployee object
gets the Employee object and executes the removeBenefits method:

/1 from RenoveBenefit Fr onEnpl oyee. j ava
String benefits[] = req.getParaneter Val ues(Sessi onHel per. BENEFI T_PARAMVETER) ;
String client = req. get Paranet er (Sessi onHel per. CLI ENT_TYPE_PARAMETER) ;
bool ean wireless = client !'= null &&
client.equal s(Sessi onHel per. CLI ENT_TYPE_W RELESS) ;
i f(benefits == null) {
forward(req, res, wireless ?
"/ removeBenefit FronEnpl oyeeWrel ess.jsp" :
"/ removeBenefit FronEnmpl oyee. jsp");

} else {
int benefitlDs[] = new int[benefits.length];
for (int i =0; i < benefits.length; i++) {

benefitIDs[i] = Integer.parselnt(benefits[i]);
}
int enpld = Integer. parselnt(req.getParaneter(

Sessi onHel per. EMP_I D_PARAVETER)) ;

Enpl oyeeManager mgr = Sessi onHel per. get Enpl oyeeManager(req);
try {

Enpl oyee enp = nyr. get Enpl oyee(enpl d) ;

enp. removeBenefits(benefitlDs);
} catch (RenoteException e) {

throw new Servl et Exception (

"Renote exception while getting enployee and renoving hi s/ her
benefits." + e.getMessage());

}

forward(req, res, wireless ? "/successWreless.jsp" : "/success.jsp");

The removeBenefits method in the Employee object uses the EmployeeDAOImpl
class to connect to the database.

/'l from Enpl oyeeBean. j ava
public void renmoveBenefits(int benefits[])

{

6-16 Oracle9i Application Server Application Developer’'s Guide

Removing Benefit Operation

try {
if (mdao null) mdao = new Enpl oyeeDAQ npl ();
m dao. r emoveBenefits(menp. getld(), benefits);
ej bLoad();
} catch (Exception e) {
throw new EJBException ("\nData access exception in renmoving benefits.\n"
+ e. get Message());

}

After removing the benefits from the database, the removeBenefits method calls the
ejbLoad method to synchronize the Employee bean with the data in the database.

The removeBenefits method in EmployeeDAOImpl connects to the database and
sends a DELETE statement.

Figure 6-7 Sequence Diagram for Removing Benefits

<4Senets= <Facton==
Controller ActionHandlerFactory
Emplovee =
.getlnstance : <<ActionHandlerlmplz=
o
equest T RemoveBenefitFromEmployee
o
- > .
cre atefctionHandler | PRYETISN
new removeBenefitFromEmployee
performAction 7 | -
[benefits == null] fonward SessionHelper
[getEmployeehanager » j
i
its 1= null] getE Manager |_|‘.
<<5Stateless Session Beans>]
EmployeeManager
] <<Entity==
' pr=pm— % Ve (see guery employes
1 i T sequence far mare details)
] H getDetailz
[benefitz 1= null] getEmE Fyee EmployeeModel
. =:
» D
its 1= null] B i
response
<2J5Px= :
SUCCess
o
‘r [benefits 1= null] foward ||

response

Interaction Between Clients and Business Logic Objects 6-17

Removing Benefit Operation

6-18 Oracle9i Application Server Application Developer’'s Guide

v

Supporting Wireless Clients

The wireless feature in Oracle9iAS enables wireless clients to access your
applications. Because wireless clients use protocols different from HTTP and
markup languages other than HTML, you have to make some modifications to your
application to support wireless clients.

Contents of this chapter:

Section 7.1, "Changes You Need To Make To Your Application”

Section 7.2, "Presentation Data for Wireless Clients"

Section 7.3, "Deciding Where to Put the Presentation Data for Wireless Clients"
Section 7.4, "Header Information in JSP Files for Wireless Clients"

Section 7.5, "Operation Details"

Section 7.6, "Accessing the Application"

Supporting Wireless Clients 7-1

Changes You Need To Make To Your Application

7.1 Changes You Need To Make To Your Application

If your application uses the MVC design, you only need to make a few changes to
your application to support wireless clients;

The major change you have to make to your application to support wireless
clients is to write the presentation data for the wireless clients. The business
logic objects remain unchanged.

This task is simplified by the separation of the presentation data from the
business logic objects. If there were no clear separation between presentation
data and business logic objects, you would have more difficulty merging
presentation code for wireless clients with presentation code for desktop
browsers.

See Section 7.2, "Presentation Data for Wireless Clients".

You may also have to modify the objects that subclass the ActionHandler object
(see Figure 4-1). These objects forward the request to the appropriate JSP files.
When you write your presentation data for wireless clients, you may choose to
put the data in the same JSP file that contains the presentation data for
browsers, or in different JSP files. If you choose to put the data in separate files,
then you have to edit the ActionHandler objects to forward requests from
wireless clients to JSP files that contain wireless presentation data.

See Section 7.3.3, "Separating Presentation Data into Separate Files".

7-2 Oracle9i Application Server Application Developer’s Guide

Presentation Data for Wireless Clients

7.2 Presentation Data for Wireless Clients

Because wireless clients do not use a standardized markup language, you have to
write presentation data for the clients in XML based on a generic DTD specification.
The wireless feature in Oracle9iAS transforms the XML to the specific markup
language that the wireless client can process.

Like HTML, applications can generate XML from JSP files or static files. In the
sample application, the presentation data comes from JSP files because it contains
dynamic data. See Chapter 5, "Creating Presentation Pages".

The generic XML for wireless clients is based on the SimpleResult DTD. For details
on the DTD and how to use its elements, see the Oracle9iAS Wireless Developer’s
Guide.

7.2.1 Screens for the Wireless Application

Figure 7-1 to Figure 7-3 show the Employee Benefit sample application on an
OpenWave simulator. The application on a wireless client looks similar to the
application on a desktop browser.

Figure 7-1 Screens for the wireless application (1 of 3)

Screen 1 Screen 2 Screen 3

(55 openwave

® -| Openwave

] Query Employee | Emp ID: 134
Hello. mzml Enter Emp ID: Fir=t Hame:
Hello. zml | :] | Michaesl
HelloHane. j=p Last Hame: Rogers
empbft . zml | | Email: MROGERS
Phone:
650.127.1834
Hire: 1998-08-26
Job: ST_CLERK

\ Back | Menu | _I

o 4 ! ey .:::.:-I = 4 / e .:::.:-I o
On Screen 1, the wireless client lists the applications that it can run. This is
essentially a list of the files in:

$OVBDK_HOWE/ oc4j _onsdk/ onsdk/ j 2ee/ appl i cati ons/ pnsdk/ apps/

Supporting Wireless Clients 7-3

Presentation Data for Wireless Clients

$OMSDK_HOME is the home directory for Oracle9iAS Wireless SDK.

Screen 2 shows the sample application’s starting point, which is the empbft.xml file.
The file displays a text input field where the user can enter an employee ID.

Screen 3 shows the results of the query. The wireless client has a scrollbar that
enables the user to scroll down the page to view all the information. At this screen,
the user can press the Menu button to add or remove benefits.

Figure 7-2 Screens for the wireless application (2 of 3)

Screen 4 Screen 5 Screen 6

Select benefit:
MEDICAL CREDITS
DEHNTAL CREDITS

Emp ID: 134
First Hame:
Michael
La=t Hame: Rogers
Add Benefits
Remowe
Benefits

3 Query Other
Emnployes

Operation
conpleted
=uccessfully.

CHILD AFTER-Ti#
GROUP LEGAL

ler = o [=

S, remove

Screen 4 shows the menu, which offers selections such as add benefit:
benefits, and query other employee.

Screen 5 shows a list of benefits that the user can add. The user selects one benefit to
add and clicks OK to submit the request. Note that on wireless clients, the user can
select only one item to add or remove at a time. See Section 7.2.2, "Differences
Between the Wireless and the Browser Application”.

Screen 6 tells the user that the add benefit operation was completed successfully.
This screen also has a Menu option.

7-4 Oracle9i Application Server Application Developer’s Guide

Presentation Data for Wireless Clients

Figure 7-3 Screens for the wireless application (3 of 3)

Screen 7 Screen 8

Screen 9

> 5> openwave : > 5> openwave > 5> openwave

® | £50.127.1834
— Hire: 1998-08-26

Select benefit:

cbabenetot . Job: ST _CLERK
MEDICAL CREDITS .
gg?{gLAEEngif; VISION CREDITS
GROUE TEGAL LIDCREDLLS
AD+D CREDITS
EMFLOYEE LIFE
CREDITS
SPOUSE AFTER-TAX
T R |

Remowe
Benefits
Query Samne
Enployes
Query Other
Employee

Screen 7 shows the menu. It has four options: add more benefits, remove more
benefits, query same employee, and query other employee.

Screen 8 shows the list of benefits after the user has added a benefit.

Screen 9 is similar to Screen 3, except that it is scrolled down to show the list of
benefits for the user.

7.2.2 Differences Between the Wireless and the Browser Application

In the browser version of the Employee Benefit application, users can select
multiple benefits to add or remove. On wireless devices, however, users can select
only one item at a time. To assist users in adding/removing multiple items, the
application provides options called "Add More Benefits" and "Remove More

Benefits" to enable users to select another benefit to add or remove (screen 7). These
options are not available on browsers.

These options are made available from successWireless.jsp, which is displayed
after the application adds or removes a benefit successfully (screen 6). This screen
displays a success message. When users click Menu on this screen, they see the
"Add More Benefits" and "Remove More Benefits" options.

