
XQuery!: An XML query language with side effects

Giorgio Ghelli
Universit̀a di Pisa

Christopher Ŕe
University of Washington

Jérôme Siḿeon
IBM T.J. Watson Research Center

Draft of October 14, 2005, please do not distribute

Abstract

As XML applications become more complex, there is a growing interest in extending XQuery with side-effect
operations, notably XML updates. Unfortunately, the presence of side-effects is at odds with XQuery’s declarative
semantics which favors optimization. In this paper, we propose a semantic framework that enables extending XQuery
with side-effect operations, while preserving the benefits of XQuery’s declarative semantics when possible. We use
that framework to define “XQuery!”, an extension of XQuery 1.0 that supports first-class XML updates and user-level
control over update application. We show that those extensions can be easily implemented within an existing XQuery
processor and how to recover basic database optimizations for such a language.

1 Introduction

As XML applications grow in complexity, developers are calling for advanced features in XML query languages. Many
of the most requested extensions, such as XML updates, support for references, and variable assignment, involve side-
effects. The benefits of such extensions are far reaching, giving XQuery the expressive power necessary to support
Web service applications [13, 22], scripting applications [3], or more simply to support XML updates over large XML
repositories [28].

Because these extensions involve side-effects, they appear to be at odds with the declarative semantics of XQuery
1.0. As a result, previously proposed extensions to XQuery 1.0 restrict the usage of side-effect operations. In this paper,
we develop the semantic foundations for extending XQuery 1.0 with side-effects operations in a fully compositional
way. We use the resulting framework to define XQuery! (read: “XQuery Bang”), an extension of XQuery 1.0 [4],
that supports first-class XML updates and user-level control over update application. We show such a language can be
obtained with small impact on XQuery’s declarative semantics and optimization techniques.

The semantic framework is a simple extension of the XQuery 1.0 Formal Semantics [8], and builds upon previous
experiences in functional languages that support side-effects [21, 19]. The main difference between our framework
and a programming language approach is the presence of an operator (snap) which allows users to identify declara-
tive fragments within their programs, and inside which we are enable to recovery traditional database optimizations.
Although this operator bears some resemblance with nested transactions [14, 20], it is designed to support effectively
compositional updates rather than concurrency.

The XQuery! language is a small extension to XQuery 1.0, which supports common update operations over XML
documents. Thanks to its ability to use side-effect operations in any context (e.g., in function calls), this makes for a
very expressive language, which is strictly more expressive than any previously proposed update language for XML
we are aware of [25, 18, 29, 28, 17]. We show how to use XQuery! to build a simple Web service that supports logging
of user calls for some of its operations.

The main contributions of the paper are:

• We provide a formal description of a semantic framework for extending XML query languages with side-effect
operations which can appear anywhere in the code.

• We describe a new construct (snap) that can be used to control update applications. The semantics of that
operator enables unlimited nesting. We describe how, and in which context, this semantics enables the recovery
of standard database optimizations in the presence of side-effects.

1

2 ADDING LOGGING TO AN XQUERY WEB SERVICE 2

• We demonstrate the expressive power of the semantics framework by defining XQuery!, an extension to XQuery
1.0 with first-class updates, and illustrate its use on a concrete Web service usecase.

• We describe a simple implementation of XQuery!. We show that such an implementation can easily be obtained
from an existing XQuery engine.

Some of the motivations for our work originate from discussions within the W3C XQuery Update Language
Task Force, and from our own experience implementing and using a more restricted XML update language based on
XQuery [28]. Composition being one of the foundations for the design of XQuery 1.0, attempting to allow compo-
sitional updates seems to be a natural direction, and is mentioned in the XQuery update requirements document [6].
The notion of delaying update applications to facilitate optimization (so calledsnapshotsemantics) was first pro-
posed in [25, 18], and has been further used and studied in [10, 9, 1]. Most of the previous proposals applied that
semantics only for the whole query, while XQuery! provides control over it at the expression level through thesnap
operator. Languages with explicit control of the snapshot semantics have been explored by the W3C XML update task
force [12, 5]. To the best of our knowledge, this work is the first to completely define the semantics of such an operator
in a way which allows compositionality, and to explicit its relationship with optimization properties of the language.

The rest of the paper is organized as follows. Section 2 motivates our work using a Web service usecase. Section 3
describes the XQuery! grammar. Section 4 introduces some formal notations and the foundations for the semantic
framework. Section 5 gives the language semantics using the proposed framework. Section 6 describes a simple
implementation of XQuery! and discusses optimization issues. Section 7 concludes the paper.

2 Adding Logging to an XQuery Web Service

A compositional XML update extension for XQuery is attractive for many reasons. First, XQuery is itself compo-
sitional and XQuery developers are accustomed to building complex programs by composing a small set of basic
expressions. Second, restricting compositionality often results in ad hoc rules which are difficult for the user to un-
derstand. Finally, compositionality brings additional expressiveness that is useful for applications. In the rest of
the section we focus on a simple Web service scenario to illustrate the need of an expressive XML language which
supports both data querying and side-effects.

2.1 An auction Web service with XQuery 1.0

We assume an application that implements an auction Web service using XQuery. The Web service is deployed as
an XQuery module, where each function corresponds to a Web service operation; Web service clients access the Web
Service through these functions.

The server stores the auction document from XMark [27]. The user cannot see the whole data, but only access it
through the Web service interface. That interface makes two operations available. The first gives users access to all the
open auctions. The second gives access to items with a given itemid, and requires the user to also provide his person
id (obtained e.g., during login). Those operations can be implemented as follows, assuming the XMark document has
been bound to variable$auction .

declare function auctions() {
$auction//open_auctions

};

declare function get_item($itemid,$userid) {
let $item := $auction//item[@id = $itemid]
return $item

};

The following is a possible query over that Web service, on the client side, accessing all items for which there is
an open auction from a happy seller with a current price of less than 100$. Note that the user must obtain an item
reference number from the open auctions in order to get access to the item description.

2 ADDING LOGGING TO AN XQUERY WEB SERVICE 3

let $myid := "person0"
for $o in auctions()//open_auction
where $o/seller/happiness > 8 and $o/current < 100
return get_item($o/itemref/@item,$myid)

2.2 Logging using XML updates

Now, let’s assume that the Web service wants to log each item access. This cannot be easily done with XQuery 1.0,
as there is no way to modify a value (the log), without passing it as a parameter to the function and returning the
new value as a result of that function. On the other hand, this can be done transparently using an XML update within
the body of theget item() function. Here is a possible implementation of the modifiedget item() function in
XQuery!.

declare function get_item($itemid,$userid) {
let $item := $auction//item[@id = $itemid]
return (

(::: Logging code :::)
let $name := $auction//person[@id = $userid]/name return
insert { <logentry user="{$name}"

itemid="{$itemid}"
date="{current-date()}"/> }

into { $log },
(::: End logging code :::)
$item

)
};

As opposed to the previous program, theget item function not only returns the item, but also adds a log entry
for every access. The logging is implemented by an XML update expression that inserts a newlogentry element
into the content of the$log variable. Embedding the insert into a function allows the original query code to be
easily reused, and makes the logging behavior transparent to the user. This particular example illustrates the need for
expressions that have a side-effect (the log entry insertion) and also return a value (the item description).

Note that in the above example we use XQuery’s sequence construction (,) to compose the conditional insert
operation with the result$item . This is a convenience made possible by the fact that atomic update operations
always return the empty sequence (in addition to the effect they have on the XML data). This kind of function is not
supported by any of the previously proposed XML update languages we are aware of [10, 9, 25, 18, 29, 28, 17].

2.3 Controlling update application

The previous example should look natural to programmers familiar with functional languages such as SML [21] or
Caml [19], where side effect operations are also supported. Indeed, XQuery shares many design characteristics with
those languages and it will not come as a surprise that similar extensions to XQuery are possible. However, XQuery
differs from traditional functional programming languages in a few significant ways. First of all, the semantics of
XQuery is very liberal in terms of evaluation order and error handling1 in order to facilitate the work of optimizers.
For that reason, several previous proposals [18, 25, 10, 9, 28, 1] have relied on a so-calledsnapshot semantics, which
defers update application until the query is completed, hence facilitating the use of traditional database optimizations
for the side-effect free part of the query. The same approach is used, by default, in XQuery!: if thesnap operator
(introduced below) is not used, every update that is requested by the query is only executed at the end of the top-level
expression in the main XQuery! module, because asnap is always implictly present around that top-level expression.

However, a more fine-grained control on when a given update is applied is sometimes necessary. For example,
consider the following variant for the logging code, in which the user wants to maintain a log count after each log
insertion.

1See Section[2.3.4 Errors and Optimization] of the XQuery 1.0 specification [4]

2 ADDING LOGGING TO AN XQUERY WEB SERVICE 4

(::: Logging code :::)
let $name := $auction//person[@id = $bidder]/name
return

(snap insert { <logentry user="{$name}"
itemid="{$item/@id}"
date="{current-date()}"/> }

into { $log },
snap replace { $log/@count } with { count($log/logentry) })

(::: End logging code :::)

In this example, the replace operation is meant to update the number of log entries after the insertion. There are
two remarks to make on the example. First, it relies on the firstinsert to be actually applied on$log , in order for
the replace to work with the intended semantics. This is the reason for the presence of thesnap keyword before
the insert , which indicates that the effect of the update must be visible right away. Second, it relies on the fact
that the operations in the sequence are evaluated in the order specified. Hence, this piece of code works as expected
because thesnap causes the log to be actually updatedand because XQuery! semantics specifies that the sequence
constructore1,e2 causese1 to be fully evaluated beforee2 .

