
XPath Leashed

Michael Benedikt

Bell Laboratories

benedikt@research.bell-labs.com

Christoph Koch

Universität des Saarlandes

koch@infosys.uni-sb.de

This survey gives an overview of formal results on the XML query language XPath. We identify
several important fragments of XPath, focusing on subsets of XPath 1.0. We then give results on
the expressiveness of XPath and its fragments compared to other formalisms for querying trees,
algorithms and complexity bounds for evaluation of XPath queries, and static analysis of XPath
queries.

Categories and Subject Descriptors: H.2.3 [Languages]: Query languages

1. INTRODUCTION

XPath [Wor99] is a language for matching paths and, more generally, patterns in
tree-structured data and XML documents. These patterns may use either just
purely the tree structure of an XML document or data values occurring in the
document as well.

XPath is used as a component in XML query languages (in particular, XQuery
[Wor02] and XSLT [Wor]), specifications (e.g., XML Schema), update languages
(e.g., [SHS04]), subscription systems (e.g., [AF00; CFGR00]) and XML access con-
trol (e.g., [FCG04]). Because XPath is ubiquitous in programming tools for manip-
ulating XML documents, and XPath processing is a key component of these tools,
hundreds if not thousands of papers have appeared over the years dealing with the
evaluation and analysis of XPath. Indeed the popularity of XPath as a formalism
may be a factor in the explosive growth of XML, as well as an effect.

The XPath standard has its rough edges, but there is an essential navigational
core that is an elegant modal language. In this core of XPath there is no explicit
notion of variable, and modal step expressions allow for navigation relative to a
context node and thus can only “see” one element of the document at a time.

An important property of XPath (which follows from its syntactic restrictions
that make it a modal language) is that fragments correspond to certain bounded-
variable logics. From these logics, XPath inherits nice graph-theoretic properties
on the “dependency graphs” of its queries. In particular, the queries have bounded
tree-width and bounded hypertree-width. These properties render them amenable
to efficient evaluation [GKP05]. XPath is quite unique in the sense that (1) it is a
widely used practical language that naturally obeys syntactic restrictions that lead
to bounded (hyper)tree-width and (2) bounded (hyper)tree-width is of immediate
practical relevance to efficient evaluation. (1) is true for modal languages used in
verification, but (2) is not, as the query evaluation techniques used in the context
of those languages are quite different [BCM+90; CGP00].

In this survey, we present the main fundamental results regarding XPath that
have been developed since its introduction. These results can be grouped into the
categories expressiveness , complexity, and static analysis of XPath.

—We give a detailed account of the known expressiveness results for XPath, but also
give a number of new results. In particular, we review the connections between
XPath and first-order logic. The main results are that there are first-order queries

not expressible in navigational XPath, but that navigational XPath expresses
precisely the two-variable first-order queries over the navigational structure of
XML documents. We show that the navigational XPath fragment extended by
the aggregation features of XPath does express all first-order queries. We also
survey characterizations of fragments of XPath in terms of tree-pattern queries,
and characterize XPath in terms of automata.

—We present an in-depth study of XPath complexity and efficient evaluation that
revolves around graph-theoretic properties of XPath queries. Large portions of
the XPath language can be processed by algorithms that can work in parallel or
in streaming fashion. These issues have been studied extensively in the literature,
but we present an overview here as well.

—We also survey static analysis problems for XPath, in particular the satisfiability
and the containment problem. These have diverse applications such as in the
context of XML query optimization, maintaining integrity, and answering queries
using views.

The structure of this article is as follows. In Section 2, we present the data
model and XPath fragments considered in this article, and give their semantics.
Section 3 studies the expressive power of our XPath fragments, relating them to
various logics, and the cost (and blow-up) of translating between such languages.
Section 4 discusses the main results on the complexity of XPath and of efficient
query evaluation, addressing efficient algorithms both in a classical and a stream
processing framework, as well as lower bounds. Finally, Section 5 surveys the state
of the art of research on static analysis problems for XPath.

For the central results in this survey, proofs are given. In some cases, we give
proofs that are simplifications of those in the literature, while in other cases we give
new proofs.

2. FRAMEWORK

Any fundamental research study of XPath has to decide what XPath really is –
that is, to distinguish which language features of many to focus on. XPath officially
refers to the World Wide Web Consortium’s (W3C) standard language. This is a
moving target, and indeed while virtually all research on XPath has focussed on the
current standard, XPath 1.0 [Wor99], there is already a very substantial extension,
XPath 2.0 [Wor02], forthcoming.

Thus the first task for a formal study is to isolate a particular subset of the lan-
guage with attractive properties, and to distinguish essential language features from
provisional design decisions. In this survey we focus exclusively on XPath 1.0, and
take the modal and step primitives that characterize XPath 1.0 as the definitive
features of the language. Furthermore, since XPath 1.0 is still a large language,
we concentrate on a sublanguage that exhibits the basic navigation and data ma-
nipulation features. The principal aspects that we ignore are string-manipulation,
type conversions, and construction of string values from document fragments. For
the most part the operations available at the value level do not affect our basic re-
sults, but we will comment briefly on their impact in the appropriate sections. The
largest language we consider, denoted OrdXPath, allows for the selection of nodes
based on navigation within the tree structure, data value comparisons, aggrega-
tion, and node position arithmetic. Within OrdXPath, we will delineate a hierarchy
of sublanguages of XPath 1.0 to which more precise expressiveness or complexity
bounds apply. We will refer to these sublanguages as XPath fragments. Of par-
ticular interest will be Navigational XPath (NavXPath), which deals only with the
underlying tree structure of the document. All the fragments considered in this
survey are formally introduced in Section 2.2.

2

The languages of this survey can thus be thought of as subsets of XPath 1.0
capturing the more important features of the language. However, even in our sub-
languages we make some small departures from the concrete syntax of XPath 1.0.
We do this because one of our goals is a clean theoretical model of XPath, amenable
to stating and proving properties of the language, while XPath 1.0 syntax is often
cumbersome for inductive proofs. We note these deviations from standard syntax
in the text, in particular in Section 2.4, and sketch how queries in XPath 1.0 can
be translated to conform to our grammar.

2.1 Data Model

A signature (or vocabulary) is a set of relation and function names. A relational
signature is one consisting only of relation names (i.e., a relational schema). A
σ-structure is a structure (or database) of signature σ. As a convention, given a
structure A, we use A (the name of the structure set in roman font) to denote
its domain and |A| to denote the size of the structure in a reasonable machine-
representation (cf. e.g. [Imm99; Lib04]).

Let Σ be a finite alphabet of labels. An unranked ordered tree is a tree in which
nodes may have a variable number of children, with an order among them. An
XML-tree is a relational structure T of signature

σnav = ((LabL)L∈Σ, Rchild, Rnext-sibling),

representing an unranked, ordered tree whose nodes are labeled using the symbols
from Σ: each LabL, for L ∈ Σ, is a unary relation representing the set of nodes
labeled L, Rchild is the binary parent-child relation among nodes, and Rnext-sibling is
the binary immediate right-sibling relation. That is, Rchild(x, y) means that y is a
child of x and Rnext-sibling(x, y) means that y is the immediate right-sibling of x. We
say that an XML-tree T of signature σnav represents the navigational structure of
an XML document.

An XML document is a structure of signature σdom = σnav∪{@A1, . . . ,@An} over
a two-sorted domain of nodes and values, where the relations from σnav over nodes
are as above and the @A1, . . . ,@An are a fixed finite set of associated attribute
functions, which map nodes to values. For simplicity we assume the attribute
functions to be total and to take values in the integers. We use Node(D) to mean
the nodes of XML document D; since D is usually clear from the context, we will
generally write simply Node. Similarly, we write NodeSet(D) for the set of all sets
of nodes of document D, omitting the argument D when it is clear.

Navigational Primitives. In XPath, the primitives employed for navigation along
the tree structure of a document are called axes . We will consider the axes self,
child, parent, descendant, descendant-or-self, ancestor, ancestor-or-self, next-sibling,
following-sibling, previous-sibling, preceding-sibling, following, and finally preceding.
The meaning of axis α is best given by a binary axis relations Rα, where Rchild

and Rnext-sibling were introduced above, Rself = {(n, n) : n ∈ Node}, Rdescendant is the
transitive closure of Rchild, Rdescendant-or-self is the reflexive and transitive closure of
Rchild, Rfollowing-sibling is the transitive closure of Rnext-sibling, and finally, Rfollowing is
the composition Rancestor-or-self ◦Rfollowing-sibling ◦Rdescendant-or-self . By the inverse of a
binary relation R, we refer to the relation {(n′, n) : R(n, n′)}. The relations Rparent,
Rancestor, Rancestor-or-self , Rpreceding-sibling, Rprevious-sibling, and Rpreceding are the inverses
of the relations Rchild, Rdescendant, Rdescendant-or-self , Rnext-sibling, Rfollowing-sibling, and
Rfollowing, respectively. We say that an axis α is the inverse of an axis β iff Rα is the
inverse of Rβ .

3

2.2 XPath Fragments Considered in this Survey

Navigational XPath. Many results on XPath apply to the fragment that deals
only with the navigational structure of an XML document. This fragment, denoted
NavXPath, consists of expressions whose input is a node and whose output is either
a set of nodes (an element of NodeSet) or a Boolean. The latter are also referred
to as qualifiers or filters. We will generally use p, p′ . . . to vary over general XPath
expressions, of any type, while q, q′ . . . will be used to denote qualifiers. Expressions
are built up from the grammar

p ::= step | p/p | p ∪ p

step ::= axis | step[q]

q ::= p | lab() = L | q ∧ q | q ∨ q | ¬q,

where axis stands for the axes named above, L denotes the labels in Σ, and ∧,∨,¬
stand for and (conjunction), or (disjunction) and not (negation), respectively.

An expression p in NavXPath over a σnav-structure D is interpreted as a function
[[p]]NodeSet from a node to a set of nodes, while a qualifier q is interpreted as a unary
predicate [[q]]Boolean : Node → NodeSet . In both cases, we refer to the input node to
these functions as the context node. The semantic functions are defined inductively
on the structure of p, q. For NodeSet expressions p we have

(P1) [[axis]]NodeSet(n) := {n′ : Raxis(n, n
′)}.

(P2) [[step[q]]]NodeSet(n) := {n′ : n′ ∈ [[step]]NodeSet(n) ∧ [[q]]Boolean(n′) =true}.
(P3) [[p1/p2]]NodeSet(n) := {v : ∃w ∈ [[p1]]NodeSet(n) ∧ v ∈ [[p2]]NodeSet(w)}.
(P4) [[p1 ∪ p2]]NodeSet(n) := [[p1]]NodeSet(n) ∪ [[p2]]NodeSet(n).

For qualifiers q we have

(Q1) [[lab() = L]]Boolean(n) :⇔ LabL(n)
(Q2) [[p]]Boolean(n) :⇔ [[p]]NodeSet(n) 6= ∅
(Q3) [[q1 ∧ q2]]Boolean(n) :⇔ [[q1]]Boolean(n) ∧ [[q2]]Boolean(n)
(Q4) [[q1 ∨ q2]]Boolean(n) :⇔ [[q1]]Boolean(n) ∨ [[q2]]Boolean(n)
(Q5) [[¬q]]Boolean(n) :⇔ ¬[[q]]Boolean(n)

First-Order XPath (FOXPath). We now extend the above language to allow
queries that can look at the data value structure of an input document of signature
σdom. FOXPath adds path expressions of the form

id(p/@A)

and qualifiers of the forms

i RelOp i p/@A RelOp i p/@A RelOp p′/@B

to the syntax of NavXPath, where p and p′ are path expressions, @A and @B are
attributes, RelOp ∈ {=,≤, <,>,≥, 6=}, and i is a nonterminal denoting the constant
integers.

FOXPath operates on σdom-structures with an attribute function @ID. The id(p/@A)
expressions model the id() function of XPath, and to be fully faithful we could as-
sume that the attribute function @ID is injective.

The semantic functions [[·]]NodeSet : Node → NodeSet and [[·]]Boolean : Node →
Boolean of NavXPath are extended as follows to handle the additional constructs:

(P5) [[id(p/@A)]]NodeSet(n) := {n′ : ∃n′′ ∈ [[p]]NodeSet(n) @ID(n′) = A(n′′)},
(Q6) [[i RelOp i′]]Boolean(n) :⇔ [[i]]Int(n) RelOp [[i′]]Int(n),

(Q7) [[p/@A RelOp i]]Boolean(n) :⇔ ∃n′ ∈ [[p]]NodeSet(n) A(n′) RelOp [[i]]Int(n), and

(Q8) [[p/@A RelOp p′/@B]]Boolean(n) :⇔ ∃n′ ∈ [[p]]NodeSet(n) ∃n′′ ∈ [[p′]]NodeSet(n)
A(n′) RelOp B(n′′),

4

where [[c]]Int(n) = c for constant c.

Aggregate XPath (AggXPath). Next, we add on expressions to FOXPath that
manipulate integers and compute aggregates.

The syntax of AggXPath is obtained from FOXPath by extending number-typed
qualifiers i (from exclusively integer constants in FOXPath) to

i ::= ‘c’ | i+ i | i ∗ i | count(p) | sum(p/@A)

where p ranges over path expressions and @A is an attribute function. We call “+”
and “∗” arithmetic operators and “count” and “sum” aggregate operators .

The semantic function [[i]]Int : Node → Int for numerical expressions of FOXPath

is extended to

(I1) [[c]]Int(n) := c
(I2) [[i ◦ i′]]Int(n) := [[i]]Int(n) ◦ [[i′]]Int(n) (◦ ∈ {+, ∗})
(I3) [[count(p)]]Int(n) := |[[p]]NodeSet(n)|
(I4) [[sum(p/@A)]]Int(n) := Σ{@A(n′)|n′ ∈ [[p]]NodeSet(n)}

Aggregate XPath with position arithmetic (OrdXPath). Finally, we add the
numerical operations “position()” and “last()” to AggXPath; these are called posi-
tional operators .

If we look at the semantic functions [[·]]NodeSet and [[·]]Boolean of AggXPath, we
say that they map from a context node (e.g., the root node of the document tree)
to either a node set, a Boolean, or an integer value. In OrdXPath, qualifiers and
numerical expressions are defined with respect to a more extensive “context” con-
sisting of a node and two additional integers, which can be accessed by the positional
operators.

(1) [[·]]NodeSet : Node → NodeSet is as in AggXPath except for

(P2′) [[step[q]]]NodeSet(n) := {nj | [[step]]NodeSet(n) = {n1, . . . , nk}∧

n1 ≺ n2 ≺ · · · ≺ nk ∧ 1 ≤ j ≤ k ∧ [[q]]Boolean(nj , j, k)},

where ≺ denotes the document order , i.e. the total order

n ≺ n′ ⇔ Rdescendant(n, n
′) ∨Rfollowing(n, n

′);

(2) [[·]]Boolean : Node × Int× Int→ Boolean is defined analogously to [[·]]Boolean of
AggXPath, however taking a context consisting of a triple (n, j, k) and pass-
ing it on to all qualifier and numerical subexpressions (for instance, [[q1 ∧
q2]]Boolean(n, j, k) :⇔ [[q1]]Boolean(n, j, k) ∧ [[q2]]Boolean(n, j, k)), and

(3) [[·]]Int : Node × Int × Int → Int is defined analogously to [[·]]Int of AggXPath,
however passing on the full context triple (n, j, k) to its numerical subexpres-
sions (for instance, [[i + i′]]Int(n, j, k) := [[i]]Int(n, j, k) + [[i′]]Int(n, j, k,)). For
the new operators of OrdXPath, we have:

(I5) [[position()]]Int(n, j, k) := j
(I6) [[last()]]Int(n, j, k) := k

By positive FOXPath, denoted PFOXPath, (resp., NavXPath, denoted PNavXPath),
we will refer to FOXPath (resp., NavXPath) without negation and inequalities (i.e.,
expressions pRelOp p′ with RelOp 6= “=”). We say that a FOXPath query (resp.,
NavXPath query) is conjunctive (and connected) if it does not use disjunction, union,
negation, or inequalities.

Remark 2.1. The XPath fragments just presented – just like XPath 1.0 – allow
for multiple qualifier brackets as part of a step expression. Steps containing multiple
qualifier brackets axis[·] . . . [·] can be simplified to axis[· ∧ · · · ∧ ·] in all our XPath

5

languages except for OrdXPath. In the proofs of our survey, we will sometimes
assume this simplified syntax for convenience.

In OrdXPath this simplification is not applicable in general, and hence for this
fragment the ability to use multiple qualifiers allowed in XPath 1.0 does add ex-
pressiveness.

Example 2.2. On a context node n with three children n1, n2, n3, of which the
first is labeled B and the second and third are labeled A,

[[child[lab() = A][position() = 1]]]NodeSet(n) = {n2},

since n2 is the first child of n in document order that is labeled A. This query
cannot be phrased with a single qualifier bracket in each step. For instance,

[[child[lab() = A ∧ position() = 1]]]NodeSet(n) =

{nj | 1 ≤ j ≤ 3 ∧ [[lab() = A ∧ position() = 1]]Boolean(nj , j, 3)} = ∅,

while

[[child[lab() = A]/self[position()=1]]]NodeSet(n) =
⋃

{[[self[position()=1]]]NodeSet(ni) | ni ∈ [[child[lab() = A]]]NodeSet(n)} =

[[self[position()=1]]]NodeSet(n2) ∪ [[self[position()=1]]]NodeSet(n3) = {n2, n3}.