/'l fromsuccessWrel ess.|sp
<Si npl eText >

<Si npl eText | ten>Cper ation conpl eted successful ly. </ Si npl eText|tenp
<Action | abel ="Add More Benefits" type="SOFT1" task="G0O'

target="/enpbft/control |l er?acti on=addBenefit ToEnpl oyee&anp; cl i ent Type=wi r el ess&a

Supporting Wireless Clients 7-5

Presentation Data for Wireless Clients

mp; enpl D=<%enpl d%" ></ Acti on>

<Action | abel ="Remove More Benefits" type="SOFT1" task="G0'
target="/enpbft/controller?action=renoveBenefitFronEnpl oyee&anp; cl i ent Type=wi rel
ess&anp; enpl D=<%enpl d%" ></ Acti on>

<Action | abel ="Query Sane Enpl oyee" type="SOFT1" task="Qa0'
target="/enpbft/controller?acti on=quer yEnpl oyee&anp; cl i ent Type=wi r el ess&np; enpl
D=<%enpl d%" ></ Acti on>

<Action | abel ="Query O her Enployee" type="SOFT1" task="G0'
target="/enpbft/controller?action=queryEnmpl oyee&anp; cl i ent Type=wi r el ess"></ Acti o
n>
</ Si npl eText >

When the user selects the "Add More Benefits" or "Remove More Benefits" option,
the request is similar to the request to add or remove a benefit. The request contains
an act i on parameter, an enpl D parameter, and a cl i ent Type parameter. The
application requeries the database and displays an updated list of benefits (Screen
8).

7-6 Oracle9i Application Server Application Developer’s Guide

Deciding Where to Put the Presentation Data for Wireless Clients

7.3 Deciding Where to Put the Presentation Data for Wireless Clients

You can write the XML presentation data for wireless clients in the same JSP file as
the one that generates the HTML, or in a different JSP file. Regardless of where you
put the presentation data, you still need to determine if a request came from a
wireless or desktop client.

7.3.1 Determining the Origin of a Request

You can determine the origin of a request by inserting a parameter in the request to
identify wireless clients. You can include the parameter and its value using a hidden
input form element.

The sample application uses a parameter name of cl i ent Type and parameter
value of wi r el ess to identify wireless clients. Each wireless client request contains
this parameter. For example, in empbft.xml, which is the first file in the application
that wireless clients see:

Il empbft.xm
<?xnml version = "1.0" encoding = "l SO 8859-1"7?>
<Si npl eResul t >
<Si npl eCont ai ner >
<Sinpl eFormtitle="Query Enpl oyee" target="/enpbft/controller">
<Si npl eForm tem nanme="enpl D' format="*N'>Enter Enp I D </Sinpl eFormten>
<Si npl eForm t em nane="acti on" type="hi dden" val ue="queryEnpl oyee" />
<Si npl eForm t em nane="cl i ent Type" type="hi dden" val ue="wirel ess" />
</ Si npl eFor n»
</ Si npl eCont ai ner >
</ Si npl eResul t >

You can then check for the cl i ent Type parameter in servlets or JSPs in the same
way that you check for other parameters.

In servlets:

String client = req. get Paranet er (Sessi onHel per. CLI ENT_TYPE_PARAMETER) ;
bool ean wirel ess =
client '=null && client.equal s(SessionHel per.CLI ENT_TYPE W RELESS);

In JSPs:

<%
String client = request. getParanet er (Sessi onHel per. CLI ENT_TYPE_PARAMETER);
bool ean wirel ess =
client '=null && client.equal s(SessionHel per. CLI ENT_TYPE W RELESS);
%

Supporting Wireless Clients 7-7

Deciding Where to Put the Presentation Data for Wireless Clients

7.3.2 Combining Presentation Data in the Same JSP File

If you use this method, determine the origin of the request (whether it came from a
wireless or desktop client) in the JSP file itself. You can then generate HTML or
XML depending on the origin. For example:

Il import classes for both wireless and browsers

<@ page inport="java.util.*" %

<%@ page i nport="enpbft.conponent.enpl oyee.ejb.*" %
<%@ page i nport="enpbft.conponent.enpl oyee. hel per. *" %
<Y@ page inport="enpbft.util.*" %

/1 check the client type that sent the request

<%
String client = request. getParanet er (Sessi onHel per. CLI ENT_TYPE_PARAMETER);
bool ean wireless = ((client '= null) &&

client.equal s(SessionHel per. CLI ENT_TYPE_W RELESS));
if (wireless)
{
%
<?xm version = "1.0" encoding = "ISO 8859-1"7?>
<%@ page content Type="text/vnd. oracl e. mobi | exm ; charset =l SO 8859-1" %
<Si npl eResul t >
<Si npl eCont ai ner >
<SinpleFormtitle="Query Enpl oyee" target="/enpbft/controller">
<Si npl eFor m tem nanme="enpl D' formt="*N'>Enter Enp |D:
</ Si mpl eForm t en»
<Si npl eFor n t em nane="acti on" type="hi dden" val ue="queryEnpl oyee" />
<Si npl eForn tem nane="cl i ent Type" type="hi dden" val ue="wirel ess" />
</ Si npl eFor n»
</ Si mpl eCont ai ner >
</ Si npl eResul t >
<%
} else {
%
<%@ page content Type="text/htnl; charset=I SO 8859-1"%
<htm >
<head>
<nmeta http-equiv="Content-Type" content="text/htm ; charset=lSO 8859-1">
<link rel ="styl esheet" href="css/blaf.css" type="text/css">
<title>Query Enployee</title>
</ head>
<body>

7-8 Oracle9i Application Server Application Developer’s Guide

Deciding Where to Put the Presentation Data for Wireless Clients

<h2>Enpl oyee Benefit Application</h2>
<%
String enpld = request. get Par anet er (Sessi onHel per. EMP_| D_PARAMETER) ;
if (empld == null)
{
%
<h4>Query Enpl oyee</ h4>
<f orm net hod=get action="/enpbft/controller">
<i nput type=hi dden nane=action val ue=quer yEnpl oyee>
<t abl e>
<tr>
<t d>Enpl oyee 1D </td>
<td><i nput type=text nanme=enplD si ze=4></td>
<td><i nput type=submt val ue="Query Enpl oyee"></td>
<[tr>
</tabl e>
<h4>Act i ons</ h4>
Hone</ a>

</fornp
<%
} else {
int id = Integer.parselnt(enpld);
Enpl oyeeManager ngr = Sessi onHel per. get Enpl oyeeManager (request);
Enpl oyeeMbdel enp = ngr. get Enpl oyeeDetai | s(id);
%
<h4>Enpl oyee Detail s</h4>
<t abl e>
<tr><td>Enpl oyee I D </td><td col span=3><%i d%</td></tr>
<tr><td>First Name: </td><td><%enp.getFirstNane()%</td><td>Last Nane:
</t d><t d><%enp. get Last Narme() %</ b></td></tr>
<tr><td>Emai | : </td><td><%enp. get Emai | () %</ b></t d><t d>Phone Nunber:
</t d><t d><%enp. get PhoneNunber () %</ b></td></tr>
<tr><td>H re Date:
</t d><t d><%enp. get H reDate().toString() %</ b></t d><t d>Job:
</t d><t d><%enp. get Jobl d() %</ b></td></tr>
</tabl e>
<h4>El ected Benefits</h4>
<t abl e>
<%
Col l ection benefits = enp. getBenefits();
if (benefits == null || benefits.size() == 0) {
%
<tr><td>None</td></tr>
<%
} else {

Supporting Wireless Clients 7-9

Deciding Where to Put the Presentation Data for Wireless Clients

Iterator it = benefits.iterator();
while (it.hasNext()) {
Benefitltemitem= (Benefitltemit.next();
%
<tr><td><%it em get Nane() %</t d></tr>
<%
} /] end of while
} Il end of if
%
</tabl e>
<h4>Act i ons</ h4>
<t abl e>
<t r><td><a
href ="/ empbft/control | er ?enpl D=<%i d%&anp; act i on=addBenef i t ToEnpl oyee" >Add
benefits to the enpl oyee</td></tr>
<tr><td><a
href ="/ enpbft/control | er ?enpl D=<%i d%&anp; act i on=r emoveBenef i t Fr onEnpl oyee" >Rem
ove benefits fromthe enpl oyee</td></tr>
<tr><td>Query ot her
enpl oyee</ a></td></tr>
<tr><td>Home</ a>
</td></tr>
</tabl e>
<%
} I/ end of else (empld !'= null)
%
</ body>
</htm >
<%
} Il end of else (wireless)
%

7.3.3 Separating Presentation Data into Separate Files

If you are using different files, edit the subclasses of ActionHandler to check the
origin of the request, and forward the request to the proper JSP file. For example:

public void performAction(HtpServletRequest req, HtpServletResponse res)
throws Servl et Exception
{
String client = req. getParaneter(Sessi onHel per. CLI ENT_TYPE_PARAMETER) ;
bool ean wirel ess =
client '= null && client.equal s(SessionHel per.CLI ENT_TYPE W RELESS);
String enpldString = req. get Paranet er (Sessi onHel per. EMP_I D_PARAMETER) ;

7-10 Oracle9i Application Server Application Developer’'s Guide

Deciding Where to Put the Presentation Data for Wireless Clients

bool ean val i dEnpld = true;
if (empldString !'= null) {

int enpld = Integer.parselnt(enpldString);

val i dEnpld = (enpld >= 100 &% enpld <= 206) ? true : false;
}

/1 Forward to appropriate page
if (wireless) {
if (validEnpld) {
forward(req, res, "/queryEnpl oyeeWreless.jsp");
} else {
forward(req, res, "/errorWreless.jsp");
}
} else {
if (validEnpld) {
forward(req, res, "/queryEnployee.jsp");
} else {
forward(req, res, "/error.jsp");

}
}

The value of CLI ENT_TYPE_PARAMETER is defined in SessionHelper to be
cl i ent Type. This is the name of the parameter.

The value of CLI ENT_TYPE_W RELESS is defined in SessionHelper to be
Wi r el ess. This is the value of the parameter.

This parameter and the value of the parameter are defined in empbft.xml. This file
corresponds to the ID page for wireless. It enables users to enter a number in a text
input field.

Il empbft.xm
<?xnml version = "1.0" encoding = "l SO 8859-1"?>
<Si npl eResul t >
<Si npl eCont ai ner >
<Sinpl eFormtitle="Query Enpl oyee" target="/enpbft/controller">
<Si npl eForm t em nane="enpl D' format="*N'>Enter Enp I D </ Sinpl eFormten>
<Si npl eForm t em nane="acti on" type="hi dden" val ue="queryEnpl oyee" />
<Si npl eForm t em nane="cl i ent Type" type="hi dden" val ue="wirel ess" />
</ Si npl eFor n»
</ Si npl eCont ai ner >
</ Si npl eResul t >

Supporting Wireless Clients 7-11

Header Information in JSP Files for Wireless Clients

7.4 Header Information in JSP Files for Wireless Clients

You have to make some changes in the header of your JSP files for wireless clients:

7.4.1 Setting the XML Type
The first line of the JSP file should specify that the file is an XML file:

<?xm version = "1.0" encoding = "I SO 8859-1"?>

7.4.2 Setting the Content Type

In the JSP files for wireless clients, you need the following line at the top of the files
to set the content type of the response and the character set.