This is an important departure from XQuery 1.0 semantics, and requires some further discussion.

2.4 Sequence order, evaluation order, and update order

In XQuery 1.0, queries return sequences of items. Although sequences of items are ordered, the evaluation order
for most operators is left to the implementation. For instance, consider the expression(e1, e2), if e1 ande2 evaluate
respectively tov1 andv2, then the value ofe1, e2 must bev1, v2, in this order. However, the engine can evaluatee2

beforee1, provided the result is presented in the correct sequence order. This does not matter for purely functional
programs, but in the presence of side-effects the evaluation order has an impact on the order in which side-effects
occur. This is already observable in XQuery 1.0 when considering error handling. For example, if both expressionse1

ande2 were to raise an error, which error is reported may vary from implementation to implementation. This approach
leaves considerable freedom to the compiler and optimizer which may reorder evaluation without worrying of how
that may affect the final result.

Although that approach may be reasonable in an almost-purely functional language as XQuery 1.0, it is widely
believed that programs that update data are impossible to reason about unless the evaluation order is easy to grasp.2

The main reason is that some part of the code may rely on some update to have taken place, as in our previous example.
For this reason, in XQuery! we adopt the standard semantics used in popular functional languages with side-

effects [21, 19], based on the definition of a precise evaluation order. This semantics is easy to understand for a
programmer and easy to formalize using the XQuery 1.0 formal semantic style. Note however, that an interesting
alternative is to add a sequencing operator (e.g.,e1;e2) that forcese1 to be evaluated beforee2 , while retaining the
XQuery 1.0 freedom of evaluation order for the other expressions. This second alternative requires a more complex
formalization style, and is explored in Appendix A.

Obviously, XQuery!’s semantics is more constraining for the compiler. However, as we discuss in Section 5, inside
an innermostsnap no side-effect takes place, hence recovering XQuery 1.0 freedom of evaluation order. Interestingly,
the same holds for the update requests that are generated in such scope: the implementation can actually produce them
in any order, provided that, at the end of thesnap scope, the order required by the official semantics is recovered.

This update order is a bit harder to maintain than sequence order, because a FLWOR expression may generate
updates in thefor, where, andreturn clause, while the result items are only generated in thereturn clause (see also
Section 6). For this reason, XQuery! supports alternative semantics for update application which do not depend on the
update order (Section 4).

2.5 Recovering joins withsnap

XQuery! is geared toward database applications, in which join optimizations are very critical. Here we show how
to recover a traditional join optimization in a query which combines a join predicate with side-effects. Consider the

2Simon Peyton-Jones: “lazy evaluation and side effects are, from a practical point of view, incompatible” [16].

2 ADDING LOGGING TO AN XQUERY WEB SERVICE 5

following variant of XMark query 8 which, for each person, stores information about the buyers who purchased its
items.

for $p in $auction//person
let $a :=

for $t in $auction//closed_auction
where $t/buyer/@person = $p/@id
return (insert { <buyer person="{$t/buyer/@person}"

itemid="{$t/itemref/@item}" /> }
into { $purchasers }, $t)

return <item person="{ $p/name }">{ count($a) }</item>

Ignoring the insert operation for a moment, the query is identical to XMark 8, and can be evaluated efficiently with
an outer join followed by a group by. Such a query plan can be produced using query unnesting techniques such as
the ones proposed in e.g., [24]. By default, XQuery! always assumes the presence of asnap around the outermost
expression. This produces the most efficient behavior by default, enabling to use the standard group-by plan in our
example. If the above program had been written using asnap insert instead, the group-by optimization would be
more difficult to detect as one would have to know that the effect of those inserts are not observed in the rest of the
query. We come back to that query and the properties that have to be checked in order to recover such optimizations
in Section 6.

2.6 Programming with snap

In many situations, different scopes for thesnap may lead to the same result, hence the programmer needs a
guideline aboutsnap placement. In such cases, a simple criterion can be used: a broadersnap favors optimization,
hence one should always leavesnap as broad as possible. Smaller scopes should only be used when the rest of the
program relies on the effect of the updates, or when writing a library function which should work independently of the
context where it is called, as with the counter example above.

Consider, for another example, the following variant of theget items function, which accesses a set of items
by name, and logs each item access. The outermostsnap is needed to specify that update is performed before control
is returned to the caller.

declare function get_items($itemname,$userid) {
snap {

for $item in $auction//item[name = $itemname]
return (

(::: Logging code :::)
let $name := $auction//person[@id = $userid]/name return
insert { <logentry user="{$name}"

itemid="{$item/@id}"
date="{current-date()}"/> }

into { $log },
(::: End logging code :::)
$item

)
}

};

The broad scope ofsnap ensures that traditional rewritings, such as join detection in our example, can still be
used within the function itself. However, the optimization of a piece of code which calls this function would rely on
complex proofs of independence of evaluation order with respect to the side effects performed byget items . If the
programmer did not use asnap at all, the pending updates would be passed to the calling function, until an outer
snap is closed, and the optimization of the calling code could be easier.

In general, the intuition is that a maximally broadsnap is good news for the optimizer, which is then allowed to
essentially ignore the presence of side-effects. Again, this is why XQuery! always places asnap around the outermost
piece of code, allowing users to naturally obtain the most efficient behavior. Of course, since every function may in
principle execute asnap , cross-module optimization becomes quite hard. This may be alleviated by requiring that
the possible execution ofsnap is declared in function signatures.

2 ADDING LOGGING TO AN XQUERY WEB SERVICE 6

2.7 Nested snap

Support for nested snap is essential for compositionality. Assume, for example, that a counter is implemented using
the following function.

declare variable $d := element counter { 0 };

declare function nextid() as xs:integer {
snap { replace { $d/text() } with { $d + 1 },

$d }
};

The snap around the function body is meant to ensure that any next call effectively returns the next value for the
counter. Obviously, thenextid() function may be used in the scope of another snap. For instance, the following
variant of the logging code computes a new id for every log entry.

(::: Logging code :::)
let $name := $auction//person[@id = $bidder]/name
return

(snap insert { <logentry id="{nextid()}"
user="{$name}"
itemid="{$item/@id}"/> }

into { $log },
snap replace { $log/@count } with { count($log/logentry) })

(::: End logging code :::)

As that example shows, thesnap operator must not freeze the state of the data model when its scope is opened,
but just delay the updates that are in its immediate scope until the scope closes. Any nested snap opens a nested scope,
and makes its updates visible as soon as it is closed. The details of this semantics are explained in Section 5. Although
snap is reminiscent of nested transactions, we do not explore this connection, mainly because XQuery 1.0 has no
persistency or concurrency model. Extending our approach to a full transactional model is outside the scope of this
paper.

2.8 Tree transformations using updates

Finally, let us come back to the case for compositional updates.Another interesting aspect of compositional XML
updates is the ability to naturally express some tree transformations that are cumbersome to express in XQuery (similar
to the so-calledtransformin [9]). Typical examples are functions that create an external version of a document by
hiding some of the input data (e.g., to implement access control discipline over XML documents [2, 26]). In XQuery
1.0, this can only be implemented through functions which copy the data that is not hidden, and explicitly rebuild all
the tree structure from the hidden point up to the root. In the presence of updates, the same transformation can be
implemented as a composition of acopy operation with updates. As an example, we change here the implementation
of theauctions function to not return the seller and the reserve price for the auctions.

declare function auctions() {
snap { let $result := copy { $auction }

return
(delete { $result//seller },

delete { $result//reserve },
$result) }

};

The presence of asnap in that function is essential, otherwise an expression calling that function would not see
the effect of the deletions until an outersnap is closed. However, since the function does not need to query the
result of its own updates, there is no reason to choose a snapshot scope that is smaller than the whole function. Note
that this update-the-copy style makes it quite easy for the optimizer to realize that the code is not side-effecting any
pre-existing object, hence the optimizations of pure functional code still apply. Also, observe thatcopy , not being an
update operation, is not affected by snapshot semantics, and is always executed right away.

3 GRAMMAR 7

3 Grammar

Figure 1 shows the grammar of XQuery!, which we use in the rest of this document. This grammar is written as a
simple extension of XQuery 1.0 with side-effect expressions, an operation for explicit copying, and an operation for
controlling the snapshot semantics. There are two reasons for the presence of the explicit copying. The first reason is
its use to supportsubtree queriesusecases, as the one presented in Section 2.8. The second reason is that it gives the
ability to express the copying involved in the semantics of the insert and replace update operators. Those operators
make a copy of the nodes being inserted or replaced. To avoid update conflicts, that copying should be performed
during the querying part of the evaluation, and not during the application of the atomic updates. We will come back to
this point in Section 5.