2

Similarly, while p/following[q1] . . . [qk]/p′ is equivalent to

p/ancestor-or-self/following-sibling/descendant-or-self[q1] . . . [qk]/p′

if q1, . . . , qk are AggXPath, the following axis is not redundant in OrdXPath.

2.3 Query Equivalence

By a query, we mean any expression from one of the XPath fragments introduced
above. Two queries with domain Node p and p′ are fully equivalent (or simply
equivalent when it is clear from the context), denoted by p ≡ p′, iff for any XML
document D and all nodes n ∈ D, [[p]]NodeSet(n) = [[p′]]NodeSet(n), and similarly for
OrdXPath queries with context Node × Int× Int.

Let true be a shortcut for the qualifier (lab() = A) ∨ ¬(lab() = A). We say
two queries are equivalent over Σ0 (denoted by ≡Σ0

) where Σ0 is a fixed finite
label alphabet, if the above holds for any document D whose labels are in Σ0. For
example, true is equivalent to lab() = A ∨ lab() = B over the alphabet {A,B}, but
not in general. We will usually work with the stronger notion of general equivalence
≡, and specify when results also hold for restricted equivalence – equivalence w.r.t.
some finite alphabet Σ0.

For queries with domain Node (which include all NavXPath expressions), a weaker
equivalence relation is defined as follows: p and p′ are called root equivalent , denoted
by p ≡r p

′, iff for any XML document D, [[p]]NodeSet(rt) = [[p′]]NodeSet(rt), where rt
is the root of D. For NavXPath queries defined using upward axes, root equivalence
can be weaker than general equivalence: for example self[parent] ≡r self[¬true],
since the root node has no parent, but clearly these two expressions are not fully
equivalent.

2.4 Discussion: Faithfulness to the XPath Standard

We now discuss the distinctions between the model above and standard XPath 1.0
syntax.

6

§1. Node tests:. In XPath 1.0, label tests lab() = L can be carried out in qual-
ifiers using the “name” function or via paths self::L. The standard syntax can
clearly be mimicked in our language, and vice versa. We will often write axis::L[q],
corresponding to XPath standard syntax for axis[lab() = L][q] and axis::*[q] for
axis[q].

§2. Root slash:. XPath 1.0 supports path expressions of the from /p (even as
qualifiers); For instance, /child::A[/child::B] selects the A-labeled children of the
root node iff the root node has at least one child labeled B. This root slash can be
considered a special axis root definable in NavXPath as ancestor-or-self[¬parent]. The
omission of the root axis thus has no impact on results about NavXPath, although
it has some consequences for characterization theorems within NavXPath, as will be
noted below.

§3. Axes:. XPath 1.0 does not have the next-sibling or previous-sibling axes. They
can be defined from following-sibling and preceding-sibling using position() within
AggXPath. It will follow from the characterization of NavXPath and known results
on two-variable logic that these axes do add expressiveness to NavXPath. We found
it more natural to include these axes as primitives: their inclusion does not impact
complexity bounds, and the characterizations of expressiveness have variations both
with these axes and without them. On the other hand, XPath 1.0 has an attribute
axis. In order to distinguish the navigational fragment of XPath more clearly, we
treat attribute access as a separate feature rather than as an axis, but this does not
affect expressiveness.

§4. Document order and position arithmetic:. The interpretation steps axis[q]
with qualifier q employing “position()” depends on whether axis is a so-called
forward axis (child, descendant, following, . . .) or a backward axis (parent, ancestor,
preceding-sibling, . . .). In the former case, just as in our definition, the position of
a node in a set is determined in document order ≺; however, for backward axes,
positions of nodes are determined with respect to the inverse of ≺. This can be
dealt with by replacing “position()”, for qualifiers of backward axis steps, by “last()
+ 1 − position()”.

§5. Union:. A significant distinction concerns the union operator ∪; in XPath 1.0
this is allowed only at top-level, while we permit it as a binary operator on arbitrary
NodeSet expressions. Let us call unnested OrdXPath the language OrdXPath from
above, but with union only permitted at top-level, and similarly refer to unnested
NavXPath and unnested FOXPath. Every FOXPath expression can be translated into
an unnested one, and similarly for NavXPath. One simply pushes unions upward –
e.g. p/(p1 ∪ p2)/p

′ = p/p1/p
′ ∪ p/p2/p

′. There is an exponential blow-up in passing
from one to the other; consider paths

(child::A ∪ child::B)/(child::A ∪ child::B)/ · · · /(child::A ∪ child::B).

The inclusion of unrestricted nesting can thus have an impact on complexity and
succinctness. Prior theoretical studies [Mar04a; BFK03] allow arbitrary nesting.
Arbitrary nesting gives a cleaner language, and many of the most important results
about XPath hold for the more general language (e.g. expressive equivalences, upper
and lower bounds on evaluation complexity). We do the same here, but we will
distinguish some results that hold only for the unnested variant.

§6. Data Model:. Clearly, any aspects of the XPath data model for documents
are not present in our formalization of XML documents. We do not, for example,
concern ourselves with the distinction between types of nodes (comment, processing-
instruction, etc.). These features could be modeled on top of the data model we
present here (e.g. using distinct sets of element tags to model the different types).

7

In the XPath standard [Wor99], the document root node has precisely one child
node, which is the root of the visible XML tree (the topmost XML element node).
Without loss of generality, we may ignore this subtlety and may think of any query
/p as /child/p.

2.5 Historical and Bibliographic Remarks

XPath was initially developed by James Clark and formalized and promulgated as
an independent standard by the W3C starting in 1999, as XPath 1.0 [Wor99]. The
standard defines the syntax of the language, along with use cases, but gives the
semantics only informally. An early attempt to give a formal semantics is found in
[Wad00; Wad99]. A complete and yet very concise formal semantics of XPath 1.0
can be found in [GKP02].

In the process of the development of XQuery, a significant extension of XPath
1.0 was developed, released as XPath 2.0 [Wor02]. XPath 2.0 is the result of the
integration of XPath and XQuery into a common syntax and semantics definition,
and its semantics is presented as part of the XQuery 1.0 Formal Semantics [Wor02].
XPath 2.0 is a radically different language from XPath 1.0, including variables and
explicit quantification. From a theoretical perspective, no polynomial time bounds
can be given on basic problems like XPath 2.0 evaluation (while this is possible for
XPath 1.0, see Section 4). From a practical point of view the breadth of XPath 2.0
and XQuery would require discussion to subsume nearly every aspect of general-
purpose program optimization and analysis.

The extensions of XPath 2.0 over XPath 1.0 are mostly by programming language
constructs that do not preserve the theoretical properties of XPath pointed out in
the introduction. The largest language studied in this article, OrdXPath, is in the
intersection of XPath 1.0 and 2.0 and yet subsumes all the XPath fragments for
which fundamental results have been presented in the literature.

3. EXPRESSIVENESS

We now investigate where XPath “fits” in terms of other formalisms for querying
trees and tree-structured data. One natural benchmark is first-order logic (FO), but
we will also consider Monadic Second Order logic (MSO), the existential fragment
of FO (∃FO), the positive existential fragment of FO (∃+FO) and the fragment
FOk of FO formulas that use at most k distinct variables. The semantics of these
languages is standard [Lib04]. For a logical language L, we will use L[σ] to denote
the formulas of L over vocabulary σ.

3.1 Expressiveness of NavXPath

We start by investigating how NavXPath compares to first-order logic over the navi-
gational structure of XML documents. Note that a formula of first-order logic with
two free variables can be thought of as defining a mapping from Node to NodeSet ,
while a formula with one free variable defines a mapping from Node to Boolean.
The semantics of NavXPath presented in Section 2.2 gives already a translation into
these first-order languages.

Let σtransnav be the vocabulary extending σnav with Rdescendant andRfollowing-sibling.
Then,

Proposition 3.1. For every NavXPath expression e, one can find (in linear
time) a corresponding formula φ in FO[σtransnav] fully equivalent to e. Further-
more,

—φ ∈ FO[(LabL)L∈Σ, Rchild] if e uses only child and parent axes,

—φ ∈ FO[(LabL)L∈Σ, Rdescendant] if e uses only upward and downward axes, and

—φ ∈ FO[σnav] if e uses only child, parent, next-sibling, previous-sibling.

8

Note that this proposition holds both for path expressions returning nodesets (in
this case φ has two free variables) and for those returning Boolean expressions (here
φ has one free variable).

However, this is not an exact characterization of the expressiveness of NavXPath.
It is easy to find first-order queries over trees that are not expressible in NavXPath:
for example, the query that asks whether the tree has two nodes labeled C that are
in an ancestor relationship, and such that all nodes between them are labeled B.
We now show that NavXPath corresponds precisely to two-variable logic.

We introduce a normal form for FO2 queries over vocabulary σtransnav. XPNF
is the set of queries that are disjunctions of formulas γ(z1, zn) of the form:

∃z2 . . . ∃zn−1 ρ1(z1) ∧ χ1(z1, z2) ∧ ρ2(z2) ∧ . . . ∧ χn−1(zn−1, zn) ∧ ρn(zn)

where the zi here are distinct variables, the ρi are FO2 formulae, and the χi(zi, zi+1)
are unions of binary atomic formulas over predicates from σtransnav.

Theorem 3.2 [MdR04]. NavXPath corresponds to FO2 in expressiveness, in
the following sense.

—For every NavXPath expression returning a Boolean there is a corresponding fully
equivalent expression in FO2, and for every FO2 expression there is a corre-
sponding fully equivalent NavXPath expression.

—For every NavXPath expression returning a NodeSet, there is a corresponding
expression in XPNF and vice versa.

Proof (Sketch). We first show the direction from NavXPath NodeSet expressions
to XPNF and from NavXPath Boolean expressions to FO2. We will restrict to
unnested NavXPath expressions , that is, NavXPath expressions that have union only
at top-level. These have the same expressiveness as general NavXPath expressions.
Since the target classes FO2 and XPNF are closed under disjunction, it suffices to
translate expressions that have no occurrence of the union operator. So it suffices
to show that all NavXPath NodeSet expressions that do not use the union operator
translate to XPNF expressions without top-level disjunction, and every NavXPath

Boolean expression that does not use the union operator translates to an FO2

expression. We show this pair of statements by simultaneous induction. The base
case for lab() = A is simple, as is the case for Boolean operations in Boolean
expressions (since FO2 is closed under Boolean operators). The case step[q] can be
translated into XPNF formula χ(x, y) ∧ φ(y), whre χ is a XPNF formula without
top-level disjunction formed inductively for step, and φ is an FO2 formula formed
for q. We now do the inductive proof for p = p1/p2. By induction, we assume
we have XPNF formulas (without top-level disjunction) γ1 equivalent to p1 and γ2

equivalent to p2. If we have

γ1 = ∃z2 . . . ∃zm−1

(

m−1
∧

i=1

ρ′i(zi) ∧ χi(zi, zi+1)
)

∧ ρ′m(zm)

and

γ2 = ∃zm . . .∃zn−1

(

n−1
∧

i=m

ρ′′i (zi) ∧ χi(zi, zi+1)
)

∧ ρ′′n(zn)

then we can write γ1/γ2 as

∃z2 . . . ∃zn−1

(

n−1
∧

i=1

ρi(zi) ∧ χi(zi, zi+1)
)

∧ ρn(zn) (1)

where ρi(zi) is ρ′i(zi) for i < m, ρ′i(zi) ∧ ρ′′i (zi) for i = m, and ρ′′i (zi) for i > m.

9

The other interesting inductive case is that of qualifiers of the form p. By induc-
tion we have a XPNF formula γ representing p. We will assume γ(z1, zn) to be as
shown in equation (1).

We need to show that the formula ∃znγ(z1, zn) is in FO2. Suppose that n is
odd (the case where n is even is similar). Let var(i) = z1 for i odd and z2 for i
even. Let φ([x 7→ y]) denote the formula obtained by substituting all occurrences
of variable x by y in φ. Define ψn = ρn([zn 7→ var(n)]) and ψi−1 = ρi−1([zi−1 7→
var(i− 1)]) ∧ ∃var(i) χi(var(i− 1), var(i)) ∧ ψi. Then ψi is an FO2 sentence with
var(i) free. We can verify that ψ1 is equivalent to ∃znγ(z1, zn).

The converse direction is to show by induction that formulas in XPNF can be
translated to NavXPath NodeSet expressions, while FO2 formulas with one free vari-
able can be translated to NavXPath Boolean expressions. Since the first statement
follows easily from the second, we focus on the proof of the second. The transla-
tion function T is formed by induction on the structure of an FO2 formula. The
atomic cases are straightforward, as are the Boolean operations. The interesting
case is ∃y β(x, y), where β is in FO2. Formula β can be assumed to be a Boolean
combination of atomic binary formulas and FO2 formulas in one free variable of
lower quantifier rank. Let β′ be a formula equivalent to β obtained by turning β
into Disjunctive Normal Form (DNF) and replacing each disjunct φ(x, y) that does
not contain a binary atom by (φ(x, y) ∧ x = y) ∨ (φ(x, y) ∧ x 6= y). This preserves
the DNF.

The atomic binary predicates in β′ are either equality, inequality, or axis relations;
however, equality x = y can be replaced by self(x, y), and an inequality x 6= y can
be replaced by a disjunction of four axis relations (y is either and ancestor or
descendant of x or follows or precedes x). Let β′′ be obtained by applying these
substitutions to β′ and again turning the formula into DNF.

Since two axis predicates are either inconsistent with one another (i.e., the axis
relations have an empty intersection) or subsume each other, we can assume β′′(x, y)
to be of the form

∨

i

φi(x) ∧Rχi
(x, y) ∧ ψi(y),

that is, each disjunct contains precisely one binary atom.
We can easily translate β′′(x, y) into NavXPath as

T (β′′) :=
⋃

i

self[T (φi)]/χi[T (ψi)].

2

We note that the argument from NavXPath to FO2 shows that there is a poly-
nomial time translation from unnested NavXPath to FO2; for general NavXPath

expressions the best translation we know of is in exponential time. This mapping
introduces atomic predicates in the output corresponding only to axes mentioned
in the input; hence NavXPath filters without the next-sibling or previous-sibling axes
map to FO2 formulas that do not use (atomic relations for) these axes.

In the direction from FO2 to NavXPath, the translation also yields an output
that is exponential in the input in the worst case, and this has been shown to be
unavoidable. See [MdR04] for discussion and proof of this; we will give a further
argument that there is no polynomial translation in Section 5.1 This direction does
introduce new axes. The sibling axes may appear in the output even when the
original formula mentions only the child axis; the XPNF formula x 6= y cannot be
translated into NavXPath unless the sibling axis is present. Similarly, transitive axes
are introduced in the translation. On the other hand, next-sibling and previous-sibling

1Although the argument there is relative to a complexity-theoretic assumption.

10

are not introduced in this translation unless the corresponding atomic predicates
occur in the input. Hence NavXPath filters without these axes correspond exactly to
FO2 formulas that do not have atomic relations for these axes. Since it is known that
a successor relation of a linear order cannot be expressed in FO2 over the signature
whose only binary predicate is for the linear order (see e.g. [EVW02]), it follows
from these translations that NavXPath cannot express next-sibling or previous-sibling.

We now turn to the consequences of this characterization for closure properties of
NavXPath. It is clear that NavXPath qualifiers are closed under Boolean operations,
since we have explicit operators for these; it can also be seen to follow from Theo-
rem 3.2, since FO2 is obviously Boolean closed. What about the closure properties
of NavXPath expressions? In [Mar05], the following is shown:

Theorem 3.3 [Mar05]. NavXPath expressions returning nodesets are closed un-
der intersection and union, but not under complement.

Closure under union is obvious, since NavXPath has a built-in union operator.
Closure under intersection follows from the fact that the conjunction of acyclic
conjunctive queries is still a conjunctive query, and every conjunctive query on
trees can be transformed into an equivalent union of acyclic conjunctive queries
[BFK03; GKS04] (cf. Theorem 3.7), and unions of acyclic conjunctive queries can
be easily translated into NavXPath.

The lack of closure under complementation may seem surprising. In fact, [Mar05]
shows a stronger result: any extension of NavXPath closed under complementation
can express all first-order properties. The proof is by showing that an “until”
operator can be defined by complementing NavXPath expressions. The following
example is taken from page 7 of [Mar05]: Let φ(x, y) hold iff y is an A-labeled
descendant of x and every descendant of x that is an ancestor of y is labeled B.
Then φ is expressible in NavXPath extended with a complement operator (·)c

as:

descendant[lab() = A)] ∩ (descendant[lab() 6= B]/descendant)c

Above, we use also the intersection operator ∩, but this can easily be defined using
complementation and union.

The translation of unnested NavXPath to FO2 can be extended as follows: let
NavXPath∩ be the extension of NavXPath with the intersection operator ∩, and let
unnested NavXPath∩ be the same but with union allowed only at top-level. By
Theorem 3.3 above, we have NavXPath∩ has the same expressiveness as NavXPath

(for both expressions and qualifiers). Hence NavXPath∩ qualifiers have the same
expressiveness as FO2 formulas. Using the argument of [OMFB02], one can show
that even unnested NavXPath∩ formulas can be exponentially more succinct than
NavXPath formulas. However, unnested NavXPath∩ formulas can still be translated
into FO2 efficiently:

Proposition 3.4. There is a polynomial time function producing for each unnested
NavXPath∩ filter an equivalent FO2 formula φ(x).

