
Tree
Automata
Techniques and
Applications

Hubert Comon Max Dauchet Rmi Gilleron

Florent Jacquemard Denis Lugiez Sophie Tison

Marc Tommasi

Contents

Introduction 9

Preliminaries 13

1 Recognizable Tree Languages and Finite Tree Automata 17
1.1 Finite Tree Automata . 18
1.2 The Pumping Lemma for Recognizable Tree Languages 26
1.3 Closure Properties of Recognizable Tree Languages 27
1.4 Tree Homomorphisms . 29
1.5 Minimizing Tree Automata . 33
1.6 Top Down Tree Automata . 36
1.7 Decision Problems and their Complexity 37
1.8 Exercises . 41
1.9 Bibliographic Notes . 45

2 Regular Grammars and Regular Expressions 49
2.1 Tree Grammar . 49

2.1.1 Definitions . 49
2.1.2 Regularity and Recognizabilty 52

2.2 Regular Expressions. Kleene’s Theorem for Tree Languages . . . 52
2.2.1 Substitution and Iteration 53
2.2.2 Regular Expressions and Regular Tree Languages 56

2.3 Regular Equations . 59
2.4 Context-free Word Languages and Regular Tree Languages . . . 61
2.5 Beyond Regular Tree Languages: Context-free Tree Languages . 64

2.5.1 Context-free Tree Languages 65
2.5.2 IO and OI Tree Grammars 65

2.6 Exercises . 67
2.7 Bibliographic notes . 69

3 Logic, Automata and Relations 71
3.1 Introduction . 71
3.2 Automata on Tuples of Finite Trees 73

3.2.1 Three Notions of Recognizability 73
3.2.2 Examples of The Three Notions of Recognizability 75
3.2.3 Comparisons Between the Three Classes 77
3.2.4 Closure Properties for Rec× and Rec; Cylindrification and

Projection . 78

TATA — October 28, 2004 —

4 CONTENTS

3.2.5 Closure of GTT by Composition and Iteration 80
3.3 The Logic WSkS . 86

3.3.1 Syntax . 86
3.3.2 Semantics . 86
3.3.3 Examples . 86
3.3.4 Restricting the Syntax . 88
3.3.5 Definable Sets are Recognizable Sets 89
3.3.6 Recognizable Sets are Definable 92
3.3.7 Complexity Issues . 94
3.3.8 Extensions . 94

3.4 Examples of Applications . 95
3.4.1 Terms and Sorts . 95
3.4.2 The Encompassment Theory for Linear Terms 96
3.4.3 The First-order Theory of a Reduction Relation: the Case

Where no Variables are Shared 98
3.4.4 Reduction Strategies . 99
3.4.5 Application to Rigid E-unification 101
3.4.6 Application to Higher-order Matching 102

3.5 Exercises . 104
3.6 Bibliographic Notes . 108

3.6.1 GTT . 108
3.6.2 Automata and Logic . 108
3.6.3 Surveys . 108
3.6.4 Applications of tree automata to constraint solving 108
3.6.5 Application of tree automata to semantic unification . . . 109
3.6.6 Application of tree automata to decision problems in term

rewriting . 109
3.6.7 Other applications . 110

4 Automata with Constraints 111
4.1 Introduction . 111
4.2 Automata with Equality and Disequality Constraints 112

4.2.1 The Most General Class 112
4.2.2 Reducing Non-determinism and Closure Properties 115
4.2.3 Undecidability of Emptiness 118

4.3 Automata with Constraints Between Brothers 119
4.3.1 Closure Properties . 119
4.3.2 Emptiness Decision . 121
4.3.3 Applications . 125

4.4 Reduction Automata . 125
4.4.1 Definition and Closure Properties 126
4.4.2 Emptiness Decision . 127
4.4.3 Finiteness Decision . 129
4.4.4 Term Rewriting Systems 129
4.4.5 Application to the Reducibility Theory 130

4.5 Other Decidable Subclasses . 130
4.6 Tree Automata with Arithmetic Constraints 131

4.6.1 Flat Trees . 131
4.6.2 Automata with Arithmetic Constraints 132
4.6.3 Reducing Non-determinism 134

TATA — October 28, 2004 —

CONTENTS 5

4.6.4 Closure Properties of Semilinear Flat Languages 136
4.6.5 Emptiness Decision . 137

4.7 Exercises . 140
4.8 Bibliographic notes . 143

5 Tree Set Automata 145
5.1 Introduction . 145
5.2 Definitions and Examples . 150

5.2.1 Generalized Tree Sets . 150
5.2.2 Tree Set Automata . 150
5.2.3 Hierarchy of GTSA-recognizable Languages 153
5.2.4 Regular Generalized Tree Sets, Regular Runs 154

5.3 Closure and Decision Properties 157
5.3.1 Closure properties . 157
5.3.2 Emptiness Property . 160
5.3.3 Other Decision Results . 162

5.4 Applications to Set Constraints 163
5.4.1 Definitions . 163
5.4.2 Set Constraints and Automata 163
5.4.3 Decidability Results for Set Constraints 164

5.5 Bibliographical Notes . 166

6 Tree Transducers 169
6.1 Introduction . 169
6.2 The Word Case . 170

6.2.1 Introduction to Rational Transducers 170
6.2.2 The Homomorphic Approach 174

6.3 Introduction to Tree Transducers 175
6.4 Properties of Tree Transducers 179

6.4.1 Bottom-up Tree Transducers 179
6.4.2 Top-down Tree Transducers 182
6.4.3 Structural Properties . 184
6.4.4 Complexity Properties . 185

6.5 Homomorphisms and Tree Transducers 185
6.6 Exercises . 187
6.7 Bibliographic notes . 189

7 Alternating Tree Automata 191
7.1 Introduction . 191
7.2 Definitions and Examples . 191

7.2.1 Alternating Word Automata 191
7.2.2 Alternating Tree Automata 193
7.2.3 Tree Automata versus Alternating Word Automata 194

7.3 Closure Properties . 196
7.4 From Alternating to Deterministic Automata 197
7.5 Decision Problems and Complexity Issues 197
7.6 Horn Logic, Set Constraints and Alternating Automata 198

7.6.1 The Clausal Formalism 198
7.6.2 The Set Constraints Formalism 199
7.6.3 Two Way Alternating Tree Automata 200

TATA — October 28, 2004 —

6 CONTENTS

7.6.4 Two Way Automata and Definite Set Constraints 202
7.6.5 Two Way Automata and Pushdown Automata 203

7.7 An (other) example of application 203
7.8 Exercises . 204
7.9 Bibliographic Notes . 205

TATA — October 28, 2004 —

CONTENTS 7

Acknowledgments

Many people gave substantial suggestions to improve the contents of this
book. These are, in alphabetic order, Witold Charatonik, Zoltan Flp, Werner
Kuich, Markus Lohrey, Jun Matsuda, Aart Middeldorp, Hitoshi Ohsaki, Sanjiva
Prasad, Masahiko Sakai, Helmut Seidl, Stephan Tobies, Ralf Treinen, Thomas
Uribe, Sandor Vgvlgyi, Kumar Neeraj Verma, Toshiyuki Yamada.

TATA — October 28, 2004 —

8 CONTENTS

TATA — October 28, 2004 —

Introduction

During the past few years, several of us have been asked many times about
references on finite tree automata. On one hand, this is the witness of the live-
ness of this field. On the other hand, it was difficult to answer. Besides several
excellent survey chapters on more specific topics, there is only one monograph
devoted to tree automata by Gcseg and Steinby. Unfortunately, it is now impos-
sible to find a copy of it and a lot of work has been done on tree automata since
the publication of this book. Actually using tree automata has proved to be a
powerful approach to simplify and extend previously known results, and also to
find new results. For instance recent works use tree automata for application
in abstract interpretation using set constraints, rewriting, automated theorem
proving and program verification, databases and XML schema languages.

Tree automata have been designed a long time ago in the context of circuit
verification. Many famous researchers contributed to this school which was
headed by A. Church in the late 50’s and the early 60’s: B. Trakhtenbrot,
J.R. Bchi, M.O. Rabin, Doner, Thatcher, etc. Many new ideas came out of
this program. For instance the connections between automata and logic. Tree
automata also appeared first in this framework, following the work of Doner,
Thatcher and Wright. In the 70’s many new results were established concerning
tree automata, which lose a bit their connections with the applications and were
studied for their own. In particular, a problem was the very high complexity
of decision procedures for the monadic second order logic. Applications of tree
automata to program verification revived in the 80’s, after the relative failure
of automated deduction in this field. It is possible to verify temporal logic
formulas (which are particular Monadic Second Order Formulas) on simpler
(small) programs. Automata, and in particular tree automata, also appeared
as an approximation of programs on which fully automated tools can be used.
New results were obtained connecting properties of programs or type systems
or rewrite systems with automata.

Our goal is to fill in the existing gap and to provide a textbook which presents
the basics of tree automata and several variants of tree automata which have
been devised for applications in the aforementioned domains. We shall discuss
only finite tree automata, and the reader interested in infinite trees should con-
sult any recent survey on automata on infinite objects and their applications
(See the bibliography). The second main restriction that we have is to focus on
the operational aspects of tree automata. This book should appeal the reader
who wants to have a simple presentation of the basics of tree automata, and
to see how some variations on the idea of tree automata have provided a nice
tool for solving difficult problems. Therefore, specialists of the domain probably
know almost all the material embedded. However, we think that this book can

TATA — October 28, 2004 —

10 Introduction

be helpful for many researchers who need some knowledge on tree automata.
This is typically the case of PhD a student who may find new ideas and guess
connections with his (her) own work.

Again, we recall that there is no presentation nor discussion of tree automata
for infinite trees. This domain is also in full development mainly due to appli-
cations in program verification and several surveys on this topic do exist. We
have tried to present a tool and the algorithms devised for this tool. Therefore,
most of the proofs that we give are constructive and we have tried to give as
many complexity results as possible. We don’t claim to present an exhaustive
description of all possible finite tree automata already presented in the literature
and we did some choices in the existing menagerie of tree automata. Although
some works are not described thoroughly (but they are usually described in ex-
ercises), we think that the content of this book gives a good flavor of what can
be done with the simple ideas supporting tree automata.

This book is an open work and we want it to be as interactive as possible.
Readers and specialists are invited to provide suggestions and improvements.
Submissions of contributions to new chapters and improvements of existing ones
are welcome.

Among some of our choices, let us mention that we have not defined any
precise language for describing algorithms which are given in some pseudo algo-
rithmic language. Also, there is no citation in the text, but each chapter ends
with a section devoted to bibliographical notes where credits are made to the
relevant authors. Exercises are also presented at the end of each chapter.

Tree Automata and Their Applications is composed of six main chapters
(numbered 1– 6). The first one presents tree automata and defines recognizable
tree languages. The reader will find the classical algorithms and the classical
closure properties of the class of recognizable tree languages. Complexity re-
sults are given when they are available. The second chapter gives alternative
presentation of recognizable tree languages which may be more relevant in some
situations. This includes regular tree grammars, regular tree expressions and
regular equations. The description of properties relating regular tree languages
and context-free word languages form the last part of this chapter. In Chap-
ter 3, we show the deep connections between logic and automata. In particular,
we prove in full details the correspondence between finite tree automata and
the weak monadic second order logic with k successors. We also sketch several
applications in various domains.

Chapter 4 presents a basic variation of automata, more precisely automata
with equality constraints. An equality constraint restricts the application of
rules to trees where some subtrees are equal (with respect to some equality
relation). Therefore we can discriminate more easily between trees that we
want to accept and trees that we must reject. Several kinds of constraints are
described, both originating from the problem of non-linearity in trees (the same
variable may occur at different positions).

In Chapter 5 we consider automata which recognize sets of sets of terms.
Such automata appeared in the context of set constraints which themselves are
used in program analysis. The idea is to consider, for each variable or each
predicate symbol occurring in a program, the set of its possible values. The
program gives constraints that these sets must satisfy. Solving the constraints
gives an upper approximation of the values that a given variable can take. Such
an approximation can be used to detect errors at compile time: it acts exactly as

TATA — October 28, 2004 —

Introduction 11

a typing system which would be inferred from the program. Tree set automata
(as we call them) recognize the sets of solutions of such constraints (hence sets
of sets of trees). In this chapter we study the properties of tree set automata
and their relationship with program analysis.

Originally, automata were invented as an intermediate between function de-
scription and their implementation by a circuit. The main related problem in
the sixties was the synthesis problem: which arithmetic recursive functions can
be achieved by a circuit ? So far, we only considered tree automata which ac-
cepts sets of trees or sets of tuples of trees (Chapter 3 or sets of sets of trees
(Chapter 5). However, tree automata can also be used as a computational
device. This is the subject of Chapter 6 where we study tree transducers.

TATA — October 28, 2004 —

12 Introduction

TATA — October 28, 2004 —

Preliminaries

Terms

We denote by N the set of positive integers. We denote the set of finite strings
over N by N∗. The empty string is denoted by ε.

A ranked alphabet is a couple (F ,Arity) where F is a finite set and Arity is
a mapping from F into N . The arity of a symbol f ∈ F is Arity(f). The set of
symbols of arity p is denoted by Fp. Elements of arity 0, 1, . . . p are respectively
called constants, unary, . . . , p-ary symbols. We assume that F contains at least
one constant. In the examples, we use parenthesis and commas for a short
declaration of symbols with arity. For instance, f(,) is a short declaration for a
binary symbol f .

Let X be a set of constants called variables. We assume that the sets X
and F0 are disjoint. The set T (F ,X) of terms over the ranked alphabet F and
the set of variables X is the smallest set defined by:

- F0 ⊆ T (F ,X) and
- X ⊆ T (F ,X) and
- if p ≥ 1, f ∈ Fp and t1, . . . , tp ∈ T (F ,X), then f(t1, . . . , tp) ∈ T (F ,X).
If X = ∅ then T (F ,X) is also written T (F). Terms in T (F) are called

ground terms. A term t in T (F ,X) is linear if each variable occurs at most
once in t.

Example 1. Let F = {cons(,), nil, a} and X = {x, y}. Here cons is a
binary symbol, nil and a are constants. The term cons(x, y) is linear; the
term cons(x, cons(x, nil)) is non linear; the term cons(a, cons(a, nil)) is a ground
term. Terms can be represented in a graphical way. For instance, the term
cons(a, cons(a, nil)) is represented by:

a

a nil

cons

cons

Terms and Trees

A finite ordered tree t over a set of labels E is a mapping from a prefix-closed
set Pos(t) ⊆ N∗ into E. Thus, a term t ∈ T (F ,X) may be viewed as a finite

TATA — October 28, 2004 —

14 Preliminaries

ordered ranked tree, the leaves of which are labeled with variables or constant
symbols and the internal nodes are labeled with symbols of positive arity, with
out-degree equal to the arity of the label, i.e. a term t ∈ T (F ,X) can also be
defined as a partial function t : N∗ → F ∪X with domain Pos(t) satisfying the
following properties:

(i) Pos(t) is nonempty and prefix-closed.

(ii) ∀p ∈ Pos(t), if t(p) ∈ Fn, n ≥ 1, then {j | pj ∈ Pos(t)} = {1, . . . , n}.

(iii) ∀p ∈ Pos(t), if t(p) ∈ X ∪ F0, then {j | pj ∈ Pos(t)} = ∅.

We confuse terms and trees, that is we only consider finite ordered ranked trees
satisfying (i), (ii) and (iii). The reader should note that finite ordered trees with
bounded rank k – i.e. there is a bound k on the out-degrees of internal nodes –
can be encoded in finite ordered ranked trees: a label e ∈ E is associated with
k symbols (e, 1) of arity 1, . . . , (e, k) of arity k.

Each element in Pos(t) is called a position. A frontier position is a
position p such that ∀j ∈ N , pj 6∈ Pos(t). The set of frontier positions is
denoted by FPos(t). Each position p in t such that t(p) ∈ X is called a variable

position. The set of variable positions of p is denoted by VPos(t). We denote
by Head(t) the root symbol of t which is defined by Head(t) = t(ε).

SubTerms

A subterm t|p of a term t ∈ T (F ,X) at position p is defined by the following:

- Pos(t|p) = {j | pj ∈ Pos(t)},
- ∀q ∈ Pos(t|p), t|p(q) = t(pq).

We denote by t[u]p the term obtained by replacing in t the subterm t|p by
u.

We denote by ¥ the subterm ordering , i.e. we write t ¥ t′ if t′ is a subterm
of t. We denote t ¤ t′ if t ¥ t′ and t 6= t′.

A set of terms F is said to be closed if it is closed under the subterm
ordering, i.e. ∀t ∈ F (t ¥ t′ ⇒ t′ ∈ F).

Functions on Terms

The size of a term t, denoted by ‖t‖ and the height of t, denoted by Height(t)
are inductively defined by:

- Height(t) = 0, ‖t‖ = 0 if t ∈ X ,
- Height(t) = 1, ‖t‖ = 1 if t ∈ F0,
- Height(t) = 1+max({Height(ti) | i ∈ {1, . . . , n}}), ‖t‖ = 1+

∑
i∈{1,...,n} ‖ti‖

if Head(t) ∈ Fn.

Example 2. Let F = {f(, ,), g(,), h(), a, b} and X = {x, y}. Consider the
terms

TATA — October 28, 2004 —

Preliminaries 15

t =

a b

g a

b

h

f

; t′ =

x1 x2

g a

x2 x1

g

f

The root symbol of t is f ; the set of frontier positions of t is {11, 12, 2, 31}; the
set of variable positions of t′ is {11, 12, 31, 32}; t|3 = h(b); t[a]3 = f(g(a, b), a, a);
Height(t) = 3; Height(t′) = 2; ‖t‖ = 7; ‖t′‖ = 4.

Substitutions

A substitution (respectively a ground substitution) σ is a mapping from X
into T (F ,X) (respectively into T (F)) where there are only finitely many vari-
ables not mapped to themselves. The domain of a substitution σ is the subset
of variables x ∈ X such that σ(x) 6= x. The substitution {x1←t1, . . . , xn←tn}
is the identity on X \ {x1, . . . , xn} and maps xi ∈ X on ti ∈ T (F ,X), for every
index 1 ≤ i ≤ n. Substitutions can be extended to T (F ,X) in such a way that:

∀f ∈ Fn,∀t1, . . . , tn ∈ T (F ,X) σ(f(t1, . . . , tn)) = f(σ(t1), . . . , σ(tn)).

We confuse a substitution and its extension to T (F ,X). Substitutions will
often be used in postfix notation: tσ is the result of applying σ to the term t.

Example 3. Let F = {f(, ,), g(,), a, b} and X = {x1, x2}. Let us consider
the term t = f(x1, x1, x2). Let us consider the ground substitution σ = {x1←
a, x2←g(b, b)} and the substitution σ′ = {x1←x2, x2←b}. Then

tσ = t{x1←a, x2←g(b, b)} =
a a

b b

g

f

; tσ′ = t{x1←x2, x2←b} =
x2 x2 b

f

Contexts

Let Xn be a set of n variables. A linear term C ∈ T (F ,Xn) is called a context

and the expression C[t1, . . . , tn] for t1, . . . , tn ∈ T (F) denotes the term in T (F)
obtained from C by replacing variable xi by ti for each 1 ≤ i ≤ n, that is
C[t1, . . . , tn] = C{x1← t1, . . . , xn← tn}. We denote by Cn(F) the set of contexts
over (x1, . . . , xn).

We denote by C(F) the set of contexts containing a single variable. A context
is trivial if it is reduced to a variable. Given a context C ∈ C(F), we denote
by C0 the trivial context, C1 is equal to C and, for n > 1, Cn = Cn−1[C] is a
context in C(F).

TATA — October 28, 2004 —

Chapter 1

Recognizable Tree
Languages and Finite Tree
Automata

In this chapter, we present basic results on finite tree automata in the style of
the undergraduate textbook on finite automata by Hopcroft and Ullman [HU79].
Finite tree automata deal with finite ordered ranked trees or finite ordered trees
with bounded rank. We discuss unordered and/or unranked finite trees in the
bibliographic notes (Section 1.9). We assume that the reader is familiar with
finite automata. Words over finite alphabet can be viewed as unary terms. For
instance a word abb over A = {a, b} can be viewed as a unary term t = a(b(b(])))
over the ranked alphabet F = {a(), b(),]} where] is a new constant symbol.
The theory of tree automata arises as a straightforward extension of the theory
of word automata when words are viewed as unary terms.

In Section 1.1, we define bottom-up finite tree automata where “bottom-up”
has the following sense: assuming a graphical representation of trees or ground
terms with the root symbol at the top, an automaton starts its computation at
the leaves and moves upward. Recognizable tree languages are the languages
recognized by some finite tree automata. We consider the deterministic case
and the nondeterministic case and prove the equivalence. In Section 1.2, we
prove a pumping lemma for recognizable tree languages. This lemma is useful
for proving that some tree languages are not recognizable. In Section 1.3, we
prove the basic closure properties for set operations. In Section 1.4, we define
tree homomorphisms and study the closure properties under these tree trans-
formations. In this Section the first difference between the word case and the
tree case appears. Indeed, if recognizable word languages are closed under ho-
momorphisms, recognizable tree languages are closed only under a subclass of
tree homomorphisms: linear homomorphisms, where duplication of trees is for-
bidden. We will see all along this textbook that non linearity is one of the main
difficulty for the tree case. In Section 1.5, we prove a Myhill-Nerode Theorem
for tree languages and the existence of a unique minimal automaton. In Sec-
tion 1.6, we define top-down tree automata. A second difference appears with
the word case because it is proved that deterministic top-down tree automata
are strictly less powerful than nondeterministic ones. The last section of the

TATA — October 28, 2004 —

18 Recognizable Tree Languages and Finite Tree Automata

present chapter gives a list of complexity results.

1.1 Finite Tree Automata

Nondeterministic Finite Tree Automata

A finite Tree Automaton (NFTA) over F is a tuple A = (Q,F , Qf ,∆) where
Q is a set of (unary) states, Qf ⊆ Q is a set of final states, and ∆ is a set of
transition rules of the following type:

f(q1(x1), . . . , qn(xn)) → q(f(x1, . . . , xn)),

where n ≥ 0, f ∈ Fn, q, q1, . . . , qn ∈ Q, x1, . . . , xn ∈ X .

Tree automata over F run on ground terms over F . An automaton starts at
the leaves and moves upward, associating along a run a state with each subterm
inductively. Let us note that there is no initial state in a NFTA, but, when
n = 0, i.e. when the symbol is a constant symbol a, a transition rule is of
the form a → q(a). Therefore, the transition rules for the constant symbols
can be considered as the “initial rules”. If the direct subterms u1, . . . , un of
t = f(u1, . . . , un) are labeled with states q1, . . . , qn, then the term t will be
labeled by some state q with f(q1(x1), . . . , qn(xn)) → q(f(x1, . . . , xn)) ∈ ∆. We
now formally define the move relation defined by an NFTA.

Let A = (Q,F , Qf ,∆) be an NFTA over F . The move relation →A is
defined by: let t, t′ ∈ T (F ∪ Q),

t→
A

t′ ⇔

∃C ∈ C(F ∪ Q),∃u1, . . . , un ∈ T (F),

∃f(q1(x1), . . . , qn(xn)) → q(f(x1, . . . , xn)) ∈ ∆,

t = C[f(q1(u1), . . . , qn(un))],

t′ = C[q(f(u1, . . . , un))].

∗
−→
A

is the reflexive and transitive closure of →A.

Example 4. Let F = {f(,), g(), a}. Consider the automaton A = (Q,F , Qf ,∆)
defined by: Q = {qa, qg, qf}, Qf = {qf}, and ∆ is the following set of transition
rules:

{ a → qa(a) g(qa(x)) → qg(g(x))
g(qg(x)) → qg(g(x)) f(qg(x), qg(y)) → qf (f(x, y)) }

We give two examples of reductions with the move relation →A

a a

f

→A

a

qa a

f

→A

a

qa

a

qa

f

TATA — October 28, 2004 —

1.1 Finite Tree Automata 19

a

g

a

g

f
∗
−→
A

a

qa

g

a

qa

g

f
∗
−→
A

a

g

qg

a

g

qg

f

→A

a

g

a

g

f

qf

A ground term t in T (F) is accepted by a finite tree automaton A =
(Q,F , Qf ,∆) if

t
∗
−→
A

q(t)

for some state q in Qf . The reader should note that our definition corresponds
to the notion of nondeterministic finite tree automaton because our finite tree
automaton model allows zero, one or more transition rules with the same left-
hand side. Therefore there are possibly more than one reduction starting with
the same ground term. And, a ground term t is accepted if there is one reduction
(among all possible reductions) starting from this ground term and leading to a
configuration of the form q(t) where q is a final state. The tree language L(A)
recognized by A is the set of all ground terms accepted by A. A set L of ground
terms is recognizable if L = L(A) for some NFTA A. The reader should also
note that when we talk about the set recognized by a finite tree automaton A
we are referring to the specific set L(A), not just any set of ground terms all of
which happen to be accepted by A. Two NFTA are said to be equivalent if
they recognize the same tree languages.

Example 5. Let F = {f(,), g(), a}. Consider the automaton A = (Q,F , Qf ,∆)
defined by: Q = {q, qg, qf}, Qf = {qf}, and ∆ =

{ a → q(a) g(q(x)) → q(g(x))
g(q(x)) → qg(g(x)) g(qg(x)) → qf (g(x))

f(q(x), q(y)) → q(f(x, y)) }.

We now consider a ground term t and exhibit three different reductions of
term t w.r.t. move relation →A.

t = g(g(f(g(a), a)))
∗
−→
A

g(g(f(qg(g(a)), q(a))))

t = g(g(f(g(a), a)))
∗
−→
A

g(g(q(f(g(a), a))))
∗
−→
A

q(t)

t = g(g(f(g(a), a)))
∗
−→
A

g(g(q(f(g(a), a))))
∗
−→
A

qf (t)

The term t is accepted by A because of the third reduction. It is easy to
prove that L(A) = {g(g(t)) | t ∈ T (F)} is the set of ground instances of g(g(x)).

The set of transition rules of a NFTA A can also be defined as a ground
rewrite system, i.e. a set of ground transition rules of the form: f(q1, . . . , qn) →
q. A move relation →A can be defined like previously. The only difference is

TATA — October 28, 2004 —

20 Recognizable Tree Languages and Finite Tree Automata

that, now, we “forget” the ground subterms. And, a term t is accepted by a
NFTA A if

t
∗
−→
A

q

for some final state q in Qf . Unless it is stated otherwise, we will now refer
to the definition with a set of ground transition rules. Considering a reduction
starting from a ground term t and leading to a state q with the move relation,
it is useful to remember the “history” of the reduction, i.e. to remember in
which states are reduced the ground subterms of t. For this, we will adopt the
following definitions. Let t be a ground term and A be a NFTA, a run r of A
on t is a mapping r : Pos(t) → Q compatible with ∆, i.e. for every position
p in Pos(t), if t(p) = f ∈ Fn, r(p) = q, r(pi) = qi for each i ∈ {1, . . . , n}, then
f(q1, . . . , qn) → q ∈ ∆. A run r of A on t is successful if r(ε) is a final state.
And a ground term t is accepted by a NFTA A if there is a successful run r of
A on t.

Example 6. Let F = {or(,), and(,), not(), 0, 1}. Consider the automaton
A = (Q,F , Qf ,∆) defined by: Q = {q0, q1}, Qf = {q1}, and ∆ =

{ 0 → q0 1 → q1

not(q0) → q1 not(q1) → q0

and(q0, q0) → q0 and(q0, q1) → q0

and(q1, q0) → q0 and(q1, q1) → q1

or(q0, q0) → q0 or(q0, q1) → q1

or(q1, q0) → q1 or(q1, q1) → q1 }.

A ground term over F can be viewed as a boolean formula without variable and a
run on such a ground term can be viewed as the evaluation of the corresponding
boolean formula. For instance, we give a reduction for a ground term t and the
corresponding run given as a tree

0 1

or

not

1

0

not

or

and
∗
−→
A

q0 ; the run r:

q0 q1

q1

q0

q1

q0

q1

q1

q0

The tree language recognized by A is the set of true boolean expressions over
F .

NFTA with ε-rules

Like in the word case, it is convenient to allow ε-moves in the reduction of
a ground term by an automaton, i.e. the current state is changed but no new
symbol of the term is processed. This is done by introducing a new type of rules
in the set of transition rules of an automaton. A NFTA with ε-rules is like
a NFTA except that now the set of transition rules contains ground transition

TATA — October 28, 2004 —

1.1 Finite Tree Automata 21

rules of the form f(q1, . . . , qn) → q, and ε-rules of the form q → q′. The ability
to make ε-moves does not allow the NFTA to accept non recognizable sets. But
NFTA with ε-rules are useful in some constructions and simplify some proofs.

Example 7. Let F = {cons(,), s(), 0, nil}. Consider the automaton A =
(Q,F , Qf ,∆) defined by: Q = {qNat, qList, qList∗}, Qf = {qList}, and ∆ =

{ 0 → qNat s(qNat) → qNat

nil → qList cons(qNat, qList) → qList∗

qList∗ → qList}.

The recognized tree language is the set of Lisp-like lists of integers. If the final
state set Qf is set to {qList∗}, then the recognized tree language is the set of
non empty Lisp-like lists of integers. The ε-rule qList∗ → qList says that a non
empty list is a list. The reader should recognize the definition of an order-sorted
algebra with the sorts Nat, List, and List∗ (which stands for the non empty lists),
and the inclusion List∗ ⊆ List (see Section 3.4.1).

Theorem 1 (The equivalence of NFTA’s with and without ε-rules). If
L is recognized by a NFTA with ε-rules, then L is recognized by a NFTA without
ε-rules.

Proof. Let A = (Q,F , Qf ,∆) be a NFTA with ε-rules. Consider the subset ∆ε

consisting of those ε-rules in ∆. We denote by ε-closure(q) the set of all states
q′ in Q such that there is a reduction of q into q′ using rules in ∆ε. We consider
that q ∈ ε-closure(q). This computation is a transitive closure computation and
can be done in O(|Q|3). Now let us define the NFTA A′ = (Q,F , Qf ,∆′) where
∆′ is defined by:

∆′ = {f(q1, . . . , qn) → q′ | f(q1, . . . , qn) → q ∈ ∆, q′ ∈ ε-closure(q)}

Then it may be proved that t
∗
−→
A

q iff t
∗

−−→
A′

q.

Unless it is stated otherwise, we will now consider NFTA without ε-rules.

Deterministic Finite Tree Automata

Our definition of tree automata corresponds to the notion of nondeterministic
finite tree automata. We will now define deterministic tree automata (DFTA)
which are a special case of NFTA. It will turn out that, like in the word case, any
language recognized by a NFTA can also be recognized by a DFTA. However,
the NFTA are useful in proving theorems in tree language theory.

A tree automaton A = (Q,F , Qf ,∆) is deterministic (DFTA) if there are
no two rules with the same left-hand side (and no ε-rule). Given a DFTA, there
is at most one run for every ground term, i.e. for every ground term t, there is
at most one state q such that t

∗
−→
A

q. The reader should note that it is possible

to define a tree automaton in which there are two rules with the same left-hand
side such that there is at most one run for every ground term (see Example 8).

TATA — October 28, 2004 —

22 Recognizable Tree Languages and Finite Tree Automata

It is also useful to consider tree automata such that there is at least one
run for every ground term. This leads to the following definition. A NFTA A
is complete if there is at least one rule f(q1, . . . , qn) → q ∈ ∆ for all n ≥ 0,
f ∈ Fn, and q1, . . . , qn ∈ Q. Let us note that for a complete DFTA there is
exactly one run for every ground term.

Lastly, for practical reasons, it is usual to consider automata in which un-
necessary states are eliminated. A state q is accessible if there exists a ground
term t such that t

∗
−→
A

q. A NFTA A is said to be reduced if all its states are

accessible.

Example 8.
The automaton defined in Example 5 is reduced, not complete, and it is not

deterministic because there are two rules of left-hand side g(q(x)). Let us also
note (see Example 5) that at least two runs (one is successful) can be defined
on the term g(g(f(g(a), a))).

The automaton defined in Example 6 is a complete and reduced DFTA.
Let F = {g(), a}. Consider the automaton A = (Q,F , Qf ,∆) defined by:

Q = {q0, q1, q}, Qf = {q0}, and ∆ is the following set of transition rules:

{ a → q0 g(q0) → q1

g(q1) → q0 g(q) → q0

g(q) → q1}.

This automaton is not deterministic because there are two rules of left-hand
side g(q), it is not reduced because state q is not accessible. Nevertheless, one
should note that there is at most one run for every ground term t.

Let F = {f(,), g(), a}. Consider the automaton A = (Q,F , Qf ,∆) defined
in Example 4 by: Q = {qa, qg, qf}, Qf = {qf}, and ∆ is the following set of
transition rules:

{ a → qa g(qa) → qg

g(qg) → qg f(qg, qg) → qf }.

This automaton is deterministic and reduced. It is not complete because, for
instance, there is no transition rule of left-hand side f(qa, qa). It is easy to define
a deterministic and complete automaton A′ recognizing the same language by
adding a “dead state”. The automaton A′ = (Q′,F , Qf ,∆′) is defined by:
Q′ = Q ∪ {π}, ∆′ = ∆∪

{ g(qf) → π g(π) → π
f(qa, qa) → π f(qa, qg) → π

. . . f(π, π) → π }.

It is easy to generalize the construction given in Example 8 of a complete
NFTA equivalent to a given NFTA: add a “dead state” π and all transition
rules with right-hand side π such that the automaton is complete. The reader
should note that this construction could be expensive because it may require
O(|F| × |Q|Arity(F)) new rules where Arity(F) is the maximal arity of symbols
in F . Therefore we have the following:

TATA — October 28, 2004 —

1.1 Finite Tree Automata 23

Theorem 2. Let L be a recognizable set of ground terms. Then there exists a
complete finite tree automaton that accepts L.

We now give a polynomial algorithm which outputs a reduced NFTA equiv-
alent to a given NFTA as input. The main loop of this algorithm computes the
set of accessible states.

Reduction Algorithm RED
input: NFTA A = (Q,F , Qf ,∆)
begin

Set Marked to ∅ /* Marked is the set of accessible states */
repeat

Set Marked to Marked ∪ {q}
where

f ∈ Fn, q1, . . . , qn ∈ Marked , f(q1, . . . , qn) → q ∈ ∆
until no state can be added to Marked
Set Qr to Marked
Set Qrf

to Qf ∩ Marked
Set ∆r to {f(q1, . . . , qn) → q ∈ ∆ | q, q1, . . . , qn ∈ Marked}
output: NFTA Ar = (Qr,F , Qrf

,∆r)
end

Obviously all states in the set Marked are accessible, and an easy induction
shows that all accessible states are in the set Marked . And, the NFTA Ar

accepts the tree language L(A). Consequently we have:

Theorem 3. Let L be a recognizable set of ground terms. Then there exists a
reduced finite tree automaton that accepts L.

Now, we consider the reduction of nondeterminism. Since every DFTA is
a NFTA, it is clear that the class of recognizable languages includes the class
of languages accepted by DFTA’s. However it turns out that these classes are
equal. We prove that, for every NFTA, we can construct an equivalent DFTA.
The proof is similar to the proof of equivalence between DFA’s and NFA’s in
the word case. The proof is based on the “subset construction”. Consequently,
the number of states of the equivalent DFTA can be exponential in the number
of states of the given NFTA (see Example 10). But, in practice, it often turns
out that many states are not accessible. Therefore, we will present in the proof
of the following theorem a construction of a DFTA where only the accessible
states are considered, i.e. the given algorithm outputs an equivalent and reduced
DFTA from a given NFTA as input.

Theorem 4 (The equivalence of DFTA’s and NFTA’s). Let L be a rec-
ognizable set of ground terms. Then there exists a DFTA that accepts L.

Proof. First, we give a theoretical construction of a DFTA equivalent to a
NFTA. Let A = (Q,F , Qf ,∆) be a NFTA. Define a DFTA Ad = (Qd,F , Qdf

,∆d),
as follows. The states of Qd are all the subsets of the state set Q of A. That
is, Qd = 2Q. We denote by s a state of Qd, i.e. s = {q1, . . . , qn} for some states

TATA — October 28, 2004 —

24 Recognizable Tree Languages and Finite Tree Automata

q1, . . . , qn ∈ Q. We define

f(s1, . . . , sn) → s ∈ ∆d

iff

s = {q ∈ Q | ∃q1 ∈ s1, . . . ,∃qn ∈ sn, f(q1, . . . , qn) → q ∈ ∆}.

And Qdf
is the set of all states in Qd containing a final state of A.

We now give an algorithmic construction where only the accessible states
are considered.

Determinization Algorithm DET
input: NFTA A = (Q,F , Qf ,∆)
begin

/* A state s of the equivalent DFTA is in 2Q */
Set Qd to ∅; set ∆d to ∅
repeat

Set Qd to Qd ∪ {s}; Set ∆d to ∆d ∪ {f(s1, . . . , sn) → s}
where

f ∈ Fn, s1, . . . , sn ∈ Qd,
s = {q ∈ Q | ∃q1 ∈ s1, . . . , qn ∈ sn, f(q1, . . . , qn) → q ∈ ∆}

until no rule can be added to ∆d

Set Qdf
to {s ∈ Qd | s ∩ Qf 6= ∅}

output: DFTA Ad = (Qd,F , Qdf
,∆d)

end

It is immediate from the definition of the determinization algorithm that
Ad is a deterministic and reduced tree automaton. In order to prove that
L(A) = L(Ad), we now prove that:

(t
∗

−−→
Ad

s) iff (s = {q ∈ Q | t
∗
−→
A

q}).

The proof is an easy induction on the structure of terms.

• base case: let us consider t = a ∈ F0. Then, there is only one rule a → s
in ∆d where s = {q ∈ Q | a → q ∈ ∆}.

• induction step: let us consider a term t = f(t1, . . . , tn).

– First, let us suppose that t
∗

−−→
Ad

f(s1, . . . , sn)→Ad
s. By induction

hypothesis, for each i ∈ {1, . . . , n}, si = {q ∈ Q | ti
∗
−→
A

q}. states si

are in Qd, thus a rule f(s1, . . . , sn) → s ∈ ∆d is added in the set ∆d

by the determinization algorithm and s = {q ∈ Q | ∃q1 ∈ s1, . . . , qn ∈

sn, f(q1, . . . , qn) → q ∈ ∆}. Thus, s = {q ∈ Q | t
∗
−→
A

q}.

– Second, let us consider s = {q ∈ Q | t = f(t1, . . . , tn)
∗
−→
A

q}. Let

us consider the state sets si defined by si = {q ∈ Q | ti
∗
−→
A

q}.

By induction hypothesis, for each i ∈ {1, . . . , n}, ti
∗

−−→
Ad

si. Thus

TATA — October 28, 2004 —

1.1 Finite Tree Automata 25

s = {q ∈ Q | ∃q1 ∈ s1, . . . , qn ∈ sn, f(q1, . . . , qn) → q ∈ ∆}. The
rule f(s1, . . . , sn) ∈ ∆d by definition of the state set ∆d in the deter-

minization algorithm and t
∗

−−→
Ad

s.

Example 9. Let F = {f(,), g(), a}. Consider the automaton A = (Q,F , Qf ,∆)
defined in Example 5 by: Q = {q, qg, qf}, Qf = {qf}, and ∆ =

{ a → q g(q) → q
g(q) → qg g(qg) → qf

f(q, q) → q }.

Given A as input, the determinization algorithm outputs the DFTA Ad =
(Qd,F , Qdf

,∆d) defined by: Qd = {{q}, {q, qg}, {q, qg, qf}}, Qdf
= {{q, qg, qf}},

and ∆d =

{ a → {q}
g({q}) → {q, qg}

g({q, qg}) → {q, qg, qf}
g({q, qg, qf}) → {q, qg, qf} }

∪ { f(s1, s2) → {q} | s1, s2 ∈ Qd }.

We now give an example where an exponential blow-up occurs in the deter-
minization process. This example is the same used in the word case.

Example 10. Let F = {f(), g(), a} and let n be an integer. And let us consider
the tree language

L = {t ∈ T (F) | the symbol at position 1n is f}.

Let us consider the NFTA A = (Q,F , Qf ,∆) defined by: Q = {q, q1, . . . , qn+1},
Qf = {qn+1}, and ∆ =

{ a → q f(q) → q
g(q) → q f(q) → q1

g(q1) → q2 f(q1) → q2

. . .
g(qn) → qn+1 f(qn) → qn+1 }.

The NFTA A = (Q,F , Qf ,∆) accepts the tree language L, and it has n + 2
states. Using the subset construction, the equivalent DFTA Ad has 2n+1 states.
Any equivalent automaton has to memorize the n + 1 last symbols of the input
tree. Therefore, it can be proved that any DFTA accepting L has at least 2n+1

states. It could also be proved that The automaton Ad is minimal in the number
of states (minimal tree automata are defined in Section 1.5).

TATA — October 28, 2004 —

26 Recognizable Tree Languages and Finite Tree Automata

If a finite tree automaton is deterministic, we can replace the transition
relation ∆ by a transition function δ. Therefore, it is sometimes convenient to
consider a DFTA A = (Q,F , Qf , δ) where

δ :
⋃

n

Fn × Qn → Q .

The computation of such an automaton on a term t as input tree can be viewed
as an evaluation of t on finite domain Q. Indeed, define the labeling function
δ̂ : T (F) → Q inductively by

δ̂(f(t1, . . . , tn)) = δ(f, δ̂(t1), . . . , δ̂(tn)) .

We shall for convenience confuse δ and δ̂.
We now make clear the connections between our definitions and the language

theoretical definitions of tree automata and of recognizable tree languages. In-
deed, the reader should note that a complete DFTA is just a finite F-algebra
A consisting of a finite carrier |A| = Q and a distinguished n-ary function
fA : Qn → Q for each n-ary symbol f ∈ F together with a specified subset Qf

of Q. A ground term t is accepted by A if δ(t) = q ∈ Qf where δ is the unique
F-algebra homomorphism δ : T (F) → A.

Example 11. Let F = {f(,), a} and consider the F-algebra A with |A| =
Q = Z2 = {0, 1}, fA = + where the sum is formed modulo 2, aA = 1, and let
Qf = {0}. A and Qf defines a DFTA. The recognized tree language is the set
of ground terms over F with an even number of leaves.

Since DFTA and NFTA accept the same sets of tree languages, we shall not
distinguish between them unless it becomes necessary, but shall simply refer to
both as tree automata (FTA).

1.2 The Pumping Lemma for Recognizable Tree
Languages

We now give an example of a tree language which is not recognizable.

Example 12. Let F = {f(,), g(), a}. Let us consider the tree language
L = {f(gi(a), gi(a)) | i > 0}. Let us suppose that L is recognizable by an
automaton A having k states. Now, consider the term t = f(gk(a), gk(a)). t
belongs to L, therefore there is a successful run of A on t. As k is the cardinality
of the state set, there are two distinct positions along the first branch of the term
labeled with the same state. Therefore, one could cut the first branch between
these two positions leading to a term t′ = f(gj(a), gk(a)) with j < k such that
a successful run of A can be defined on t′. This leads to a contradiction with
L(A) = L.

This (sketch of) proof can be generalized by proving a pumping lemma

for recognizable tree languages. This lemma is extremely useful in proving that

TATA — October 28, 2004 —

1.3 Closure Properties of Recognizable Tree Languages 27

certain sets of ground terms are not recognizable. It is also useful for solving
decision problems like emptiness and finiteness of a recognizable tree language
(see Section 1.7).

Pumping Lemma. Let L be a recognizable set of ground terms. Then, there
exists a constant k > 0 satisfying: for every ground term t in L such that
Height(t) > k, there exist a context C ∈ C(F), a non trivial context C ′ ∈ C(F),
and a ground term u such that t = C[C ′[u]] and, for all n ≥ 0 C[C ′n [u]] ∈ L.

Proof. Let A = (Q,F , Qf ,∆) be a FTA such that L = L(A) and let k = |Q|
be the cardinality of the state set Q. Let us consider a ground term t in L
such that Height(t) > k and consider a successful run r of A on t. Now let us
consider a path in t of length strictly greater than k. As k is defined to be the
cardinality of the state set Q, there are two positions p1 < p2 along this path
such that r(p1) = r(p2) = q for some state q. Let u be the ground subterm of t
at position p2. Let u′ be the ground subterm of t at position p1, there exists a
non trivial context C ′ such that u′ = C ′[u]. Now define the context C such that
t = C[C ′[u]]. Consider a term C[C ′n [u]] for some integer n > 1, a successful run
can be defined on this term. Indeed suppose that r corresponds to the reduction
t

∗
−→
A

qf where qf is a final state of A, then we have:

C[C ′n [u]]
∗
−→
A

C[C ′n [q]]
∗
−→
A

C[C ′n−1

[q]] . . .
∗
−→
A

C[q]
∗
−→
A

qf .

The same holds when n = 0.

Example 13. Let F = {f(,), a}. Let us consider the tree language L = {t ∈
T (F) | |Pos(t)| is a prime number}. We can prove that L is not recognizable.
For all k > 0, consider a term t in L whose height is greater than k. For all
contexts C, non trivial contexts C ′, and terms u such that t = C[C ′[u]], there
exists n such that C[C ′n [u]] 6∈ L.

¿From the Pumping Lemma, we derive conditions for emptiness and finite-
ness given by the following corollary:

Corollary 1. Let A = (Q,F , Qf ,∆) be a FTA. Then L(A) is non empty if and
only if there exists a term t in L(A) with Height(t) ≤ |Q|. Then L(A) is infinite
if and only if there exists a term t in L(A) with |Q| < Height(t) ≤ 2 × |Q|.

1.3 Closure Properties of Recognizable Tree Lan-
guages

A closure property of a class of (tree) languages is the fact that the class
is closed under a particular operation. We are interested in effective closure
properties where, given representations for languages in the class, there is an
algorithm to construct a representation for the language that results by applying
the operation to these languages. Let us note that the equivalence between
NFTA and DFTA is effective, thus we may choose the representation that suits

TATA — October 28, 2004 —

28 Recognizable Tree Languages and Finite Tree Automata

us best. Nevertheless, the determinization algorithm may output a DFTA whose
number of states is exponential in the number of states of the given NFTA.
For the different closure properties, we give effective constructions and we give
the properties of the resulting FTA depending on the properties of the given
FTA as input. In this section, we consider the Boolean set operations: union,
intersection, and complementation. Other operations will be studied in the next
sections. Complexity results are given in Section 1.7.

Theorem 5. The class of recognizable tree languages is closed under union,
under complementation, and under intersection.

Union

Let L1 and L2 be two recognizable tree languages. Thus there are tree au-
tomata A1 = (Q1,F , Qf1,∆1) and A2 = (Q2,F , Qf2,∆2) with L1 = L(A1)
and L2 = L(A2). Since we may rename states of a tree automaton, without
loss of generality, we may suppose that Q1 ∩ Q2 = ∅. Now, let us consider
the FTA A = (Q,F , Qf ,∆) defined by: Q = Q1 ∪ Q2, Qf = Qf1 ∪ Qf2, and
∆ = ∆1∪∆2. The equality between L(A) and L(A1)∪L(A2) is straightforward.
Let us note that A is nondeterministic and not complete, even if A1 and A2 are
deterministic and complete.

We now give another construction which preserves determinism. The intu-
itive idea is to process in parallel a term by the two automata. For this we
consider a product automaton. Let us suppose that A1 and A2 are complete.
And, let us consider the FTA A = (Q,F , Qf ,∆) defined by: Q = Q1 × Q2,
Qf = Qf1 × Q2 ∪ Q1 × Qf2, and ∆ = ∆1 × ∆2 where

∆1 × ∆2 = {f((q1, q
′
1), . . . , (qn, q′n)) → (q, q′) |

f(q1, . . . , qn) → q ∈ ∆1 f(q′1, . . . , q
′
n) → q′ ∈ ∆2}

The proof of the equality between L(A) and L(A1)∪L(A2) is left to the reader,
but the reader should note that the hypothesis that the two given tree automata
are complete is crucial in the proof. Indeed, suppose for instance that a ground
term t is accepted by A1 but not by A2. Moreover suppose that A2 is not
complete and that there is no run of A2 on t, then the product automaton
does not accept t because there is no run of the product automaton on t. The
reader should also note that the construction preserves determinism, i.e. if
the two given automata are deterministic, then the product automaton is also
deterministic.

Complementation

Let L be a recognizable tree language. Let A = (Q,F , Qf ,∆) be a complete
DFTA such that L(A) = L. Now, complement the final state set to recognize
the complement of L. That is, let Ac = (Q,F , Qc

f ,∆) with Qc
f = Q \ Qf , the

DFTA Ac recognizes the complement of set L in T (F).
If the input automaton A is a NFTA, then first apply the determinization

algorithm, and second complement the final state set. This could lead to an
exponential blow-up.

TATA — October 28, 2004 —

1.4 Tree Homomorphisms 29

Intersection

Closure under intersection follows from closure under union and complementa-
tion because

L1 ∩ L2 = L1 ∪ L2.

where we denote by L the complement of set L in T (F). But if the recogniz-
able tree languages are defined by NFTA, we have to use the complementa-
tion construction, therefore the determinization process is used leading to an
exponential blow-up. Consequently, we now give a direct construction which
does not use the determinization algorithm. Let A1 = (Q1,F , Qf1,∆1) and
A2 = (Q2,F , Qf2,∆2) be FTA such that L(A1) = L1 and L(A2) = L2. And,
consider the FTA A = (Q,F , Qf ,∆) defined by: Q = Q1×Q2, Qf = Qf1×Qf2,
and ∆ = ∆1 ×∆2. A recognizes L1 ∩L2. Moreover the reader should note that
A is deterministic if A1 and A2 are deterministic.

1.4 Tree Homomorphisms

We now consider tree transformations and study the closure properties under
these tree transformations. In this section we are interested with tree transfor-
mations preserving the structure of trees. Thus, we restrict ourselves to tree
homomorphisms. Tree homomorphisms are a generalization of homomorphisms
for words (considered as unary terms) to the case of arbitrary ranked alpha-
bets. In the word case, it is known that the class of regular sets is closed under
homomorphisms and inverse homomorphisms. The situation is different in the
tree case because if recognizable tree languages are closed under inverse ho-
momorphisms, they are closed only under a subclass of homomorphisms, i.e.
linear homomorphisms (duplication of terms is forbidden). First, we define tree
homomorphisms.

Let F and F ′ be two sets of function symbols, possibly not disjoint. For
each n > 0 such that F contains a symbol of arity n, we define a set of variables
Xn = {x1, . . . , xn} disjoint from F and F ′.

Let hF be a mapping which, with f ∈ F of arity n, associates a term
tf ∈ T (F ′,Xn). The tree homomorphism h : T (F) → T (F ′) determined by
hF is defined as follows:

• h(a) = ta ∈ T (F ′) for each a ∈ F of arity 0,

• h(f(t1, . . . , tn)) = tf{x1 ← h(t1), . . . , xn ← h(tn)}

where tf{x1 ← h(t1), . . . , xn ← h(tn)} is the result of applying the substi-
tution {x1 ← h(t1), . . . , xn ← h(tn)} to the term tf .

Example 14. Let F = {g(, ,), a, b} and F ′ = {f(,), a, b}. Let us consider the
tree homomorphism h determined by hF defined by: hF (g) = f(x1, f(x2, x3)),
hF (a) = a and hF (b) = b. For instance, we have:

TATA — October 28, 2004 —

30 Recognizable Tree Languages and Finite Tree Automata

If t =
a

b b b

g a

g

, then h(t) =
a

b

b b

f

f a

f

f

The homomorphism h defines a transformation from ternary trees into binary
trees.

Let us now consider F = {and(,), or(,), not(), 0, 1} and F ′ = {or(,), not(), 0, 1}.
Let us consider the tree homomorphism h determined by hF defined by: hF (and) =
not(or(not(x1), not(x2)), and hF is the identity otherwise. This homomorphism
transforms a boolean formula in an equivalent boolean formula which does not
contain the function symbol and.

A tree homomorphism is linear if for each f ∈ F of arity n, hF (f) = tf is
a linear term in T (F ′,Xn). The following example shows that tree homomor-
phisms do not always preserve recognizability.

Example 15. Let F = {f(), g(), a} and F ′ = {f ′(,), g(), a}. Let us consider
the tree homomorphism h determined by hF defined by: hF (f) = f ′(x1, x1),
hF (g) = g(x1), and hF (a) = a. h is not linear. Let L = {f(gi(a)) | i ≥ 0},
then L is a recognizable tree language. h(L) = {f ′(gi(a), gi(a)) | i ≥ 0} is not
recognizable (see Example 12).

Theorem 6 (Linear homomorphisms preserve recognizability). Let h
be a linear tree homomorphism and L be a recognizable tree language, then h(L)
is a recognizable tree language.

Proof. Let L be a recognizable tree language. Let A = (Q,F , Qf ,∆) be a
reduced DFTA such that L(A) = L. Let h be a linear tree homomorphism from
T (F) into T (F ′) determined by a mapping hF .

First, let us define a NFTA A′ = (Q′,F ′, Q′
f ,∆′). Let us consider a rule r =

f(q1, . . . , qn) → q in ∆ and consider the linear term tf = hF (f) ∈ T (F ′,Xn) and
the set of positions Pos(tf). We define a set of states Qr = {qr

p | p ∈ Pos(tf)},
and we define a set of rules ∆r as follows: for all positions p in Pos(tf)

• if tf (p) = g ∈ F ′
k, then g(qr

p1, . . . , q
r
pk) → qr

p ∈ ∆r,

• if tf (p) = xi, then qi → qr
p ∈ ∆r,

• qr
ε → q ∈ ∆r.