Expr ::= . . . | DeleteExpr | InsertExpr | ReplaceExpr | RenameExpr
| CopyExpr | SnapExpr

DeleteExpr ::= snap ? delete { Expr }

InsertExpr ::= snap ? insert { Expr } InsertLocation
InsertLocation ::= (as first | as last)? into { Expr }

| before { Expr }
| after { Expr }

ReplaceExpr ::= snap ? replace { Expr } with { Expr }

RenameExpr ::= snap ? rename { Expr } to { Expr }

CopyExpr ::= copy { Expr }

SnapExpr ::= snap (nondeterministic | ordered)? { Expr }

Figure 1: XQuery! Grammar

The first expressions are the typical update operations, similar to those proposed in [25, 18, 10, 9, 28]. The optional
snap keyword before those update operations is for convenience, facilitating the use of thesnap operator at the finest
granularity.

All atomic updates return the empty sequence. Since XQuery flattens sequences, and notablyvalue,() = value,
we can use the sequence constructor expression in place of a traditional ML-like sequencing operator. This avoids the
need for an additional operator and the addition of a unit type.

The snap operator has been described extensively in the previous section. We introduce here an option for
the snap which allows the user to choose between three different update application semantics (ordered, non-
deterministic, and conflict-detection semantics which is the default), explained in the next section. The copy operator
returns a deep copy of its input.

4 XQuery! Data Model

This section lays out the formal foundations for the semantics of XQuery!. Instead of going through a complete re-
formalization of the language, we indicate required changes and extensions to the existing XQuery 1.0 specifications.

We first reformulate the XQuery data model (XDM) [7] with a notion ofstore, which specifies, for each node
id, its kind (element, attribute, text...), parent, children, name, and content. This notion is similar to that proposed
in [15, 11]. On this store, we define accessors and constructors corresponding to those of the XDM, plus some update
operations. Our definitions of atomic and update lists, and the notion of update conflict, originate from discussions
within the W3C XQuery Update Language Task Force.

This extended data model is the basis for the evaluation relation defined, in next section, by extending the evaluation
judgment defined in [8] to deal with side-effects.

While the store goes in the direction of formalizing access to documents and collections, this is not our aim here.
The access to documents and collections presents some of the same issues which are presented by side-effects, notably

4 XQUERY! DATA MODEL 8

sharing and aliasing, but is also related to questions of persistence and concurrency that we prefer to avoid by now.

4.1 The store

The store is an alternative formalization of the XDM, needed to deal with updates. Every program is evaluated
with respect to a store. A store is a quadruple composed by an finite set of node idsN, by a set of edgesE ⊆
N × N, by a strict total orderord on N, and by a tuple of partial functionsF, with domainN. We assume that
F = (node-kindF , node-nameF , contentF). For a complete formal treatment of the XDM,F should contain many
other partial functions, such astype-name, base-uri, document-uri, typed-value, nilled, is-id, is-idrefs, prefix, uri,
target, but we ignore them here for simplicity.E andF give the essential information about a node.

The function node-kindF is total, specifies the kind of a node, and its value determines whether the value of
node-nameF and contentF is defined onn, according to XDM constraints. The edgesE model theparentproperty of
the XDM, and satisfy XDM constraints (N is a forest, every parent is either a document or an element node. . .). As in
the XDM, every node can be a root, not just a document node. The orderord is compatible with the document order
implied by the edgesE. These details are formalized in the Appendixes. A store defines a notion of valid values, as
follows.

Definition: a value is a sequence of items, where an item is either an atomic value or a node id. An atomic
value is an element of an atomic type, as defined in the XDM. A value is valid w.r.t. a store(N, E, ord, F)
if every node id in the value belongs toN.

The data model includes the XDM accessors and constructors, discussed in the Appendixes.
We add atomic updates, and a deep-copy constructor deepcopy(store, node) which returns a pair(store′, node′),

wherestore′ extendsstoreandnode′ is the root of a newly allocated deep copy of the tree rooted innode. This operator
is already implicitly present in some XDM operations, such as element construction.

4.2 Atomic updates

A formal definition of atomic updates is needed to precisely discuss the issues of update commutativity and com-
patibility. We use a specific set of atomic update operations similar to those proposed in [10, 9, 28]. However, the
framework we propose is mostly orthogonal to the exact semantics of atomic updates. Hence, we only give here an
overview of their semantics; for a full definition see the Appendixes.

An atomic update is a tuple op(p1,. . . ,pn) formed by an operation name op and a list of parameters pi, which are
values. Theapplicationof an atomic update to a store yields a new store or fails. We list here the atomic updates and
describe their application on a store. All of them fail when some parameter is not valid w.r.t. the store, or when the
other preconditions that we list below are not satisfied. Otherwise, we say that the update is valid on the store.

We describe update applications in the case where every node parameter is of kindelement. Nodes of the other
kinds require some more preconditions and manipulations in order to enforce XDM constraints.

• apply insert (nodeseq, nodepar, nodepos) to (N, E, ord, F)

Preconditions:

1. nodeparis a single node,nodeposis single node.

2. every node innodeseqis a root inE.

3. nodeposis either a child ofnodeparor isnodeparitself.

Effects: the nodes innodeseqare inserted as children ofnodepar, immediately afternodepos, and before any
other child, by updating bothE andord. If nodepos=nodepar, then the new nodes become the initial children
of nodepar. Observe thatnodeseqis not copied, but is required to be a sequence of root nodes.

• apply delete (node) to (N, E, ord, F)

Precondition: nodeis a single node.

Effects: the pair(node′, node) is removed fromE, if such pair exists, hencenodeis detached from its parent,
andord is updated accordingly. The node, and its descendants, are not actually deleted from the store, since
they may still be reachable from a variable.

4 XQUERY! DATA MODEL 9

• apply rename (node, qname) to (N, E, ord, F)

Precondition: nodeis a single node,qnameis a QName.

Effects: F is updated so that node-nameF (node) = qname.

We do not consider types here; otherwise, every update operation should update the value of type-nameF (node) to
xs:anyType, for any node which is an ancestor or a descendant of the target node in the store before the update or in
the store after the update. The validity(node) and validation-attempted(node) properties should also be updated for the
same nodes, to record the fact that node validity cannot be relied upon any more. Static typing would also be heavily
affected. Many techniques to face this problem could be studied, but they are out of the scope of this paper.

Hereafter we useu1, . . . , un to range on atomic updates.

4.3 Update lists

Update lists (∆) are sequences of atomic updates:∆ ≡ (u1, . . . , un). An update list represents a list of updates that
are collected during the execution of the code inside asnap , and are applied at once when thesnap scope is closed;
the result of such application is denoted by “apply∆ to store”. In our semantic framework, an update list is anordered
list, whose order is fully specified by the language semantics. However, if a processor were allowed to ignore such
order, the optimizer would gain some more freedom. For this reason, different approaches can be considered for the
definition of the effect of the application of a sequence of updates to a store. We describe here the following three
approaches:ordered, non-deterministic, or conflict-detection.

In the orderedapproach, the atomic updates are applied in the order specified by∆. In the non-deterministic
approach, the atomic updates are applied in an arbitrary order. In theconflict-detectionapproach, update application
is divided into conflict verification followed by store modification. The first phase tries and prove, by some simple
rules, that the update sequence is actually conflict-free, meaning that the ordered application of every permutation of
∆ would produce the same result. If verification fails, update application fails. If verification succeeds, the store is
modified, and the order of application is immaterial. Hence we get the benefit of determinism with no dependency on
the order of updates inside∆. Actually, we only consider those permutations where every insert precedes any delete.
This restriction allows many conflicts to be avoided, as detailed in the next subsection, and still does not depend on
the order of∆.

Theorderedapproach is simple and deterministic, but imposes more restrictions on the optimizer. Consider the
following pieces of code, wherecond($x) is any “simple” condition (i.e., it only depends on$x and does not modify
the store):

ordered-insert = for $x in $a where cond($x)
return snap insert $x into $list

declarative-insert = snap {for $x in $a where cond($x)
return insert $x into $bag}

In the first case, the programmer is trying to specify that updates should be performed immediately, hence re-
flecting the order in which they are requested, while in the second case no such indication is given. However, the
orderedapproach makes the two pieces of code semantically equivalent, hence preventing some natural optimiza-
tions. Assume, for example, that each element of$a is stored in a database, in an arbitrary order, together with its
document position; the ordered semantics forces the system to perform a sort operation, or a sorted retrieval, even
in thedeclarative-insert case. Thenon-deterministicapproach gives the optimizer more leverage, but non-
determinism makes code development harder, especially in the testing phase. Finally, theconflict-detectionapproach
gives the optimizer the same re-ordering freedom as the non-deterministic approach and avoids non-determinism.
However, it rules out many reasonable pieces of code. For example, the declarative-insert code above would raise
an exception any time we try and insert more than one element, since the order of two insertions into the same par-
ent affects the result. Hence, in this case, the programmer is forced to write the function in the non-optimizable
ordered-insert version, and the optimization advantage over the ordered execution approach case is lost.The fact that
theconflict-detectionapproach raises run-time failures, where the same piece of code may fail or not depending on the
state of the store, is also a problem.

5 SEMANTICS 10

Conflict-detection can be actually combined with the other approaches, yielding an hybrid approach where we first
check for some class of conflicts, raise an error if one is present, and otherwise execute the updates in either an ordered
or a non-deterministic approach.

Our implementation currently support all the three semantics. We believe more experience with concrete applica-
tions is needed in order to assess the best choice.

4.4 Update conflicts

We say that a set of atomic updates are “in conflict” when the order of their application to some store affects the result.
We first discuss binary conflicts, where we distinguishvalidity conflictsandresult conflicts.