Proof. We extend the dual translations from the proof of Theorem 3.2 to go
from NavXPath∩ NodeSet expressions without union to XPNF queries and from
NavXPath Boolean expressions without union to FO2 queries. We use exactly the
same construction of a translation function, let us call it f , as for NavXPath, but
for the inductive step for f(E1 ∩ E2) we translate into f(E1) ∧ f(E2). 2

We now provide an example of a navigational FO query that we prove not to
be expressible in NavXPath. Our example, a new immediately-following axis, has a
practical motivation. Computational linguists have proposed the addition of such
an axis to XPath to ask practical queries on linguistic trees [BCD+05]. We can give
a semantics to this axis using a corresponding binary relation Rimmediately-following,

11

which holds of (x, y) iff

Rfollowing(x, y) ∧ ¬∃z (Rfollowing(x, z) ∧Rfollowing(z, y)).

In [BCD+05] an extension of XPath with immediately-following is proposed. We
show here the following:

Proposition 3.5. There is no NavXPath expression E equivalent as a nodeset
query to immediately-following.

Proof. Consider instances that obey the DTD D0 given as

A⇒ A(B|C|ǫ) | ǫ B ⇒ ǫ C ⇒ ǫ

with A being the root.
An instance of this DTD consists of a chain of A elements, with one of the

following holding for each element x:

(1) x has a single A child (the next element of the chain), and no other children,

(2) x has no children (i.e. it is the lowest element of the chain),

(3) x has a single A child and a single B child, or

(4) x has a single A child and a single C child.

There is a NavXPath qualifier Q0 that holds of the root of a document iff the
document is valid with respect to D0. Consider the qualifier Q1

lab() = A ∧ immediately-following[lab() = B]

in NavXPath extended with immediately-following.
That is, Q1 holds of an A node iff it has an immediately-following node that is

a B. For a node n in an instance satisfying D0, Q holds at n iff the first ancestor
of n which has a non-A child has a B child. We claim that there is no NavXPath

qualifier equivalent to Q1 ∧Q0. From this, the proposition follows. From Theorem
3.2, it suffices to show that no two-variable logic formula can express Q1 ∧Q0.

We will reduce expressibility of Q1 ∧Q0 over trees to a statement about express-
ibility of a certain property in two-variable logic over strings. Let FO− be the logic
built up using quantification only over A nodes, where the vocabulary includes the
binary predicates Rdescendant and Rchild and unary predicates P1, P2, P3, P4, where
Pi holds of x iff case i holds above.

Claim 3.6. For every FO[σtransnav] sentence φ(x) there is an FO− sentence
φ−(x) with the same number of variables as φ which is equivalent to φ over all
A-nodes within all documents satisfying D0.

Informally, φ− is obtained inductively by replacing variables over B,C nodes by
variables over their A parents. A sentence φ = ∃x B(x) would map to φ− = ∃x ∈
A P3(x). Formally, we proceed as follows. Let SecChild(D,x) be the partial function
on nodes of D that maps a node labeled A to its second child, if such a child exists,
and Self(D,x) be the identity function on nodes labeled A. We create a function
T (φ, b) for φ ∈ FO[σtransnav], b a function from the free variables of φ to either
SecChild or Self, returning a formula φ′ ∈ FO− with the same free variables as φ,
and such that: for all documents D, T (φ(x, y), b) holds of A nodes m,n iff φ(x, y)
holds when applied to b(D,m), b(D,n), and similarly for φ(x), φ(y).

The main atomic cases for T are:

—T (Rnext-sibling(x, y), b) is (P3(y) ∨ P4(y)) ∧ Rchild(y, x) if b(x) = Self and b(y) =
SecChild, and is false otherwise.

—T (Rchild(x, y), b) is Rchild(x, y) if b(x) = Self and b(y) = Self, is (P3(x) ∨ P4(x)) ∧
x = y if b(x) = Self and b(y) = SecChild, and is false otherwise.

12

—T (Rdescendant(x, y), b) is Rdescendant(x, y) if b(x) = Self and b(y) = Self, is P3(y) ∨
P4(y) if b(x) = Self and b(y) = SecChild, and is false otherwise.

—T (B(x), b) is P3(x) if b(x) = SecChild, and is false otherwise.

—T (C(x), b) is P4(x) if b(x) = SecChild and is false otherwise.

—T (A(x), b) is true if b(x) = Self, and is false otherwise.

The other atomic cases are similar. The inductive cases are:

—T (∃xρ(x, y), b) =
∨

b′:b′|{y}=b ∃x ∈ A T (ρ(x, y), b′)

—T (∀xρ(x, y), b) =
∧

b′:b′|{y}=b ∃x ∈ A T (ρ(x, y), b′)

—T (φ1 ∧ φ2, b) = T (φ1, b) ∧ T (φ2, b)

—T (φ1 ∨ φ2, b) = T (φ1, b) ∨ T (φ2, b)

—T (¬φ, b) = ¬T (φ, b)

Finally, for a sentence we let φ−(x) be
∨

b T (φ(x), b), where in the disjunction b
ranges over all the bindings for x. One can verify inductively that T , and hence φ−

has the required properties.
From this construction, we see that if φ(x) ∈ NavXPath expresses Q0 ∧Q1, then

φ−(x) must hold of an A-node n iff the first ancestor of n which satisfies P3 ∨ P4

satisfies P3. Let S0 be the set of strings from alphabet Σ = {P1, P2, P3, P4}, ending
with the symbol P1. There is an obvious bijection F from documents satisfying
D0 to strings in S0. Using this function, we can see that φ−(x), considered as a
predicate on strings in S0, holds at node n iff the first ancestor of n which satisfies
P3 ∨P4 satisfies P3. But then by flipping the variables in every predicate Rdescendant

or Rchild in φ− we obtain a two-variable formula φ−(x) that holds at node n of string
s iff the first descendant of n satisfying P3 ∨ P4 satisfies P3. From this we easily
get a contradiction of prior results about the inexpressibility of the Until operator
in two variable logic (for strings, those of [EW00; EVW02], or for trees those of
[Mar04b]). Consider the query Q that holds of a string s iff s has a substring that
contains two nodes satisfying P3 but none satisfying P4. If φ−(x) were expressible
in two-variable logic, then Q would be expressible over strings in two-variable logic
over the vocabulary consisting of the labels, the descendant predicates, and the
child predicate. But in [EW00] it is shown that Q (denoted there by FAIR2) is not
expressible in Unary Temporal Logic, and by [EVW02] Unary Temporal Logic is the
same as two-variable logic over strings. Hence Q is not expressible in two-variable
logic, and we have a contradiction. 2

Note that the problem of deciding whether a given FO sentence over trees is in
NavXPath (i.e. is a two-variable sentence) is still open. The analogous problem for
strings is known to be decidable [BP89].

3.2 Expressiveness of Fragments of NavXPath

NavXPath is still a large language, and many applications make use only of the
positive fragment.

Following [BFK03], we characterize NavXPath both using logic and a visual query
formalism, tree patterns.

A tree pattern (over label alphabet Σ) is a node and edge-labeled tree. Edges are
labeled with a forward axis (child, descendant, following-sibling). In a Boolean tree
pattern node labels have one component that is either a label from Σ or wildcard
and another component that identifies whether a node is the distinguished context
node or not. In a unary tree pattern the additional component identifies a node
as either the context node, the selected node, or neither. Figure 1 shows a unary
tree pattern. Following the standard convention for drawing patterns, double lines
are used for a descendant edge and single lines for a child edge. A star is used

13

to denote the selected node, and the context node is implicitly the root node. A
Boolean pattern corresponds to a Boolean query, returning true at context node
n in a document iff there is a homomorphism from the pattern to the document
mapping the context to n. A unary tree pattern corresponds to a NodeSet query,
which returns node n′ on input n iff there is a homomorphism from the pattern to
the document which maps a node labeled context to n and the selected node to n′.
The pattern in the figure is equivalent to the XPath expression

self[lab() = A ∧ child[lab() = B ∧ descendant[lab() = D]]]/child[lab() = C].

A

B C*

D

Fig. 1. Tree pattern

A finite set of tree patterns can be considered as a query, returning the union
of the results of the individual patterns in the case of unary tree patterns, and
returning the disjunction of the results in the case of Boolean tree patterns.

Theorem 3.7. The following have equal expressiveness (up to full equivalence)

—PNavXPath NodeSet queries,

—∃+FO formulas φ(c, s) in the signature σtransnav, and

—sets of unary tree patterns.

We give a sketch of why the above holds: further details (for the case where
there are only upward or downward axes, but no sideways axes such as following or
following-sibling) can be found in [BFK03]; the general case is proved in [GKS04].
For every PNavXPath NodeSet query, and unary tree patterns, the corresponding
equivalent ∃+FO formula can be found in linear time, simply by translating the
semantics of PNavXPath or of tree patterns into logic. Translating from unary tree
pattern queries to PNavXPath queries is likewise straightforward: path steps are
used to traverse the path from the context node upward to the least common an-
cestor of the context and selected node, then downwards from this ancestor to the
selected node. The existence of subtrees sprouting off from this path is asserted
using filters. Translation of ∃+FO formulas into tree patterns is done by forming
the “graph pattern” whose nodes are the variables and whose edges represent re-
lationships between variables implied by the formula. This pattern has the same
structure as a tree pattern, but does not satisfy the requirement that the underlying
graph is a tree. This initial pattern is modified by recursively removing cycles in
the dependency graph by identifying variables that participate in a cycle. Sibling
axes are normalized in a similar fashion.

Example 3.8. Figure 2 illustrates the query rewriting technique for transform-
ing conjunctive queries over trees into equivalent acyclic positive queries. Consider
the conjunctive query

Q← Rdescendant(x, y), Rdescendant(x, z), Rfollowing(y, z), Φ(x, y, z)

14

x

Rdescendant Rdescendant

zy Rfollowing

x

y

Rdesc-or-self

Rdescendant Rdescendant

Rfollowing-sibling

Rdesc-or-self

z

x

y

Rdescendant

z
Rdesc-or-self

v
Rfollowing-sibling
u

Rdescendant
Rdesc-or-self

⇓

⇓

⇓

⇓

⇒ ⇒

⇓

⇑

(unsatisfiable)

⇓ ⇓

x

Rdescendant

z
Rdesc-or-self

v

Rfollowing-sibling

y

Rdesc-or-self

Rdescendant

u

u

x

y

Rdesc-or-self

Rdescendant

Rfollowing-sibling

Rdesc-or-self

z

u v

v

⇒

(unsatisfiable) (unsatisfiable)

⇓⇓(unsatisfiable)

(unsatisfiable)

x

y Rdesc-or-self

RdescendantRdescendant

z
Rdesc-or-self

Rfollowing-sibling

vu

x

y

Rdescendant

z

v
Rfollowing-sibling
u

Rdescendant

Rdesc-or-self
Rdesc-or-self

x

y

Rdescendant

z

Rdescendant

Rfollowing-sibling
vu

Rdesc-or-self

Rdesc-or-self

x

y z
Rdesc-or-self

Rfollowing-sibling
u

Rdescendant

Rdescendant

Rdesc-or-self v

x

y z
Rdesc-or-self

Rfollowing-sibling
u

Rdescendant
Rdesc-or-self

Rdescendant

v

x

Rdescendant

z
y

Rdesc-or-self

Rdescendant

vRfollowing-sibling

Rdesc-or-self

u

x

y

Rdescendant

z

Rdescendant

vu

Rdesc-or-self

Rfollowing-sibling

Rdescendant

x

y

Rdescendant

z

Rdescendant

Rfollowing-sibling
vu

Rdesc-or-self

Rdesc-or-self

x

y

Rdescendant

z

Rdescendant

v

Rdesc-or-self

Rfollowing-sibling

Fig. 2. Translation of a conjunctive query into an APQ.

where Φ stands for a conjunction of further atoms, such as unary label atoms,
that we do not rewrite. We first rewrite the Rfollowing atom using Rdesc-or-self and
Rfollowing-sibling. Then we iteratively simplify cycles using facts such as that for Q to
be true on a tree, given atoms Rdescendant(x, z) and Rdescendant(y, z), x must either
map to the same node as y, to an ancestor of that node, or y must map to an
ancestor of the node to which x maps. But then we can replace these two atoms
either by Rdescendant(x, y), Rdescendant(y, z), by Rdescendant(y, x), Rdescendant(x, z), or by

15

Rdescendant(x, z) and replace all occurrences of variable y in the query by x.
Whenever there are several choices, we compute one copy of the query for each

choice, make the appropriate replacement and then continue rewriting each con-
junctive query that still has a cycle. Given an appropriate set of rewrite rules (cf.
[GKS04]), we are guaranteed to either obtain a cycle that asserts unsatisfiability
(for instance, a node cannot be its own ancestor), or obtain an acyclic query.

In this example, all conjunctive queries that we obtain are unsatisfiable, except
for one, shown at the bottom left corner of Figure 2. Thus, for Q there exists an
equivalent acyclic conjunctive query. 2

The translations into FO2 from PNavXPath and from tree pattern queries are
linear, but every other translation in the above theorem is exponential in the
worst case; from ∃+FO to PNavXPath and from ∃+FO to tree patterns, this is
shown in [GKS04]. For the translation from PNavXPath to tree patterns, note that
PNavXPath can encode a Conjunctive Normal Form of a propositional formula (e.g.
proposition pi encoded by [Rchild/[lab() = Ai]). A set of tree patterns would cor-
respond to a Disjunctive Normal Form representation of the same formula. Since
it is known that there is an exponential blow-up in going from CNF to DNF, the
exponential blow-up of this translation follows.

A similar argument gives:

Theorem 3.9. The following have equal expressiveness (up to full equivalence)

—Boolean PNavXPath queries,

—∃+FO formulas φ(c) in the signature σtransnav,

—∃+FO formulas φ(c) in the signature σtransnav with at most two variables, and

—finite sets of Boolean tree patterns.

It is easy to show that ∃+FO[σtransnav] is closed under intersection and union,
but not complement. From this and the theorem above, one has:

Corollary 3.10. Boolean PNavXPath queries are closed under intersection and
union, but not under complementation.

Another consequence of the above is:

Corollary 3.11 [OMFB02]. For every PNavXPath query p, there is a query
p′ that contains none of the axes preceding-sibling, previous-sibling, and is equivalent
to p. In addition there is a query p′ containing none of the “backward axes” (parent,
ancestor, ancestor-or-self, preceding-sibling, previous-sibling) such that p ≡r p

′.

To see this, consider the translation of a tree pattern into PNavXPath. This
translation can be done in such a way as to never introduce preceding-sibling or
previous-sibling. The upward axes parent and ancestor are introduced only when the
context node in the pattern is not the root. But under root equivalence, a tree
pattern can always be taken to have the context node to the root (since otherwise
the pattern is root equivalent to true).

[OMFB02] gives a rewrite system that removes the backward axes (parent, ancestor,
ancestor-or-self, preceding-sibling), assuming root equivalence.

It is known that upward axes and backward axes cannot be removed in the
presence of negation or data values: for negation, one can consider the query p =
descendant[lab() = B ∧ ¬ancestor[lab() = A]]. One can show by an analysis of
NavXPath queries without upward axes that this cannot be expressed without the
use of ancestor.

Marx [Mar04a] proposes two extensions of NavXPath to capture FO3, and thus be
first-order complete. One is by adding a path complementation feature to NavXPath

and the other is by introducing conditional axes in the spirit of the until operator of

16

CTL. These results can be seen as extensions of Kamp’s Theorem [Kam68], which
states that propositional temporal logic (with “until”) captures first-order logic over
infinite words, to the setting of unranked trees.

3.3 Expressiveness of FOXPath

Much less is known about the expressiveness of FOXPath and AggXPath than for
NavXPath. It is easy to see that FOXPath expressions can be translated into first-
order logic over the signature

σ+
val = σnav ∪ {RelOpAi,Aj

| i, j ∈ {1, . . . , n},RelOp ∈ {=, 6=, <,≤, >,≥}}

∪ {Rdescendant, Rfollowing-sibling},

where RelOpAi,Aj
(x, y) holds of nodes x and y iff x.Ai RelOp y.Aj . An important

observation is the following, analogous to one direction of Theorem 3.2:

Proposition 3.12. Every FOXPath expression p can be translated (in linear
time) to a fully equivalent formula φp over vocabulary σ+

val such that φp uses at
most three variables. In case p is a Boolean expression, p will have one free vari-
able, and in case p is a NodeSet expression it will have two free variables.

Proof. The translation is inductive; the only new case over NavXPath is the case of
a qualifier F = E RelOp E′. Letting φE(x, y), φE′(x, y) be the translations formed
inductively from E,E′ respectively. Then we can set

φF = ∃y ∃y′ φE(x, y) ∧ φE′(x, y′) ∧ RelOp(y, y′),

and note that φF has at most 3 variables. 2

However, it is clear that the converse does not hold: there are first-order logic
formulas using only three variables that have no equivalent in FOXPath. This is
because FOXPath gives no added expressiveness on the navigational structure of a
document. Formally, say that a Boolean query Q over XML documents is navi-
gational if Q cannot distinguish two documents that are isomorphic as unranked
ordered trees (that is, the two documents have isomorphic interpretations for σnav).
Then we have

Proposition 3.13 [BK05]. Any navigational Boolean query expressible in FOXPath

is expressible in NavXPath, and hence is expressible in FO2. In particular (by
[EVW02]), there are FO[σnav, Rdescendant] queries not expressible in FOXPath.