The preceding construction is made for each rule in ∆. We suppose that all the
state sets Qr are disjoint and that they are disjoint from Q. Now define A′ by:

• Q′ = Q ∪
⋃

r∈∆ Qr,

TATA — October 28, 2004 —

1.4 Tree Homomorphisms 31

• Q′
f = Qf ,

• ∆′ =
⋃

r∈∆ ∆r.

Second, we have to prove that h(L) = L(A′).

h(L) ⊆ L(A′). We prove that if t
∗
−→
A

q then h(t)
∗

−−→
A′

q by induction on the

length of the reduction of ground term t ∈ T (F) by automaton A.

• Base case. Suppose that t→A q. Then t = a ∈ F0 and a → q ∈ ∆.
Then there is a reduction h(a) = ta

∗
−−→
A′

q using the rules in the set

∆a→q.

• Induction step.

Suppose that t = f(u1, . . . , un), then h(t) = tf{x1←h(u1), . . . , xn←

h(un)}. Moreover suppose that t
∗
−→
A

f(q1, . . . , qn)→A q. By induc-

tion hypothesis, we have h(ui)
∗

−−→
A′

qi, for each i in {1, . . . , n}. Then

there is a reduction tf{x1← q1, . . . , xn← qn}
∗

−−→
A′

q using the rules in

the set ∆f(q1,...,qn)→q.

h(L) ⊇ L(A′). We prove that if t′
∗

−−→
A′

q ∈ Q then t′ = h(t) with t
∗
−→
A

q for

some t ∈ T (F). The proof is by induction on the number of states in Q

occurring along the reduction t′
∗

−−→
A′

q ∈ Q.

• Base case. Suppose that t′
∗

−−→
A′

q ∈ Q and no state in Q apart from q

occurs in the reduction. Then, because the state sets Qr are disjoint,
only rules of some ∆r can be used in the reduction. Thus, t′ is ground,
t′ = hF (f) for some symbol f ∈ F , and r = f(q1, . . . , qn) → q.
Because the automaton is reduced, there is some ground term t with
Head(t) = f such that t′ = h(t) and t

∗
−→
A

q.

• Induction step. Suppose that

t′
∗

−−→
A′

v{x′
1←q1, . . . , x

′
m←qm}

∗
−−→
A′

q

where v is a linear term in T (F ′, {x′
1, . . . , x

′
m}), t′ = v{x′

1← u′
1, . . . , x

′
m←

u′
m}, u′

i
∗

−−→
A′

qi ∈ Q, and no state in Q apart from q occurs in the

reduction of v{x′
1 ← q1, . . . , x

′
m ← qm} in q. The reader should

note that different variables can be substituted by the same state.
Then, because the state sets Qr are disjoint, only rules of some
∆r can be used in the reduction of v{x′

1← q1, . . . , x
′
m← qm} in q.

Thus, there exists some linear term tf such that v{x′
1←q1, . . . , x

′
m←

qm} = tf{x1 ← q1, . . . , xn ← qn} for some symbol f ∈ Fn and
r = f(q1, . . . , qn) → q ∈ ∆. By induction hypothesis, there are

terms u1, . . . , um in L such that u′
i = h(ui) and ui

∗
−→
A

qi for each

i in {1, . . . ,m}. Now consider the term t = f(v1, . . . , vn), where

vi = ui if xi occurs in tf and vi is some term such that vi
∗
−→
A

qi

otherwise (terms vi always exist because A is reduced). We have

TATA — October 28, 2004 —

32 Recognizable Tree Languages and Finite Tree Automata

h(t) = tf{x1←h(v1), . . . , xn←h(vn)}, h(t) = v{x′
1←h(u1), . . . , x

′
m←

h(um)}, h(t) = t′. Moreover, by definition of the vi and by induc-

tion hypothesis, we have t
∗
−→
A

q. Note that if qi occurs more than

once, you can substitute qi by any term satisfying the conditions.
The proof does not work for the non linear case because you have to
check that different occurrences of some state qi corresponding to the
same variable xj ∈ Var(tf) can only be substituted by equal terms.

Only linear tree homomorphisms preserve recognizability. An example of a
non linear homomorphism which transforms recognizable tree languages either
in recognizable tree languages or in non recognizable tree languages is given in
Exercise 6. For linear and non linear homomorphisms, we have:

Theorem 7 (Inverse homomorphisms preserve recognizability). Let h
be a tree homomorphism and L be a recognizable tree language, then h−1(L) is
a recognizable tree language.

Proof. Let h be a tree homomorphism from T (F) into T (F ′) determined by a
mapping hF . Let A′ = (Q′,F ′, Q′

f ,∆′) be a complete DFTA such that L(A′) =
L. We define a DFTA A = (Q,F , Qf ,∆) by Q = Q′ ∪ {s} where s 6∈ Q′,
Qf = Q′

f and ∆ is defined by the following:

• for a ∈ F0, if ta
∗

−−→
A′

q then a → q ∈ ∆;

• for f ∈ Fn where n > 0, if tf{x1← p1, . . . , xn← pn}
∗

−−→
A′

q then f(q1, . . . , qn) →

q ∈ ∆ where qi = pi if xi occurs in tf and qi = s otherwise;

• for a ∈ F0, a → s ∈ ∆;

• for f ∈ Fn where n > 0, f(s, . . . , s) → s ∈ ∆.

The rule set ∆ is computable. The proof of the equivalence t
∗
−→
A

q if and only

if h(t)
∗

−−→
A′

q is left to the reader.

It can be proved that the class of recognizable tree languages is the smallest
non trivial class of tree languages closed by linear tree homomorphisms and
inverse tree homomorphisms. Tree homomorphisms do not in general preserve
recognizability, therefore let us consider the following problem: given as in-
stance a recognizable tree language L and a tree homomorphism h, is the set
h(L) recognizable ? To our knowledge it is not known whether this problem is
decidable. The reader should note that if this problem is decidable, the prob-
lem whether the set of normal forms of a rewrite system is recognizable is easily
shown decidable (see Exercises 6 and 12).

As a conclusion we consider different special types of tree homomorphisms.
These homomorphisms will be used in the next sections in order to simplify
some proofs and will be useful in Chapter 6. Let h be a tree homomorphism
determined by hF . The tree homomorphism h is said to be:

• ε-free if for each symbol f ∈ F , tf is not reduced to a variable.

TATA — October 28, 2004 —

1.5 Minimizing Tree Automata 33

• symbol to symbol if for each symbol f ∈ F , Height(tf) = 1. The reader
should note that with our definitions a symbol to symbol tree homomor-
phism is ε-free. A linear symbol to symbol tree homomorphism changes
the label of the input symbol, possibly erases some subtrees and possibly
modifies order of subtrees.

• complete if for each symbol f ∈ Fn, Var(tf) = Xn.

• a delabeling if h is a complete, linear, symbol to symbol tree homomor-
phism. Such a delabeling only changes the label of the input symbol and
possibly order of subtrees.

• alphabetic if for each symbol f ∈ Fn, tf = g(x1, . . . , xn), where g ∈ F ′
n.

As a corollary of Theorem 6, alphabetic tree homomorphisms, delabelings and
linear, symbol to symbol tree homomorphisms preserve recognizability. It can
be proved that for these classes of tree homomorphisms, given h and a FTA A
such that L(A) = L as instance, a FTA for the recognizable tree language h(L)
can be constructed in linear time. The same holds for h−1(L).

Example 16. Let F = {f(,), g(), a} and F ′ = {f ′(,), g′(), a′}. Let us consider
some tree homomorphisms h determined by different hF .

• hF (f) = x1, hF (g) = f ′(x1, x1), and hF (a) = a′. h is not linear, not
ε-free, and not complete.

• hF (f) = g′(x1), hF (g) = f ′(x1, x1), and hF (a) = a′. h is a non linear
symbol to symbol tree homomorphism. h is not complete.

• hF (f) = f ′(x2, x1), hF (g) = g′(x1), and hF (a) = a′. h is a delabeling.

• hF (f) = f ′(x1, x2), hF (g) = g′(x1), and hF (a) = a′. h is an alphabetic
tree homomorphism.

1.5 Minimizing Tree Automata

In this section, we prove that, like in the word case, there exists a unique minimal
automaton in the number of states for a given recognizable tree language.

A Myhill-Nerode Theorem for Tree Languages

The Myhill-Nerode Theorem is a classical result in the theory of finite au-
tomata. This theorem gives a characterization of the recognizable sets and it
has numerous applications. A consequence of this theorem, among other con-
sequences, is that there is essentially a unique minimum state DFA for every
recognizable language over finite alphabet. The Myhill-Nerode Theorem gener-
alizes in a straightforward way to automata on finite trees.

An equivalence relation ≡ on T (F) is a congruence on T (F) if for every
f ∈ Fn

ui ≡ vi 1 ≤ i ≤ n ⇒ f(u1, . . . , un) ≡ f(v1, . . . , vn) .

TATA — October 28, 2004 —

34 Recognizable Tree Languages and Finite Tree Automata

It is of finite index if there are only finitely many ≡-classes. Equivalently a
congruence is an equivalence relation closed under context, i.e. for all contexts
C ∈ C(F), if u ≡ v, then C[u] ≡ C[v]. For a given tree language L, let us define
the congruence ≡L on T (F) by: u ≡L v if for all contexts C ∈ C(F),

C[u] ∈ L iff C[v] ∈ L.

We are now ready to give the Theorem:

Myhill-Nerode Theorem. The following three statements are equivalent:

(i) L is a recognizable tree language

(ii) L is the union of some equivalence classes of a congruence of finite index

(iii) the relation ≡L is a congruence of finite index.

Proof.

• (i) ⇒ (ii) Assume that L is recognized by some complete DFTA A =
(Q,F , Qf , δ). We consider δ as a transition function. Let us consider
the relation ≡A defined on T (F) by: u ≡A v if δ(u) = δ(v). Clearly
≡A is a congruence relation and it is of finite index, since the number of
equivalence classes is at most the number of states in Q. Furthermore, L
is the union of those equivalence classes that include a term u such that
δ(u) is a final state.

• (ii) ⇒ (iii) Let us denote by ∼ the congruence of finite index. And let us
assume that u ∼ v. By an easy induction on the structure of terms, it can
be proved that C[u] ∼ C[v] for all contexts C ∈ C(F). Now, L is the union
of some equivalence classes of ∼, thus we have C[u] ∈ L iff C[v] ∈ L. Thus
u ≡L v, and the equivalence class of u in ∼ is contained in the equivalence
class of u in ≡L. Consequently, the index of ≡L is lower or equal than the
index of ∼ which is finite.

• (iii) ⇒ (i) Let Qmin be the finite set of equivalence classes of ≡L. And
let us denote by [u] the equivalence class of a term u. Let the transition
function δmin be defined by:

δmin(f, [u1], . . . , [un]) = [f(u1, . . . , un)].

The definition of δmin is consistent because ≡L is a congruence. And
let Qminf

= {[u] | u ∈ L}. The DFTA Amin = (Qmin,F , Qminf
, δmin)

recognizes the tree language L.

As a corollary of the Myhill-Nerode Theorem, we can deduce an other al-
gebraic characterization of recognizable tree languages. This characterization
is a reformulation of the definition of recognizability. A set of ground terms
L is recognizable if and only if there exist a finite F-algebra A, a F-algebra
homomorphism φ : T (F) → A and a subset A′ of the carrier |A| of A such
that L = φ−1(A′).

TATA — October 28, 2004 —

1.5 Minimizing Tree Automata 35

Minimization of Tree Automata

First, we prove the existence and uniqueness of the minimum DFTA for a rec-
ognizable tree language. It is a consequence of the Myhill-Nerode Theorem
because of the following result:

Corollary 2. The minimum DFTA recognizing a recognizable tree language L
is unique up to a renaming of the states and is given by Amin in the proof of
Myhill-Nerode Theorem.

Proof. Assume that L is recognized by some DFTA A = (Q,F , Qf , δ). The
relation ≡A is a refinement of ≡L (see the proof of Myhill-Nerode Theorem).
Therefore the number of states of A is greater than or equal to the number of
states of Amin. If equality holds, A is reduced, i.e. all states are accessible,
because otherwise a state could be removed leading to a contradiction. Let q
be a state in Q and let u be such that δ(u) = q. The state q can be identified
with the state δmin(u). This identification is consistent and defines a one to one
correspondence between Q and Qmin.

Second, we give a minimization algorithm for finding the minimum state
DFTA equivalent to a given reduced DFTA. We confuse an equivalence relation
and the sequence of its equivalence classes.

Minimization Algorithm MIN
input: complete and reduced DFTA A = (Q,F , Qf , δ)
begin

Set P to {Qf , Q − Qf} /* P is the initial equivalence relation*/
repeat

P ′ = P
/* Refine equivalence P in P ′ */
qP ′q′ if

qPq′ and
∀f ∈ Fn∀q1, . . . , qi−1, qi+1, . . . , qn ∈ Q
δ(f(q1, . . . , qi−1, q, qi+1, . . . , qn))Pδ(f(q1, . . . , qi−1, q

′, qi+1, . . . , qn))
until P ′ = P
Set Qmin to the set of equivalence classes of P
/* we denote by [q] the equivalence class of state q w.r.t. P */
Set δmin to {(f, [q1], . . . , [qn]) → [f(q1, . . . , qn)]}
Set Qminf

to {[q] | q ∈ Qf}
output: DFTA Amin = (Qmin,F , Qminf

, δmin)
end

The DFTA constructed by the algorithm MIN is the minimum state DFTA
for its tree language. Indeed, let A = (Q,F , Qf ,∆) the DFTA to which is ap-
plied the algorithm and let L = L(A). Let Amin be the output of the algorithm.
It is easy to show that the definition of Amin is consistent and that L = L(Amin).
Now, by contradiction, we can prove that Amin has no more states than the
number of equivalence classes of ≡L.

TATA — October 28, 2004 —

36 Recognizable Tree Languages and Finite Tree Automata

1.6 Top Down Tree Automata

Tree automata that we have defined in the previous sections are also known as
bottom-up tree automata because these automata start their computation at
the leaves of trees. In this section we define top-down tree automata. Such an
automaton starts its computation at the root in an initial state and then simul-
taneously works down the paths of the tree level by level. The tree automaton
accepts a tree if a run built up in this fashion can be defined. It appears that
top-down tree automata and bottom-up tree automata have the same expres-
sive power. An important difference between bottom-up tree automata and
top-down automata appears in the question of determinism since deterministic
top-down tree automata are strictly less powerful than nondeterministic ones
and therefore are strictly less powerful than bottom-up tree automata. In-
tuitively, it is due to the following: tree properties specified by deterministic
top-down tree automata can depend only on path properties. We now make
precise these remarks and first, let us formally define top-down tree automata.

A nondeterministic top-down finite Tree Automaton (top-down NFTA)
over F is a tuple A = (Q,F , I,∆) where Q is a set of states (states are unary
symbols), I ⊆ Q is a set of initial states, and ∆ is a set of rewrite rules of the
following type :

q(f(x1, . . . , xn)) → f(q1(x1), . . . , qn(xn)),

where n ≥ 0, f ∈ Fn, q, q1, . . . , qn ∈ Q, x1, . . . , xn ∈ X .
When n = 0, i.e. when the symbol is a constant symbol a, a transition rule

of top-down NFTA is of the form q(a) → a. A top-down automaton starts at the
root and moves downward, associating along a run a state with each subterm
inductively. We do not formally define the move relation →A defined by a top-
down NFTA because the definition is easily deduced from the corresponding
definition for bottom-up NFTA. The tree language L(A) recognized by A is the
set of all ground terms t for which there is an initial state q in I such that

q(t)
∗
−→
A

t.

The expressive power of bottom-up and top-down tree automata is the same.
Indeed, we have the following Theorem:

Theorem 8 (The equivalence of top-down and bottom-up NFTA’s).
The class of languages accepted by top-down NFTA’s is exactly the class of
recognizable tree languages.

Proof. The proof is left to the reader. Hint. Reverse the arrows and exchange
the sets of initial and final states.

Top-down and bottom-up tree automata have the same expressive power
because they define the same classes of tree languages. Nevertheless they do
not have the same behavior from an algorithmic point of view because nonde-
terminism can not be reduced in the class of top-down tree automata.

Proposition 1 (Top-down NFTA’s and top-down DFTA’s). A top-down
finite Tree Automaton (Q,F , I,∆) is deterministic (top-down DFTA) if there
is one initial state and no two rules with the same left-hand side. Top-down
DFTA’s are strictly less powerful than top-down NFTA’s, i.e. there exists a
recognizable tree language which is not accepted by a top-down DFTA.

TATA — October 28, 2004 —

1.7 Decision Problems and their Complexity 37

Proof. Let F = {f(,), a, b}. And let us consider the recognizable tree language
T = {f(a, b), f(b, a)}. Now let us suppose there exists a top-down DFTA that
accepts T , the automaton should accept the term f(a, a) leading to a contra-
diction. Obviously the tree language T = {f(a, b), f(b, a)} is recognizable by a
finite union of top-down DFTA but there is a recognizable tree language which
is not accepted by a finite union of top-down DFTA (see Exercise 2).

1.7 Decision Problems and their Complexity

In this section, we study some decision problems and their complexity. The size
of an automaton will be the size of its representation. More formally:

Definition 1. Let A = (Q,F , Qf ,∆) be an NFTA over F . The size of a rule
f(q1(x1), . . . , qn(xn)) → q(f(x1, . . . , xn)) is arity(f) + 2. The size of A noted
‖A‖, is defined by:

‖A‖ = |Q| +
∑

f(q1(x1),...,qn(xn))→q(f(x1,...,xn))∈∆

(arity(f) + 2).

We will work in the frame of RAM machines, with uniform measure.

Membership

Instance A ground term.

Answer “yes” if and only if the term is recognized by a given automaton.

Let us first remark that, in our model, for a given deterministic automaton,
a run on a tree can be computed in O(‖t‖). The complexity of the problem is:

Theorem 9. Membership problem is ALOGTIME-complete.

Uniform Membership

Instance A tree automaton and a ground term.

Answer “yes” if and only if the term is recognized by a given automaton.

Theorem 10. Uniform membership problem can be decided in linear time for
DFTA, in polynomial time for NFTA.

Proof. In the deterministic case, from a term t and the automaton ‖A‖, we can
compute a run in O(‖t‖+‖A‖). In the nondeterministic case, the idea is similar
to the word case: the algorithm determinizes along the computation, i.e. for
each node of the term, we compute the set of reached states. The complexity
of this algorithm will be in O(‖t‖ × ‖A‖).

The uniform membership problem has been proved LOGSPACE-complete
for deterministic top-down tree automata, LOGCFL-complete for NFTA under
log-space reductions. For DFTA, it has been proven LOGDCFL, but the precise
complexity remains open.

TATA — October 28, 2004 —

38 Recognizable Tree Languages and Finite Tree Automata

Emptiness

Instance A tree automaton

Answer “yes” if and only if the recognized language is empty.

Theorem 11. It can be decided in linear time whether the language accepted
by a finite tree automaton is empty.

Proof. The minimal height of accepted terms can be bounded by the number of
states using Corollary 1; so, as membership is decidable, emptiness is decidable.
Of course, this approach does not provide a practicable algorithm. To get an
efficient algorithm, it suffices to notice that a NFTA accepts at least one tree
if and only if there is an accessible final state. In other words, the language
recognized by a reduced automaton is empty if and only if the set of final
states is non empty. Reducing an automaton can be done in O(|Q| × ‖A‖)
by the reduction algorithm given in Section 1.1. Actually, this algorithm can
be improved by choosing an adequate data structure in order to get a linear
algorithm (see Exercise 17). This linear least fixpoint computation holds in
several frameworks. For example, it can be viewed as the satisfiability test of
a set of propositional Horn formulae. The reduction is easy and linear: each
state q can be associated with a propositional variable Xq and each rule r :
f(q1, . . . , qn) → q can be associated with a propositional Horn formula Fr =
Xq∨¬Xq1

∨· · ·∨¬Xqn
. It is straightforward that satisfiability of {Fr}∪{¬Xq/q ∈

Qf} is equivalent to emptiness of the language recognized by (Q,F , Qf ,∆). So,
as satisfiability of a set of propositional Horn formulae can be decided in linear
time, we get a linear algorithm for testing emptiness for NFTA.

The emptiness problem is P-complete with respect to logspace reductions,
even when restricted to deterministic tree automata. The proof can easily be
done since the problem is very close to the solvable path systems problem which
is known to be P-complete (see Exercise 18).

Intersection non-emptiness

Instance A finite sequence of tree automata.

Answer “yes” if and only if there is at least one term recognized by each
automaton of the sequence.

Theorem 12. The intersection problem for tree automata is EXPTIME-complete.

Proof. By constructing the product automata for the n automata, and then
testing non-emptiness, we get an algorithm in O(‖A1‖×· · ·×‖An‖). The proof
of EXPTIME-hardness is based on simulation of an alternating linear space-
bounded Turing machine. Roughly speaking, with such a machine and an input
of length n can be associated polynomially n tree automata whose intersection
corresponds to the set of accepting computations on the input. It is worth
noting that the result holds for deterministic top down tree automata as well as
for deterministic bottom-up ones.

TATA — October 28, 2004 —

1.7 Decision Problems and their Complexity 39

Finiteness

Instance A tree automaton

Answer “yes” if and only if the recognized language is finite.

Theorem 13. Finiteness can be decided in polynomial time.

Proof. Let us consider a NFTA A = (Q,F , Qf ,∆). Deciding finiteness of A is
direct by Corollary 1: it suffices to find an accepted term t s.t. |Q| < ‖t‖ ≤
2∗ |Q|. A more efficient way to test finiteness is to check the existence of a loop:
the language is infinite if and only if there is a loop on some useful state, i.e.
there exist an accessible state q and contexts C and C ′ such that C[q]

∗
−→
A

q and

C ′[q]
∗
−→
A

q′ for some final state q′. Computing accessible and coaccessible states

can be done in O(|Q| × ‖A‖) or in O(‖A‖) by using an ad hoc representation
of the automaton. For a given q, deciding if there is a loop on q can be done in
O(A). So, finiteness can be decided in O(|Q| × ‖A‖).

Emptiness of the Complement

Instance A tree automaton.

Answer “yes” if and only if every term is accepted by the automaton

Deciding whether a deterministic tree automaton recognizes the set of all
terms is polynomial for a fixed alphabet: we just have to check whether the
automaton is complete (which can be done in O(|F| × |Q|Arity(F))) and then it
remains only to check that all accessible states are final. For nondeterministic
automata, the following result proves in some sense that determinization with
its exponential cost is unavoidable:

Theorem 14. The problem whether a tree automaton accepts the set of all
terms is EXPTIME-complete for nondeterministic tree automata.

Proof. The proof of this theorem is once more based on simulation of linear space
bounded alternating Turing machine: indeed, the complement of the accepting
computations on an input w can be coded polynomially in a recognizable tree
language.

Equivalence

Instance Two tree automata

Answer “yes” if and only if the automata recognize the same language.

Theorem 15. Equivalence is decidable for tree automata.

Proof. Clearly, as the class of recognizable sets is effectively closed under com-
plementation and intersection, and as emptiness is decidable, equivalence is
decidable. For two deterministic complete automata A1 and A2, we get by
these means an algorithm in O(‖A1‖ × ‖A2‖). (An other way is to compare
the minimal automata). For nondeterministic ones, this approach leads to an
exponential algorithm.

TATA — October 28, 2004 —

40 Recognizable Tree Languages and Finite Tree Automata

As we have proved that deciding whether an automaton recognizes the set
of all ground terms is EXPTIME-hard, we get immediately:

Corollary 3. The inclusion problem and the equivalence problem for NFTA’s
are EXPTIME-complete.

Singleton Set Property

Instance A tree automaton

Answer “yes” if and only if the recognized language is a singleton set.

Theorem 16. The singleton set property is decidable in polynomial time.

Proof. There are several ways to get a polynomial algorithm for this property.
A first one would be to first check non-emptiness of L(A) and then ”extract”
from A a DFA B whose size is smaller than ‖A‖ and which accepts a single term
recognized by A. Then it remains to check emptiness of L(A)∩L(B). This can
be done in polynomial time, even is B is non complete.

An other algorithm is: for each state of a bottom-up tree automaton A,
compute, up to 2, the number C(q) of terms leading to state q. This can be done
in a straightforward way when A is deterministic; when A is non deterministic,
this can be also done in polynomial time:

Singleton Set Test Algorithm
input: NFTA A = (Q,F , Qf ,∆)
begin

Set C(q) to 0, for every q in Q
/* C(q) ∈ {0, 1, 2} is the number, up to 2, of terms leading to state q */
/* if C(q) = 1 then T (q) is a representation of the accepted tree */
repeat

for each rule f(q1, . . . , qn) → q ∈ ∆ do
Case ∧jC(qj) >= 1 and C(qi) = 2 for some i: Set C(q) to 2
Case ∧jC(qj) = 1 and C(q) = 0: Set C(q) to 1, T (q) to f(q1, ...qn)
Case ∧jC(qj) = 1, C(q) = 1 and Diff(T (q), f(q1, . . . , qn)):

Set C(q) to 2
Others null
where Diff(f(q1, ..., qn), g(q′1, ..., q

′
n)) defined by:

/* Diff can be computed polynomially by using memoization. */
if (f 6= g) then return true
elseif Diff(T (qi), T (q′i) for some qi then return True
else return False

until C can not be changed
output:
/*L(A) is empty */
if ∧q∈Qf

C(q) = 0 then return False
/* two terms in L(A) accepted in the same state or two different states */
elseif ∃q ∈ Qf C(q) = 2 then return False
elseif ∃q, q′ ∈ Qf C(q) = C(q′) = 1 and Diff(T (q), T (q′)) then return False
/* in all other cases L(A) is a singleton set*/

TATA — October 28, 2004 —

1.8 Exercises 41

else return True.
end

Other complexity results for “classical” problems can be found in the exer-
cises. E.g., let us cite the following problem whose proof is sketched in Exer-
cise 11

Ground Instance Intersection Problem

Instance A term t, a tree automaton A.

Answer “yes” if and only if there is at least a ground instance of t which is
accepted by A.

Theorem 17. The Ground Instance Intersection Problem for tree automata
is P when t is linear, NP-complete when t is non linear and A deterministic,
EXPTIME-complete when t is non linear and A non deterministic.

1.8 Exercises

Starred exercises are discussed in the bibliographic notes.

Exercise 1. Let F = {f(,), g(), a}. Define a top-down NFTA, a NFTA and a DFTA

for the set G(t) of ground instances of term t = f(f(a, x), g(y)) which is defined by

G(t) = {f(f(a, u), g(v)) | u, v ∈ T (F)}. Is it possible to define a top-down DFTA for

this language?

Exercise 2. Let F = {f(,), g(), a}. Define a top-down NFTA, a NFTA and a DFTA

for the set M(t) of terms which have a ground instance of term t = f(a, g(x)) as a

subterm, that is M(t) = {C[f(a, g(u))] | C ∈ C(F), ∈ T (F)}. Is it possible to define

a top-down DFTA for this language?

Exercise 3. Let F = {g(), a}. Is the set of ground terms whose height is even

recognizable? Let F = {f(,), g(), a}. Is the set of ground terms whose height is even

recognizable?

Exercise 4. Let F = {f(,), a}. Prove that the set L = {f(t, t) | t ∈ T (F)} is

not recognizable. Let F be any ranked alphabet which contains at least one constant

symbol a and one binary symbol f(,). Prove that the set L = {f(t, t) | t ∈ T (F)} is

not recognizable.

Exercise 5. Prove the equivalence between top-down NFTA and NFTA.

Exercise 6. Let F = {f(,), g(), a} and F ′ = {f ′(,), g(), a}. Let us consider the
tree homomorphism h determined by hF defined by: hF (f) = f ′(x1, x2), hF (g) =
f ′(x1, x1), and hF (a) = a. Is h(T (F)) recognizable? Let L1 = {gi(a) | i ≥ 0}, then
L1 is a recognizable tree language, is h(L1) recognizable? Let L2 be the recognizable

TATA — October 28, 2004 —

42 Recognizable Tree Languages and Finite Tree Automata

tree language defined by L2 = L(A) where A = (Q,F , Qf , ∆) is defined by: Q =
{qa, qg, qf}, Qf = {qf}, and ∆ is the following set of transition rules:

{ a → qa g(qa) → qg

f(qa, qa) → qf f(qg, qg) → qf

f(qa, qg) → qf f(qg, qa) → qf

f(qa, qf) → qf f(qf , qa) → qf

f(qg, qf) → qf f(qf , qg) → qf

f(qf , qf) → qf }.

Is h(L2) recognizable?

Exercise 7. Let F1 = {or(,), and(,), not(), 0, 1, x}. A ground term over F can be

viewed as a boolean formula over variable x. Define a DFTA which recognizes the set

of satisfiable boolean formulae over x. Let Fn = {or(,), and(,), not(), 0, 1, x1, . . . , xn}.

A ground term over F can be viewed as a boolean formula over variables x1, . . . , xn.

Define a DFTA which recognizes the set of satisfiable boolean formulae over x1, . . . , xn.

Exercise 8. Let t be a linear term in T (F ,X). Prove that the set G(t) of ground

instances of term t is recognizable. Let R be a finite set of linear terms in T (F ,X).

Prove that the set G(R) of ground instances of set R is recognizable.

Exercise 9. * Let R be a finite set of linear terms in T (F ,X). We define the set
Red(R) of reducible terms for R to be the set of ground terms which have a ground
instance of some term in R as a subterm.

1. Prove that the set Red(R) is recognizable.

2. Prove that the number of states of a DFA recognizing Red(R) can be at least
2n−1 where n is the size (number of nodes) of R. Hint: Consider the set reduced
to the pattern h(f(x1, f(x2, f(x3), . . . , (f(xp−1, f(a, xp) · · ·).

3. Let us now suppose that R is a finite set of ground terms. Prove that we can
construct a DFA recognizing Red(R) whose number of states is at most n + 2
where n is the number of different subterms of R.

Exercise 10. * Let R be a finite set of linear terms in T (F ,X). A term t is inductively

reducible for R if all the ground instances of term t are reducible for R. Prove that

inductive reducibility of a linear term t for a set of linear terms R is decidable.

Exercise 11. *
We consider the following decision problem:

Instance t a term in T (F ,X) and A a NFTA

Answer “yes” if and only if Yes, iff at least one ground instance of t is accepted by
|A.

1. Let us first suppose that t is linear; prove that the property is P .

Hint: a NFTA for the set of ground instances of t can ce computed polynomially
(see Exercise 8

2. Let us now suppose that t is non linear but that A is deterministic.

(a) Prove that the property is NP. Hint: we just have to guess a substitution
of the variables of t by states.

(b) Prove that the property is NP-hard.

Hint: just consider a term t which represents a boolean formula and A a
DFTA which accepts valid formulas.

TATA — October 28, 2004 —

1.8 Exercises 43

3. Let us now suppose that t is non linear and that A is non deterministic.

Prove that the property is EXPTIME−complete.

Hint: use the EXPTIME-hardness of intersection non-emptiness.

Exercise 12. * We consider the following two problems. First, given as instance a

recognizable tree language L and a tree homomorphism h, is the set h(L) recognizable?

Second, given as instance a set R of terms in T (F ,X), is the set Red(R) recogniz-

able? Prove that if the first problem is decidable, the second problem is easily shown

decidable.

Exercise 13. Let F = {f(,), a, b}.

1. Let us consider the set of ground terms L1 defined by the following two condi-
tions:

• f(a, b) ∈ L1,

• t ∈ L1 ⇒ f(a, f(t, b)) ∈ L1.

Prove that the set L1 is recognizable.

2. Prove that the set L2 = {t ∈ T (F) | |t|a = |t|b} is not recognizable where |t|a
(respectively |t|b) denotes the number of a (respectively the number of b) in t.

3. Let L be a recognizable tree language over F . Let us suppose that f is a
commutative symbol. Let C(L) be the congruence closure of set L for the set
of equations C = {f(x, y) = f(y, x)}. Prove that C(L) is recognizable.

4. Let L be a recognizable tree language over F . Let us suppose that f is a com-
mutative and associative symbol. Let AC(L) be the congruence closure of set L
for the set of equations AC = {f(x, y) = f(y, x); f(x, f(y, z)) = f(f(x, y), z)}.
Prove that in general AC(L) is not recognizable.

5. Let L be a recognizable tree language over F . Let us suppose that f is an
associative symbol. Let A(L) be the congruence closure of set L for the set of
equations A = {f(x, f(y, z)) = f(f(x, y), z)}. Prove that in general A(L) is not
recognizable.

Exercise 14. * Consider the complement problem:

• Instance A term t ∈ T (F ,X) and terms t1, . . . , tn,

• Question There is a ground instance of t which is not an instance of any ti.

Prove that the complement problem is decidable whenever term t and all terms ti are

linear. Extend the proof to handle the case where t is a term (not necessarily linear).

Exercise 15. * Let F be a ranked alphabet and suppose that F contains some symbols
which are commutative and associative. The set of ground AC-instances of a term t is
the AC-congruence closure of set G(t). Prove that the set of ground AC-instances of a
linear term is recognizable. The reader should note that the set of ground AC-instances
of a set of linear terms is not recognizable (see Exercice 13).

Prove that the AC-complement problem is decidable where the AC-complement
problem is defined by:

• Instance A linear term t ∈ T (F ,X) and linear terms t1, . . . , tn,

• Question There is a ground AC-instance of t which is not an AC-instance of
any ti.

TATA — October 28, 2004 —

44 Recognizable Tree Languages and Finite Tree Automata

Exercise 16. * Let F be a ranked alphabet and X be a countable set of variables.
Let S be a rewrite system on T (F ,X) (the reader is referred to [DJ90]) and L be a
set of ground terms. We denote by S∗(L) the set of reductions of terms in L by S and
by S(L) the set of ground S-normal forms of set L. Formally,

S∗(L) = {t ∈ T (F) | ∃u ∈ L u
∗
→ t},

S(L) = {t ∈ T (F) | t ∈ IRR(S) and ∃u ∈ L u
∗
→ t} = IRR(S) ∩ S∗(L)

where IRR(S) denotes the set of ground irreducible terms for S. We consider the two
following decision problems:

(1rst order reachability)

• Instance A rewrite system S, two ground terms u and v,

• Question v ∈ S∗({u}).

(2nd order reachability)

• Instance A rewrite system S, two recognizable tree languages L and L′,

• Question S∗(L) ⊆ L′.

1. Let us suppose that rewrite system S satisfies:

(PreservRec) If L is recognizable, then S∗(L) is recognizable.

What can be said about the two reachability decision problems? Give a suffi-
cient condition on rewrite system S satisfying (PreservRec) such that S satisfies
(NormalFormRec) where (NormalFormRec) is defined by:

(NormalFormRec) If L is recognizable, then S(L) is recognizable.

2. Let F = {f(,), g(), h(), a}. Let L = {f(t1, t2) | t1, t2 ∈ T ({g(), h(), a}}, and S
is the following set of rewrite rules:

{ f(g(x), h(y)) → f(x, y) f(h(x), g(y)) → f(x, y)
g(h(x)) → x h(g(x)) → x
f(a, x) → x f(x, a) → x }

Are the sets L, S∗(L), and S(L) recognizable?

3. Let F = {f(,), g(), h(), a}. Let L = {g(hn(a)) | n ≥ 0}, and S is the following
set of rewrite rules:

{ g(x) → f(x, x) }

Are the sets L, S∗(L), and S(L) recognizable?

4. Let us suppose now that rewrite system S is linear and monadic, i.e. all rewrite
rules are of one of the following three types:

(1) l → a , a ∈ F0

(2) l → x , x ∈ Var(l)
(3) l → f(x1, . . . , xp) , x1, . . . , xp ∈ Var(l), f ∈ Fp

where l is a linear term (no variable occurs more than once in t) whose height
is greater than 1. Prove that a linear and monadic rewrite system satisfies
(PreservRec). Prove that (PreservRec) is false if the right-hand side of rules of
type (3) may be non linear.

Exercise 17. Design a linear-time algorithm for testing emptiness of the language
recognized by a tree automaton:

Instance A tree automaton

TATA — October 28, 2004 —

1.9 Bibliographic Notes 45

Answer “yes” if and only if the language recognized is empty.

Hint: Choose a suitable data structure for the automaton. For example, a state

could be associated with the list of the “adresses” of the rules whose left-hand side

contain it (eventually, a rule can be repeated); each rule could be just represented by

a counter initialized at the arity of the corresponding symbol and by the state of the

right-hand side. Activating a state will decrement the counters of the corresponding

rules. When the counter of a rule becomes null, the rule can be applied: the right-hand

side state can be activated.

Exercise 18.
The Solvable Path Problem is the following:

Instance a finite set X and three sets R ⊂ X × X × X, Xs ⊂ X and Xt ⊂ X.

Answer “yes” if and only if Xt ∩ A is non empty, where A is the least subset of X
such that Xs ⊂ A and if y, z ∈ A and (x, y, z) ∈ R, then x ∈ A.

Prove that this P − complete problem is log-space reducible to the emptiness
problem for tree automata.

Exercise 19. A flat automaton is a tree automaton which has the following property:
there is an ordering ≥ on the states and a particular state q> such that the transition
rules have one of the following forms:

1. f(q>, . . . , q>) → q>

2. f(q1, . . . , qn) → q with q > qi for every i

3. f(q>, . . . , q>, q, q>, . . . , q>) → q

Moreover, we assume that all terms are accepted in the state q>. (The automaton is
called flat because there are no “nested loop”).

Prove that the intersection of two flat automata is a finite union of automata whose
size is linear in the sum of the original automata. (This contrasts with the construction
of Theorem 5 in which the intersection automaton’s size is the product of the sizes of
its components).

Deduce from the above result that the intersection non-emptiness problem for flat

automata is in NP (compare with Theorem 12).

1.9 Bibliographic Notes

Tree automata were introduced by Doner [Don65, Don70] and Thatcher and
Wright [TW65, TW68]. Their goal was to prove the decidability of the weak
second order theory of multiple successors. The original definitions are based
on the algebraic approach and involve heavy use of universal algebra and/or
category theory.

Many of the basic results presented in this chapter are the straightforward
generalization of the corresponding results for finite automata. It is difficult to
attribute a particular result to any one paper. Thus, we only give a list of some
important contributions consisting of the above mentioned papers of Doner,
Thatcher and Wright and also Eilenberg and Wright [EW67], Thatcher [Tha70],
Brainerd [Bra68, Bra69], Arbib and Give’on [AG68]. All the results of this
chapter and a more complete and detailed list of references can be found in the
textbook of Gcseg and Steinby [GS84] and also in their recent survey [GS96].
For an overview of the notion of recognizability in general algebraic structures
see Courcelle [Cou89] and the fundamental paper of Mezei and Wright [MW67].

TATA — October 28, 2004 —

46 Recognizable Tree Languages and Finite Tree Automata

In Nivat and Podelski [NP89] and [Pod92], the theory of recognizable tree lan-
guages is reduced to the theory of recognizable sets in an infinitely generated
free monoid.

The results of Sections 1.1, 1.2, and 1.3 were noted in many of the papers
mentioned above, but, in this textbook, we present these results in the style of
the undergraduate textbook on finite automata by Hopcroft and Ullman [HU79].
Tree homomorphisms were defined as a special case of tree transducers, see
Thatcher [Tha73]. The reader is referred to the bibliographic notes in Chapter 6
of the present textbook for detailed references. The reader should note that our
proof of preservation of recognizability by tree homomorphisms and inverse tree
homomorphisms is a direct construction using FTA. A more classical proof can
be found in [GS84] and uses regular tree grammars (see Chapter 2).

Minimal tree recognizers and Nerode’s congruence appear in Brainerd [Bra68,
Bra69], Arbib and Give’on [AG68], and Eilenberg and Wright [EW67]. The
proof we presented here is by Kozen [Koz92] (see also Flp and Vágvlgyi [FV89]).
Top-down tree automata were first defined by Rabin [Rab69]. The reader is
referred to [GS84] and [GS96] for more references and for the study of some
subclasses of recognizable tree languages such as the tree languages recognized
by deterministic top-down tree automata. An alternative definition of determin-
istic top-down tree automata was defined in [NP97] leading to “homogeneous”
tree languages, also a minimization algorithm was given.

Some results of Sections 1.7 are “folklore” results. Complexity results for
the membership problem and the uniform membership problem could be found
in [Loh01]. Other interesting complexity results for tree automata can be found
in Seidl [Sei89], [Sei90]. The EXPTIME-hardness of the problem of intersec-
tion non-emptiness is often used; this problem is close to problems of type
inference and an idea of the proof can be found in [FSVY91]. A proof for de-
terministic top-down automata can be found in [Sei94b]. A detailed proof in
the deterministic bottom-up case as well as some other complexity results are
in [Vea97a], [Vea97b].

We have only considered finite ordered ranked trees. Unranked trees are
used for XML Document Type Definitions and more generally for XML schema
languages [MLM01]. The theory of unranked trees dates back to Thatcher. All
the fundamental results for finite tree automata can be extended to the case of
unranked trees and the methods are similar [BKMW01]. An other extension is
to consider unordered trees. A general discussion about unordered and unranked
trees can be found in the bibliographical notes of Section 4.

Numerous exercises of the present chapter illustrate applications of tree au-
tomata theory to automated deduction and to the theory of rewriting systems.
These applications are studied in more details in Section 3.4. Results about tree
automata and rewrite systems are collected in Gilleron and Tison [GT95]. Let
S be a term rewrite system (see for example Dershowitz and Jouannaud [DJ90]
for a survey on rewrite systems), if S is left-linear the set IRR(S) of irreducible
ground terms w.r.t. S is a recognizable tree language. This result first appears
in Gallier and Book [GB85] and is the subject of Exercise 9. However not every
recognizable tree language is the set of irreducible terms w.r.t. a rewrite system
S (see Flp and Vágvlgyi [FV88]). It was proved that the problem whether,
given a rewrite system S as instance, the set of irreducible terms is recognizable
is decidable (Kucherov [Kuc91]). The problem of preservation of regularity by
tree homomorphisms is not known decidable. Exercise 12 shows connections

TATA — October 28, 2004 —

1.9 Bibliographic Notes 47

between preservation of regularity for tree homomorphisms and recognizability
of sets of irreducible terms for rewrite systems.

The notion of inductive reducibility (or ground reducibility) was introduced
in automated deduction. A term t is S-inductively (or S-ground) reducible for
S if all the ground instances of term t are reducible for S. Inductive reducibility
is decidable for linear term t and left-linear rewrite system S. This is Exer-
cise 10, see also Section 3.4.2. Inductive reducibility is decidable for finite S
(see Plaisted [Pla85]). Complement problems are also introduced in automated
deduction. They are the subject of Exercises 14 and 15. The complement prob-
lem for linear terms was proved decidable by Lassez and Marriott [LM87] and
the AC-complement problem by Lugiez and Moysset [LM94].

The reachability problem is defined in Exercise 16. It is well known that this
problem is undecidable in general. It is decidable for rewrite systems preserving
recognizability, i.e. such that for every recognizable tree language L, the set
of reductions of terms in L by S is recognizable. This is true for linear and
monadic rewrite systems (right-hand sides have depth less than 1). This result
was obtained by K. Salomaa [Sal88] and is the matter of Exercise 16. This is
true also for linear and semi-monadic (variables in the right-hand sides have
depth at most 1) rewrite systems, Coquid et al. [CDGV94]. Other interesting
results can be found in [Jac96] and [NT99].

TATA — October 28, 2004 —

Chapter 2

Regular Grammars and
Regular Expressions

2.1 Tree Grammar

In the previous chapter, we have studied tree languages from the acceptor point
of view, using tree automata and defining recognizable languages. In this chap-
ter we study languages from the generation point of view, using regular tree
grammars and defining regular tree languages. We shall see that the two no-
tions are equivalent and that many properties and concepts on regular word
languages smoothly generalize to regular tree languages, and that algebraic
characterization of regular languages do exist for tree languages. Actually, this
is not surprising since tree languages can be seen as word languages on an infi-
nite alphabet of contexts. We shall show also that the set of derivation trees of
a context-free language is a regular tree language.

2.1.1 Definitions

When we write programs, we often have to know how to produce the elements of
the data structures that we use. For instance, a definition of the lists of integers
in a functional language like ML is similar to the following definition:

Nat = 0 | s(Nat)
List = nil | cons(Nat, List)

This definition is nothing but a tree grammar in disguise, more precisely the
set of lists of integers is the tree language generated by the grammar with axiom
List, non-terminal symbols List,Nat, terminal symbols 0, s, nil, cons and rules

Nat → 0
Nat → s(Nat)
List → nil
List → cons(Nat, List)

Tree grammars are similar to word grammars except that basic objects are
trees, therefore terminals and non-terminals may have an arity greater than 0.
More precisely, a tree grammar G = (S,N,F , R) is composed of an axiom

TATA — October 28, 2004 —

50 Regular Grammars and Regular Expressions

S, a set N of non-terminal symbols with S ∈ N , a set F of terminal

symbols, a set R of production rules of the form α → β where α, β are trees
of T (F∪N∪X) where X is a set of dummy variables and α contains at least one
non-terminal. Moreover we require that F ∩N = ∅, that each element of N ∪F
has a fixed arity and that the arity of the axiom S is 0. In this chapter, we
shall concentrate on regular tree grammars where a regular tree grammar
G = (S,N,F , R) is a tree grammar such that all non-terminal symbols have
arity 0 and production rules have the form A → β, with A a non-terminal of N
and β a tree of T (F ∪ N).

Example 17. The grammar G with axiom List, non-terminals List,Nat
terminals 0, nil, s(), cons(,), rules

List → nil
List → cons(Nat, List)
Nat → 0
Nat → s(Nat)

is a regular tree grammar.

A tree grammar is used to build terms from the axiom, using the corre-
sponding derivation relation. Basically the idea is to replace a non-terminal
A by the right-hand side α of a rule A → α. More precisely, given a regular
tree grammar G = (S,N,F , R), the derivation relation →G associated to G is
a relation on pairs of terms of T (F ∪ N) such that s →G t if and only if there
are a rule A → α ∈ R and a context C such that s = C[A] and t = C[α].
The language generated by G, denoted by L(G), is the set of terms of T (F)
which can be reached by successive derivations starting from the axiom, i.e.

L(G) = {s ∈ TF | S
+

→G s} with
+
→ the transitive closure of →G. We write →

instead of →G when the grammar G is clear from the context. A regular tree

language is a language generated by a regular tree grammar.

Example 18. Let G be the grammar of the previous example, then a derivation
of cons(s(0), nil) from List is

List →G cons(Nat, List) →G cons(s(Nat), List) →G cons(s(Nat), nil)
→G cons(s(0), nil)

and the language generated by G is the set of lists of non-negative integers.

From the example, we can see that trees are generated top-down by replacing
a leaf by some other term. When A is a non-terminal of a regular tree grammar
G, we denote by LG(A) the language generated by the grammar G′ identical to
G but with A as axiom. When there is no ambiguity on the grammar referred to,
we drop the subscript G. We say that two grammars G and G′ are equivalent

when they generate the same language. Grammars can contain useless rules or
non-terminals and we want to get rid of these while preserving the generated
language. A non-terminal is reachable if there is a derivation from the axiom

TATA — October 28, 2004 —

2.1 Tree Grammar 51

containing this non-terminal. A non-terminal A is productive if LG(A) is non-
empty. A regular tree grammar is reduced if and only if all its non-terminals
are reachable and productive. We have the following result:

Proposition 2. A regular tree grammar is equivalent to a reduced regular tree
grammar.

Proof. Given a grammar G = (S,N,F , R), we can compute the set of reach-
able non-terminals and the set of productive non-terminals using the sequences
(Reach)n and (Prod)n which are defined in the following way.

Prod0 = ∅
Prodn = Prodn−1

∪
{A ∈ N | ∃(A → α) ∈ R s.t. each non-terminal of α is in Prodn−1}

Reach0 = {S}
Reachn = Reachn−1

∪
{A ∈ N | ∃(A′ → α) ∈ R s.t. A′ ∈ Reachn−1 and A occurs in α}

For each sequence, there is an index such that all elements of the sequence
with greater index are identical and this element is the set of productive (resp.
reachable) non-terminals of G. Each regular tree grammar is equivalent to a
reduced tree grammar which is computed by the following cleaning algorithm.

Computation of an equivalent reduced grammar
input: a regular tree grammar G = (S,N,F , R).

1. Compute the set of productive non-terminals NProd =
⋃

n≥0 Prodn for G
and let G′ = (S,NProd,F , R′) where R′ is the subset of R involving rules
containing only productive non-terminals.

2. Compute the set of reachable non-terminals NReach =
⋃

n≥0 Reachn for
G′ (not G) and let G′′ = (S,NReach,F , R′′) where R′′ is the subset of R′

involving rules containing only reachable non-terminals.

output: G′′

The equivalence of G,G′ and G′′ is left to the reader. Moreover each non-
terminal A of G′′ must appear in a derivation S

∗
→G′′ C[A]

∗
→G′′ C[s] which

proves that G′′ is reduced. The reader should notice that exchanging the two
steps of the computation may result in a grammar which is not reduced (see
Exercise 22).

Actually, we shall use even simpler grammars, i.e. normalized regular tree
grammar, where the production rules have the form A → f(A1, . . . , An) or
A → a where f, a are symbols of F and A,A1, . . . , An are non-terminals. The
following result shows that this is not a restriction.

Proposition 3. A regular tree grammar is equivalent to a normalized regular
tree grammar.

TATA — October 28, 2004 —

52 Regular Grammars and Regular Expressions

Proof. Replace a rule A → f(s1, . . . , sn) by A → f(A1, . . . , An) with Ai = si if
si ∈ N otherwise Ai is a new non-terminal. In the last case add the rule Ai → si.
Iterate this process until one gets a (necessarily equivalent) grammar with rules
of the form A → f(A1, . . . , An) or A → a or A1 → A2. The last rules are

replaced by the rules A1 → α for all α 6∈ N such that A1
+
→Ai and Ai → α ∈ R

(these A′
is are easily computed using a transitive closure algorithm).

From now on, we assume that all grammars are normalized, unless this is
stated otherwise explicitly.

2.1.2 Regularity and Recognizabilty

Given some normalized regular tree grammar G = (S,N,F , RG), we show how
to build a top-down tree automaton which recognizes L(G). We define A =
(Q,F , I,∆) by

• Q = {qA | A ∈ N}

• I = {qS}

• qA(f(x1, . . . , xn)) → f(qA1
(x1), . . . , qAn

(xn)) ∈ ∆ if and only if A →
f(A1, . . . , An) ∈ RG.

A standard proof by induction on derivation length yields L(G) = L(A). There-
fore we have proved that the languages generated by regular tree grammar are
recognizable languages.

The next question to ask is whether recognizable tree languages can be
generated by regular tree grammars. If L is a regular tree language, there
exists a top-down tree automata A = (Q,F , I,∆) such that L = L(A). We
define G = (S,N,F , RG) with S a new symbol, N = {Aq | q ∈ Q}, RG =
{Aq → f(Aq1

, . . . , Aqn
) | q(f(x1, . . . , xn)) → f(q1(x1), . . . , qn(xn)) ∈ R}∪{S →

AI | AI ∈ I}. A standard proof by induction on derivation length yields L(G) =
L(A).

Combining these two properties, we get the equivalence between recogniz-
ability and regularity.

Theorem 18. A tree language is recognizable if and only if it is a regular tree
language.

2.2 Regular Expressions. Kleene’s Theorem for
Tree Languages

Going back to our example of lists of non-negative integers, we can write the
sets defined by the non-terminals Nat and List as follows.

Nat = {0, s(0), s(s(0)), . . .}
List = {nil, cons(, nil), cons(, cons(, nil), . . .}

where stands for any element of Nat. There is some regularity in each set
which reminds of the regularity obtained with regular word expressions con-
structed with the union, concatenation and iteration operators. Therefore we

TATA — October 28, 2004 —

2.2 Regular Expressions. Kleene’s Theorem for Tree Languages 53

can try to use the same idea to denote the sets Nat and List. However, since we
are dealing with trees and not words, we must put some information to indicate
where concatenation and iteration must take place. This is done by using a
new symbol which behaves as a constant. Moreover, since we have two indepen-
dent iterations, the first one for Nat and the second one for List, we shall use
two different new symbols 21 and 22 and a natural extension of regular word
expression leads us to denote the sets Nat and List as follows.

Nat = s(21)
∗,21 .21

0
List = nil + cons((s(21)

∗,21 .21
0) ,22)

∗,22 .22
nil

Actually the first term nil in the second equality is redundant and a shorter
(but slightly less natural) expression yields the same language.

We are going to show that this is a general phenomenon and that we can
define a notion of regular expressions for trees and that Kleene’s theorem for
words can be generalized to trees. Like in the example, we must introduce a
particular set of constants K which are used to indicate the positions where
concatenation and iteration take place in trees. This explains why the syntax
of regular tree expressions is more cumbersome than the syntax of word regular
expressions. These new constants are usually denoted by 21,22, Therefore,
in this section, we consider trees constructed on F∪K where K is a distinguished
finite set of symbols of arity 0 disjoint from F .

2.2.1 Substitution and Iteration

First, we have to generalize the notion of substitution to languages, replacing
some 2i by a tree of some language Li. The main difference with term sub-
stitution is that different occurrences of the same constant 2i can be replaced
by different terms of Li. Given a tree t of T (F ∪ K), 21, . . . ,2n symbols of K
and L1, . . . , Ln languages of T (F ∪K), the tree substitution (substitution for
short) of 21, . . . ,2n by L1, . . . , Ln in t, denoted by t{21←L1, . . . ,2n←Ln}, is
the tree language defined by the following identities.