<%@ page content Type="t ext/vnd. oracl e. mobi | exn ; charset =l SO 8859-1" %
You need to do this because the default value for cont ent Type for JSPs is
text/ ht m , and this is not what you want for wireless clients.

The transformer uses the t ext / vnd. or acl e. mobi | exml value when
transforming the page into data that the wireless client can understand.

7-12 Oracle9i Application Server Application Developer’'s Guide

Operation Details

7.5 Operation Details

To Oracle9iAS, requests from wireless clients look the same as requests from
desktop browsers except that the user agent field contains the name of the wireless
device. However, the way in which wireless requests get to Oracle9iAS is different:
Wireless requests first go through gateways (such as WAP, Voice, or SMS), which
convert the requests to the HTTP protocol. The gateways then route the requests to
Oracle9iAS Wireless.

Oracle9iAS Wireless processes the requests by invoking an adapter to retrieve XML
from the mobile application. The XML is based on a schema defined by Oracle9iAS.

Oracle9iAS Wireless then invokes a transformer, which takes the XML and
transforms it to a markup language appropriate for the wireless client. Oracle9iAS
sends the resulting data to the gateway, which may encode the data (to make the
data more compact) before sending it to the client.

See the Oracle9iAS Wireless Developer’s Guide and the Oracle9iAS Getting Started and
System Guide for further details.

7.5.1 Query Operation

Figure 7-4 shows the flow of the query operation with wireless and browser clients.
This figure is a more complex form of Figure 6-1.

Supporting Wireless Clients 7-13

Operation Details

Figure 7-4 Query Operation
empbft.xml
Request with employee ID Request without employee ID
action=queryEmployee action=queryEmployee
i B1
WN
Info page
(Employee info)
Add Benefit
W2 | B2,B5 Remove BeTefit
(ActionHandler) ith employee ID 4
Screen 3

(Employee info)

Add Benefit

Yes No 1
Remove Benefit uer

QueryEmployee.java

v

clientType = wireless?

w4

queryEmployeeWireless.jsp errorWireless.jsp error.jsp queryEmployee.jsp

ID valid? ID valid?

w3 B3
Yes No No Yes ID = null
nu B6
Valid ID

The figure above contains two sequences of events. One sequence is for requests
that come from browsers; steps in this sequence are noted in the figure with a "B".
The other sequence is for requests that come from wireless clients; steps in this
sequence are noted with a "W".

The steps for browser requests are covered in Section 6.2, "Query Employee
Operation". This section covers the wireless steps.

W1: The server sends the request to the Controller with the act i on parameter set
to quer yEnpl oyee and the enpl D parameter set to the employee ID entered by
the user.

W2: QueryEmployee.java checks the cl i ent Type parameter to determine if the
request came from a wireless client or a browser. This parameter is set only in the

7-14 Oracle9i Application Server Application Developer’'s Guide

Operation Details

XML files that the application sends to wireless clients; requests from browsers do
not have this parameter. QueryEmployee.java also checks if the employee ID is
valid.

W3: QueryEmployee.java forwards the request to queryEmployeeWireless.jsp.

W4: queryEmployeeWireless.jsp is similar to queryEmployee.jsp. It retrieves and
displays employee data. Note that the retrieval method is the same in both files. The
only difference is in the tags used (HTML for browsers, XML for wireless clients).

7.5.2 queryEmployeeWireless.jsp
queryEmployeeWireless.jsp looks like the following:

/'l queryEnpl oyeeWrel ess. jsp
<?xnm version = "1.0" encoding = "l SO 8859-1"?>
<%@ page cont ent Type="t ext/vnd. oracl e. mobi | exm ; charset =l SO 8859-1" %
<Y@ page inport="java.util.*" %
<Y%@ page i nport="enpbft. conponent.enpl oyee.ejb.*" %
<%@ page i nport="enpbft.conponent.enpl oyee. hel per.*" %
<Y@ page inmport="enpbft.util.*" %
<Si npl eResul t >
<Si npl eCont ai ner >
<%
String enpld = request. get Par anet er (Sessi onHel per. EMP_| D_PARAMETER) ;
if (empld == null)

{
%
<SinpleFormtitle="Query Enpl oyee" target="/enpbft/controller">
<Si npl eForm tem nanme="enpl D' format="*N'>Enter Enp I D </ Sinpl eFormten>
<Si npl eForm t em nane="acti on" type="hi dden" val ue="queryEnpl oyee" />
<Si npl eForm t em nane="cl i ent Type" type="hi dden" val ue="wirel ess" />
</ Si npl eFor n»
<%
} else {

int id = Integer.parselnt(enpld);

Enpl oyeeManager ngr = Sessi onHel per. get Enpl oyeeManager (request);

Enpl oyeeMbdel enp = ngr. get Enpl oyeeDetai | s(id);

%
<Si npl eText >

<Si npl eText I temrEnp 1D <%enpl d%</ Si npl eText | ten>
<Si npl eText I tenpFirst Name: <%enp. get FirstName() %</ Si npl eText|tenp
<Si npl eText | tenpLast Nane: <%enp. get Last Name() %</ Si npl eText | t enp
<Si npl eText | tenrEmai | : <%enp. get Enai | () %</ Si npl eText It en»
<Si npl eText | t em>Phone: <%enp. get PhoneNunber () %</ Si npl eText | t en>

Supporting Wireless Clients 7-15

Operation Details

<Si npl eText I tenpH re: <%enp. get H reDat e() %</ Si npl eText | ten»
<Si npl eText | t emrJoh: <%enp. get Jobl d() %</ Si npl eText | t en»
<Si npl eText It enpEl ected Benefits: </ SinpleTextlten

<%
Col l ection benefits = enp. getBenefits();
if (benefits == null || benefits.size() == 0) {
%
<Si npl eText | t em>None</ Si npl eText | t enp
<%
} else {
Iterator it = benefits.iterator();
while (it.hasNext()) {
Benefitltemitem= (Benefitltemit.next();
%
<Si npl eText | t enP<%i t em get Name() %</ Si npl eText | t en»
<%
} /1 end of while
} Il end of if
%

<Action |abel ="Add Benefits" type="SOFT1" task="G0O'
target="/enpbft/control | er?acti on=addBenef it TOEnpl oyee&anp;
cli ent Type=wi r el ess&anp; enpl D=<%enpl d%" ></ Acti on>
<Action |abel ="Rermove Benefits" type="SOFT1" task="C&0'
target="/enpbft/controller?action=renoveBenefitFronEnpl oyee&anp;
client Type=wi r el ess&anp; enpl D=<%enpl d%" ></ Acti on>
<Action |abel ="Query O her Enployee" type="SOFT1" task="G0'
target="/enpbft/control | er?acti on=quer yEnpl oyee&anp;
client Type=wirel ess"></ Acti on>
</ Si npl eText >
<%
} I/ end of else (empld !'= null)
%
</ Si npl eCont ai ner >
</ Si npl eResul t >

The Act i on tag defines popup menus (Figure 7-1, Screen 4). The user presses the
Menu button to access the popup menu.

7.5.3 Add and Remove Benefits Operations

The add and remove benefits operations for wireless clients are similar to the
corresponding operations for browsers. The changes in the application needed to
support these operations for wireless clients include:

7-16 Oracle9i Application Server Application Developer’'s Guide

Operation Details

Modifying AddBenefitToEmployee.java and
RemoveBenefitFromEmployee.java to check if the request came from a
wireless client. The checks use the same format as in the query operation.

Creating addBenefitToEmployeeWireless.jsp and
removeBenefitFromEmployeeWireless.jsp to define the XML for presentation.

Creating errorWireless.jsp to display an error message.

Creating successWireless.jsp, which the application displays when a user
successfully adds or removes a benefit. In addition to displaying a success
message, the file also defines a popup menu that enables the user to add or
remove additional benefits without having to go to the main menu. This feature
is not applicable to browsers. Section 7.2.2, "Differences Between the Wireless
and the Browser Application" describes this feature in detail.

Supporting Wireless Clients 7-17

Accessing the Application

7.6 Accessing the Application

While you are developing wireless applications, you may not have access to an
environment where you can run your applications from actual wireless clients. In
such cases, you can test your applications using simulators. However, before you
deploy your applications in a production environment, it is highly recommended
that you find or set up an environment where you can test your applications with
actual wireless clients.

7.6.1 Using a Simulator

To access the application from a wireless client simulator:
1. Enter the following URL in the simulator:

htt p: // <host >: <port >/ omsdk/rm

/omsdk/rm points to the wireless application. It displays a screen with two

choices:

« GoTo..
This selection displays a screen with a text field that enables you to enter a
URL to visit.

« Samples

This selection displays a screen (Figure 7-1, Screen 1) that lists all the
applications in a certain directory (see Section 7.2.1, "Screens for the
Wireless Application™).

2. Select Samples.

3. Invoke your application from the list of applications.

7.6.2 Using an Actual Wireless Client

To access the application from an actual web-enabled wireless client such as a cell
phone or PDA, check that you have the following:

« Oracle9iAS that hosts the application is running on a machine that is outside of
any firewalls.

« The database that the application requires is also running outside of any
firewalls.

7-18 Oracle9i Application Server Application Developer’'s Guide

Accessing the Application

Oracle9iAS and the database need to be freely accessible because requests from
wireless clients go through gateways, which can communicate only with machines
that are outside of any firewalls.

Your application should then appear on the list of applications when you enter the
URL and follow the steps listed in Section 7.6.1, "Using a Simulator".