In the case of AggXPath, in contrast, it is known that all navigational first-order
queries are expressible:

Proposition 3.14 [BK05]. Any FO[σtransnav] query is expressible in AggXPath.

In particular, the axis immediately-following is expressible in AggXPath.

Proof Sketch. We use Proposition 6 of [Mar04a], which states that it is sufficient
to show closure under the following variant of the modal until operators. For an axis
α ∈ {child, parent, next-sibling, previous-sibling}, we write α+ for the corresponding
transitive axis (child+ = descendant , etc.) and α∗ for the union of α+ with the self
axis (child+ = descendant-or-self, etc.). For axis α ∈ {child, parent, next-sibling, previous-sibling}
and queries Q1(x), Q2(x), the query Untilα(Q2, Q1)(x) (“property Q1 until prop-
erty Q2”) holds at a node n iff there is n′ such that Rα+(n, n′) holds, Q2(n

′) holds,
and for all n′′ such that Rα+(n, n′′) and Rα+(n′′, n′) we have Q1(n

′′). But if E1

and E2 are AggXPath expressions returning Booleans, then Untilα(E2, E1) can be
expressed as α+[E2] ∧ ¬

(

count(α+[¬E1]/α
+[E2]) = count(α+[E2])

)

. 2

17

3.4 Further Bibliographic Remarks

In this section, we have discussed exact characterizations of NavXPath and its sub-
languages via logic, tree patterns, and automata. There are other formalisms in
which NavXPath can be embedded, as a strict subset.

[NS02] deals with query automata, an automata model that defines NodeSet
queries. Query automata have the expressiveness of Monadic Second Order Logic,
hence they are strictly more powerful than NavXPath. [FGK03; Koc03] deal with
a variant of non-deterministic tree automata that can define unary rather than
Boolean queries. [CNT04] define queries on unranked trees via automata that work
on binary encodings. As with query automata, both these formalisms strictly sub-
sume NavXPath in expressiveness. One starting point in looking for an automata
characterization of XPath is [STV01], which gives a characterization of two-variable
logic over strings in terms of partially-ordered two-way deterministic automata. We
do not know of a similar characterization for two-variable logic on trees.

As mentioned in the introduction, there is a natural connection between navi-
gational XPath and modal logics, which was first observed in [MS02] and [GK02]
and subsequently revisited in several works (e.g. [Mar04b; Mar04a; AFMdR04]).
The relationship between PNavXPath queries and acyclic first-order queries is also
explored in [GKS04].

A natural question is what should be added to NavXPath to capture all of first-
order logic. It is known that first-order logic with 3 variables captures FO (estab-
lished in [Mar04a] for ordered unranked trees).

4. COMPLEXITY AND EFFICIENT EVALUATION

This section studies the complexity of XPath queries. XPath is a variable-free
query language in which many queries – in particular, all NavXPath queries – have
a natural tree shape when converted into first-order logic. At the same time the nav-
igational structure of XML documents is tree-shaped. We first look at some of the
classical results about tree-like queries and queries on tree-like structures. Then we
explore the connections between the powerful notion of hypertree-width and XPath
and show the new result that conjunctive FOXPath queries have hypertree-width 2.
After that, we generalize from XPath evaluation based on hypertree decompositions
and illustrate the dynamic programming technique that has yielded a polynomial
time algorithm for full XPath 1.0. Then we survey the parallel complexity of XPath
and give a new simplified proof that XPath is hard for polynomial time. Finally,
we study XPath processing on data streams and give an overview over further work
on efficient XPath processing.

4.1 Complexity Background

Throughout this section, we will consider logics and query languages as problem
classes and will simply identify the languages with their evaluation problems. Two
kinds of complexity of query evaluation will be considered, data complexity (where
queries are assumed to be fixed and data variable) and combined complexity (where
both data and query are considered variable) [Var82].

We briefly discuss the complexity classes and some of their characterizations used
throughout the remainder of this survey. For more thorough surveys of complexity
classes and the related theory see [Joh90; Pap94; GHR95].

By PTime, ExpTime, NExpTime, LogSpace, NLogSpace, and PSpace we
denote the well-known complexity classes of problems solvable on Turing machines
in deterministic polynomial time, deterministic exponential time, nondeterminis-
tic exponential time, deterministic logarithmic space, nondeterministic logarithmic
space, and (deterministic) polynomial space, respectively. By NP, we denote the
decision problems solvable in nondeterministic polynomial time and co-NP denotes

18

the class of their complements.
It is a widely-held conjecture that problems complete for PTime are inherently

sequential and cannot profit from parallel computation (cf. e.g. [GHR95]). Instead,
a problem is called highly parallelizable if it can be solved within the complexity
class NC of all problems solvable in polylogarithmic time on a polynomial number
of processors working in parallel [GHR95].

A simple model of parallel computation is that of Boolean circuits. By a monotone
circuit, we denote a circuit in which only the input gates may possibly be negated.
All other gates are either ∧-gates or ∨-gates (but no ¬-gates). A family of circuits
is a sequence G0,G1,G2, . . . , where the n-th circuit Gn has n inputs. Such a family
is called LogSpace-uniform if there exists a LogSpace-bounded deterministic
Turing machine which, on the input of n bits 1 (the string 1n), outputs the circuit
Gn. A family of circuits has bounded fan-in if all of the gates in these circuits
have fan-in bounded by some constant. On the other hand, a family of monotone
circuits is called semi-unbounded if all ∧-gates are of bounded fan-in (without loss of
generality, we may restrict the fan-in to two) but the ∨-gates may have unbounded
fan-in.

NCi denotes the class of languages recognizable using LogSpace-uniform Boolean
circuit families of polynomial size and depth O(logi n) (in terms of the size n of the
input). SAC1 is the class of languages recognizable by LogSpace-uniform families
of semi-unbounded circuits of depth O(log n) (SAC1 circuits).

A nondeterministic auxiliary pushdown automaton (NAuxPDA) is a nondeter-
ministic Turing machine with a distinguished input tape, a worktape, and a stack
(of which strictly only the topmost element can be accessed at any time).

LogCFL is usually defined as the complexity class consisting of all problems
LogSpace-reducible to a context-free language. There are two important alterna-
tive characterizations of LogCFL that we are going to use. They are recalled in
Proposition 4.1 and 4.2, respectively.

Proposition 4.1 [Ven91]. LogCFL = SAC1. SAC1 Circuit Value is Log-
CFL-complete.

Proposition 4.2 [Sud77]. LogCFL is the class of all decision problems solv-
able by a NAuxPDA with a logarithmic space-bounded worktape in polynomial time.

We have LogSpace ⊆ NLogSpace ⊆ LogCFL ⊆ NC2 ⊆ NC ⊆ PTime ⊆ NP
⊆ PSpace ⊆ ExpTime ⊆ NExpTime. All inclusions ⊆ are suspected to be strict,
and all these complexity classes are closed under LogSpace-reductions.

Unless stated otherwise, we assume the input represented as a σdom-structure
encoded in the usual way.

4.2 Tree-like Data and Tree-like Queries

As a warm-up, we use the well-studied graph-theoretical notion of tree-width to
derive a few results about the complexity of XPath that follow immediately from
the literature.

Let G = (V G, EG) be a graph. A tree decomposition of G is a pair (T, χ) such that

T is a rooted tree with nodes V T , χ is a function χ : V T → 2V G

that maps each node
of tree T to a subset of V G, for each edge (u, v) ∈ EG there exists a node w ∈ V T

such that u, v ∈ χ(w), and for each node u ∈ V G, the set {v ∈ V T | u ∈ χ(v)}
induces a connected subtree of T . The width of tree decomposition (T, χ) is defined
as

(

max{|χ(v)| | v ∈ V T }
)

− 1. The tree-width of a graph G is the smallest width
over all tree decompositions of G. Intuitively, graphs of low tree-width are very
tree-like. As a special case, the connected graphs of tree-width one are precisely the
trees. An example of a graph and a tree decomposition (of width 2) for it is given
in Figures 3 (a) and (b), respectively.

19

v1

v2

v3 v4

v5

v6

v7 v8

v9 v10

v11

v12

v13

v14 v15

(a)

v1, v2, v5

v2, v3, v4 v1, v5, v11

v5, v6, v9

v6, v7, v8 v5, v9, v10

v1, v11, v13

v11, v12 v13, v14, v15

(b)

Fig. 3. A σnav-tree is a graph of tree-width two.

We say that a structure consisting only of unary and binary relations has tree-
width k if the union of (the symmetric closure of) its binary relations has tree-width
k. We do not give a formal definition of the general case of queries of bounded tree-
width here; however, for conjunctive queries Q over a vocabulary of at most binary
relation symbols, the tree-width of Q is defined as the tree-width of the graph
G = (V,E) where V consists of the variables of Q and (x, y), (y, x) ∈ E if there is
an atom a(x, y) in Q.

§1: Tree-like data lead to linear-time data complexity. The Boolean MSO queries
on trees labeled with a finite alphabet (e.g. σnav-trees) define precisely the regu-
lar tree languages , which correspond to the deterministic bottom-up tree automata
[TW68; Don70; BKMW01]. Each Boolean MSO query can be mapped to such an
automaton, whose acceptance of a given input tree can be checked in linear time in
the size of the tree (traversing it once bottom-up). Thus, Boolean MSO queries on
trees have linear-time data complexity. A slightly more general version of this fact
for bounded tree-width structures is known as Courcelle’s Theorem [Cou90], which
can be further generalized to

Theorem 4.3 [FFG02]. Let C be a class of structures of bounded tree-width.
For a fixed MSO formula φ, there is an algorithm that evaluates φ on each structure
A ∈ C in time O(|A| + |φ(A)|).

That is, this algorithm runs in time linear in the size of the input and the output,
and in particular in linear time in the size of the input on MSO formulas with at
most one free variable.

It can be verified that unranked ordered trees represented by σnav-structures, that
is, the union of their binary relations Rchild and Rnext-sibling, have tree-width two2

2Note, however, that in the context of MSO, it is more wide-spread [Nev02; GK04] to use a signa-
ture σ′nav obtained from σnav by replacing Rchild by a relation FirstChild such that FirstChild(x, y)
iff y is the leftmost child of x. Then, MSO on σnav and σ′nav are equivalent and all σ′nav-structures
have tree-width 1.

20

(see Figure 3, where each node v is labeled with χ(v)). Transitive axis relations
such as Rdescendant or Rfollowing-sibling (cf. Section 2.1) do not have bounded tree-
width in general, but it is not difficult to map NavXPath queries with transitive
axes to MSO over signature σnav [GK02]. The construction is similar to the one of
Theorem 3.2 mapping NavXPath to FO2, defining R∗(x, y), where R∗ is the reflexive
and transitive closure of relation R, in MSO as ∀S

(

S(x) ∧ ∀u∀v S(u) ∧ R(u, v)→

S(v)
)

→ S(y). From this we can conclude the following bound.

Corollary 4.4. Unary NavXPath is in linear time w.r.t. data complexity.

§2: Tree-like data do not yield low combined complexity. The usual technique for
proving linear-time data complexity of MSO is by reduction to automata. For
unary MSO formulas, somewhat sophisticated automata with a capability for se-
lecting nodes are required. It has been observed that such automata with the power
of unary MSO can be designed to traverse the data tree only twice [Nv02; FGK03].
Reductions from MSO to automata do not yield good upper bounds on the com-
bined complexity of NavXPath, however. Indeed, they are necessarily nonelemen-
tary [Mey75; Rei02] (i.e., their cost cannot be bounded by any tower of exponentials

222·
2n

of fixed height). For NavXPath, a doubly exponential translation to selecting
tree automata [FGK03] is implicit in [Koc03].

§3: Tree-like queries yield polynomial-time combined complexity. While MSO over
trees is known to be PSpace-complete with respect to combined complexity, FOk

(even over arbitrary relational structures) is known to be in time O(nk ∗ |Q|): 3

Proposition 4.5 [KV00]. Conjunctive FOk+1 queries have tree-width ≤ k.

Theorem 4.6 [CR97]. Given a Boolean conjunctive query Q of tree-width k
and a database A with domain size n, Q can be evaluated on the database in time
O((nk+1 + |A|) ∗ |Q|).

Both results generalize from conjunctive to FO queries [FFG02].
Since NavXPath queries can be translated efficiently, in linear time, into equivalent

FO2 queries (Theorem 3.2) and FOXPath queries can be translated in linear time
into FO3 (Proposition 3.12),

Corollary 4.7. Boolean NavXPath and FOXPath are in time O(n2 · |Q|) and
O(n3 · |Q|), respectively.

As we will see next, these combined complexity bounds can be improved upon.

4.3 Hypertree-width and Conjunctive XPath

Let Q be a conjunctive query over a relational database, and let vars(Q), free(Q),
and atoms(Q) denote the set of variables, free/head variables, and atoms occurring
in Q, respectively.

A (complete) hypertree decomposition of Q is a triple (T, χ, λ) such that T is a
rooted tree with nodes V (T) and root node r, χ : V (T)→ 2vars(Q) maps each node
of tree T to a set of variables from Q, λ : V (T) → 2atoms(Q) maps each node of T
to a set of body atoms of Q,

(1) free(Q) ⊆ χ(r),

(2) for each atom A ∈ atoms(Q), there exists a node v ∈ V (T) such that A ∈ λ(v)
and vars(A) ⊆ χ(v),

(3) for each variable x ∈ vars(Q), the set {v ∈ V (T) | x ∈ χ(v)} induces a
connected subtree of T , and

3This can be shown directly without tree-width as well, however.

21

(4) for each node v ∈ V (T), χ(v) ⊆ vars(λ(v)) and

vars(λ(v)) ∩
⋃

{χ(v′) | v = v′ or v′ is a descendant of v in T} ⊆ χ(v).

The width of a hypertree decomposition (T, χ, λ) is the maximum number of
atoms occurring in any single node of T , i.e. max{|λ(v)| | v ∈ V (T)}. The hypertree-
width of a conjunctive query Q is the smallest width over all hypertree decomposi-
tions of Q. The conjunctive queries of hypertree-width 1 coincide with the so-called
acyclic conjunctive queries (cf. e.g. [AHV95]). As shown in [Yan81], the acyclic
conjunctive queries can be evaluated in time O(n · |Q|). Yannakakis’ result was
generalized to hypertree-width k, for arbitrary k:

Theorem 4.8 [GLS02]. Let Q be a conjunctive query and H a hypertree de-
composition of width k of Q. Then Q can be evaluated on a database A in time
O((|H| + |A|)k).

Let σ′
dom be the signature obtained from σdom by replacing each attribute function

@A by its graph (i.e., the binary relation {(n,@A(n)) | n ∈ Node}) and adding the
relations Rdescendant and Rfollowing-sibling.

A considerable fragment of FOXPath can be modeled by conjunctive queries over
a structure of relational signature σ′

dom. We say that a FOXPath query (resp.,
NavXPath query) is conjunctive (and connected) if it does not use disjunction,
negation, inequalities (i.e., expressions pRelOpp′ with RelOp 6= “=”), or the root
slash /. The notions of hypertree decomposition and hypertree-width can be read-
ily applied to conjunctive FOXPath (and thus NavXPath) queries. A conjunctive
FOXPath query maps to a conjunctive query over σ′

dom, and we can speak of its
hypertreewidth using this mapping.

Example 4.9. The conjunctive FOXPath query

descendant::A/child::B[child::C/@D = child::E/@F]

can be phrased as a conjunctive query over signature σ′
dom

Q(v, x)← Rdescendant(v, w), A(w), Rchild(w, x), B(x), Rchild(x, x1), C(x1),@D(x1, z),

Rchild(x, y1), E(y1),@F (y1, z).

Consider the following hypertree decomposition, H, of Q, where the nodes v have
been labeled with λ(v) and χ(v) = vars(λ(v)):

Rdescendant(v, w), Rchild(w, x)

A(w) B(x) Rchild(x, x1),@D(x1, z)

C(x1) Rchild(x, y1),@F (y1, z)

E(y1)

Note that H is of width 2. There exists obviously no hypertree decomposition of
width 1: the atoms {Rchild(x, x1),@D(x1, z), Rchild(x, y1),@F (y1, z)} of Q induce a
cycle. Thus Q is of hypertree-width 2. 2

By Propositions 4.5 and 3.12, conjunctive FOXPath queries have tree-width ≤
2. It is known that conjunctive queries of tree-width k have hypertree-width ≤

22

k + 1 [GLS02], so we can obtain the O(n3) data complexity bound observed in
Corollary 4.7 also from Theorem 4.8. However, fortunately,

Theorem 4.10. The conjunctive FOXPath queries have hypertree-width ≤ 2.

Proof. Given a hypertree decomposition of a conjunctive query of width k, there
is an efficient algorithm for turning it into a relational algebra query plan that can
be naturally evaluated in time O(nk) [GLS99].

In this proof, however, we will go the other way round and will first compute a
first-order query (using just ∃ and ∧) over σ′

dom for a given conjunctive FOXPath

query and will then show that it yields a hypertree decomposition of width ≤ 2.
From this first-order formula an equivalent relational algebra plan can be obtained
immediately by rewriting ∧ into join ⊲⊳ and ∃ into projection π.