• 2i{21←L1, . . . ,2n←Ln} = Li for i = 1, . . . , n,

• a{21←L1, . . . ,2n←Ln} = {a} for all a ∈ F ∪ K such that arity of a is 0
and a 6= 21, . . . , a 6= 2n,

• f(s1, . . . , sn){21← L1, . . . ,2n← Ln} = {f(t1, . . . , tn) | ti ∈ si{ 21←L1

. . .
2n←Ln}}

Example 19. Let F = {0, nil, s(), cons(,)} and K = {21,22}, let

t = cons(21, cons(21,22))

and let

L1 = {0, s(0)}

TATA — October 28, 2004 —

54 Regular Grammars and Regular Expressions

then
t{21←L} = {cons(0, cons(0,22)),

cons(0, cons(s(0),22)),
cons(s(0), cons(0,22)),
cons(s(0), cons(s(0),22))}

Symbols of K are mainly used to distinguish places where the substitution
must take place, and they are usually not relevant. For instance, if t is a tree
on the alphabet F ∪ {2} and L be a language of trees on the alphabet F , then
the trees of t{2 ← L} don’t contain the symbol 2.

The substitution operation generalizes to languages in a straightforward way.
When L,L1, . . . , Ln are languages of T (F ∪ K) and 21, . . . ,2n are elements of
K, we define L{21←L1, . . . ,2n←Ln} to be the set

⋃
t∈L{ t{21←L1, . . . ,2n←

Ln}}.
Now, we can define the concatenation operation for tree languages. Given L

and M two languages of TF∪K, and 2 be a element of K, the concatenation

of M to L through 2, denoted by L .2 M , is the set of trees obtained by
substituting the occurrence of 2 in trees of L by trees of M , i.e. L .2 M =⋃

t∈L{t{2←M}}.
To define the closure of a language, we must define the sequence of successive

iterations. Given L a language of T (F∪K) and 2 an element of K, the sequence
Ln,2 is defined by the equalities.

• L0, 2 = {2}

• Ln+1, 2 = Ln, 2 ∪ L .2 Ln, 2

The closure L∗,2 of L is the union of all Ln, 2 for non-negative n, i.e., L∗,2 =
∪n≥0L

n,2. From the definition, one gets that {2} ⊆ L∗,2 for any L.

Example 20. Let F = {0, nil, s(), cons(,)}, let L = {0, cons(0,2)} and
M = {nil, cons(s(0),2)}, then

L .2 M = {0, cons(0, nil), cons(0, cons(s(0),2))}
L∗,2 = {2}∪

{0, cons(0,2)}∪
{0, cons(0,2), cons(0, cons(0,2))} ∪ . . .

We prove now that the substitution and concatenation operations yield reg-
ular languages when they are applied to regular languages.

Proposition 4. Let L be a regular tree language on F ∪ K, let L1, . . . , Ln be
regular tree languages on F ∪K, let 21, . . . ,2n ∈ K, then L{21←L1, . . . ,2n←
Ln} is a regular tree language.

Proof. Since L is regular, there exists some normalized regular tree grammar
G = (S,N,F ∪ K, R) such that L = L(G), and for each i = 1, . . . , n there
exists a normalized grammar Gi = (Si, Ni,F ∪ K, Ri) such that Li = L(Gi).
We can assume that the sets of non-terminals are pairwise disjoint. The idea
of the proof is to construct a grammar G′ which starts by generating trees like

TATA — October 28, 2004 —

2.2 Regular Expressions. Kleene’s Theorem for Tree Languages 55

G but replaces the generation of a symbol 2i by the generation of a tree of
Li via a branching towards the axiom of Gi. More precisely, we show that
L{21←L1, . . . ,2n←Ln} = L(G′) where G′ = (S,N ′,F ∪ K, R′) such that

• N ′ = N ∪ N1 ∪ . . . ∪ Nn,

• R′ contains the rules of Ri and the rules of R but the rules A → 2i which
are replaced by the rules A → Si, where Si is the axiom of Li.

2i 2i

A → 2i A → 2i

Si
+
→ s Si

+
→ s′

Figure 2.1: Replacement of rules A → 2i

A straightforward induction on the height of trees proves that G′ generates
each tree of L{21←L1, . . . ,2n←Ln}.

The converse is to prove that L(G′) ⊆ L{21←L1, . . . ,2n←Ln}. This is
achieved by proving the following property by induction on the derivation length.

A
+
→ s′ where s′ ∈ T (F ∪ K) using the rules of G′

if and only if

there is some s such that A
+
→ s using the rules of G and

s′ ∈ s{21←L1, . . . ,2n←Ln}.

• base case: A → s in one step. Therefore this derivation is a derivation of
the grammar G and no 2i occurs in s, yielding s ∈ L{21←L1, . . . ,2n←
Ln}

• induction step: we assume that the property is true for any terminal and
derivation of length less than n. Let A be such that A → s′ in n steps.

This derivation can be decomposed as A → s1
+
→ s′. We distinguish several

cases depending on the rule used in the derivation A → s1.

– the rule is A → f(A1, . . . , Am), therefore s′ = f(t1, . . . , tm) and ti ∈
L(Ai){21← L1, . . . ,2n← Ln}, therefore s′ ∈ L(A){21← L1, . . . ,2n←
Ln},

TATA — October 28, 2004 —

56 Regular Grammars and Regular Expressions

– the rule is A → Si, therefore A → 2i ∈ R and s′ ∈ Li and s′ ∈
L(A){21←L1, . . . ,2n←Ln}.

– the rule A → a with a ∈ F , a of arity 0, a 6= 21, . . . , a 6= 2n are not
considered since no further derivation can be done.

The following proposition states that regular languages are stable also under
closure.

Proposition 5. Let L be a regular tree language of T (F ∪K), let 2 ∈ K, then
L∗,2 is a regular tree language of T (F ∪ K).

Proof. There exists a normalized regular grammar G = (S,N,F ∪ K, R) such
that L = L(G) and we obtain from G a grammar G′ = (S′, N ∪{S′},F ∪K, R′)
for L∗,2 by replacing rules leading to 2 such as A → 2 by rules A → S′ leading
to the (new) axiom. Moreover we add the rule S′ → 2 to generate {2} = L0,2

and the rule S′ → S to generate Li,2 for i > 0. By construction G′ generates
the elements of L∗,2.

Conversely a proof by induction on the length on the derivation proves that
L(G′) ⊆ L∗,2.

2.2.2 Regular Expressions and Regular Tree Languages

Now, we can define regular tree expression in the flavor of regular word expres-
sion using the +, .2,∗,2 operators.

Definition 2. The set Regexp(F ,K) of regular tree expressions on F and
K is the smallest set such that:

• the empty set ∅ is in Regexp(F ,K)

• if a ∈ F0 ∪ K is a constant, then a ∈ Regexp(F ,K),

• if f ∈ Fn has arity n > 0 and E1, . . . , En are regular expressions of
Regexp(F ,K) then f(E1, . . . , En) is a regular expression of Regexp(F ,K),

• if E1, E2 are regular expressions of Regexp(F ,K) then (E1 + E2) is a
regular expression of Regexp(F ,K),

• if E1, E2 are regular expressions of Regexp(F ,K) and 2 is an element of
K then E1 .2 E2 is a regular expression of Regexp(F ,K),

• if E is a regular expression of Regexp(F ,K) and 2 is an element of K
then E∗,2 is a regular expression of Regexp(F ,K).

Each regular expression E represents a set of terms of T (F ∪ K) which we
denote [[E]] and which is formally defined by the following equalities.

• [[∅]] = ∅,

• [[a]] = {a} for a ∈ F0 ∪ K,

• [[f(E1, . . . , En)]] = {f(s1, . . . , sn) | s1 ∈ [[E1]], . . . , sn ∈ [[En]]},

TATA — October 28, 2004 —

2.2 Regular Expressions. Kleene’s Theorem for Tree Languages 57

• [[E1 + E2]] = [[E1]] ∪ [[E2]],

• [[E1.2 E2]] = [[E1]]{2←[[E2]]},

• [[E∗,2]] = [[E]]∗,2

Example 21. Let F = {0, nil, s(), cons(,)} and 2 ∈ K then

(cons(0,2)∗,2).2nil

is a regular expression of Regexp(F ,K) which denotes the set of lists of zeros:

{nil, cons(0, nil), cons(0, cons(0, nil)), . . .}

In the remaining of this section, we compare the relative expressive power
of regular expressions and regular languages. It is easy to prove that for each
regular expression E, the set [[E]] is a regular tree language. The proof is done
by structural induction on E. The first three cases are obvious and the two last
cases are consequences of Propositions 5 and 4. The converse, i.e. a regular tree
language can be denoted by a regular expression, is more involved and the proof
is similar to the proof of Kleene’s theorem for word language. Let us state the
result first.

Proposition 6. Let A = (Q,F , QF ,∆) be a bottom-up tree automaton, then
there exists a regular expression E of Regexp(F , Q) such that L(A) = [[E]].

The occurrence of symbols of Q in the regular expression denoting L(A)
doesn’t cause any trouble since a regular expression of Regexp(F , Q) can denote
a language of TF .

Proof. The proof is similar to the proof for word languages and word automata.
For each 1 ≤ i, j,≤ |Q|,K ⊆ Q, we define the set T (i, j,K) as the set of trees
t of T (F ∪ K) such that there is a run r of A on t satisfying the following
properties:

• r(ε) = qi,

• r(p) ∈ {q1, . . . , qj} for all p 6= ε labelled by a function symbol.

Roughly speaking, a term is in T (i, j,K) if we can reach qi at the root by
using only states in {q1, . . . , qj} when we assume that the leaves are states of K.
By definition, L(A) the language accepted by A is the union of the T (i, |Q|, ∅)’s
for i such that qi is a final state: these terms are the terms of T (F) such
that there is a successful run using any possible state of Q. Now, we prove
by induction on j that T (i, j,K) can be denoted by a regular expression of
Regexp(F , Q).

• Base case j = 0. The set T (i, 0,K) is the set of trees t where the root is
labelled by qi, the leaves are in F ∪ K and no internal node is labelled
by some q. Therefore there exist a1, . . . , an, a ∈ F ∪ K such that t =
f(a1, . . . , an) or t = a, hence T (i, 0,K) is finite and can be denoted by a
regular expression of Regexp(F ∪ Q).

TATA — October 28, 2004 —

58 Regular Grammars and Regular Expressions

• Induction case. Let us assume that for any i′,K ′ ⊆ Q and 0 ≤ j′ < j, the
set T (i′, j′,K ′) can be denoted by a regular expression. We can write the
following equality:

T (i, j, K) = T (i, j − 1, K)
∪
T (i, j − 1, K ∪ {qj}) .qj T (j, j − 1, K ∪ {qj})

∗,qj .qj T (j, j − 1, K)

The inclusion of T (i, j,K) in the right-hand side of the equality can be
easily seen from Figure 2.2.2.

qj

qj

qj

T
(j,

j
−

1
,
K

∪
{
q
j }

)
∗
,q

j
.q

j
T

(j,
j
−

1
,
K

)

qi

qj

qj

T (j, j − 1, K)

T
(j,

j
−

1
,
K

∪
{
q
j }

)
∗
,q

j
.q

j
T

(j,
j
−

1
,
K

)

T (j, j − 1, K)

qj

Figure 2.2: Decomposition of a term of T (i, j,K)

The converse inclusion is also not difficult. By definition:
T (i, j − 1, K) ⊆ T (i, j, K)

and an easy proof by induction on the number of occurrences of qj yields:
T (i, j − 1, K ∪ {qj}) .qj T (j, j − 1, K ∪ {qj})

∗,qj .qj T (j, j − 1, K) ⊆ T (i, j, K)

By induction hypothesis, each set of the right-hand side of the equality
defining T (i, j,K) can be denoted by a regular expression of Regex(F∪Q).
This yields the desired result because the union of these sets is represented
by the sum of the corresponding expressions.

TATA — October 28, 2004 —

2.3 Regular Equations 59

Since we have already seen that regular expressions denote recognizable tree
languages and that recognizable languages are regular, we can state Kleene’s
theorem for tree languages.

Theorem 19. A tree language is recognizable if and only if it can be denoted
by a regular tree expression.

2.3 Regular Equations

Looking at our example of the set of lists of non-negative integers, we can
realize that these lists can be defined by equations instead of grammar rules.
For instance, denoting set union by +, we could replace the grammar given in
Section 2.1.1 by the following equations.

Nat = 0 + s(Nat)
List = nil + cons(Nat, List)

where the variables are List and Nat. To get the usual lists of non-negative
numbers, we must restrict ourselves to the least fixed-point solution of this set
of equations. Systems of language equations do not always have solution nor
does a least solution always exists. Therefore we shall study regular equation

systems defined as follows.

Definition 3. Let X1, . . . ,Xn be variables denoting sets of trees, for 1 ≤ j ≤ p,
1 ≤ i ≤ mj,let sj

i ’s be terms over F ∪ {X1, . . . ,Xn}, then a regular equation
system S is a set of equations of the form:

X1 = s1
1 + . . . + s1

m1

. . .
Xp = sp

1 + . . . + sp
mp

A solution of S is any n-tuple (L1, . . . , Ln) of languages of T (F) such that

L1 = s1
1{X1←L1, . . . , Xn←Ln} ∪ . . . ∪ s1

m1
{X1←L1, . . . , Xn←Ln}

. . .
Lp = sp

1{X1←L1, . . . , Xn←Ln} ∪ . . . ∪ sp
mp

{X1←L1, . . . , Xn←Ln}

Since equations with the same left-hand side can be merged into one equa-
tion, and since we can add equations Xk = Xk without changing the set of
solutions of a system, we assume in the following that p = n.

The ordering ⊆ is defined on T (F)n by

(L1, . . . , Ln) ⊆ (L′
1, . . . , L

′
n) iffLi ⊆ L′

i for all i = 1, . . . , n

By definition (∅, . . . , ∅) is the smallest element of ⊆ and each increasing
sequence has an upper bound. To a system of equations, we associate the fixed-
point operator T S : T (F)n → T (F)n defined by:

T S(L1, . . . , Ln) = (L′
1, . . . , L

′
n)

where
L′

1 = L1 ∪ s1
1{X1←L1, . . . , Xn←Ln} ∪ . . . ∪ s1

m1
{X1←L1, . . . , Xn←Ln}

. . .
L′

n = Ln ∪ sn
1 {X1←L1, . . . , Xn←Ln} ∪ . . . ∪ sn

mn
{X1←L1, . . . , Xn←Ln}

TATA — October 28, 2004 —

60 Regular Grammars and Regular Expressions

Example 22. Let S be

Nat = 0 + s(Nat)
List = nil + cons(Nat, List)

then
T S(∅, ∅) = ({0}, {nil})
T S2(∅, ∅) = ({0, s(0)}, {nil, cons(0, nil)})

Using a classical approach we use the fixed-point operator to compute the
least fixed-point solution of a system of equations.

Proposition 7. The fixed-point operator T S is continuous and its least fixed-
point T Sω(∅, . . . , ∅) is the least solution of S.

Proof. We show that T S is continuous in order to use Knaster-Tarski’s theorem
on continuous operators. By construction, T S is monotonous, and the last
point is to prove that if S1 ⊆ S2 ⊆ . . . is an increasing sequence of n-tuples of
languages, the equality T S(

⋃
i≥1 Si) =

⋃
i≥1 T S(Si)) holds. By definition, each

Si can be written as (Si
1, . . . , S

i
n).

• We have that
⋃

i=1,... T S(Si) ⊆ T S(
⋃

i=1,...(Si) holds since the sequence
S1 ⊆ S2 ⊆ . . . is increasing and the operator T S is monotonous.

• Conversely we must prove T S(
⋃

i=1,... Si) ⊆
⋃

i=1,... T S(Si)).

Let v = (v1, . . . , vn) ∈ T S(
⋃

i=1,... Si). Then for each k = 1, . . . , n

either vk ∈
⋃

i=1,... Si hence vk ∈ Slk for some lk, or there is some

u = (u1, . . . , un) ∈
⋃

i≥1 Si such that vk = sk
jk
{X1 ← u1, . . . ,Xn ← un}.

Since the sequence (Si, i≥1) is increasing we have that u ∈ Slk for some lk.
Therefore vk ∈ T S(SL) ⊆ T S(

⋃
i=1,... Si) for L = max{lk | k = 1, . . . , n}.

We have introduced systems of regular equations to get an algebraic charac-
terization of regular tree languages stated in the following theorem.

Theorem 20. The least fixed-point solution of a system of regular equations
is a tuple of regular tree languages. Conversely each regular tree language is a
component of the least solution of a system of regular equations.

Proof. Let S be a system of regular equations, and let Gi = (Xi, {X1, . . . ,Xn},F , R)
where R = ∪k=1,...,n{Xk → s1

k, . . . ,Xk → sjk

k } if the kth equation of S is

Xk = s1
k + . . . + sjk

k . We show that L(Gi) is the ith component of (L1, . . . , Ln)
the least fixed-point solution of S.

• We prove that T Sp(∅, . . . , ∅) ⊆ (L(G1), . . . , L(Gn)) by induction on p.

Let us assume that this property holds for all p′ ≤ p. Let u = (u1, . . . , un)
be an element of TSp+1(∅, . . . , ∅) = T S(T Sp(∅, . . . , ∅)). For each i in

TATA — October 28, 2004 —

2.4 Context-free Word Languages and Regular Tree Languages 61

1, . . . , n, either ui ∈ T Sp(∅, . . . , ∅) and ui ∈ L(Gi) by induction hypoth-
esis, or there exist vi = (vi

1, . . . , v
i
n) ∈ TSp(∅, . . . , ∅) and sj

i such that

ui = sj
i{X1 → vi

1, . . . ,Xn → vi
n}. By induction hypothesis vi

j ∈ L(Gj) for
j = 1, . . . , n therefore ui ∈ L(Gi).

• We prove now that (L(X1), . . . , L(Xn)) ⊆ T Sω(∅, . . . , ∅) by induction on
derivation length.

Let us assume that for each i = 1, . . . , n, for each p′ ≤ p, if Xi →
p′

ui then
ui ∈ T Sp′

(∅, . . . , ∅). Let Xi →p+1 ui, then Xi → sj
i (X1, . . . ,Xn) →p vi

with ui = sj
i (v1, . . . , vn) and Xj →p′

vj for some p′ ≤ p. By induction

hypothesis vj ∈ T Sp′

(∅, . . . , ∅) which yields that ui ∈ T Sp+1(∅, . . . , ∅).

Conversely, given a regular grammar G = (S, {A1, . . . , An},F , R), with R =
{A1 → s1

1, . . . , A1 → s1
p1

, . . . , An → sn
1 , . . . , An → sn

pn
}, a similar proof yields

that the least solution of the system

A1 = s1
1 + . . . + s1

p1

. . .
An = sn

1 + . . . + sn
pn

is (L(A1), . . . , L(An)).

Example 23. The grammar with axiom List, non-terminals List,Nat termi-
nals 0, s(), nil, cons(,) and rules

List → nil
List → cons(Nat, List)
Nat → 0
Nat → s(Nat)

generates the second component of the least solution of the system given in
Example 22.

2.4 Context-free Word Languages and Regular
Tree Languages

Context-free word languages and regular tree languages are strongly related.
This is not surprising since derivation trees of context-free languages and deriva-
tions of tree grammars look alike. For instance let us consider the context-free
language of arithmetic expressions on +,∗ and a variable x. A context-free word
grammar generating this set is E → x | E + E | E ∗ E where E is the axiom.
The generation of a word from the axiom can be described by a derivation tree
which has the axiom at the root and where the generated word can be read
by picking up the leaves of the tree from the left to the right (computing what
we call the yield of the tree). The rules for constructing derivation trees show
some regularity, which suggests that this set of trees is regular. The aim of this
section is to show that this is true indeed. However, there are some traps which

TATA — October 28, 2004 —

62 Regular Grammars and Regular Expressions

must be avoided when linking tree and word languages. First, we describe how
to relate word and trees. The symbols of F are used to build trees but also
words (by taking a symbol of F as a letter). The Yield operator computes a
word from a tree by concatenating the leaves of the tree from the left to the
right. More precisely, it is defined as follows.

Yield(a) = a if aıF0,

Yield(f(s1, . . . , sn)) = Yield(s1) . . .Yield(sn) if f ∈ Fn, si ∈ T (F).

Example 24. Let F = {x,+, ∗, E(, ,)} and let

s =
x ∗

x + x

E

E

then Yield(s) = x ∗ x + x which is a word on {x, ∗,+}. Note that ∗ and + are
not the usual binary operator but syntactical symbols of arity 0. If

t =

x ∗ x

E + x

E

then Yield(t) = x ∗ x + x.

We recall that a context-free word grammar G is a tuple (S,N, T,R)
where S is the axiom, N the set of non-terminals letters, T the set of terminal
letters, R the set of production rules of the form A → α with A ∈ N,α ∈
(T ∪N)∗. The usual definition of derivation trees of context free word languages
allow nodes labelled by a non-terminal A to have a variable number of sons,
which is equal to the length of the right-hand side α of the rule A → α used to
build the derivation tree at this node.

Since tree languages are defined for signatures where each symbol has a fixed
arity, we introduce a new symbol (A,m) for each A ∈ N such that there is a rule
A → α with α of length m. Let G be the set composed of these new symbols
and of the symbols of T . The set of derivation trees issued from a ∈ G, denoted
by D(G, a) is the smallest set such that:

• D(G, a) = {a} if a ∈ T ,

• (a, 0)(ε) ∈ D(G, a) if a → ε ∈ R where ε is the empty word,

• (a, p)(t1, . . . , tp) ∈ D(G, (a, p)) if t1 ∈ D(G, a1), . . . , tp ∈ D(G, ap) and
(a → a1 . . . ap) ∈ R where ai ∈ G.

The set of derivation trees of G is D(G) = ∪(S,i)∈GD(G, (S, i)).

Example 25. Let T = {x,+, ∗} and let G be the context free word grammar
with axiom S, non terminal Op, and rules

TATA — October 28, 2004 —

2.4 Context-free Word Languages and Regular Tree Languages 63

S → S Op S
S → x
Op → +
Op → ∗

Let the word u = x ∗ x + x, a derivation tree for u with G is dG(u), and the
same derivation tree with our notations is DG(u) ∈ D(G,S)

dG(u) =

x

S

∗

Op

x

S

+

Op

x

S

S

S

; DG(u) =

x

(S, 1)

∗

(Op, 1)

x

(S, 1)

+

(Op, 1)

x

(S, 1)

(S, 3)

(S, 3)

By definition, the language generated by a context-free word grammar G is
the set of words computed by applying the Yield operator to derivation trees of
G. The next theorem states how context-free word languages and regular tree
languages are related.

Theorem 21. The following statements hold.

1. Let G be a context-free word grammar, then the set of derivation trees of
L(G) is a regular tree language.

2. Let L be a regular tree language then Yield(L) is a context-free word lan-
guage.

3. There exists a regular tree language which is not the set of derivation trees
of a context-free language.

Proof. We give the proofs of the three statements.

1. Let G = (S,N, T,R) be a context-free word language. We consider the
tree grammar G′ = (S,N,F , R′)) such that

• the axiom and the set of non-terminal symbols of G and G′ are the
same,

• F = T ∪ {ε} ∪ {(A,n) | A ∈ N, ∃A → α ∈ R with α of length n},

• if A → ε then A → (A, 0)(ε) ∈ R′

• if (A → a1 . . . ap) ∈ R then (A → (A, p)(a1, . . . , ap)) ∈ R′

Then L(G) = {Yield(s) | s ∈ L(G′)}. The proof is a standard induction on
derivation length. It is interesting to remark that there may and usually
does exist several tree languages (not necessarily regular) such that the
corresponding word language obtained via the Yield operator is a given
context-free word language.

2. Let G be a normalized tree grammar (S,X,N,R). We build the word
context-free grammar G′ = (S,X,N,R′) such that a rule X → X1 . . . Xn

(resp. X → a) is in R′ if and only if the rule X → f(X1, . . . ,Xn) (resp.
X → a) is in R for some f . It is straightforward to prove by induction on
the length of derivation that L(G′) = Yield(L(G)).

TATA — October 28, 2004 —

64 Regular Grammars and Regular Expressions

3. Let G be the regular tree grammar with axiom X, non-terminals X,Y,Z,
terminals a, b, g and rules

X → f(Y,Z)
Y → g(a)
Z → g(b)

The language L(G) consists of the single tree (arity have been indicated
explicitly to make the link with derivation trees):

a

(g, 1)

b

(g, 1)

(f, 2)

Assume that L(G) is the set of derivation trees of some context-free word
grammar. To generate the first node of the tree, one must have a rule
F → G G where F is the axiom and rules G → a, G → b (to get the inner
nodes). Therefore the following tree:

a

(g, 1)

a

(g, 1)

(f, 2)

should be in L(G) which is not the case.

2.5 Beyond Regular Tree Languages: Context-
free Tree Languages

For word language, the story doesn’t end with regular languages but there is a
strict hierarchy.

regular ⊂ context-free ⊂ recursively enumerable

Recursively enumerable tree languages are languages generated by tree gram-
mar as defined in the beginning of the chapter, and this class is far too general
for having good properties. Actually, any Turing machine can be simulated by
a one rule rewrite system which shows how powerful tree grammars are (any
grammar rule can be seen as a rewrite rule by considering both terminals and
non-terminals as syntactical symbols). Therefore, most of the research has been
done on context-free tree languages which we describe now.

TATA — October 28, 2004 —

2.5 Beyond Regular Tree Languages: Context-free Tree Languages 65

2.5.1 Context-free Tree Languages

A context-free tree grammar is a tree grammar G = (S,N,F , R) where the
rules have the form X(x1, . . . , xn) → t with t a tree of T (F ∪N ∪{x1, . . . , xn}),
x1, . . . , xn ∈ X where X is a set of reserved variables with X ∩ (F ∪ N) = ∅,
X a non-terminal of arity n. The definition of the derivation relation is slightly
more complicated than for regular tree grammar: a term t derives a term t′

if no variable of X occurs in t or t′, there is a rule l → r of the grammar, a
substitution σ such that the domain of σ is included in X and a context C
such that t = C[lσ] and t′ = C[rσ]. The context-free tree language L(G)
is the set of trees which can be derived from the axiom of the context-free tree
grammar G.

Example 26. The grammar of axiom Prog, set of non-terminals {Prog,Nat, Fact()},
set of terminals {0, s, if(,), eq(,), not(), times(,), dec()} and rules

Prog → Fact(Nat)
Nat → 0
Nat → s(Nat)
Fact(x) → if(eq(x, 0), s(0))
Fact(x) → if(not(eq(x, 0)), times(x, Fact(dec(x))))

where X = {x} is a context-free tree grammar. The reader can easily see that
the last rule is the classical definition of the factorial function.

The derivation relation associated to a context-free tree grammar G is a gen-
eralization of the derivation relation for regular tree grammar. The derivation
relation → is a relation on pairs of terms of T (F∪N) such that s → t iff there is
a rule X(x1, . . . , xn) → α ∈ R, a context C such that s = C[X(t1, . . . , tn)] and
t = C[α{x1← t1, . . . , xn← tn}]. For instance, the previous grammar can yield
the sequence of derivations

Prog → Fact(Nat) → Fact(0) → if(eq(0, 0), s(0))

The language generated by G, denoted by L(G) is the set of terms of T (F)
which can be reached by successive derivations starting from the axiom. Such
languages are called context-free tree languages. Context-free tree languages are
closed under union, concatenation and closure. Like in the word case, one can
define pushdown tree automata which recognize exactly the set of context-free
tree languages. We discuss only IO and OI grammars and we refer the reader
to the bibliographic notes for more informations.

2.5.2 IO and OI Tree Grammars

Context-free tree grammars have been extensively studied in connection with
the theory of recursive program scheme. A non-terminal F can be seen as
a function name and production rules F (x1, . . . , xn) → t define the function.
Recursive definitions are allowed since t may contain occurrences of F . Since we
know that such recursive definitions may not give the same results depending

TATA — October 28, 2004 —

66 Regular Grammars and Regular Expressions

on the evaluation strategy, IO and OI tree grammars have been introduced to
account for such differences.

A context-free grammar is IO (for innermost-outermost) if we restrict legal
derivations to derivations where the innermost terminals are derived first. This
control corresponds to call by value evaluation. A context-free grammar is OI

(for outermost-innermost) if we restrict legal derivations to derivations where
the outermost terminals are derived first. This corresponds to call by name
evaluation. Therefore, given one context-free grammar G, we can define IO-G
and OI-G and the next example shows that the languages generated by these
grammars may be different.

Example 27. Let G be the context-free grammar with axiom Exp, non-
terminals {Exp,Nat,Dup}, terminals {double, s, 0}) and rules
Exp → Dup(Nat)
Nat → s(Nat)
Nat → 0
Dup(x) → double(x, x)

Then outermost-innermost derivations have the form

Exp → Dup(Nat) → double(Nat,Nat)
∗
→ double(sn(0), sm(0))

while innermost-outermost derivations have the form

Exp → Dup(Nat)
∗
→Dup(sn(0)) → double(sn(0), sn(0))

Therefore L(OI-G) = {double(sn(0), sm(0)) | n,m ∈ N} and
L(IO-G) = {double(sn(0), sn(0)) | n ∈ N}.

A tree language L is IO if there is some context-free grammar G such that
L = L(IO-G). The next theorem shows the relation between L(IO-G), L(OI-G)
and L(G).

Theorem 22. The following inclusion holds: L(IO-G) ⊆ L(OI-G) = L(G)

Example 27 shows that the inclusion can be strict. IO-languages are closed
under intersection with regular languages and union, but the closure under
concatenation requires another definition of concatenation: all occurrences of a
constant generated by a non right-linear rule are replaced by the same term, as
shown by the next example.

Example 28. Let G be the context-free grammar with axiom Exp, non-
terminals {Exp,Nat, Fct}, terminals {2, f(, ,)} and rules
Exp → Fct(Nat,Nat)
Nat → 2

Fct(x, y) → f(x, x, y)
and let L = IO-G and M = {0, 1}, then L.2M contains f(0, 0, 0),f(0, 0, 1),
f(1, 1, 0), f(1, 1, 1) but not f(1, 0, 1) nor f(0, 1, 1).

TATA — October 28, 2004 —

2.6 Exercises 67

There is a lot of work on the extension of results on context-free word gram-
mars and languages to context-free tree grammars and languages. Unfortu-
nately, many constructions and theorem can’t be lifted to the tree case. Usually
the failure is due to non-linearity which expresses that the same subtrees must
occur at different positions in the tree. A similar phenomenon occurred when we
stated results on recognizable languages and tree homomorphisms: the inverse
image of a recognizable tree language by a tree homorphism is recognizable, but
the assumption that the homomorphism is linear is needed to show that the
direct image is recognizable.

2.6 Exercises

Exercise 20. Let F = {f(,), g(), a}. Consider the automaton A = (Q,F , Qf , ∆)
defined by: Q = {q, qg, qf}, Qf = {qf}, and ∆ =

{ a → q(a) g(q(x)) → q(g(x))
g(q(x)) → qg(g(x)) g(qg(x)) → qf (g(x))

f(q(x), q(y)) → q(f(x, y)) }.

Define a regular tree grammar generating L(A).

Exercise 21.

1. Prove the equivalence of a regular tree grammar and of the reduced regular tree
grammar computed by algorithm of proposition 2.

2. Let F = {f(,), g(), a}. Let G be the regular tree grammar with axiom X,
non-terminal A, and rules

X → f(g(A), A)
A → g(g(A))

Define a top-down NFTA, a NFTA and a DFTA for L(G). Is it possible to
define a top-down DFTA for this language?

Exercise 22. Let F = {f(,), a}. Let G be the regular tree grammar with axiom X,
non-terminals A, B, C and rules

X → C
X → a
X → A
A → f(A, B)
B → a

Compute the reduced regular tree grammar equivalent to G applying the algorithm

defined in the proof of Proposition 2. Now, consider the same algorithm, but first

apply step 2 and then step 1. Is the output of this algorithm reduced ? equivalent to

G ?

Exercise 23.

1. Prove Theorem 6 using regular tree grammars.

2. Prove Theorem 7 using regular tree grammars.

Exercise 24. (Local languages) Let F be a signature, let t be a term of T (F), then
we define fork(t) as follows:

• fork(a) = ∅, for each constant symbol a;

TATA — October 28, 2004 —

68 Regular Grammars and Regular Expressions

• fork(f(t1, . . . , tn)) = {f(Head(t1), . . . ,Head(tn))} ∪
Si=n

i=1 fork(ti)

A tree language L is local if and only if there exist a set F ′ ⊆ F and a set

G ⊆ fork(T (F)) such that t ∈ L iff root(t) ∈ F ′ and fork(t) ⊆ G. Prove that every

local tree language is a regular tree language. Prove that a language is local iff it is

the set of derivation trees of a context-free word language.

Exercise 25. The pumping lemma for context-free word languages states:

for each context-free language L, there is some constant k ≥ 1 such that
each z ∈ L of length greater than or equal to k can be written z = uvwxy
such that vx is not the empty word, vwx has length less than or equal to
k, and for each n ≥ 0, the word uvnwxny is in L.

Prove this result using the pumping lemma for tree languages and the results of this

chapter.

Exercise 26. Another possible definition for the iteration of a language is:

• L0, 2 = {2}

• Ln+1, 2 = Ln, 2 ∪ Ln, 2 .2 L

(Unfortunately that definition was given in the previous version of TATA)

1. Show that this definition may generate non-regular tree languages. Hint: one
binary symbol f(,) and 2 are enough.

2. Are the two definitions equivalent (i.e. generate the same languages) if Σ consists
of unary symbols and constants only?

Exercise 27. Let F be a ranked alphabet, let t be a term of T (F), then we define
the word language Branch(t) as follows:

• Branch(a) = a, for each constant symbol a;

• Branch(f(t1, . . . , tn)) =
Si=n

i=1 {fu | u ∈ Branch(ti)}

Let L be a regular tree language, prove that Branch(L) =
S

t∈L
Branch(t) is a regular

word language. What about the converse?

Exercise 28.

1. Let F be a ranked alphabet such that F0 = {a, b}. Find a regular tree language
L such that Yield(L) = {anbn | n ≥ 0}. Find a non regular tree language L
such that Yield(L) = {anbn | n ≥ 0}.

2. Same questions with Yield(L) = {u ∈ F∗
0 | |u|a = |u|b} where |u|a (respectively

|u|b) denotes the number of a (respectively the number of b) in u.

3. Let F be a ranked alphabet such that F0 = {a, b, c}, let A1 = {anbncp | n, p ≥
0}, and let A2 = {anbpcp | n, p ≥ 0}. Find regular tree languages such that
Yield(L1) = A1 and Yield(L2) = A2. Does there exist a regular tree language
such that Yield(L) = A1 ∩ A2.

Exercise 29.

1. Let G be the context free word grammar with axiom X, terminals a, b, and
rules

X → XX
X → aXb
X → ε

where ε stands for the empty word. What is the word language L(G)? Give a
derivation tree for u = aabbab.

TATA — October 28, 2004 —

2.7 Bibliographic notes 69

2. Let G′ be the context free word grammar in Greibach normal form with axiom
X, non terminals X ′, Y ′, Z′ terminals a, b, and rules l

X ′ → aX ′Y ′

X ′ → aY ′

X ′ → aX ′Z′

X ′ → aZ′

Y ′ → bX ′

Z′ → b

prove that L(G′) = L(G). Give a derivation tree for u = aabbab.

3. Find a context free word grammar G′′ such that L(G′′) = A1 ∪ A2 (A1 and A2

are defined in Exercise 28). Give two derivation trees for u = abc.

Exercise 30. Let F be a ranked alphabet.

1. Let L and L′ be two regular tree languages. Compare the sets Yield(L ∩ L′)
and Yield(L) ∩ Yield(L′).

2. Let A be a subset of F0. Prove that T (F , A) = T (F ∩ A) is a regular tree
language. Let L be a regular tree language over F , compare the sets Yield(L ∩
T (F , A)) and Yield(L) ∩ Yield(T (F , A)).

3. Let R be a regular word language over F0. Let T (F , R) = {t ∈ T (F) |
Yield(t) ∈ R}. Prove that T (F , R) is a regular tree language. Let L be a regu-
lar tree language over F , compare the sets Yield(L ∩ T (F , R)) and Yield(L) ∩
Yield(T (F , R)). As a consequence of the results obtained in the present exer-
cise, what could be said about the intersection of a context free word language
and of a regular tree language?

2.7 Bibliographic notes

This chapter only scratches the topic of tree grammars and related topics. A
useful reference on algebraic aspects of regular tree language is [GS84] which
contains a lot of classical results on these features. There is a huge litterature on
tree grammars and related topics, which is also relevant for the chapter on tree
transducers, see the references given in this chapter. Systems of equations can
be generalized to formal tree series with similar results [BR82, Boz99, Boz01,
Kui99, Kui01]. The notion of pushdown tree automaton has been introduced by
Guessarian [Gue83] and generalized to formal tree series by Kuich [Kui01] The
reader may consult [Eng82, ES78] for IO and OI grammars. The connection
between recursive program scheme and formalisms for regular tree languages is
also well-known, see [Cou86] for instance. We should mention that some open
problems like equivalence of deterministic tree grammars are now solved using
the result of Senizergues on the equivalence of deterministic pushdown word
automata [Sén97].

TATA — October 28, 2004 —

Chapter 3

Logic, Automata and
Relations

3.1 Introduction

As early as in the 50s, automata, and in particular tree automata, played an
important role in the development of verification . Several well-known logicians,
such as A. Church, J.R. Büchi, Elgott, MacNaughton, M. Rabin and others
contributed to what is called “the trinity” by Trakhtenbrot: Logic, Automata
and Verification (of Boolean circuits).

The idea is simple: given a formula φ with free variables x1, ..., xn and a do-
main of interpretation D, φ defines the subset of Dn containing all assignments
of the free variables x1, . . . , xn that satisfy φ. Hence formulas in this case are
just a way of defining subsets of Dn (also called n-ary relations on D). In case
n = 1 (and, as we will see, also for n > 1), finite automata provide another
way of defining subsets of Dn. In 1960, Bchi realized that these two ways of
defining relations over the free monoid {0, . . . , n}∗ coincide when the logic is
the sequential calculus, also called weak second-order monadic logic with one
successor, WS1S. This result was extended to tree automata: Doner, Thatcher
and Wright showed that the definability in the weak second-order monadic logic
with k successors, WSkS coincide with the recognizability by a finite tree au-
tomaton. These results imply in particular the decidability of WSkS, following
the decision results on tree automata (see chapter 1).

These ideas are the basis of several decision techniques for various logics
some of which will be listed in Section 3.4. In order to illustrate this correspon-
dence, consider Presburger’s arithmetic: the atomic formulas are equalities and
inequalities s = t or s ≥ t where s, t are sums of variables and constants. For in-
stance x+y+y = z+z+z+1+1, also written x+2y = 3z+2, is an atomic formula.
In other words, atomic formulas are linear Diophantine (in)equations. Then
atomic formulas can be combined using any logical connectives among ∧,∨,¬
and quantifications ∀,∃. For instance ∀x.(∀y.¬(x = 2y)) ⇒ (∃y.x = 2y+1)) is a
(true) formula of Presburger’s arithmetic. Formulas are interpreted in the natu-
ral numbers (non-negative integers), each symbol having its expected meaning.
A solution of a formula φ(x) whose only free variable is x, is an assignment of
x to a natural number n such that φ(n) holds true in the interpretation. For

TATA — October 28, 2004 —

72 Logic, Automata and Relations

0
0
0

1
0
1

1
1
0

0
1
1

0

1
0

0
1
0

0
0
1

1
1
1

Figure 3.1: The automaton with accepts the solutions of x = y + z

instance, if φ(x) is the formula ∃y.x = 2y, its solutions are the even numbers.

Writing integers in base 2, they can be viewed as elements of the free monoid
{0, 1}∗, i.e. words of 0s and 1s. The representation of a natural number is not
unique as 01 = 1, for instance. Tuples of natural numbers are displayed by
stacking their representations in base 2 and aligning on the right, then complet-
ing with some 0s on the left in order to get a rectangle of bits. For instance the

pair (13,6) is represented as
1
0

1
1

0
1

1
0 (or

0
0

1
0

1
1

0
1

1
0 as well). Hence, we can see the

solutions of a formula as a subset of ({0, 1}n)∗ where n is the number of free
variables of the formula.

It is not difficult to see that the set of solutions of any atomic formula is
recognized by a finite word automaton working on the alphabet {0, 1}n. For
instance, the solutions of x = y + z are recognized by the automaton of Figure
3.1.

Then, and that is probably one of the key ideas, each logical connective
corresponds to a basic operation on automata (here word automata): ∨ is a
union, ∧ and intersection, ¬ a complement, ∃x a projection (an operation which
will be defined in Section 3.2.4). It follows that the set of solutions of any
Presburger formula is recognized by a finite automaton.

In particular, a closed formula (without free variable), holds true in the
interpretation if the initial state of the automaton is also final. It holds false
otherwise. Therefore, this gives both a decision technique for Presburger formu-
las by computing automata and an effective representation of the set of solutions
for open formulas.

The example of Presburger’s arithmetic we just sketched is not isolated.
That is one of the purposes of this chapter to show how to relate finite tree
automata and formulas.

In general, the problem with these techniques is to design an appropriate
notion of automaton, which is able to recognize the solutions of atomic formulas
and which has the desired closure and decision properties. We have to cite here
the famous Rabin automata which work on infinite trees and which have indeed
the closure and decidability properties, allowing to decide the full second-order
monadic logic with k successors (a result due to M. Rabin, 1969). It is however
out of the scope of this book to survey automata techniques in logic and com-
puter science. We restrict our attention to finite automata on finite trees and
refer to the excellent surveys [Rab77, Tho90] for more details on other applica-
tions of automata to logic.

TATA — October 28, 2004 —

3.2 Automata on Tuples of Finite Trees 73

We start this chapter by reviewing some possible definitions of automata
on pairs (or, more generally, tuples) of finite trees in Section 3.2. We define in
this way several notions of recognizability for relations, which are not necessary
unary, extending the frame of chapter 1. This extension is necessary since,
automata recognizing the solutions of formulas actually recognize n-tuples of
solutions, if there are n free variables in the formula.

The most natural way of defining a notion of recognizability on tuples is to
consider products of recognizable sets. Though this happens to be sometimes
sufficient, this notion is often too weak. For instance the example of Figure 3.1
could not be defined as a product of recognizable sets. Rather, we stacked the
words and recognized these codings. Such a construction can be generalized to
trees (we have to overlap instead of stacking) and gives rise to a second notion
of recognizability. We will also introduce a third class called “Ground Tree
Transducers” which is weaker than the second class above but enjoys stronger
closure properties, for instance by iteration. Its usefulness will become evident
in Section 3.4.

Next, in Section 3.3, we introduce the weak second-order monadic logic with
k successor and show Thatcher and Wright’s theorem which relates this logic
with finite tree automata. This is a modest insight into the relations between
logic and automata.

Finally in Section 3.4 we survey a number of applications, mostly issued
from Term Rewriting or Constraint Solving. We do not detail this part (we
give references instead). The goal is to show how the simple techniques devel-
oped before can be applied to various questions, with a special emphasis on
decision problems. We consider the theories of sort constraints in Section 3.4.1,
the theory of linear encompassment in Section 3.4.2, the theory of ground term
rewriting in Section 3.4.3 and reduction strategies in orthogonal term rewrit-
ing in Section 3.4.4. Other examples are given as exercises in Section 3.5 or
considered in chapters 4 and 5.

3.2 Automata on Tuples of Finite Trees

3.2.1 Three Notions of Recognizability

Let Rec× be the subset of n-ary relations on T (F) which are finite unions of
products S1 × . . .×Sn where S1, . . . , Sn are recognizable subsets of T (F). This
notion of recognizability of pairs is the simplest one can imagine. Automata for
such relations consist of pairs of tree automata which work independently. This
notion is however quite weak, as e.g. the diagonal

∆ = {(t, t) | t ∈ T (F)}

does not belong to Rec×. Actually a relation R ∈ Rec× does not really relate
its components !

The second notion of recognizability is used in the correspondence with
WSkS and is strictly stronger than the above one. Roughly, it consists in over-
lapping the components of a n-tuple, yielding a term on a product alphabet.
Then define Rec as the set of sets of pairs of terms whose overlapping coding is
recognized by a tree automaton on the product alphabet.

TATA — October 28, 2004 —

74 Logic, Automata and Relations

f , f → ff

g f gf

a a aa

g a ga

a ⊥ aa a ⊥

Figure 3.2: The overlap of two terms

Let us first define more precisely the notion of “coding”. (This is illustrated
by an example on Figure 3.2). We let F ′ = (F∪{⊥})n, where ⊥ is a new symbol.
This is the idea of “stacking” the symbols, as in the introductory example of
Presburger’s arithmetic. Let k be the maximal arity of a function symbol in F .
Assuming ⊥ has arity 0, the arities of function symbols in F ′ are defined by
a(f1 . . . fn) = max(a(f1), . . . , a(fn)).

The coding of two terms t1, t2 ∈ T (F) is defined by induction:

[f(t1, . . . , tn), g(u1, . . . , um)]
def
= fg([t1, u1], . . . [tm, um], [tm+1,⊥], . . . , [tn,⊥])

if n ≥ m and

[f(t1, . . . , tn), g(u1, . . . , um)]
def
= fg([t1, u1], . . . [tn, un], [⊥, un+1], . . . , [⊥, um])

if m ≥ n.
More generally, the coding of n terms f1(t

1
1, . . . , t

k1
1), . . . , fn(tn1 , . . . , tkn

n) is
defined as

f1 . . . fn([t11, . . . , t
1
n], . . . , [tm1 , . . . , tmn])

where m is the maximal arity of f1, . . . , fn ∈ F and tji is, by convention, ⊥ when
j > ki.

Definition 4. Rec is the set of relations R ⊆ T (F)n such that

{[t1, . . . , tn] | (t1, . . . , tn) ∈ R}

is recognized by a finite tree automaton on the alphabet F ′ = (F ∪ {⊥})n.

For example, consider the diagonal ∆, it is in Rec since its coding is recog-
nized by the bottom-up tree automaton whose only state is q (also a final state)
and transitions are the rules ff(q, . . . , q) → q for all symbols f ∈ F .

One drawback of this second notion of recognizability is that it is not closed
under iteration. More precisely, there is a binary relation R which belongs to
Rec and whose transitive closure is not in Rec (see Section 3.5). For this reason,
a third class of recognizable sets of pairs of trees was introduced: the Ground
Tree Transducers (GTT for short) .

Definition 5. A GTT is a pair of bottom-up tree automata (A1,A2) working
on the same alphabet. Their sets of states may however share some symbols (the
synchronization states).

TATA — October 28, 2004 —

3.2 Automata on Tuples of Finite Trees 75

t =

t’=

t1 tn t’1 t’n

q1 qn

C

Figure 3.3: GTT acceptance

A pair (t, t′) is recognized by a GTT (A1,A2) if there is a context C ∈ Cn(F)
such that t = C[t1, . . . , tn], t′ = C[t′1, . . . , t

′
n] and there are states q1, . . . , qn of

both automata such that, for all i, ti
∗

−−→
A1

qi and t′i
∗

−−→
A2

qi. We write L(A1,A2)

the language accepted by the GTT (A1,A2), i.e. the set of pairs of terms which
are recognized.

The recognizability by a GTT is depicted on Figure 3.3. For instance, ∆ is
accepted by a GTT. Another typical example is the binary relation “one step
parallel rewriting” for term rewriting system whose left members are linear and
whose right hand sides are ground (see Section 3.4.3).

3.2.2 Examples of The Three Notions of Recognizability

The first example illustrates Rec×. It will be developed in a more general
framework in Section 3.4.2.

Example 29. Consider the alphabet F = {f, g, a} where f is binary, g is unary
and a is a constant. Let P be the predicate which is true on t if there are terms
t1, t2 such that f(g(t1), t2) is a subterm of t. Then the solutions of P (x)∧P (y)
define a relation in Rec×, using twice the following automaton :

Q = {qf , qg, q>}
Qf = {qf}
T = { a → q> f(q>, q>) → q>

g(q>) → q> f(qf , q>) → qf

g(qf) → qf f(qg, q>) → qf

g(q>) → qg f(q>, qf) → qf}

For instance the pair (g(f(g(a), g(a))), f(g(g(a)), a)) is accepted by the pair
of automata.

The second example illustrates Rec. Again, it is a first account of the devel-
opments of Section 3.4.4

TATA — October 28, 2004 —

76 Logic, Automata and Relations

Example 30. Let F = {f, g, a,Ω} where f is binary, g is unary, a and Ω are
constants. Let R be the set of terms (t, u) such that u can be obtained from t
by replacing each occurrence of Ω by some term in T (F) (each occurrence of Ω
needs not to be replaced with the same term). Using the notations of Chapter
2

R(t, u) ⇐⇒ u ∈ t.ΩT (F)

R is recognized by the following automaton (on codings of pairs):

Q = {q, q′}
Qf = {q′}
T = { ⊥ a → q ⊥ f(q, q) → q

⊥ g(q) → q Ωf(q, q) → q′

⊥ Ω → q ff(q′, q′) → q′

aa → q′ gg(q′) → q′

ΩΩ → q′ Ωg(q) → q′

Ωa → q′}

For instance, the pair (f(g(Ω), g(Ω)), f(g(g(a)), g(Ω))) is accepted by the
automaton: the overlap of the two terms yields

[tu] = ff(gg(Ωg(⊥ a)), gg(ΩΩ))

And the reduction:

[tu]
∗
−→ ff(gg(Ωg(q)), gg(q′))
∗
−→ ff(gg(q′), q′)

→ ff(q′, q′)
→ q′

The last example illustrates the recognition by a GTT. It comes from the
theory of rewriting; further developments and explanations on this theory are
given in Section 3.4.3.

Example 31. Let F = {×,+, 0, 1}. Let R be the rewrite system 0 × x → 0.

The many-steps reduction relation defined by R:
∗
−→
R

is recognized by the

GTT(A1,A2) defined as follows (+ and × are used in infix notation to meet
their usual reading):

T1 = { 0 → q> q> + q> → q>
1 → q> q> × q> → q>
0 → q0 q0 × q> → q0}

T2 = { 0 → q0}

Then, for instance, the pair (1 + ((0 × 1) × 1), 1 + 0) is accepted by the GTT
since

1 + ((0 × 1) × 1)
∗

−−→
A1

1 + (q0 × q>) × q> −−→
A1

1 + (q0 × q>) −−→
A1

1 + q0

one hand and 1 + 0 −−→
A2

1 + q0 on the other hand.

TATA — October 28, 2004 —

3.2 Automata on Tuples of Finite Trees 77

Rec

•

•

GTTRec×

••

Rc

∆
T (F)2{a, f(a)}2

Figure 3.4: The relations between the three classes

3.2.3 Comparisons Between the Three Classes

We study here the inclusion relations between the three classes: Rec×,Rec, GTT .

Proposition 8. Rec× ⊂ Rec and the inclusion is strict.

Proof. To show that any relation in Rec× is also in Rec, we have to construct
from two automata A1 = (Q1,F , Qf

1 , R1),A2 = (F , Q2, Q
f
2 , R2) an automaton

which recognizes the overlaps of the terms in the languages. We define such an
automaton A = (Q, (F ∪ {⊥})2, Qf , R) by: Q = (Q1 ∪ {q⊥}) × (Q2 ∪ {q⊥}),

Qf = Qf
1 × Qf

2 and R is the set of rules:

• f ⊥ ((q1, q⊥), . . . , (qn, q⊥)) −→ (q, q⊥) if f(q1, . . . , qn) → q ∈ R1

• ⊥ f((q⊥, q1), . . . , (q⊥, qn)) −→ (q⊥, q) if f(q1, . . . , qn) → q ∈ R2

• fg((q1, q
′
1), . . . , (qm, q′m), (qm+1, q⊥), . . . , (qn, q⊥)) → (q, q′) if f(q1, . . . , qn) →

q ∈ R1 and g(q′1, . . . , q
′
m) → q′ ∈ R2 and n ≥ m

• fg((q1, q
′
1), . . . , (qn, q′n), (q⊥, qn+1), . . . , (q⊥, qm)) → (q, q′) if f(q1, . . . , qn) →

q ∈ R1 and g(q′1, . . . , q
′
m) → q′ ∈ R2 and m ≥ n

The proof that A indeed accepts L(A1) × L(A2) is left to the reader.
Now, the inclusion is strict since e.g. ∆ ∈ Rec \ Rec×.

Proposition 9. GTT ⊂ Rec and the inclusion is strict.

Proof. Let (A1,A2) be a GTT accepting R. We have to construct an automaton
A which accepts the codings of pairs in R.

Let A0 = (Q0,F , Qf
0 , T0) be the automaton constructed in the proof of

Proposition 8. [t, u]
∗

−−→
A0

(q1, q2) if and only if t
∗

−−→
A1

q1 and u
∗

−−→
A2

q2. Now we

let A = (Q0 ∪ {qf},F , Qf = {qf}, T). T consists of T0 plus the following rules:

(q, q) → qf ff(qf , . . . , qf) → qf

For every symbol f ∈ F and every state q ∈ Q0.
If (t, u) is accepted by the GTT, then

t
∗

−−→
A1

C[q1, . . . , qn]p1,...,pn

∗
←−−
A2

u.