Supporting Wireless Clients 7-19

Accessing the Application

7-20 Oracle9i Application Server Application Developer’'s Guide

8

Adding Web Cache to the Application

You can use the web cache feature of Oracle9iAS to improve performance,
availability, and scalability of your applications without modifying them. You just
have to specify which pages in your applications you want to cache using the
Oracle Web Cache Manager tool.

« Section 8.1, "Choosing Which Pages to Cache"
= Section 8.2, "Analyzing the Application"

This guide does not cover how web cache works. For an overview and details of
web cache, see the Oracle9iAS Web Cache Administration and Deployment Guide.

Adding Web Cache to the Application 8-1

Choosing Which Pages to Cache

8.1 Choosing Which Pages to Cache

Pages that you should cache include the following:

Static pages such as HTML, XML, and text pages
Style sheets such as CSS style sheets

Graphics, which are generally static

PDF files

Dynamic pages

Note: If you cache dynamic pages, be careful to invalidate them
when the data in the data source changes. Otherwise, users may get
outdated pages from the cache.

You use the Oracle Web Cache Manager to manage cached pages. This applies to
static and dynamic elements. To cache a page, you specify the page’s URL in the
Oracle Web Cache Manager. You can use regular expressions to match multiple
URLs and to ensure your pattern matches exactly.

The next section shows how the Employee Benefit application caches a combination
of static pages and dynamic pages.

8-2 Oracle9i Application Server Application Developer’s Guide

Analyzing the Application

8.2 Analyzing the Application

The only static element in the Employee Benefit application is a style sheet
(blaf.css).

The ID page (Figure 2-1), which prompts the user to enter an employee ID, is a
static page in the sense that it does not change from user to user, but it is generated
dynamically. This is a good page to cache.

The most requested pages in the application are the pages that display employee
information. Caching these pages would improve application performance. These
pages are dynamically generated, however; the application needs to invalidate
them when they are no longer valid.

There are no graphics to cache in this application.

8.2.1 Specifying the Pages to Cache

Figure 8-1 shows the Oracle Web Cache Manager with the Cacheability Rules page
selected. The first three lines are specific to the Employee Benefit application.

The ID page and the pages that display employee information have similar URLSs.
The URL for the ID page is:

/ enpbft/controller?acti on=quer yEnpl oyee

The employee information pages have URLs that look something like this:
[enpbft/control | er;jsessioni d=489uhhj j hj kui 348f sl kj 0982k3j | ds3?act i on=quer yEnpl o
yee&enpl D=123&submi t =Quer y+Enpl oyee

Both URLs have act i on=quer yEnpl oyee. The following regular expression
covers both URLSs:

A enpbft/controller.*\?. *acti on=quer yEnpl oyee. *

To cache the style sheet, specify its URL in the Oracle Web Cache Manager. The »

and $ are special characters used in regular expressions to indicate the beginning
and the end of a line. This ensures that the pattern matches exactly.

A enpbft/css/ bl af . css$
The second rule, which matches / enpbf t / $, specifies an optional convenience
page that provides a link to the ID page of the application. This page is static. If you

have a page external to the application that links to the application, then you do not
need this page and URL.

Adding Web Cache to the Application 8-3

Analyzing the Application

Figure 8-1 Oracle Web Cache Manager

e AT A
v Back Forward Reload Hame Search Metzcape Print Security Shop Sitam m
v ‘ﬁthookmarks J‘ Location: | hitp: //doliu-sun.us. oracle. com: 4000/Awebcacheadmin j

ORACLE

Oracle Web Cache Manager e L

+ Besource Limits = Help

+ Process Identity

» Cache Cleanup =
Cacheability Rules

Administering Weh Sites

« "Web Cache Listen Ports
+ Oracle Wallet | Selectors
« Application Web Servers
o« Arecess Logs Select | Priority . HTTP
« Apology Pages URL Expression Method(s)
+ Cacheability REules
« Compression GET, GET
b E_xp_]r.atlon Eules o 1 Mempbificontroller. ™7 *action=cuervEmployee * | with query
« Multiple Documents string
with Zame Selector (S
by Cooldes
o Multiple Documents e 2 flermpbis GET
with Zame Selector ‘

e o | 3| Mempbifessblafcss$ GET |

+ Sesston/Personalized GET, GET [

Attribute Eelated ol 4 pdfh with query
Caching Rules string

o Simple —

Personalization GET, GET

o HTTP Error Caching o 5 \ html?§ with query

» EST Output string _l;l
»

Permission -« |

8.2.2 Invalidating Pages

You need to invalidate dynamic pages in the cache when they are no longer valid.
To invalidate cached pages, send an XML file with the URL of the pages that you
want to invalidate to web cache.

The Employee Benefit application caches the employee information page, which
should be invalidated as soon as the data in the database is updated. One way to do
this is to send an invalidation message to web cache at the end of the add and
remove benefit operations. This method, however, does not invalidate the pages

8-4 Oracle9/ Application Server Application Developer’s Guide

Analyzing the Application

when other applications update the underlying tables in the database that the
Employee Benefit application uses.

A better way is to have the database send the invalidation message when the data
in the tables changes. To do this, set up triggers on the tables to fire when data in the
tables gets updated. The triggers can call a procedure to send the invalidation
message to web cache.

The procedure that the triggers invoke looks like the following:

- Usage:
SQL> set serveroutput on (Wen debugging to see dbns_output.put_line’s)
SQL> exec invalidate_enp(’doliu-sun’, 4001, 122);

create or replace procedure invalidate_enp (
machi ne in varchar2,

port in integer,
enp ininteger) is
d integer;
c utl_tcp.connection; -- TCP/IP connection to the Wb server
DQUOTE constant varchar2(1) := chr(34);
CR constant varchar2(1) := chr(13);
AWP constant varchar2(1) := chr(38);
uri varchar2(100) := '/enpbft/controller?action=queryEnpl oyee’ || AMP ||

"anp; enpl D=" || enp;
content _length integer;
BEG N
- Note: The 177 + Length of uri to invalidate = Content-Length
content _length := LENGTH(uri) + 177,
dbrms_out put. put _line(’ Content-Length:’ || content_length);

- open connection
c := utl_tcp. open_connection(machine, port);

-- Send the HTP Protocol Header
-- send HTTP POST for Oracle Wb Cache
d:=utl_tcp.wite_line(c, 'POST /x-oracl e-cache-invalidate HTTP/1.0");

- Note: The Authorization passes the User:Password as a base64 encoded
-- string. ie. invalidator:admn =>
d:

= utl _tcp.wite_line(c, 'Authorization: BASIC aW2YWpZGFOb3l 6YWR aWM=") ;
d:=utl_tcp.wite_line(c, 'Content-Length: ' || content_length);
dbms_out put. put _line(’ Content-Length: ' || content_|length);

- send TWO CR s per HTTP Protocol (Note: One from above)
- (Note: If testing with telnet count cr as 2 characters)

Adding Web Cache to the Application 8-5

Analyzing the Application

d:=utl_tcp.wite_line(c, CR);

-- send Calypso xm Invalidation File

d:=utl_tcp.wite_line(c, '<?xm version=" || DQUOTE || '1.0" || DQUOTE ||
v?>v);
d:=utl_tcp.wite_line(c, '<!IDOCTYPE | NVALI DATI ON SYSTEM ' || DQUOTE ||

“internal:///invalidation.dtd || DQUOTE || '>");

d:=utl_tcp.wite_line(c, '<INVALIDATION>');
-- May need to uncomment this for testing dif. expressions.
--d:=utl_tcp.wite_line(c, '<URL EXP=" || DQUOTE || ’'/cache.htm || DQUOTE
- || 7 PREFIX=" || DQUOTE || "NO || DQUOTE || ">");
d:=utl_tcp.wite_line(c, '<URL EXP=" || DQUOTE || uri || DQUOTE ||
" PREFIX=" || DQUOTE || "NO || DQUOTE || ">");
d:=utl_tcp.wite_line(c, '<VALIDITY LEVEL=" || DQUOTE || 'O || DQUOTE ||
i />1);
d:=utl_tcp.wite_line(c, '</URL>");
d:=utl_tcp.wite_line(c, '</INVALI DATION>');
BEG N
LooP
-- Capture sone of the expected return output when debuggi ng
dbns_out put. put _line(substr(utl _tcp.get line(c, TRUE),1,80)); -- read result

dbrs_out put . put _li ne(substr(utl _tcp.get_line(c, TRUE), 81, 160));
dbrs_out put . put _l'i ne(substr(utl _tcp.get_line(c, TRUE), 161, 240))
dbms_out put . put _l'i ne(substr(utl _tcp.get_line(c, TRUE), 241, 320));
dbms_out put . put _l'i ne(substr(utl _tcp.get_line(c, TRUE), 321, 400));
dbms_out put . put _l'i ne(substr(utl_tcp.get_line(c, TRUE), 401, 480))
END LOCP,
EXCEPTI ON
VHEN ut| _tcp. end_of _i nput THEN
NULL; -- end of input

1

1

END;
utl _tcp.cl ose_connection(c);
END;

The invalidate message that the procedure sends to web cache is an XML file. The
file looks like the following:

<?xm version="1.0"?>

<! DOCTYPE | NVALI DATI ON SYSTEM "internal :///invalidation.dtd">
<I NVAL| DATI ON>

<URL EXP="uri" PREFI X="NO'>

8-6 Oracle9i Application Server Application Developer’s Guide

Analyzing the Application

<VALIDI TY LEVEL="0" />
</ URL>
</ | NVALI DATI ON>

The uri is replaced with something like:

[enpbft/control | er?acti on=quer yEnpl oyee&anp; enpl D=123

Web cache listens on a specific port. The procedure calls utl_tcp.open_connection to
open a connection to web cache and sends an HTTP header:

PCST /x-oracl e-cache-invalidate HTTP/ 1.0
Aut hori zation: BASIC aWb2YWpZG-0b3l 6YWRt aWMi=
Content - Lengt h: cont ent Lengt h

Note that the procedure has to calculate the content length. It starts with 177, which
is the length of the XML file, to which it adds the length of the uri.

The Authorization specifies the username and password for web cache.

8.2.3 Setting up Triggers on the Underlying Tables

The underlying tables in the database have the following triggers. These triggers
run the invalidate procedure.

The first trigger is fired when a row is deleted from the employee_benefit_items
table.