Two updatesu1, u2 are in avalidity conflictif a store exists such that they are both valid in the store, butu1 is not
valid afteru2 is applied. The only precondition that may become invalid because of an update is condition 3 on insert
(nodeseq, nodepar, nodepos), in casenodeposis a child ofnodepar, since it would be invalidated by a preceding delete
(nodepos).3 Since replace is translated as insert after a node followed by a delete of the same node (Section 5.4), every
replace operation generates a delete-insert conflict. These conflicts are avoided by stipulating that every insertion is
always performed before any deletion.

Two updatesu1, u2 are in aresult conflictif a store exists such that applyingu1, u2 or u2, u1 yield different stores.
Two operations insert(nodeseq1, nodepar, nodepos), and insert(nodeseq2, nodepar, nodepos), are in result conflict if
nodeseq1 6= nodeseq2. We also have a result conflict between rename(node, qname1) and rename(node, qname2),
whenqname1 6= qname2. The insert-insert conflict is a serious issue, since it arises when one writes the following
code, which we believe may commonly occur.

snap { for $x in $seq
...
return insert f($x) into $bag

}

A set of operations is conflict-free if no pair is in conflict. We suspect that the opposite implication is true as well.
Anyway, we believe that conflicts should be detected by focusing on binary conflicts only.

5 Semantics

We describe the semantics of XQuery!, following the approach of [8]: each expression is normalized to acoreexpres-
sion, and the meaning of core expressions is defined.

5.1 XQuery! Core

Figure 2 describes the XQuery! core grammar. It contains the same set of expression as the grammar from the previous
section. However, note the absence of optionalsnap keywords in front of atomic updates. We will see in the next
section that these are normalized into regularsnap expressions.

5.2 Normalization

Normalization is trivial for most of the new expressions in XQuery!. Normalization remains unchanged for all other
XQuery 1.0 expressions.

In the following normalization rules$xi for anyi is a fresh variable.

3If one considers an erase operation which deletes nodes fromN, then any operation which hasnodein its parameters would be in validity
conflict with erase (node).

5 SEMANTICS 11

CExpr ::= . . . (: XQuery 1.0 expressions :)
| CDeleteExpr (: Delete atomic update :)
| CInsertExpr (: Insert atomic update :)
| CReplaceExpr (: Replace atomic update :)
| CRenameExpr (: Rename atomic update :)
| CCopyExpr (: Deep copy expression :)
| CSnapExpr (: Snap expression :)

CDeleteExpr ::= delete { CExpr }
CInsertExpr ::= insert { CExpr } CInsertLocation
CInsertLocation ::= (as first | as last) into { CExpr }

| before { CExpr }
| after { CExpr }

CReplaceExpr ::= replace { CExpr } with { CExpr }
CRenameExpr ::= rename { CExpr } to { CExpr }
CCopyExpr ::= copy { CExpr }
CSnapExpr ::= snap (nondeterministic | ordered)? { CExpr }

Figure 2: Core XQuery! Grammar

Normalization of Delete

A delete expression with asnap modifier is normalized as a composition ofsnap anddelete .

[snap {delete { Expr1}}]
snap { [delete { Expr1}] }

A delete expression is normalized into iteration over a coredelete expression. Remember that the delete
expression can take a sequence of nodes as input, while an atomic delete takes a single node as input.

[delete { Expr1}]
for $x0 in { [Expr1] } return delete { $x0}

Normalization of Insert

An insert expression with asnap modifier is normalized as a composition ofsnap andinsert .

[snap insert { Expr1} ((as first |as last)? into |before |after) { Expr2}]
snap { [insert { Expr1} ((as first |as last)? into |before |after) { Expr2}] }

An insert expression is normalized into a core insert expression. In the case of an insert into without a modifier,
it is treated as inserting as the last node within the given element.

[insert { Expr1} into { Expr2}]
insert {copy { [Expr1] }} as last into { [Expr2] }

[insert { Expr1} ((as first |as last) into |before |after) { Expr2}]
insert {copy { [Expr1] }} ((as first |as last)? into |before |after) { [Expr2] }

Note the presence of an explicitcopy operation, introduced during normalization to make sure that copying the
input node is performed during the querying part of the processing, before update application. This avoids some
classes of interactions between different updates, hence some update conflicts, that would otherwise happen if the
copying were done at the atomic update level. For instance, consider the following query.

5 SEMANTICS 12

snap {
let $x := <a/>
return (insert into $x,

insert <c/> into $y,
$x)

}

Since the two insertions are enclosed in the samesnap scope, they should not interact. However, assume that
copy , instead of preceding update application, happened as part of insertion. If the two insertions are executed in
the textual order, then they have no interaction, and$x has noc descendant. But if we first insertc into $y, then copy
$y, and finally insert the copy, then$x ends with ac descendant. By copying everything in advance, this conflict is
avoided. We believe this is the best choice, but one must be aware that this implies that the following piece of code is
equivalent to the code above, hence doesnot insert ac descendant into$x.

snap {
let $x := <a>
return (insert <c/> into $y,

insert into $x,
$x)

}

Normalization of Replace

A replace expression with asnap modifier is normalized as a composition ofsnap andreplace .

[snap replace { Expr1} with { Expr2}]
snap { [replace { Expr1} with { Expr2}] }

A replace expression is compiled into a core replace expression, where the value to be inserted is copied first.

[replace { Expr1} with { Expr2}]
replace { [Expr1] } with {copy { Expr2}}

Normalization of Rename

A rename expression with asnap modifier is normalized as a composition ofsnap andrename .

[snap rename { Expr1} to { Expr2}]
snap { [rename { Expr1} to { Expr2}] }

A rename expression is compiled into a corerename expression.

[rename { Expr1} to { Expr2}]
rename { [Expr1] } to { Expr2}

Normalization of Copy

A copy expression is normalized to a corecopy expression.

[copy { Expr1}]
copy { [Expr1] }

5 SEMANTICS 13

Normalization of Snap

A snap expression is normalized into a coresnap expression.

[snap { Expr1}]
snap { [Expr1] }

5.3 Dynamic semantics: the judgment

The semantics of XQuery 1.0 if formally described using inference rules notations [8].
The main judgment is the following:

dynEnv` Expr⇒ value

which means: given the dynamic contextdynEnv, the expressionExpr yields the valuevalue. To deal with delayed
updates and side-effects, we extend it as follows:

store0; dynEnv` Expr ⇒ value; ∆; store1

Here,store0 is the initial store,dynEnvis the dynamic context,Expr is the expression being evaluated,valueand∆
are the value and the list of atomic updates returned by the expression, andstore1 is the new store after the expression
has been evaluated. The updates in∆ have not been applied tostore1 yet, butExpr may have modifiedstore1 thanks
to a nestedsnap , or by allocating new elements.

Observe that, while the store is modified, the update list∆ is just returned by the expression, exactly as thevalue.
This property hints at the fact that an expression which just produces atomic updates, without applying them, is actually
side-effects free, hence can be evaluated with the same approaches used to evaluate pure functional expressions. This is
the main reason to use a snapshot semantics: inside the innermostsnap , where updates are collected but not applied,
lazy evaluation techniques can be applied.

The presence of stores and∆ means that every judgment in XQuery 1.0 must be extended in order to properly
deal with them. Specifically, every semantic judgment which contains at least two subexpressions has to be extended
in order to specify which subexpression has to be evaluated first.

Evaluation order is irrelevant if the subexpressions contain no updates, or if they contain updates but nosnap .4

Consider for example the rule for the sequence constructor. The two versions below specify two different evaluation
orders, left-to-right and right-to-left, respectively (in XQuery! we adopt the first one).

store0; dynEnv` Expr1 ⇒ value1; ∆1; store1
store1; dynEnv` Expr2 ⇒ value2; ∆2; store2

store0; dynEnv` Expr1, Expr2 ⇒ value1, value2; (∆1,∆2); store2

store0; dynEnv` Expr2 ⇒ value2; ∆2; store1
store1; dynEnv` Expr1 ⇒ value1; ∆1; store2

store0; dynEnv` Expr1, Expr2 ⇒ value1, value2; (∆1,∆2); store2

If the subexpressions do not apply updates, the two rules produce the same list of values and the same list of
pending updates,in the same order, although they specify a different evaluation order. Of course,∆1 must precede
∆2 in the result, when theorderedapproach is followed, but this is not harder than preserving the order of (value1,
value2); preserving update order is more complex in the case of FLWOR expressions (Section 6).

In the Appendixes we present the semantics of the most important core XQuery 1.0 expressions, each with an
evaluation order specified. In the Appendixes we also present a different approach, where the evaluation order is left
mostly unconstrained, as happens with XQuery 1.0.

4Evaluation order is actually relevant to decide which failures can be raised.

5 SEMANTICS 14

5.4 Dynamic semantics of the new operations

We have to define the semantics ofcopy , of the update operators, and ofsnap . copy just invokes the corresponding
operation on the current store. The evaluation of an update operation produces an atomic update, which is added to
the list of the pending atomic updates produced by the subexpressions, whilereplace producestwoatomic updates,
insertion and deletion.

The metavariables used in the result position are normative. This means that, if a judgment in the premise uses
nodein the result position, as in:

store0; dynEnv` Expr ⇒ node; ∆1; store1,

the judgment can only be applied ifExpr evaluates to a value which is a node; the same is true for the metavariables
nodei (for any i), nodepar, nodepos. The metavariablenodeseqranges over node sequences, andnameranges over
qnames.