TATA — October 28, 2004 —

78 Logic, Automata and Relations

Then

[t, u]
∗

−−→
A0

[C,C][(q1, q1), . . . , (qn, qn)]p1,...,pn

∗
−→
A

[C,C][qf , . . . , qf]p1,...,pn

∗
−→
A

qf

Conversely, if [t, u] is accepted by A then [t, u]
∗
−→
A

qf . By definition of A, there

should be a sequence:

[t, u]
∗
−→
A

C[(q1, q1), . . . , (qn, qn)]p1,...,pn

∗
−→
A

C[qf , . . . , qf]p1,...,pn

∗
−→
A

qf

Indeed, we let pi be the positions at which one of the ε-transitions steps (q, q) →
qf is applied. (n ≥ 0). Now, C[qf , . . . , qf]p1,...,pm

qf if and only if C can be
written [C1, C1] (the proof is left to the reader).

Concerning the strictness of the inclusion, it will be a consequence of Propo-
sitions 8 and 10.

Proposition 10. GTT 6⊆ Rec× and Rec× 6⊆ GTT.

Proof. ∆ is accepted by a GTT (with no state and no transition) but it does
not belong to Rec×. On the other hand, if F = {f, a}, then {a, f(a)}2 is in
Rec× (it is the product of two finite languages) but it is not accepted by any
GTT since any GTT accepts at least ∆.

Finally, there is an example of a relation Rc which is in Rec and not in the
union Rec× ∪GTT; consider for instance the alphabet {a(), b(), 0} and the one
step reduction relation associated with the rewrite system a(x) → x. In other
words,

(u, v) ∈ Rc ⇐⇒ ∃C ∈ C(F),∃t ∈ T (F), u = C[a(t)] ∧ v = C[t]

It is left as an exercise to prove that Rc ∈ Rec \ (Rec× ∪ GTT).

3.2.4 Closure Properties for Rec× and Rec; Cylindrification
and Projection

Let us start with the classical closure properties.

Proposition 11. Rec× and Rec are closed under Boolean operations.

The proof of this proposition is straightforward and left as an exercise.
These relations are also closed under cylindrification and projection. Let us

first define these operations which are specific to automata on tuples:

Definition 6. If R ⊆ T (F)n (n ≥ 1) and 1 ≤ i ≤ n then the ith projection of
R is the relation Ri ⊆ T (F)n−1 defined by

Ri(t1, . . . , tn−1) ⇔ ∃t ∈ T (F) R(t1, . . . , ti−1, t, ti, . . . , tn−1)

When n = 1, T (F)n−1 is by convention a singleton set {>} (so as to keep
the property that T (F)n+1 = T (F) × T (F)n). {>} is assumed to be a neutral
element w.r.t. Cartesian product. In such a situation, a relation R ⊆ T (F)0 is
either ∅ or {>} (it is a propositional variable).

TATA — October 28, 2004 —

3.2 Automata on Tuples of Finite Trees 79

Definition 7. If R ⊆ T (F)n (n ≥ 0) and 1 ≤ i ≤ n + 1, then the ith cylindri-
fication of R is the relation Ri ⊆ T (F)n+1 defined by

Ri(t1, . . . , ti−1, t, ti, . . . , tn) ⇔ R(t1, . . . , ti−1, ti, . . . , tn)

Proposition 12. Rec× and Rec are effectively closed under projection and
cylindrification. Actually, ith projection can be computed in linear time and the
ith cylindrification of A can be computed in linear time (assuming that the size
of the alphabet is constant).

Proof. For Rec×, this property is easy: projection on the ith component simply
amounts to remove the ith automaton. Cylindrification on the ith component
simply amounts to insert as a ith automaton, an automaton accepting all terms.

Assume that R ∈ Rec. The ith projection of R is simply its image by the
following linear tree homomorphism:

hi([f1, . . . , fn](t1, . . . , tk))
def
= [f1 . . . fi−1fi+1 . . . fn](hi(t1), . . . , hi(tm))

in which m is the arity of [f1 . . . fi−1fi+1 . . . fn] (which is smaller or equal to
k). Hence, by Theorem 6, the ith projection of R is recognizable (and we can
extract from the proof a linear construction of the automaton).

Similarly, the ith cylindrification is obtained as an inverse homomorphic
image, hence is recognizable thanks to Theorem 7.

Note that using the above construction, the projection of a deterministic
automaton may be non-deterministic (see exercises)

Example 32. Let F = {f, g, a} where f is binary, g is unary and a is a
constant. Consider the following automaton A on F ′ = (F ∪ {⊥})2: The set of
states is {q1, q2, q3, q4, q5} and the set of final states is {q3}

1

a ⊥ → q1 f ⊥ (q1, q1) → q1

g ⊥ (q1) → q1 fg(q2, q1) → q3

ga(q1) → q2 f ⊥ (q4, q1) → q4

g ⊥ (q1) → q4 fa(q4, q1) → q2

gg(q3) → q3 ff(q3, q3) → q3

aa → q5 ff(q3, q5) → q3

gg(q5) → q5 ff(q5, q3) → q3

ff(q5, q5) → q5

The first projection of this automaton gives:

a → q2 g(q3) → q3

a → q5 g(q5) → q5

g(q2) → q3 f(q3, q3) → q3

f(q3, q5) → q3 f(q5, q5) → q5

f(q5, q3) → q3

1This automaton accepts the set of pairs of terms (u, v) such that u can be rewritten in
one or more steps to v by the rewrite system f(g(x), y) → g(a).

TATA — October 28, 2004 —

80 Logic, Automata and Relations

Which accepts the terms containing g(a) as a subterm2.

3.2.5 Closure of GTT by Composition and Iteration

Theorem 23. If R ⊆ T (F)2 is recognized by a GTT, then its transitive closure
R∗ is also recognized by a GTT.

The detailed proof is technical, so let us show it on a picture and explain it
informally.

We consider two terms (t, v) and (v, u) which are both accepted by the GTT
and we wish that (t, u) is also accepted. For simplicity, consider only one state q

such that t
∗

−−→
A1

C[q]
∗

←−−
A2

v and v
∗

−−→
A1

C ′[q1, . . . , qn]
∗

←−−
A2

u. There are actually

two cases: C can be “bigger” than C ′ or “smaller”. Assume it is smaller. Then
q is reached at a position inside C ′: C ′ = C[C ′′]p. The situation is depicted
on Figure 3.5. Along the reduction of v to q by A2, we enter a configuration
C ′′[q′1, . . . , q

′
n]. The idea now is to add to A2 ε-transitions from qi to q′i. In this

way, as can easily be seen on Figure 3.5, we get a reduction from u to C[q],
hence the pair (t, u) is accepted.

Proof. Let A1 and A2 be the pair of automata defining the GTT which accepts
R. We compute by induction the automata An

1 ,An
2 . A0

i = Ai and An+1
i is

obtained by adding new transitions to An
i : Let Qi be the set of states of Ai

(and also the set of states of An
i).

• If LAn
2
(q)∩LAn

1
(q′) 6= ∅, q ∈ Q1 ∩Q2 and q 6

∗
−−→
An

1

q′, then An+1
1 is obtained

from An
1 by adding the ε-transition q → q′ and An+1

2 = An
2 .

• If LAn
1
(q)∩LAn

2
(q′) 6= ∅, q ∈ Q1 ∩Q2 and q 6

∗
−−→
An

2

q′, then An+1
2 is obtained

from An
2 by adding the ε-transition q → q′ and An+1

1 = An
1 .

If there are several ways of obtaining An+1
i from An

i using these rules, we don’t
care which of these ways is used.

First, these completion rules are decidable by the decision properties of
chapter 1. Their application also terminates as at each application strictly
decreases k1(n) + k2(n) where ki(n) is the number of pairs of states (q, q′) ∈
(Q1 ∪Q2)× (Q1 ∪Q2) such that there is no ε-transition in An

i from q to q′. We
let A∗

i be a fixed point of this computation. We show that (A∗
1,A

∗
2) defines a

GTT accepting R∗.

• Each pair of terms accepted by the GTT (A∗
1,A

∗
2) is in R∗: we show by

induction on n that each pair of terms accepted by the GTT (An
1 ,An

2)
is in R∗. For n = 0, this follows from the hypothesis. Let us now
assume that An+1

1 is obtained by adding q → q′ to the transitions of
An

1 (The other case is symmetric). Let (t, u) be accepted by the GTT
(An+1

1 ,An+1
2). By definition, there is a context C and positions p1, . . . , pk

2i.e. the terms that are obtained by applying at least one rewriting step using f(g(x), y) →
g(a)

TATA — October 28, 2004 —

3.2 Automata on Tuples of Finite Trees 81

q’nq’1

q1 qnA1
A2

A2

A1

A2

q

C =

t =

C’ =

v =

u =

Figure 3.5: The proof of Theorem 23

TATA — October 28, 2004 —

82 Logic, Automata and Relations

such that t = C[t1, . . . , tk]p1,...,pk
, u = C[u1, . . . , uk]p1,...,pk

and there are

states q1, . . . , qk ∈ Q1∩Q2 such that, for all i, ti
∗

−−−→
An+1

1

qi and ui
∗

−−→
An

2

qi.

We prove the result by induction on the number m of times q → q′ is
applied in the reductions ti

∗
−−−→
An+1

1

qi. If m = 0. Then this is the first

induction hypothesis: (t, u) is accepted by (An
1 ,An

2), hence (t, u) ∈ R∗.
Now, assume that, for some i,

ti
∗

−−−→
An+1

1

t′i[q]p
∗

−−−→
q→q′

t′i[q
′]p

∗
−−→
An

1

qi

By definition, there is a term v such that v
∗

−−→
An

2

q and v
∗

−−→
An

1

q′. Hence

ti[v]p
∗

−−−→
An+1

1

qi

And the number of reduction steps using q → q′ is strictly smaller here
than in the reduction from ti to qi. Hence, by induction hypothesis,
(t[v]pip, u) ∈ R∗. On the other hand, (t, t[v]pip) is accepted by the GTT

(An+1
1 ,An

2) since t|pip
∗

−−−→
An+1

1

q and v
∗

−−→
An

2

q. Moreover, by construction,

the first sequence of reductions uses strictly less than m times the transi-
tion q → q′. Then, by induction hypothesis, (t, t[v]pip) ∈ R∗. Now from
(t, t[v]pip) ∈ R∗ and (t[v]pip, u) ∈ R∗, we conclude (t, u) ∈ R∗.

• If (t, u) ∈ R∗, then (t, u) is accepted by the GTT (A∗
1,A

∗
2). Let us prove

the following intermediate result:

Lemma 1.

If

t
∗

−−→
A∗

1

q

v
∗

−−→
A∗

2

q

v
∗

−−→
A∗

1

C[q1, . . . , qk]p1,...,pk

u
∗

−−→
A∗

2

C[q1, . . . , qk]p1,...,pk

then u
∗

−−→
A∗

2

q

and hence (t, u) is accepted by the GTT.

Let v
∗

−−→
A∗

2

C[q′1, . . . , q
′
k]p1,...,pk

∗
−−→
A∗

2

q. For each i, v|pi
∈ LA∗

2
(q′i)∩LA∗

1
(qi)

and qi ∈ Q1 ∩ Q2. Hence, by construction, qi −−→
A∗

2

q′i. It follows that

u
∗

−−→
A∗

2

C[q1, . . . qk]p1,...,pk

∗
−−→
A∗

2

C[q′1, . . . , q
′
k]p1,...,pk

∗
−−→
A∗

2

q

Which proves our lemma.

Symmetrically, if t
∗

−−→
A∗

1

C[q1, . . . , qk]p1,...,pk
, v

∗
−−→
A∗

2

C[q1, . . . , qk]p1,...,pk
,

v
∗

−−→
A∗

1

q and u
∗

−−→
A∗

2

q, then t
∗

−−→
A∗

1

q

TATA — October 28, 2004 —

3.2 Automata on Tuples of Finite Trees 83

Now, let (t, u) ∈ Rn: we prove that (t, u) is accepted by the GTT (A∗
1,A

∗
2)

by induction on n. If n = 1, then the result follows from the inclu-
sion of L(A1,A2) in L(A∗

1,A
∗
2). Now, let v be such that (t, v) ∈ R and

(v, u) ∈ Rn−1. By induction hypothesis, both (t, v) and (v, u) are ac-
cepted by the GTT (A∗

1,A
∗
2): there are context C and C ′ and positions

p1, . . . , pk, p′1, . . . , p
′
m such that

t = C[t1, . . . , tk]p1,...,pk
, v = C[v1, . . . , vk]p1,...,pk

v = C ′[v′
1, . . . , v

′
m]p′

1,...,p′
m

, u = C ′[u1, . . . , um]

and states q1, . . . , qk, q′1, . . . , q
′
m ∈ Q1 ∩Q2 such that for all i, j, ti

∗
−−→
A∗

1

qi,

vi
∗

−−→
A∗

2

qi, v′
j

∗
−−→
A∗

1

q′j , uj
∗

−−→
A∗

2

q′j . Let C ′′ be the largest context more

general than C and C ′; the positions of C ′′ are the positions of both
C[q1, . . . , qn]p1,...,pn

and C ′[q′1, . . . , q
′
m]p′

1,...,p′
m

. C ′′, p′′1 , . . . , p′′l are such
that:

– For each 1 ≤ i ≤ l, there is a j such that either pj = p′′i or p′j = p′′i

– For all 1 ≤ i ≤ n there is a j such that pi ≥ p′′j

– For all 1 ≤ i ≤ m there is a j such that p′i ≥ p′′j

– the positions p′′j are pairwise incomparable w.r.t. the prefix ordering.

Let us fix a j ∈ [1..l]. Assume that p′′j = pi (the other case is symmetric).
We can apply our lemma to tj = t|p′′

j
(in place of t), vj = v|p′′

j
(in place

of v) and u|p′′
j

(in place of u), showing that u|p′′
j

∗
−−→
A∗

2

qi. If we let now

q′′j = qi when p′′j = pi and q′′j = q′i when p′′j = p′i, we get

t
∗

−−→
A∗

1

C ′′[q′′1 , . . . , q′′l]p′′
1 ,...,p′′

l

∗
←−−
A∗

2

u

which completes the proof.

Proposition 13. If R and R′ are in GTT then their composition R ◦R′ is also
in GTT.

Proof. Let (A1,A2) and (A′
1,A

′
2) be the two pairs of automata which recognize

R and R′ respectively. We assume without loss of generality that the set of
states are disjoint:

(Q1 ∪ Q2) ∩ (Q′
1 ∪ Q′

2) = ∅

We define the automaton A∗
1 as follows: the set of states is Q1 ∪Q′

1 and the
transitions are the union of:

• the transitions of A1

• the transitions of A′
1

• the ε-transitions q −→ q′ if q ∈ Q1 ∩Q2, q′ ∈ Q′
1 and LA2

(q)∩LA′
1
(q′) 6= ∅

TATA — October 28, 2004 —

84 Logic, Automata and Relations

C
C’’ C’

q1
qk

qn q’1

q’l
q’m

u w v

Figure 3.6: The proof of Proposition 13

Symmetrically, the automaton A∗
2 is defined by: its states are Q2 ∪ Q′

2 and the
transitions are:

• the transitions of A2

• the transitions of A′
2

• the ε-transitions q′ −→ q if q′ ∈ Q′
1 ∩Q′

2, q ∈ Q2 and LA′
1
(q′)∩LA2

(q) 6= ∅

We prove below that (A∗
1,A

∗
2) is a GTT recognizing R ◦ R′. See also the figure

3.6.

• Assume first that (u, v) ∈ R ◦ R′. Then there is a term w such that
(u,w) ∈ R and (w, v) ∈ R′:

u = C[u1, . . . , uk]p1,...,pk
, w = C[w1, . . . , wk]p1,...,pk

w = C ′[w′
1, . . . , w

′
m]p′

1,...,p′
m

, v = C ′[v1, . . . , vm]p′
1,...,p′

m

and, for every i ∈ {1, . . . , k}, ui
∗

−−→
A1

qi, wi
∗

−−→
A2

qi, for every i ∈ {1, ...,m},

w′
i

∗
−−→
A′

1

q′i, vi
∗

−−→
A′

2

q′i. Let p′′1 , . . . , p′′l be the minimal elements (w.r.t. the

prefix ordering) of the set {p1, . . . , pk} ∪ {p′1, . . . , p
′
m}. Each p′′i is either

some pj or some p′j . Assume first p′′i = pj . Then pj is a position in C ′ and

C ′[q′1, . . . , q
′
m]p′

1,...,p′
m
|pj

= Cj [q
′
mj

, . . . , q′mj+kj
]p′

mj
,...,p′

mj+kj

Now, wj
∗

−−→
A2

qj and

wj = Cj [w
′
mj

, . . . , w′
mj+kj

]p′
mj

,...,p′
mj+kj

with w′
mj+i

∗
−−→
A′

1

q′mj+i for every i ∈ {1, . . . , kj}. For i ∈ {1, . . . , kj}, let

qj,i be such that:

w′
mj+i = wj |p′

mj+i

∗
−−→
A2

qj,i

Cj [qj,1, . . . , qj,kj
]p′

mj
,...,p′

mj+kj

∗
−−→
A2

qj

TATA — October 28, 2004 —

3.2 Automata on Tuples of Finite Trees 85

For every i, w′
mj+i ∈ LA2

(qj,i) ∩ LA′
1
(q′mj+i) and q′mj+i ∈ Q′

1 ∩ Q′
2.

Then, by definition, there is a transition q′mj+i −−→
A∗

2

qj,i. Therefore,

Cj [q
′
mj

, . . . , q′mj+kj
]

∗
−−→
A∗

2

qj and then v|pj

∗
−−→
A∗

2

qj .

Now, if p′′i = p′j , we get, in a similar way, u|p′
j

∗
−−→
A∗

1

q′j . Altogether:

u
∗

−−→
A∗

1

C ′′[q′′1 , . . . , q′′l]p′′
1 ,...,p′′

l

∗
←−−
A∗

2

v

where q′′i = qj if p′′i = pj and q′′j = q′j if p′′i = p′j .

• Conversely, assume that (u, v) is accepted by (A∗
1,A

∗
2). Then

u
∗

−−→
A∗

1

C[q′′1 , . . . , q′′l]p′′
1 ,...,p′′

l

∗
←−−
A∗

2

v

and, for every i, either q′′i ∈ Q1 ∩Q2 or q′′i ∈ Q′
1 ∩Q′

2 (by the disjointness
hypothesis). Assume for instance that q′′i ∈ Q′

1 ∩ Q′
2 and consider the

computation of A∗
1: u|p′′

i

∗
−−→
A∗

1

q′′i . By definition, u|p′′
i

= Ci[u1, . . . , uki
]

with
uj

∗
−−→
A1

qj −−→
A∗

1

q′j

for every j = 1, . . . , ki and Ci[q
′
1, . . . , q

′
ki

]
∗

−−→
A′

1

q′′i . By construction, qj ∈

Q1∩Q2 and LA2
(qj)∩LA′

1
(q′j) 6= ∅. Let wi,j be a term in this intersection

and wi = Ci[wi,1, . . . , wi,ki
]. Then

wi
∗

−−→
A2

Ci[q1, . . . , qki
]

u|p′′
i

∗
−−→
A1

Ci[q1, . . . , qki
]

wi
∗

−−→
A′

1

q′′i

v|p′′
i

∗
−−→
A′

2

q′′i

The last property comes from the fact that v|p′′
i

∗
−−→
A∗

2

q′′i and, since q′′i ∈

Q′
2, there can be only transition steps from A′

2 in this reduction.

Symmetrically, if q′′i ∈ Q1 ∩ Q2, then we define wi and the contexts Ci

such that

wi
∗

−−→
A2

q′′i

u|p′′
i

∗
−−→
A1

q′′i

wi
∗

−−→
A′

1

Ci[q
′
1, . . . , q

′
ki

]

v|p′′
i

∗
−−→
A′

2

Ci[q
′
1, . . . , q

′
ki

]

Finally, letting w = C[w1, . . . , wl], we have (u,w) ∈ R and (w, v) ∈ R′.

GTTs do not have many other good closure properties (see the exercises).

TATA — October 28, 2004 —

86 Logic, Automata and Relations

3.3 The Logic WSkS

3.3.1 Syntax

Terms of WSkS are formed out of the constant ε, first-order variable symbols
(typically written with lower-case letters x, y, z, x′, x1, ...) and unary symbols
1, . . . , n written in postfix notation. For instance x1123, ε2111 are terms. The
latter will be often written omitting ε (e.g. 2111 instead of ε2111).

Atomic formulas are either equalities s = t between terms, inequalities s ≤ t
or s ≥ t between terms, or membership constraints t ∈ X where t is a term and
X is a second-order variable symbol. Second-order variables will be typically
denoted using upper-case letters.

Formulas are built from the atomic formulas using the logical connectives
∧,∨,¬,⇒,⇐,⇔ and the quantifiers ∃x,∀x(quantification on individuals)∃X,∀X
(quantification on sets); we may quantify both first-order and second-order vari-
ables.

As usual, we do not need all this artillery: we may stick to a subset of logical
connectives (and even a subset of atomic formulas as will be discussed in Section
3.3.4). For instance φ ⇔ ψ is an abbreviation for (φ ⇒ ψ) ∧ (ψ ⇒ φ), φ ⇒ ψ
is another way of writing ψ ⇐ φ, φ ⇒ ψ is an abbreviation for (¬φ) ∨ ψ, ∀x.φ
stands for ¬∃x.¬φ etc ... We will use the extended syntax for convenience, but
we will restrict ourselves to the atomic formulas s = t, s ≤ t, t ∈ X and the
logical connectives ∨,¬,∃x,∃X in the proofs.

The set of free variables of a formula φ is defined as usual.

3.3.2 Semantics

We consider the particular interpretation where terms are strings belonging
to {1, . . . , k}∗, = is the equality of strings, and ≤ is interpreted as the prefix
ordering. Second order variables are interpreted as finite subsets of {1, . . . , k}∗,
so ∈ is then the membership predicate.

Let t1, . . . , tn ∈ {1, . . . , k}∗ and S1, . . . , Sn be finite subsets of {1, . . . , k}∗.
Given a formula

φ(x1, . . . , xn,X1, . . . ,Xm)

with free variables x1, . . . , xn,X1, . . . ,Xm, the assignment {x1 7→ t1, . . . xn 7→
tn,X1 7→ S1, . . . Xm 7→ Sm} satisfies φ, which is written σ |= φ (or also
t1, . . . , tn, S1, . . . , Sm |= φ) if replacing the variables with their corresponding
value, the formula holds in the above model.

Remark: the logic SkS is defined as above, except that set variables may be
interpreted as infinite sets.

3.3.3 Examples

We list below a number of formulas defining predicates on sets and singletons.
After these examples, we may use the below-defined abbreviations as if there
were primitives of the logic.

X is a subset of Y :

X ⊆ Y
def
= ∀x.(x ∈ X ⇒ x ∈ Y)

TATA — October 28, 2004 —

3.3 The Logic WSkS 87

Finite union:

X =

n⋃

i=1

Xi
def
=

n∧

i=1

Xi ⊆ X ∧ ∀x.(x ∈ X ⇒
n∨

i=1

x ∈ Xi)

Intersection:
X ∩ Y = Z

def
= ∀x.x ∈ Z ⇔ (x ∈ X ∧ x ∈ Y)

Partition:

Partition(X,X1, . . . ,Xn)
def
= X =

n⋃

i=1

Xi ∧
n−1∧

i=1

n∧

j=i+1

Xi ∩ Xj = ∅

X is closed under prefix:

PrefixClosed(X)
def
= ∀z.∀y.(z ∈ X ∧ y ≤ z) ⇒ y ∈ X

Set equality:

Y = X
def
= Y ⊆ X ∧ X ⊆ Y

Emptiness:

X = ∅
def
= ∀Y.(Y ⊆ X ⇒ Y = X)

X is a Singleton:

Sing(X)
def
= X 6= ∅ ∧ ∀Y (Y ⊆ X ⇒ (Y = X ∨ Y = ∅)

The prefix ordering:

x ≤ y
def
= ∀X.(y ∈ X ∧ (∀z.(

k∨

i=1

zi ∈ X) ⇒ z ∈ X)) ⇒ x ∈ X

“every set containing y and closed by predecessor contains x”

This shows that ≤ can be removed from the syntax of WSkS formulas
without decreasing the expressive power of the logic.

Coding of trees: assume that k is the maximal arity of a function symbol
in F . If t ∈ T (F) C(t) is the tuples of sets (S, Sf1

, . . . , Sfn
) if F =

{f1, . . . , fn}, S =
⋃n

i=1 Sfi
and Sfi

is the set of positions in t which are
labeled with fi.

For instance C(f(g(a), f(a, b))) is the tuple S = {ε, 1, 11, 2, 21, 22}, Sf =
{ε, 2}, Sg = {1}, Sa = {11, 21}, Sb = {22}.

(S, Sf1
, . . . , Sfn

) is the coding of some t ∈ T (F) is defined by:

Term(X,X1, . . . ,Xn)
def
= X 6= ∅

∧ Partition(X,X1, . . . ,Xn) ∧PrefixClosed(X)

∧
∧k

i=1

∧
a(fj)=i (

∧i
l=1 ∀x.(x ∈ Xfj

⇒ xl ∈ X)

∧
∧k

l=i+1 ∀y.(y ∈ Xfj
⇒ yl /∈ X))

TATA — October 28, 2004 —

88 Logic, Automata and Relations

3.3.4 Restricting the Syntax

If we consider that a first-order variable is a singleton set, it is possible to
transform any formula into an equivalent one which does not contain any first-
order variable.

More precisely, we consider now that formulas are built upon the atomic
formulas:

X ⊆ Y,Sing(X),X = Y i,X = ε

using the logical connectives and second-order quantification only. Let us
call this new syntax the restricted syntax.

These formulas are interpreted as expected. In particular Sing(X) holds true
when X is a singleton set and X = Y i holds true when X and Y are singleton
sets {s} and {t} respectively and s = ti. Let us write |=2 the satisfaction relation
for this new logic.

Proposition 14. There is a translation T from WSkS formulas to the restricted
syntax such that

s1, . . . , sn, S1, . . . , Sm |= φ(x1, . . . , xn,X1, . . . ,Xm)

if and only if

{s1}, . . . , {sn}, S1, . . . , Sm |=2 T (φ)(Xx1
, . . . ,Xxn

,X1, . . . ,Xm)

Conversely, there is a translation T ′ from the restricted syntax to WSkS such
that

S1, . . . , Sm |= T ′(φ)(X1, . . . ,Xm)

if and only if

S1, . . . , Sm |=2 φ(X1, . . . ,Xm))

Proof. First, according to the previous section, we can restrict our attention to
formulas built upon the only atomic formulas t ∈ X and s = t. Then, each
atomic formula is flattened according to the rules:

ti ∈ X → ∃y.y = ti ∧ y ∈ X
xi = yj → ∃z.z = xi ∧ z = yj

ti = s → ∃z.z = t ∧ zi = s

The last rule assumes that t is not a variable
Next, we associate a second-order variable Xy to each first-order variable y

and transform the flat atomic formulas:

T (y ∈ X)
def
= Xy ⊆ X

T (y = xi)
def
= Xy = Xxi

T (x = ε)
def
= Xx = ε

T (x = y)
def
= Xx = Xy

The translation of other flat atomic formulas can be derived from these ones, in
particular when exchanging the arguments of =.

TATA — October 28, 2004 —

3.3 The Logic WSkS 89

Now, T (φ ∨ ψ)
def
= T (φ) ∨ T (ψ), T (¬(φ))

def
= ¬T (φ), T (∃X.φ)

def
= ∃X.T (φ),

T (∃y.φ)
def
= ∃Xy.Sing(Xy)∧T (φ). Finally, we add Sing(Xx) for each free variable

x.
For the converse, the translation T ′ has been given in the previous section,

except for the atomic formulas X = Y i (which becomes Sing(X) ∧ Sing(Y) ∧
∃x∃y.x ∈ X ∧ y ∈ Y ∧ x = yi) and X = ε (which becomes Sing(X) ∧ ∀x.x ∈
X ⇒ x = ε).

3.3.5 Definable Sets are Recognizable Sets

Definition 8. A set L of tuples of finite sets of words is definable in WSkS if
there is a formula φ of WSkS with free variables X1, . . . ,Xn such that

(S1, . . . , Sn) ∈ L if and only if S1, . . . , Sn |= φ.

Each tuple of finite sets of words S1, . . . , Sn ⊆ {1, . . . , k}∗ is identified to a
finite tree (S1, . . . , Sn)∼ over the alphabet {0, 1,⊥}n where any string containing
a 0 or a 1 is k-ary and ⊥n is a constant symbol, in the following way3:

Pos((S1, . . . , Sn)∼)
def
= {ε} ∪ {pi | ∃p′ ∈

n⋃

i=1

Si, p ≤ p′, i ∈ {1, . . . , k}}

is the set of prefixes of words in some Si. The symbol at position p:

(S1, . . . , Sn)∼(p) = α1 . . . αn

is defined as follows:

• αi = 1 if and only if p ∈ Si

• αi = 0 if and only if p /∈ Si and ∃p′ ∈ Si and ∃p′′.p · p′′ = p′

• αi =⊥ otherwise.

Example 33. Consider for instance S1 = {ε, 11}, S2 = ∅, S3 = {11, 22} three
subsets of {1, 2}∗. Then the coding (S1, S2, S3)

∼ is depicted on Figure 3.7.

Lemma 2. If a set L of tuples of finite subsets of {1, . . . , k}∗ is definable in

WSkS, then L̃
def
= {(S1, . . . , Sn)∼ | (S1, . . . , Sn) ∈ L} is in Rec.

Proof. By Proposition 14, if L is definable in WSkS, it is also definable with the
restricted syntax. We are going now to prove the lemma by induction on the
structure of the formula φ which defines L. We assume that all variables in φ
are bound at most once in the formula and we also assume a fixed total ordering
≤ on the variables. If ψ is a subformula of φ with free variables Y1 < . . . < Yn,
we construct an automaton Aψ working on the alphabet {0, 1,⊥}n such that
(S1, . . . , Sn) |=2 ψ if and only if (S1, . . . , Sn)∼ ∈ L(Aψ)

3This is very similar to the coding of Section 3.2.1

TATA — October 28, 2004 —

90 Logic, Automata and Relations

0 0

11 1

1 0

0

Figure 3.7: An example of a tree coding a triple of finite sets of strings

0

q’q

1

qq

q’

q q’

0

qq’

q’

Figure 3.8: The automaton for Sing(X)

The base case consists in constructing an automaton for each atomic formula.
(We assume here that k = 2 for simplicity, but this works of course for arbitrary
k).

The automaton ASing(X) is depicted on Figure 3.8. The only final state is

q′.

The automaton AX⊆Y (with X < Y) is depicted on Figure 3.9. The only
state (which is also final) is q.

The automaton AX=Y 1 is depicted on Figure 3.10. The only final state is
q′′. An automaton for X = Y 2 is obtained in a similar way.

The automaton for X = ε is depicted on Figure 3.11 (the final state is q′).

Now, for the induction step, we have several cases to investigate:

• If φ is a disjunction φ1 ∨ φ2, where ~Xi are the set of free variables of
φi respectively. Then we first cylindrify the automata for φ1 and φ2

respectively in such a way that they recognize the solutions of φ1 and
φ2, with free variables ~X1 ∪ ~X2. (See Proposition 12).More precisely, let
~X1 ∪ ~X2 = {Y1, . . . , Yn} with Y1 < . . . < Yn. Then we successively apply
the ith cylindrification to the automaton of φ1 (resp. φ2) for the variables
Yi which are not free in φ1 (resp. φ2). Then the automaton Aφ is obtained
as the union of these automata. (Rec is closed under union by Proposition
11).

TATA — October 28, 2004 —

3.3 The Logic WSkS 91

q

1

q q

q

00

q q

q q

qq

11

0

q q

q

q q

q01

Figure 3.9: The automaton for X ⊆ Y

q

00

q’’

q’’1

q

q

01

q q

q’

q’

q’’

00 q’’

q q’’

Figure 3.10: The automaton for X = Y 1

q

q

1 q’

q

Figure 3.11: The automaton for X = ε

TATA — October 28, 2004 —

92 Logic, Automata and Relations

• If φ is a formula ¬φ1 then Aφ is the automaton accepting the complement
of Aφ1

. (See Theorem 5)

• If φ is a formula ∃X.φ1. Assume that X correspond to the ith component.
Then Aφ is the ith projection of Aφ1

(see Proposition 12).

Example 34. Consider the following formula, with free variables X,Y :

∀x, y.(x ∈ X ∧ y ∈ Y) ⇒ ¬(x ≥ y)

We want to compute an automaton which accepts the assignments to X,Y
satisfying the formula. First, write the formula as

¬∃X1, Y1.X1 ⊆ X ∧ Y1 ⊆ Y ∧ G(X1, Y1)

where G(X1, Y1) expresses that X1 is a singleton x, Y1 is a singleton y and
x ≥ y. We can use the definition of ≥ as a WS2S formula, or compute directly
the automaton, yielding

⊥⊥ → q 11(q, q) → q2

1 ⊥ (q, q) → q1 0 ⊥ (q, q1) → q1

0 ⊥ (q1, q) → q1 01(q1, q) → q2

01(q, q2) → q2 00(q2, q) → q2

00(q, q2) → q2

where q2 is the only final state. Now, using cylindrification, intersection, pro-
jection and negation we get the following automaton (intermediate steps yield
large automata which would require a full page to be displayed):

⊥⊥ → q0 ⊥ 1(q0, q0) → q1 1 ⊥ (q0, q0) → q2

⊥ 0(q0, q1) → q1 ⊥ 0(q1, q0) → q1 ⊥ 0(q1, q1) → q1

0 ⊥ (q0, q2) → q2 0 ⊥ (q2, q0) → q2 0 ⊥ (q2, q2) → q2

⊥ 1(q0, q1) → q1 ⊥ 1(q1, q0) → q1 ⊥ 1(q1, q1) → q1

1 ⊥ (q0, q2) → q2 1 ⊥ (q2, q0) → q2 1 ⊥ (q2, q2) → q2

10(q1, q0) → q3 10(q0, q1) → q3 10(q1, q1) → q3

10(q1, q2) → q3 10(q2, q1) → q3 10(qi, q3) → q3

10(q3, qi) → q3 00(qi, q3) → q3 00(q3, qi) → q3

where i ranges over {0, 1, 2, 3} and q3 is the only final state.

3.3.6 Recognizable Sets are Definable

We have seen in section 3.3.3 how to represent a term using a tuple of set
variables. Now, we use this formula Term on the coding of tuples of terms; if
(t1, . . . , tn) ∈ T (F)n, we write [t1, . . . , tn] the (|F| + 1)n + 1-tuple of finite sets
which represents it: one set for the positions of [t1, . . . , tn] and one set for each
element of the alphabet (F ∪{⊥})n . As it has been seen in section 3.3.3, there
is a WSkS formula Term([t1, . . . , tn]) which expresses the image of the coding.

TATA — October 28, 2004 —

3.3 The Logic WSkS 93

Lemma 3. Every relation in Rec is definable. More precisely, if R ∈ Rec there
is a formula φ such that, for every terms t1, . . . , tn, if (S1, . . . , Sm) = [t1, . . . , tn],
then

(S1, . . . , Sm) |=2 φ if and only if (t1, . . . , tn) ∈ R

Proof. Let A be the automaton which accepts the set of terms [t1, . . . , tn] for
(t1, . . . , tn) ∈ R. The terminal alphabet of A is F ′ = (F∪{⊥})n, the set of states
Q, the final states Qf and the set of transition rules T . Let F ′ = {f1, . . . , fm}
and Q = {q1, . . . , ql}. The following formula φA (with m + 1 free variables)
defines the set {[t1, . . . , tn] | (t1, . . . , tn) ∈ R}.

∃Yq1
, . . . ,∃Yql

.
Term(X,Xf1

, . . . ,Xfm
)

∧ Partition(X,Yq1
, . . . , Yql

)
∧

∨
q∈Qf

ε ∈ Yq

∧ ∀x.
∧

f∈F ′

∧

q∈Q

((x ∈ Xf ∧ x ∈ Yq) ⇒ (
∨

f(q1,...,qs)→q∈T

s∧

i=1

xi ∈ Yqi
))

This formula basically expresses that there is a successful run of the automaton
on [t1, . . . , tn]: the variables Yqi

correspond to sets of positions which are labeled
with qi by the run. They should be a partition of the set of positions. The root
has to be labeled with a final state (the run is successful). Finally, the last line
expresses local properties that have to be satisfied by the run: if the sons xi of
a position x are labeled with q1, ..., qn respectively and x is labeled with symbol
f and state q, then there should be a transition f(q1, . . . , qn) → q in the set of
transitions.

We have to prove two inclusions. First assume that (S, S1, . . . , Sm) |=2

φ. Then (S, S1, . . . , Sm) |= Term(X,Xf1
, . . . ,Xfm

), hence there is a term u ∈
T (F)′ whose set of position is S and such that for all i, Si is the set of positions
labeled with fi. Now, there is a partition Eq1

, . . . , Eql
of S which satisfies

S, S1, . . . , Sm, Eq1
, . . . , Eql

|=

∀x.
∧

f∈F ′

∧

q∈Q

((x ∈ Xf ∧ x ∈ Yq) ⇒ (
∨

f(q1,...,qs)→q∈T

s∧

i=1

xi ∈ Yqi
))

This implies that the labeling Eq1
, . . . , Eql

is compatible with the transition
rules: it defines a run of the automaton. Finally, the condition that the root ε
belongs to Eqf

for some final state qf implies that the run is successful, hence
that u is accepted by the automaton.

Conversely, if u is accepted by the automaton, then there is a successful run
of A on u and we can label its positions with states in such a way that this
labeling is compatible with the transition rules in A.

Putting together Lemmas 2 and 3, we can state the following slogan (which
is not very precise; the precise statements are given by the lemmas):

Theorem 24. L is definable if and only if L is in Rec.

And, as a consequence:

TATA — October 28, 2004 —

94 Logic, Automata and Relations

Theorem 25 ([TW68]). WSkS is decidable.

Proof. Given a formula φ of WSkS, by Lemma 2, we can compute a finite tree
automaton which has the same solutions as φ. Now, assume that φ has no free
variable. Then the alphabet of the automaton is empty (or, more precisely, it
contains the only constant > according to what we explained in Section 3.2.4).
Finally, the formula is valid iff the constant > is in the language, i.e. iff there
is a rule > −→ qf for some qf ∈ Qf .

3.3.7 Complexity Issues

We have seen in chapter 1 that, for finite tree automata, emptiness can be de-
cided in linear time (and is PTIME-complete) and that inclusion is EXPTIME-
complete. Considering WSkS formulas with a fixed number of quantifiers al-
ternations N , the decision method sketched in the previous section will work
in time which is a tower of exponentials, the height of the tower being O(N).
This is so because each time we encounter a sequence ∀X,∃Y , the existential
quantification corresponds to a projection, which may yield a non-deterministic
automaton, even if the input automaton was deterministic. Then the elimination
of ∀X requires a determinization (because we have to compute a complement
automaton) which requires in general exponential time and exponential space.

Actually, it is not really possible to do much better since, even when k = 1,
deciding a formula of WSkS requires non-elementary time, as shown in [SM73].

3.3.8 Extensions

There are several extensions of the logic, which we already mentioned: though
quantification is restricted to finite sets, we may consider infinite sets as models
(this is what is often called weak second-order monadic logic with k successors
and also written WSkS), or consider quantifications on arbitrary sets (this is
the full SkS).

These logics require more sophisticated automata which recognize sets of
infinite terms. The proof of Theorem 25 carries over these extensions, with the
provision that the devices enjoy the required closure and decidability properties.
But this becomes much more intricate in the case of infinite terms. Indeed, for
infinite terms, it is not possible to design bottom-up tree automata. We have to
use a top-down device. But then, as mentioned in chapter 1, we cannot expect
to reduce the non-determinism. Now, the closure by complement becomes prob-
lematic because the usual way of computing the complement uses reduction of
non-determinism as a first step.

It is out of the scope of this book to define and study automata on infinite
objects (see [Tho90] instead). Let us simply mention that the closure under com-
plement for Rabin automata which work on infinite trees (this result is known
as Rabin’s Theorem) is one of the most difficult results in the field

TATA — October 28, 2004 —

3.4 Examples of Applications 95

3.4 Examples of Applications

3.4.1 Terms and Sorts

The most basic example is what is known in the algebraic specification commu-
nity as order-sorted signatures . These signatures are exactly what we called
bottom-up tree automata. There are only differences in the syntax. For in-
stance, the following signature:

SORTS:Nat, int

SUBSORTS : Nat ≤ int

FUNCTION DECLARATIONS:
0 : → Nat

+ : Nat × Nat → Nat

s : Nat → Nat

p : Nat → int

+ : int × int → int

abs : int → Nat

fact : Nat → Nat

. . .

is an automaton whose states are Nat, int with an ε-transition from Nat to int

and each function declaration corresponds to a transition of the automaton. For
example +(Nat,Nat) → Nat. The set of well-formed terms (as in the algebraic
specification terminology) is the set of terms recognized by the automaton in
any state.

More general typing systems also correspond to more general automata (as
will be seen e.g. in the next chapter).

This correspondence is not surprising; types and sorts are introduced in order
to prevent run-time errors by some “abstract interpretation” of the inputs. Tree
automata and tree grammars also provide such a symbolic evaluation mecha-
nism. For other applications of tree automata in this direction, see e.g. chapter
5.

From what we have seen in this chapter, we can go beyond simply recogniz-
ing the set of well-formed terms. Consider the following sort constraints (the
alphabet F of function symbols is given):

The set of sort expressions SE is the least set such that

• SE contains a finite set of sort symbols S, including the two particular
symbols >S and ⊥S .

• If s1, s2 ∈ SE , then s1 ∨ s2, s1 ∧ s2, ¬s1 are in SE

• If s1, . . . , sn are in SE and f is a function symbol of arity n, then f(s1, . . . , sn) ∈
SE .

The atomic formulas are expressions t ∈ s where t ∈ T (F ,X) and s ∈ SE .
The formulas are arbitrary first-order formulas built on these atomic formulas.

These formulas are interpreted as follows: we are giving an order-sorted sig-
nature (or a tree automaton) whose set of sorts is S. We define the interpretation[[·]]S
of sort expressions as follows:

• if s ∈ S, [[s]]S is the set of terms in T (F) that are accepted in state s.

TATA — October 28, 2004 —

96 Logic, Automata and Relations

t

u

Figure 3.12: u encompasses t

• [[>S]]S = T (F) and [[⊥S]]S = ∅

• [[s1 ∨ s2]]S = [[s1]]S ∪ [[s2]]S , [[s1 ∧ s2]]S = [[s1]]S ∩ [[s2]]S , [[¬s]]S = T (F) \ [[s]]S

• [[f(s1, . . . , sn)]]S = {f(t1, . . . , tn) | t1 ∈ [[s1]]S , . . . tn ∈ [[sn]]S}

An assignment σ, mapping variables to terms in T (F), satisfies t ∈ s (we
also say that σ is a solution of t ∈ s) if tσ ∈ [[s]]S . Solutions of arbitrary formulas
are defined as expected. Then

Theorem 26. Sort constraints are decidable.

The decision technique is based on automata computations, following the
closure properties of Rec× and a decomposition lemma for constraints of the
form f(t1, . . . , tn) ∈ s.

More results and applications of sort constraints are discussed in the biblio-
graphic notes.

3.4.2 The Encompassment Theory for Linear Terms

Definition 9. If t ∈ T (F ,X) and u ∈ T (F), u encompasses t if there is a substi-
tution σ such that tσ is a subterm of u. (See Figure 3.12.) This binary relation
is denoted t ·£u or, seen as a unary relation on ground terms parametrized by
t: ·£t(u).

Encompassment plays an important role in rewriting: a term t is reducible
by a term rewriting system R if and only if t encompasses at least one left hand
side of a rule.

The relationship with tree automata is given by the proposition:

Proposition 15. If t is linear, then the set of terms that encompass t is recog-
nized by an NFTA of size O(|t|).

Proof. To each non-variable subterm v of t we associate a state qv. In addition
we have a state q>. The only final state is qt. The transition rules are:

• f(q>, . . . , q>) → q> for all function symbols.

• f(qt1 , . . . , qtn
) → qf(t1,...,tn) if f(t1, . . . , tn) is a subterm of t and qti

is
actually q> is ti is a variable.

TATA — October 28, 2004 —

3.4 Examples of Applications 97

• f(q> . . . , q>, qt, q>, . . . , q>) → qt for all function symbols f whose arity is
at least 1.

The proof that this automaton indeed recognizes the set of terms that encompass
t is left to the reader.

Note that the automaton may be non deterministic. With a slight modifica-
tion, if u is a linear term, we can construct in linear time an automaton which
accepts the set of instances of u (this is also left as an exercise in chapter 1,
exercise 8).

Corollary 4. If R is a term rewriting system whose all left members are linear,
then the set of reducible terms in T (F), as well as the set NF of irreducible
terms in T (F) are recognized by a finite tree automaton.

Proof. This is a consequence of Theorem 5.

The theory of reducibility associated with a set of term S ⊆ T (F ,X) is the
set of first-order formulas built on the unary predicate symbols Et, t ∈ S and
interpreted as the set of terms encompassing t.

Theorem 27. The reducibility theory associated with a set of linear terms is
decidable.

Proof. By proposition 15, the set of solutions of an atomic formula is recog-
nizable, hence definable in WSkS by Lemma 3. Hence, any first-order formula
built on these atomic predicate symbols can be translated into a (second-order)
formula of WSkS which has the same models (up to the coding of terms into
tuples of sets). Then, by Theorem 25, the reducibility theory associated with a
set of linear terms is decidable.

Note however that we do not use here the full power of WSkS. Actually,
the solutions of a Boolean combination of atomic formulas are in Rec×. So, we
cannot apply the complexity results for WSkS here. (In fact, the complexity of
the reducibility theory is unknown so far).

Let us simply show an example of an interesting property of rewrite systems
which can be expressed in this theory.

Definition 10. Given a term rewriting system R, a term t is ground reducible
if, for every ground substitution σ, tσ is reducible by R.

Note that a term might be irreducible and still ground reducible. For in-
stance consider the alphabet F = {0, s} and the rewrite system R = {s(s(0)) →
0}. Then the term s(s(x)) is irreducible by R, but all its ground instances are
reducible.

It turns out that ground reducibility of t is expressible in the encompassment
theory by the formula:

∀x.(·£t(x) ⇒
n∨

i=1

·£li(x))

Where l1, . . . , ln are the left hand sides of the rewrite system. By Theorem
27, if t, l1, . . . , ln are linear, then ground reducibility is decidable. Actually, it
has been shown that this problem is EXPTIME-complete, but is beyond the
scope of this book to give the proof.

TATA — October 28, 2004 —

98 Logic, Automata and Relations

3.4.3 The First-order Theory of a Reduction Relation: the
Case Where no Variables are Shared

We consider again an application of tree automata to decision problem in logic
and term rewriting.

Consider the following logical theory. Let L be the set of all first-order
formulas using no function symbols and a single binary predicate symbol →.

Given a rewrite system R, interpreting → as −→
R

, yields the theory of one

step rewriting; interpreting → as
∗
−→
R

yields the theory of rewriting.

Both theories are undecidable for arbitrary R. They become however decid-
able if we restrict our attention to term rewriting systems in which each variable
occurs at most once. Basically, the reason is given by the following:

Proposition 16. If R is a linear rewrite system such that left and right mem-
bers of the rules do not share variables, then

∗
−→
R

is recognized by a GTT.

Proof. As in the proof of Proposition 15, we can construct in linear time a
(non-deterministic) automaton which accepts the set of instances of a linear
term. For each rule li → ri we can construct a pair (Ai,A′

i) of automata which
respectively recognize the set of instances of li and the set of instances of ri.
Assume that the sets of states of the Ais are pairwise disjoint and that each
Ai has a single final state qi

f . We may assume a similar property for the A′
is:

they do not share states and for each i, the only common state between Ai and
A′

i is qi
f (the final state for both of them). Then A (resp. A′) is the union of

the Ais: the states are the union of all sets of states of the Ais (resp. A′
is),

transitions and final states are also unions of the transitions and final states of
each individual automaton.

We claim that (A,A′) defines a GTT whose closure by iteration (A∗,A
′
∗)

(which is again a GTT according to Theorem 23) accepting
∗
−→
R

. For, assume

first that u
p

−−−−→
li→ri

v. Then u|p is an instance liσ of li, hence is accepted in state

qi
f . v|p is an instance riθ of ri, hence accepted in state qi

f . Now, v = u[riθ]p,

hence (u, v) is accepted by the GTT (A,A′). It follows that if u
∗
−→
R

v, (u, v) is

accepted by (A∗,A
′
∗).

Conversely, assume that (u, v) is accepted by (A,A′), then

u
∗
−→
A

C[q1, . . . , qn]p1,...,pn

∗
←−−
A′

v

Moreover, each qi is some state qj
f , which, by definition, implies that u|pi

is an
instance of lj and v|pi

is an instance of rj . Now, since lj and rj do not share

variables, for each i, u|pi
−→
R

v|pi
. Which implies that u

∗
−→
R

v. Now, if (u, v) is

accepted by (A∗,A
′
∗), u can be rewritten in v by the transitive closure of

∗
−→
R

,

which is
∗
−→
R

itself.

Theorem 28. If R is a linear term rewriting system such that left and right
members of the rules do not share variables, then the first-order theory of rewrit-
ing is decidable.

TATA — October 28, 2004 —

3.4 Examples of Applications 99

Proof. By Proposition 16,
∗
−→
R

is recognized by a GTT. From Proposition

9,
∗
−→
R

is in Rec. By Lemma 3, there is a WSkS formula whose solutions are

exactly the pairs (s, t) such that s
∗
−→
R

t. Finally, by Theorem 25, the first-order

theory of
∗
−→
R

is decidable.

3.4.4 Reduction Strategies

So far, we gave examples of first-order theories (or constraint systems) which
can be decided using tree automata techniques. Other examples will be given
in the next two chapters. We give here another example of application in a
different spirit: we are going to show how to decide the existence (and com-
pute) “optimal reduction strategies” in term rewriting systems. Informally, a
reduction sequence is optimal when every redex which is contracted along this
sequence has to be contracted in any reduction sequence yielding a normal form.
For example, if we consider the rewrite system {x ∨> → >;>∨ x → >}, there
is no optimal sequential reduction strategy in the above sense since, given an
expression e1 ∨ e2, where e1 and e2 are unevaluated, the strategy should spec-
ify which of e1 or e2 has to be evaluated first. However, if we start with e1,
then maybe e2 will reduce to > and the evaluation step on e1 was unnecessary.
Symmetrically, evaluating e2 first may lead to unnecessary computations. An
interesting question is to give sufficient criteria for a rewrite system to admit
optimal strategies and, in case there is such a strategy, give it explicitly.

The formalization of these notions was given by Huet and Lévy in [HL91]
who introduce the notion of sequentiality. We give briefly a summary of (part
of) their definitions.

F is a fixed alphabet of function symbols and FΩ = F ∪{Ω} is the alphabet
F enriched with a new constant Ω (whose intended meaning is “unevaluated
term”).

We define on T (FΩ) the relation “less evaluated than” as:

u v v if and only if either u = Ω or else u = f(u1, . . . , un), v =
f(v1, . . . , vn) and for all i, ui v vi

Definition 11. A predicate P on T (FΩ) is monotonic if u ∈ P and u v v
implies v ∈ P .

For example, a monotonic predicate of interest for rewriting is the predicate
NR: t ∈ NR if and only if there is a term u ∈ T (F) such that u is irreducible

by R and t
∗
−→
R

u.

Definition 12. Let P be a monotonic predicate on T (FΩ). If R is a term
rewriting system and t ∈ T (FΩ), a position p of Ω in t is an index for P if for
all terms u ∈ T (FΩ) such that t v u and u ∈ P , then u|p 6= Ω

In other words: it is necessary to evaluate t at position p in order to have
the predicate P satisfied.

Example 35. Let R = {f(g(x), y) → g(f(x, y)); f(a, x) → a; b → g(b)}.
Then 1 is an index of f(Ω,Ω) for NR: any reduction yielding a normal form

TATA — October 28, 2004 —

100 Logic, Automata and Relations

without Ω will have to evaluate the term at position 1. More formally, every
term f(t1, t2) which can be reduced to a term in T (F) in normal form satisfies

t1 6= Ω. On the contrary, 2 is not an index of f(Ω,Ω) since f(a,Ω)
∗
−→
R

a.

Definition 13. A monotonic predicate P is sequential if every term t such that:

• t /∈ P

• there is u ∈ T (F), t v u and u ∈ P

has an index for P .

If NR is sequential, the reduction strategy consisting of reducing an index
is optimal for non-overlapping and left linear rewrite systems.

Now, the relationship with tree automata is given by the following result:

Theorem 29. If P is definable in WSkS, then the sequentiality of P is express-
ible as a WSkS formula.

The proof of this result is quite easy: it suffices to translate directly the
definitions.

For instance, if R is a rewrite system whose left and right members do
not share variables, then NR is recognizable (by Propositions 16 and 9), hence
definable in WSkS by Lemma 3 and the sequentiality of NR is decidable by
Theorem 29.

In general, the sequentiality of NR is undecidable. However, one can notice
that, if R and R′ are two rewrite systems such that −→

R
⊆ −−→

R′
, then a

position p which is an index for R′ is also an index for R. (And thus, R is
sequential whenever R′ is sequential).

For instance, we may approximate the term rewriting system, replacing all
right hand sides by a new variable which does not occur in the corresponding
left member. Let R? be this approximation and N? be the predicate NR?. (This
is the approximation considered by Huet and Lévy).