CREATE OR REPLACE TRI GGER AFTER DEL_TRI G

AFTER DELETE on enpl oyee_benefit_itens

FOR EACH ROW

BEG N

inval i date_enp(’ doliu-sun’, 4001, :old.EVMPLOYEE |D);
END;

The second trigger is fired when a row is inserted or updated in the employee_
benefit_items table.

CREATE OR REPLACE TRI GGER AFTER_INS_UPD TR G

AFTER I NSERT OR UPDATE on enpl oyee_benefit_itens
FOR EACH ROW

BEG N

inval i date_enp(’ doliu-sun’, 4001, :new. EMPLOYEE |D);
END;

Adding Web Cache to the Application 8-7

Analyzing the Application

8-8 Oracle9i Application Server Application Developer’s Guide

9

Running in a Portal Framework

To make the Employee Benefit sample application run within a portal framework,
you have to make some changes to the application. The changes that you have to
make are in the controller and the action handler objects. You also have to edit the
links in the JSP files to make them work. The model layer (that is, the Employee and
Benefit EJBs) remains the same.

Topics in this chapter:

« Section 9.1, "How Portal Processes Requests"

« Section 9.2, "Screenshots of the Application in a Portal”

« Section 9.3, "Changes You Need to Make to the Application"

« Section 9.4, "Update the Links Between Pages Within a Portlet"
= Section 9.5, "Use include instead of the forward Method"

= Section 9.6, "Protect Parameter Names"

= Section 9.7, "Make All Paths Absolute”

Running in a Portal Framework 9-1

How Portal Processes Requests

9.1 How Portal Processes Requests

The following figure shows how portal handles requests. This is important in
understanding why you have to use APIs in the Java Portal Developer’s Kit to code
your links and parameters.

Figure 9-1 How portal processes requests

Repository

@ e P applications
1 - 2“ %
3%

Client " Portal

ages
Provider2 ~~ pag

applications

1. Aclient sends a request to Oracle9iAS for a portal page.

2. Portal handles the request. It queries the repository to get a list of portal
providers that need to supply data to render the portal page.

3. Portal sends the request to each provider.
4. The providers process the request and return the appropriate data to portal.

5. Portal assembles the data into a page and returns the page to the client.

9-2 Oracle9i Application Server Application Developer’s Guide

Screenshots of the Application in a Portal

9.2 Screenshots of the Application in

a Portal

The screens for the application in a portal look the same as if the application were
running outside of a portal. The only difference is that the portal pages contain tabs
and icons as defined by users and administrators. Users and administrators can set
up portals with different looks; see the portal documentation for details.

Figure 9-2 to Figure 9-5 show the pages of the application in a portal. You can
compare these portal pages with the non-portal pages in Figure 2-1 and Figure 2-2.

Figure 9-2 ID page in a portal

A

Welcome to Employee Portal - Netscape

File Edit “iew Go Communicator Help

Back Forward Reload Home Search

Metzcape

Frint Security Shop Stop

W'thookmarks J‘ Location:I&_schema=PDF|TALBD&_pirefnuII.next_page=c:ontro|Ier&_pirefnull.acti0n=queryEmployee j

ORACLE
Portal

January 2, 2002

Employee Benefit Employee Search

Welcome to Employee

R -]
a3) Y 7
«a3) B /
-

Mawigator Home Help
Login

Product News JPDK Samples

Employee Benefit Application

Query Employee

Employee ID: [125 {e.g., 100) Query Employee
Actions
Home

’E ='¢D'=| |Document: Done

Running in a Portal Framework 9-3

Screenshots of the Application in a Portal

Figure 9-3 Info page in a portal

Welcome to Employee Portal - Hetscape

File Edit “iew Go Communicator Help
Back Fopward Reload Home Search Metzcape Frint Security Shop Stop m
X w&v Bookmarks J‘ Location:ID&_pirefnull.acti0n=queryEmployee&_pirefnull.next_page=c:ontro|Ier&_pirefnull.emplD=1 28 j
ORACLE I
Welcome to Employee 22
= . Portal Mawigator Home Help
January 2, 2002 Login
Employee Benefit Employee Search Procuct Mews JPDK Samples

Employee Benefit Application

Employee Details

Employee ID: 125

First Marne: Julia Last Name: Nayer

Ermnail: JNAYER FPhone Mumber. 650.124.1214

Hire Date: 1997-07-16 Job: ST _CLERK

Elected Benefits

MEDICAL CREDITS

DEMTAL CREDITS

YISION CREDITS

LTD CREDITS

Actions

Add benefits to the employee

Eemove benefits from the employee

Que ' other emgluyee

Home —

E
| == |Document: Dane i

9-4 Oracle9i Application Server Application Developer’s Guide

Screenshots of the Application in a Portal

Figure 9-4 Add Benefits and Remove Benefits pages in a portal

elcome to Employee Portal - Hetscape

File Edit “iew Go Communicator Help

= Back Fopward Reload Home Search Metzcape Frint Security Shop Stop m
wthookmarks J‘ Location:InuII.next_page=c:0ntro||er&_pirefnull.acti0n=addBenefitToEmployee&_pirefnull.empID=125 j

ORACLE
- Welcome to Employee

Add Benefits page
Portal

January 2, 2002

Employee Search Product Mews JPDK Samples
Employee Benefit Application

Select Available Benefits

[T AD+D CREDITS

[T EMPLOYEE LIFE CREDITS
[T SPOUSE AFTER-TAX LIFE
[T CHILD AFTER-TAX LIFE

[T GROUP LEGAL

Actions

Welcome to Employee Portal - Hetscape

File Edit “iew Go Communicator Help

Add Selected Benefits | Back Fopward Reload Home Search Metzcape Frint Security Shop Stop m
X wthookmarks J‘ Location:Iext_page=c:0ntro|Ier&_pirefnull.acti0n=removeBenefitFromEmployee&_pirefnull.empID=1 25j
= =B= Document Done | SRACLE Jjg ,I) ?
it ' = Welcome to Employee 3) 8) L)
Portal

MNawvigatorHome Help

January 2, 2002

Employee Benefit Employee Search Product News JPDK Samples

Employee Benefit Application

) Select Elected Benefits
Remove Benefits page

[T MEDICAL CREDITS
[DENTAL CREDITS
T ISION CREDITS
[LTD CREDITS

7 AD+D CREDITS

Actions

Femove Selected Benefits

’E == | |Document: Done

S 22 BB N2 4

Running in a Portal Framework 9-5

Screenshots of the Application in a Portal

Figure 9-5 Success page in a portal

Welcome to Employee Portal - Hetscape

File Edit “iew Go Communicator Help

Back Fopward Reload Home Search Metzcape Frint

Security Shop Stop m

‘;&vBookmarks J‘ Location:Ioller&_pirefnull.benefits=5&_pirefnull.emplD=125&_pirefnull.acti0n=addBenefitToEmponee j

ORACLE

Portal

January 2, 2002

Employee Benefit Employee Search

Product News

Welcome to Employee 7

D)

JPDK Samples

Employee Benefit Application

Successful Operation

The operation was completed successfully.
Actions

Query the same employee

Query other employee
Home

9-6 Oracle9i Application Server Application Developer’s Guide

Changes You Need to Make to the Application

9.3 Changes You Need to Make to the Application

Before you can run the sample application in a portal, you have to set up a few
things outside the application as well as make some changes to the application
itself.

9.3.1 Setup aProvider and a Portal Page
You need to have a portal environment in which to run the application:

« Set up a provider, and register the sample application with the provider.

= Set up a portal page and define one of the regions on the page to display the
sample application.

The following figure shows a sample portal page that contains the Employee Benefit
application. The tabs at the top of the page take you to different pages in the portal.
You can have different tabs in your portal page.

Figure 9-6 A portal page containing the sample application

elcome to Employee Portal - Hetscape

File Edit “iew Go Communicator Help

Back Fopward Reload Home Search Metzcape Frint Security Shop Stop m
X W'!vBookmarks J" Location:Ius.oracle.c:om:????.-"servlet.-"page'?_pageid=58,80&_dad=portal30&_schema=F’DF|TALBD&_pirefnuII.next_page=index.isp_VJ

ORACLE
= Welcome to Employee Portal

Mawvigator Home Help

December21, 2001 Login

Employee Search Product Mews JPDK Samples
Employee Benefit Application

Welcome to Employee Benefit Application!
This is a small sample application to demaonstrate Oracle9i Application Server (%iAS). Its main functions are:
+ guerying employee
« adding henefits to an employee
« removing henefits fram an employee
It demonstrates key features of
+ Oracle9ias Containers for J2EE (OC4)
+ Oracle9ias Portal
+ Oracle9ias Wireless

The sample application is described in detail in Oracle9i Application Server Application Developer's Guide.

Test Run Application

Running in a Portal Framework 9-7

Changes You Need to Make to the Application

9.3.2 Edit the Application

You need to add some calls to the JPDK API to make your application run in a
portal environment.

Update the links where you want to display another page within the portlet. If
the file that contains the URL is an HTML page, you have to change it to a JSP
page because you need to determine the URL dynamically.

See Section 9.4, "Update the Links Between Pages Within a Portlet".

Invoke the include method instead of forward. You have to use include
because the portal needs to add data from other portlets. If you use forward,
the portal does not have a chance to gather data from the other portlets.

See Section 9.5, "Use include instead of the forward Method".

Use the portletParameter method in the HttpPortletRendererUtil class to
ensure that request parameters have unique names. This ensures that
applications on the portal page read only their parameters and not parameters
for other applications. This also enables applications to use the same parameter
name; the method prefixes parameter names with a unique string for each
application.

See Section 9.6, "Protect Parameter Names".

Make all URL paths absolute paths using the absoluteLink or the
htmlIFormActionLink method in the HttpPortalRendererUtil class, depending
on the HTML tag.

See Section 9.7, "Make All Paths Absolute”.

9-8 Oracle9i Application Server Application Developer’s Guide

Update the Links Between Pages Within a Portlet

9.4 Update the Links Between Pages Within a Portlet

When you need to link from one page in your application to another page within a
portlet, you cannot simply specify the target page’s URL in the hr ef attribute of an
<a> tag. Instead you have to do the following:

« Use the parameterizeLink method in the HttpPortletRendererUtil class. See
Section 9.4.1, "The parameterizeLink Method".