We now present the semantics of the new operators.

Semantics of replace:

store0; dynEnv` Expr1 ⇒ node; ∆1; store1
store1; dynEnv` Expr2 ⇒ nodeseq; ∆2; store2

store2; dynEnv` parent(node) ⇒ nodepar; (); store2
∆3 = (∆1,∆2, insert(nodeseq, nodepar, node), delete(node))

store0; dynEnv` replace { Expr1} with { Expr2} ⇒ (); ∆3; store2

The evaluation produces an empty sequence and an update list. It may also modify the store, but only if eitherExpr1
or Expr2 modify it. If they only perform allocations or copies, their evaluation can still be commuted or interleaved.
If either executes asnap , the processor must follow the order specified by the rule, since, for example,Expr2 may
depend on the part of the store which has been modified by asnap in Expr1. The two atomic updates produced by
the operation are just inserted into the pending update list∆3 after every update requested by the two subexpressions.
The actual order is only relevant if theorderedsemantics has been requested for the smallest enclosingsnap .
Semantics of delete:

A delete operator evaluates its argument and inserts an atomic update into∆.

store0; dynEnv` Expr ⇒ node; ∆1; store1
∆2 = (∆1, deletenode)

store0; dynEnv` delete { Expr} ⇒ (); ∆2; store1

Semantics of insert:

Insert Location Judgments

store0; dynEnv` as last into { node} ⇒ (nodepar, nodepos); store0; ()
store0; dynEnv` into { node} ⇒ (nodepar, nodepos); store0; ()

store0; dynEnv` as first into { node} ⇒ (node, node); store0; ()

store0; dynEnv` last child otherwiseself(node) ⇒ (nodepos); store0; ()
store0; dynEnv` as last into { node} ⇒ (node, nodepos); store0; ()

store0; dynEnv` parent(node) ⇒ (nodepar); store0; ()
store0; dynEnv` after { node} ⇒ (nodepar, node); store0; ()

5 SEMANTICS 15

store0; dynEnv` is first child(node) ⇒ true; store0; ()
store0; dynEnv` parent(node) ⇒ nodepar; store0; ()

store0; dynEnv` before { node} ⇒ (nodepar, nodepar); store0; ()

store0; dynEnv` is first child(node) ⇒ false; store0; ()
store0; dynEnv` parent(node) ⇒ nodepar; store0; ()

store0; dynEnv` precedingsibling(node) ⇒ nodepos; store0; ()
store0; dynEnv` before { node} ⇒ (nodepar, nodepos); store0; ()

Main Insert Judgment

store0; dynEnv` Expr1 ⇒ nodeseq; ∆1; store1
store1; dynEnv` Expr2 ⇒ node2; ∆2; store2

store2; dynEnv` InsertLocation node2 ⇒ (nodepar, nodepos); (); store2
∆3 = (∆1,∆2, insert(nodeseq, nodepar, nodepos))

store0; dynEnv` insert { Expr1} InsertLocation { Expr2} ⇒ (); ∆3; store2

Semantics of rename:

store0; dynEnv` Expr1 ⇒ node; ∆1; store1
store1; dynEnv` Expr2 ⇒ name; ∆2; store2

∆3 = (∆1,∆2, rename(node, name))
store0; dynEnv` rename { Expr1} to { Expr2} ⇒ (); ∆3; store2

Semantics of copy:

store0; dynEnv` Expr ⇒ node1; ∆1; store1
(store2, node2) = deepcopy(store1, node1)

store0; dynEnv` copy { Expr} ⇒ node2; store2; ()

Semantics ofsnap :

The rule forsnap looks very simple: thesnap argument is evaluated, it produces its own update list∆, and∆ is
applied to the store.

store0; dynEnv` Expr ⇒ node; ∆; store1
store2 = apply∆ to store1

store0; dynEnv` snap { Expr} ⇒ (); (); store2

The evaluation ofExpr may itself modify the store, and this modified store is updated by thesnap . For example,
the following piece of code inserts<a/><c/> into $x , in this order, since the internalsnap is evaluated first,
and it only applies the updates in its own scope.
snap ordered { insert {<a/>} into $x,

snap insert {} into $x,
insert {<c/>} into $x }

Hence, the formal semantics implicitly specifies a stack-like behavior, reflected by the actual stack-based imple-
mentation that we describe in Section 6. However, the stack needs not be explicitly represented in the formal semantics;
it is built into the recursive machinery of the deduction process exploited in the formal semantic definition.

6 IMPLEMENTATION 16

6 Implementation

In this section, we describe the implementation of XQuery!, focusing on thesnap operator and on the three semantics
for update application described in Section 4. The nondeterministic and conflict-detection semantics only differ in the
fact that the first is missing the conflict-detection phase; we call them theunordered semantics. They are easier to
implement, as they do not require the processor to keep track of update order.

Our implementation is done on top of the Galax XQuery engine [24, 23], which includes an optimizer based on a
variant of a standard nested-relational algebra. The implementation of the update extension works over both XML in
main-memory, and the Jungle persistent store [30].

6.1 Compilation architecture

The implementation of XQuery! did not require any major changes to the XQuery processing model or compila-
tion architecture. As for XQuery 1.0, the compilation proceeds by first parsing the query into an AST, followed by
normalization, a phase of syntactic rewriting, compilation into an XML algebra, optimization and evaluation.

The XQuery core is extended as described in Section 5. A number of syntactic rewritings must be guarded by a
judgment which detects whether side effects occur in a given subexpression to avoid changing the semantics for the
query. Of course, this is not necessary when the query is guarded by an innermostsnap , which is asnap whose
scope contains no othersnap , nor any call to any function which may cause asnap to be evaluated. In this case, a
large number of rewritings immediately apply.

In the rest of this section, we focus on the changes required to the run-time and to the optimizer.

6.2 Changes to the data model

Changes to the data model implementation to support atomic updates were not terribly invasive. The only two signifi-
cant challenges relate to dealing with document order maintenance, and garbage collection of persistent but unreach-
able nodes, resulting from the detach semantics. Both of these aspects are beyond the scope of this paper.

6.3 Nondeterministic and conflict-detection semantics

The nondeterministic and conflict-detection semantics are both independent on the actual order of the atomic updates
collected in asnap scope. Their implementation is based on a stack ofdelta bags, which are unordered sequences of
atomic updates, implemented as lists whose internal order is ignored. When entering a snap expression, an empty delta
bag is pushed on the top of the stack. The invocation of an update operation generates a delta, which represents an
atomic update as a tuple containing the operation name and the node ids of the parameters. The delta is then inserted
into the delta bag currently at the top of the stack. When exiting asnap , the top-most delta bag is popped from the
stack, reordered so that insertions precede deletions, and applied. In the case of conflict-detection semantics, it is also
checked for conflicts, in linear time, using a pair of hash-tables over node ids.

This implementation strategy has the virtue that it does not require substantial modifications to the existing XQuery
infrastructure. Specifically, since the order inside a delta bag is irrelevant, there is no need to actually enforce the left-
to-right evaluation order inside an innermostsnap .

6.4 Ordered semantic

In the ordered semantic, the main challenge is to preserve the left-to-right order of the atomic updates dictated by the
formal semantic. Since the actual evaluation order may differ from this, we introduce a data structure to keep track of
the update order dynamically. This data structure is a recursive tree like structure, which we call anested delta list.
This is most easily explained by the following snippet of ML-style code.

type nested_delta_list =
| DeltaList of nested_delta_list list
| Concrete_Update of atomic_update

To illustrate why it is necessary to have a nested list instead of a simple list, consider the following simple query:

6 IMPLEMENTATION 17

for $x in (1,2, insert { text { 3 } } as last into { $log },
4, insert { text { 5 } } as last into { $log }, 6)

return foo($x)

The implementation needs to ensure that the insert of3 and 5 come before any insert that comes fromfoo .
However, since the outer branch contains nosnap , the compiler may decide to evaluate the FLWOR expression in a
pipelined fashion, hence interleaving the evaluation of the internal sequence and offoo($x) . To preserve the update
order, a nested list is created inside the current update list, and theinsert of 3 is put there. Insertions generated by
foo will be added after the nested list, while the insertions generated by the inner sequence will be added inside the
nested list, after theinsert of 3. Hence, by flattening this structure, updates are read in the correct order. Since
XQuery expressions can be arbitrarily nested, the corresponding data structure must be nested as well.

6.5 Non-interleaved evaluation

In the previous section we have seen that the interleaved evaluation which is implied by a cursor-iterator lazy imple-
mentation is not a problem in a FLWOR expression that invokes nosnap . However, an internalsnap may force the
materialization of the sequence whichfor iterates upon, either to ensure that thereturn expression sees all the effects
of the for sequence expression, or to ensure that thefor expression sees none of the effects of thereturn expression.
Consider for example the following expression:

1. for $x in
2. snap nondeterministic {
3. for $y in $list
4. where condition($y)
5. return $y//a, insert {<y>{$y}<y/>} as last into {$log}
6. }
7. return $x//b, insert {<x ycount="{count($log)"}>{$x}<x/>}
8. as last into {$log}

The language semantics imposes that everyy element precedes everyx element in the log (lines 5, 7), and that
ycountis always the size of the log up to the latest previousy element (line 7). While thenested delta listtechnique
can solve the order problem, the dependency introduced by thesnap (line 2) and thecount (line 7) requires the
materialization of the result of the snap expression.