Without loss of generality, we will assume that our query is a path expression p.
The proof works analogously for qualifiers. We translate p into a first-order formula
FO(p)2 as follows:

FO(axis)2(x, y) := Raxis(x, y)

FO(step[q])2(x, y) := FO(step)2(x, y) ∧ FO(q)1(y)

FO(p/step)2(x, z) := ∃y [[p]]2(x, y) ∧ FO(step)2(y, z)

FO(lab() = L)1(x) := L(x)

FO(p)1(x) := ∃y FO(p)2(x, y)

FO(q ∧ q′)1(x) := FO(q)1(x) ∧ FO(q′)1(x)

FO(p/@A = p′/@B)1(x) := ∃z
(

∃y1 FO(p)2(x, y1) ∧@A(y1, z)
)

∧
(

∃y2 FO(p′)2(x, y2) ∧@B(y2, z)
)

Without loss of generality, we will assume that there are no two distinct occur-
rences of existential quantification over the same variable in FO(p)2; thus, any two
occurrences of the same variable name in formula FO(p)2 indeed refer to the same
variable.

It is easy to verify – FO(·)2 is only a minor variation of [[·]]NodeSet – that FO(p)2
defines a binary relation {(n, n′) | n′ ∈ [[p]]NodeSet(n)}.

We now construct a hypertree decomposition of FO(p)2. Consider the parse tree
T of formula FO(p)2. This parse tree has relation atoms as its leaves and ∃x- and
∧-labels on its internal nodes. Each node of the tree corresponds to a subformula
φ of FO(p)2. We will identify each tree node with the subformula φ it denotes.

We define a function λ that maps each node φ of T to a set of leaf nodes (and
thus relational atoms). We do this inductively, bottom-up:

(i) for each leaf node φ, λ(φ) := {φ};

(ii) for each node φ of the form ψ1(x)∧ψ2(x), ψ1(x, y)∧ψ2(y), or ψ1(x, y)∧ψ2(x, y),
let λ(φ) := λ(ψ1);

(iii) for each node φ = ψ1(x, y)∧ψ2(y, z), let λ(φ) := {ψ′}∪λ(ψ2), where ψ′ is any
atom over x from λ(ψ1); finally,

(iv) for each node φ = ∃xψ, λ(φ) := λ(ψ).

Note, in particular, that each free variable of φ occurs in at least one atom of
λ(φ). Now let function χ map each node φ of T to vars(λ(φ)).

To verify that (T, χ, λ) is indeed a hypertree decomposition of p, we have to
check points (1) to (4) of the definition. (1) and (4) are due to the definition of
χ as φ 7→ vars(λ(φ)). (2) is immediate from (i). The connectedness condition (3)
follows from the fact that in a first-order query without any two distinct occurrences
of existential quantification over the same variable, the nodes of parse tree T that
have x as a free variable plus the node ∃xψ if x is not free in the query induce a
connected subtree of T .

23

∃w {l1, l3}

∧ {l1, l3}

∧ {l1}

l1

Rdescendant(v, w)
l2

A(w)

∧ {l3}

l3

Rchild(w, x) ∧ {l4}

l4

B(x) ∃z {l5, l7}

∧ {l5, l7}

∃x1 {l5, l7}

∧ {l5, l7}

∧ {l5}

l5

Rchild(x, x1)
l6

C(x1)

l7

@D(x1, z)

∃y1 {l8, l10}

∧ {l8, l10}

∧ {l8}

l8

Rchild(x, y1)
l9

E(y1)

l10

@F (y1, z)

Fig. 4. Hypertree decomposition of the query of Example 4.9 as constructed in the proof of
Theorem 4.10.

Let us now consider the sizes |λ(φ)| for all nodes φ of T . The most interesting case
is φ = ψ1(x, y) ∧ ψ2(y, z). Observe that in this case ψ2 is either a step expression
or a leaf, and thus |λ(ψ2)| = 1, so |λ(φ)| = 2. It can be shown by a straightforward
induction that for all nodes φ, |λ(φ)| ≤ 2, so our query has hypertree-width ≤ 2. 2

Example 4.11. For the query of Example 4.9, the proof of Theorem 4.10 con-
structs the first-order formula given by the parse tree of Figure 4. Here, the leaf
nodes have been labeled l1, l2, l3, . . . from left to right and the interior nodes φ of the
parse tree of the formula have been annotated with λ(φ). Again, χ(φ) = vars(λ(φ)).
This identifies the hypertree decomposition constructed in the proof. 2

The transformation of the previous proof can be implemented so as to compute
both first-order query and hypertree decomposition in linear time. By the latter
observation and Theorem 4.8, conjunctive FOXPath can thus be evaluated in time
O((|Q| + |A|)2). We give a direct proof of the following (close but incomparable)
bound.

Proposition 4.12. Conjunctive FOXPath on σ′
dom-structures A is in time O(|Q|·

|A|2).

Proof. Let us now consider relational algebra queries ALG(p) and ALG(q) corre-
sponding to the first-order (calculus) queries FO(p)2 and FO(q)1 of the previous
proof. The translation is standard [AHV95] and just requires rewriting existential
quantification by projection and conjunction by join.

Now observe that, as with the subformulas of φ in FO(p)2, each subexpression

24

of ALG(p) defines a relation that is a subset of the product of at most two base
relations λ(φ), and is thus of size at most O(|A|2).

Query evaluation requires no more than |Q| relational algebra operations (pro-
jections or joins). The projections π ~A

R are obviously operations that run in time
linear in |R|. Joins guarded by one of the input relations (corresponding to formulae
ψ1(x, y) ∧ ψ2(x, y), ψ1(x, y) ∧ ψ2(y), and ψ1(y) ∧ ψ2(y)) can be evaluated in time
linear in the sum of the sizes of the two relations joined by first building a bitfield
for testing whether tuples are true in ψ2 and then using it to filter the tuples of ψ1.

The most interesting case is a join corresponding to formula ψ1(x, y) ∧ ψ2(y, z).
Let [[φ]] be the relation defined by first-order formula φ. We first compute the
relations Ry

1 = {x | ψ1(x, y)}, for each y, in total time O(|[[ψ1]]|+ |[[ψ2]]|). Then we
compute our join as the union of the sets {(x, y, z) | Ry

1(x)}, for each tuple ψ2(y, z).
As mentioned in the previous proof, ψ2 always defines a subset of an input relation,
so this union can be formed in time O(|A| · |[[ψ2]]|) = O(|A|2). 2

Conjunctive NavXPath queries are acyclic (see [GKP02]) and can therefore be
evaluated using Yannakakis’ algorithm (or by precisely the techniques from the
previous two proofs) both in linear time in the data and efficiently in the size of the
query.

Proposition 4.13. Unary conjunctive NavXPath queries can be evaluated in
time O(|A| · |Q|) on (σnav, Rdescendant, Rfollowing-sibling)-structures A.

4.4 Beyond Conjunctive Queries

The conjunctive query processing techniques based on hypertree decompositions of
the previous section leave three features of FOXPath unaddressed:

(1) Conjunctive FOXPath excludes disjunction, union, negation, inequalities, and
disconnected queries (via the root / in conditions).

(2) We assumed that the data tree is given by σ+
val-structures, which include bi-

nary relations for transitive axes such as descendant. If we assume transitive
axis relations present in the structure A representing a tree with domain A and
therefore |A| = O(|A|2), our upper time bound of O(|A|2 · |Q|) from Proposi-
tion 4.12 deteriorates to time O(|A|4 · |Q|).

(3) Finally, we did not deal with inequalities RelOp ∈ {6=, <,≤} in expressions
eRelOp e′.

Theorem 4.14. A FOXPath query Q can be evaluated on σdom-structures with
domain A in time O(|A|2 ∗ |Q|).

Proof.

(1) Now we complete the mapping ALG of the previous proof by the operations of
FOXPath missing from conjunctive FOXPath:

—ALG(p | p′) := ALG(p) ∪ALG(p′)
—ALG(q ∨ q′) := ALG(q) ∪ALG(q′)
—ALG(¬q) := A−ALG(q)

(2) Next we would like to eliminate transitive axis relations such as descendant from
the signature.
[GKP02] gives algorithms for computing, given a set S of tree nodes and any
XPath axis α, the set of nodes

α(S) = {y | x ∈ S ∧Rα(x, y)}

in time O(|Node|). Consider the unary operations

⊲⊳α[q]: R 7→ {(x, z) | ∃y R(x, y) ∧Rα(y, z) ∧ [[q]]Boolean(z)},

25

which can be evaluated in quadratic time by first partitioning R into sets Sx =
{y | R(x, y)}, for each x, and then computing the union over x of the sets
{(x, y) | y ∈ α(Sx) ∧ [[q]]Boolean(y)}.
Now we can evaluate [[p/α[q1] . . . [qn]]] as α[q1 ∧ · · · ∧ qn]([[p]]) in quadratic time,
for any axis α, even if our structure is just of signature σdom.

(3) Let α−1 denote the inverse of axis α (i.e., Rα−1 is the inverse of Rα). To
compute a query plan for an inequality

α1[q1]/α2[q2]/ · · · /αn[qn]/@A RelOp β1[q
′
1]/β2[q

′
2]/ · · · /βn[q′n]/@B

with RelOp 6= “=”, we first compute the binary relation RelOpA,B (see the

definition of σ+
val in Section 3.3) in time O(|A|2). Then we compute

S := ⊲⊳β
−1

1

(⊲⊳β
−1

2
[q′

1
] (⊲⊳β

−1

3
[q′

2
] (· · · ⊲⊳β

−1
n [q′

n−1
] (⊲⊳self[q′

n] (RelOpA,B)) · · ·)))

Finally,
(

⊲⊳α
−1

1

(⊲⊳α
−1

2
[q1] (⊲⊳α

−1

3
[q2] (· · · ⊲⊳α

−1
n [qn−1]

(⊲⊳self[qn] (S−1)) · · ·)))
)−1

is the desired relation. 2

Applying the first two parts of the previous proof to NavXPath yields

Proposition 4.15 [GKP02]. A NavXPath query Q can be evaluated on σnav-
structures A in time O(|A| · |Q|) and space O(|A|).

Beyond FOXPath, we are faced with queries containing possibly nested numeric
expressions involving the arithmetic operations + and ∗ (whose graphs are infinite)
and aggregations. For that reason, it is helpful to digress from the framework used
above (i.e., relations ⊆ A2 or ⊆ A) and view every expression e of type t (either
NodeSet , Boolean, or Int) as defining a table {(n, [[e]]t(n)) | n ∈ A}. Each node
n denotes a context in which expression e evaluates to value [[e]]t(n). Thus such
tables were called context-value tables in [GKP05]. The context-value table of an
expression e can be efficiently computed from the context-value table of the direct
subexpressions of e. For FOXPath, the method for doing so was given in the previous
proof, up to the notational subtleties that now for NodeSet -typed expressions, the
value column may hold sets (nodes grouped by their context) while in the proof
the relations defined were flat, and that context-value tables for Boolean-valued
expressions are binary, with either “true” or “false” in the value column.

This method can be adapted to AggXPath without a runtime penalty, since on
a binary relation [[p]] over the domain of nodes – and thus of quadratic size – the
relations {(n, i) | [[count(p)]]Int(n) = i} and {(n, i) | [[sum(p/@A)]]Int(n) = i} can
be computed in quadratic time without difficulty. For the arithmetic operation ∗
(multiplication), numbers can grow linearly with the query, thus a binary relation
representing the result of a numeric relation may be of size O(|A| · |Q|). Thus,

Proposition 4.16. The AggXPath queries Q can be evaluated on σdom-structures
with domain A in time O

(

|A| · (|A|+ |Q|) · |Q|
)

and space O
(

|A| · (|A| + |Q|)
)

.

So far we have been moving only moderately beyond queries obtained from hy-
pertree decompositions. However, XPath (and OrdXPath) supports position arith-
metics which require more sophisticated contexts than AggXPath, where contexts
are simply nodes. For OrdXPath, a single context node is not sufficient; for instance,
the expression “position() = last()” relies on the position of a node within a set and
the cardinality of that set as contexts (see (P2’) in Section 2).

We extend context-value tables to be sets of tuples (n, j, k, v), where n is a context
node, j and k are integers denoting a position j in and the size k of a set of nodes,
v is a value, and the contexts n, i, k identify their tuples.

26

Values (including strings and numbers) were shown in [GKP02] to remain small
in XPath. The algorithm of [GKP02] inductively computes context-value tables
{(n, j, k, v) | [[e]]Type(e)(n, j, k) = v} for each subexpression e of a query bottom-
up. Taking into context all the builtin functions of XPath, this yields the following
upper bound.

Theorem 4.17 [GKP02]. Full XPath 1.0 is in time O(|A|5 · |Q|2).

Improvements yielding somewhat better bounds can be found in [GKP05].

Example 4.18. Consider the numerical expression position() ∗ 2 < last(). We
compute the contex-value tables of its subexpressions bottom-up as

CV Tposition() := {(n, j, k, j) | (n, j, k) a context}

CV Tposition()∗2 := {(n, j, k, 2 ∗ v) | (n, j, k, v) ∈ CV Tposition()}

CV Tlast() := {(n, j, k, k) | (n, j, k) a context}

CV Tposition()∗2<last() := {(n, j, k, (v1 < v2)) | (n, j, k, v1) ∈ CV Tposition()∗2,

(n, j, k, v2) ∈ CV Tlast()}

In summary, there is a close connection between the context-value table-based
dynamic programming algorithm of [GKP02] and the hypertree-width based tech-
niques presented before. However, beyond the difficulties dealt with in the proof of
Theorem 4.14, XPath supports built-in functions (e.g. arithmetic and string func-
tions) whose graphs are infinite and aggregations, so claiming the PTime combined
complexity of XPath an immediate consequence of hypertree decomposition tech-
niques would be a bit far-fetched.

4.5 Parallel Complexity

Now that the combined complexity of XPath is known to be polynomial, one may
ask whether XPath is also PTime-hard, or alternatively, whether it is in the com-
plexity class NC and thus effectively parallelizable. Apart from theoretical interest,
a precise characterization of XPath evaluation in terms of parallel complexity classes
may lead to a better understanding of what computational resources are necessarily
required for query evaluation. For example, it is strongly conjectured that all algo-
rithms for solving PTime-hard problems actually require a polynomial amount of
working memory. However, performing XPath query evaluation with limited mem-
ory resources is important in practice, e.g. in the context of data stream processing.

For an upper bound for conjunctive FOXPath, we can use the following result
about conjunctive queries of bounded hypertree-width together with our Theo-
rem 4.10.

Theorem 4.19 [GLS01]. The conjunctive queries of bounded hypertree-width
over arbitrary relational structures are in LogCFL w.r.t. combined complexity.

Corollary 4.20. Conjunctive FOXPath is in LogCFL (combined complexity).

In [GKPS05], LogCFL membership is proven for a much larger fragment of
XPath without negation which even supports arithmetics and aggregations. Here
we give a direct proof for positive FOXPath.

Proposition 4.21 [GKPS05]. Positive FOXPath is in LogCFL w.r.t. com-
bined complexity.

Proof Idea. By an encoding as a NauxPDA that runs in polynomial time using a
LogSpace worktape. We will actually show how to use a NAuxPDA to compute
the set of nodes to which an XPath query evaluates, even though the complexity
class LogCFL is defined in terms of decision problems and for the above-mentioned

27

lower bound only a decision problem (e.g. that of checking whether a given node is
selected by an XPath query) makes sense.

We will use the symbol & for creating references and ∗ to dereference them. We
will associate each query with its (binary) parse tree obtained in the usual fashion,
using grammar rules p := axis :: A[q]/p | axis :: A[q] to parse paths (i.e., producing
a right-deep tree for a path). An example of such a parse tree is shown in Figure 5.
We identify nodes of the query tree with the expressions their subtrees represent.
For a path expression p, we use sel(vQ) to denote the rightmost leaf in the subtree
of the query tree corresponding to p; thus sel(vQ) denotes the “right tip” of the
path which selects nodes.

We use four log-space registers that will be kept on the worktape, sel (to iterate
over the nodes of the data tree and check which are to be selected by the query), vt

(to hold a node from the data tree), rval (for a pointer to a data value in the data
tree, represented by an integer indicating the starting position of the data value’s
representation inside the representation of the data tree), and vQ (for a current
node from the parse tree of the query) on the worktape.

The evaluation of the query proceeds by iterating over all the nodes of the data
tree (using register sel), and for each node does a single depth-first left-to right
traversal of its parse tree, starting with vQ the root node of the query tree, vt the
root of the input tree, and rval = ⊥.

By default, query tree nodes vQ with two children are processed as follows. First
we put (vQ, vt, rval) onto the stack. Then we process the first child of vQ. On
returning we take (vQ, vt, rval) off the stack (and set the registers). Finally process
the second child of vQ.

There are a few exceptions. When vQ = α::A[q]/p and vt = n, we first put n on
the stack, nondeterministically guess a node n′ such that α(n, n′) and A(n′), set
vt to n′, and only then we process the two children as just described. Expressions
p/@A/deref() are handled similarly.

For p/@A = p′/@B, rval is not put on the stack before and taken off the stack
after processing the first child. When arriving at sel(p), we set rval to @A(vt).
When arriving at sel(p′), we verify that rval = @B(vt).

If vQ = q ∨ q′, we nondeterministically choose either q or q′ and verify that it
holds relative to the current position vt.

At sel(p), where p is the query, we check whether vt = sel. If so, we output node
sel as a result.