« Add the next_page parameter to the request’s query string to specify the target
page or object. See Section 9.4.2, "The next_page Parameter".

9.4.1 The parameterizeLink Method

The parameterizeLink method enables you to add a query string to the link. (If you
do not have a query string in your link, you can just use the absoluteLink method.
See Section 9.7, "Make All Paths Absolute".)

In the Employee Benefit application, some of the places where you have to use the
parameterizeLink method are:

« to navigate from the ID page to the Info page
« to navigate from the Info page to the Add Benefit or the Remove Benefit pages

The following files are affected: addBenefitToEmployee.jsp,
removeBenefitFromEmployee.jsp, queryEmployee.jsp, error.jsp, and success.jsp.

The following example shows a link with two parameters in the query string.
= Running outside a portal environment:

/'l from addBenefit sToEnpl oyees. jsp
<a href="/enpbft/controller?action=queryEnpl oyee&anp; enpl D=<%enpl d%" >Query
the same enpl oyee</ a>

« Running within a portal environment:

/'l from addBenefit sToEnpl oyees.jsp
<%
String fAction = HtpPortletRendererUil.portletParaneter(request,
Sessi onHel per . ACTI ON_PARAMETER) ;
Htt pPortl et Renderer Wil . portl et Paraneter (request,
Sessi onHel per. EMP_I D_PARAVETER) ;

String fEnpld
%

<a href="<%HttpPortletRenderer Wil .paraneterizeLink(request,

Running in a Portal Framework 9-9

Update the Links Between Pages Within a Portlet

Portl et RendererUtil.PAGE LI NK

H t pPortl et Renderer Wil . portl et Paraneter(request, "next_page") +
"=controller" + "&np;" +
fAction + "=queryEnpl oyee" + "&anp;" +
fEnpld + "=" + enpld)%">Query the sanme enpl oyee</ a>

9.4.2 The next_page Parameter

In the example above, you may have noticed that the target of the link, which is the
controller, is specified as the value of the next_page parameter. The reason for this is
that requests in a portal environment are always directed to the portal. The portal
then forwards the requests to providers (see Section 9.1, "How Portal Processes
Requests"). For the provider to send the request to a specific target, you specify the
target in the next_page parameter.

The name of the next_page parameter is specified in the provider.xml file (in the
WEB-INF/providers/empbft directory in the webapp.war file). You can define the
name of the parameter to be anything you want: it is the value of the
pageParameterName tag.

In URLs for the application, the query string contains the next_page parameter.
Portal sends the query string to the provider, which does the following:

1. The provider sees next_page as a special parameter.
2. The provider sends the request to the value of the parameter (controller).

3. The controller and other objects in the application process the request as
normal.

/'l provider.xm
<?xnm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<?provi derDefinition version="3.1"?>

<provi der class="oracle.portal.provider.v2. Default ProviderDefinition">
<sessi on>f al se</ sessi on>
<use(dStyl eHeader s>f al se</ used dStyl eHeader s>

<portlet class="oracle.portal.provider.v2 DefaultPortletDefinition">
<id>1</id>
<nane>Enpl oyeeBenef i t </ nane>
<title>Enpl oyee Benefit Portlet</title>
<description>This portlet provides access to Enpl oyee Benefit
Application. </ description>
<ti meout >10000</ t i meout >

9-10 Oracle9i Application Server Application Developer’'s Guide

Update the Links Between Pages Within a Portlet

<ti meout Message>Enpl oyee Benefit Portlet tined out</tineout Message>
<showkdi t >f al se</ showEdi t >
<showkdi t Def aul t >f al se</ showEdi t Def aul t >
<showPr evi ew>f al se</ showPr evi ew>
<showDet ai | s>f al se</ showDet ai | s>
<hasHel p>f al se</ hasHel p>
<hasAbout >f al se</ hasAbout >
<accept Cont ent Type>t ext / ht ml </ accept Cont ent Type>
<renderer class="oracle.portal.provider.v2.render.Render Manager" >
<render Cont ai ner >t r ue</ r ender Cont ai ner >
<cont ent Type>t ext/ htm </ cont ent Type>
<showPage>i ndex. j sp</ showPage>
<pagePar anet er Nane>next _page</ pagePar anet er Nane>
</renderer>
</portlet>

</ provi der >

9.4.3 Linking to the ID Page

This is a special case to link to the ID page of the application. You can use this link
as the first link to the application.

To create a link to the ID page and display it in the portal page, you need to use the
following URL.:

<Y%@ page i nport="oracle.portal.provider.v2.render.http. HtpPort|etRendererltil" %
<Y%@ page i nport="oracle.portal.provider.v2. render.Port|etRendererUil" %

<a href="<%HttpPortletRenderer Wil .paraneterizeLink(request,
Portl et RendererUtil.PAGE LI NK
H t pPort| et Renderer Wil . portletParameter(request, "next_page") + "=controller")%">

Note that the <a> tag uses JSP scriptlets. This means that this link has to be in a JSP
file; it cannot be in an HTML file.

The hr ef attribute uses JPDK APIs to ensure that the portal processes the link
correctly, and that the Employee Benefit application sends the request to the
controller object. This chapter explains why you have to express the link in this
fashion.

After Oracle9iAS runs the JSP scriptlet, you end up with a link that looks something
like:

http://<host >/ servl et/ page?_pagei d=58, 60& dad=port al 30& schena=PORTAL30&
_pirefnull.next_page=control | er

Running in a Portal Framework 9-11

Use include instead of the forward Method

9.5 Use include instead of the forward Method

Call the include method instead of forward. You have to use include because the
portal needs to add data from other providers. If you use forward, the portal does
not have a chance to gather data from the other providers. See Figure 9-1.

= Running outside a portal environment:

Request Di spat cher rq = req. get Request Di spat cher (forward);
rq.forward(req, res);

« Running within a portal environment:;

Request Di spat cher rq = req. get Request Di spat cher (forward);
rqg.include(req, res);

The only class that calls forward is the AbstractActionHandler abstract class.

9-12 Oracle9i Application Server Application Developer’'s Guide

Protect Parameter Names

9.6 Protect Parameter Names

Ensure that parameter names on your page do not conflict with parameter names
from other pages in the portal. To protect your parameters, call the
portletParameter method in the HttpPortletRendererUtil class to ensure that your
parameters have unique names. The method prefixes parameter names with a
unique string for each application; this enables applications to use the same
parameter name safely.

By using the method, you ensure that your applications on the portal page read
only their parameters and not parameters from other applications.

You have to use the method to protect all your field names in your HTML formes.
You have to do this when retrieving and setting values for the fields.

The following files are affected: AddBenefitToEmployee.java, Controller.java,
QueryEmployee.java, RemoveBenefitFromEmployee.java,
addBenefitToEmployee.jsp, removeBenefitFromEmployee.jsp,
queryEmployee.jsp, error.jsp, and success.jsp.

When you use the methods to protect the parameters, the links look something like
the following:

« For add benefit actions:

http://<host >/ servl et/ page?_pagei d=58%2C60&_dad=port al 30& schema=PORTAL30&
_pirefnull.acti on=addBenef it ToEnpl oyee& pirefnul|.next_page=controller&
_pirefnull.enpl D=125

= For remove benefit actions:

http://<host >/ servl et/ page?_pagei d=58%2C60& dad=port al 30& schema=PORTAL30&
_pirefnull.action=renoveBenefitFronEnpl oyee&
_pirefnull.next_page=controller& pirefnull.enpl D=125

« For query employee actions:

http://<host >/ servl et/ page?_pagei d=58%2C60& dad=port al 30& schema=PORTAL30&
_pirefnull.action=queryEnmpl oyee& pirefnull.next_page=controlleré&
_pirefnull.enpl D=125

The parameters used by the application are prefixed with _pirefnull. The other
parameters in the URL are required by portal. Note also that the URL does not point
to the controller directly. Instead it uses the _pirefnull.next_page parameter to
indicate that the controller should handle the request. See Section 9.4.2, "The next_
page Parameter" for details.

Running in a Portal Framework 9-13

Protect Parameter Names

9.6.1 Retrieving Values
The following example retrieves the values of two parameters.

Running outside a portal environment:

/1 from AddBenefit ToEnpl oyee. j ava
String benefits[] = req.getParaneter Val ues(Sessi onHel per. BENEFI T_PARAVETER) ;
String client = req. get Paranet er (Sessi onHel per. CLI ENT_TYPE_PARAMETER) ;

Running within a portal environment:

/'l from AddBenefit ToEnpl oyee. j ava
inport oracle.portal.provider.v2. render. http. HtpPortletRendererUil;

String fBenefits = HtpPortletRendererUtil. portletParaneter(req,
Sessi onHel per. BENEFI T_PARAMETER) ;
String benefits[] = req.getParaneterVal ues(fBenefits);
String fAient = HtpPortletRenderer Wil .portletParaneter(req,
Sessi onHel per. CLI ENT_TYPE_PARAMETER) ;
String client = req.getParaneter(fdient);

9.6.2 Setting Values

If your parameter is a form element (for example, a checkbox or a hidden element),
you have to call the portletParameter method to protect the name before you can
use it. The following example shows how to set the BENEFIT_PARAMETER in a
form:

/'l from addBenefit sToEnpl oyees. jsp
String fBenefits = HtpPortletRenderer Uil . portletParaneter(

request, SessionHel per. BENEFI T_PARAMETER) ;

<form... >

<i nput type="checkbox" name="<%f Benefits%" val ue="<%b. getld()%">

9-14 Oracle9i Application Server Application Developer’'s Guide

Make All Paths Absolute

9.7 Make All Paths Absolute

Make all URL paths absolute paths using the absoluteLink or the
htmlFormActionLink method in the HttpPortalRendererUtil class, depending on
the HTML tag.

You cannot use paths relative to the current page because Oracle9iAS sends
requests to portal first, and portal sends requests to providers. See Figure 9-1. When
providers get the requests, the current path is the portal, not to the current page. By
using absolute paths, you ensure that the provider can find the proper object.