The problem is orthogonal to the presence of thenondeterministic keyword, which we put here in order to
allow multiple insertions under the same parent.

6.6 Changes to the optimizer

Again the non-deterministic and conflict-detection semantics differ only in the conflict-detection phase, and as such
impact the logical optimizer in the same way. The judgments for the ordered case are often similar, apart from cases
when join-reordering optimizations are used.

Galax uses a rule-based approach in several phases of logical optimization. Most rewrite rules required some
modification. Details of these modifications and correctness proofs are beyond the scope of this work. The most
common modifications were those needed to ensure that expressions are evaluated with the correct cardinality, or that
ordering constraints are respected.

We come back to the example given in Section 2.5. Here, for each person, we insert all hisn purchases into
$purchasers, and return an item which indicates its name and the value ofn.

for $p in $auction//person
let $a :=

for $t in $auction//closed_auction
where $t/buyer/@person = $p/@id
return (insert { <buyer person="{$t/buyer/@person}"

itemid="{$t/itemref/@item}" /> }
into { $purchasers }, $t)

return <item person="{ $p/name }">{ count($a) }</item>

7 CONCLUSION 18

Our goal is here to recover a join and group-by plan. The syntax of the query plan below is a simplified version
of that detailed in [24]. Naively evaluated, this query has complexity O(|person| ∗ |closed auction|). Using the plan
below with a typed hash join, we can recover the join complexity of O(|person| + |closed auction| + |matches|),
which is quite a substantial real world saving.

Snap {
MapFromItem {

<person name="{ Input#p/name }">{ count(Input#a) }</person>
}
(GroupBy [Input#p, {

(insert { <buyer person="{Input#t/buyer/@person}"
itemid="{Input#t/itemref/@item}" /> }

as last into { $purchasers }, Input#t) }]
(LeftOuterJoin(MapFromItem{[p:Input]}

($auction//person),
MapFromItem{[t:Input]}

($auction//closed_auction))
on { Input#t/buyer/@person = Input#p/@id }

)
)

}

If the insert had asnap immediately around it, join recovering would be difficult. One key property of the hash
join is the ability to materialize at least one branch; we call this property “independence”. Withsnap insert , the
materialized branch may be changed by thesnap , which would violate independence. This independence property is
easily verified if nosnap is found inside the query fragment; the outersnap creates no problem.

7 Conclusion

We presented here an extension of XQuery 1.0 which supports programmer-controlled delay of update application,
in order to combine the expressive power of side-effects with the optimizability of side-effect free code fragments.
The esential feature of this proposal is the free nesting of thesnap operator, and we described the semantics and
implementation of this operator. The proposal leaves many issues open for further investigation, such as static typing,
optimization,and transactional mechanisms.

Acknowledgments. Some versions of the language we describe here have been discussed in the Update Task Force
of the W3C XQuery Working group, although the proposal ofsnap free nesting, the formalization of the seman-
tics, and the implementation, are authors contributions. We want to thank Dana Florescu, Don Chamberlin, Ioana
Manolescu, Kristoffer Rose, Mukund Raghavachari, Rajesh Bordawekar, and Michael Benedikt for their feedback on
earlier versions of this paper. We thank Dan Suciu for proposingsnap as the keyword used in XQuery!.

References

[1] Michael Benedikt, Angela Bonifati, Sergio Flesca, and Avinash Vyas. Adding updates to XQuery: Semantics,
optimization, and static analysis. InXIME-P’05, 2005.

[2] Michael Benedikt and Irini Fundulaki. XML subtree queries: Specification and composition. InTenth Interna-
tional Symposium on Database Programming Languages (DBPL), 2005.

[3] Bard Bloom. Lopsided little languages: Experience with XQuery. InXIME-P’05, 2005.

[4] Scott Boag, Don Chamberlin, Mary F. Fernandez, Daniela Florescu, Jonathan Robie, and Jérôme Simeon.
XQuery 1.0: An XML query language. W3C Working Draft, April 2005.

[5] Don Chamberlin. Communication regarding an update proposal. W3C XML Query Update Task Force, May
2005.

REFERENCES 19

[6] Don Chamberlin and Jonathan Robie. XQuery update facility requirements. W3C Working Draft, June 2005.

[7] XQuery 1.0 and XPath 2.0 data model. W3C Working Draft, April 2005.

[8] Denise Draper, Peter Fankhauser, Mary Fernández, Ashok Malhotra, Kristoffer Rose, Michael Rys, Jerôme
Siméon, and Philip Wadler. XQuery 1.0 and XPath 2.0 formal semantics, W3C Working Draft, Aug 2004.
http://www.w3.org/TR/query-semantics .

[9] Daniela Florescu et al. Communication regarding an XQuery update facility. W3C XML Query Working Group,
July 2005.

[10] Don Chamberlin et al. Communication regarding updates for XQuery. W3C XML Query Working Group,
October 2002.

[11] Mary Ferńandez, Jer̂ome Siḿeon, and Philip Wadler.XQuery from the experts, chapter Introduction to the Formal
Semantics. Addison Wesley, 2004.

[12] Daniela Florescu. Communication regarding update grammar. W3C XML Query Update Task Force, April 2005.

[13] Daniela Florescu, Andreas Grünhagen, and Donald Kossmann. XL: An XML programming language for Web
service specification and composition. InProceedings of International World Wide Web Conference, pages
65–76, May 2002.

[14] Jim Gray.Transaction Processing : Concepts and Techniques. Morgan Kaufmann, 1992.

[15] Jan Hidders, Jan Paredaens, Roel Vercammen, and Serge Demeyer. A light but formal introduction to XQuery.
In Database and XML Technologies (XSym), pages 5–20, May 2004.

[16] Simon Peyton Jones. Tackling the awkward squad: monadic input/output, concurrency, exceptions, and foreign-
language calls in Haskell. In ”Engineering theories of software construction”, ed Tony Hoare, Manfred Broy,
Ralf Steinbruggen, IOS Press, 2001.

[17] Andreas Laux and Lars Matin. http://www.xmldb.org/xupdate, October 2000.

[18] Patrick Lehti. Design and implementation of a data manipulation processor for an XML query processor, Tech-
nical University of Darmstadt, Germany, Diplomarbeit, 2001.

[19] Xavier Leroy.The Objective Caml system, release 3.08, Documentation and user’s manual. Institut National de
Recherche en Informatique et en Automatique, july 2004.

[20] Nancy A. Lynch and Michael Merritt. Introduction to the theory of nested transactions. InProceedings of
International Conference on Database Theory (ICDT), pages 278–305, 1986.

[21] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen.The definition of Standard ML (revised). MIT
Press, 1997.

[22] Nicola Onose and Jérôme Siḿeon. XQuery at your Web service. InProceedings of International World Wide
Web Conference, New York, NY, May 2004.

[23] Christopher Ŕe, Jerome Simeon, and Mary Fernandez. A complete and efficient algebraic compiler for XQuery.
Technical report, AT&T Labs Research, 2005.

[24] Christopher Ŕe, Jerome Simeon, and Mary Fernandez. A complete and efficient algebraic compiler for XQuery.
In ICDE, Atlanta,GA, April 2006.

[25] Michael Rys. Proposal for an XML data modification language, version 3, May 2002. Microsoft Corp., Redmond,
WA.

[26] Arnaud Sahuguet and Bogdan Alexe. Sub-document queries over XML with XSQuirrel. InProceedings of
International World Wide Web Conference, pages 268–277, 2005.

A OPEN ISSUES 20

[27] A. Schmidt, F. Waas, M. Kersten, M. Carey, Ioana Manolescu, and Ralph Busse. XMark: A benchmark for XML
data management. InVLDB, pages 974–985, August 2002.

[28] Gargi M. Sur, Joachim Hammer, and Jérôme Siḿeon. An XQuery-based language for processing updates in
XML. In PLAN-X, 2004.

[29] I. Tatarinov, Z. Ives, A. Halevy, and D. Weld. Updating XML. InSIGMOD, 2001.

[30] Avinash Vyas, Mary F. Fernandez, and Jérôme Siḿeon. The simplest XML storage manager ever. InXIME-P
2004, pages 37–42, Paris, France, June 2004.

A Open Issues

In this section, we list open issues and in some cases discuss some possible directions to address those issues. Most of
those issues typically relate to extensions to the framework proposed above.

A.1 Evaluation order

XQuery (notice, no bang here) leaves a great freedom in evaluation order, which is quite important to allow for some
database optimizations.

First of all, XQuery allows any operator to evaluate the operands in any order, with the only exception of condi-
tional and typeswitch which cannot start evaluating a branch until they know which branch should be selected. We
discuss here a variant of XQuery!, lazy-XQuery!, where we keep this approach and only add a new operatore1;e2,
which cannot start evaluatinge2until e1has been fully evaluated.

In XQuery, evaluation can be partial: evaluation can stop when the final outcome is determined modulo failure,
that is, when the final outcome is either a failure or a valueV , and the processor can returnV in this case.5 We adopt
the same rule for lazy-XQuery!. In this case, however, the “final outcome” also includes any effect on the store and
any pending update. In other words, the processor may skip a subexpression that, apart from possibly failing, would
be otherwise irrelevant for the returned valueand for the state of store.