It is not difficult to verify that this nondeterministic algorithm runs on an NAux-
PDA in polynomial time, using only logarithmic space on the worktape. 2

Example 4.22. The FOXPath query .//A[.//B/@C = D[E/@F = G/H]/@I] can
be evaluated using a NAuxPDA given by the following pseudocode: (1) Guess w
such that [[.//A]](vt, w); vt := w; (2) push vt; (3) guess w such that [[.//B]](vt, w);
vt := w; (4) rval := & vt.@C; (5) vt := pop; (6) guess w such that [[./D]](vt, w);
vt := w; push rval; push vt; (7) push vt; (8) guess w such that [[./E]](vt, w); vt := w;
(9) rval := & vt.@F ; (10) vt := pop; (11) guess w such that [[./G]](vt, w); vt := w;
(12) check that ∗ rval = vt.@H ; (13) vt := pop; rval := pop; (14) check that
∗ rval = vt.@I; (15) accept.

Note that this program is faithful to the construction mentioned above except
that we do not push or pop the vQ register (the query has been compiled into the
program).

The fact that the run of this NAuxPDA is intuitively a depth-first traversal of
the parse tree of the query is illustrated in Figure 5. 2

It was shown in [GKPS05] by a reduction from the SAC1 circuit value problem
that the LogCFL upper bound of Theorem 4.21 is tight: positive NavXPath is
LogCFL-complete w.r.t. combined complexity.

28

b

b

.//A

b

[=]

b

.//B

b

./@C

b

./D

b

[=]

b

./E

b

./@F

b

./G

b

./@H

b

./@I

=

=

1.

2.

3.

4.
5.

6.

7.

8.

9.
10.

11.

12.

13.

14.

15.

Fig. 5. NAuxPDA run for query .//a[.//b/@c = d[e/@f = g/h]/@i].

(b1)

∧

G3 G4

(b0)(a0)

∧ ∧

∨

G8

G7G6G5

G2G1

(a1)

Fig. 6. A 2-bit full adder carry-bit circuit.

Unfortunately, the positive result on the parallel complexity of positive XPath
does not extend to full XPath, or even NavXPath.

Theorem 4.23 [GKPS05]. NavXPath is PTime-hard (combined complexity).

Proof. The proof is by reduction from the monotone Boolean circuit value problem,
which is PTime-complete. Note that the classical reduction from PTime-bounded
Turing machines to (monotone) Boolean circuits proving this (see e.g. the proof of
Theorem 8.1 in [Pap94]) only produces layered circuits.4

Given an instance of this problem, a monotone Boolean circuit and a mapping θ
that assigns either 0 or 1 to each of the input gates, let M denote the number of
input gates and let N ≥ 1 denote the number of all other gates in the circuit (the

4A circuit is called layered is there is a mapping l that assigns to each gate an integer such that
if there is an edge from gate Gi to Gj , then l(Gj) = l(Gi) + 1.

29

φ1 = descendant::O1[parent5::*[ψ1]]
ψ1 = not(child5::I1[not(π1)])
π1 = ancestor::*[φ0]
φ0 = self::1

u5

u6

u7

u8

v1 : θ(G1)

w1,5 : I1

w1,6 : I1

w1,7

w1,8

v2 : θ(G2)

w2,5 : I1

w2,6

w2,7 : I1

w2,8

v3 : θ(G3)

w3,5

w3,6 : I1

w3,7 : I1

w3,8

v4 : θ(G4)

w4,5

w4,6 : I1

w4,7 : I1

w4,8

v5 : G

w5,5 : O1

w5,6

w5,7

w5,8 : I2

v6 : G

w6,5

w6,6 : O1

w6,7

w6,8 : I2

v7 : G

w7,5

w7,6

w7,7 : O1

w7,8 : I2

v8 : G

w8,5

w8,6

w8,7

w8,8 : O2

Fig. 7. Document tree corresponding to the carry-bit circuit. The figure also illustrates that
[[φ1]]Boolean(v6) ⇔ θ(G1) = 1 ∧ θ(G3) = 1 ∧ θ(G4) = 1.

internal gates). Let K be the number of layers in the circuit, that is, the height of
the circuit. Let the gates be named G1 . . .GM+N . Without loss of generality5, we
may assume that the gates G1 . . . GM+N are numbered in some order such that no
gate Gi depends on the output of another gate Gj with j > i. In particular, the
input gates are named G1 . . . GM and the output gate is GM+N . We may assume
that there is precisely one gate at the topmost layer K, the output gate.

Figure 6 shows an example of a circuit with appropriately numbered gates. This
circuit computes the carry-bit of a two-bit full-adder, i.e. it tells whether adding the
two-bit numbers a1a0 and b1b0 leads to an overflow. The carry-bit c1 is computed
as (a1 ∧ b1) ∨ (a1 ∧ c0) ∨ (b1 ∧ c0) where c0 = a0 ∧ b0 is the carry-bit of the lower
digit (a0 and b0).

For a given instance of the monotone Boolean circuit value problem, we compute
a pair consisting of a document tree and a NavXPath query as follows.

The document tree consists of nodes uj, vi, and wi,j for all 1 ≤ i ≤ M + N ,
M + 1 ≤ j ≤M +N . The root node is uM+1, and there are edges

—from uj to uj+1 for M + 1 ≤ j < M +N ,

—from uM+N to vi and from vi to wi,M+1 for all 1 ≤ i ≤M +N , and

—from wi,j to wi,j+1 for all 1 ≤ i ≤M +N , M + 1 ≤ j < M +N .

Node labels are taken from the alphabet Σ = {0, 1, G, I1, . . . , IK , O1, . . . , OK}
and each tree node is assigned at most one such label. (We allow for “unlabeled”
nodes, which can be considered to simply carry a label not from Σ.) This is done as
follows. Each node out of vi for 1 ≤ i ≤M is assigned θ(Gi) as a label (either 0 or
1). The nodes vM+1 . . . vM+N are each assigned the label G. We assign label Ik to
node wi,j iff internal gate Gj is in layer 1 ≤ k ≤ K and takes input from gate Gi.
We assign label Ok to node wj,j iff internal gate Gj is in layer k. For our carry-bit
example of Figure 6 with M = 4 and N = 4, the data tree is as shown in Figure 7,
where θ(G1), . . . , θ(G4) ∈ {0, 1} are the truth values a1, b1, a0, and b0, respectively,
at the input gates.

5The gates can be “sorted” to adhere to such an ordering in logarithmic space. This is trivial if
the circuit is layered, which we may assume by the observation made above.

30

In the following, we will abbreviate the n-times repeated application of an axis
χ, (χ::*/)n−1χ::*, as χn::*. By χn::c, we denote (χ::*/)n−1χ::c.

The query evaluating the circuit is

/descendant::G[φK]

with the condition expressions

φk := descendant::Ok[parentN+1::*[ψk]]

ψk :=

{

childN+1::Ik[πk] . . . layer k consists of ∨-gates

not(childN+1::Ik[not(πk)]) . . . layer k consists of ∧-gates

πk :=

{

ancestor::G[φk−1] . . . k > 1
ancestor::*[φk−1] . . . k = 1

for 1 ≤ k ≤ K and φ0 := self::1.
It uses the intuition of processing the circuit one layer at a time.
We will check whether our query on our document includes the particular node

vM+N . Indeed, by our construction, the query will select node vM+N iff the circuit
evaluates to true, and no other node will be selected.

It is easy to see that the reduction can be effected in LogSpace. We next argue
that it is also correct.

The φk, ψk, and πk are condition expressions (qualifiers), and we have already
given a formal meaning [[φk]]Boolean(w) to the notion “φk matches node w” or equiva-
lently “node w satisfies φk” (and analogously to [[ψk]]Boolean(w) and [[πk]]Boolean(w)).

Claim. Let 0 ≤ k ≤ K. Then, for all gates Gi in layer k,

[[φk]]Boolean(vi)⇔ gate Gi evaluates to true.

This can be shown by an easy induction.
Induction start (k = 0). The gates of layer 0 are the input gates. By definition,

an input gate Gi is true iff node vi is labeled 1. but on precisely these nodes
φ0 = self::1 is true. Thus our claim holds for k = 0.

Induction step. Now assume that our claim holds for φk−1. We show that it
also holds for φk.

To start, it is easy to see that for all i, j,

[[πk]]Boolean(wi,j) ⇔ [[φk−1]]Boolean(vi).

Now observe that by our construction of the data tree, the nodes w1,j , . . . , wj,j−1

encode the connections of gate Gj with its inputs. Gate Gi is an input to gate Gj

if and only if node wi,j is labeled Ik, for k the layer of gate Gj . The node wj,j is
labeled Ok. Observe also that the node uj is precisely N + 1 levels above the nodes
w1,j , . . . , wM+N,j in the data tree.

For ∨-gate Gj in layer k,

[[ψk]]Boolean(uj) ⇔ ∃i Ik(wi,j) ∧ [[πk]]Boolean(wi,j)

⇔ gate Gi is an input to Gj and Gi is true

for ∧-gate Gj in layer k,

[[ψk]]Boolean(uj) ⇔ ∀i Ik(wi,j)→ [[πk]]Boolean(wi,j)

⇔ all inputs to Gj are true

Finally, since

[[φk]]Boolean(vj)⇔ [[ψk]]Boolean(uj),

our claim is shown for φk, 0 ≤ k ≤ K.
Figure 7 illustrates the computation of the truth value of gate G6 of our circuit

example.

31

The overall query /descendant::G[φK] has a nonempty result (consisting of pre-
cisely the node vM+N) exactly if the output gate GM+N of the circuit evaluates to
true, because GM+N is the only gate in layer K, vM+N is the only node labeled G
that has an OK descendant, and [[φK]]Boolean(vM+N) if and only if GM+N evaluates
to true.

In summary, we have provided a LogSpace reduction that maps any monotone
Boolean circuit to a NavXPath query and a document tree such that the query
evaluated on the tree returns node vM+N precisely if the circuit evaluates to true. As
the monotone Boolean circuit value problem is P-complete, our theorem is proven.

2

Note that the above proof of the PTime lower bound does not employ axis steps
with multiple qualifier brackets axis[·] . . . [·]; indeed, as observed before, even for
AggXPath, axis[q1] . . . [qn] is equivalent to axis[q1 ∧· · ·∧ qn], but this is not true for
OrdXPath. And indeed, the interaction of multiple qualifier brackets and position
arithmetics has an impact on the complexity of XPath:

Theorem 4.24 [GKPS05]. Positive OrdXPath is PTime-hard w.r.t. combined
complexity.

The PTime-hardness result actually only uses a fragment of OrdXPath with last()
and steps with multiple qualifier brackets, but without position() or aggregation
operations.

We give a brief overview over the remaining complexity results known for XPath.
First, the PTime-hardness result of Theorem 4.23 essentially depends on the pres-
ence of transitive axes: NavXPath using only the child and parent axes is in Log-
Space w.r.t. combined complexity [GKPS05].

The data complexity of XPath depends on encodings. XPath 1.0 on DOM trees
(pointer structures) is LogSpace-complete if the concatenation operation on strings
and multiplication are excluded from the language.

So far, we have always assumed that the input is basically given as a pointer
structure (using signature σdom). But XML documents can also be considered in
their natural textual (string) representation. The distinction is only relevant for
the very small complexity class inside LogSpace, for which completeness is usually
defined in terms of reductions not strong enough to map between DOM trees and
strings. On string representations, NavXPath was shown to be in TC0 [GKPS05],
a complexity class inside LogSpace. Of course, on a relational encoding of the
tree with all binary axis relations part of the encoding, FOXPath is first-order and
inherits its AC0 upper bound (yet inside TC0) on the data complexity.

The query complexity of XPath 1.0 is in LogSpace [GKP05]. This is a slightly
curious fact. While for virtually all known traditional query languages, the query
complexity is greater than the data complexity by at least an exponential factor
(cf. e.g. [AHV95]), this is not the case of XPath.

4.6 Stream Processing

Because of the role of XML as a data exchange format, the problem of evaluating
XPath on streaming XML data has attracted quite some research work (cf. e.g.
[AF00; CFGR00; OMFB02] for early work). A natural technique for processing
XPath on streams is based on automata [GMOS03]. In this context, the XPath
filtering problem, the problem of testing whether a given XPath query relative to
the root node has any matches (i.e., the problem of testing whether [[p]]Boolean(root)
is true for query p), has found some consideration. The usual scenario is that of a
stream of XML documents and a set of XPath queries describing subscriptions to
documents on the stream matching the XPath queries, and has been referred to by
selective dissemination of information. This problem has been considered in [AF00;

32

CFGR00; GMOS03] with the additional difficulty that algorithms have to scale to
very large numbers – even millions – of queries to be matched in parallel.

A streaming algorithm scans its input data once – and only once – from left to
right. Since data streams for practical purposes can be assumed to be infinitely long,
or at least very long, one usually assumes that main memory is a limited resource.
Ideally, streaming algorithms should cope with a fixed amount of memory, but as
we will see below, constant memory is not sufficient for evaluating even the simplest
XPath queries.

Starting with [BYFJ04], techniques from communication complexity have been
used for studying memory lower bounds of streaming XPath evaluation algorithms
[BYFJ04; BYFJ05; GKS05]. We only give one such lower bound result which uses
the standard notion of complexity for XPath queries. We denote the depth of a tree
T by depth(T). It has been observed that

Proposition 4.25 [GKS05]. There can be no streaming algorithm with mem-
ory consumption o(depth(·)) for the NavXPath filtering problem.

Of course, there are trees whose depth is linear in their size, so one can read this
result in the sense that there can be no streaming algorithm for NavXPath that
takes space less than linear in the size of the XML stream, so memory-efficient –
and thus scalable – stream processing for XPath is, from a certain point of view, in
the worst case impossible. Fortunately, XML trees tend to be shallow in practice,
so showing this lower bound tight can be considered a positive result.

As discussed early in this section, bottom-up tree automata allow to check MSO
sentences in a single traversal of the tree. Using automata-based techniques, check-
ing MSO queries, and thus solving the XPath filtering problem, is feasible using
only memory of size bounded by the depth of the tree (which in practice, for XML,
is small).

Theorem 4.26 implicit in [NS98; SV02]. Let T be a tree-language. If T is
definable by an MSO-sentence over vocabulary σnav, then T can be recognized by a
streaming algorithm using memory O(depth(·)).

Corollary 4.27. There is a streaming algorithm for the NavXPath filtering
problem with memory consumption O(depth(·)).

Translating XPath queries into deterministic pushdown automata has been stud-
ied in several works [GMOS03; GS03]; the blow-up required to compute such au-
tomata is exponential, and the precise sources of this exponentiality were explored
in [GMOS03]. The first work to present a streaming algorithm for the XPath fil-
tering problem that takes only memory linear in the depth of the tree and runs in
time polynomial in the size of (the data and) the query was [OKB03]; there, the
exponential size of automata is avoided by not compiling automata for managing
and recognizing the subexpressions of an XPath query into a single automata but
keeping them apart, as a transducer network . A similar transducer-network based
approach to streaming XPath processing was developed in [PC03]. A different al-
gorithm for polynomial-time streaming XPath processing was presented in [JF05].

For the problem of selecting nodes matched by XPath queries, the situation is
worse. Consider the trees

A

C C C C C C C B

<A> <C/> <C/> <C/> <C/> <C/> <C/> <C/>

33

A

C C C C C C C D

<A> <C/> <C/> <C/> <C/> <C/> <C/> <C/> <D/>

To select the C-nodes of the upper tree but not those of the lower tree, the query
/child::A[child::B]/child::C will in the worst case have to buffer all C-children of
the A-node before a B-node is seen on the stream that confirms that the C-nodes
are to be selected. In the worst case this may amount to all but two nodes of the
document.

4.7 Further Bibliographic Remarks

The dynamic programming algorithm for full XPath 1 of [GKP05] demonstrates in
a rather straightforward way that XPath 1 can be evaluated in polynomial time.
When introduced, this algorithm was the first of its kind, and it was observed
that all XPath engines available at the time where taking exponential time in the
worst case for evaluating XPath 1. However, the dynamic programming algorithm
computes many useless intermediate results and consumes much memory. To fix
this, a more efficient top-down algorithm is given in [GKP05] as well. This algorithm
still runs in polynomial time, with better worst-case upper bounds on running time
and memory consumption. Further work on polynomial-time algorithms for full
XPath 1 which elaborates on the results of [GKP05] and integrates them into a
native XML database management system can be found in [BHKM05]. This work
also shows how to integrate XQuery and efficient XPath processing using a single
native algebra.

[BGK03; FGK03] studies XPath query evaluation on XML data compressed using
a bisimulation-based tree compression scheme.

XPath plays an important role as part of XQuery, and there has been much work
on processing XPath and tree pattern queries both in the context of native XML
databases and even more so on relational representations of XML databases. Writ-
ing research papers on the evaluation of structural joins [AKJP+02], i.e., joins along
the navigational structure of an XML tree, tree pattern or twig queries [BSK02], as
well as labeling schemes for assigning identity to tree nodes (which is particularly
important in XML-to-relational mappings) has become a favorite pastime of data
management researchers, and we shall not try to list all work on this topic here.

5. STATIC ANALYSIS

5.1 Satisfiability

It is fairly easy to see that satisfiability of Navigational XPath expressions is decid-
able. One argument is via Proposition 3.1, and the fact that first-order logic over
finite ordered labeled trees is known to be decidable [TW68]. The standard proof of
decidability for first-order logic is via an inductive translation into a tree automa-
ton. Because complementation of an automaton requires an exponential blow-up in
size at every negation step, the complexity of satisfiability for first-order logic over
trees is known to be non-elementary [TW68]. However, in the previous section we
have shown that NavXPath Boolean queries translate into two-variable first-order
logic. The satisfiability problem for FO2 over arbitrary finite structures is known
to be in NExpTime [GKV97]. In addition, [GKV97] shows that satisfiable FO2

sentences have models of size exponential in the size of the sentence. However, this
does not imply that the satisfiability problem for FO2 is in NExpTime, since for
this problem we have the constraint that the models must be trees (a constraint
which is not expressible by an FO2 sentence).