Another, refined, approximation consists in renaming all variables of the
right hand sides of the rules in such a way that all right hand sides become
linear and do not share variables with their left hand sides. Let R′ be such an
approximation of R. The predicate NR′ is written NV .

Proposition 17. If R is left linear, then the predicates N? and NV are defin-
able in WSkS and their sequentiality is decidable.

Proof. The approximations R? and R′ satisfy the hypotheses of Proposition 16
and hence

∗
−−→
R?

and
∗

−−→
R′

are recognized by GTTs. On the other hand, the

set of terms in normal form for a left linear rewrite system is recognized by a
finite tree automaton (see Corollary 4). By Proposition 9 and Lemma 3, all
these predicates are definable in WSkS. Then N? and NV are also definable in
WSkS. For instance for NV :

NV (t)
def
= ∃u.t

∗
−−→
R′

u ∧ u ∈ NF

Then, by Theorem 29, the sequentiality of N? and NV are definable in
WSkS and by Theorem 25 they are decidable.

TATA — October 28, 2004 —

3.4 Examples of Applications 101

3.4.5 Application to Rigid E-unification

Given a finite (universally quantified) set of equations E, the classical problem
of E-unification is, given an equation s = t, find substitutions σ such that
E |= sσ = tσ. The associated decision problem is to decide whether such a
substitution exists. This problem is in general unsolvable: there are decision
procedures for restricted classes of axioms E.

The simultaneous rigid E-unification problem is slightly different: we are
still giving E and a finite set of equations si = ti and the question is to find a
substitution σ such that

|= (
∧

e∈E

eσ) ⇒ (

n∧

i=1

siσ = tiσ)

The associated decision problem is to decide the existence of such a substitution.
The relevance of such questions to automated deduction is very briefly de-

scribed in the bibliographic notes. We want here to show how tree automata
help in this decision problem.

Simultaneous rigid E-unification is undecidable in general. However, for the
one variable case, we have:

Theorem 30. The simultaneous rigid E-unification problem with one variable
is EXPTIME-complete.

The EXPTIME membership is a direct consequence of the following lemma,
together with closure and decision properties for recognizable tree languages.
The EXPTIME-hardness is obtained by reduction the intersection non-emptiness
problem, see Theorem 12).

Lemma 4. The solutions of a rigid E-unification problem with one variable are
recognizable by a finite tree automaton.

Proof. (sketch) Assume that we have a single equation s = t. Let x be the
only variable occurring in E, s = t and Ê be the set E in which x is considered
as a constant. Let R be a canonical ground rewrite system (see e.g. [DJ90])
associated with Ê (and for which x is minimal). We define v as x if s and t
have the same normal form w.r.t. R and as the normal form of xσ w.r.t. R
otherwise.

Assume Eσ |= sσ = tσ. If v 6≡ x, we have Ê ∪ {x = v} |= x = xσ. Hence
Ê ∪{x = v} |= s = t in any case. Conversely, assume that Ê ∪{x = v} |= s = t.
Then Ê ∪ {x = xσ} |= s = t, hence Eσ |= sσ = tσ.

Now, assume v 6≡ x. Then either there is a subterm u of an equation in Ê
such that Ê |= u = v or else R1 = R ∪ {v → x} is canonical. In this case, from
Ê ∪{v = x} |= s = t, we deduce that either Ê |= s = t (and v ≡ x) or there is a
subterm u of s, t such that Ê |= v = u. we can conclude that, in all cases, there
is a subterm u of E ∪ {s = t} such that Ê |= u = v.

To summarize, σ is such that Eσ |= sσ = tσ iff there is a subterm u of
E ∪ {s = t} such that Ê |= u = xσ and Ê ∪ {u = x} |= s = t.

If we let T be the set of subterms u of E ∪ {s = t} such that Ê ∪ {u = x} |=
s = t, then T is finite (and computable in polynomial time). The set of solutions

is then
∗

−−−→
R−1

(T), which is a recognizable set of trees, thanks to Proposition

16.

TATA — October 28, 2004 —

102 Logic, Automata and Relations

Further comments and references are given in the bibliographic notes.

3.4.6 Application to Higher-order Matching

We give here a last application (but the list is not closed!), in the typed lambda-
calculus.

To be self-contained, let us first recall some basic definitions in typed lambda
calculus.

The set of types of the simply typed lambda calculus is the least set contain-
ing the constant o (basic type) and such that τ → τ ′ is a type whenever τ and
τ ′ are types.

Using the so-called Curryfication, any type τ → (τ ′ → τ ′′) is written τ, τ ′ →
τ ′′. In this way all non-basic types are of the form τ1, . . . , τn → o with intuitive
meaning that this is the type of functions taking n arguments of respective types
τ1, . . . , τn and whose result is a basic type o.

The order of a type τ is defined by:

• O(o) = 1

• O(τ1, . . . , τn → o) = 1 + max{O(τ1), . . . , O(τn)}

Given, for each type τ a set of variables Xτ of type τ and a set Cτ of constants
of type τ , the set of terms (of the simply typed lambda calculus) is the least
set Λ such that:

• x ∈ Xτ is a term of type τ

• c ∈ Cτ is a term of type τ

• If x1 ∈ Xτ1
, . . . , xn ∈ Xτn

and t is a term of type τ , then λx1, . . . xn : t is
a term of type τ1, . . . , τn → τ

• If t is a term of type τ1, . . . , τn → τ and t1, . . . , tn are terms of respective
types τ1, . . . , τn, then t(t1, . . . , tn) is a term of type τ .

The order of a term t is the order of its type τ(t).
The set of free variables Var(t) of a term t is defined by:

• Var(x) = {x} if x is a variable

• Var(c) = ∅ if c is a constant

• Var(λx1, . . . , xn : t) = Var(t) \ {x1, . . . , xn}

• Var(t(u1, . . . , un)) = Var(t) ∪ Var(u1) ∪ . . . ∪ Var(un)

Terms are always assumed to be in η-long form, i.e. they are assumed to
be in normal form with respect to the rule:

(η) t → λx1, . . . , xn.t(x1, . . . , xn) if τ(t) = τ1, . . . τn → τ
and xi ∈ Xτi

\ Var(t) for all i

We define the α-equivalence =α on Λ as the least congruence relation such
that: λx1, . . . , xn : t =α λx′

1 . . . , x′
n : t′ when

TATA — October 28, 2004 —

3.4 Examples of Applications 103

• t′ is the term obtained from t by substituting for every index i, every free
occurrence of xi with x′

i.

• There is no subterm of t in which, for some index i, both xi and x′
i occur

free.

In the following, we consider only lambda terms modulo α-equivalence. Then
we may assume that, in any term, any variable is bounded at most once and
free variables do not have bounded occurrences.

The β-reduction is defined on Λ as the least binary relation −→
β

such that

• λx1, . . . , xn : t(t1, . . . , tn) −→
β

t{x1←t1, . . . , xn←tn}

• for every context C, C[t] −→
β

C[u] whenever t −→
β

u

It is well-known that βη-reduction is terminating and confluent on Λ and,
for every term t ∈ Λ, we let t ↓ be the unique normal form of t.

A matching problem is an equation s = t where s, t ∈ Λ and Var(t) = ∅.
A solution of a matching problem is a substitution σ of the free variables of t
such that sσ ↓= t ↓.

Whether or not the matching problem is decidable is an open question at the
time we write this book. However, it can be decided when every free variable
occurring in s is of order less or equal to 4. We sketch here how tree automata
may help in this matter. We will consider only two special cases here, leaving the
general case as well as details of the proofs as exercises (see also bibliographic
notes).

First consider a problem

(1) x(s1, . . . , sn) = t

where x is a third order variable and s1, . . . , sn, t are terms without free variables.

The first result states that the set of solutions is recognizable by a 2-
automaton. 2-automata are a slight extension of finite tree automata: we
assume here that the alphabet contains a special symbol 2. Then a term u is
accepted by a 2-automaton A if and only if there is a term v which is accepted
(in the usual sense) by A and such that u is obtained from v by replacing each
occurrence of the symbol 2 with a term (of appropriate type). Note that two
distinct occurrences of 2 need not to be replaced with the same term.

We consider the automaton As1,...,sn,t defined by: F consists of all symbols
occurring in t plus the variable symbols x1, . . . , xn whose types are respectively
the types of s1, . . . , sn and the constant 2.

The set of states Q consists of all subterms of t, which we write qu (instead
of u) and a state q2. In addition, we have the final state qf .

The transition rules ∆ consist in

• The rules

f(qt1 , . . . , qtn
) → qf(t1,...,tn)

each time qf(t1,...,tn) ∈ Q

TATA — October 28, 2004 —

104 Logic, Automata and Relations

• For i = 1, . . . , n, the rules

xi(qt1 , . . . , qtn
) → qu

where u is a subterm of t such that si(t1, . . . , tn) ↓= u and tj = 2 whenever
si(t1, . . . , tj−1,2, tj+1, . . . , tn) ↓= u.

• the rule λx1, . . . , λxn.qt → qf

Theorem 31. The set of solutions of (1) (up to α-conversion) is accepted by
the 2-automaton As1,...,sn,t.

More about this result, its proof and its extension to fourth order will be
given in the exercises (see also bibliographic notes). Let us simply give an
example.

Example 36. Let us consider the interpolation equation

x(λy1λy2.y1, λy3.f(y3, y3)) = f(a, a)

where y1, y2 are assumed to be of base type o. Then F = {a, f, x1, x2,2o}.
Q = {qa, qf(a,a), q2o

, qf} and the rules of the automaton are:

a → qa f(qa, qa) → qf(a,a)

2o → q2o
x1(qa, q2o

) → qa

x1(qf(a,a), q2o
) → qf(a,a) x2(qa) → qf(a,a)

λx1λx2.qf(a,a) → qf

For instance the term λx1λx2.x1(x2(x1(x1(a,2o),2o)),2o) is accepted by
the automaton :

λx1λx2.x1(x2(x1(x1(a,2o),2o)),2o)
∗
−→
A

λx1λx2.x1(x2(x1(x1(qa, q2o
), q2o

)), q2o
)

−→
A

λx1λx2.x1(x2(x1(qa, q2o
)), q2o

)

−→
A

λx1λx2.x1(x2(qa), q2o
)

−→
A

λx1λx2.x1(qf(a,a), q2o
)

−→
A

λx1λx2.qf(a,a)

−→
A

qf

And indeed, for every terms t1, t2, t3, λx1λx2.x1(x2(x1(x1(a, t1), t2)), t3) is a
solution of the interpolation problem.

3.5 Exercises

Exercise 31. Let F be the alphabet consisting of finitely many unary function
symbols a1, . . . , an and a constant 0.

1. Show that the set S of pairs (of words) {(an
1 (a1(a2(a

p
2(0)))), an

1 (ap
2(0))) | n, p ∈

N} is in Rec. Show that S∗ is not in Rec, hence that Rec is not closed under
transitive closure.

TATA — October 28, 2004 —

3.5 Exercises 105

2. More generally, show that, for any finite rewrite system R (on the alphabet F
!), the reduction relation −→

R
is in Rec.

3. Is there any hope to design a class of tree languages which contains Rec, which is
closed by all Boolean operations and by transitive closure and for which empti-
ness is decidable ? Why ?

Exercise 32. Show that the set of pairs {(t, f(t, t′)) | t, t′ ∈ T (F)} is not in Rec.

Exercise 33. Show that if a binary relation is recognized by a GTT, then its inverse

is also recognized by a GTT.

Exercise 34. Give an example of two relations that are recognized by GTTs and
whose union is not recognized by any GTT.

Similarly, show that the class of relations recognized by a GTT is not closed by
complement. Is the class closed by intersection ?

Exercise 35. Give an example of a n-ary relation such that its ith projection followed

by its ith cylindrification does not give back the original relation. On the contrary,

show that ith cylindrification followed by ith projection gives back the original relation.

Exercise 36. About Rec and bounded delay relations. We assume that F only
contains unary function symbols and a constant, i.e. we consider words rather than
trees and we write u = a1 . . . an instead of u = a1(. . . (an(0)) . . .). Similarly, u · v
corresponds to the usual concatenation of words.

A binary relation R on T (F) is called a bounded delay relation if and only if

∃k/∀(u, v) ∈ R, |u| − |v| ≤ k

R preserves the length if and only if

∀(u, v) ∈ R, |u| = |v|

If A, B are two binary relations, we write A · B (or simply AB) the relation

A · B
def
= {(u, v)/∃(u1, v1) ∈ A, (u2, v2) ∈ Bu = u1.u2, v = v1.v2}

Similarly, we write (in this exercise !)

A∗ = {(u, v)/∃(u1, v1) ∈ A, . . . , (un, vn) ∈ A, u = u1 . . . un, v = v1 . . . vn}

1. Given A, B ∈ Rec, is A · B necessary in Rec ? is A∗ necessary in Rec ? Why ?

2. Show that if A ∈ Rec preserves the length, then A∗ ∈ Rec.

3. Show that if A, B ∈ Rec and A is of bounded delay, then A · B ∈ Rec.

4. The family of rational relations is the smallest set of subsets of T (F)2 which con-
tains the finite subsets of T (F)2 and which is closed under union, concatenation
(·) and ∗.

Show that, if A is a bounded delay rational relation, then A ∈ Rec. Is the
converse true ?

Exercise 37. Let R0 be the rewrite system {x×0 → 0; 0×x → 0} and F = {0, 1, s,×}

1. Construct explicitly the GTT accepting
∗

−−→
R0

.

2. Let R1 = R0 ∪ {x × 1 → x}. Show that
∗

−−→
R1

is is not recognized by a GTT.

TATA — October 28, 2004 —

106 Logic, Automata and Relations

3. Let R2 = R1 ∪ {1 × x → x × 1}. Using a construction similar to the transitive

closure of GTTs, show that the set {t ∈ T (F) | ∃u ∈ T (F), t
∗

−−→
R2

u, u ∈ NF}

where NF is the set of terms in normal form for R2 is recognized by a finite
tree automaton.

Exercise 38. (*) More generally, prove that given any rewrite system {li → ri | 1 ≤
i ≤ n} such that

1. for all i, li and ri are linear

2. for all i, if x ∈ Var(li) ∩ Var(ri), then x occurs at depth at most one in li.

the set {t ∈ T (F) | ∃u ∈ NF, t
∗
−→
R

u} is recognized by finite tree automaton.

What are the consequences of this result ?

(See [Jac96] for details about this results and its applications. Also compare with

Exercise 16, question 4.)

Exercise 39. Show that the set of pairs {(f(t, t′), t) | t, t′ ∈ T (F)} is not definable

in WSkS. (See also Exercise 32)

Exercise 40. Show that the set of pairs of words {(w, w′) | l(w) = l(w′)}, where l(x)

is the length of x, is not definable in WSkS.

Exercise 41. Let F = {a1, . . . , an, 0} where each ai is unary and 0 is a constant.
Consider the following constraint system: terms are built on F , the binary symbols
∩,∪, the unary symbol ¬ and set variables. Formulas are conjunctions of inclusion
constraints t ⊆ t′. The formulas are interpreted by assigning to variables finite subsets
of T (F), with the expected meaning for other symbols.

Show that the set of solutions of such constraints is in Rec2. What can we conclude
?

(*) What happens if we remove the condition on the ai’s to be unary?

Exercise 42. Complete the proof of Proposition 13.

Exercise 43. Show that the subterm relation is not definable in WSkS.
Given a term t Write a WSkS formula φt such that a term u |= φt if and only if t

is a subterm of u.

Exercise 44. Define in SkS “X is finite”. (Hint: express that every totally ordered
subset of X has an upper bound and use König’s lemma)

Exercise 45. A tuple (t1, . . . , tn) ∈ T (F)n can be represented in several ways as
a finite sequence of finite sets. The first one is the encoding given in Section 3.3.6,
overlapping the terms and considering one set for each tuple of symbols. A second one
consists in having a tuple of sets for each component: one for each function symbol.

Compare the number of free variables which result from both codings when defining

an n-ary relation on terms in WSkS. Compare also the definitions of the diagonal ∆

using both encodings. How is it possible to translate an encoding into the other one

?

Exercise 46. (*) Let R be a finite rewrite system whose all left and right members
are ground.

1. Let Termination(x) be the predicate on T (F) which holds true on t when there
is no infinite sequence of reductions starting from t. Show that adding this
predicate as an atomic formula in the first-order theory of rewriting, this theory
remains decidable for ground rewrite systems.

2. Generalize these results to the case where the left members of R are linear and
the right members are ground.

TATA — October 28, 2004 —

3.5 Exercises 107

Exercise 47. The complexity of automata recognizing the set of irreducible ground
terms.

1. For each n ∈ N, give a linear rewrite system Rn whose size is O(n) and such
that the minimal automaton accepting the set of irreducible ground terms has
a size O(2n).

2. Assume that for any two strict subterms s, t of left hand side(s) of R, if s and t
are unifiable, then s is an instance of t or t is an instance of s. Show that there
is a NFTA A whose size is linear in R and which accepts the set of irreducible
ground terms.

Exercise 48. Prove Theorem 29.

Exercise 49. The Propositional Linear-time Temporal Logic. The logic PTL
is defined as follows:

Syntax P is a finite set of propositional variables. Each symbol of P is a formula (an
atomic formula). If φ and ψ are formulas, then the following are formulas:

φ ∧ ψ, φ ∨ ψ, φ → ψ, ¬φ, φUψ, Nφ, Lφ

Semantics Let P ∗ be the set of words over the alphabet P . A word w ∈ P ∗ is
identified with the sequence of letters w(0)w(1) . . . w(|w| − 1). w(i..j) is the
word w(i) . . . w(j). The satisfaction relation is defined by:

• if p ∈ P , w |= p if and only if w(0) = p

• The interpretation of logical connectives is the usual one

• w |= Nφ if and only if |w| ≥ 2 and w(1..|w| − 1) |= φ

• w |= Lφ if and only if |w| = 1

• w |= φUψ if and only if there is an index i ∈ [0..|w|] such that for all
j ∈ [0..i], w(j..|w| − 1) |= φ and w(i..|w| − 1) |= ψ.

Let us recall that the language defined by a formula φ is the set of words w such
that w |= φ.

1. What it is the language defined by N(p1Up2) (with p1, p2 ∈ P) ?

2. Give PTL formulas defining respectively P ∗p1P
∗, p∗

1, (p1p2)
∗.

3. Give a first-order WS1S formula (i.e. without second-order quantification and
containing only one free second-order variable) which defines the same language
as N(p1Up2)

4. For any PTL formula, give a first-order WS1S formula which defines the same
language.

5. Conversely, show that any language defined by a first-order WS1S formula is
definable by a PTL formula.

Exercise 50. About 3rd-order interpolation problems

1. Prove Theorem 31.

2. Show that the size of the automaton As1,...,sn,t is O(n × |t|)

3. Deduce from Exercise 19 that the existence of a solution to a system of interpo-
lation equations of the form x(s1, . . . , sn) = t (where x is a third order variable
in each equation) is in NP.

Exercise 51. About general third order matching.

TATA — October 28, 2004 —

108 Logic, Automata and Relations

1. How is it possible to modify the construction of As1,...,sn,t so as to forbid some
symbols of t to occur in the solutions ?

2. Consider a third order matching problem u = t where t is in normal form and
does not contain any free variable. Let x1, . . . , xn be the free variables of u and
xi(s1, . . . , sm) be the subterm of u at position p. Show that, for every solution
σ, either u[2]pσ ↓=α t or else that xiσ(s1σ, . . . , smσ) ↓ is in the set Sp defined
as follows: v ∈ Sp if and only if there is a subterm t′ of t and there are positions
p1, . . . , pk of t′ and variables z1, . . . , zk which are bound above p in u such that
v = t′[z1, . . . , zk]p1,...,pk

.

3. By guessing the results of xiσ(s1σ, . . . , smσ) and using the previous exercise,
show that general third order matching is in NP.

3.6 Bibliographic Notes

The following bibliographic notes only concern the applications of the usual
finite tree automata on finite trees (as defined at this stage of the book). We
are pretty sure that there are many missing references and we are pleased to
receive more pointers to the litterature.

3.6.1 GTT

GTT were introduced in [DTHL87] where they were used for the decidability of
confluence of ground rewrite systems.

3.6.2 Automata and Logic

The development of automata in relation with logic and verification (in the
sixties) is reported in [Tra95]. This research program was explained by A.
Church himself in 1962 [Chu62].

Milestones of the decidability of monadic second-order logic are the papers
[Büc60] [Rab69]. Theorem 25 is proved in [TW68].

3.6.3 Surveys

There are numerous surveys on automata and logic. Let us mention some of
them: M.O. Rabin [Rab77] surveys the decidable theories; W. Thomas [Tho90,
Tho97] provides an excellent survey of relationships between automata and logic.

3.6.4 Applications of tree automata to constraint solving

Concerning applications of tree automata, the reader is also referred to [Dau94]
which reviews a number of applications of Tree automata to rewriting and con-
straints.

The relation between sorts and tree automata is pointed out in [Com89]. The
decidability of arbitrary first-order sort constraints (and actually the first order
theory of finite trees with equality and sort constraints) is proved in [CD94].

More general sort constraints involving some second-order terms are studied
in [Com98b] with applications to a sort constrained equational logic [Com98a].

TATA — October 28, 2004 —

3.6 Bibliographic Notes 109

Sort constraints are also applied to specifications and automated inductive
proofs in [BJ97] where tree automata are used to represent some normal forms
sets. They are used in logic programming and automated reasoning [FSVY91,
GMW97], in order to get more efficient procedures for fragments which fall
into the scope of tree automata techniques. They are also used in automated
deduction in order to increase the expressivity of (counter-)model constructions
[Pel97].

Concerning encompassment, M. Dauchet et al gave a more general result
(dropping the linearity requirement) in [DCC95]. We will come back to this
result in the next chapter.

3.6.5 Application of tree automata to semantic unification

Rigid unification was originally considered by J. Gallier et al. [GRS87] who
showed that this is a key notion in extending the matings method to a logic
with equality. Several authors worked on this problem and it is out of the scope
of this book to give a list of references. Let us simply mention that the result
of Section 3.4.5 can be found in [Vea97b]. Further results on application of tree
automata to rigid unification can be found in [DGN+98], [GJV98].

Tree automata are also used in solving classical semantic unification prob-
lems. See e.g. [LM93] [KFK97] [Uri92]. For instance, in [KFK97], the idea is
to capture some loops in the narrowing procedure using tree automata.

3.6.6 Application of tree automata to decision problems
in term rewriting

Some of the applications of tree automata to term rewriting follow from the
results on encompassment theory. Early works in this area are also mentioned
in the bibliographic notes of Chapter 1. The reader is also referred to the survey
[GT95].

The first-order theory of the binary (many-steps) reduction relation w.r.t.
a ground rewrite system has been shown decidable by. M. Dauchet and S.
Tison [DT90]. Extensions of the theory, including some function symbols, or
other predicate symbols like the parallel rewriting or the termination predicate
(Terminate(t) holds if there is no infinite reduction sequence starting from t),
or fair termination etc... remain decidable [DT90]. **Mauvaise citation !? See
also the exercises.

Both the theory of one step and the theory of many steps rewriting are
undecidable for arbitrary R [Tre96].

Reduction strategies for term rewriting have been first studied by Huet and
Lévy in 1978 [HL91]. They show here the decidability of strong sequential-
ity for orthogonal rewrite systems. This is based on an approximation of the
rewrite system which, roughly, only considers the left sides of the rules. Bet-
ter approximation, yielding refined criteria were further proposed in [Oya93],
[Com95], [Jac96]. The orthogonality requirement has also been replaced with
the weaker condition of left linearity. The first relation between tree automata,
WSkS and reduction strategies is pointed out in [Com95]. Further studies of
call-by-need strategies, which are still based on tree automata, but do not use
a detour through monadic second-order logic can be found in [DM97]. For all
these works, a key property is the preservation of regularity by (many-steps)

TATA — October 28, 2004 —

110 Logic, Automata and Relations

rewriting, which was shown for ground systems in [Bra69], for linear systems
which do not share variables in [DT90], for shallow systems in [Com95], for right
linear monadic rewrite systems [Sal88], for linear semi-monadic rewrite systems
[CG90], also called (with slight differences) growing systems in [Jac96]. Grow-
ing systems are the currently most general class for which the preservation of
recognizability is known.

As already pointed out, the decidability of the encompassment theory implies
the decidability of ground reducibility. There are several papers written along
these lines which will be explained in the next chapter.

Finally, approximations of the reachable terms are computed in [Gen97]
using tree automata techniques, which implies the decision of some safety prop-
erties.

3.6.7 Other applications

The relationship between finite tree automata and higher-order matching is
studied in [CJ97b].

Finite tree automata are also used in logic programming [FSVY91], type
reconstruction [Tiu92] and automated deduction [GMW97].

For further applications of tree automata in the direction of program verifi-
cation, see e.g. chapter 5 of this book or e.g. [Jon87].

TATA — October 28, 2004 —

Chapter 4

Automata with Constraints

4.1 Introduction

A typical example of a language which is not recognized by a finite tree au-
tomaton is the set of terms {f(t, t) | t ∈ T (F)}. The reason is that the two
sons of the root are recognized independently and only a fixed finite amount of
information can be carried up to the root position, whereas t may be arbitrar-
ily large. Therefore, as seen in the application section of the previous chapter,
this imposes some linearity conditions, typically when automata techniques are
applied to rewrite systems or to sort constraints. The shift from linear to non
linear situations can also be seen as a generalization from tree automata to DAG
(directed acyclic graphs) automata. This is the purpose of the present chapter:
how is it possible to extend the definitions of tree automata in order to carry
over the applications of the previous chapter to (some) non-linear situations ?

Such an extension has been studied in the early 80’s by M. Dauchet and J.
Mongy. They define a class of automata which (when working in a top-down
fashion) allow duplications. Considering bottom-up automata, this amounts to
check equalities between subtrees. This yields the RATEG class . This class
is not closed under complement. If we consider its closure, we get the class
of automata with equality and disequality constraints. This class is studied in
Section 4.2.

Unfortunately, the emptiness problem is undecidable for the class RATEG
(and hence for automata with equality and disequality constraints).
Several decidable subclasses have been studied in the literature. The most
remarkable ones are

• The class of automata with constraints between brothers which, roughly,
allows equality (or disequality) tests only between positions with the same
ancestors. For instance, the set of terms f(t, t) is recognized by such
an automaton. This class is interesting because all properties of tree
automata carry over this extension and hence most of the applications of
tree automata can be extended, replacing linearity conditions with such
restrictions on non-linearities.

We study this class in Section 4.3.

• The class of reduction automata which, roughly, allows arbitrary disequal-

TATA — October 28, 2004 —

112 Automata with Constraints

ity constraints but only a fixed finite amount of equality constraints on
each run of the automaton. For instance the set of terms f(t, t) also be-
longs to this class. Though closure properties have to be handled with
care (with the definition sketched above, the class is not closed by com-
plement), reduction automata are interesting because for example the set
of irreducible terms (w.r.t. an arbitrary, possibly non-linear rewrite sys-
tem) is recognized by an reduction automaton. Then the decidability of
ground reducibility is a direct consequence of emptiness decidability for
reduction automata. There is also a logical counterpart: the reducibility
theory which is presented in the linear case in the previous chapter and
which can be shown decidable in the general case using a similar technique.

Reduction automata are studied in Section 4.4.

We also consider in this chapter automata with arithmetic constraints. They
naturally appear when some function symbols are assumed to be associative and
commutative (AC). In such a situation, the sons of an AC symbol can be per-
muted and the relevant information is then the number of occurrences of the
same subtree in the multisets of sons. These integer variables (number of occur-
rences) are subject to arithmetic constraints which must belong to a decidable
fragment of arithmetic in order to keep closure and decidability properties.

4.2 Automata with Equality and Disequality Con-
straints

4.2.1 The Most General Class

An equality constraint (resp. a disequality constraint) is a predicate on
T (F) written π = π′ (resp. π 6= π′) where π, π′ ∈ {1, . . . , k}∗. Such a predicate
is satisfied on a term t, which we write t |= π = π′, if π, π′ ∈ Pos(t) and t|π = t|π′

(resp. π 6= π′ is satisfied on t if π = π′ is not satisfied on t).
The satisfaction relation |= is extended as usual to any Boolean combination

of equality and disequality constraints. The empty conjunction and disjunction
are respectively written ⊥ (false) and > (true).

An automaton with equality and disequality constraints is a tuple
(Q,F , Qf ,∆) where F is a finite ranked alphabet, Q is a finite set of states, Qf

is a subset of Q of finite states and ∆ is a set of transition rules of of the form

f(q1, . . . , qn)
c
−→ q

where f ∈ F , q1, . . . , qn, q ∈ Q, and c is a Boolean combination of equality
(and disequality) constraints. The state q is called target state in the above
transition rule.

We write for short AWEDC the class of automata with equality and dise-
quality constraints.

Let A = (Q,F , Qf ,∆) ∈ AWEDC. The move relation →A is defined by as
for NFTA modulo the satisfaction of equality and disequality constraints: let
t, t′ ∈ F (F ∪ Q,X), then t→A t′ if and only

there is a context C ∈ C(F ∪ Q) and some terms u1, . . . , un ∈ T (F)

TATA — October 28, 2004 —

4.2 Automata with Equality and Disequality Constraints 113

there exists f(q1, . . . , qn)
c
−→ q ∈ ∆

t = C[f(q1(u1), . . . , qn(un)] and t′ = C[q(f(u1, . . . , un))]

C[f(u1, . . . , un)] |= c

∗
→A is the reflexive and transitive closure of →A. As in Chapter 1, we usually
write t

∗
→A q instead of t

∗
→A q(t).

An automaton A ∈ AWEDC accepts (or recognizes) a ground term

t ∈ T (F) if t
∗

→A q for some state q ∈ Qf . More generally, we also say that

A accepts t in state q iff t
∗

→A q (acceptance by A is the particular case of
acceptance by A in a final state).

A run) is a mapping ρ from Pos(t) into ∆ such that:

• ρ(Λ) ∈ Qf

• if t(p) = f and the target state of ρ(p) is q, then there is a transition rule

f(q1, . . . , qn)
c
−→ q in ∆ such that for all 1 ≤ i ≤ n, the target state of

ρ(pi) is qi and t|p |= c.

Note that we do not have here exactly the same definition of a run as in
Chapter 1: instead of the state, we keep also the rule which yielded this state.
This will be useful in the design of an emptiness decision algorithm for non-
deterministic automata with equality and disequality constraints.

The language accepted (or recognized) by an automaton A ∈ AWEDC
is the set L(A) of terms t ∈ T (F) that are accepted by A.

Example 37. Balanced complete binary trees over the alphabet f (binary)
and a (constant) are recognized by the AWEDC ({q}, {f, a}, {q},∆) where ∆
consists of the following rules:

r1 : a → q

r2 : f(q, q)
1=2
−−→ q

For example, t = f(f(a, a), f(a, a)) is accepted. The mapping which associates
r1 to every position p of t such that t(p) = a and which associates r2 to every
position p of t such that t(p) = f is indeed a successful run: for every position
p of t such that t(p) = f , t|p·1 = tp·2, hence t|p |= 1 = 2.

Example 38. Consider the following AWEDC: (Q,F , Qf ,∆) with F =
{0, s, f} where 0 is a constant, s is unary and f has arity 4, Q = {qn, q0, qf},
Qf = {qf}, and ∆ consists of the following rules:

0 → q0 s(q0) → qn

s(qn) → qn f(q0, q0, qn, qn)
3=4
−−→ qf

f(q0, q0, q0, q0) → qf f(q0, qn, q0, qn)
2=4
−−→ qf

f(qf , qn, qn, qn)
14=4∧21=12∧131=3
−−−−−−−−−−−−−→ qf

TATA — October 28, 2004 —

114 Automata with Constraints

s

s

s

f

f

f s

s

s

s

s

s

s

s

s

ss

s
ss

s
0 0

0

0

0

0 0

0

0

0

Figure 4.1: A computation of the sum of two natural numbers

This automaton computes the sum of two natural numbers written in base
one in the following sense: if t is accepted by A then1 t = f(t1, s

n(0), sm(0), sn+m(0))
for some t1 and n,m ≥ 0. Conversely, for each n,m ≥ 0, there is a term
f(t1, s

n(0), sm(0), sn+m(0)) which is accepted by the automaton.
For instance the term depicted on Figure 4.1 is accepted by the automaton.

Similarly, it is possible to design an automaton of the class AWEDC which
“computes the multiplication” (see exercises)

In order to evaluate the complexity of operations on automata of the class
AWEDC, we need to precise a representation of the automata and estimate the
space which is necessary for this representation.

The size of is a Boolean combination of equality and disequality constraints
is defined by induction:

• ‖π = π′‖
def
= ‖π 6= π′‖

def
= |π| + |π′| (|π| is the length of π)

• ‖c ∧ c′‖
def
= ‖c ∨ c′‖

def
= ‖c‖ + ‖c′‖ + 1

• ‖¬c‖
def
= ‖c‖

Now, deciding whether t |= c depends on the representation of t. If t is
represented as a directed acyclic graph (a DAG) with maximal sharing, then this
can be decided in O(‖c‖) on a RAM. Otherwise, it requires to compute first this
representation of t, and hence can be computed in time at most O(‖t‖ log ‖t‖+
‖c‖).

1sn(0) denotes s(. . . s
| {z }

n

(0)

TATA — October 28, 2004 —

4.2 Automata with Equality and Disequality Constraints 115

¿From now on, we assume, for complexity analysis, that the terms are rep-
resented with maximal sharing in such a way that checking an equality or a
disequality constraint on t can be completed in a time which is independent of
‖t‖.

The size of an automaton A ∈ AWEDC is

‖A‖
def
= |Q| +

∑

f(q1,...,qn)
c−→ q∈∆

n + 2 + ‖c‖

An automaton A in AWEDC is deterministic if for every t ∈ T (F), there

is at most one state q such that t
∗
−→
A

q. It is complete if for every t ∈ T (F)

there is at least one state q such that t
∗
−→
A

q.

When every constraint is a tautology, then our definition of automata re-
duces to the definition of Chapter 1. However, in such a case, the notions of
determinacy do not fully coincide, as noticed in Chapter 1, page 21.

Proposition 18. Given t ∈ T (F) and A ∈AWEDC, deciding whether t is ac-
cepted by A can be completed in polynomial time (linear time for a deterministic
automaton).

Proof. Because of the DAG representation of t, the satisfaction of a constraint
π = π′ on t can be completed in time O(|π| + |π′|). Thus, if A is determinis-
tic, the membership test can be performed in time O(‖t‖ + ‖A‖ + MC) where
MC = max(‖c‖

∣∣ c is a constraint of a rule of A). If A is nondeterministic, the
complexity of the algorithm will be O(‖t‖ × ‖A‖ × MC).

4.2.2 Reducing Non-determinism and Closure Properties

Proposition 19. For every automaton A ∈ AWEDC, there is a complete au-
tomaton A′ which accepts the same language as A. The size ‖A′‖ is polynomial
in ‖A‖ and the computation of A′ can be performed in polynomial time (for a
fixed alphabet). If A is deterministic, then A′ is deterministic.

Proof. The proof is the same as for Theorem 2: we add a trash state and
every transition is possible to the trash state. However, this does not keep the
determinism of the automaton. We need the following more careful computation
in order to preserve the determinism.

We also add a single trash state q⊥. The additional transitions are computed
as follows: for each function symbol f ∈ F and each tuple of states (including the

trash state) q1, . . . , qn, if there is no transition f(q1, . . . , qn)
c
−→ q ∈ ∆, then we

simply add the rule f(q1, . . . , qn) → q⊥ to ∆. Otherwise, let f(q1, . . . , qn)
ci−→ si

(i = 1, ..m) be all rules in ∆ whose left member is f(q1, . . . , qn). We add the

rule f(q1, . . . , qn)
c′
−→ q⊥ to ∆, where c′

def
= ¬

m∨

i=1

ci.

Proposition 20. For every automaton A ∈ AWEDC, there is a deterministic
automaton A′ which accepts the same language as A. A′ can be computed in
exponential time and its size is exponential in the size of A. Moreover, if A is
complete, then A′ is complete.

TATA — October 28, 2004 —

116 Automata with Constraints

Proof. The construction is the same as in Theorem 4: states of A′ are sets of
states of A. Final states of A′ are those which contain at least one final state
of A. The construction time complexity as well as the size A′ are also of the
same magnitude as in Theorem 4. The only difference is the computation of the
constraint: if S1, . . . , Sn, S are sets of states, in the deterministic automaton,
the rule f(S1, . . . , Sn)

c
−→ S is labeled by a constraint c defined by:

c =
(∧

q∈S

∨

f(q1,...,qn)
cr−→ q∈∆

qi∈Sii≤n

cr

)
∧

(∧

q/∈S

∧

f(q1,...,qn)
cr−→ q∈∆

qi∈Sii≤n

¬cr

)

Let us prove that t is accepted by A in states q1, . . . , qk (and no other states) if
and only if there t is accepted by A′ in the state {q1, . . . , qk}:

⇒ Assume that t
n
−→
A

qi (i.e. t
∗
−→
A

qi in n steps), for i = 1, . . . , k. We prove,

by induction on n, that

t
n

−−→
A′

{q1, . . . , qk}.

If n = 1, then t is a constant and t → S is a rule of A′ where S =
{q | a −→

A
q}.

Assume now that n > 1. Let, for each i = 1, . . . , k,

t = f(t1, . . . , tp)
m
−→
A

f(qi
1, . . . , q

i
p) −→

A
qi

and f(qi
1, . . . , q

i
p)

ci−→ qi be a rule of A such that t |= ci. By induction

hypothesis, each term tj is accepted by A′ in the states of a set Sj ⊇

{q1
j , . . . , qk

j }. Moreover, by definition of S = {q1, . . . , qk}, if t
∗
−→
A

q′ then

q′ ∈ S. Therefore, for every transition rule of A f(q′1, . . . , q
′
p)

c′
−→ q′ such

that q′ /∈ S and qj ∈ Sj for every j ≤ p, we have t 6|= c′. Then t satisfies
the above defined constraint c.

⇐ Assume that t
n

−−→
A′

S. We prove by induction on n that, for every q ∈ S,

t
n
−→
A

q.

If n = 1, then S is the set of states q such that t −→
A

q, hence the property.

Assume now that

t = f(t1, . . . , tp)
n

−−→
A′

f(S1, . . . , Sp) −−→
A′

S.

Let f(S1, . . . , Sp)
c
−→ S be the last rule used in this reduction. Then

t |= c and, by definition of c, for every state q ∈ S, there is a rule

f(q1, . . . , qn)
cr−→ q ∈ ∆ such that qi ∈ Si for every i ≤ n and t |= cr. By

induction hypothesis, for each i, ti
mi−−→
A′

Si implies ti
mi−−→
A

qi (mi < n)

and hence t
n
−→
A

f(q1, . . . , qp) −→
A

q.

TATA — October 28, 2004 —

4.2 Automata with Equality and Disequality Constraints 117

Thus, by construction of the final states set, a ground term t is accepted by A′

iff t is accepted by A.
Now, we have to prove that A′ is deterministic indeed. Assume that t

∗
−→
A

′S

and t
∗

−−→
A′

S′. Assume moreover that S 6= S′ and that t is the smallest term (in

size) with the property of being recognized in two different states. Then there ex-

ists S1, . . . , Sn such that t
∗

−−→
A′

f(S1, . . . , Sn) and such that f(S1, . . . , Sn)
c
−→ S

and f(S1, . . . , Sn)
c′
−→ S′ are transition rules of A′, wit t |= c and t |= c′.

By symmetry, we may assume that there is a state q ∈ S such that q /∈ S′.
Then, by definition, there are some states qi ∈ Si, for every i ≤ n, and a rule
f(q1, . . . , qn)

cr−→ q of A where cr occurs positively in c, and is therefore satisfied

by t, t |= cr. By construction of the constraint of A′, cr must occur negatively in
the second part of (the conjunction) c′. Therefore, t |= c′ contradicts t |= cr.

Example 39. Consider the following automaton on the alphabet F = {a, f}
where a is a constant and f is a binary symbol: Q = {q, q⊥}, Qf = {q} and ∆
contains the following rules:

a → q f(q, q)
1=2
−−→ q f(q, q) → q⊥

f(q⊥, q) → q⊥ f(q, q⊥) → q⊥ f(q⊥, q⊥) → q⊥

This is the (non-deterministic) complete version of the automaton of Exam-
ple 37.

Then the deterministic automaton computed as in the previous proposition
is given by:

a → {q} f({q}, {q})
1=2∧⊥
−−−−−→ {q}

f({q}, {q})
1=2
−−→ {q, q⊥} f({q}, {q})

16=2
−−→ {q⊥}

f({q}, {q⊥}) → {q⊥} f({q⊥}, {q}) → {q⊥}

f({q⊥}, {q⊥}) → {q⊥} f({q, q⊥}, {q})
1=2∧⊥
−−−−−→ {q}

f({q, q⊥}, {q})
1=2
−−→ {q, q⊥} f({q, q⊥}, {q⊥}) −→ {q⊥}

f({q, q⊥}, {q, q⊥})
1=2
−−→ {q, q⊥} f({q, q⊥}, {q})

16=2
−−→ {q⊥}

f({q}, {q, q⊥})
1=2
−−→ {q, q⊥} f({q}, {q, q⊥})

16=2
−−→ {q⊥}

f({q, q⊥}, {q})
16=2
−−→ {q⊥} f({q}, {q, q⊥})

1=2∧⊥
−−−−−→ {q}

f({q, q⊥}, {q, q⊥})
1=2∧⊥
−−−−−→ {q} f({q⊥}, {q, q⊥}) −→ {q⊥}

For instance, the constraint 1=2∧⊥ is obtained by the conjunction of the label

of f(q, q)
1=2
−−→ q and the negation of the constraint labelling f(q, q) −→ q⊥,

(which is >).
Some of the constraints, such as 1=2∧⊥ are unsatisfiable, hence the corre-

sponding rules can be removed. If we finally rename the two accepting states
{q} and {q, q⊥} into a single state qf (this is possible since by replacing one
of these states by the other in any left hand side of a transition rule, we get

TATA — October 28, 2004 —

118 Automata with Constraints

another transition rule), then we get a simplified version of the deterministic
automaton:

a → qf f(qf , qf)
1=2
−−→ qf

f(qf , qf)
16=2
−−→ q⊥ f(q⊥, qf) → q⊥

f(qf , q⊥) → q⊥ f(q⊥, q⊥) → q⊥

Proposition 21. The class AWEDC is effectively closed by all Boolean op-
erations. Union requires linear time, intersection requires quadratic time and
complement requires exponential time. The respective sizes of the AWEDC ob-
tained by these construction are of the same magnitude as the time complexity.

Proof. The proof of this proposition can be obtained from the proof of The-
orem 5 (Chapter 1, pages 28–29) with straightforward modifications. The
only difference lies in the product automaton for the intersection: we have to
consider conjunctions of constraints. More precisely, if we have two AWEDC
A1 = (Q1,F , Qf1,∆1) and A1 = (Q2,F , Qf2,∆2), we construct an AWEDC

A = (Q1 × Q2,F , Qf1 × Qf2,∆) such that if f(q1, . . . , qn)
c
−→ q ∈ ∆1 and

f(q′1, . . . , q
′
n)

c′
−→ q′ ∈ ∆2, then f((q1, q

′
1), . . . , (qn, q′n))

c∧c′
−−−→ (q, q′) ∈ ∆. The

AWEDC A recognizes L(A1) ∩ L(A2).

4.2.3 Undecidability of Emptiness

Theorem 32. The emptiness problem for AWEDC is undecidable.

Proof. We reduce the Post Correspondence Problem (PCP). If w1, . . . , wn and
w′

1, . . . , w
′
n are the word sequences of the PCP problem over the alphabet {a, b},

we let F contain h (ternary), a, b (unary) and 0 (constant). Lets recall that the
answer for the above instance of the PCP is a sequence i1, . . . , ip (which may
contain some repetitions) such that wi1 . . . wip

= w′
i1

. . . w′
ip

.

If w ∈ {a, b}∗, w = a1 . . . ak and t ∈ T (F), we write w(t) the term a1(. . . (ak(t)) . . .) ∈
T (F).

Now, we construct A = (Q,F , Qf ,∆) ∈ AWEDC as follows:

• Q contains a state qv for each prefix v of one of the words wi, w
′
i (including

qwi
and qw′

i
as well as 3 extra states: q0, q and qf . We assume that a and

b are both prefix of at least one of the words wi, w
′
i. Qf = {qf}.

• ∆ contains the following rules:

a(q0) → qa b(q0) → qb

a(qv) → qa·v if qv, qa·v ∈ Q
b(qv) → qb·v if qv, qb·v ∈ Q

a(qwi
) → qa b(qwi

) → qb

a(qw′
i
) → qa b(qw′

i
) → qb

TATA — October 28, 2004 —

4.3 Automata with Constraints Between Brothers 119

∆ also contains the rules:

0 → q0

h(q0, q0, q0) → q

h(qwi
, q, qw′

i
)

1·1|wi|=2·1∧3·1|w′
i
|=2·3

−−−−−−−−−−−−−−−→ q

h(qwi
, q, qw′

i
)

1·1|wi|=2·1∧3·1|w′
i
|∧1=3

−−−−−−−−−−−−−−−−→ qf

The rule with left member h(q0, q0, q0) recognizes the beginning of a Post
sequence. The rules with left members h(qwi

, q.qw′
i
) ensure that we are really in

presence of a successor in the PCP sequences: the constraint expresses that the
subterm at position 1 is obtained by concatenating some wi with the term at
position 2 · 1 and that the subterm at position 3 is obtained by concatenating
w′

i (with the same index i) with the subterm at position 2 · 3. Finally, entering
the final state is subject to the additional constraint 1 = 3. This last constraint
expresses that we went thru two identical words with the wi sequences and the
w′

i sequences respectively. (See Figure 4.2).

The details that this automaton indeed accepts the solutions of the PCP are
left to the reader.

Then the language accepted by A is empty if and only if the PCP has a
solution. Since PCP is undecidable, emptiness of A is also undecidable.

4.3 Automata with Constraints Between Broth-
ers

The undecidability result of the previous section led to look for subclasses which
have the desired closure properties, contain (properly) the classical tree au-
tomata and still keep the decidability of emptiness. This is the purpose of the
class AWCBB:

An automaton A ∈ AWEDC is an automaton with constraints be-

tween brothers if every equality (resp disequality) constraint has the form
i = j (resp. i 6= j) where i, j ∈ N+.

AWCBB is the set automata with constraints between brothers.

Example 40. The set of terms {f(t, t) | t ∈ T (F)} is accepted by an automaton
of the class AWCBB, because the automaton of Example 37 is in AWCBB
indeed.

4.3.1 Closure Properties

Proposition 22. AWCBB is a stable subclass of AWEDC w.r.t. Boolean op-
erations (union, intersection, complementation).

Proof. It is sufficient to check that the constructions of Proposition 21 preserve
the property of being a member of AWCBB.

TATA — October 28, 2004 —

120 Automata with Constraints

h

hw w

·
·
·

h

h

wi w′
i

v v′

v v′
·
·
·

h

0 00

Figure 4.2: An automaton in AWEDC accepting the solutions of PCP

TATA — October 28, 2004 —

4.3 Automata with Constraints Between Brothers 121

Recall that the time complexity of each such construction is the same in
AWEDC and in the unconstrained case: union and intersection are polynomial,
complementation requires determinization and is exponential.

4.3.2 Emptiness Decision

To decide emptiness we would like to design for instance a “cleaning algorithm”
as in Theorem 11. As in this result, the correctness and completeness of the
marking technique relies on a pumping lemma. Is there an analog of Lemma 1
in the case of automata of the class AWCBB ?

There are additional difficulties. For instance consider the following example.

Example 41. A contains only one state and the rules

a → q f(q, q)
16=2
−−→ q

b → q

Now consider the term f(f(a, b), b) which is accepted by the automaton. f(a, b)
and b yield the same state q. Hence, for a classical finite tree automaton, we
may replace f(a, b) with b and still get a term which is accepted by A. This is
not the case here since, replacing f(a, b) with b we get the term f(b, b) which
is not accepted. The reason of this phenomenon is easy to understand: some
constraint which was satisfied before the pumping is no longer valid after the
pumping.

Hence the problem is to preserve the satisfaction of constraints along term
replacements. First, concerning equality constraints, we may see the terms as
DAGs in which each pair of subterms which is checked for equality is considered
as a single subterm referenced in two different ways. Then replacing one of
its occurrences automatically replaces the other occurrences and preserves the
equality constraints. This is what is formalized below.

Preserving the equality constraints. Let t be a term accepted by the
automaton A in AWCBB. Let ρ be a run of the automaton on t. With ev-
ery position p of t, we associate the conjunction cons(p) of atomic (equal-
ity or disequality) constraints that are checked by ρ(p) and satisfied by t.

More precisely: let ρ(p) = f(q1, . . . , qn)
c′
−→ q; cons(p)

def
= decomp(c′, p) where

decomp(c′, p) is recursively defined by: decomp(>, p)
def
= >, decomp(c1∧c2, p)

def
=

decomp(c1, p)∧decomp(c2, p) and decomp(c1∨ c2, p) = decomp(c1, p) if t|p |= c1,
decomp(c1 ∨ c2, p) = decomp(c2, p) otherwise. We can show by a simple induc-
tion that t|p |= cons(p).

Now, we define the equivalence relation =t on the set of positions of t as the
least equivalence relation such that:

• if i = j ∈ cons(p), then p · i =t p · j

• if p =t p′ and p · π ∈ Pos(t), then p · π =t p′ · π

TATA — October 28, 2004 —

122 Automata with Constraints

Note that in the last case, we have p′ · π ∈ Pos(t). Of course, if p =t p′, then
t|p = t|p′ (but the converse is not necessarily true). Note also (and this is a
property of the class AWCBB) that p =t p′ implies that the lengths of p and p′

are the same, hence, if p 6= p′, they are incomparable w.r.t. the prefix ordering.
We can also derive from this remark that each equivalence class is finite (we
may assume that each equality constraint of the form i = i has been replaced
by >).

Example 42. Consider the automaton whose transition rules are:

r1 : f(q, q) → q r2 : a → q

r3 : f(q, q)
1=2
−−→ qf r4 : b → q

r5 : f(q, qf) → qf r6 : f(qf , q) → qf

r7 : f(q, qf) → q r8 : f(qf , q) → q

Let t = f(b, f(f(f(a, a), f(a, b)), f(f(a, a), f(a, b)))). A possible run of A on t is
r5(r4, r3(r1(r1(r2, r2), r1(r2, r5)), r8(r3(r2, r2), r1(r2, r5)))) Equivalence classes
of positions are:

{Λ}, {1}, {2}, {21, 22}, {211, 221}, {212, 222},
{2111, 2211, 2112, 2212}, {2121, 2221}, {2122, 2222}

Let us recall the principle of pumping, for finite bottom-up tree automata
(see Chapter 1). When a ground term C[C ′[t]] (C and C ′ are two contexts)
is such that t and C ′[t] are accepted in the same state by an NFTA A, then
every term C[C ′n[t]] (n ≥ 0) is accepted by A in the same state as C[C ′[t]]. In
other words, any C[C ′n[t]] ∈ L(A) may be reduced by pumping it up to the
term C[t] ∈ L(A). We consider here a position p (corresponding to the term
C ′[t]) and its equivalence class [[p]] modulo =t. The simultaneous replacement
on [[p]] with t in u, written u[t][[p]], is defined as the term obtained by successively
replacing the subterm at position p′ with t for each position p′ ∈ [[p]]. Since any
two positions in [[p]] are incomparable, the replacement order is irrelevant. Now,
a pumping is a pair (C[C ′[t]]p, C[C ′n[t]][[p]]) where C ′[t] and t are accepted in
the same state.

Preserving the disequality constraints. We have seen on Example 41
that, if t is accepted by the automaton, replacing one of its subterms, say u,
with a term v accepted in the same state as u, does not necessary yield an
accepted term. However, the idea is now that, if we have sufficiently many
such candidates v, at least one of the replacements will keep the satisfaction of
disequality constraints.

This is the what shows the following lemma which states that minimal ac-
cepted terms cannot contain too many subterms accepted in the same state.

Lemma 5. Given any total simplification ordering, a minimal term accepted
by a deterministic automaton in AWCBB contains at most |Q| × N distinct
subterms where N is the maximal arity of a function symbol and |Q| is the
number of states of the automaton.

TATA — October 28, 2004 —

4.3 Automata with Constraints Between Brothers 123

⇓ Replacement

pN+1

=

= · · · 6= · · · = · · · 6= · · ·

pN+1

=

= · · · 6= · · · = · · · 6= · · ·

Figure 4.3: Constructing a smaller term accepted by the automaton

Proof. If ρ is a run, let τρ be the mapping from positions to states such that
τρ(p) is the target state of ρ(p).

If t is accepted by the automaton (let ρ be a successful run on t) and contains
at least 1 + |Q| × N distinct subterms, then there are at least N + 1 positions
p1, . . . , pN+1 such that τρ(p1) = . . . = τρ(pN+1) and t|p1

, . . . , t|pN+1
are dis-

tinct. Assume for instance that t|pN+1
is the largest term (in the given total

simplification ordering) among t|p1
, . . . , t|pN+1

. We claim that one of the terms

vi
def
= t[t|pi

][[pN+1]] (i ≤ N) is accepted by the automaton.
For each i ≤ N , we may define unambiguously a tree ρi by: ρi = ρ[ρ|pi

][[pN+1]].
First, note that, by determinacy, for each position p ∈ [[pN+1]], τρ(p) =

τρ(pN+1) = τρ(pi). To show that there is a ρi which is a run, it remains to find
a ρi the constraints of which are satisfied. Equality constraints of any ρi are
satisfied, from the construction of the equivalence classes (details are left to the
reader).