Lazy-XQuery! is essentially a conservative extension of XQuery, but its formalization requires a drastic change to
the formal semantic style (the same change should be applied to XQuery formal specification if one wanted to formally
specify failure handling, hence evaluation order).

To formalize lazy-XQuery! evaluation order, we believe one must adopt a small-step semantic approach, where the
typical judgement is the following, which specifies that, when the store, dynamic environment, and pending update
list arestore, dynEnv, ∆, the processor may reduceExpr to Expr′ and update the other components tostore′, ∆′.

store; dynEnv; Expr;∆ ⇒ store′; Expr′;∆′

This style is verbose but very easy to read. For example, the rule forsnap is the following. (Metavariables are
normative; this means thatvaluebelow is only matched by a value.)

store; dynEnv; Expr; () ⇒ store′; value;∆′

store′′ = apply∆′ to store′

store; dynEnv; snap {Expr};∆ ⇒ store′′; value;∆

The rule specifies that inside asnap scope the outer pending updates are not seen. The operator fully evaluates its
body and, at the end of the evaluation, it applies the collected pending updates to the store and returns the computed
value.

The rules below explain the difference between “,” and “;”: evaluation of the second subexpression is allowed
in “;” when the first is fully evaluated, while the second subexpression can be freely evaluated in the “,” case. The
difference is between the second and the fourth rule.

5Quoting [4]: At an intermediate stage during evaluation of the sequence, some of its items will be known and others will be unknown. If, at
such an intermediate stage of evaluation, a processor is able to establish that there are only two possible outcomes of evaluating Q, namely the value
V or an error, then the processor may deliver the result V without evaluating further items in the operand E.

A OPEN ISSUES 21

store; dynEnv; Expr1;∆ ⇒ store′; Expr′1;∆
′

store; dynEnv; (Expr1, Expr2);∆ ⇒ store′; (Expr′1, Expr2);∆
′

store; dynEnv; Expr2;∆ ⇒ store′; Expr′2;∆
′

store; dynEnv; (Expr1, Expr2);∆ ⇒ store′; (Expr1, Expr′2);∆
′

store; dynEnv; Expr1;∆ ⇒ store′; Expr′1;∆
′

store; dynEnv; (Expr1; Expr2);∆ ⇒ store′; (Expr′1; Expr2);∆
′

store; dynEnv; Expr2;∆ ⇒ store′; Expr′2;∆
′

store; dynEnv; (value; Expr2);∆ ⇒ store′; (value; Expr′2);∆
′

These rules allow evaluation of(Expr1, Expr2) to proceed by interleaving evaluation ofExpr1 and evaluation of
Expr2; of course, they must be completed by the following general rule.

store; dynEnv; Expr;∆ ⇒ store′; Expr′;∆′ store′; dynEnv; Expr′;∆′ ⇒ store′′; Expr′′;∆′′

store; dynEnv; Expr;∆ ⇒ store′′; Expr′′;∆′′

We present now the rule to evaluatefor-return. For typographic reasons, we useExpr → Expr′ to abbreviate an
evaluation rule which ignores all the other metavariables. i.e. to abbreviate the rule:

store; dynEnv; Expr;∆ ⇒ store; Expr′;∆

Here are the rules forfor. The combination of the first two rules allows the processor to evaluate the return clause
for each item in the binding clause as soon as this item is ready, without waiting for the full binding sequence to be
evaluated. The sequence order of the result is preserved, but the evaluation order is unconstrained.

for $x in (Expr1, Expr2) return Expr
→ (for $x in Expr1 return Expr), (for $x in Expr2 return Expr)

store; (dynEnv+ $x ⇒ item); Expr;∆ ⇒ store′; Expr′;∆′

store; dynEnv; for $x in item return Expr;∆ ⇒ store′; Expr′;∆′

for $x in () return Expr → ()

A.2 Dealing with validated documents

One of the most difficult, and unexplored, question, relating to XML updates, is how to deal with validated document.
There are two important classes of constraints that must be verified on documents during query processing:

Data model constraints Some constraints must hold on the XQuery data model. Those are strong constraints which
must be always verified during evaluation. Most notably, the type annotation on each element, and attribute
node, must be consistent with the content of the node. As a result, XML update operations must make sure they
always maintain those constraints. Other issues have to do with the constraint that text nodes contained in other
nodes must have non empty content and cannot be followed by a text node sibling. This is much simpler to deal
with.

Validation constraints Other constraints have to do with validity of the document. In the presence of updates, it is
easy to change the document in a way that changes the validity property of some nodes. Users may want to
make sure that their updates always preserve the validity according to the original schema. This is a constraint
which may be temporarily violated for the needs of certain applications.

A OPEN ISSUES 22

In the presence of XML update operations, several questions relating to XML validation can be raised: (1) what
language operations are necessary to support applications dealing with validated documents? (2) how do those opera-
tions make sure to address the two classes of constraints mentioned above? (3) Assuming the presence of an in-place
validation operation, is it possible to support static typing?

For, the first two questions, one possible approach is outlined below, based on the used of a ‘revalidate’ expression
which performs in-place revalidation of a given tree. The most important remark here is to note that revalidation is
treated as any other atomic updates. The first step is to extend the set of atomic updates presented in Section 4 with a
revalidate operation, as follows:

• revalidate node

This operation revalidates a node and its subtree. Node identity is unaffected by this operator but its type
annotation, typed value, etc. are changed. When validate is applied, all ancestors of the node have their types
changed to xs:anyType.

The second step is to extend the grammar and core grammar with the corresponding revalidate expression, as
follows.

Expr::= . . .
| RevalidateExpr (: Atomic validate inplace :)

RevalidateExpr:= “snap ”? “ revalidate ” “ {” Expr “}”

CExpr ::= ... (: All existing XQuery core expressions :)
| CRevalidateExpr (: Validate inplace :)

CRevalidateExpr:= “snap ”? “ revalidate ” “ {” CExpr “}”
The third step is to add the corresponding normalization rule from the language grammar to the language core

grammar.

Normalization of Revalidate

[[revalidate { Expr1}]]
revalidate { [[Expr1]]}

[[snap revalidate { Expr1}]]
snap {revalidate {copy { [[Expr1]]}}}

Finally, the last step is to provide the semantics of revalidate over an existing data model tree.
Semantics of revalidate:

store0; dynEnv` Expr ⇒ node; store1; ∆1

∆2 = (∆1, revalidatenode)
store0; dynEnv` revalidate { Expr} ⇒ (); store1; ∆2

This approach is attractive since it treats revalidation as any other atomic update, and gives the programmer much
controll about validation time. However, a programmer may desire writing code that tentatively applies some updates,
try to validate the result, and leaves data unchanged in case validation fails. One could add a modifier to the snap
keyword, so thatsnap ifvalid {Expr } collects all updates generated byExpr , tentatively applies them, but
rolls back the effects in case any of the modified items cannot be revalidated.

This effect cannot be achieved with the operators we propose, since XQuery has no exception handling mechanism.
We propose such a mechanism in the next subsection.

A.3 Exception handling

We propose a standardtry { Expr1} otherwise { Expr2} construct which executesExpr1 but passes the control
to Expr2 if Expr1 fails. Every pending update that had been collected but not yet applied at failure time will be
discarded. If failure happens atsnap time, i.e. if the application of a composite update fails, every atomic update that
was part of the failed composite update is discarded.

A OPEN ISSUES 23

Finally, we have to discuss the effect ofsnap expressions which had been completed inside thetry scope but
before the failure. Consider the following piece of code.

try { snap { update1 },
update2,
error()

}
catch { E2 }

While update2is discarded, as discussed, it is not clear whetherupdate1should be undone as well.
We first observe that both choices are equally easy to formalize. The following rule dictates thatupdate1 is

discarded, by evaluatingExpr2 in store. We call it the “rollback rule”.

store; dynEnv` Expr1 ⇒ fail ; ∆1; store1
store; dynEnv` Expr2 ⇒ value; ∆2; store2

store; dynEnv` try { Expr1} otherwise { Expr2} ⇒ value; ∆2; store2

The next rule, instead, only discards update2, since it usesstore1 to evaluateExpr2. We call it the “discard rule”.

store; dynEnv` Expr1 ⇒ fail ; ∆1; store1
store1; dynEnv` Expr2 ⇒ value; ∆2; store2

store; dynEnv` try { Expr1} otherwise { Expr2} ⇒ value; ∆2; store2

The discard rule is easier to implement, but the rollback version seems more useful and natural.
Assume, for example, that a programmer wants to perform a set of updates, validate the result, and rollback the

updates in case validation fails. With the rollback semantics, this can be obtained by the following piece of code, which
either returns$x as it was or it returns it updated and validated. Revalidation must be performed after the first snap
is closed, otherwise it would not see the effect of the updates, but its failure must imply the rollback of the previously
snapped updates which took place in the scope oftry , in order to reach the desired effect.

try { snap { ...updates to $x...},
snap { revalidate { $x } }

}
otherwise { $x }

A.4 Delete: detach vs. erase semantics

The next open issue relates to the definition of the semantics for the delete operation. As written, the semantics do not
actually delete nodes, but merelydetachthe given node from its parent. This brings a very clean semantics, notably
in the presence of variables where some deleted nodes may still be reachable from an actual variable. For instance,
consider the following query.

let $featured := auction()//item[@featured] return
(snap delete auction// * [@featured][last()],

count($featured))

One key question is how the variable is affected by the deletion of one of the nodes it contains. Following the
detachsemantics, those nodes are still reachable and can be counted. This may not be the prefered semantics in the
case the nodes are actually stored in a persistant repository and if the user expects the nodes to actually disappear from
that store. An alternative is anerasesemantics which effectively removes the nodes from the store. This semantics
requires some book-keeping in the formal definition of the store to ’mark’ the nodes which are effectively deleted. A
possible drawback of that semantics though is that it is unclear what to do with nodes pointed from a given variable:
do they actually disappear, is an error raised if the variable is accessed, etc. Note that the two semantics coincide in
the case where deleted nodes are not reachable from any variable.