The following files are affected: addBenefitToEmployee.jsp,
removeBenefitFromEmployee.jsp, queryEmployee.jsp, error.jsp, and success.jsp.

9.7.1 <a> and <link> Tags
Use the absoluteLink method to qualify paths in <a> and <I i nk> tags.

9.7.2 <form> Tag

Running outside a portal environment:

/'l from addBenef it ToEnpl oyee. j sp
<link rel="styl esheet" type="text/css" href="css/blaf.css">

Running within a portal environment:

/1 from addBenefit ToEnpl oyee. j sp
<link rel="styl esheet" type="text/css"
href="<% HtpPortl et Renderer Uil . absol uteLink(request,
"./css/blaf.css")%"

Use the htmIFormActionLink method to qualify paths in the <form> tag.

Running outside a portal environment:

/1 from addBenefit ToEnpl oyee. j sp
<form net hod="GET" action="/enpbft/controller">

Running within a portal environment:

/1 from addBenef it ToEnpl oyee. j sp
<f orm net hod="GET"
action="<%HtpPort!|etRendererUtil.htm FormActi onLi nk(request,
Portl et Renderer Uil . PAGE LI NK) %" >

Running in a Portal Framework

9-15

Make All Paths Absolute

<% Ht t pPortl et RendererUtil. htm FornH ddenFi el ds(request,
Portl et RendererUtil.PAGE LI NK) %
<i nput type="hidden"
name="<%Ht t pPort| et Renderer Uil . portl et Paraneter(request, "next_page") %"
val ue="control | er">

Note that in the portal version the action attribute does not point to the controller.
Instead, it points to the portal. The actual target for the form is specified in a hidden
field called next_page. The value of the hidden field specifies the target. See

Section 9.4.2, "The next_page Parameter" for details.

When you use forms, you need to include additional parameters such as _dad and
_schenma. These parameters are needed by portal. To include these parameters, you
can use the htmlFormHiddenFields method.

9-16 Oracle9i Application Server Application Developer’'s Guide

10

Enhancements to the Application

You can make the application even more useful by making the following additions:
« Section 10.1, "Adding Security Features"

« Section 10.2, "Publishing the Application as a Web Service"

10.1 Adding Security Features

As it stands, any user can enter an employee ID and make changes to that
employee’s benefits. This is probably not what you want. You can add a login page
that prompts the user to enter a login ID and password. The application can then
verify the login against a directory server.

10.2 Publishing the Application as a Web Service

Web services enable diverse clients, independent of language or operating system,
to invoke methods on your application. In the Employee Benefit application, you
can expose business logic methods by exposing the EmployeeManager session
bean. Typically, you would expose methods declared in the session bean’s remote
interface. Clients can then process the return values as they see fit.

For details on web services, see the Oracle9iAS Web Services Developer’s Guide.

Enhancements to the Application 10-1

Publishing the Application as a Web Service

10-2 Oracle9i Application Server Application Developer’'s Guide

A

Configuration Files

This appendix shows the configuration files needed to deploy and run the
Employee Benefit application:

= Section A.1, "server.xml"
= Section A.2, "default-web-site.xml"
« Section A.3, "data-sources.xml"

The server.xml and default-web-site.xml files define the Employee Benefit
application (empbft). They also define omsdk, which is an application that the
wireless feature in Oracle9iAS uses.

These configuration files are located in the $J2EE_HOME/config directory.

For a detailed description of configuration files, see the Oracle9iAS User’s Guide.

A.1 server.xml

<?xnm version="1.0" standal one="yes"?>
<! DOCTYPE application-server PUBLIC "Orion Application Server Config"
"http://xmns. oracl e. confias/dtds/application-server.dtd">
<appl i cati on- server
application-directory="../applications"
depl oynent -di rectory="../application-depl oynment s"
transaction-1og="../persistence/onsdk. state" >
<rm-config path="./onsdk-rm.xm" />
<l og>
<file path="../1o0g/onsdk-server.log" />
</l og>
<gl obal - appl i cation name="default" path="./application. xm" />
<gl obal - web- app-confi g path="gl obal - web-application. xm" />
<web-site path="./onsdk-web-site.xm" />

Configuration Files A-1

default-web-site.xml

<appl i cation name="onsdk"
path="../applications/onsdk.ear" auto-start="true" />
<appl i cation name="enpbft"
path="../applications/enpbft.ear" auto-start="true" />
</ appl i cation-server>

A.2 default-web-site.xml

<?xm version="1.0" standal one="yes"?>
<! DOCTYPE web-site PUBLIC "Oracl e9i AS XM. Wéb-site"
“http://xmns. oracl e.conli as/ dtds/web-site.dtd">

<I-- change the host nane bel ow to your own host name. Local host will -->
<l-- not work with clustering -->
<web-site

port="9000"

di spl ay- name="Defaul t Oracl e9i AS Containers for J2EE Wb Site">
<def aul t - web-app application="default" name="def aul t WebApp" />
<web- app application="onsdk" nane="onsdk" root="/onsdk"

| oad-on-startup="true"/>
<web- app application="enpbft" name="web" root="/enpbft"
| oad- on-startup="true"/>
<I'-- Access Log, where requests are |ogged to -->
<access-1og path="../1 og/ onsdk-web-access. | og" />
</ web-site>

A.3 data-sources.xmi

<?xm version="1.0"?>
<! DOCTYPE dat a- sources PUBLIC "Orion data-sources"”
"http://xm ns.oracle. coniias/dtds/data-sources. dtd">
<dat a- sour ces>
<dat a- sour ce
cl ass="com everm nd. sql . Dri ver Manager Dat aSour ce"
name="(Cr acl eDS"
| ocati on="j dbc/ Oracl eCor eDS'
xa- | ocation="j dbc/ xa/ Or acl eXADS"
ej b-1ocati on="j dbc/ Oracl eDS'
connection-driver="oracl e.jdbc.driver.OacleDriver"
usernane="hr"
passwor d="hr"
url ="j dbc: oracl e: t hi n: @ol i u- sun: 1521: db3"
i nactivity-timeout="30"

A-2 Oracle9/ Application Server Application Developer’s Guide

data-sources.xml

/>
</ dat a- sour ces>

Configuration Files A-3

data-sources.xml

A-4 Oracle9/ Application Server Application Developer’s Guide

A

absolute paths (for portal), 9-15

absoluteLink method (for portals), 9-8, 9-9, 9-15
AbstractActionHandler abstract class, 4-8, 9-12

action handlers, 4-8
wireless support and, 7-2
Action tag (in wireless clients), 7-16
ActionHandler interface, 4-8
ActionHandlerFactory class, 4-8
add benefits, 6-9, 6-10
for wireless clients, 7-16
retrieving benefits for a user, 6-11
sequence (high-level), 6-10
sequence diagram, 6-13
updating database, 6-12
Add Benefits page, 2-5
for portal, 9-5
for wireless, 7-4
Add More Benefits page (wireless), 7-5
AddBenefitToEmployee class, 3-6, 7-17
addBenefitToEmployee.jsp, 4-21
addBenefitToEmployeeWireless.jsp, 7-17
AppJNDINames class, 4-25

B

benefit data, retrieving, 6-7
BenefitCatalog bean, 4-18
details, 4-20
home interface, 4-18
remote interface, 4-19
Benefitltem class, 4-20
BenefitModel class, 4-19, 4-20

benefits table, 2-7
blueprints URL on Sun site, 3-7
business logic, 3-6

objects needed for, 4-2

C

Index

caching. See web cache.
chaining pages design, 3-3
clientType parameter, 7-7,7-11
configuration files, A-1
data-sources.xml, A-2
default-web-site.xml, A-2
server.xml, A-1
content type, for wireless clients, 7-12
controller, 3-6, 4-5
mappings to classes, 3-6

D

DAOs, 3-7
employee data and, 4-14
implementation, 4-14
interface for, 4-14
JDBC, 4-15
specifications for, 4-14
SQLJ, 4-15
data access objects. See DAOs.
database schema, 2-7
data-sources.xml, A-2
Debug class, 4-25
default-web-site.xml, A-2
design of application, 3-1
chaining pages, 3-3

Index-1

design goals, 3-2

model-view-controller, 3-4
Design Patterns Catalog URL on Sun site, 3-7
development steps, 1-5
development tools, 1-6

E

EJBs, 1-2
employee data, 4-9
needed by application, 4-2
when to use, 4-3

empbftxml, 7-4,7-7,7-11

Employee bean, 4-9
DAO for, 4-14
home interface, 4-10
load method, 4-12
persistence, 4-12
remote interface, 4-11

Employee Benefit application
accessing from desktop browsers, 6-3
accessing from wireless clients, 7-18
add benefit operation (high-level), 6-10
caching, 8-1
clientType parameter, 7-7
configuration files, A-1
design, 3-1
development steps, 1-5
development tools, 1-6
differences between wireless and desktop

versions, 7-5

EJBs, 4-2
objects needed, 4-2
overview, 1-1
portal support, 9-1
query employee operation (high-level), 6-3
remove benefit operation (high-level), 6-14
requirements, 2-2
screenshots (desktop version), 2-3
screenshots (portal version), 9-3
screenshots (wireless version), 7-3
starting URL (for desktop browsers), 6-3
starting URL (for portal), 9-11
starting URL (for wireless clients), 7-18
updating links in a portal, 9-9

Index-2

wireless support, 7-1
employee data, 4-9

retrieving, 6-4
employee_benefit_items table, 2-7
EmployeeDAO interface, 4-14
EmployeeDAOImpl class, 4-14, 4-16
EmployeeManager bean, 4-21

home interface, 4-22

JSPs and, 6-2

remote interface, 4-23
EmployeeModel class, 4-12
employees table, 2-7
Enterprise JavaBeans. See EJBs.
entity beans

Employee bean, 4-9

JSPs and, 4-21
Error page, 2-6
errorWireless.jsp, 7-17

F

findByPrimaryKey method (Employee bean), 4-17,
6-6

findByPrimaryKey method (EmployeeDAOImMpl
class), 6-7

H

header information for wireless clients, 7-12

hr schema, 2-7

hr.benefits table, 2-7

hremployee_benefit_items table, 2-7

hremployees table, 2-7

htmlFormActionLink method, 9-15

htmlFormActionLink method (for portals), 9-8,
9-15

HttpPortletRendererUtil class, 9-8

ID page, 2-4
for portal, 9-3
for wireless, 7-3
IDEs
JDeveloper, 1-6

include method (for portals), 9-8, 9-12
Info page, 2-4
for portal, 9-4
for wireless, 7-3
invalidating pages in web cache, 8-2, 8-4
using database triggers, 8-7

J

J2EE, 1-2
specifications, 1-2

jar, 1-6

Java Authentication and Authorization Service
(JAAS), 1-2

Java Message Service (JMS), 1-2

Java objects
when to use, 4-3

Java Transaction API (JTA), 1-2

javac, 1-6

JavaServer Pages. See JSPs.