Concerning disequality constraints, we choose i in such a way that all sub-
terms at brother positions of pN+1 are distinct from t|pi

(this choice is possible
since N is the maximal arity of a function symbol and there are N distinct
candidates). We get a replacement as depicted on Figure 4.3.

Let pN+1 = π · k where k ∈ N (π is the position immediately above pN+1).
Every disequality in cons(π) is satisfied by choice of i. Moreover, if p′ ∈ [[pN+1]]
and p′ = π′ ·k′ with k′ ∈ N, then every disequality in mathitcons(π′) is satisfied
since vi|π = vi|π′ .

Hence we constructed a term which is smaller than t and which is accepted
by the automaton. This yields the lemma.

Theorem 33. Emptiness can be decided in polynomial time for deterministic
automata in AWCBB.

Proof. The basic idea is that, if we have enough distinct terms in states q1, . . . , qn,
then the transition f(q1, . . . , qn)

c
−→ q is possible. Use a marking algorithm (as

TATA — October 28, 2004 —

124 Automata with Constraints

in Theorem 3) and keep for each state the terms that are known to be accepted
in this state. It is sufficient to keep at most N terms in each state (N is the
maximal arity of a function symbol) according to Lemma 5 and the determinacy
hypothesis (terms in different states are distinct). More precisely, we use the
following algorithm:

input: AWCBB A = (Q,F , Qf ,∆)
begin

– Marked is a mapping which associates each state with a set of
terms accepted in that state.

Set Marked to the function which maps each state to the ∅
repeat

Set Marked(q) to Marked(q) ∪ {t}
where

f ∈ Fn, t1 ∈ Marked(q1), . . . , tn ∈ Marked(qn),

f(q1, . . . , qn)
c
−→ q ∈ ∆,

t = f(t1, . . . , tn) and t |= c,
|Marked(q)| ≤ N − 1,

until no term can be added to any Marked(q)
output: true if, for every state qf ∈ Qf , Marked(qf) = ∅.

end

Complexity. For non-deterministic automata, an exponential time algorithm
is derived from Proposition 20 and Theorem 33. Actually, in the non-deterministic
case, the problem is EXPTIME-complete.

We may indeed reduce the following problem which is known to be EXPTIME-
complete to non-emptiness decision for nondeterministic AWCBB.

Instance n tree automata A1,. . . ,An over F .

Answer “yes” iff the intersection the respective languages recognized by A1,. . . ,An

is not empty.

We may assume without loss of generality that the states sets of A1,. . . ,An

(called respectively Q1,. . . ,Qn) are pairwise disjoint, and that every Ai has a

single final state called qf
i . We also assume that n = 2k for some integer k. If

this is not the case, let k be the smallest integer i such that n < 2i and let
n′ = 2k. We consider a second instance of the above problem: A′

1,. . . ,A′
n′

where

A′
i = Ai for each i ≤ n.

A′
i = ({q},F , {q}, {f(q, . . . , q) → q|f ∈ F}) for each n < i ≤ n′.

Note that the tree automaton in the second case is universal, i.e. it accepts
every term of T (F). Hence, the answer is “yes” for A′

1,. . . ,A′
n′ iff it is “yes”

for A1,. . . ,An.

TATA — October 28, 2004 —

4.4 Reduction Automata 125

Now, we add a single new binary symbol g to F , getting F ′, and consider
the following AWCBB A:

A = (

n⋃

i=1

Qi] {q1, . . . , qn−1},F
′, {q1},∆)

where q1,. . . ,q2n−1 are new states, and the transition of ∆ are:

every transition rule of A1,. . . ,An is a transition rule of A,

for each i < n
2 , g(q2i, q2i+1)

1=2
−−→ qi is a transition rule of A,

for each i, n
2 ≤ i < n − 1, g(qf

2i, q
f
2i+1)

1=2
−−→ qi is a transition rule of A.

Note that A is non-deterministic, even if every Ai is deterministic.
We can show by induction on k (n = 2k) that the answer to the above

problem is “yes” iff the language recognized by A is not empty. Moreover, the
size of A si linear in the size of the initial problem and A is constructed in a time
which is linear in his size. This proves the EXPTIME-hardness of emptiness
decision for AWCBB.

4.3.3 Applications

The main difference between AWCBB and NFTA is the non-closure of AWCBB
under projection and cylindrification. Actually, the shift from automata on trees
to automata on tuples of trees cannot be extended to the class AWCBB.

As long as we are interested in automata recognizing sets of trees, all results
on NFTA (and all applications) can be extended to the class AWCBB (with
an bigger complexity). For instance, Theorem 26 (sort constraints) can be
extended to interpretations of sorts as languages accepted by AWCBB. Propo-
sition 15 (encompassment) can be easily generalized to the case of non-linear
terms in which non-linearities only occur between brother positions, provided
that we replace NFTA with AWCBB. Theorem 27 can also be generalized to
the reducibility theory with predicates ·£t where t is non-linear terms, provided
that non-linearities in t only occur between brother positions.

However, we can no longer invoke an embedding into WSkS. The important
point is that this theory only requires the weak notion of recognizability on
tuples (Rec×). Hence we do not need automata on tuples, but only tuples
of automata. As an example of application, we get a decision algorithm for
ground reducibility of a term t w.r.t. left hand sides l1, . . . , ln, provided that
all non-linearities in t, l1, . . . , ln occur at brother positions: simply compute the
automata Ai accepting the terms that encompass li and check that L(A) ⊆
L(A1) ∪ . . . ∪ L(An).

Finally, the application on reduction strategies does not carry over the case
of non-linear terms because there really need automata on tuples.

4.4 Reduction Automata

As we have seen above, the first-order theory of finitely many unary encom-
passment predicates ·£t1 , . . . , ·£tn

(reducibility theory) is decidable when non-
linearities in the terms ti are restricted to brother positions. What happens

TATA — October 28, 2004 —

126 Automata with Constraints

when we drop the restrictions and consider arbitrary terms t1, . . . , tn, t ? It
turns out that the theory remains decidable, as we will see. Intuitively, we make
impossible counter examples like the one in the proof of Theorem 32 (stating
undecidability of the emptiness problem for AWEDC) with an additional con-
dition that using the automaton which accepts the set of terms encompassing t,
we may only check for a bounded number of equalities along each branch. That
is the idea of the next definitions of reduction automata.

4.4.1 Definition and Closure Properties

A reduction automaton A is a member of AWEDC such that there is an
ordering on the states of A such that,

for each rule f(q1, . . . , qn)
π1=π2∧c
−−−−−−→ q, q is strictly smaller than each

qi.

In case of an automaton with ε-transitions q → q′ we also require q′ to be
not larger than q.

Example 43. Consider the set of terms on the alphabet F = {a, g} encom-
passing g(g(x, y), x). It is accepted by the following reduction automaton, the
final state of which is qf and qf is minimal in the ordering on states.

a → q> g(q>, q>) → qg(x,y)

g(q>, qg(x,y)) → qg(x,y)

g(qg(x,y), q>)
11=2
−−−→ qf g(qg(x,y), q>)

116=2
−−−→ qg(x,y)

g(qg(x,y), qg(x,y))
11=2
−−−→ qf g(qg(x,y), qg(x,y))

116=2
−−−→ qg(x,y)

g(q, qf) → qf g(qf , q) → qf

where q ∈ {q>, qg(x,y), qf}

This construction can be generalized, along the lines of the proof of Propo-
sition 15 (page 96):

Proposition 23. The set of terms encompassing a term t is accepted by a
deterministic and complete reduction automaton. The size of this automaton is
polynomial in ‖t‖ as well as the time complexity for its construction.

As usual, we are now interested in closure properties:

Proposition 24. The class of reduction automata is closed under union and
intersection. It is not closed under complementation.

Proof. The constructions for union and intersection are the same as in the proof
of Proposition 21, and therefore, the respective time complexity and sizes are
the same. The proof that the class of reduction automata is closed under these
constructions is left as an exercise. Consider the set L of ground terms on the
alphabet {a, f} defined by a ∈ L and for every t ∈ L which is not a, t has a
subterm of the form f(s, s′) where s 6= s′. The set L is accepted by a (non-
deterministic, non-complete) reduction automaton, but its complement is the
set of balanced binary trees and it cannot be accepted by a reduction automaton
(see Exercise 56).

TATA — October 28, 2004 —

4.4 Reduction Automata 127

The weak point is of course the non-closure under complement. Conse-
quently, this is not possible to reduce the non-determinism.

However, we have a weak version of stability:

Proposition 25. • With each reduction automaton, we can associate a
complete reduction automaton which accepts the same language. More-
over, this construction preserves the determinism.

• The class of complete deterministic reduction automata is closed under
complement.

4.4.2 Emptiness Decision

Theorem 34. Emptiness is decidable for the class of reduction automata.

The proof of this result is quite complicated and gives quite high upper
bounds on the complexity (a tower of several exponentials). Hence, we are not
going to reproduce it here. Let us only sketch how it works, in the case of
deterministic reduction automata.

As in Section 4.3.2, we have both to preserve equality and disequality con-
straints.

Concerning equality constraints, we also define an equivalence relation be-
tween positions (of equal subtrees). We cannot claim any longer that two equiv-
alent positions do have the same length. However, some of the properties of the
equivalence classes are preserved: first, they are all finite and their cardinal
can be bounded by a number which only depends on the automaton, because
of the condition with the ordering on states (this is actually not true for the
class AWCBB). Then, we can compute a bound b2 (which only depends on the
automaton) such that the difference of the lengths of two equivalent positions
is smaller than b2. Nevertheless, as in Section 4.3.2, equalities are not a real
problem, as soon as the automaton is deterministic. Indeed, pumping can then
be defined on equivalence classes of positions. If the automaton is not determin-
istic, the problem is more difficult since we cannot guarantee that we reach the
same state at two equivalent positions, hence we have to restrict our attention
to some particular runs of the automaton.

Handling disequalities requires more care; the number of distinct subterms of
a minimal accepted term cannot be bounded as for AWCBB by |Q|×N , where N
is the maximal arity of a function symbol. The problem is the possible “overlap”
of disequalities checked by the automaton. As in Example 41, a pumping may
yield a term which is no longer accepted, since a disequality checked somewhere
in the term is no longer satisfied. In such a case, we say that the pumping creates
an equality. Then, we distinguish two kinds of equalities created by a pumping:
the close equalities and the remote equalities. Roughly, an equality created
by a pumping (t[v(u)]p, t[u]p) is a pair of positions (π ·π1, π ·π2) of t[v(u)]p which
was checked for disequality by the run ρ at position π on t[v(u)]p and such that
t[u]p|π·π1

= t[u]p|π·π2
(π is the longest common prefix to both members of the

pair). This equality (π · π1, π · π2) is a close equality if π ≤ p < π · π1 or
π ≤ p < π · π2. Otherwise (p ≥ π · π1 or p ≥ π · π2), it is a remote equality. The
different situations are depicted on Figures 4.4 and 4.5.

One possible proof sketch is

TATA — October 28, 2004 —

128 Automata with Constraints

π π2
π π1

π

p

π π2
π π1

π

p

Figure 4.4: A close equality is created

π π2

π π1

π

p
π π2

π π1

π

p

Figure 4.5: A remote equality is created

TATA — October 28, 2004 —

4.4 Reduction Automata 129

• First show that it is sufficient to consider equalities that are created at
positions around which the states are incomparable w.r.t. >

• Next, show that, for a deep enough path, there is at least one pumping
which does not yield a close equality (this makes use of a combinatorial
argument; the bound is an exponential in the maximal size of a constraint).

• For remote equalities, pumping is not sufficient. However, if some pump-
ing creates a remote equality anyway, this means that there are “big”equal
terms in t. Then we switch to another branch of the tree, combining pump-
ing in both subtrees to find one (again using a combinatorial argument)
such that no equality is created.

Of course, this is a very sketchy proof. The reader is referred to the bibliog-
raphy for more information about the proof.

4.4.3 Finiteness Decision

The following result is quite difficult to establish. We only mention them for
sake of completeness.

Theorem 35. Finiteness of the language is decidable for the class of reduction
automata.

4.4.4 Term Rewriting Systems

There is a strong relationship between reduction automata and term rewriting.
We mention them readers interested in that topic.

Proposition 26. Given a term rewriting system R, the set of ground R-normal
forms is recognizable by a reduction automaton, the size of which is exponential
in the size of R. The time complexity of the construction is exponential.

Proof. The set of R-reducible ground terms can be defined as the union of sets
of ground terms encompassing the left members of rules of R. Thus, by Propo-
sitions 23 and 24 the set of R-reducible ground terms is accepted by a deter-
ministic and complete reduction automaton. For the union, we use the product
construction, preserving determinism (see the proof of Theorem 5, Chapter 1)
with the price of an exponential blowup. The set of ground R-normal forms
is the complement of the set of ground R-reducible terms, and it is therefore
accepted by a reduction automaton, according to Proposition 25.

Thus, we have the following consequence of Theorems 35 and 34.

Corollary 5. Emptiness and finiteness of the language of ground R-normal
forms is decidable for every term rewriting system R.

Let us cite another important result concerning recognizability of sets normal
forms.

Theorem 36. The membership of the language of ground normal forms to the
class of recognizable tree languages is decidable.

TATA — October 28, 2004 —

130 Automata with Constraints

4.4.5 Application to the Reducibility Theory

Consider the reducibility theory of Section 3.4.2: there are unary predicate sym-
bols ·£t which are interpreted as the set of terms which encompass t. However,
we accept now non linear terms t as indices.

Propositions 23, and 24, and 25 yield the following result:

Theorem 37. The reducibility theory associated with any sets of terms is de-
cidable.

And, as in the previous chapter, we have, as an immediate corollary:

Corollary 6. Ground reducibility is decidable.

4.5 Other Decidable Subclasses

Complexity issues and restricted classes. There are two classes of au-
tomata with equality and disequality constraints for which tighter complexity
results are known:

• For the class of automata containing only disequality constraints, empti-
ness can be decided in deterministic exponential time. For any term
rewriting system R, the set of ground R-normal forms is still recogniz-
able by an automaton of this subclass of reduction automata.

• For the class of deterministic reduction automata for which the constraints
“cannot overlap”, emptiness can be decided in polynomial time.

Combination of AWCBB and reduction automata. If you relax the
condition on equality constraints in the transition rules of reduction automata so
as to allow constraints between brothers, you obtain the biggest known subclass
of AWEDC with a decidable emptiness problem.

Formally, these automata, called generalized reduction automata, are
members of AWEDC such that there is an ordering on the states set such that,

for each rule f(q1, . . . , qn)
π1=π2∧c
−−−−−−→ q, q is a lower bound of {q1, . . . , qn}

and moreover, if |π1| > 1 or |π2| > 1, then q is strictly smaller than
each qi.

The closure and decidability results for reduction automata may be trans-
posed to generalized reduction automata, with though a longer proof for the
emptiness decision. Generalized reduction automata can thus be used for the
decision of reducibility theory extended by some restricted sort declarations. In
this extension, additionally to encompassment predicates ·£t, we allow a family
of unary sort predicates . ∈ S, where S is a sort symbol. But, sort declarations
are limited to atoms of the form t ∈ S where where non linear variables in t
only occur at brother positions. This fragment is decidable by an analog of
Theorem 37 for generalized reduction automata.

TATA — October 28, 2004 —

4.6 Tree Automata with Arithmetic Constraints 131

4.6 Tree Automata with Arithmetic Constraints

Tree automata deal with finite trees which have a width bounded by the maxi-
mal arity of the signature but there is no limitation on the depth of the trees.
A natural idea is to relax the restriction on the width of terms by allowing
function of variadic arity. This has been considered by several authors for ap-
plications to graph theory, typing in object-oriented languages, temporal logic
and automated deduction. In these applications, variadic functions are set or
multiset constructors in some sense, therefore they enjoy additional properties
like associativity and/or commutativity and several types of tree automata have
been designed for handling these properties. We describe here a class of tree
automata which recognize terms build with usual function symbols and multiset
constructors. Therefore, we deal not only with terms, but with so-called flat
terms. Equality on these terms is no longer the syntactical identity, but it is
extended by the equality of multisets under permutation of their elements. To
recognize sets of flat terms with automata, we shall use constrained rules where
the constraints are Presburger’s arithmetic formulas which set conditions on the
multiplicities of terms in multisets. These automata enjoy similar properties to
NFTA and are used to test completeness of function definitions and inductive
reducibility when associative-commutative functions are involved, provided that
some syntactical restrictions hold.

4.6.1 Flat Trees

The set of function symbols G is composed of F , the set of function symbols
and of M, the set of function symbols for building multisets. For simplicity we
shall assume that there is only one symbol of the latter form, denoted by t and
written as an infix operator. The set of variables is denoted by X . Flat terms

are terms generated by the non-terminal T of the following grammar.

N ::= 1 | 2 | 3 . . .
T ::= S |U (flat terms)
S ::= x | f(T1, . . . , Tn) (flat terms of sort F)
U ::= N1.S1 t . . . t Np.Sp (flat terms of sort t)

where x ∈ X , n ≥ 0 is the arity of f , p ≥ 1 and
∑i=p

i=1 Ni ≥ 2. Moreover the
inequality Si 6=P Sj holds for i 6= j, 1 ≤ i, j < n, where =P is defined as the
smallest congruence such that:

• x =P x,

• f(s1, . . . , sn) =P f(t1, . . . , tn) if f ∈ F and si =P ti for i = 1, . . . , n,

• n1.s1 t . . . t np.sp =P m1.t1 t . . . t mq.tq if p = q and there is some
permutation σ on {1, . . . , p} such that si =P tσ(i) and ni = mσ(i) for
i = 1, . . . , p.

Example 44. 3.a and 3.a t 2.f(x, b) are flat terms, but 2.a t 1.a t f(x, b) is
not since 2.a and 1.a must be grouped together to make 3.a.

TATA — October 28, 2004 —

132 Automata with Constraints

The usual notions on terms can be generalized easily for flat terms. We
recall only what is needed in the following. A flat term is ground if it contains
no variables. The root of a flat term is defined by

• for the flat terms of sort F , root(x) = x, root(f(t1, . . . , tn)) = f ,

• for the flat terms of sort t, root(s1 t . . . t sn) = t.

Our notion of subterm is slightly different from the usual one. We say that
s is a subterm of t if and only if

• either s and t are identical,

• or t = f(s1, . . . , sn) and s is a subterm of some si,

• or t = n1.t1 t . . . t np.tp and s is a subterm of some ti.

For simplicity, we extend t to an operation between flat terms s, t denoting
(any) flat term obtained by regrouping elements of sort F in s and t which
are equivalent modulo =P , leaving the other elements unchanged. For instance
s = 2.a t 1.f(a, a) and t = 3.b t 2.f(a, a) yields s t t = 2.a t 3.b t 3.f(a, a).

4.6.2 Automata with Arithmetic Constraints

There is some regularity in flat terms that is likely to be captured by some class
of automata-like recognizers. For instance, the set of flat terms such that all
integer coefficients occurring in the terms are even, seems to be easily recogniz-
able, since the predicate even(n) can be easily decided. The class of automata
that we describe now has been designed for accepting such sets of ground flat
terms. A flat tree automaton with arithmetic constraints (NFTAC) over
G is a tuple (QF , Qt,G, Qf ,∆) where

• QF ∪ Qt is a finite set of states, such that

– QF is the set of states of sort F ,

– Qt is the set of states of sort t,

– QF ∩ Qt = ∅,

• Qf ⊆ QF t Qt is the set of final states,

• ∆ is a set of rules of the form:

– f(q1, . . . , qn) → q, for n ≥ 0, f ∈ Fn, q1, . . . , qn ∈ QF ∪ Qt, and
q ∈ QF ,

– N.q
c(N)
−→ q′, where q ∈ QF , q′ ∈ Qt, and c is a Presburger’s arith-

metic2 formula with the unique free variable N ,

– q1 t q2 → q3 where q1, q2, q3 ∈ Qt.

Moreover we require that

2Presburger’s arithmetic is first order arithmetic with addition and constants 0 and 1. This
fragment of arithmetic is known to be decidable.

TATA — October 28, 2004 —

4.6 Tree Automata with Arithmetic Constraints 133

– q1 t q2 → q3 is a rule of ∆ implies that q2 t q1 → q3 is also a rule of
∆,

– q1 t (q2 t q3) → q4 is a rule of ∆ implies that (q1 t q2) t q3 → q4 is
also a rule of ∆ where q2tq3 (resp. q1tq2) denotes any state q′ such
that there is a rule q2 t q3 → q′ (resp. q1 t q2 → q′).

These two conditions on ∆ will ensure that two flat terms equivalent modulo
=P reach the same states.

Example 45. Let F = {a, f} and let A = (QF , Qt,G, Qf ,∆) where

QF = {q}, Qt = {qt},

Qf = {qu},

∆ =

 a −→ q N.q

∃n:N=2n
−→ qt

f(,) −→ q qt t qt −→ qt

where stands for q or qt.

Let A = (QF , Qt,G, Qf ,∆) be a flat tree automaton. The move relation
→A is defined by: let t, t′ ∈ T (F ∪ Q,X), then t→A t′ if and only if there is a
context C ∈ C(G ∪ Q) such that t = C[s] and t′ =P C[s′] where

• either there is some f(q1, . . . , qn) → q′ ∈ ∆ and s = f(q1, . . . , qn), s′ = q′,

• or there is some N.q
c(N)
−→ q′ ∈ ∆ and s = n.q with |= c(n), s′ = q′,

• or there is some q1 t q2 → q3 ∈ ∆ and s = q1 t q2, s′ = q3.

∗
→A is the reflexive and transitive closure of →A.

Example 46. Using the automaton of the previous example, one has

2.a t 6.f(a, a) t 2.f(a, 2.a)
∗

→A 2.q t 6.f(q, q) t 2.f(q, 2.q)
∗

→A 2.q t 6.q t 2.f(q, qt)
∗

→A 2.q t 6.q t 2.q
∗

→A qt t qt t qt
∗

→A qt t qt
∗

→A qt

We define now semilinear flat languages. Let A = (QF , Qt,G, Qf ,∆) be
a flat tree automaton. A ground flat term t is accepted by A, if there is some
q ∈ Qf such that t

∗
→A q. The flat tree language L(A) accepted by A is the

set of all ground flat terms accepted by A. A set of flat terms is semilinear if
there L = L(A) for some NFTAC A. Two flat tree automata are equivalent if
they recognize the same language.

Example 47. The language of terms accepted by the automaton of Example 45
is the set of ground flat terms with root t such that for each subterm n1.s1 t
. . . t np.sp we have that ni is an even number.

TATA — October 28, 2004 —

134 Automata with Constraints

Flat tree automata are designed to take into account the =P relation, which
is stated by the next proposition.

Proposition 27. Let s, t, be two flat terms such that s =P t, let A be a flat
tree automaton, then s

∗
→A q implies t

∗
→A q.

Proof. The proof is by structural induction on s.

Proposition 28. Given a flat term t and a flat tree automaton A, it is decidable
whether t is accepted by A.

Proof. The decision algorithm for membership for flat tree automata is nearly
the same as the one for tree automata presented in Chapter 1, using an oracle
for the decision of Presburger’s arithmetic formulas.

Our definition of flat tree automata corresponds to nondeterministic flat tree
automata. We now define deterministic flat tree automata (DFTAC).

Let A = (QF , Qt,G, Qf ,∆) be a NFTAC over G.

• The automaton A is deterministic if for each ground flat term t, there
is at most one state q such that t

∗
→A q.

• The automaton A is complete if for each ground flat term t, there a state
such that t

∗
→A q.

• A state q is accessible if there is one ground flat term t such that t
∗

→A q.
The automaton is reduced if all states are accessible.

4.6.3 Reducing Non-determinism

As for usual tree automata, there is an algorithm for computing an equivalent
DFTAC from any NFTAC which proves that a language recognized by a NFTAC
is also recognized by a DFTAC. The algorithm is similar to the determiniza-
tion algorithm of the class AWEDC: the ambiguity arising from overlapping
constraints is lifted by considering mutually exclusive constraints which cover
the original constraints, and using sets of states allows to get rid of the non-
determinism of rules having the same left-hand side. Here, we simply have to
distinguish between states of QF and states of Qt.

Determinization algorithm

input A = (QF , Qt,G, Qf ,∆) a NFTAC.

begin

A state [q] of the equivalent DFTAC is in 2QF ∪ 2Qt .

Set Qd
F = ∅, Qd

t = ∅, ∆d = ∅.

repeat

for each f of arity n, [q]1, . . . , [q]n ∈ Qd
F ∪ Qd

t do

let [q] = {q | ∃f(q1, . . . , qn) → q ∈ ∆ with qi ∈ [q]i for i = 1, . . . , n}

TATA — October 28, 2004 —

4.6 Tree Automata with Arithmetic Constraints 135

in Set Qd
F to Qd

F ∪ {[q]}
Set ∆d to ∆d ∪ {f([q]1, . . . , [q]n) → [q]}

endfor

for each [q] ∈ QF do

for each [q′] ⊆ {q′′ | ∃N.q
c(N)
−→ q′′ ∈ ∆ with q ∈ [q]} do

let C be
(∧

q∈[q]

∨

N.q
ci(N)
−→ q′∈∆

q′∈[q′]

ci(N)
)
∧

(∧

q∈[q]

∧

N.q
ci(N)
−→ q′∈∆

q′ 6∈[q′]

¬ci(N)
)

in Set Qd
t to Qd

F ∪ {[q′]}

Set ∆d to ∆d ∪ {N.[q]
C(N)
−→ [q′]}

endfor

endfor

for each [q]1, [q]2 ∈ Qd
t do

let [q] = {q | ∃q1 ∈ [q]1, q2 ∈ [q]2, q1 t q2 → q ∈ ∆}

in Set Qd
t to Qd

F ∪ {[q]}
Set ∆d to ∆d ∪ {[q]1 t [q]2 → [q]}

endfor

until no rule can be added to ∆d

Set Qd
f = {[q] ∈ Qd

F ∪ Qd
t | [q] ∩ Qf 6= ∅},

end

output: Ad = (Qd
F , Qd

t,F , Qd
f ,∆d)

Proposition 29. The previous algorithm terminates and computes a determin-
istic flat tree automaton equivalent to the initial one.

Proof. The termination is obvious. The proof of the correctness relies on the
following lemma:

Lemma 6. t
∗

→Ad
[q] if and only if t

∗
→A q for all q ∈ [q].

The proof is by structural induction on t and follows the same pattern as
the proof for the class AWEDC.

Therefore we have proved the following theorem stating the equivalence be-
tween DFTAC and NFTAC.

Theorem 38. Let L be a semilinear set of flat terms, then there exists a DFTAC
that accepts L.

TATA — October 28, 2004 —

136 Automata with Constraints

4.6.4 Closure Properties of Semilinear Flat Languages

Given an automaton A = (Q,G, Qf ,∆), it is easy to construct an equivalent
complete automaton. If A is not complete then

• add two new trash states qt of sort F and qtt of sort t,

• for each f ∈ F , q1, . . . , qn ∈ Q∪{qt, q
t
t }, such that there is no rule having

f(q1, . . . , qn) as left-hand side, then add f(q1, . . . , qn) → qt,

• for each q of sort F , let c1(N), . . . , cm(N) be the conditions of the rules

N.q
ci(N)
−→ q′,

– if the formula ∃N (c1(N) ∨ . . . ∨ cm(N)) is not equivalent to true,

then add the rule N.q
¬(c1(N)∨...∨cm(N))(N)

−→ qtt ,

– if there are some q, q′ of sort t such that there is no rule qt q′ → q”,
then add the rules q t q′ → qtt and q′ t q → qtt .

– if there is some rule (q1 t q2) t q3 → qtt (resp. q1 t (q2 t q3) → qtt ,
add the rule q1 t (q2 t q3) → qtt (resp. (q1 t q2) t q3 → qtt) if it is
missing.

This last step ensures that we build a flat tree automaton, and it is straight-
forward to see that this automaton is equivalent to the initial one (same proof
as for DFTA). This is stated by the following proposition.

Theorem 39. For each flat tree automaton A, there exists a complete equivalent
automaton B.

Example 48. The automaton of Example 45 is not complete. It can be

completed by adding the states qt, q
t
t , and the rules N.qt

N≥0
−→ qtt

N.q
∃n N=2n+1

−→ qtt
f(,) −→ qt

where (,) stands for a pair of q, qt, qt, q
t
t such that if a rule the left hand side

of which is f(,) is not already in ∆.

Theorem 40. The class of semilinear flat languages is closed under union.

Proof. Let L (resp. M) be a semilinear flat language recognized by A =
(QF , Qt,G, Qf ,∆) (resp. B = (Q′

F , Q′
t,G, Q′

f ,∆′)), then L ∪ M is recognized
by C = (QF ∪ Q′

F , Qt ∪ Q′
t,G, Qf ∪ Q′

f ,∆ ∪ ∆′).

Theorem 41. The class of semilinear flat languages is closed under comple-
mentation.

Proof. Let A be an automaton recognizing L. Compute a complete automaton
B equivalent to A. Compute a deterministic automaton C equivalent to B using
the determinization algorithm. The automaton C is still complete, and we get an
automaton recognizing the complement of L by exchanging final and non-final
states in C.

TATA — October 28, 2004 —

4.6 Tree Automata with Arithmetic Constraints 137

From the closure under union and complement, we get the closure under
intersection (a direct construction of an automaton recognizing the intersection
also exists).

Theorem 42. The class of semilinear flat languages is closed under intersec-
tion.

4.6.5 Emptiness Decision

The last important property to state is that the emptiness of the language
recognized by a flat tree automaton is decidable. The decision procedure relies
on an algorithm similar to the decision procedure for tree automata combined
to a decision procedure for Presburger’s arithmetic. However a straightforward
modification of the algorithm in Chapter 1 doesn’t work. Assume that the
automaton contains the rule qt1 t qt1 → qt2 and assume that there is some

flat term t such that 1.t
∗

→A qt1 . These two hypothesis don’t imply that 1.t t

1.t
∗

→A qt2 since 1.tt1.t is not a flat term, contrary to 2.t. Therefore the decision
procedure involves some combinatorics in order to ensure that we always deal
with correct flat terms.

From now on, let A = (QF , Qt,G, Qf ,∆) be some given deterministic flat
tree automaton and let M be the number of states of sort t. First, we need to
control the possible infinite number of solutions of Presburger’s conditions.

Proposition 30. There is some computable B such that for each condition
c(N) of the rules of A, either each integer n validating c is smaller than B or
there are at least M + 1 integers smaller than B validating c.

Proof. First, for each constraint c(N) of a rule of ∆, we check if c(N) has a
finite number of solutions by deciding if ∃P : c(N) ⇒ N < P is true. If c(N)
has a finite number of solutions, it is easy to find a bound B1(c(N)) on these
solutions by testing ∃n : n > k ∧ c(n) for k = 1, 2, . . . until it is false. If c(N)

has an infinite number of solutions, one computes the Mth solution obtained

by checking |= c(k) for k = 1, 2, We call this Mth solution B2(c(N)). The
bound B is the maximum of all the B1(c(N))’s and B2(c(N))’s.

Now we control the maximal width of terms needed to reach a state.

Proposition 31. For all t
∗

→A q, there is some s
∗

→A q such that for each sub-
term of s of the form n1.v1 t . . . t np.vp, we have p ≤ M and ni ≤ B.

Proof. The bound on the coefficients ni is a direct consequence of the previous
proposition. The proof on p is by structural induction on t. The only non-trivial
case is for t = m1.t1 t . . . t mk.tk. Let us assume that t is the term with the
smallest value of k among the terms {t′ | t′

∗
→A q}.

First we show that k ≤ M . Let qti be the states such that ni.ti →A qti .

We have thus t
∗

→A qt1 t . . . t qtk
∗

→A q. By definition of DFTAC, the reduction

qt1 t . . . t qtk
∗

→A q has the form:

qt1 t . . . t qtk
∗
→
A

qt[12] t qt3 t . . . t qtk
∗
→
A

. . .
∗
→
A

qt[1...k] = q

for some states qt[12],. . . , qt[1...k] of Qt.

TATA — October 28, 2004 —

138 Automata with Constraints

Assume that k > M . The pigeonhole principle yields that q[1,...,j1] = q[1,...,j2]

for some 1 ≤ j1 < j2 ≤ k. Therefore the term

t = m1.t1 t . . . t mj1 .tj1 t mj2+1.tj2+1 t . . . t mk.tk

also reaches the state q which contradicts our hypothesis that k is minimal.
Now, it remains only to use the induction hypothesis to replace each ti by

some si reaching the same state and satisfying the required conditions.

A term s such that for all subterm n1.v1 t . . . np.vp of s, we have p ≤ M and
ni ≤ B will be called small. We define some extension →n

A of the move relation
by:

• t→1
A q if and only if t→A q,

• t→n
A q if and only if t

∗
→A q and

– either t = f(t1, . . . , tk) and for i = 1, . . . , k we have ti →
n−1
A qi(ti),

– or t = n1.t1 t . . . t np.tp and for i = 1, . . . , p, we have ti →
n−1
A qi(ti).

Let Ln
q = {t→p

A q | p ≤ n and t is small} with the convention that L0
q = ∅

and Lq =
⋃∞

n=1 L
n
q . By Proposition 31, t→A q if and only if there is some

s ∈ Lq such that s→A q. The emptiness decision algorithm will compute a
finite approximation Rn

q of these Ln
q such that Rn

q 6= ∅ if and only if Ln
q 6= ∅.

Some technical definition is needed first. Let L be a set of flat term, then
we define ‖ L ‖P as the number of distinct equivalence classes of terms for the
=P relation such that one representant of the class occurs in L. The reader will
check easily that the equivalence class of a flat term for the =P relation is finite.

The decision algorithm is the following one.

begin

for each state q do set R0
q to ∅.

i=1.
repeat

for each state q do set Ri
q to Ri−1

q

if ‖ Ri
q ‖P≤ M then

repeat

add to Ri
q all flat terms t = f(t1, . . . , tn)

such that tj ∈ Ri−1
qj

, j ≤ n and f(q1, . . . , qn) → q ∈ ∆

add to Ri
q all flat terms t = n1.t1 t . . . t np.tp

such that p ≤ M ,nj ≤ B, tj ∈ Ri−1
qj

and n1.q1 t . . . t np.qp
∗

→A q.

until no new term can be added or ‖ Ri
q ‖P > M

endif
i=i+1

until ∃q ∈ Qf such that Ri
q 6= ∅ or ∀q,Ri

q = Ri−1
q

if ∃q ∈ QF s.t. Ri
q 6= ∅

then return not empty
else return empty endif

TATA — October 28, 2004 —

4.6 Tree Automata with Arithmetic Constraints 139

end

Proposition 32. The algorithm terminates after n iterations for some n and
Rn

q = ∅ if and only if Lq = ∅

Proof. At every iteration, either one Ri
q increases or else all the Ri

q’s are left
untouched in the repeat . . .until loop. Therefore the termination condition
will be satisfied after a finite number of iterations, since equivalence classes for
=P are finite.

By construction we have Rm
q ⊆ Lm

q , but we need the following additional
property.

Lemma 7. For all m,Rm
q = Lm

q or Rm
q ⊆ Lm

q and ‖ Rm
q ‖P > M

The proof is by induction on m.

Base case m = 0. Obvious from the definitions.

Induction step. We assume that the property is true for m and we prove that
it holds for m + 1.
Either Lm

q = ∅ therefore Rm
q = ∅ and we are done, or Lm

q 6= ∅, which we assume
from now on.

• q ∈ QF .

– Either there is some rule f(q1, . . . , qn) → q such that Rm
qi

6= ∅ for
all i = 1, . . . , n and such that for some q′ among q1, . . . , qn, we have
‖ Rm

q′ ‖P > M . Then we can construct at least M + 1 terms t =

f(t1, . . . , t
′, . . . , tn) where t′ ∈ Rm

q′ , such that t ∈ Rm+1
q by giving

M +1 non equivalent values to t′ (corresponding values for t are also
non equivalent). This yields that ‖ Rm+1

q ‖P > M .

– Or there is no rule as above, therefore Rm+1
q = Lm+1

q .

• q ∈ Qt.

For each small term t = n1.t1 t . . . t np.tp such that t ∈ Lm+1
q , there

are some terms s1, . . . , sn in Rm
qi

such that ti
∗

→A qi implies that si
∗

→A qi.
What we must prove is that ‖ Rm

qi
‖P > M for some i ≤ p implies ‖

Rm+1
q ‖P > M . Since A is deterministic, we have that s

∗
→A q and t

∗
→A q′

with q 6= q′ implies that s 6=P t. Let S be the set of states occurring in
the sequence q1, . . . , qp. We prove by induction on the cardinal of S that
if there is some qi such that ‖ Rm

qi
‖P > M , we can build at least M + 1

terms in Rm+1
q otherwise we build at least one term of Rm+1

q .

Base case S = {q′}, and therefore all the qi are equal to q′. Either
‖ Rm

q′ ‖P≤ M and we are done or ‖ Rm
q′ ‖P > M and we know that there

are s1, . . . , sM+1, . . . pairwise non equivalent terms reaching q′. Therefore,
there are at least

(
M+1
M

)
≥ M + 1 different non equivalent possible terms

ni1 .si1 t . . . t nip
.sip

. Moreover each of these terms S satisfies s→m+1
A q,

which proves the result.

TATA — October 28, 2004 —

140 Automata with Constraints

Induction step. Let S = S′ ∪ {q′} where the property is true for S′. We
can assume that ‖ Rm

q′ ‖P≤ M (otherwise all ‖ Rm
qi

‖P are less than or
equal to M).

Let i1, . . . , ik be the positions of q′ in q1, . . . , qp, let j1, . . . , jl be the posi-
tions of the states different from q′ in q1, . . . , qp. By induction hypothesis,
there are some flat terms sj such that nj1 .sj1 t . . . t njl

.sjl
is a valid flat

term. Since A is deterministic and q′ is different from all element of S′,
we know that si 6=P sj for any i ∈ {i1, . . . , ik}, j ∈ {j1, . . . , jk}. There-
fore, we use the same reasoning as in the previous case to build at least
Ck

M+1 ≥ M + 1 pairwise non equivalent flat terms s = n1.s1 t . . . t np.sp

such that s→m+1
A q.

The termination of the algorithm implies that for each m ≥ n, Rm
q = Lm

q or
Rm

q ⊆ Lm
q and ‖ Rm

q ‖P > M . Therefore Lq = ∅ if and only if Rn
q = ∅.

The following theorem summarizes the previous results.

Theorem 43. Let A be a DFTAC, then it is decidable whether the language
accepted by A is empty or not.

The reader should see that the property that A deterministic is crucial in
proving the emptiness decision property. Therefore proving the emptiness of the
language recognized by a NFTAC implies to compute an equivalent DFTAC
first.

Another point is that the previous algorithm can be easily modified to com-
pute the set of accessible states of A.

4.7 Exercises

Exercise 52.

1. Show that the automaton A+ of Example 38 accepts only terms of the form
f(t1, s

n(0), sm(0), sn+m(0))

2. Conversely, show that, for every pair of natural numbers (n, m), there exists a
term t1 such that f(t1, s

n(0), sm(0), sn+m(0)) is accepted by A+.

3. Construct an automaton A× of the class AWEDC which has the same properties
as above, replacing + with ×

4. Give a proof that emptiness is undecidable for the class AWEDC, reducing
Hilbert’s tenth problem.

Exercise 53. Give an automaton of the class AWCBB which accepts the set of terms

t (over the alphabet {a(0), b(0), f(2)}) having a subterm of the form f(u, u). (i.e the

set of terms that are reducible by a rule f(x, x) → v).

Exercise 54. Show that the class AWCBB is not closed under linear tree homomor-

phisms. Is it closed under inverse image of such morphisms ?

Exercise 55. Give an example of two automata in AWCBB such that the set of pairs

of terms recognized respectively by the automata is not itself a member of AWCBB.

TATA — October 28, 2004 —

4.7 Exercises 141

Exercise 56. (Proposition 24) Show that the class of (languages recognized by)

reduction automata is closed under intersection and union. Show that the set of bal-

anced term on alphabet {a, f} is not recognizable by a reduction automaton, showing

that the class of languages recognized by) reduction automata is not closed under

complement.

Exercise 57. Show that the class of languages recognized by reduction automata is

preserved under linear tree homomorphisms. Show however that this is no longer true

for arbitrary tree homomorphisms.

Exercise 58. Let A be a reduction automaton. We define a ternary relation q
w
−→ q′

contained in Q × N
∗ × Q as follows:

• for i ∈ N, q
i
−→ q′ if and only if there is a rule f(q1, . . . , qn)

c
−→
A

q′ with qi = q

• q
i·w
−−→ q′ if and only if there is a state q′′ such that q

i
−→ q′′ and q′′

w
−→ q′.

Moreover, we say that a state q ∈ Q is a constrained state if there is a rule f(q1, . . . , qn)
c
−→
A

q

in A such that c is not a valid constraint.
We say that the the constraints of A cannot overlap if, for each rule f(q1, . . . , qn)

c
−→ q

and for each equality (resp. disequality) π = π′ of c, there is no strict prefix p of π

and no constrained state q′ such that q′
p
−→ q.

1. Consider the rewrite system on the alphabet {f(2), g(1), a(0)} whose left mem-
bers are f(x, g(x)), g(g(x)), f(a, a). Compute a reduction automaton, whose
constraints do not overlap and which accepts the set of irreducible ground terms.

2. Show that emptiness can be decided in polynomial time for reduction automata
whose constraints do not overlap. (Hint: it is similar to the proof of Theorem
33.)

3. Show that any language recognized by a reduction automaton whose constraints
do not overlap is an homomorphic image of a language in the class AWCBB.
Give an example showing that the converse is false.

Exercise 59. Prove the Proposition ?? along the lines of Proposition 15.

Exercise 60. The purpose of this exercise is to give a construction of an automaton
with disequality constraints (no equality constraints) whose emptiness is equivalent to
the ground reducibility of a given term t with respect to a given term rewriting system
R.

1. Give a direct construction of an automaton with disequality constraints ANF(R)

which accepts the set of irreducible ground terms

2. Show that the class of languages recognized by automata with disequality con-
straints is closed under intersection. Hence the set of irreducible ground in-
stances of a linear term is recognized by an automaton with disequality con-
straints.

3. Let ANF(R) = (QNF,F , Qf
NF, ∆NF). We compute ANF,t

def
= (QNF,t,F , Qf

NF,t, ∆NF,t)
as follows:

• QNF,t
def
= {tσ|p | p ∈ Pos(t)}×QNF where σ ranges over substitutions from

NLV (t) (the set of variables occurring at least twice in t) into Qf
NF.

• For all f(q1, . . . , qn)
c
−→ q ∈ ∆NF, and all u1, . . . , un ∈ {tσ|p | p ∈ Pos(t)},

∆NF,t contains the following rules:

TATA — October 28, 2004 —

142 Automata with Constraints

– f([qu1 , q1], . . . , [qun , qn])
c∧c′

−−−→ [qf(u1,...,un), q] if f(u1, . . . , un) = tσ0

and c′ is constructed as sketched below.

– f([qu1 , q1], . . . , [qun , qn])
c
−→ [qf(u1,...,un), q] if [qf(u1,...,un), q] ∈ QNF,t

and we are not in the first case.

– f([qu1 , q1], . . . , [qun , qn])
c
−→ [qq, q] in all other cases

c′ is constructed as follows. From f(u1, . . . , un) we can retrieve the rules applied
at position p in t. Assume that the rule at p checks π1 6= π2. This amounts to
check pπ1 6= pπ2 at the root position of t. Let D be all disequalities pπ1 6= pπ2

obtained in this way. The non linearity of t implies some equalities: let E be
the set of equalities p1 = p2, for all positions p1, p2 such that t|p1 = t|p2 is a
variable. Now, c′ is the set of disequalities π 6= π′ which are not in D and that
can be inferred from D, E using the rules

pp1 6= p2, p = p′ ` p′p1 6= p2

p 6= p′, pp1 = p2 ` p′p1 6= p2

For instance, let t = f(x, f(x, y)) and assume that the automaton ANF con-

tains a rule f(q, q)
1 6=2
−−→ q. Then the automaton ANF,t will contain the rule

f([qq, q], [qf(q,q), q])
1 6=2∧1 6=22
−−−−−−−→ q.

The final states are [qu, qf] where qf ∈ Qf
NF and u is an instance of t.

Prove that ANF,t accepts at least one term if and only if t is not ground reducible
by R.

Exercise 61. Prove Theorem 37 along the lines of the proof of Theorem 27.

Exercise 62. Show that the algorithm for deciding emptiness of deterministic com-

plete flat tree automaton works for non-deterministic flat tree automata such that for

each state q the number of non-equivalent terms reaching q is 0 or greater than or

equal to 2.

Exercise 63. (Feature tree automata)
Let F be a finite set of feature symbols (or attributes) denoted by f, g, . . . and S be
a set of constructor symbols (or sorts) denoted by A, B, In this exercise and the
next one, a tree is a rooted directed acyclic graph, a multitree is a tree such that the
nodes are labeled over S and the edges over F . A multitree is either (A, ∅) or (A, E)
where E is a finite multiset of pairs (f, t) with f a feature and t a multitree. A feature
tree is a multitree such that the edges outgoing from the same node are labeled by
different features. The + operation takes a multitree t = (A, E), a feature f and a
multitree t′ to build the multitree (A, E ∪ (f, t′)) denoted by t + ft′.

1. Show that t + f1t1 + f2t2 = t + f2t2 + f1t1 (OI axiom: order independence
axiom) and that the algebra of multitrees is isomorphic to the quotient of the
free term algebra over {+} ∪ F ∪ S by OI.

2. A deterministic M-automaton is a triple (A, h, Qf) where A is an finite {+} ∪
F ∪S-algebra, h : M → A is a homomorphism, Qf (the final states) is a subset
of the set of the values of sort M. A tree is accepted if and only if h(t) ∈ Qf .

(a) Show that a M-automaton can be identified with a bottom-up tree au-
tomaton such that all trees equivalent under OI reach the same states.

(b) A feature tree automaton is a M-automaton such that for each sort s (M
or F), for each q the set of the c’s of arity 0 interpreted as q in A is finite
or co-finite. Give a feature tree to recognize the set of natural numbers
where n is encoded as (0, {suc, (0, {. . . , (0, ∅)})}) with n edges labeled by
suc.

TATA — October 28, 2004 —

4.8 Bibliographic notes 143

(c) Show that the class of languages accepted by feature tree automata is
closed under boolean operations and that the emptiness of a language
accepted by a feature automaton is decidable.

(d) A non-deterministic feature tree automaton is a tuple (Q, P, h, Qf) such
that Q is the set of states of sort M, P the set of states of sort F , h is
composed of three functions h1 : S → 2Q, h2 : F → 2P and the transition
function + : Q×P ×Q → 2Q. Moreover q + p1q1 + p2q2 = q + p2q2 + p1q1

for each q, q1, q2, p1, p2, {s ∈ S | p ∈ h1(s)} and {f ∈ F | p ∈ h2(f)} are
finite or co-finite for each p. Show that any non-deterministic feature tree
automaton is equivalent to a deterministic feature tree automaton.

Exercise 64. (Characterization of recognizable flat feature languages)
A flat feature tree is a feature tree of depth 1 where depth is defined by depth((A, ∅)) =
0 and depth((A, E)) = 1+max{depth(t) | (f, t) ∈ E}. Counting constraints are defined
by: C(x) ::= card(ϕ ∈ F | ∃y.(xϕy) ∧ Ty}) = n mod m

| Sx
| C(x) ∨ C(x)
| C(x) ∧ C(x)

where n, m are integers, S and T finite or co-finite subsets of S, F a finite or co-finite
subset of F and n mod 0 is defined as n. The semantics of the first type of constraint
is: C(x) holds if the number of edges of x going from the root to a node labeled by a
symbol of T is equal to n mod m. The semantics of Sx is: Sx holds if the root of x is
labeled by a symbol of S.

1. Show that the constraints are closed under negation. Show that the following
constraints can be expressed in the constraint language (F is a finite subset of
F , f ∈ F , A ∈ S): there is one edge labeled f from the root, a given finite
subset of F . There is no edge labeled f from the root, the root is labeled by A.

2. A set L of flat multitrees is counting definable if and only if there some counting
constraint C such that L = {x | C(x) holds}. Show that a set of flat feature trees
is counting definable if and only if it is recognizable by a feature tree automaton.
hint: identify flat trees with multisets over (F ∪{root})×S and + with multiset
union.

4.8 Bibliographic notes

RATEG appeared in Mongy’s thesis [Mon81]. Unfortunately, as shown in
[Mon81] the emptiness problem is undecidable for the class RATEG (and hence
for AWEDC). The undecidability can be even shown for a more restricted class
of automata with equality tests between cousins (see [Tom92]).
The remarkable subclass AWCBB is defined in [BT92]. This paper presents the
results cited in Section 4.3, especially Theorem 33.
Concerning complexity, the result used in Section 4.3.2 (EXPTIME-completeness
of the emptiness of the intersection of n recognizable tree languages) may be
found in [FSVY91, Sei94b].
[DCC95] is concerned with reduction automata and their use as a tool for the
decision of the encompassment theory in the general case.
The first decidability proof for ground reducibility is due to [Pla85]. In [CJ97a],
ground reducibility decision is shown EXPTIME-complete. In this work, an
EXPTIME algorithm for emptiness decision for AWEDC with only disequality
constrained The result mentioned in Section 4.5.

TATA — October 28, 2004 —

144 Automata with Constraints

The class of generalized reduction automata is introduced in [CCC+94]. In this
paper, a efficient cleaning algorithm is given for emptiness decision.

There have been many work dealing with automata where the width of
terms is not bounded. In [Cou89], Courcelle devises an algebraic notion of rec-
ognizability and studies the case of equational theories. Then he gives several
equational theories corresponding to several notions of trees like ordered or un-
ordered, ranked or unranked trees and provides the tree automata to accept
these objects. Actually the axioms used for defining these notions are commu-
tativity (for unordered) or associativity (for unranked) and what is needed is to
build tree automata such that all element of the same equivalence class reach
the same state. Trees can be also defined as finite, acyclic rooted ordered graphs
of bounded degree. Courcelle [Cou92] has devised a notion of recognizable set of
graphs and suggests to devise graph automata for accepting recognizable graphs
of bounded tree width. He gives such automata for trees defined as unbounded,
unordered, undirected, unrooted trees (therefore these are not what we call tree
in this book). Actually, he shows that recognizable sets of graphs are (homomor-
phic image of) sets of equivalence class of terms, where the equivalence relation
is the congruence induced by a set of equational axioms including associativity-
commutativity axiom and identity element. He gives several equivalent notions
for recognizability from which he gets the definitions of automata for accepting
recognizable languages. Hedge automata [PQ68, Mur00, BKMW01] are au-
tomata that deal with unranked but ordered terms, and use constraint which
are membership to some regular word expressions on an alphabet which is the
set of states of the automaton. These automata are closed under the boolean
operations and emptiness can be decided. Such automata are used for XML
applications. Generalization of tree automata with Presburger’s constraints can
be found in [LD02].

Feature tree are a generalization of first-order trees introduced for modeling
record structures. A feature tree is a finite tree whose nodes are labelled by
constructor symbols and edges are labelled by feature symbols Niehren and
Podelski [NP93] have studied the algebraic structures of feature trees and have
devised feature tree automata for recognizing sets of feature trees. They have
shown that this class of feature trees enjoys the same properties as regular tree
language and they give a characterization of these sets by requiring that the
numbern of occurrences of a feature f satisfies a Presburger formula ψf (N).
See Exercise 63 for more details. Equational tree automata, introduced by
H.Ohsaki, allow equational axioms to take place during a run. For instance using
AC axioms allows to recognize languages which are closed under associativity-
commutativity which is not the case of ordinary regular languages. See [Ohs01]
for details.

TATA — October 28, 2004 —

Chapter 5

Tree Set Automata

This chapter introduces a class of automata for sets of terms called General-
ized Tree Set Automata. Languages associated with such automata are sets of
sets of terms. The class of languages recognized by Generalized Tree Set Au-
tomata fulfills properties that suffices to build automata-based procedures for
solving problems involving sets of terms, for instance, for solving systems of set
constraints.

5.1 Introduction

“The notion of type expresses the fact that one just cannot apply any operator
to any value. Inferring and checking a program’s type is then a proof of partial
correction” quoting Marie-Claude Gaudel. “The main problem in this field is to
be flexible while remaining rigorous, that is to allow polymorphism (a value can
have more than one type) in order to avoid repetitions and write very general
programs while preserving decidability of their correction with respect to types.”

On that score, the set constraints formalism is a compromise between power
of expression and decidability. This has been the object of active research for a
few years.

Set constraints are relations between sets of terms. For instance, let us define
the natural numbers with 0 and the successor relation denoted by s. Thus, the
constraint

Nat = 0 ∪ s(Nat) (5.1)

corresponds to this definition. Let us consider the following system:

Nat = 0 ∪ s(Nat)
List = cons(Nat, List) ∪ nil

List+ ⊆ List

car(List+) ⊆ s(Nat)

(5.2)

The first constraint defines natural numbers. The second constraint codes the
set of LISP-like lists of natural numbers. The empty list is nil and other lists
are obtained using the constructor symbol cons. The last two constraints rep-
resent the set of lists with a non zero first element. Symbol car has the usual
interpretation: the head of a list. Here car(List+) can be interpreted as the set

TATA — October 28, 2004 —

146 Tree Set Automata

of all terms at first position in List+, that is all terms t such that there exists u
with cons(t, u) ∈ List+. In the set constraint framework such an operator car is
often written cons

−1
1 .