34

In [EVW02] it is shown that the satisfiability of FO2 sentences over words is in
NExpTime. We modify this below to show the satisfiability problem for trees is
in NExpTime. Since the translation of NavXPath into FO2 given in Section 3 is
polynomial, we get a NExpTime bound for NavXPath.

Theorem 5.1. There is an NExpTime algorithm deciding for a given sentence
φ ∈ FO2 whether or not it is satisfiable by some ordered tree.

Recall that Proposition 3.4 shows that unnested NavXPath∩, the extension of
NavXPath with an intersection operator but where union may only occur on the top
level, can be translated in polynomial time into FO2. From this and Theorem 5.1,
it follows that:

Corollary 5.2. The satisfiability problem for unnested NavXPath∩ (and hence
for unnested NavXPath) is in NExpTime.

We will see that this bound is not tight for NavXPath. We do not know the
complexity of satisfiability for full NavXPath∩. A related language is PDL with an
intersection operator, where the satisfiability problem has recently been shown to
be 2-ExpTime hard even on one-letter trees [LL05]. However, this language is more
expressive than NavXPath∩.

Since we know of no proof of Theorem 5.1 in the literature, we sketch one, follow-
ing closely the approach of [EVW02]. First, we translate the problem of satisfiability
on unranked trees to one on binary trees, using the standard encoding of an un-
ranked tree as a binary tree. Let FO2[σnav,bin] be FO2 over the unary signature Σ
unioned with FChild, SChild (the first- and second-child relations of the binary tree
representation), SChild∗, Rdescendant. We consider a formula of FO2[σnav,bin] to be
interpreted over binary codes of unranked trees, structures T = (V, . . .) in which i)
(V,FChild∪ SChild) is a tree of outdegree at most two, ii) each node is related to at
most one node via FChild and at most one variable SChild, with these nodes being
distinct, and iii) Rdescendant is the transitive closure of FChild ∪ SChild, and SChild∗

is the transitive closure of SChild. The following is simple to show:

Proposition 5.3. Satisfiability of FO2 sentences over unranked trees is reducible
in polynomial time to satisfiability of FO2[σnav,bin] sentences over binary codes of
unranked trees.

For an integer k, a k-type is a maximal consistent set of FO2[σnav,bin] formulas
(in some fixed set of variables) where the maximal number of nested quantifiers (i.e.
quantifier rank) is at most k. We will deal with k-types in 1 free variable, with such
a type typically denoted τ(x). A binary code structure (V, . . .) is k-compact if:

—We do not have nodes v1, v2 ∈ V with the same k-type, and with v2 a descendant
of v1.

—Any two nodes with the same k-type have identical subtrees.

The next result shows that we can reduce satisfiability to a search for compact
structures:

Lemma 5.4. An FO2[σnav,bin] sentence of quantifier rank k > 1 is satisfiable at
the root of some binary code iff it is satisfiable at the root of a k-compact binary
code.

Proof. Let φ be an FO2[σnav,bin] sentence of quantifier rank k, and suppose φ
is satisfiable in B = (V, . . .), and B is the structure of minimal size satisfying φ.
Suppose there are nodes v1, v2 ∈ V with the same k-type , with v2 a descendant
of v1. Let S1 be all nodes that are descendants of v1 but are not descendants of
v2 (including v2). Let B′ be the code formed by removing all nodes in S1 and
attaching the subtrees of v2 to v1 (i.e. the first child of v2 becomes the first child

35

of v1, etc.). Let f be the mapping from B′ to B that maps a node beneath v1 in
B′ to the corresponding node beneath v2, and is the identity elsewhere on B′. We
now show by induction on i that for each i ≤ k, the i-type of a node v ∈ B′ is the
same as the i-type of f(v) ∈ B.

For i = 0 this is clear, since the only atomic formulas in one variable are those that
assert the label of a node, and the mapping f preserves labels. For the inductive
step i + 1, note that a two-variable formula φ(x) of rank i + 1 can be taken to
assert the existence or non-existence of a y with a certain axis relation to x and
with a fixed i-type. All formulas asserting the non-existence of such a y are clearly
preserved from x to f(x), by induction. Suppose that for x ∈ B′ there is a y in
B with i-type τ and with a given axis relationship to f(x). If y = f(w) for some
w in B′, then we can choose w as a witness to τ in B′, since w will satisfy the
same axis relation to x as y does to f(x) (by definition of f), and will satisfy the
same i-type as y by induction. Otherwise, it must be that y lies below v1 but is
incomparable to v2. Since y lies below v1 and v2 has the same k-type in B (hence
the same i+1-type) as v1, there is y′ below v1 satisfying the same axes with respect
to v1 as y has to v2, and such that the i-type of y′ in B is the same as the i-type of
y in B. Since y′ is below v1, y

′ = f(w) for some w ∈ B′, and now we are done by
induction.

The result of the construction above is a smaller tree in which the k-type of the
root has the same type as in the original tree, thus violating minimality.

To get the second part of compactness, let Γ be the set of k-types τ(x) such that
the second part is violated in B′: that is, there are two nodes with type τ with
distinct subtrees. We proceed by downward induction on n = |Γ|. If n > 0, choose
a node v ∈ B′ satisfying a type in Γ that has maximal depth in the tree. Let τ
be the k-type of v and Sv be the forest consisting of all descendants of v in B′.
All nodes in Sv must satisfy a type outside of Γ. For every other node v′ in B′

satisfying τ , we replace the forest below v′ with Sv (making the subtree below the
first child of v into the subtree below the first child of v′, etc.). Notice that the first
condition of compactness (already holding of B′) ensures that v′ is not comparable
to v. One can confirm by induction that the k-type of the root is unchanged by this
substitution, by an argument identical to that used in the first part of this lemma.
In this process, n is decreased by one, and hence the process terminates with a
k-compact tree. 2

From Lemma 5.4, Theorem 5.1 follows. The depth of a k-compact tree is at most
the number of k-types, which is bounded by an exponential in φ. Furthermore, a
k-compact tree can be represented via a DAG whose nodes are the k-types realized
in the tree. Such a DAG represents the tree formed by duplicating shared subtrees.
It is easy to see that one can check whether a given sentence is satisfied on a DAG
representation of a tree in polynomial time. Our NExpTime algorithm just guesses
a DAG structure on the k-types, and then confirms that the corresponding tree
satisfies the sentence φ.

It is known that FO2 is NExpTime-hard [EVW02]. The example showing NEx-
pTime hardness from [EVW02] can be coded easily in unnested NavXPath∩, hence
we have that:

Theorem 5.5. The satisfiability problem for unnested NavXPath∩ is complete
for NExpTime.

From this proof, we get further information:

Corollary 5.6 to the proof of Theorem 5.1. Let φ be an FO2 sentence.
If φ is satisfiable in some finite tree, then it is satisfiable in some tree of depth
exponential in |φ| and size doubly exponential in |φ|. The same holds for E an
expression in unnested NavXPath extended with the intersection operator.

36

Is this NExpTime-bound tight for NavXPath? First note that the fact that FO2 is
NExpTime-hard does not imply the same for NavXPath, since the translation from
FO2 to NavXPath is exponential. [Mar04b] shows that satisfiability of NavXPath

expressions can be decided in deterministic exponential time.

Theorem 5.7 [Mar04b]. NavXPath satisfiability is decidable in ExpTime. Fur-
thermore, since equivalence for NavXPath expressions can be reduced to satisfiability
of a single expression, the equivalence problem can be decided in ExpTime.

[Mar04b] actually shows this for an extension of NavXPath that allows regu-
lar expressions on axes. Since the treatment in Marx’s papers [Mar04b; Mar04a;
ABD+05] is quite detailed, we give here only some comments on the proof. The
proof is by reduction to the satisfiability problem for Deterministic Propositional
Dynamic Logic (PDL) with Converse. PDL is similar to XPath, in that it is a modal
language that allows the definition of binary relations (in dynamic logic “programs”)
as well as unary relations (”formulas”). As with XPath, the grammars for binary
relations and unary relations are mutually recursive. Dynamic logics have a dif-
ferent data model than XPath, being defined over node and edge-labeled graphs.
However, since formulas in the language can see only a part of the graph at a time,
the behavior of the logic on general structures is closely related to its behavior on
trees. Deterministic PDL with converse is formed over a set of atomic programs
(analogous to axes in XPath) each of which is a function maps nodes in a graph to
at most one other node. For each atomic program there is a “converse program”
representing the inverse of the binary relation. In a binary tree the “first child” and
”second child” relations are functional; hene we can interpret Deterministic PDL
with Converse with two atomic program over binary trees, with the two programs
chosen to be first and second child. Using the standard encoding of ordered un-
ranked trees as binary trees, deterministic PDL with Converse over two programs
can be interpreted on ordered trees. Because PDL allows new binary relations to
be built up from old using regular expressions, the recursive axes, and in fact all of
NavXPath (and more [Mar04b]), can be defined within it. Hence the satisfiability of
XPath is reduced to the satisfiability problem fo Deterministic PDL with Converse
sentences over binary trees. In [VW86] it is shown that deterministic PDL with
converse is decidable over all structures is in ExpTime. The proof relies on trans-
lating PDL programs into alternating automata on trees. [Mar04b] shows that the
proof in [VW86] can be modified to give the same bound over the class of codings
of finite ordered trees. In [ABD+05], a variant of PDL defined directly on ordered
trees is given, which yields an alternate route (also going through [VW86]) to the
ExpTime bound.

[NS03] shows that containment of NavXPath expressions is ExpTime-hard. An
inspection of the proof shows that only unnested expressions are needed for the
hardness proof. Since containment of two (unnested) NavXPath expressions can be
reduced to satisfiability of a single (unnested) expression, it follows that unnested
NavXPath satisfiability is ExpTime-hard. Hence we see that the ExpTime bound
is tight:

Corollary 5.8 combining [NS03] and [Mar04b]. The satisfiability problems
for both NavXPath and unnested NavXPath are ExpTime-complete.

5.2 Satisfiability for other XPath fragments

Now that we know that NavXPath has ExpTime satisfiability, we can look at what
happens as features are added or subtracted.

Better bounds can be obtained for sublanguages of NavXPath: Satisfiability of
NavXPath with only child and parent is shown to be PSpace-complete in [BFG05].
Satisfiability for PNavXPath is easily seen to be in NP (see [Hid03]), and this is

37

extended to PFOXPath in [BFG05]. It is also shown in [BFG05] that very simple
fragments of PNavXPath have an NP-complete satisfiability problem – in the pres-
ence of both downward and upward axes, the problem is NP-complete, as well as in
the presence of both left and right sibling axes. For PNavXPath with only downward
axes, all expressions are clearly satisfiable; however, the satisfiability problem with
respect to a given DTD can be NP-hard [BFG05].

We now consider satisfiability as we move up in expressiveness from NavXPath.
It is shown in [BFG05] that the satisfiability of a FOXPath expression with respect
to a DTD is undecidable. By using sibling axes instead of a DTD, one can see the
following:

Theorem 5.9 [GF05]. The satisfiability problem for FOXPath is undecidable.

The proof uses a reduction from the halting problem for two-register machines
which is known to be undecidable (see, e.g., [BGG97]). Although full FOXPath is
undecidable, the exact borderline of decidability is not well understood.

Question 5.10. Is FOXPath without the sibling axes decidable?

In fact, decidability is open even in the case of FOXPath with only child and
parent.

One can also look at decidability on restricted classes of documents:

Question 5.11. Is FOXPath decidable on documents with no branching (i.e.
those where every element has at most one child)?

5.3 Containment

The containment problem takes as input XPath expressions E and E′, asking
whether the output of E is contained in the output of E′ on any source document
at any node. Variations of the problem are containment with respect to a DTD,
which takes a DTD as an additional argument, asking whether the above holds for
E and E′ over any source document satisfying the DTD. A special case of this is
the containment problem for a finite alphabet, which takes a label alphabet Σ as
additional parameter, asking whether containment holds for all source documents
with labels in Σ.

The containment problem has been investigated extensively in the relational case
for conjunctive queries, where it has close connections both to issues in data inte-
gration and query optimization, as well as to constraint satisfaction [KV00; GLS01].
The general conjunctive query containment problem is known to be NP complete;
however, many special cases are known to be in PTime, including those in which the
dependency graphs of the queries have bounded tree-width [CR97] or the queries
have bounded hypertree-width [GLS99]. In the case of conjunctive queries, contain-
ment of Q1 in Q2 reduces to determining whether Q1 is satisfiable on an instance
formed from Q2, hence the complexity of containment is bounded by the combined
complexity of evaluation. In the XPath setting there is no obvious correspondence
between a query and a “canonical instance”, and indeed the complexity of contain-
ment and evaluation turn out to be quite different.

Starting with the relational case as motivation, [AYCLS01; MS02; Woo01] initi-
ated the study of containment for XPath, beginning with subclasses of NavXPath

without either the union operator or disjunction within filters (conjunctive NavXPath).
The survey article of Schwentick [Sch04] gives a overview of the techniques used in
getting bounds on containment; here we summarize only some of the results and
the open questions. A modification of the minimal model technique for conjunctive
queries shows that the containment problem for conjunctive Navigational XPath
is in co-NP – given queries P and Q one can generate a finite set of instances
Ii : i < n of size polynomial in P such that P ⊆ Q iff each Ii satisfies Q [MS02].

38

Since satisfaction can be checked in linear time, a co-NP algorithm is simply to
guess an Ii that fails to satisfy Q. In [AYCLS01], it is shown that for conjunctive
NavXPath with only descendant axes the containment problem is in PTime, while
in [Woo01] it is noted that the same holds for conjunctive NavXPath with only
child axes (indeed this last observation follows directly from the PTime bounds
for acyclic conjunctive queries in [CR97]). When both descendant axes and child

axes are present the problem was shown to be co-NP-complete [MS02]. [NS03]
shows that the containment problem for conjunctive NavXPath with a finite alpha-
bet is PSpace-complete, while the containment problem with respect to a DTD is
ExpTime-complete. A finer analysis of the complexity of containment for conjunc-
tive NavXPath with respect to a DTD and with respect to integrity constraints is
given in [Woo03].

The complexity of containment for fragments of XPath larger than conjunctive
NavXPath was studied by Neven and Schwentick. For PNavXPath, the general con-
tainment problem remains in co-NP, while if the alphabet is fixed the problem
is again PSPACE-complete [NS03]. For full NavXPath, the containment problem,
even with respect to a DTD, is in ExpTime, since it is reducible to the satisfaction
problem: this is noted in [Mar04b]. On the other hand, since [NS03] shows that
containment of NavXPath expressions is ExpTime-hard, we have:

Theorem 5.12 Combining [NS03] and [Mar04b]. The containment problem
for NavXPath is ExpTime-complete, as is the containment problem for finite alpha-
bet and the containment problem with respect to a DTD.

When we turn to the XPath fragments with data values, the complexity of con-
tainment is not completely understood. The results of Deutsch and Tannen [DT01]
imply that containment for PFOXPath is co-NP-complete, provided that the tran-
sitive sibling axes are not permitted and ”wildcard steps” (child steps with no
restriction on the label) are disallowed. Their technique also yields a ΠP

2 bound
for full PFOXPath, although neither their terminology nor their fragments match
PFOXPath exactly. They also establish ΠP

2 bounds in the presence of integrity con-
straints called SXICs: these are incomparable to both finite alphabets and DTDs.
[DT01] also provides lower bounds for containment in the presence of integrity con-
straints. Neven and Schwentick [NS03] show that PFOXPath without sibling axes
and without wildcard is in ΠP

2 , and that the containment problem for PFOXPath

extended with inequality is undecidable.
To our knowledge, the decidability of containment for general conjunctive FOXPath

queries with respect to a DTD or a finite alphabet is open. Indeed we do not know
whether one can decide containment of conjunctive queries over signature σ′

dom
6 in

the presence of DTDs. The undecidability techniques of [NS03] rely on disjunction,
while [DT01] provides undecidability results with respect to integrity constraints.
The upper bounds of both [NS03; DT01] rely on the use of an an infinite alphabet.

5.4 Further Bibliographic Remarks

While above we have dealt with the satisfiability and containment problems, a
broader goal would be an algebraic simplification framework for XPath. [BFK03]
presents algebraic equations for simplification of XPath expressions. A system of
equations is presented that is complete for equivalence of XPath expressions for a
very small fragment (without filters and with only child axes). [OMFB02] gives a
rewriting system geared not toward general equivalence, but for removing backward
axes. [AYCLS01] deals not with equivalence but with optimization; it presents an
algorithm for minimization of tree patterns in the presence of integrity constraints.

6Recall that this is the relational signature with binary predicates for the graph of each attribute
function, unary predicates for the labels, and binary predicates for the major axes.

39

A natural question not addressed above is the implementation of satisfiability
and containment tests for XPath. [BBFV05] implements a satisfiability test for
a fragment of PNavXPath,in the presence of DTDs, based on a conversion to tree
automata. [LRWZ04] implements a satisfiability test for a tree pattern language
that includes data value manipulation (incomparable in expressiveness with the
XPath languages we consider here).