JDBC, 4-15

JDeveloper, 1-6

JSPs, 1-2,5-5
advantages of, 5-5
EmployeeManager bean and, 6-2
entity beans and, 4-21
supporting different client types, 5-6
tag libraries, 5-5

L

load method, 4-12, 4-16

M

model (business logic), 3-6

model-view-controller (MVC) design. See MVC.

MVC, 3-4
controller, 3-6,4-5
diagram, 3-4
model, 3-6
view, 3-7

N

next_page parameter, 9-10

O

objects needed by application, 4-2
Oracle Web Cache Manager, 8-2,8-4

P

pageParameterName tag, 9-10
parameter names and portals, 9-13
parameterizeLink method (for portals), 9-9
performance
using web cache to improve, 8-1
persistence
Employee bean, 4-12
portal support, 9-1
absolute paths, 9-15
absoluteLink method, 9-8, 9-15
changes to the application, 9-7
htmlFormActionLink method, 9-8, 9-15
include method, 9-8,9-12
next_page parameter, 9-10
pageParameterName tag, 9-10
parameter names, 9-13
parameterizeLink method, 9-9
portletParameter method, 9-8, 9-13
provider.xml file, 9-10
request processing, 9-2
retrieving parameter values, 9-14
sample figure, 9-7
screenshots, 9-3
setting parameter values, 9-14
setting up provider, 9-7
updating links between pages, 9-9
portals, 1-2
portletParameter method (for portals), 9-8, 9-13
presentation data, 3-7
wireless clients, 7-3,7-7
provider, portal, 9-7
provider.xml file (for portals), 9-10

Index-3

Q

query employee, 6-3
findByPrimaryKey method,
for wireless clients, 7-13
retrieving benefit data, 6-7
retrieving data, 6-4
sequence (high-level), 6-3
sequence diagram, 6-8

Query Employee button, 2-3

QueryEmployee class, 3-6

queryEmployee.jsp, 4-20, 6-4

queryEmployeeWireless.jsp, 7-15

(o]
i

6

R

references

blueprints, 3-7

DAO, 4-14

Design Patterns Catalog, 3-7

J2EE specifications, 1-2
remove benefits, 6-9, 6-14

for wireless clients, 7-16

getting benefits list, 6-15

sequence (high-level), 6-14

sequence diagram, 6-17

updating database, 6-16
Remove Benefits page, 2-5

for portal, 9-5
Remove More Benefits page (wireless), 7-5
RemoveBenefitFromEmployee class, 3-6, 7-17
removeBenefitFromEmployee.jsp, 4-21
removeBenefitFromEmployeeWireless.jsp, 7-17
requests

getting origin of (wireless or desktop), 7-7
requirements of application, 2-2

S

sample application. See Employee Benefit
application.
schema, database, 2-7
screenshots of application
desktop browser client, 2-3
portal version, 9-3
wireless client, 7-3

Index-4

sequence diagrams
add benefits, 6-13
query employee, 6-8
remove benefits, 6-17
server.xml, A-1
servlets, 1-2,5-2
automatic compilation, 5-2
calling EJB, 5-3
example, 5-3
when to use, 4-3
session beans
BenefitCatalog bean, 4-18
EmployeeManager bean, 4-21
SessionHelper class, 4-25
SimpleResult DTD, 7-3
specifications
J2EE, 1-2
SQLJ, 4-15
Success page, 2-5
for portal, 9-6
successWireless.jsp, 7-5, 7-17

T

tag libraries for JSPs, 5-5
technologies used, 1-2
J2EE, 1-2
portals, 1-2
wireless support, 1-3
text/vnd.oracle.mobilexml value for
contentType, 7-12
triggers to invalidate pages in web cache,

U

8-7

utility classes
AppJNDINames class, 4-25
Debug class, 4-25
SessionHelper class, 4-25

Vv

view, 3-7

wW

web cache, 8-1
analyzing the application, 8-3
choosing pages to cache, 8-2
invalidating pages, 8-2, 8-4, 8-7
Oracle Web Cache Manager, 8-4
specifying pages to cache, 8-3
wireless support, 1-3,7-1
accessing the application, 7-18
action handler objects, 7-2
add benefits operation, 7-16
changes to the application, 7-2
clientType parameter, 7-7
content type, 7-12
details, 7-13
differences from desktop application, 7-5
header information, 7-12
presentation data, 7-3,7-7
query operation, 7-13
remove benefits, 7-16
screens, 7-3
SimpleResult DTD, 7-3
using a simulator, 7-18
using actual wireless devices, 7-18

Index-5

Index-6

	Contents
	1 Creating Applications: Overview
	1.1� Overview of Oracle9iAS
	1.1.1� J2EE
	1.1.2� Enterprise Portals
	1.1.3� Wireless Support

	1.2� Development Steps
	1.3� Development Tools
	1.4� What This Guide Covers and Does Not Cover

	2 The Sample Application
	2.1� Requirements for the Sample Application
	2.2� Screenshots of the Sample Application
	2.3� Database Schema

	3 Application Design
	3.1� Design Goals
	3.2� Chaining Pages
	3.3� Using Model-View-Controller (MVC)
	3.3.1� MVC Diagram
	3.3.2� Controller
	3.3.3� Model (Business Logic)
	3.3.4� View

	4 Implementing Business Logic
	4.1� Objects Needed by the Application
	4.2� Other Options Considered But Not Taken
	4.2.1� Conditions that Favor Using EJBs
	4.2.2� Conditions that Favor Using Servlets
	4.2.3� Conditions that Favor Using Normal Java Objects

	4.3� Controller
	4.4� Action Handlers
	4.5� Employee Data (Entity Bean)
	4.5.1� Home Interface
	4.5.2� Remote Interface
	4.5.3� Persistence
	4.5.4� Load Method
	4.5.5� EmployeeModel Class
	4.5.6� Data Access Object for Employee Bean
	4.5.6.1� Interface
	4.5.6.2� Implementation
	4.5.6.3� Load Method

	4.6� Benefit Data (Stateless Session Bean)
	4.6.1� Home Interface
	4.6.2� Remote Interface
	4.6.3� Benefit Details

	4.7� EmployeeManager (Stateless Session Bean)
	4.7.1� Home Interface
	4.7.2� Remote Interface

	4.8� Utility Classes

	5 Creating Presentation Pages
	5.1� HTML Files
	5.2� Servlets
	5.2.1� Automatic Compilation of Servlets
	5.2.2� Example
	5.2.3� Example: Calling an EJB

	5.3� JSPs
	5.3.1� Tag Libraries
	5.3.2� Minimal Coding in JSPs
	5.3.3� Multiple Client Types

	6 Interaction Between Clients and Business Logic Objects
	6.1� Client Interface to Business Tier Objects
	6.2� Query Employee Operation
	6.2.1� High-Level Sequence
	6.2.2� Querying the Database and Retrieving Data
	6.2.3� findByPrimaryKey Method
	6.2.4� Getting Benefit Data

	6.3� Add and Remove Benefit Operations
	6.4� Add Benefit Operation
	6.4.1� High-Level Sequence of Events
	6.4.2� Getting Benefits That the User Can Add
	6.4.3� Updating the Database

	6.5� Removing Benefit Operation
	6.5.1� High-Level Sequence of Events
	6.5.2� Getting Benefits That the User Can Remove
	6.5.3� Updating the Database

	7 Supporting Wireless Clients
	7.1� Changes You Need To Make To Your Application
	7.2� Presentation Data for Wireless Clients
	7.2.1� Screens for the Wireless Application
	7.2.2� Differences Between the Wireless and the Browser Application

	7.3� Deciding Where to Put the Presentation Data for Wireless Clients
	7.3.1� Determining the Origin of a Request
	7.3.2� Combining Presentation Data in the Same JSP File
	7.3.3� Separating Presentation Data into Separate Files

	7.4� Header Information in JSP Files for Wireless Clients
	7.4.1� Setting the XML Type
	7.4.2� Setting the Content Type

	7.5� Operation Details
	7.5.1� Query Operation
	7.5.2� queryEmployeeWireless.jsp
	7.5.3� Add and Remove Benefits Operations

	7.6� Accessing the Application
	7.6.1� Using a Simulator
	7.6.2� Using an Actual Wireless Client

	8 Adding Web Cache to the Application
	8.1� Choosing Which Pages to Cache
	8.2� Analyzing the Application
	8.2.1� Specifying the Pages to Cache
	8.2.2� Invalidating Pages
	8.2.3� Setting up Triggers on the Underlying Tables

	9 Running in a Portal Framework
	9.1� How Portal Processes Requests
	9.2� Screenshots of the Application in a Portal
	9.3� Changes You Need to Make to the Application
	9.3.1� Set up a Provider and a Portal Page
	9.3.2� Edit the Application

	9.4� Update the Links Between Pages Within a Portlet
	9.4.1� The parameterizeLink Method
	9.4.2� The next_page Parameter
	9.4.3� Linking to the ID Page

	9.5� Use include instead of the forward Method
	9.6� Protect Parameter Names
	9.6.1� Retrieving Values
	9.6.2� Setting Values

	9.7� Make All Paths Absolute
	9.7.1� <a> and <link> Tags
	9.7.2� <form> Tag

	10 Enhancements to the Application
	10.1� Adding Security Features
	10.2� Publishing the Application as a Web Service

	A Configuration Files
	A.1� server.xml
	A.2� default-web-site.xml
	A.3� data-sources.xml

	Index