Set constraints are the essence of Set Based Analysis. The basic idea is to
reason about program variables as sets of possible values. Set Based Analy-
sis involves first writing set constraints expressing relationships between sets of
program values, and then solving the system of set constraints. A single approxi-
mation is: all dependencies between the values of program variables are ignored.
Techniques developed for Set Based Analysis have been successfully applied in
program analysis and type inference and the technique can be combined with
others [HJ92].

Set constraints have also been used to define a constraint logic programming
language over sets of ground terms that generalizes ordinary logic programming
over an Herbrand domain [Koz98].

In a more general way, a system of set constraints is a conjunction of positive
constraints of the form exp ⊆ exp′1 and negative constraints of the form exp 6⊆
exp′. Right hand side and left hand side of these inequalities are set expressions,
which are built with

• function symbols: in our example 0, s, cons, nil are function symbols.

• operators: union ∪, intersection ∩, complement ∼

• projection symbols: for instance, in the last equation of system (5.2) car

denotes the first component of cons. In the set constraints syntax, this is
written cons

−1
(1).

• set variables like Nat or List.

An interpretation assigns to each set variable a set of terms only built with
function symbols. A solution is an interpretation which satisfies the system.
For example, {0, s(0), s(s(0)), . . . } is a solution of Equation (5.1).

In the set constraint formalism, set inclusion and set union express in a
natural way parametric polymorphism: List ⊆ nil ∪ cons(X, List).

In logic or functional programming, one often use dynamic procedures to
deal with type. In other words, a run-time procedure checks whether or not an
expression is well-typed. This permits maximum programming flexibility at the
potential cost of efficiency and security. Static analysis partially avoids these
drawbacks with the help of type inference and type checking procedures. The
information extracted at compile time is also used for optimization.

Basically, program sources are analyzed at compile time and an ad hoc for-
malism is used to represent the result of the analysis. For types considered as
sets of values, the set constraints formalism is well suited to represent them and
to express their relations. Numerous inference and type checking algorithms in
logic, functional and imperative programming are based on a resolution proce-
dure for set constraints.

1exp = exp′ for exp ⊆ exp′ ∧ exp′ ⊆ exp.

TATA — October 28, 2004 —

5.1 Introduction 147

Most of the earliest algorithms consider systems of set constraints with weak
power of expression. More often than not, these set constraints always have a
least solution — w.r.t. inclusion — which corresponds to a (tuple of) regular
set of terms. In this case, types are usual sorts. A sort signature defines a
tree automaton (see Section 3.4.1 for the correspondence between automata
and sorts). For instance, regular equations iontroduced in Section 2.3 such a
subclass of set constraints. Therefore, these methods are closely related finite
tree automata and use classical algorithms on these recognizers, like the ones
presented in Chapter 1.

In order to obtain a more precise information with set constraints in static
analysis, one way is to enrich the set constraints vocabulary. In one hand, with
a large vocabulary an analysis can be accurate and relevant, but on the other
hand, solutions are difficult to obtain.

Nonetheless, an essential property must be preserved: the decidability of
satisfiability. There must exists a procedure which determines whether or not a
system of set constraints has solutions. In other words, extracted information
must be sufficient to say whether the objects of an analyzed program have a type.
It is crucial, therefore, to know which classes of set constraints are decidable,
and identifying the complexity of set constraints is of paramount importance.

A second important characteristic to preserve is to represent solutions in a
convenient way. We want to obtain a kind of solved form from which one can
decide whether a system has solutions and one can “compute” them.

In this chapter, we present an automata-based algorithm for solving systems
of positive and negative set constraints where no projection symbols occurs. We
define a new class of automata recognizing sets of (codes of) n-tuples of tree
languages. Given a system of set constraints, there exists an automaton of this
class which recognizes the set of solutions of the system. Therefore properties
of our class of automata directly translate to set constraints.

In order to introduce our automata, we discuss the case of unary symbols,
i.e. the case of strings over finite alphabet. For instance, let us consider the
following constraints over the alphabet composed of two unary symbols a and
b and a constant 0:

Xaa ∪ Xbb ⊆ X (5.3)

Y ⊆ X

This system of set constraints can be encoded in a formula of the monadic
second order theory of 2 successors named a and b:

∀u (u ∈ X ⇒ (uaa ∈ X ∧ ubb ∈ X))∧

∀u u ∈ Y ⇒ u ∈ X

We have depicted in Fig 5.1 (a beginning of) an infinite tree which is a
model of the formula. Each node corresponds to a string over a and b. The
root is associated with the empty string; going down to the left concatenates a
a; going down to the right concatenates a b. Each node of the tree is labelled
with a couple of points. The two components correspond to sets X and Y . A

TATA — October 28, 2004 —

148 Tree Set Automata

black point in the first component means that the current node belongs to X.
Conversely, a white point in the first component means that the current node
does not belong to X. Here we have X = {ε, aa, bb, . . . } and Y = {ε, bb, . . . }.

Figure 5.1: An infinite tree for the representation of a couple of word languages
(X,Y). Each node is associated with a word. A black dot stands for belongs
to. X = {ε, aa, bb, . . . } and Y = {ε, bb, . . . }.

A tree language that encodes solutions of Eq. 5.3 is Rabin-recognizable by
a tree automaton which must avoid the three forbidden patterns depicted in
Figure 5.2.

•?

??

◦?

•?

??

◦?

◦•

Figure 5.2: The set of three forbidden patterns. ’?’ stands for black or white
dot. The tree depicted in Fig. 5.1 exclude these three patterns.

Given a ranked alphabet of unary symbols and one constant and a system
of set constraints over {X1, . . . ,Xn}, one can encode a solution with a {0, 1}n-
valued infinite tree and the set of solutions is recognized by an infinite tree
automaton. Therefore, decidability of satisfiability of systems of set constraints
can easily be derived from Rabin’s Tree Theorem [Rab69] because infinite tree
automata can be considered as an acceptor model for n-tuples of word languages
over finite alphabet2.

We extend this method to set constraints with symbols of arbitrary arity.
Therefore, we define an acceptor model for mappings from T (F), where F is a
ranked alphabet, into a set E = {0, 1}n of labels. Our automata can be viewed
as an extension of infinite tree automata, but we will use weaker acceptance
condition. The acceptance condition is: the range of a successful run is in a
specified set of accepting set of states. We will prove that we can design an

2The entire class of Rabin’s tree languages is not captured by solutions of set of words
constraints. Set of words constraints define a class of languages which is strictly smaller than
Büchi recognizable tree languages.

TATA — October 28, 2004 —

5.1 Introduction 149

automaton which recognizes the set of solutions of a system of both positive
and negative set constraints. For instance, let us consider the following system:

Y 6⊆ ⊥ (5.4)

X ⊆ f(Y,∼ X) ∪ a (5.5)

where ⊥ stands for the empty set and ∼ stands for the complement symbol.
The underlying structure is different than in the previous example since it is

now the whole set of terms on the alphabet composed of a binary symbol f and
a constant a. Having a representation of this structure in mind is not trivial.
One can imagine a directed graph whose vertices are terms and such that there
exists an edge between each couple of terms in the direct subterm relation (see
figure 5.3).

f(f(a,a),a) f(a,f(a,a))

f(a,a)

f

f f

a

f

f(f(f(a,a),a),a)

Figure 5.3: The (beginning of the) underlying structure for a two letter alphabet
{f(,), a}.

An automaton have to associate a state with each node following a finite set
of rules. In the case of the example above, states are also couples of • or ◦.

Each vertex is of infinite out-degree, nonetheless one can define as in the
word case forbidden patterns for incoming vertices which such an automaton
have to avoid in order to satisfy Eq. (5.5) (see Fig. 5.4, Pattern ? stands for
◦ or •). The acceptance condition is illustrated using Eq. (5.4). Indeed, to
describe a solution of the system of set constraints, the pattern ?• must occur
somewhere in a successful “run” of the automaton.

?

f

???

?

??

f

?

Figure 5.4: Forbidden patterns for (5.5).

Consequently, decidability of systems of set constraints is a consequence of
decidability of emptiness in our class of automata. Emptiness decidability is

TATA — October 28, 2004 —

150 Tree Set Automata

easy for automata without acceptance conditions (it corresponds to the case of
positive set constraints only). The proof is more difficult and technical in the
general case and is not presented here. Moreover, and this is the main advantage
of an automaton-based method, properties of recognizable sets directly translate
to sets of solutions of systems of set constraints. Therefore, we are able to prove
nice properties. For instance, we can prove that a non empty set of solutions
always contain a regular solution. Moreover we can prove the decidability of
existence of finite solutions.

5.2 Definitions and Examples

Infinite tree automata are an acceptor model for infinite trees, i.e. for mappings
from A∗ into E where A is a finite alphabet and E is a finite set of labels. We
define and study F-generalized tree set automata which are an acceptor model
for mappings from T (F) into E where F is a finite ranked alphabet and E is a
finite set of labels.

5.2.1 Generalized Tree Sets

Let F be a ranked alphabet and E be a finite set. An E-valued F-generalized

tree set g is a mapping from T (F) into E. We denote by GE the set of E-valued
F-generalized tree sets.

For the sake of brevity, we do not mention the signature F which strictly
speaking is in order in generalized tree sets. We also use the abbreviation GTS
for generalized tree sets.

Throughout the chapter, if c ∈ {0, 1}n, then ci denotes the ith component
of the tuple c. If we consider the set E = {0, 1}n for some n, a generalized tree
set g in G{0,1}n can be considered as a n-tuple (L1, . . . , Ln) of tree languages
over the ranked alphabet F where Li = {t ∈ T (F) | g(t)i = 1}.

We will need in the chapter the following operations on generalized tree sets.
Let g (resp. g′) be a generalized tree set in GE (resp. GE′). The generalized
tree set g ↑ g′ ∈ GE×E′ is defined by g ↑ g′(t) = (g(t), g′(t)), for each term t
in T (F). Conversely let g be a generalized tree set in GE×E′ and consider the
projection π from E × E′ into the E-component then π(g) is the generalized
tree set in GE defined by π(g)(t) = π(g(t)). Let G ⊆ GE×E′ and G′ ⊆ GE , then
π(G) = {π(g) | g ∈ G} and π−1(G′) = {g ∈ GE×E′ | π(g) ∈ G′}.

5.2.2 Tree Set Automata

A generalized tree set automaton A = (Q,∆,Ω) (GTSA) over a finite set
E consist of a finite state set Q, a transition relation ∆ ⊆

⋃
p Qp ×Fp ×E ×Q

and a set Ω ⊆ 2Q of accepting sets of states.
A run of A (or A-run) on a generalized tree set g ∈ GE is a mapping

r : T (F) → Q with :

(r(t1), . . . , r(tp), f, g(f(t1, . . . , tp)), r(f(t1, . . . , tp))) ∈ ∆

for t1, . . . , tp ∈ T (F) and f ∈ Fp. The run r is successful if the range of r is
in Ω i.e. r(T (F)) ∈ Ω.

TATA — October 28, 2004 —

5.2 Definitions and Examples 151

A generalized tree set g ∈ GE is accepted by the automaton A if some run
r of A on g is successful. We denote by L(A) the set of E-valued generalized
tree sets accepted by a generalized tree set automaton A over E. A set G ⊆ GE

is recognizable if G = L(A) for some generalized tree set automaton A.

In the following, a rule (q1, . . . , qp, f, l, q) is also denoted by f(q1, . . . , qp) l
→ q.

Consider a term t = f(t1, . . . , tp) and a rule f(q1, . . . , qp) l
→ q, this rule can

be applied in a run r on a generalized tree set g for the term t if r(t1) =
q1,. . . ,r(tp) = qp, t is labeled by l, i.e. g(t) = l. If the rule is applied, then
r(t) = q.

A generalized tree set automaton A = (Q,∆,Ω) over E is

• deterministic if for each tuple (q1, . . . , qp, f, l) ∈ Qp ×Fp ×E there is at
most one state q ∈ Q such that (q1, . . . , qp, f, l, q) ∈ ∆.

• strongly deterministic if for each tuple (q1, . . . , qp, f) ∈ Qp ×Fp there
is at most one pair (l, q) ∈ E × Q such that (q1, . . . , qp, f, l, q) ∈ ∆.

• complete if for each tuple (q1, . . . , qp, f, l) ∈ Qp ×Fp ×E there is at least
one state q ∈ Q such that (q1, . . . , qp, f, l, q) ∈ ∆.

• simple if Ω is “subset-closed”, that is ω ∈ Ω ⇒ (∀ω′ ⊆ ω ω′ ∈ Ω).

Successfulness for simple automata just implies some states are not assumed
along a run. For instance, if the accepting set of a GTSA A is Ω = 2Q then A is
simple and any run is successful. But, if Ω = {Q}, then A is not simple and each
state must be assumed at least once in a successful run. The definition of simple
automata will be clearer with the relationships with set constraints and the
emptiness property (see Section 5.4). Briefly, positive set constraints are related
to simple GTSA for which the proof of emptiness decision is straightforward.
Another and equivalent definition for simple GTSA relies on the acceptance
condition : a run r is successful if and only if r(T (F)) ⊆ ω ∈ Ω.

There is in general an infinite number of runs — and hence an infinite
number of GTS recognized — even in the case of deterministic generalized tree
set automata (see example 49.2). Nonetheless, given a GTS g, there is at most
one run on g for a deterministic generalized tree set automata. But, in the case
of strongly deterministic generalized tree set automata, there is at most one run
(see example 49.1) and therefore there is at most one GTS recognized.

Example 49.
Ex. 49.1 Let E = {0, 1}, F = {cons(,), s(), nil, 0}. Let A = (Q,∆,Ω) be

defined by Q = {Nat, List,Term}, Ω = 2Q, and ∆ is the following set of
rules:

0 0
→Nat ; s(Nat) 0

→Nat ; nil 1
→ List ;

cons(Nat, List) 1
→ List ;

cons(q, q′) 0
→Term ∀(q, q′) 6= (Nat, List) ;

s(q) 0
→Term ∀q 6= Nat .

A is strongly deterministic, simple, and not complete. L(A) is a singleton
set. Indeed, there is a unique run r on a unique generalized tree set g ∈
G{0,1}n . The run r maps every natural number on state Nat, every list on

TATA — October 28, 2004 —

152 Tree Set Automata

state List and the other terms on state Term. Therefore g maps a natural
number on 0, a list on 1 and the other terms on 0. Hence, we say that L(A)
is the regular tree language L of Lisp-like lists of natural numbers.

Ex. 49.2 Let E = {0, 1}, F = {cons(,), s(), nil, 0}, and let A′ = (Q′,∆′,Ω′)
be defined by Q′ = Q, Ω′ = Ω, and

∆′ = ∆ ∪ {cons(Nat, List) 0
→ List, nil 0

→ List}.

A′ is deterministic (but not strongly), simple, and not complete, and L(A′)
is the set of all subsets of the regular tree language L of Lisp-like lists of
natural numbers. Indeed, successful runs can now be defined on generalized
tree sets g such that a term in L is labeled by 0 or 1.

Ex. 49.3 Let E = {0, 1}2, F = {cons(,), s(), nil, 0}, and let A = (Q,∆,Ω)
be defined by Q = {Nat,Nat

′, List,Term}, Ω = 2Q, and ∆ is the following
set of rules:

0 (0,0)
→ Nat ; 0 (1,0)

→ Nat
′ ; s(Nat) (0,0)

→ Nat

s(Nat) (1,0)
→ Nat

′ ; s(Nat
′) (0,0)

→ Nat ; s(Nat
′) (1,0)

→ Nat
′

nil
(0,1)
→ List ; cons(Nat

′, List) (0,1)
→ List ;

s(q) (0,0)
→ Term ∀q 6= Nat

cons(q, q′) (0,0)
→ Term ∀(q, q′) 6= (Nat

′, List)

A is deterministic, simple, and not complete, and L(A) is the set of 2-tuples
of tree languages (N ′, L′) where N ′ is a subset of the regular tree language
of natural numbers and L′ is the set of Lisp-like lists of natural numbers
over N ′.

Let us remark that the set N ′ may be non-regular. For instance, one can
define a run on a characteristic generalized tree set gp of Lisp-like lists of
prime numbers. The generalized tree set gp is such that gp(t) = (1, 0) when
t is a (code of a) prime number.

In the previous examples, we only consider simple generalized tree set au-
tomata. Moreover all runs are successful runs. The following examples are
non-simple generalized tree set automata in order to make clear the interest of
acceptance conditions. For this, compare the sets of generalized tree sets ob-
tained in examples 49.3 and 50 and note that with acceptance conditions, we
can express that a set is non empty.

Example 50. Example 49.3 continued
Let E = {0, 1}2, F = {cons(,), nil, s(), 0}, and let A′ = (Q′,∆′,Ω′) be

defined by Q′ = Q, ∆′ = ∆, and Ω′ = {ω ∈ 2Q | Nat
′ ∈ ω}. A′ is deterministic,

not simple, and not complete, and L(A′) is the set of 2-tuples of tree languages
(N ′, L′) where N ′ is a subset of the regular tree language of natural numbers
and L′ is the set of Lisp-like lists of natural numbers over N ′, and N ′ 6= ∅.
Indeed, for a successful r on g, there must be a term t such that r(t) = Nat

′

therefore, there must be a term t labelled by (1, 0), henceforth N ′ 6= ∅.

TATA — October 28, 2004 —

5.2 Definitions and Examples 153

5.2.3 Hierarchy of GTSA-recognizable Languages

Let us define:

• RGTS, the class of languages recognizable by GTSA,

• RDGTS, the class of languages recognizable by deterministic GTSA,

• RSGTS, the class of languages recognizable by Simple GTSA.

The three classes defined above are proved to be different. They are also
closely related to classes of languages defined from the set constraint theory
point of view.

RGTS

RDGTS

RSGTS

Figure 5.5: Classes of GTSA-recognizable languages

Classes of GTSA-recognizable languages have also different closure prop-
erties. We will prove in Section 5.3.1 that RSGTS and the entire class RGTS

are closed under union, intersection, projection and cylindrification; RDGTS is
closed under complementation and intersection.

We propose three examples that illustrate the differences between the three
classes. First, RDGTS is not a subset of RSGTS.

Example 51. Let E = {0, 1}, F = {f, a} where a is a constant and f is unary.
Let us consider the deterministic but non-simple GTSA A1 = ({q0, q1},∆1,Ω1)
where ∆1 is:

a 0
→ q0, a 1

→ q1,

f(q0) 0
→ q0, f(q1) 0

→ q0,

f(q0) 1
→ q1, f(q1) 1

→ q0.

and Ω1 = {{q0, q1}, {q1}}. Let us prove that

L(A1) = {L | L 6= ∅}

is not in RSGTS.
Assume that there exists a simple GTSA As with n states such that L(A1) =

L(As). Hence, As recognizes also each one of the singleton sets {f i(a)} for i > 0.
Let us consider some i greater than n + 1, we can deduce that a run r on the
GTS g associated with {f i(a)} maps two terms fk(a) and f l(a), k < l < i to

TATA — October 28, 2004 —

154 Tree Set Automata

the same state. We have g(t) = 0 for every term t£f l(a) and r “loops” between
fk(a) and f l(a). Therefore, one can build another run r0 on a GTS g0 such
that g0(t) = 0 for each t ∈ T (F). Since As is simple, and since the range of r0

is a subset of the range of r, g0 is recognized, hence the empty set is recognized
which contradicts the hypothesis.

Basically, using simple GTSA it is not possible to enforce a state to be
assumed somewhere by every run. Consequently, it is not possible to express
global properties of generalized tree languages such as non-emptiness.

Second, RSGTS is not a subset of RDGTS.

Example 52. Let us consider the non-deterministic but simple GTSA A2 =
({qf , qh},∆2,Ω2) where ∆2 is:

a 0
→ qf | qh, a 1

→ qf | qh,

f(qf) 1
→ qf | qh, h(qh) 1

→ qf | qh,

f(qh) 0
→ qf | qh, h(qf) 0

→ qf | qh,

and Ω2 = 2{qf ,qh}. It is easy to prove that L(A2) = {L | ∀t f(t) ∈ L ⇔ h(t) 6∈
L}. The proof that no deterministic GTSA recognizes L(A2) is left to the reader.

We terminate with an example of a non-deterministic and non-simple gen-
eralized tree set automaton. This example will be used in the proof of Proposi-
tion 36.

Example 53. Let A = (Q,∆,Ω) be defined by Q = {q, q′}, Ω = {Q}, and ∆ is
the following set of rules:

a 1
→ q ; a 1

→ q′ ; a 0
→ q′ ; f(q) 1

→ q ;
f(q′) 0

→ q′ ; f(q′) 1
→ q′ ; f(q′) 1

→ q ;

The proof that A is not deterministic, not simple, and not complete, and
L(A) = {L ⊆ T (F) | ∃t ∈ T (F) ((t ∈ L) ∧ (∀t′ ∈ T (F) (t £ t′) ⇒ (t′ ∈ L)))} is
left as an exercise to the reader.

5.2.4 Regular Generalized Tree Sets, Regular Runs

As we mentioned it in Example 49.3, the set recognized by a GTSA may contain
GTS corresponding to non-regular languages. But regularity is of major interest
for practical reasons because it implies a GTS or a language to be finitely defined.

A generalized tree set g ∈ GE is regular if there exist a finite set R, a
mapping α : T (F) → R, and a mapping β : R → E satisfying the following two
properties.

1. g = αβ (i.e. g = β ◦ α),

TATA — October 28, 2004 —

5.2 Definitions and Examples 155

2. α is closed under contexts, i.e. for all context c and terms t1, t2, we have

(α(t1) = α(t2)) ⇒ (α(c[t1]) = α(c[t2]))

In the case E = {0, 1}n, regular generalized tree sets correspond to n-tuples
of regular tree languages.

Although the definition of regularity could lead to the definition of regular
run — because a run can be considered as a generalized tree set in GQ, we use
stronger conditions for a run to be regular. Indeed, if we define regular runs
as regular generalized tree sets in GQ, regularity of generalized tree sets and
regularity of runs do not correspond in general. For instance, one could define
regular runs on non-regular generalized tree sets in the case of non-strongly de-
terministic generalized tree set automata, and one could define non-regular runs
on regular generalized tree sets in the case of non-deterministic generalized tree
set automata. Therefore, we only consider regular runs on regular generalized
tree sets:

A run r on a generalized tree set g is regular if r ↑ g ∈ GE×Q

is regular. Consequently, r and g are regular generalized tree sets.

Proposition 33. Let A be a generalized tree set automaton, if g is a regular
generalized tree set in L(A) then there exists a regular A-run on g.

Proof. Consider a generalized tree set automaton A = (Q,∆,Ω) over E and a
regular generalized tree set g in L(A) and let r be a successful run on g. Let
L be a finite tree language closed under the subterm relation and such that
F0 ⊆ L and r(L) = r(T (F)). The generalized tree set g is regular, therefore
there exist a finite set R, a mapping α : T (F) → R closed under context and a
mapping β : R → E such that g = αβ. We now define a regular run r′ on g.

Let L? = L∪{?} where ? is a new constant symbol and let φ be the mapping
from T (F) into Q×R×L? defined by φ(t) = (r(t), α(t), u) where u = t if t ∈ L
and u = ? otherwise. Hence R′ = φ(T (F)) is a finite set because R′ ⊆ Q×R×L?.
For each ρ in R′, let us fix tρ ∈ T (F) such that φ(tρ) = ρ.

The run r′ is now (regularly) defined via two mappings α′ and β′. Let β′ be
the projection from Q × R × L? into Q and let α′ : T (F) → R′ be inductively
defined by :

∀a ∈ F0 α′(a) = φ(a);

and

∀f ∈ Fp∀t1, . . . , tp ∈ T (F)

α′(f(t1, . . . , tp)) = φ(f(tα′(t1), . . . , tα′(tp))).

Let r′ = α′β′. First we can easily prove by induction that ∀t ∈ L α′(t) = φ(t)
and deduce that ∀t ∈ L r′(t) = r(t). Thus r′ and r coincide on L. It remains
to prove that (1) the mapping α′ is closed under context, (2) r′ is a run on g
and (3) r′ is a successful run.

(1) From the definition of α′ we can easily derive that the mapping α′ is closed
under context.

TATA — October 28, 2004 —

156 Tree Set Automata

(2) We prove that the mapping r′ = α′β′ is a run on g, that is if t = f(t1, . . . , tp)
then (r′(t1), . . . , r

′(tp), f, g(t), r′(t)) ∈ ∆.

Let us consider a term t = f(t1, . . . , tp). From the definitions of α′, β′, and
r′, we get r′(t) = r(t′) with t′ = f(tα′(t1), . . . , tα′(tp)). The mapping r is a run
on g, hence (r(tα′(t1)), . . . , r(tα′(tp)), f, g(t′), r(t′)) ∈ ∆, and thus it suffices to
prove that g(t) = g(t′) and, for all i, r′(ti) = r(tα′(ti)).

Let i ∈ {1, . . . , p}, r′(ti) = β′(α′(ti)) by definition of r′. By definition of tα′(ti),
α′(ti) = φ(tα′(ti)), therefore r′(ti) = β′(φ(tα′(ti))). Now, using the definitions
of φ and β′, we get r′(ti) = r(tα′(ti)).

In order to prove that g(t) = g(t′), we prove that α(t) = α(t′). Let π be
the projection from R′ into R. We have α(t′) = π(φ(t′)) by definition of
φ and π. We have α(t′) = π(α′(t)) using definitions of t′ and α′. Now
α(t′) = π(φ(tα′(t))) because φ(tα′(t)) = α′(t) by definition of tα′(t). And then
α(t′) = α(tα′(t)) by definition of π and φ. Therefore it remains to prove that
α(tα′(t)) = α(t). The proof is by induction on the structure of terms.

If t ∈ F0 then tα′(t) = t, so the property holds (note that this property holds
for all t ∈ L). Let us suppose that t = f(t1, . . . , tp) and α(tα′(ti)) = α(ti) ∀i ∈
{1, . . . , p}. First, using induction hypothesis and closure under context of α,
we get

α(f(t1, . . . , tp)) = α(f(tα′(t1), . . . , tα′(tp)))

Therefore,

α(f(t1, . . . , tp)) = α(f(tα′(t1), . . . , tα′(tp)))

= π(φ(f(tα′(t1), . . . , tα′(tp)))) (def. of φ and π)

= π(α′(f(t1, . . . , tp))) (def. of α′)

= π(φ(tα′(f(t1,...,tp)))) (def. of tα′(f(t1,...,tp)))

= α(tα′(f(t1,...,tp))) (def. of φ and π).

(3) We have r′(T (F)) = r′(L) = r(L) = r(T (F)) using the definition of r′, the
definition of L, and the equality r′(L) = r(L). The run r is a successful run.
Consequently r′ is a successful run.

Proposition 34. A non-empty recognizable set of generalized tree sets contains
a regular generalized tree set.

Proof. Let us consider a generalized tree set automaton A and a successful run
r on a generalized tree set g. There exists a tree language closed under the
subterm relation F such that r(F) = r(T (F)). We define a regular run rr on a
regular generalized tree set gg in the following way.

The run rr coincides with r on F : ∀t ∈ F , rr(t) = r(t) and gg(t) = g(t). The
runs rr and gg are inductively defined on T (F)\F : given q1, . . . , qp in r(T (F)),
let us fix a rule f(q1, . . . , qp) l

→ q such that q ∈ r(T (F)). The rule exists since
r is a run. Therefore, ∀t = f(t1, . . . , tp) 6∈ F such that rr(ti) = qi for all i ≤ p,
we define rr(t) = q and gg(t) = l, following the fixed rule f(q1, . . . , qp) l

→ q.

TATA — October 28, 2004 —

5.3 Closure and Decision Properties 157

From the preceding, we can also deduce that a finite and recognizable set of
generalized tree sets only contains regular generalized tree sets.

5.3 Closure and Decision Properties

5.3.1 Closure properties

This section is dedicated to the study of classical closure properties on GTSA-
recognizable languages. For all positive results — union, intersection, projec-
tion, cylindrification — the proofs are constructive. We show that the class of
recognizable sets of generalized tree sets is not closed under complementation
and that non-determinism cannot be reduced for generalized tree set automata.

Set operations on sets of GTS have to be distinguished from set operations
on sets of terms. In particular, in the case where E = {0, 1}n, if G1 and G2 are
sets of GTS in GE , then G1 ∪G2 contains all GTS in G1 and G2. This is clearly
different from the set of all (L1

1 ∪ L2
1, . . . , L

1
n ∪ L2

n) where (L1
1, . . . , L

1
n) belongs

to G1 and (L2
1, . . . , L

2
n) belongs to G2.

Proposition 35. The class RGTS is closed under intersection and union, i.e.
if G1, G2 ⊆ GE are recognizable, then G1 ∪ G2 and G1 ∩ G2 are recognizable.

This proof is an easy modification of the classical proof of closure properties
for tree automata, see Chapter 1.

Proof. Let A1 = (Q1,∆1,Ω1) and A2 = (Q2,∆2,Ω2) be two generalized tree
set automata over E. Without loss of generality we assume that Q1 ∩ Q2 = ∅.

Let A = (Q,∆,Ω) with Q = Q1 ∪Q2, ∆ = ∆1 ∪∆2, and Ω = Ω1 ∪Ω2. It is
immediate that L(A) = L(A1) ∪ L(A2).

We denote by π1 and π2 the projections from Q1 × Q2 into respectively Q1

and Q2. Let A′ = (Q′,∆′,Ω′) with Q′ = Q1 × Q2, ∆′ is defined by

(f(q1, . . . , qp) l
→ q ∈ ∆′) ⇔ (∀i ∈ {1, 2} f(πi(q1), . . . , πi(qp)) l

→πi(q) ∈ ∆i) ,

where q1, . . . , qp, q ∈ Q′, f ∈ Fp, l ∈ E, and Ω′ is defined by

Ω′ = {ω ∈ 2Q′

| πi(ω) ∈ Ωi , i ∈ {1, 2}}.

One can easily verify that L(A′) = L(A1) ∩ L(A2) .

Let us remark that the previous constructions also prove that the class RSGTS

is closed under union and intersection.
The class languages recognizable by deterministic generalized tree set au-

tomata is closed under complementation. But, this property is false in the
general case of GTSA-recognizable languages.

Proposition 36. (a) Let A be a generalized tree set automaton, there exists
a complete generalized tree set automaton Ac such that L(A) = L(Ac).

(b) If Acd is a deterministic and complete generalized tree set automaton, there
exists a generalized tree set automaton A′ such that L(A′) = GE −L(Acd).

TATA — October 28, 2004 —

158 Tree Set Automata

(c) The class of GTSA-recognizable languages is not closed under complemen-
tation.

(d) Non-determinism can not be reduced for generalized tree set automata.

Proof. (a) Let A = (Q,∆,Ω) be a generalized tree set automaton over E and let
q′ be a new state, i.e. q′ 6∈ Q. Let Ac = (Qc,∆c,Ωc) be defined by Qc = Q∪{q′},
Ωc = Ω, and

∆c = ∆ ∪ {(q1, . . . , qp, f, l, q′) | {(q1, . . . , qp, f, l)} × Q ∩ ∆ = ∅;

q1, . . . , qp ∈ Qc, f ∈ Fp, l ∈ E}.

Ac is complete and L(A) = L(Ac). Note that Ac is simple if A is simple.

(b) Acd = (Q,∆,Ω) be a deterministic and complete generalized tree set
automaton over E. The automaton A′ = (Q′,∆′,Ω′) with Q′ = Q, ∆′ = ∆,
and Ω′ = 2Q − Ω recognizes the set GE − L(Acd).

(c) E = {0, 1}, F = {c, a} where a is a constant and c is of arity 1. Let
G = {g ∈ G{0,1}n | ∃t ∈ T (F) ((g(t) = 1)∧ (∀t′ ∈ T (F) (t£ t′) ⇒ (g(t′) = 1)))}.
Clearly, G is recognizable by a non deterministic GTSA (see Example 53). Let
G = G{0,1}n − G, we have G = {g ∈ G{0,1}n | ∀t ∈ T (F) ∃t′ ∈ T (F) (t £ t′) ∧

(g(t′) = 0)} and G is not recognizable. Let us suppose that G is recognized
by an automaton A = (Q,∆,Ω) with Card(Q) = k − 2 and let us consider the
generalized tree set g defined by: g(ci(a)) = 0 if i = k × z for some integer z,
and g(ci(a)) = 1 otherwise. The generalized tree set g is in G and we consider
a successful run r on g. We have r(T (F)) = ω ∈ Ω therefore there exists some
integer n such that r({g(ci(a)) | i ≤ n}) = ω. Moreover we can suppose that n
is a multiple of k. As Card(Q) = k − 2 there are two terms u and v in the set
{ci(a) | n+1 ≤ i ≤ n+k−1} such that r(u) = r(v). Note that by hypothesis, for
all i such that n+1 ≤ i ≤ n+k+1, g(ci(a)) = 1. Consequently, a successful run
g′ could be defined from g on the generalized tree set g′ defined by g′(t) = g(t)
if t = ci(a) when i ≤ n, and g′(t) = 1 otherwise. This leads to a contradiction
because g′ 6∈ G.

(d) This result is a consequence of (b) and (c).

We will now prove the closure under projection and cylindrification. We will
first prove a stronger lemma.

Lemma 8. Let G ⊆ GE1
be a GTSA-recognizable language and let R ⊆ E1×E2.

The set R(G) = {g′ ∈ GE2
| ∃g ∈ G ∀t ∈ T (F) (g(t), g′(t)) ∈ R} is recognizable.

Proof. Let A = (Q,∆,Ω) such that L(A) = G. Let A′ = (Q′,∆′,Ω′) where

Q′ = Q, ∆′ = {f(q1, . . . , qp) l′
→ q | ∃l ∈ E1 f(q1, . . . , qp) l

→ q ∈ ∆ and (l, l′) ∈ R}
and Ω′ = Ω. We prove that R(G) = L(A′).

⊇ Let g′ ∈ L(A′) and let r′ be a successful run on g′. We construct a generalized
tree set g such that for all t ∈ T (F), (g(t), g′(t)) ∈ R and such that r′ is
also a successful A-run on g.

TATA — October 28, 2004 —

5.3 Closure and Decision Properties 159

Let a be a constant. According to the definition of ∆′, a g′(a)
→ r′(a) ∈ ∆′

implies that there exists la such that (la, g′(a)) ∈ R and a la→ r′(a) ∈ ∆.
So let g(a) = la.

Let t = f(t1, . . . , tp) with ∀i r′(ti) = qi. There exists a rule f(q1, . . . , qp)
g′(t)
→ r′(t)

in ∆′ because r′ is a run on g′ and again, from the definition of ∆′, there
exists lt ∈ E1 such that f(q1, . . . , qp) lt→ r′(t) in ∆ with (lt(t), g

′(t)) ∈ R.
So, we define g(t) = lt. Clearly, g is a generalized tree set and r′ is a
successful run on g and for all t ∈ T (F), (g(t), g′(t)) ∈ R by construction.

⊆ Let g′ ∈ R(G) and let g ∈ G such that ∀t ∈ T (F) (g(t), g′(t)) ∈ R. One can
easily prove that any successful A-run on g is also a successful A′-run on
g′.

Let us recall that if g is a generalized tree set in GE1×···×En
, the ith projection

of g (on the Ei-component, 1 ≤ i ≤ n) is the GTS πi(g) defined by: let π from
E1 × · · · ×En into Ei, such that π(l1, . . . , ln) = li and let πi(g)(t) = π(g(t)) for
every term t. Conversely, the ith cylindrification of a GTS g denoted by π−1

i (g)
is the set of GTS g′ such that πi(g

′) = g. Projection and cylindrification are
usually extended to sets of GTS.

Corollary 7. (a) The class of GTSA-recognizable languages is closed under
projection and cylindrification.

(b) Let G ⊆ GE and G′ ⊆ GE′ be two GTSA-recognizable languages. The set
G ↑ G′ = {g ↑ g′ | g ∈ G, g′ ∈ G′} is a GTSA-recognizable language in
GE×E′ .

Proof. (a) The case of projection is an immediate consequence of Lemma 8
using E1 = E × E′, E2 = E, and R = π where π is the projection from
E × E′ into E. The case of cylindrification is proved in a similar way.

(b) Consequence of (a) and of Proposition 35 because G ↑ G′ = π−1
1 (G) ∩

π−1
2 (G′) where π−1

1 (respectively π−1
2) is the inverse projection from E to

E × E′ (respectively from E′ to E × E′).
Let us remark that the construction preserves simplicity, so RSGTS is closed

under projection and cylindrification.

We now consider the case E = {0, 1}n and we give two propositions without
proof. Proposition 37 can easily be deduced from Corollary 7. The proof of
Proposition 38 is an extension of the constructions made in Examples 49.1 and
49.2.

Proposition 37. Let A and A′ be two generalized tree set automata over
{0, 1}n.

(a) {(L1 ∪ L′
1, . . . , Ln ∪ L′

n) | (L1, . . . , Ln) ∈ L(A) and (L′
1, . . . , L

′
n) ∈ L(A′)}

is recognizable.

(b) {(L1 ∩ L′
1, . . . , Ln ∩ L′

n) | (L1, . . . , Ln) ∈ L(A) and (L′
1, . . . , L

′
n) ∈ L(A′)}

is recognizable.

TATA — October 28, 2004 —

160 Tree Set Automata

(c) {(L1, . . . , Ln) | (L1, . . . , Ln) ∈ L(A)} is recognizable, where Li = T (F) −
Li, ∀i.

Proposition 38. Let E = {0, 1}n and let (F1, . . . , Fn) be a n-tuple of regular
tree languages. There exist deterministic simple generalized tree set automata
A , A′, and A′′ such that

• L(A) = {(F1, . . . , Fn)};

• L(A′) = {(L1, . . . , Ln) | L1 ⊆ F1, . . . , Ln ⊆ Fn};

• L(A′′) = {(L1, . . . , Ln) | F1 ⊆ L1, . . . , Fn ⊆ Ln}.

5.3.2 Emptiness Property

Theorem 44. The emptiness property is decidable in the class of generalized
tree set automata. Given a generalized tree set automaton A, it is decidable
whether L(A) = ∅.

Labels of the generalized tree sets are meaningless for the emptiness deci-
sion thus we consider “label-free” generalized tree set automata. Briefly, the
transition relation of a “label-free” generalized tree set automata is a relation
∆ ⊆ ∪p Qp ×Fp × Q.

The emptiness decision algorithm for simple generalized tree set automata
is straightforward. Indeed, Let ω be a subset of Q and let COND(ω) be the
following condition:

∀p ∀f ∈ Fp ∀q1, . . . , qp ∈ ω ∃q ∈ ω (q1, . . . , qp, f, q) ∈ ∆

We easily prove that there exists a set ω satisfying COND(ω) if and only if
there exists an A-run. Therefore, the emptiness problem for simple generalized
tree set automata is decidable because 2Q is finite and COND(ω) is decidable.
Decidability of the emptiness problem for simple generalized tree set automata
is NP-complete (see Prop. 39).

The proof is more intricate in the general case, and it is not given in this
book. Without the property of simple GTSA, we have to deal with a reachability
problem of a set of states since we have to check that there exists ω ∈ Ω and a
run r such that r assumes exactly all the states in ω.

We conclude this section with a complexity result of the emptiness problem
in the class of generalized tree set automata.

Let us remark that a finite initial fragment of a “label-free” generalized tree
set corresponds to a finite set of terms that is closed under the subterm relation.
The size or the number of nodes in such an initial fragment is the number of
different terms in the subterm-closed set of terms (the cardinality of the set of
terms). The size of a GTSA is given by:

‖A‖ = |Q| +
∑

f(q1,...,qp) l→ q∈∆

(arity(f) + 3) +
∑

ω∈Ω

|ω|.

Let us consider a GTSA A with n states. The proof shows that one must
consider at most all initial fragments of runs —hence corresponding to finite

TATA — October 28, 2004 —

5.3 Closure and Decision Properties 161

tree languages closed under the subterm relation— of size smaller than B(A),
a polynomial in n, in order to decide emptiness for A. Let us remark that the
polynomial bound B(A) can be computed. The emptiness proofs relies on the
following lemma:

Lemma 9. There exists a polynomial function f of degree 4 such that:

Let A = (Q,∆,Ω) be a GTSA. There exists a successful run rs such
that rs(T (F)) = ω ∈ Ω if and only if there exists a run rm and a
closed tree language F such that:

• rm(T (F)) = rm(F) = ω;

• Card(F) ≤ f(n) where n is the number of states in ω.

Proposition 39. The emptiness problem in the class of (simple) generalized
tree set automata is NP-complete.

Proof. Let A = (Q,∆,Ω) be a generalized tree set automaton over E. Let
n = Card(Q).

We first give a non-deterministic and polynomial algorithm for deciding
emptiness: (1) take a tree language F closed under the subterm relation such
that the number of different terms in it is smaller than B(A); (2) take a run
r on F ; (3) compute r(F); (4) check whether r(F) = ω is a member of Ω; (5)
check whether ω satisfies COND(ω).

From Theorem 44, this algorithm is correct and complete. Moreover, this
algorithm is polynomial in n since (1) the size of F is polynomial in n: step
(2) consists in labeling the nodes of F with states following the rules of the
automaton – so there is a polynomial number of states, step (3) consists in
collecting the states; step (4) is polynomial and non-deterministic and finally,
step (5) is polynomial.

We reduce the satisfiability problem of boolean expressions into the empti-
ness problem for generalized tree set automata. We first build a generalized
tree set automaton A such that L(A) is the set of (codes of) satisfiable boolean
expressions over n variables {x1, . . . , xn}.

Let F = F0∪F1∪F2 where F0 = {x1, . . . , xn}, F1 = {¬}, and F2 = {∧,∨}.
A boolean expression is a term of T (F). Let Bool = {0, 1} be the set of boolean
values. Let A = (Q,∆,Ω), be a generalized tree set automaton such that
Q = {q0, q1}, Ω = 2Q and ∆ is the following set of rules:

xj
i
→ qi where j ∈ {1, . . . , n} and i ∈ Bool

¬(qi) ¬i
→ q¬i where i ∈ Bool

∨(qi1 , qi2)
i1∨i2→ qi1∨i2 where i1, i2 ∈ Bool

∧(qi1 , qi2)
i1∧i2→ qi1∧i2 where i1, i2 ∈ Bool

One can easily prove that L(A) = {Lv | v is a valuation of {x1, . . . , xn}}
where Lv = {t | t is a boolean expression which is true under v}. Lv corresponds
to a run rv on a GTS gv and gv labels each xj either by 0 or 1. Hence, gv can
be considered as a valuation v of x1, . . . , xn. This valuation is extended in gv to
every node, that is to say that every term (representing a boolean expression)

TATA — October 28, 2004 —

162 Tree Set Automata

is labeled either by 0 or 1 accordingly to the usual interpretation of ¬, ∧, ∨. A
given boolean expression is hence labeled by 1 if and only if it is true under the
valuation v.

Now, we can derive an algorithm for the satisfiability of any boolean expres-
sion e: build Ae a generalized tree set automaton such that L(A) is the set of
all tree languages containing e: {L | e ∈ L}; build Ae ∩A and decide emptiness.

We get then the reduction because Ae ∩ A is empty if and only if e is not
satisfiable.

Now, it remains to prove that the reduction is polynomial. The size of A
is 2 ∗ n + 10. The size of Ae is the length of e plus a constant. So we get the
result.

5.3.3 Other Decision Results

Proposition 40. The inclusion problem and the equivalence problem for deter-
ministic generalized tree set automata are decidable.

Proof. These results are a consequence of the closure properties under inter-
section and complementation (Propositions 35, 36), and the decidability of the
emptiness property (Theorem 44).

Proposition 41. Let A be a generalized tree set automaton. It is decidable
whether or not L(A) is a singleton set.

Proof. Let A be a generalized tree set automaton. First it is decidable whether
L(A) is empty or not (Theorem 44). Second if L(A) is non empty then a regular
generalized tree set g in L(A) can be constructed (see the proof of Theorem
44). Construct the strongly deterministic generalized tree set automaton A′

such that L(A′) is a singleton set reduced to the generalized tree set g. Finally,

build A∩A
′
to decide the equivalence of A and A′. Note that we can build A

′
,

since A′ is deterministic (see Proposition 36).

Proposition 42. Let L = (L1, . . . , Ln) be a tuple of regular tree language and
let A be a generalized tree set automaton over {0, 1}n. It is decidable whether
L ∈ L(A).

Proof. This result just follows from closure under intersection and emptiness
decidability.

First construct a (strongly deterministic) generalized tree set automaton AL

such that L(A) is reduced to the singleton set {L}. Second, construct A ∩ AL

and decide whether L(A ∩AL) is empty or not.

Proposition 43. Given a generalized tree set automaton over E = {0, 1, }n

and I ⊆ {1, . . . , n}. The following two problems are decidable:

1. It is decidable whether or not there exists (L1, . . . , Ln) in L(A) such that
all the Li are finite for i ∈ I.

2. Let x1 . . . , xn be natural numbers. It is decidable whether or not there
exists (L1, . . . , Ln) in L(A) such that Card(Li) = xi for each i ∈ I.

The proof is technical and not given in this book. It relies on Lemma 9 of
the emptiness decision proof.

TATA — October 28, 2004 —

5.4 Applications to Set Constraints 163

5.4 Applications to Set Constraints

In this section, we consider the satisfiability problem for systems of set con-
straints. We show a decision algorithm using generalized tree set automata.

5.4.1 Definitions

Let F be a finite and non-empty set of function symbols. Let X be a set of
variables. We consider special symbols >, ⊥, ∼, ∪, ∩ of respective arities 0, 0,
1, 2, 2. A set expression is a term in TF ′(X) where F ′ = F ∪ {>,⊥,∼,∪,∩}.

A set constraint is either a positive set constraint of the form e ⊆ e′ or a
negative set constraint of the form e 6⊆ e′ (or ¬(e ⊆ e′)) where e and e′ are set

expressions, and a system of set constraints is defined by
∧k

i=1 SCi where the
SCi are set constraints.

An interpretation I is a mapping from X into 2T (F). It can immediately be
extended to set expressions in the following way:

I(>) = T (F);

I(⊥) = ∅;

I(f(e1, . . . , ep)) = f(I(e1), . . . , I(ep));

I(∼ e) = T (F) \ I(e);

I(e ∪ e′) = I(e) ∪ I(e′);

I(e ∩ e′) = I(e) ∩ I(e′).

We deduce an interpretation of set constraints in Bool = {0, 1}, the Boolean
values. For a system of set constraints SC, all the interpretations I such that
I(SC) = 1 are called solutions of SC. In the remainder, we will consider
systems of set constraints of n variables X1, . . . ,Xn. We will make no distinction
between a solution I of a system of set constraints and a n-tuple of tree languages
(I(X1), . . . , I(Xn)). We denote by SOL(SC) the set of all solutions of a system
of set constraints SC.

5.4.2 Set Constraints and Automata

Proposition 44. Let SC be a system of set constraints (respectively of positive
set constraints) of n variables X1, . . . ,Xn. There exists a deterministic (respec-
tively deterministic and simple) generalized tree set automaton A over {0, 1}n

such that L(A) is the set of characteristic generalized tree sets of the n-tuples
(L1, . . . , Ln) of solutions of SC.

Proof. First we reduce the problem to a single set constraint. Let SC = C1 ∧
. . . ∧ Ck be a system of set constraints. A solution of SC satisfies all the
constraints Ci. Let us suppose that, for every i, there exists a deterministic
generalized tree set automaton Ai such that SOL(Ci) = L(A). As all variables in
{X1, . . . ,Xn} do not necessarily occur in Ci, using Corollary 7, we can construct
a deterministic generalized tree set automaton An

i over {0, 1}n satisfying: L(An
i)

is the set of (L1, . . . , Ln) which corresponds to solutions of Ci when restricted
to the variables of Ci. Using closure under intersection (Proposition 35), we can

TATA — October 28, 2004 —

164 Tree Set Automata

construct a deterministic generalized tree set automaton A over {0, 1}n such
that SOL(SC) = L(A).

Therefore we prove the result for a set constraint SC of n variables X1, . . . ,Xn.
Let E(exp) be the set of set variables and of set expression exp with a root sym-
bol in F which occur in the set expression exp:

E(exp) =
{
exp′ ∈ TF ′(X) | exp′ £ exp and such that

either Head(exp′) ∈ F or exp′ ∈ X
}
.

If SC ≡ exp1 ⊆ exp2 or SC ≡ exp1 6⊆ exp2 then E(SC) = E(exp1)∪E(exp2).

Let us consider a set constraint SC and let ϕ be a mapping ϕ from E(SC)
into Bool. Such a mapping is easily extended first to any set expression occurring
in SC and second to the set constraint SC. The symbols ∪, ∩, ∼, ⊆ and 6⊆ are
respectively interpreted as ∨, ∧, ¬, ⇒ and ¬ ⇒.

We now define the generalized tree set automaton A = (Q,∆,Ω) over E =
{0, 1}n.

• The set of states is Q is the set {ϕ | ϕ : E(SC) → Bool}.

• The transition relation is defined as follows: f(ϕ1, . . . , ϕp) l
→ϕ ∈ ∆ where

ϕ1, . . . , ϕp ∈ Q, f ∈ Fp, l = (l1, . . . , ln) ∈ {0, 1}n, and ϕ ∈ Q satisfies:

∀i ∈ {1, . . . , n} ϕ(Xi) = li (5.6)

∀e ∈ E(SC) \ X (ϕ(e) = 1) ⇔

(
e = f(e1, . . . , ep)
∀i 1 ≤ i ≤ p ϕi(ei) = 1

)
(5.7)

• The set of accepting sets of states Ω is defined depending on the case of a
positive or a negative set constraint.

– If SC is positive, Ω = {ω ∈ 2Q | ∀ϕ ∈ ω ϕ(SC) = 1};

– If SC is negative, Ω = {ω ∈ 2Q | ∃ϕ ∈ ω ϕ(SC) = 1}.

In the case of a positive set constraint, we can choose the state set Q = {ϕ |
ϕ(SC) = 1} and Ω = 2Q. Consequently, A is deterministic and simple.

The correctness of this construction is easy to prove and is left to the reader.

5.4.3 Decidability Results for Set Constraints

We now summarize results on set constraints. These results are immediate
consequences of the results of Section 5.4.2. We use Proposition 44 to encode
sets of solutions of systems of set constraints with generalized tree set automata
and then, each point is deduced from Theorem 44, or Propositions 38, 43, 40,
41.

TATA — October 28, 2004 —

5.4 Applications to Set Constraints 165

Properties on sets of solutions

Satisfiability The satisfiability problem for systems of set constraints is decid-
able.

Regular solution There exists a regular solution, that is a tuple of regular
tree languages, in any non-empty set of solutions.

Inclusion, Equivalence Given two systems of set constraints SC and SC ′, it
is decidable whether or not SOL(SC) ⊆ SOL(SC ′).

Unicity Given a system SC of set constraints, it is decidable whether or not
there is a unique solution in SOL(SC).

Properties on solutions

fixed cardinalities, singletons Given a system SC of set constraints over
(X1, . . . ,Xn), I ⊆ {1, . . . , n}, and x1 . . . , xn natural numbers;

• it is decidable whether or not there is a solution (L1, . . . , Ln) ∈
SOL(SC) such that Card(Li) = xi for each i ∈ I.

• it is decidable whether or not all the Li are finite for i ∈ I.

In both cases, proofs are constructive and exhibits a solution.

Membership Given SC a system of set constraints over (X1, . . . ,Xn) and a
n-tuple (L1, . . . , Ln) of regular tree languages, it is decidable whether or
not (L1, . . . , Ln) ∈ SOL(SC).

Proposition 45. Let SC be a system of positive set constraints, it is decidable
whether or not there is a least solution in SOL(SC).

Proof. Let SC be a system of positive set constraints. Let A be the deter-
ministic, simple generalized tree set automaton over {0, 1}n such that L(A) =
SOL(SC) (see Proposition 44). We define a partial ordering ¹ on G{0,1}n by :

∀l, l′ ∈ {0, 1}n l ¹ l′ ⇔ (∀i l(i) ≤ l′(i))
∀g, g′ ∈ G{0,1}n g ¹ g′ ⇔ (∀t ∈ T (F) g(t) ¹ g′(t))

The problem we want to deal with is to decide whether or not there exists a
least generalized tree set w.r.t. ¹ in L(A). To this aim, we first build a minimal
solution if it exists, and second, we verify that this solution is unique.

Let ω be a subset of states such that COND(ω) (see the sketch of proof
page 160). Let Aω = (ω,∆ω, 2ω) be the generalized tree set automaton A
restricted to state set ω.

Now let ∆ω
min defined by: for each (q1, . . . , qp, f) ∈ ωp × Fp, choose in

the set ∆ω one rule (q1, . . . , qp, f, l, q) such that l is minimal w.r.t. ¹. Let
Aω

min = (ω,∆ω
min, 2ω). Consequently,

1. There exists only one run rω on a unique generalized tree set gω in
Aω

min because for all q1, . . . , qp ∈ ω and f ∈ Fp there is only one rule
(q1, . . . , qp, f, l, q) in ∆ω

min;

2. the run rω on gω is regular;

TATA — October 28, 2004 —

166 Tree Set Automata

3. the generalized tree set gω is minimal w.r.t. ¹ in L(Aω).

Points 1 and 2 are straightforward. The third point follows from the fact
that A is deterministic. Indeed, let us suppose that there exists a run r′ on a
generalized tree set g′ such that g′ ≺ gω. Therefore, ∀t g′(t) ¹ gω(t), and there
exists (w.l.o.g.) a minimal term u = f(u1, . . . , up) w.r.t. the subterm ordering
such that g′(u) ≺ gω(u). Since A is deterministic and ∀v ¢ u gω(v) = g′(v), we
have rω(ui) = r′(ui). Hence, the rule (rω(u1), . . . , rω(up), f, gω(u), rω(u)) is not
such that gω(u) is minimal in ∆ω, which contradicts the hypothesis.