The following sketches the semantics for a delete operation which supports the erase semantics.

B FORMAL DEFINITION OF THE DATA MODEL 24

• delete node (erase semantics)

delete a node. Accessing a node in a deleted tree is an error, however an insert into a deleted node area
within a snap is ignored. This will be discussed further in the section on conflicts.

With that proposed semantics, the following changes to the notion of conflicts must also be made. First we need
to define a notion of delete conflict.

Two updatesu1, u2 are indelete conflictif we u1 is a delete andu2 access a portion of the subtree deleted byu1.

Ordered Deterministic In the ordered semantics, a delete conflict can occur.

Unordered Nondeterministic There are also no delete conflicts, since we can order any deletes at the end of the
update sequence.

Unordered Determinsitic Remains unchanged.
Semantics of delete (erase semantics):
Finally, here is the inference rule for the delete with erase semantics.

store0; dynEnv` Expr ⇒ node; store1; ∆1

∆2 = (∆1, deletenode)
store0; dynEnv` delete { Expr} ⇒ (); store1; ∆2

B Formal Definition of the Data Model

B.1 The Store

A storeS is a quadruple(N, E, ord, F = (node-kindF , node-nameF , contentF)), with the constraints specified below.
The respect XQDMpredicate is defined later. We only consider three kinds here, to exemplify the techniques. In the
rest of the section we will just consider the element kind.A ⇀ B is the set of partial functions fromA to B. N is the
infinite set of all possible node ids.

Constraints on a store

N ⊆ N N is finite
E ⊆ N× N
ord ⊆ N× N is a strict total order onN
node-kindF : N → {element, attribute, text}
node-nameF : N ⇀ QNames
contentF : N ⇀ Strings
E, ord, F respect XQDM

To formalizerespect XQDMwe need a relationE-rel(m,n) that specifies thatm andn are part of a same docu-
ment.6 imm-sibE ,ord(m,n) means thatm andn are siblings, andm immediately precedesn. We writeE(m,n) to
signify (m,n) ∈ E, and similarly forord(m,n).

E∗(m,n) ⇔def m = n ∨ (∃m′. E(m,m′) ∧ E∗(m′, n))
E-rel(m,m′) ⇔def ∃n. E∗(n, m) ∧ E∗(n, m′)
imm-sibE ,ord(m,m′) ⇔def ∃n. E(n, m) ∧ E(n, m′) ∧ ¬∃m′′. (ord(m,m′′) ∧ ord(m′′,m′))

We can now define therespect XQDMpredicate, as the conjunction of the following three sentences.Nel , Nat ,
andNtx denote the subsets ofN where node-kindF evaluates to, respectively, element, attribute, text.

6We should actually speak of documentfragments, since we have no document node here.

B FORMAL DEFINITION OF THE DATA MODEL 25

1. Order respects document order, different documents are not mixed together, attributes precede element siblings:

E(m,m′) ⇒ ord(m,n)
E-rel(m,m′) ∧ E-rel(n, n′) ∧ ¬E-rel(m,n) ∧ ord(m,n) ⇒ ord(m′, n′)
E(m,n) ∧ E(m,n′) ∧ n ∈ Nat ∧ n′ ∈ Nel ⇒ ord(n, n′)

2. Constraints on the roles of different node kinds:

E ⊆ Nel × N
node-nameF : (Nel ∪ Nat) → QNames
contentF : Nat → Strings

3. Constraints the text content of documents:

imm-sibE ,ord(m,m′) ∧ m ∈ Ntx ⇒ m′ /∈ Ntx

E(m,n) ∧ n ∈ Ntx ⇒ contentF (n) 6= ′′ ′′

B.2 Store Equivalence

Two stores(N, E, ord, F) and(N′, E′, ord′, F′) are equivalent if there exists a permutationσ of N such that:

N = σ(N′)
E′(m,n) ⇔ E(σ(m), σ(n))
ord′(m,n) ⇔ ord(σ(m), σ(n))
contentF ′ = contentF ◦ σ
node-nameF ′ = node-nameF ◦ σ
node-kindF ′ = node-kindF ◦ σ

Every store operation that increasesN will only be defined modulo store equivalence.

B.3 Accessors

We formalize each accessor as a function that is applied to a storeS = (N, E, ord, F) and to other parameters, and
returns a value which is valid inS.

dm:nodekind((N, E, ord, F), n) =def node-kindF (n)
dm:children((N, E, ord, F), n) =def [n′ | E(n, n′) ∧ n′ ∈ (Nel ∪ Ntx)] ordered byord
dm:attributes((N, E, ord, F), n) =def [n′ | E(n, n′) ∧ n′ ∈ Nat] ordered byord
dm:parent((N, E, ord, F), n) =def [n′ | E(n′, n)]
allchildren((N, E, ord, F), n) =def [n′ | E(n, n′) ∧ n′ ∈ N] ordered byord

B.4 Building new trees

We define two mutually recursive constructors, newnode(store, children, F-value) and deepcopy(store, node), both
returning a pair(store′, node′).

• newnode((N, E, ord, F), children, F-value) allocates a new nodenode, whose node-kind, node-name, and content
are specified by the tupleF-value, performs a deep copy of the nodes in thechildren list, extendsE so thatnode
is the parent of these new nodes, and extendsord according to the document order rules. It returns the extended
store and the new node.

• deepcopy((N, E, ord, F), node) is defined as

deepcopy((N, E, ord, F), node) = newnode ((N, E, ord, F),
allchildren((N, E, ord, F), node),
(node-kindF (node), node-nameF (node), contentF (node))

)

We also define the newelement(store, children, name) constructor as

newelement(store, children, name) = newnode(store, children, (element, name, ↑))

C LANGUAGE SEMANTICS 26

C Language Semantics

We present here the semantics of the most important XQuery 1.0 operators, enriched in order to specify its effect of
the store and on the delta list. This semantics imposes an evaluation order for each operator.

C LANGUAGE SEMANTICS 27

store0; dynEnv` Expr1 ⇒ item1, . . . , itemm; ∆; store1
for i in 1 . . .m : storei; (dynEnv+ $x ⇒ itemi) ` Expr2 ⇒ valuei; ∆i; storei+1

∆′ = (∆,∆1, . . . ,∆m)
store0; dynEnv` for $x in Expr1 return Expr2 ⇒ value1, . . . , valuen; ∆′; storem+1

(f ⇒ fun($x1, . . . , $xm, Expr) : T1, . . . , Tn→T) ∈ funEnv
for j in 1 . . .m : storej ; dynEnv` Exprj ⇒ valuej ; ∆j ; storej+1

storem+1; (dynEnv+ $x1 ⇒ value1 + . . . + $xm ⇒ valuem) ` Expr ⇒ value′; ∆; storem+2

∆′ = (∆1, . . . ,∆m,∆)
store1; dynEnv` f(Expr1, . . . , Exprm) ⇒ value′; ∆′; storem+2

store; dynEnv` Expr1 ⇒ name; ∆; store1
store1; dynEnv` Expr2 ⇒ value; ∆; store2

(store3, node) = NewElement (store2, name, value)
store; dynEnv` element{ Expr1}{ Expr2} ⇒ node; ∆; store3

store; dynEnv` Expr1 ⇒ value1; ∆1; store1
store1; dynEnv` Expr2 ⇒ value2; ∆2; store2

∆ = (∆1,∆2)
store; dynEnv` Expr1, Expr2 ⇒ value1, value2; ∆; store2

store; dynEnv` Expr1 ⇒ value1; ∆1; store1
store1; (dynEnv+ $x ⇒ value1) ` Expr2 ⇒ value2; ∆2; store2

∆ = (∆1,∆2)
store; dynEnv` let $x := Expr1 return Expr2 ⇒ value2; ∆2; store2

store; dynEnv` Expr ⇒ true ; ∆1; store1
store1; dynEnv` Expr1 ⇒ value; ∆2; store2

∆ = (∆1,∆2)
store; dynEnv` if Expr then Expr1 else Expr2 ⇒ value; ∆; store2

store; dynEnv` Expr ⇒ false ; ∆1; store1
store1; dynEnv` Expr2 ⇒ value; ∆2; store2

∆ = (∆1,∆2)
store; dynEnv` if Expr then Expr1 else Expr2 ⇒ value; ∆; store2

store; dynEnv` Expr1 ⇒ value1; ∆1; store1
store1; dynEnv` Expr2 ⇒ value2; ∆2; store2

b = equal (value1, value2)
∆ = (∆1,∆2)

store; dynEnv` Expr1 = Expr2 ⇒ b; ∆; store2

Figure 3: XQuery! Semantics of Non-Update Operations