An additional static analysis problem is recognizing whether a query is in a given
XPath fragment. In the context of navigational XPath, the problem of recognizing
whether a first-order logic query is in NavXPath is open. This is closely-related to the
(likewise open) problem of determining whether a tree automaton is equivalent to an
FO2 sentence . The problem of determining whether a first-order query over σ′

dom is
in FOXPath is undecidable – this follows from the results of [BFG05]. The problem
of determining whether a conjunctive query over σ′

dom is expressible in conjunctive
FOXPath has not been investigated (to our knowledge). Likewise, nothing is known
concerning the problem of determining whether a first-order query (or a NavXPath

query) is equivalent to a query in PNavXPath.

REFERENCES

Loredana Afanasiev, Patrick Blackburn, Ioanna Dimitriou, Bertrand Gaiffe, Evan Goris, Maarten
Marx, and Maarten de Rijke. “PDL for Ordered Trees”. Journal of Applied Non-Classical
Logics, 15:115–135, 2005.

Mehmet Altinel and Mike Franklin. “Efficient Filtering of XML Documents for Selective Dissem-
ination of Information”. In Proceedings of the 26th International Conference on Very Large
Data Bases (VLDB’2000), pages 53–64, Cairo, Egypt, 2000.

Loredana Afanasiev, Massimo Franceschet, Maarten Marx, and Maarten de Rijke. “CTL Model
Checking for Processing Simple XPath Queries”. In Proc. TIME, pages 117–124, 2004.

Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-Wesley,
1995.

Shurug Al-Khalifa, H. V. Jagadish, Jignesh M. Patel, Yuqing Wu, Nick Koudas, and Divesh
Srivastava. “Structural Joins: A Primitive for Efficient XML Query Pattern Matching”. In 18th
International Conference on Data Engineering (ICDE’02), 2002.

S. Amer-Yahia, S. Cho, Laks V.S. Lakshmanan, and Divesh Srivastava. “Minimization of Tree Pat-

tern Queries”. In Proceedings of the ACM SIGMOD International Conference on Management
of Data (SIGMOD’01), pages 497–508, Santa Barbara, California, USA, 2001.

Michael Benedikt, Angela Bonifati, Sergio Flesca, and Avinash Vyas. “Verification of Tree Updates
for Optimization”. In Proceedings of the 17th International Conference on Computer Aided
Verification, 2005.

Steven Bird, Yi Chen, Susan Davidson, Haejoong Lee, and Yifeng Zheng. “Extending XPath to
Support Linguistic Queries”. In PLAN-X, 2005.

J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. “Symbolic Model Checking:
1020 States and Beyond”. In Proceedings of the Annual IEEE Symposium on Logic in Computer
Science (LICS), 1990.

Michael Benedikt, Wenfei Fan, and Floris Geerts. “XPath Satisfiability in the presence of DTDs”.
In Proceedings of the 24th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems (PODS’05), 2005.

Michael Benedikt, Wenfei Fan, and Gabriel Kuper. “Structural Properties of XPath Fragments”.
In Proc. of the 9th International Conference on Database Theory (ICDT), pages 79–95, Siena,
Italy, 2003.

Egon Börger, Eric Grädel, and Yuri Gurevich. The Classical Decision Problem. Springer, 1997.

Peter Buneman, Martin Grohe, and Christoph Koch. “Path Queries on Compressed XML”. In
Proceedings of the 29th International Conference on Very Large Data Bases (VLDB), pages
141–152, 2003.

Matthias Brantner, Sven Helmer, Carl-Christian Kanne, and Guido Moerkotte. “Full-fledged Al-
gebraic XPath Processing in Natix”. In Proceedings of the 21st IEEE International Conference
on Data Engineering (ICDE), 2005.

Michael Benedikt and Christoph Koch. “XPath with Data Values Revisited”, 2005.

Anne Brüggemann-Klein, Makoto Murata, and Derick Wood. “Regular Tree and Regular Hedge
Languages over Non-ranked Alphabets: Version 1, April 3, 2001”. Technical Report HKUST-

40

TCSC-2001-05, Hong Kong University of Science and Technology, Hong Kong SAR, China,

2001.

Danièle Beauquier and Jean-Eric Pin. “Factors of Words”. In Proc. ICALP, pages 63–79, 1989.

Nicolas Bruno, Divesh Srivastava, and Nick Koudas. “Holistic Twig Joins: Optimal XML Pattern
Matching”. In Proceedings of the 2002 ACM SIGMOD International Conference on Manage-
ment of Data (SIGMOD’02), Madison, Wisconsin, June 2002.

Ziv Bar-Yossef, Marcus Fontoura, and Vanja Josifovski. “On the Memory Requirements of XPath
Evaluation over XML Streams”. In Proceedings of the 23rd ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems (PODS’04), pages 177–188, 2004.

Ziv Bar-Yossef, Marcus Fontoura, and Vanja Josifovski. “Buffering in Query Evaluation over
XML Streams”. In Proceedings of the 24th ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems (PODS’05), 2005.

Chee Yong Chan, Pascal Felber, Minos N. Garofalakis, and Rajeev Rastogi. Efficient Filtering
of XML Documents with XPath Expressions. In Proceedings of the 18th IEEE International
Conference on Data Engineering (ICDE), San Jose, California, USA, February 26-March 1,
2002, 2000.

E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 2000.

Julien Carme, Joachim Niehren, and Marc Tommasi. “Querying Unranked Trees with Stepwise
Tree Automata”. In Rewriting Techniques and Applications, 2004.

Bruno Courcelle. “Graph Rewriting: An Algebraic and Logic Approach”. In Jan van Leeuwen,
editor, Handbook of Theoretical Computer Science, volume 2, chapter 5, pages 193–242. Elsevier
Science Publishers B.V., 1990.

Chandra Chekuri and Anand Rajaraman. Conjunctive Query Containment Revisited”. In Proc.
of the 6th International Conference on Database Theory (ICDT), pages 56–70, Delphi, Greece,
1997.

J. Doner. “Tree Acceptors and some of their Applications”. Journal of Computer and System
Sciences, 4:406–451, 1970.

Alin Deutsch and Val Tannen. Containment and Integrity Constraints for XPath. In Proc. KRDB
2001, CEUR Workshop Proceedings 45, 2001.

Kousha Etessami, Moshe Vardi, and Thomas Wilke. “First Order Logic with Two Variables and
Unary Temporal Logic”. Information and Computation, 179, 2002.

Kousha Etessami and Thomas Wilke. “An Until Hierarchy and Other Applications of an
Ehrenfeucht-Fraisse Game for Temporal Logic”. Information and Computation, 160:88–108,
2000.

W. Fan, CheeYong Chan, and M. Garofalakis. Secure XML querying with security views. In
SIGMOD, 2004.

Jörg Flum, Markus Frick, and Martin Grohe. “Query Evaluation via Tree-Decompositions”.
Journal of the ACM, 49(6):716–752, 2002.

Markus Frick, Martin Grohe, and Christoph Koch. “Query Evaluation on Compressed Trees”.
In Proceedings of the 18th Annual IEEE Symposium on Logic in Computer Science (LICS),

Ottawa, Canada, June 2003.

Floris Geerts and Wenfei Fan. “XPath Satisfiability with Sibling Axes”. In Proc. 10th DBPL,
2005.

Raymond Greenlaw, H. James Hoover, and Walter L. Ruzzo. Limits to Parallel Computation:
P-Completeness Theory. Oxford University Press, 1995.

Georg Gottlob and Christoph Koch. “Monadic Queries over Tree-Structured Data”. In Proceedings
of the 17th Annual IEEE Symposium on Logic in Computer Science (LICS), pages 189–202,
Copenhagen, Denmark, July 2002.

Georg Gottlob and Christoph Koch. “Monadic Datalog and the Expressive Power of Web Infor-
mation Extraction Languages”. Journal of the ACM, 51(1):74–113, 2004.

Georg Gottlob, Christoph Koch, and Reinhard Pichler. “Efficient Algorithms for Processing
XPath Queries”. In Proceedings of the 28th International Conference on Very Large Data
Bases (VLDB), pages 95–106, Hong Kong, China, 2002.

Georg Gottlob, Christoph Koch, and Reinhard Pichler. “Efficient Algorithms for Processing XPath
Queries”. ACM Transactions on Database Systems, 30(2):444–491, June 2005.

Georg Gottlob, Christoph Koch, Reinhard Pichler, and Luc Segoufin. “The Complexity of XPath
Query Evaluation and XML Typing”. Journal of the ACM, 52(2):284–335, March 2005.

Georg Gottlob, Christoph Koch, and Klaus U. Schulz. “Conjunctive Queries over Trees”. In Pro-
ceedings of the 23rd ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems (PODS’04), pages 189–200, Paris, France, 2004.

Martin Grohe, Christoph Koch, and Nicole Schweikardt. “Tight Lower Bounds for Query Pro-
cessing on Streaming and External Memory Data”. In Proc. ICALP, 2005.

41

Erich Grädel, Phokion Kolaitis, and Moshe Vardi. On the decision problem for two-variable

first-order logic. Bulletin of Symbolic Logic, 3:53–69, 1997.

Georg Gottlob, Nicola Leone, and Francesco Scarcello. “Hypertree Decompositions and Tractable
Queries”. In Proceedings of the ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems (PODS’99), pages 21–32, 1999.

Georg Gottlob, Nicola Leone, and Francesco Scarcello. “The Complexity of Acyclic Conjunctive
Queries”. Journal of the ACM, 48(1):431–498, 2001.

Georg Gottlob, Nicola Leone, and Francesco Scarcello. “Hypertree Decompositions and Tractable
Queries”. Journal of Computer and System Sciences, 64(3):579–627, 2002.

Todd J. Green, Gerome Miklau, Makoto Onizuka, and Dan Suciu. “Processing XML Streams with
Deterministic Automata”. In Proc. of the 9th International Conference on Database Theory
(ICDT), 2003.

A. K. Gupta and D. Suciu. “Stream Processing of XPath Queries with Predicates”. In Proceedings
of the 2003 ACM SIGMOD International Conference on Management of Data (SIGMOD’03),
pages 419–430, 2003.

Jan Hidders. “Satisfiability of XPath Expressions”. In Proc. 9th DBPL, 2003.

Neil Immerman. “Descriptive Complexity”. Springer Graduate Texts in Computer Science, 1999.

Vanja Josifovski and Marcus F. Fontoura. “Querying XML Streams”. VLDB Journal, 14(2):197–
210, April 2005.

David S. Johnson. “A Catalog of Complexity Classes”. In Jan van Leeuwen, editor, Handbook of
Theoretical Computer Science, volume 1, chapter 2, pages 67–161. Elsevier Science Publishers
B.V., 1990.

H. Kamp. “Tense Logic and the Theory of Linear Order”. PhD thesis, University of California,
Los Angeles, 1968.

Christoph Koch. “Efficient Processing of Expressive Node-Selecting Queries on XML Data in
Secondary Storage: A Tree Automata-based Approach”. In Proceedings of the 29th International
Conference on Very Large Data Bases (VLDB), pages 249–260, 2003.

Phokion Kolaitis and Moshe Vardi. “Conjunctive Query Containment and Constraint Satisfac-
tion”. Journal of Computer and System Sciences, 61(2):302–332, 2000.

Leonid Libkin. Elements of Finite Model Theory. Springer, 2004.

Martin Lange and Carsten Lutz. ”2-ExpTime lower bounds for propositional dynamic logics with
intersection”. “Journal of Symbolic Logic”, 70(4):1072–1086, 2005.

Laks V. S. Lakshmanan, Ganesh Ramesh, Hui Wang, and Zheng Zhao. “On Testing Satisfiability
of Tree Pattern Queries”. In VLDB, pages 120–131, 2004.

Maarten Marx. “Conditional XPath, the First Order Complete XPath Dialect”. In Proceedings
of the 23rd ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems
(PODS’04), pages 13–22, 2004.

Maarten Marx. “XPath with Conditional Axis Relations”. In Proc. EDBT, pages 477–494, 2004.

Maarten Marx. “First order paths in ordered trees”. In Proc. of the 10th International Conference
on Database Theory (ICDT), 2005.

Maarten Marx and Maarten de Rijke. “Semantic Characterizations of XPath”. In TDM’04
Workshop on XML Databases and Information Retrieval, Twente, The Netherlands, 2004.

Albert R. Meyer. “Weak Monadic Second Order Theory of Successor is not Elementary-Recursive”.
In Logic Colloquium, Lecture Notes in Mathematics 453, pages 132–154. Springer-Verlag, N.Y.,
1975.

Gerome Miklau and Dan Suciu. “Containment and Equivalence for an XPath Fragment”. In Pro-
ceedings of the 21st ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems (PODS’02), pages 65–76, Madison, Wisconsin, 2002.

Frank Neven. “Automata Theory for XML Researchers”. SIGMOD Record, 31(3), September
2002.

Andreas Neumann and Helmut Seidl. “Locating Matches of Tree Patterns in Forests”. In Proc.
18th FSTTCS, LNCS 1530, pages 134–145, 1998.

Frank Neven and Thomas Schwentick. “Query Automata on Finite Trees”. Theoretical Computer
Science, 275:633–674, 2002.

Frank Neven and Thomas Schwentick. “XPath Containment in the Presence of Disjunction, DTDs,
and Variables”. In Proc. of the 9th International Conference on Database Theory (ICDT), pages
315–329, 2003.

Frank Neven and Jan van den Bussche. “Expressiveness of Structured Document Query Languages
Based on Attribute Grammars”. Journal of the ACM, 49(1):56–100, January 2002.

Dan Olteanu, Tobias Kiesling, and Franois Bry. “An Evaluation of Regular Path Expressions with
Qualifiers against XML Streams”. In Proceedings of 19th International Conference on Data

42

Engineering (ICDE), Bangalore, India, 5th - 8th March 2003. Full version in Technical Report

PMS-FB-2002-12, Ludwig-Maximilians-Universität München, Munich, Germany, 2002.

Dan Olteanu, Holger Meuss, Tim Furche, and Francois Bry. “XPath: Looking Forward”. In Proc.
EDBT Workshop on XML Data Management, volume LNCS 2490, pages 109–127, Prague,
Czech Republic, 2002. Springer-Verlag.

Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

Feng Peng and Sudarshan Chawathe. “XPath Queries on Streaming Data”. In Proceedings of the
2003 ACM SIGMOD International Conference on Management of Data (SIGMOD’03), 2003.

Klaus Reinhardt. “The Complexity of Translating Logic to Finite Automata”. In E. Grädel,
W. Thomas, and T. Wilke, editors, Automata, Logics, and Infinite Games – A Guide to Current
Research. Springer-Verlag, LNCS 2500, 2002.

Thomas Schwentick. Xpath query containment. SIGMOD Record, 33(1):101–109, 2004.

G. Sur, J. Hammer, and J. Simeon. “An XQuery-Based Language for Processing Updates in
XML”. In PLAN-X, 2004.

Thomas Schwentick, Denis Theŕien, and Heribert Vollmer. “Partially-ordered Two-way Automata:
A New Characterization of DA”. In Developments in Language Theory, pages 239–250, 2001.

I.H. Sudborough. “Time and Tape Bounded Auxiliary Pushdown Automata”. In Mathematical
Foundations of Computer Science (MFCS’77), pages 493–503. Springer Verlag, LNCS 53, 1977.

Luc Segoufin and Victor Vianu. “Validating Streaming XML Documents”. In Proceedings of
the 21st ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems
(PODS’02), 2002.

J.W. Thatcher and J.B. Wright. “Generalized Finite Automata Theory with an Application to a
Decision Problem of Second-order Logic”. Mathematical Systems Theory, 2(1):57–81, 1968.

Moshe Y. Vardi. “The Complexity of Relational Query Languages”. In Proc. 14th Annual ACM
Symposium on Theory of Computing (STOC’82), pages 137–146, San Francisco, CA USA, May
1982.

H. Venkateswaran. “Properties that Characterize LOGCFL”. Journal of Computer and System
Sciences, 43:380–404, 1991.

Moshe Y. Vardi and Pierre Wolper. “Automata-theoretic techniques for Modal Logics of Pro-
grams”. Journal of Computer and System Sciences, 32:183–221, 1986.

Philip Wadler. “A Formal Semantics of Patterns in XSLT”. In Markup Technologies, Philadelphia,
December 1999. Revised version in Markup Languages, MIT Press, June 2001.

Philip Wadler. “Two Semantics for XPath”, 2000. Draft paper available at
http://www.research.avayalabs.com/user/wadler/.

Peter T. Wood. Minimizing Simple XPath Expressions. In Proc. of Intl. Workshop on the Web
and Databases (WebDB), Santa Barbara, California, USA, May 2001.

Peter T. Wood. “Containment for XPath Fragments under DTD constraints ”. In Proc. of the
9th International Conference on Database Theory (ICDT), pages 300–314, 2003.

World Wide Web Consortium. XSL Transformations (XSLT). W3C Recommendation Version
1.0.
http://www.w3.org/TR/xslt.

World Wide Web Consortium. XML Path Language (XPath) Recommendation.
http://www.w3c.org/TR/xpath/, November 1999.

World Wide Web Consortium. “XQuery 1.0 and XPath 2.0 Formal Semantics. W3C Working
Draft (Aug. 16th 2002), 2002. http://www.w3.org/TR/query-algebra/.

Mihalis Yannakakis. “Algorithms for Acyclic Database Schemes”. In Proceedings of the 7th
International Conference on Very Large Data Bases (VLDB’81), pages 82–94, Cannes, France,
1981.

43