Consider the generalized tree sets gω for all subsets of states ω satisfying
COND(ω). If there is no such gω, then there is no least generalized tree set g
in L(A). Otherwise, each generalized tree set defines a n-tuple of regular tree
languages and inclusion is decidable for regular tree languages. Hence we can
identify a minimal generalized tree set g among all gω. This GTS g defines a
n-tuple (F1, . . . , Fn) of regular tree languages. Let us remark this construction
does not ensure that (F1, . . . , Fn) is minimal in L(A).

There is a deterministic, simple generalized tree set automaton A′ such that
L(A′) is the set of characteristic generalized tree sets of all (L1, . . . , Ln) satis-
fying F1 ⊆ L1, . . . , Fn ⊆ Ln (see Proposition 38). Let A′′ be the deterministic
generalized tree set automaton such that L(A′′) = L(A) ∩ L(A′) (see Proposi-
tion 35). There exists a least generalized tree set w.r.t. ¹ in L(A) if and only if
the generalized tree set automata A and A′′ are equivalent. Since equivalence
of generalized tree set automata is decidable (see Proposition 40) we get the
result.

5.5 Bibliographical Notes

We now survey decidability results for satisfiability of set constraints and some
complexity issues.

Decision procedures for solving set constraints arise with [Rey69], and Mishra
[Mis84]. The aim of these works was to obtain new tools for type inference and
type checking [AM91, Hei92, HJ90b, JM79, Mis84, Rey69].

First consider systems of set constraints of the form:

X1 = exp1, . . . ,Xn = expn (5.8)

where the Xi are distinct variables and the expi are disjunctions of set expres-
sions of the form f(Xi1 , . . . ,Xip

) with f ∈ Fp. These systems of set constraints
are essentially tree automata, therefore they have a unique solution and each
Xi is interpreted as a regular tree language.

Suppose now that the expi are set expressions without complement symbols.
Such systems are always satisfiable and have a least solution which is regular.
For example, the system

Nat = s(Nat) ∪ 0
X = X ∩ Nat

List = cons(X, List) ∪ nil

has a least solution

Nat = {si(0) | i ≥ 0} ,X = ∅ , List = {nil}.

TATA — October 28, 2004 —

5.5 Bibliographical Notes 167

[HJ90a] investigate the class of definite set constraints which are of the form
exp ⊆ exp′, where no complement symbol occurs and exp′ contains no set opera-
tion. Definite set constraints have a least solution whenever they have a solution.
The algorithm presented in [HJ90a] provides a specific set of transformation
rules and, when there exists a solution, the result is a regular presentation of
the least solution, in other words a system of the form (5.8).

Solving definite set constraints is EXPTIME-complete [CP97]. Many devel-
opments or improvements of Heinzte and Jaffar’s method have been proposed
and some are based on tree automata [DTT97].

The class of positive set constraints is the class of systems of set constraints
of the form exp ⊆ exp′, where no projection symbol occur. In this case, when a
solution exists, set constraints do not necessarily have a least solution. Several
algorithms for solving systems in this class were proposed, [AW92] generalize
the method of [HJ90a], [GTT93, GTT99] give an automata-based algorithm,
and [BGW93] use the decision procedure for the first order theory of monadic
predicates. Results on the computational complexity of solving systems of set
constraints are presented in a paper of [AKVW93]. The systems form a natural
complexity hierarchy depending on the number of elements of F of each arity.
The problem of existence of a solution of a system of positive set constraints is
NEXPTIME-complete.

The class of positive and negative set constraints is the class of systems of set
constraints of the form exp ⊆ exp′ or exp 6⊆ exp′, where no projection symbol
occur. In this case, when a solution exists, set constraints do not necessarily
have, neither a minimal solution, nor a maximal solution. Let F = {a, b()}.
Consider the system (b(X) ⊆ X) ∧ (X 6⊆ ⊥), this system has no minimal
solution. Consider the system (X ⊆ b(X) ∪ a) ∧ (> 6⊆ X), this system has
no maximal solution. The satisfiability problem in this class turned out to
be much more difficult than the positive case. [AKW95] give a proof based
on a reachability problem involving Diophantine inequalities. NEXPTIME-
completeness was proved by [Ste94]. [CP94a] gives a proof based on the ideas
of [BGW93].

The class of positive set constraints with projections is the class of systems of
set constraints of the form exp ⊆ exp′ with projection symbols. Set constraints
of the form f−1

i (X) ⊆ Y can easily be solved, but the case of set constraints of
the form X ⊆ f−1

i (Y) is more intricate. The problem was proved decidable by
[CP94b].

The expressive power of these classes of set constraints have been studied and
have been proved to be different [Sey94]. In [CK96, Koz93], an axiomatization is
proposed which enlightens the reader on relationships between many approaches
on set constraints.

Furthermore, set constraints have been studied in a logical and topological
point of view [Koz95, MGKW96]. This last paper combine set constraints with
Tarskian set constraints, a more general framework for which many complexity
results are proved or recalled. Tarskian set constraints involve variables, relation
and function symbols interpreted relative to a first order structure.

Topological characterizations of classes of GTSA recognizable sets, have also
been studied in [Tom94, Sey94]. Every set in RSGTS is a compact set and every

TATA — October 28, 2004 —

168 Tree Set Automata

set in RGTS is the intersection between a compact set and an open set. These
remarks give also characterizations for the different classes of set constraints.

TATA — October 28, 2004 —

Chapter 6

Tree Transducers

6.1 Introduction

Finite state transformations of words, also called a-transducers or rational trans-
ducers in the literature, model many kinds of processes, such as coffee machines
or lexical translators. But these transformations are not powerful enough to
model syntax directed transformations, and compiler theory is an important
motivation to the study of finite state transformations of trees. Indeed, trans-
lation of natural or computing languages is directed by syntactical trees, and a
translator from LATEXinto HTML is a tree transducer. Unfortunately, from a
theoretical point of view, tree transducers do not inherit nice properties of word
transducers, and the classification is very intricate. So, in the present chapter
we focus on some aspects. In Sections 6.2 and 6.3, toy examples introduce in
an intuitive way different kinds of transducers. In Section 6.2, we summarize
main results in the word case. Indeed, this book is mainly concerned with trees,
but the word case is useful to understand the tree case and its difficulties. The
bimorphism characterization is the ideal illustration of the link between the
“machine” point of view and the “homomorphic” one. In Section 6.3, we moti-
vate and illustrate bottom-up and top-down tree transducers, using compilation
as leitmotiv. We precisely define and present the main classes of tree transduc-
ers and their properties in Section 6.4, where we observe that general classes
are not closed under composition, mainly because of alternation of copying and
nondeterministic processing. Nevertheless most useful classes, as those used in
Section 6.3, have closure properties. In Section 6.5 we present the homomorphic
point of view.

Most of the proofs are tedious and are omitted. This chapter is a very incom-
plete introduction to tree transducers. Tree transducers are extensively studied
for themselves and for various applications. But as they are somewhat compli-
cated objects, we focus here on the definitions and main general properties. It
is usefull for every theoretical computer scientist to know main notions about
tree transducers, because they are the main model of syntax directed manipu-
lations, and that the heart of sofware manipulations and interfaces are syntax
directed. Tree transducers are an essential frame to develop practical modular
syntax directed algorithms, thought an effort of algorithmic engineering remains
to do. Tree transducers theory can be fertilized by other area or can be usefull

TATA — October 28, 2004 —

170 Tree Transducers

for other areas (example: Ground tree transducers for decidability of the first
order theory of ground rewriting). We will be happy if after reading this chap-
ter, the reader wants for further lectures, as monograph of Z. Flp and H. Vgler
(december 1998 [FV98]).

6.2 The Word Case

6.2.1 Introduction to Rational Transducers

We assume that the reader roughly knows popular notions of language theory:
homomorphisms on words, finite automata, rational expressions, regular gram-
mars. See for example the recent survey of A. Mateescu and A. Salomaa [MS96].
A rational transducer is a finite word automaton W with output. In a word
automaton, a transition rule f(q) → q′(f) means “if W is in some state q, if it
reads the input symbol f , then it enters state q′ and moves its head one symbol
to the right”. For defining a rational transducer, it suffices to add an output,
and a transition rule f(q) → q′(m) means “if the transducer is in some state
q, if it reads the input symbol f , then it enters state q′, writes the word m on
the output tape, and moves its head one symbol to the right”. Remark that
with these notations, we identify a finite automaton with a rational transducer
which writes what it reads. Note that m is not necessarily a symbol but can
be a word, including the empty word. Furthermore, we assume that it is not
necessary to read an input symbol, i.e. we accept transition rules of the form
ε(q) → q′(m) (ε denotes the empty word).

Graph presentations of finite automata are popular and convenient. So it is
for rational transducers. The rule f(q) → q′(m) will be drawn

f/m
q q′

Example 54. (Language L1) Let F = {〈, 〉, ; , 0, 1, A, ..., Z}. In the following,
we will consider the language L1 defined on F by the regular grammar (the
axiom is program):
program → 〈 instruct
instruct → LOAD register | STORE register | MULT register

→ | ADD register
register → 1tailregister
tailregister → 0tailregister | 1tailregister | ; instruct | 〉

(a → b|c is an abbreviation for the set of rules {a → b, a → c})
L1 is recognized by deterministic automaton A1 of Figure 6.1. Semantic of

L1 is well known: LOAD i loads the content of register i in the accumulator;
STORE i stores the content of the accumulator in register i; ADD i adds in the
accumulator the content of the accumulator and the content of register i; MULT
i multiplies in the accumulator the content of the accumulator and the content
of register i.

TATA — October 28, 2004 —

6.2 The Word Case 171

D

TS

〈

end

Begin

Instruct

O AL

Tailregister

Register

A

M

O R E

TLU

D D
1

0,1

〉

;

Figure 6.1: A recognizer of L1

TATA — October 28, 2004 —

172 Tree Transducers

A rational transducer is a tuple R = (Q,F ,F ′, Qi, Qf ,∆) where Q is a set
of states, F and F ′ are finite nonempty sets of input letters and output letters,
Qi, Qf ⊆ Q are sets of initial and final states and ∆ is a set of transduction
rules of the following type:

f(q) → q′(m),

where f ∈ F ∪ {ε} , m ∈ F ′∗ , q, q′ ∈ Q.
R is ε-free if there is no rule f(q) → q′(m) with f = ε in ∆.
The move relation →R is defined by: let t, t′ ∈ F∗, u ∈ F ′∗ , q, q′ ∈ Q,

f ∈ F , m ∈ F ′∗ ,

(tqft′, u)→
R

(tfq′t, um) ⇔ f(q) → q′(m) ∈ ∆,

and →∗
R is the reflexive and transitive closure of →R. A (partial) transduction

of R on tt′t′′ is a sequence of move steps of the form (tqt′t′′, u)→∗
R(tt′q′t′′, uu′).

A transduction of R from t ∈ F∗ into u ∈ F ′∗ is a transduction of the form
(qt, ε)→∗

R(tq′, u) with q ∈ Qi and q′ ∈ Qf .
The relation TR induced by R can now be formally defined by:

TR = {(t, u) | (qt, ε)
∗
→
R

(tq′, u) with t ∈ F∗, u ∈ F ′∗ , q ∈ Qi, q
′ ∈ Qf}.

A relation in F∗ ×F ′∗ is a rational transduction if and only if it is induced
by some rational transducer. We also need the following definitions: let t ∈ F∗,
TR(t) = {u | (t, u) ∈ TR}. The translated of a language L is obviously the
language defined by TR(L) = {u | ∃t ∈ L, u ∈ TR(t)}.

Example 55.
Ex. 55.1 Let us name French-L1 the translation of L1 in French (LOAD is

translated into CHARGER and STORE into STOCKER). Transducer of Figure 6.2
realizes this translation. This example illustrates the use of rational trans-
ducers as lexical transducers.

Ex. 55.2 Let us consider the rational transducer Diff defined by Q = {qi, qs, ql, qd},
F = F ′ = {a, b}, Qi = {qi}, Qf = {qs, ql, qd}, and ∆ is the set of rules:

type i a(qi) → qi(a), b(qi) → qi(b)

type s ε(qi) → qs(a), ε(qi) → qs(b), ε(qs) → qs(a), ε(qs) → qs(b)

type l a(qi) → ql(ε), b(qi) → ql(ε), a(ql) → ql(ε), b(ql) → ql(ε)

type d a(qi) → qd(b), b(qi) → qd(a), a(qd) → qd(ε), b(qd) → qd(ε),
ε(qd) → qd(a), ε(qd) → qd(b).

It is easy to prove that TDiff = {(m,m′) | m 6= m′,m,m′ ∈ {a, b}∗}.

We give without proofs some properties of rational transducers. For more
details, see [Sal73] or [MS96] and Exercises 65, 66, 68 for 1, 4 and 5. The
homomorphic approach presented in the next section can be used as an elegant
way to prove 2 and 3 (Exercise 70).

Proposition 46 (Main properties of rational transducers).

TATA — October 28, 2004 —

6.2 The Word Case 173

〉/〉

end

Begin

Instruct

O/ε

Tailregister

Register

A/ε

R/ε

L/ε

D/ε
0/0

;/;

1/1

D/CHARGERA/ε

S/ε T/ε 0/ε

1/1

D/ε

T/MULTM/ε U/ε

L/ε

〈/〈

E/STOCKER

Figure 6.2: A rational transducer from L1 into French-L1.

TATA — October 28, 2004 —

174 Tree Transducers

1. The class of rational transductions is closed under union but not closed
under intersection.

2. The class of rational transductions is closed under composition.

3. Regular languages and context-free languages are closed under rational
transduction.

4. Equivalence of rational transductions is undecidable.

5. Equivalence of deterministic rational transductions is decidable.

6.2.2 The Homomorphic Approach

A bimorphism is defined as a triple B = (Φ, L,Ψ) where L is a recognizable
language and Φ and Ψ are homomorphisms. The relation induced by B (also
denoted by B) is defined by B = {(Φ(t),Ψ(t)) | t ∈ L}. Bimorphism (Φ, L,Ψ)
is ε-free if Φ is ε-free (an homomorphism is ε-free if the image of a letter is
never reduced to ε). Two bimorphisms are equivalent if they induce the same
relation.

We can state the following theorem, generally known as Nivat Theorem [Niv68]
(see Exercises 69 and 70 for a sketch of proof).

Theorem 45 (Bimorphism theorem). Given a rational transducer, an equiv-
alent bimorphism can be constructed. Conversely, any bimorphism defines a
rational transduction. Construction preserve ε-freeness.

Example 56.

Ex. 56.1 The relation {(a(ba)n, an) | n ∈ N} ∪ {((ab)n, b3n) | n ∈ N} is
processed by transducer R and bimorphism B of Figure 6.3

b/ε

a/a

a/ε

a/ε

a/ε

b/bbbb/bbb

Φ(A) = a

Φ(B) = ba

Φ(C) = ab

Ψ(A) = ε

Ψ(B) = a

Ψ(C) = bbb

C

B

C

A

ΨΦ

Figure 6.3: Transducer R and an equivalent bimorphism B = {(Φ(t),Ψ(t)) | t ∈
AB∗ + CC∗}.

Ex. 56.2 Automaton L of Figure 6.4 and morphisms Φ and Ψ bellow define
a bimorphism equivalent to transducer of Figure 6.2

TATA — October 28, 2004 —

6.3 Introduction to Tree Transducers 175

Φ(β) = 〈 Φ(λ) = LOAD Φ(σ) = STORE Φ(µ) = MULT

Φ(α) = ADD Φ(ρ) =; Φ(ω) = 1 Φ(ζ) = 0
Φ(θ) =〉
Ψ(β) = 〈 Ψ(λ) = CHARGER Ψ(σ) = STOCKER Ψ(µ) = MULT

Ψ(α) = ADD Ψ(ρ) =; Ψ(ω) = 1 Ψ(ζ) = 0
Ψ(θ) =〉

θ
end

Register

Instruct

Tailregister

Begin λ, σ, µ, α

β

ρ

ω

ζ, ω

Figure 6.4: The control automaton L.

Nivat characterization of rational transducers makes intuitive sense. Au-
tomaton L can be seen as a control of the actions, morphism Ψ can be seen as
output function and Φ−1 as an input function. Φ−1 analyses the input — it is
a kind of part of lexical analyzer — and it generates symbolic names; regular
grammatical structure on theses symbolic names is controlled by L. Exam-
ples 56.1 and 56.2 are an obvious illustration. L is the common structure to
English and French versions, Φ generates the English version and Ψ generates
the French one. This idea is the major idea of compilation, but compilation of
computing languages or translation of natural languages are directed by syntax,
that is to say by syntactical trees. This is the motivation of the rest of the chap-
ter. But unfortunately, from a formal point of view, we will lose most of the
best results of the word case. Power of non-linear tree transducers will explain
in part this complication, but even in the linear case, there is a new phenom-
ena in trees, the understanding of which can be introduced by the “problem of
homomorphism inversion” that we describe in Exercise 71.

6.3 Introduction to Tree Transducers

Tree transducers and their generalizations model many syntax directed trans-
formations (see exercises). We use here a toy example of compiler to illustrate
how usual tree transducers can be considered as modules of compilers.

We consider a simple class of arithmetic expressions (with usual syntax) as
source language. We assume that this language is analyzed by a LL1 parser. We
consider two target languages: L1 defined in Example 54 and an other language
L2. A transducer A translates syntactical trees in abstract trees (Figure 6.5).
A second tree transducer R illustrates how tree transducers can be seen as

TATA — October 28, 2004 —

176 Tree Transducers

part of compilers which compute attributes over abstract trees. It decorates
abstract trees with numbers of registers (Figure 6.7). Thus R translates abstract
trees into attributed abstract trees. After that, tree transducers T1 and T2

generate target programs in L1 and L2, respectively, starting from attributed
abstract trees (Figures 6.7 and 6.8). This is an example of nonlinear transducer.
Target programs are yields of generated trees. So composition of transducers
model succession of compilation passes, and when a class of transducers is closed
by composition (see section 6.4), we get universal constructions to reduce the
number of compiler passes and to meta-optimize compilers.

We now define the source language. Let us consider the terminal alphabet
{(,),+,×, a, b, . . . , z}. First, the context-free word grammar G1 is defined by
rules (E is the axiom):

E → M | M + E
M → F | F × M
F → I | (E)
I → a | b | · · · | z

Another context-free word grammar G2 is defined by (E is the axiom):

E → ME′

E′ → +E | ε
M → FM ′

M ′ → ×M | ε
F → I | (E)
I → a | b | · · · | z

Let E be the axiom of G1 and G2. The semantic of these two grammars
is obvious. It is easy to prove that they are equivalent, i.e. they define the
same source language. On the one hand, G1 is more natural, on the other
hand G2 could be preferred for syntactical analysis reason, because G2 is LL1

and G1 is not LL. We consider syntactical trees as derivation trees for the
tree grammar G2. Let us consider word u = (a + b) × c. u of the source
language. We define the abstract tree associated with u as the tree ×(+(a, b), c)
defined over F = {+(,),×(,), a, b, c}. Abstract trees are ground terms over
F . Evaluate expressions or compute attributes over abstract trees than over
syntactical trees. The following transformation associates with a syntactical
tree t its corresponding abstract tree A(t).

I(x) → x F (x) → x
M(x,M ′(ε)) → x E(x,E′(ε)) → x

M(x,M ′(×, y)) → ×(x, y) E(x,E′(+, y)) → +(x, y)
F ((, x,)) → x

We have not precisely defined the use of the arrow →, but it is intuitive.
Likewise we introduce examples before definitions of different kinds of tree trans-
ducers (section 6.4 supplies a formal frame).

To illustrate nondeterminism, let us introduce two new transducers A and A′.
Some brackets are optional in the source language, hence A′ is nondeterministic.
Note that A works from frontier to root and A′ works fromm root to frontier.

TATA — October 28, 2004 —

6.3 Introduction to Tree Transducers 177

A : an Example of Bottom-up Tree Transducer

The following linear deterministic bottom-up tree transducer A carries out
transformation of derivation trees for G2 into the corresponding abstract trees.
Empty word ε is identified as a constant symbol in syntactical trees. States of
A are q, qε, qI , qF , qM ′ε, qE′ε, qE , q×, qM ′×, q+, qE′+, q(, and q). Final state is
qE . The set of transduction rules is:

a → q(a) b → q(b)
c → q(c) ε → qε(ε)
) → q)()) (→ q((()

+ → q+(+) × → q×(×)
I(q(x)) → qI(x) F (qI(x)) → qF (x)

M ′(qε(x)) → qM ′ε(x) E′(qε(x)) → qE′ε(x)
M(qF (x), qM ′ε(y)) → qM (x) E(qM (x), qE′ε(y)) → qE(x)
M ′(q×(x), qM (y)) → qM ′×(y) M(qF (x), qM ′×(y)) → qM (×(x, y))
E′(q+(x), qE(y)) → qE′+(y) E(qM (x), qE′+(y)) → qE(+(x, y))

F (q((x), qE(y), q)(z)) → qF (y)

The notion of (successful) run is an intuitive generalization of the notion
of run for finite tree automata. The reader should note that FTAs can be
considered as a special case of bottom-up tree transducers whose output is equal
to the input. We give in Figure 6.5 an example of run of A which translates
derivation tree t which yields (a + b) × c for context-free grammar G2 into the
corresponding abstract tree ×(+(a, b), c).

t→∗
A

(

q(

a

qM

b

qE′+

E

)

q)

F

ε

qM ′×

M

c

qE′ε

E

→∗
A

a b

+

qF

ε

qM ′×

M

c

qE′ε

E

→∗
A

a b

+ c

×

qE

Figure 6.5: Example of run of A

A′ : an Example of Top-down Tree Transducer

The inverse transformation A−1, which computes the set of derivation trees of
G2 associated with an abstract tree, is computed by a nondeterministic top-
down tree transducer A′. The states of A′ are qE , qF , qM . The initial state is
qE . The set of transduction rules is:

TATA — October 28, 2004 —

178 Tree Transducers

qE(x) → E(qM (x), E′(ε)) qE(+(x, y)) → E(qM (x), E′(+, qE(y)))
qM (x) → M(qF (x),M ′(ε)) qM (×(x, y)) → M(qF (x),M ′(×, qM (y)))
qF (x) → F ((, qE(x),)) qF (a) → F (I(a))
qF (b) → F (I(b)) qF (c) → F (I(c))

Transducer A′ is nondeterministic because there are ε-rules like qE(x) →
E(qM (x), E′(ε)). We give in Figure 6.6 an example of run of A′ which transforms
abstract tree +(a,×(b, c)) into a syntactical tree t′ of the word a + b × c.

a

b c

×

+

qE

→A′

a

qM

+

b c

×

qE

E′

E

→∗
A′

a

I

F

ε

M ′

M

+

b c

×

qE

E′

E

→∗
A′ t′

Figure 6.6: Example of run of A′

Compilation

The compiler now transforms abstract trees into programs for some target lan-
guages. We consider two target languages. The first one is L1 of Example 54.
To simplify, we omit “;”, because they are not necessary — we introduced semi-
colons in Section 6.2 to avoid ε-rules, but this is a technical detail, because word
(and tree) automata with ε-rules are equivalent to usual ones. The second target
language is an other very simple language L2, namely sequences of two instruc-
tions +(i, j, k) (put the sum of contents of registers i and j in the register k) and
×(i, j, k). In a first pass, we attribute to each node of the abstract tree the min-
imal number of registers necessary to compute the corresponding subexpression
in the target language. The second pass generates target programs.

First pass: computation of register numbers by a deterministic linear bottom-
up transducer R.

States of a tree automaton can be considered as values of (finitely val-
ued) attributes, but formalism of tree automata does not allow decorating
nodes of trees with the corresponding values. On the other hand, this dec-
oration is easy with a transducer. Computation of finitely valued inherited
(respectively synthesized) attributes is modeled by top-down (respectively
bottom-up) tree transducers. Here, we use a bottom-up tree transducer
R. States of R are q0, . . . , qn. All states are final states. The set of rules

TATA — October 28, 2004 —

6.4 Properties of Tree Transducers 179

is:

a → q0(a) b → q0(b)
c → q0(c)

+(qi(x), qi(y)) → qi+1(
+
i+1(x, y)) ×(qi(x), qi(y)) → qi+1(

+
i 1 × (x, y))

if i > j
+(qi(x), qj(y)) → qi(

+
i (x, y) ×(qi(x), qj(y)) → qi(

×
i (x, y))

if i < j, we permute the order of subtrees
+(qi(x), qj(y)) → qj(

+
j (y, x)) ×(qi(x), qj(y)) → qj(

×
j (y, x))

A run t→∗
R qi(u) means that i registers are necessary to evaluate t. Root

of t is then relabelled in u by symbol +
i or ×

i .

Second pass: generation of target programs in L1 or L2, by top-down de-
terministic transducers T1 and T2. T1 contains only one state q. Set
of rules of T1 is:

q(+
i (x, y)) → ¦(q(x), STOREi, q(y), ADDi, STOREi)

q(×
i (x, y)) → ¦(q(x), STOREi, q(y), MULTi, STOREi)

q(a) → ¦(LOAD, a)
q(b) → ¦(LOAD, b)
q(c) → ¦(LOAD, c)

where ¦(, , , ,) and ¦(,) are new symbols.

State set of T2 is {q, q′} where q′ is the initial state. Set of rules of T2 is:

q(+
i (x, y)) → #(q(x), q(y),+, (, q′(x), q′(y), i,)) q′(+

i (x, y)) → i
q(×

i (x, y)) → #(q(x), q(y),×, (, q′(x), q′(y), i,)) q′(×
i (x, y)) → i

q(a) → ε q′(a) → a
q(b) → ε q′(b) → b
q(c) → ε q′(c) → c

where # is a new symbol of arity 8.

The reader should note that target programs are words formed with leaves
of trees, i.e. yields of trees. Examples of transductions computed by T1

and T2 are given in Figures 6.7 and 6.8. The reader should also note that
T1 is an homomorphism. Indeed, an homomorphism can be considered as
a particular case of deterministic transducer, namely a transducer with
only one state (we can consider it as bottom-up as well as top-down). The
reader should also note that T2 is deterministic but not linear.

6.4 Properties of Tree Transducers

6.4.1 Bottom-up Tree Transducers

We now give formal definitions. In this section, we consider academic examples,
without intuitive semantic, to illustrate phenomena and properties. Tree trans-
ducers are both generalization of word transducers and tree automata. We first

TATA — October 28, 2004 —

180 Tree Transducers

a

b c

+ d

×

+

→∗
R

a

b c

+
1 d

×
1

+
1

q1

= q1(u).

q(u)→∗
T1

L b

¦ S1

L c

¦ A1 S1

¦ S1

L d

¦ M1 S1

¦ S1

L a

¦ A1 S1

¦

where L stands for LOAD, S stands for STORE, A stands for ADD, M stands for MULT.
The corresponding program is the yield of this tree:
LOADb STORE1 LOADc ADD1 STORE1 STORE1 LOADd MULT1 STORE1 STORE1 LOADa
ADD1 STORE1

Figure 6.7: Decoration with synthesized attributes of an abstract tree, and
translation into a target program of L1.

q(u)→∗
T2

ε ε + (b c 1)

] ε × (1 d 1)

] ε + (1 a 1)

]

The corresponding program is the yield of this tree: +(bc1) × (1d1) + (1a1)

Figure 6.8: Translation of an abstract tree into a target program of L2

TATA — October 28, 2004 —

6.4 Properties of Tree Transducers 181

consider bottom-up tree transducers. A transition rule of a NFTA is of the type
f(q1(x1), . . . , qn(xn)) → q(f(x1, . . . , xn)). Here we extend the definition (as we
did in the word case), accepting to change symbol f into any term.

A bottom-up Tree Transducer (NUTT) is a tuple U = (Q,F ,F ′, Qf ,∆)
where Q is a set of (unary) states, F and F ′ are finite nonempty sets of input
symbols and output symbols, Qf ⊆ Q is a set of final states and ∆ is a set of
transduction rules of the following two types:

f(q1(x1), . . . , qn(xn)) → q(u) ,

where f ∈ Fn, u ∈ T (F ′,Xn), q, q1, . . . , qn ∈ Q , or

q(x1) → q′(u) (ε-rule),

where u ∈ T (F ′,X1), q, q′ ∈ Q.
As for NFTA, there is no initial state, because when a symbol is a leave a

(i.e. a constant symbol), transduction rules are of the form a → q(u), where
u is a ground term. These rules can be considered as “initial rules”. Let
t, t′ ∈ T (F ∪ F ′ ∪ Q). The move relation →U is defined by:

t→
U

t′ ⇔

∃f(q1(x1), . . . , qn(xn)) → q(u) ∈ ∆
∃C ∈ C(F ∪ F ′ ∪ Q)
∃u1, . . . , un ∈ T (F ′)
t = C[f(q1(u1), . . . , qn(un))]
t′ = C[q(u{x1←u1, . . . , xn←un})]

This definition includes the case of ε-rule as a particular case. The reflexive
and transitive closure of →U is →∗

U . A transduction of U from a ground term
t ∈ T (F) to a ground term t′ ∈ T (F ′) is a sequence of move steps of the form
t→∗

U q(t′), such that q is a final state. The relation induced by U is the relation
(also denoted by U) defined by:

U = {(t, t′) | t
∗
→
U

q(t′), t ∈ T (F), t′ ∈ T (F ′), q ∈ Qf}.

The domain of U is the set {t ∈ T (F) | (t, t′) ∈ U}. The image by U of a
set of ground terms L is the set U(L) = {t′ ∈ T (F ′) | ∃t ∈ L, (t, t′) ∈ U}.

A transducer is ε-free if it contains no ε-rule. It is linear if all tran-
sition rules are linear (no variable occurs twice in the right-hand side). It
is non-erasing if, for every rule, at least one symbol of F ′ occurs in the
right-hand side. It is said to be complete (or non-deleting) if, for every rule
f(q1(x1), . . . , qn(xn)) → q(u) , for every xi(1 ≤ i ≤ n), xi occurs at least once
in u. It is deterministic (DUTT) if it is ε-free and there is no two rules with
the same left-hand side.

Example 57.
Ex. 57.1 Tree transducer A defined in Section 6.3 is a linear DUTT. Tree

transducer R in Section 6.3 is a linear and complete DUTT.

Ex. 57.2 States of U1 are q, q′; F = {f(), a}; F ′ = {g(,), f(), f ′(), a}; q′ is
the final state; the set of transduction rules is:

a → q(a)
f(q(x)) → q(f(x)) | q(f ′(x)) | q′(g(x, x))

TATA — October 28, 2004 —

182 Tree Transducers

U1 is a complete, non linear NUTT. We now give the transductions of
the ground term f(f(f(a))). For the sake of simplicity, fffa stands for
f(f(f(a))). We have:

U1({fffa}) = {g(ffa, ffa), g(ff ′a, ff ′a), g(f ′fa, f ′fa), g(f ′f ′a, f ′f ′a)}.

U1 illustrates an ability of NUTT, that we describe following Gcseg and
Steinby.

B1- “Nprocess and copy” A NUTT can first process an input sub-
tree nondeterministically and then make copies of the resulting
output tree.

Ex. 57.3 States of U2 are q, q′; F = F ′ = {f(), f ′(), a}; q is the final state;
the set of transduction rules is defined by:

a → q(a)
f(q(x)) → q′(a)

f ′(q′(x)) → q(a)

U2 is a non complete DUTT. The tree transformation induced by U2 is

{
(t, a) |

t is accepted by the DFTA of final state q and rules
a → q(a), f(q(x)) → q′(f(x)), f ′(q′(x)) → q(f ′(x))

}
.

B2- “check and delete” A NUTT can first check regular con-
straints on input subterms and delete these subterms afterwards.

Bottom-up tree transducers translate the input trees from leaves to root, so
bottom-up tree transducers are also called frontier-to-root transducers. Top-
down tree transducers work in opposite direction.

6.4.2 Top-down Tree Transducers

A top-down Tree Transducer (NDTT) is a tuple D = (Q,F ,F ′, Qi,∆) where
Q is a set of (unary) states, F and F ′ are finite nonempty sets of input sym-
bols and output symbols, Qi ⊆ Q is a set of initial states and ∆ is a set of
transduction rules of the following two types:

q(f(x1, . . . , xn)) → u[q1(xi1), . . . , qp(xip
)] ,

where f ∈ Fn, u ∈ Cp(F ′), q, q1, . . . , qp ∈ Q, , xi1 , . . . , xip
∈ Xn, or

q(x) → u[q1(x), . . . , qp(x)] (ε-rule),

where u ∈ Cp(F ′), q, q1, . . . , qp ∈ Q, x ∈ X .
As for top-down NFTA, there is no final state, because when a symbol is a

leave a (i.e. a constant symbol), transduction rules are of the form q(a) → u,
where u is a ground term. These rules can be considered as “final rules”. Let
t, t′ ∈ T (F ∪ F ′ ∪ Q). The move relation →D is defined by:

TATA — October 28, 2004 —

6.4 Properties of Tree Transducers 183

t→
D

t′ ⇔

∃q(f(x1, . . . , xn)) → u[q1(xi1), . . . , qp(xip
)] ∈ ∆

∃C ∈ C(F ∪ F ′ ∪ Q)
∃u1, . . . , un ∈ T (F)
t = C[q(f(u1, . . . , un))]
t′ = C[u[q1(v1), . . . , qp(vp)])] where vj = uk if xij

= xk

This definition includes the case of ε-rule as a particular case. →∗
D is the

reflexive and transitive closure of →D. A transduction of D from a ground term
t ∈ T (F) to a ground term t′ ∈ T (F ′) is a sequence of move steps of the form
q(t)→∗

D t′, where q is an initial state. The transformation induced by D is the
relation (also denoted by D) defined by:

D = {(t, t′) | q(t)
∗
→
D

t′, t ∈ T (F), t′ ∈ T (F ′), q ∈ Qi}.

The domain of D is the set {t ∈ T (F) | (t, t′) ∈ D}. The image of a set
of ground terms L by D is the set D(L) = {t′ ∈ T (F ′) | ∃t ∈ L, (t, t′) ∈ D}.
ε-free, linear, non-erasing, complete (or non-deleting), deterministic top-down
tree transducers are defined as in the bottom-up case.

Example 58.

Ex. 58.1 Tree transducers A′, T1, T2 defined in Section 6.3 are examples of
NDTT.

Ex. 58.2 Let us now define a non-deterministic and non linear NDTT D1.
States of D1 are q, q′. The set of input symbols is F = {f(), a}. The set of
output symbols is F ′ = {g(,), f(), f ′(), a}. The initial state is q. The set
of transduction rules is:

q(f(x)) → g(q′(x), q′(x)) (copying rule)

q′(f(x)) → f(q′(x)) | f ′(q′(x)) (non deterministic relabeling)

q′(a) → a

D1 transduces f(f(f(a))) (or briefly fffa) into the set of 16 trees:

{g(ffa, ffa), g(ffa, ff ′a), g(ffa, f ′fa), . . . , g(f ′f ′a, f ′fa), g(f ′f ′a, f ′f ′a)}.

D1 illustrates a new property.

D- “copy and Nprocess” A NDTT can first make copies of an
input subtree and then process different copies independently and
nondeterministically .

TATA — October 28, 2004 —

184 Tree Transducers

6.4.3 Structural Properties

In this section, we use tree transducers U1, U2 and D1 of the previous section in
order to point out differences between top-down and bottom-up tree transducers.

Theorem 46 (Comparison Theorem).

1. There is no top-down tree transducer equivalent to U1 or to U2.

2. There is no bottom-up tree transducer equivalent to D1.

3. Any linear top-down tree transducer is equivalent to a linear bottom-up tree
transducer. In the linear complete case, classes of bottom-up and top-down
tree transducers are equal.

It is not hard to verify that neither NUTT nor NDTT are closed under
composition. Therefore, comparison of D-property “copy and Nprocess” and
U -property “Nprocess and copy” suggests an important question:

does alternation of copying and non-determinism induces an infinite
hierarchy of transformations?

The answer is affirmative [Eng78, Eng82], but it was a relatively long-standing
open problem. The fact that top-down transducers copy before non-deterministic
processes, and bottom-up transducers copy after non-deterministic processes
(see Exercise 75) suggests too that we get by composition two intricate infinite
hierarchies of transformation. The following theorem summarizes results.

Theorem 47 (Hierarchy theorem). By composition of NUTT, we get an
infinite hierarchy of transformations. Any composition of n NUTT can be pro-
cessed by composition of n+1 NDTT, and conversely (i.e. any composition of n
NDTT can be processed by composition of n + 1 NUTT).

Transducer A′ of Section 6.3 shows that it can be useful to consider ε-rules,
but usual definitions of tree transducers in literature exclude this case of non
determinism. This does not matter, because it is easy to check that all important
results of closure or non-closure hold simultaneously for general classes and ε-
free classes. Deleting is also a minor phenomenon. Indeed, it gives rise to the
“check and delete” property, which is specific to bottom-up transducers, but
it does not matter for hierarchy theorem, which remains true if we consider
complete transducers.

Section 6.3 suggests that for practical use, non-determinism and non-linearity
are rare. Therefore, it is important to note than if we assume linearity or deter-
minism, hierarchy of Theorem 48 collapses. Following results supply algorithms
to compose or simplify transducers.

Theorem 48 (Composition Theorem).

1. The class of linear bottom-up transductions is closed under composition.

2. The class of deterministic bottom-up transductions is closed under com-
position.

3. The class of linear top-down transductions is included in the class of lin-
ear bottom-up transductions. These classes are equivalent in the complete
case.

TATA — October 28, 2004 —

6.5 Homomorphisms and Tree Transducers 185

4. Any composition of deterministic top-down transductions is equivalent to
a deterministic complete top-down transduction composed with a linear
homomorphism.

The reader should note that bottom-up determinism and top-down deter-
minism are incomparable (see Exercise 72).

Recognizable tree languages play a crucial role because derivation trees of
context-free word grammars are recognizable. Fortunately, we get:

Theorem 49 (Recognizability Theorem). The domain of a tree transducer
is a recognizable tree language. The image of a recognizable tree language by a
linear tree transducer is recognizable.

6.4.4 Complexity Properties

We present now some decidability and complexity results. As for structural
properties, the situation is more complicated than in the word case, especially
for top-down tree transducers. Most of problems are untractable in the worst
case, but empirically “not so much complex” in real cases, though there is a lake
of “algorithmic engineering” to get performant algorithms. As in the word case,
emptiness is decidable, and equivalence in undecidable in the general case but is
decidable in the k-valued case (a transducer is k-valued if there is no tree which
is transduced in more than k different terms; so a deterministic transducer is a
particular case of 1-valued transducer).

Theorem 50 (Recidability and complexity). Emptiness of tree transduc-
tions is decidable. Equivalence of k-valued tree transducers is decidable.

Emptiness for bottom-up transducers is essentially the same as emptiness
for tree automata and therefore PTIME complete. Emptiness for top-down
automata, however, is essentially the same as emptiness for alternating topdown
tree automata, giving DEXPTIME completeness for emptiness. The complexity
PTIME for testing single-valuedness in the bottom-up case is contained in Seidl
[Sei92]. Ramsey theory gives combinatorial properties onto which equivalence
tests for k-valued tree transducers [Sei94a].

Theorem 51 (Equivalence Theorem). Equivalence of deterministic tree
transducers is decidable.

6.5 Homomorphisms and Tree Transducers

Exercise 74 illustrates how decomposition of transducers using homomorphisms
can help to get composition results, but we are far from the nice bimorphism
theorem of the word case, and in the tree case, there is no illuminating the-
orem, but many complicated partial statements. Seminal paper of Engelfriet
[Eng75] contains a lot of decomposition and composition theorems. Here, we
only present the most significant results.

A delabeling is a linear, complete, and symbol-to-symbol tree homomor-
phism (see Section 1.4). This very special kind of homomorphism changes only
the label of the input letter and possibly order of subtrees. Definition of tree

TATA — October 28, 2004 —

186 Tree Transducers

bimorphisms is not necessary, it is the same as in the word case. We get the fol-
lowing characterization theorem. We say that a bimorphism is linear, (respec-
tively complete, etc) if the two morphisms are linear, (respectively complete,
etc).

Theorem 52. The class of bottom-up tree transductions is equivalent to the
class of bimorphisms (Φ, L,Ψ) where Φ is a delabeling.

Relation defined by (Φ, L,Ψ) is computed by a transduction which is linear
(respectively complete, ε-free) if Ψ is linear (respectively complete, ε-free).

Remark that Nivat Theorem illuminates the symmetry of word transduc-
tions: the inverse relation of a rational transduction is a rational transduction.
In the tree case, non-linearity obviously breaks this symmetry, because a tree
transducer can copy an input tree and process several copies, but it can never
check equality of subtrees of an input tree. If we want to consider symmetric
relations, we have two main situations. In the non-linear case, it is easy to prove
that composition of two bimorphisms simulates a Turing machine. In the linear
and the linear complete cases, we get the following results.

Theorem 53 (Tree Bimorphisms). .

1. The class LCFB of linear complete ε-free tree bimorphisms satisfies LCFB ⊂
LCFB

2 = LCFB
3.

2. The class LB of linear tree bimorphisms satisfies LB ⊂ LB
2 ⊂ LB

3 ⊂
LB

4 = LB
5.

Proof of LCFB
2 = LCFB

3 requires many refinements and we omit it.

To prove LCFB ⊂ LCFB
2 we use twice the same homomorphism Φ(a) =

a,Φ(f(x)) = f(x),Φ(g(x, y)) = g(x, y)),Φ(h(x, y, z)) = g(x, g(y, z)).

For any subterms (t1, . . . , t2p+2) , let

t = h(t1, t2, h(t3, t4, h(t2i+1, t2i+2, . . . , h(t2p−1, t2p, g(t2p+1, t2p+2) . . .)))

and

t′ = g(t1, h(t2, t3, h(t4, . . . , h(t2i, t2i+1, h(t2i+2, t2i+3, . . . , h(t2p, t2p+1, t2p+2) . . .))).

We get t′ ∈ (Φ ◦ Φ−1)(t). Assume that Φ ◦ Φ−1 can be processed by some
Ψ−1 ◦Ψ′. Consider for simplicity subterms ti of kind fni(a). Roughly, if lengths
of ti are different enough, Ψ and Ψ′ must be supposed linear complete. Suppose
that for some u we have Ψ(u) = t and Ψ′(u) = t′, then for any context u′

of u, Ψ(u′) is a context of t with an odd number of variables, and Ψ′(u′) is
a context of t′ with an even number of variables. That is impossible because
homomorphisms are linear complete.

Point 2 is a refinement of point 1 (see Exercise 79).

This example shows a stronger fact: the relation cannot be processed by
any bimorphism, even non-linear, nor by any bottom-up transducer A direct
characterization of these transformations is given in [AD82] by a special class of
top-down tree transducers, which are not linear but are “globally” linear, and
which are used to prove LCFB

2 = LCFB
3.

TATA — October 28, 2004 —

6.6 Exercises 187

6.6 Exercises

Exercises 65 to 71 are devoted to the word case, which is out of scoop of this
book. For this reason, we give precise hints for them.

Exercise 65. The class of rational transductions is closed under rational operations.

Hint: for closure under union, connect a new initial state to initial state with (ε, ε)-

rules (parallel composition). For concatenation, connect by the same way final states

of the first transducer to initial states of the second (serial composition). For iteration,

connect final states to initial states (loop operation).

Exercise 66. The class of rational transductions is not closed under intersection. Hint:

consider rational transductions {(anbp, an) | n, p ∈ N} and {(anbp, ap) | n, p ∈ N}.

Exercise 67. Equivalence of rational transductions is undecidable. Hint: Associate

the transduction TP = {(f(u), g(u)) | u ∈ Σ+ with each instance P = (f, g) of the Post

correspondance Problem such that TP defines {(Φ(m), Ψ(m)) | m ∈ Σ∗}. Consider

Diff of example 55.2. Diff 6= Diff ∪ TP if and only if P satisfies Post property.

Exercise 68. Equivalence of deterministic rational transductions is decidable. Hint:

design a pumping lemma to reduce the problem to a bounded one by suppression of

loops (if difference of lengths between two transduced subwords is not bounded, two

transducers cannot be equivalent).

Exercise 69. Build a rational transducer equivalent to a bimorphism. Hint: let f(q) →

q′(f) a transition rule of L. If Φ(f) = ε, introduce transduction rule ε(q) → q′(Ψ(f)).

If Φ(f) = a0 . . . an, introduce new states q1, . . . , qn and transduction rules a0(q) →

q1(ε), . . . ai(qi) → qi+1(ε), . . . an(qn) → q′(Ψ(f)).

Exercise 70. Build a bimorphism equivalent to a rational transducer. Hint: consider

the set ∆ of transition rules as a new alphabet. We may speak of the first state q and

the second state q′ in a letter “f(q) → q′(m)”. The control language L is the set of

words over this alphabet, such that (i) the first state of the first letter is initial (ii) the

second state of the last letter is final (iii) in every two consecutive letters of a word,

the first state of the second equals the second state of the first. We define Φ and Ψ by

Φ(f(q)− > q′(m)) = f and Ψ(f(q)− > q′(m)) = m.

Exercise 71. Homomorphism inversion and applications. An homomorphism Φ is
non-increasing if for every symbol a, Φ(a) is the empty word or a symbol.

1. For any morphism Φ, find a bimorphism (Φ′, L, Ψ) equivalent to Φ−1, with Φ′

non-increasing, and such that furthermore Φ′ is ε-free if Φ is ε-free. Hint: Φ−1

is equivalent to a transducer R (Exercise 69), and the output homomorphism Φ′

associated to R as in Exercise 70 is non-increasing. Furthermore, if Φ is ε-free,
R and Φ′ are ε-free.

2. Let Φ and Ψ two homomorphism. If Φ is non-increasing, build a transducer
equivalent to Ψ ◦ Φ−1 (recall that this notation means that we apply Ψ before
Φ−1). Hint and remark: as Φ is non-increasing, Φ−1 satisfies the inverse homo-
morphism property Φ−1(MM ′) = Φ−1(M)Φ−1(M ′) (for any pair of words or
languages M and M ′). This property can be used to do constructions “symbol
by symbol”. Here, it suffices that the transducer associates Φ−1(Ψ(a)) with a,
for every symbol a of the domain of Ψ.

3. Application: prove that classes of regular and context-free languages are closed
under bimorphisms (we admit that intersection of a regular language with a
regular or context-free language, is respectively regular or context-free).

TATA — October 28, 2004 —

188 Tree Transducers

4. Other application: prove that bimorphisms are closed under composition. Hint
: remark that for any application f and set E, {(x, f(x)) | f(x) ∈ E} =
{(x, f(x)) | x ∈ f−1(E)}.

Exercise 72. We identify words with trees over symbols of arity 1 or 0. Let relations

U = {(fna, fna) | n ∈ N} ∪ {(fnb, gnb) | n ∈ N} and D = {(ffna, ffna) | n ∈

N} ∪ {(gfna, gfnb) | n ∈ N}. Prove that U is a deterministic linear complete bottom-

up transduction but not a deterministic top-down transduction. Prove that D is a

deterministic linear complete top-down transduction but not a deterministic bottom-

up transduction.

Exercise 73. Prove point 3 of Comparison Theorem. Hint. Use rule-by-rule tech-

niques as in Exercise 74.

Exercise 74. Prove Composition Theorem. Hints: Prove 1 and 2 using composition

“rule-by-rule”, illustrated as following. States of A ◦ B are products of states of A

and states of B. Let f(q(x))→A q′(g(x, g(x, a))) and g(q1(x), g(q2(y), a)→B q4(u).

Subterms substituted to x and y in the composition must be equal, and determinism

implies q1 = q2. Then we build new rule f((q, q1)(x))→A◦B(q′, q4)(u). To prove 3

for example, associate q(g(x, y)) → u(q′(x), q′′(y)) with g(q′(x), q′′(y)) → q(u), and

conversely. For 4, Using ad hoc kinds of “rule-by-rule” constructions, prove DDTT ⊂

DCDTT◦LHOM and LHOM◦DCDTT ⊂ DCDTT◦LHOM (L means linear, C complete,

D deterministic - and suffix DTT means top-down tree transducer as usually).

Exercise 75. Prove NDTT = HOM ◦ NLDTT and NUTT = HOM ◦ NLBTT. Hint: to

prove NDTT ⊂ HOM ◦NLDTT use a homomorphism H to produce in advance as may

copies of subtrees of the input tree as the NDTT may need, ant then simulate it by a

linear NDTT.

Exercise 76. Use constructions of composition theorem to reduce the number of

passes in process of Section 6.3.

Exercise 77. Prove recognizability theorem. Hint: as in exercise 74, “naive” con-

structions work.

Exercise 78. Prove Theorem 52. Hint: “naive” constructions work.

Exercise 79. Prove point 2 of Theorem 53. Hint: E denote the class of homomor-

phisms which are linear and symbol-to-symbol. L, LC, LCF denotes linear, linear

complete, linear complete ε-free homomorphisms, respectively. Prove LCS = L ◦ E =

E ◦ L and E−1 ◦ L ⊂ L ◦ E−1. Deduce from these properties and from point 1 of

Theorem 53 that LB4 = E ◦ LCFB2 ◦ E−1. To prove that LB3 6= LB4, consider

Ψ1 ◦ Ψ−1
2 ◦ Φ ◦ Φ−1 ◦ Ψ2 ◦ Ψ−1

1 , where Φ is the homomorphism used in point 1 of

Theorem 53; Ψ1 identity on a, f(x), g(x, y), h(x, y, z), Ψ1(e(x)) = x; Ψ2 identity on

a, f(x), g(x, y) and Ψ2(c(x, y, z) = b(b(x, y), z).

Exercise 80. Sketch of proof of LCFB2 = LCFB3 (difficult). Distance D(x, y, u) of
two nodes x and y in a tree u is the sum of the lengths of two branches which join x
and y to their younger common ancestor in u. D(x, u) denotes the distance of x to
the root of u.

Let H the class of deterministic top-down transducers T defined as follows: q0, . . . , qn

are states of the transducer, q0 is the initial state. For every context, consider the re-
sult ui of the run starting from qi(u). ∃k, ∀ context u such that for every variable x
of u, D(x, u) > k:

• u0 contains at least an occurrence of each variable of u,

TATA — October 28, 2004 —

6.7 Bibliographic notes 189

• for any i, ui contains at least a non variable symbol,

• if two occurrences x′ and x′′ of a same variable x occur in ui, D(x′, x”, ui) < k.

Remark that LCF is included in H and that there is no right hand side of rule with
two occurrences of the same variable associated with the same state. Prove that

1. LCF−1 ⊆ Delabeling−1 ◦ H

2. H ◦ Delabeling−1 ⊆ Delabeling−1 ◦ H

3. H ⊆ LCFB2

4. Conclude. Compare with Exercise 71

Exercise 81. Prove that the image of a recognizable tree language by a linear tree

transducer is recognizable.

6.7 Bibliographic notes

First of all, let us precise that several surveys have been devoted (at least in
part) to tree transducers for 25 years. J.W. Thatcher [Tha73], one of the main
pioneer, did the first one in 1973, and F. Gcseg and M. Steinby the last one
in 1996 [GS96]. Transducers are formally studied too in the book of F. Gcseg
and M. Steinby [GS84] and in the survey of J.-C. Raoult [Rao92]. Survey of M.
Dauchet and S. Tison [DT92] develops links with homomorphisms.

In section 6.2, some examples are inspired by the old survey of Thatcher,
because seminal motivation remain, namely modelization of compilers or, more
generally, of syntax directed transformations as interfacing softwares, which
are always up to date. Among main precursors, we can distinguish Thatcher
[Tha73], W.S. Brainerd [Bra69], A. Aho, J.D. Ullman [AU71], M. A. Arbib, E.
G. Manes [AM78]. First approaches where very linked to practice of compilation,
and in some way, present tree transducers are evolutions of generalized syntax
directed translations (B.S. Backer [Bak78] for example), which translate trees
into strings. But crucial role of tree structure have increased later.

Many generalizations have been introduced, for example generalized finite
state transformations which generalize both the top-down and the bottom-up
tree transducers (J. Engelfriet [Eng77]); modular tree transducers (H. Vogler
[EV91]); synchronized tree automata (K. Salomaa [Sal94]); alternating tree au-
tomata (G.Slutzki [Slu85]); deterministic top-down tree transducers with iter-
ated look-ahead (G. Slutzki, S. Vgvlgyi [SV95]). Ground tree transducers GTT
are studied in Chapter 3 of this book. The first and the most natural generaliza-
tion was introduction of top-down tree transducers with look-ahead. We have
seen that “check and delete” property is specific to bottom-up tree transducers,
and that missing of this property in the non-complete top-down case induces non
closure under composition, even in the linear case (see Composition Theorem).
Top-down transducers with regular look-ahead are able to recognize before the
application of a rule at a node of an input tree whether the subtree at a son of
this node belongs to a given recognizable tree language. This definition remains
simple and gives to top-down transducers a property equivalent to “check and
delete”.

Contribution of Engelfriet to the theory of tree transducers is important,
especially for composition, decomposition and hierarchy main results ([Eng75,
Eng78, Eng82]).

TATA — October 28, 2004 —

190 Tree Transducers

We did not many discuss complexity and decidability in this chapter, because
the situation is classical. Since many problems are undecidable in the word
case, they are obviously undecidable in the tree case. Equivalence decidability
holds as in the word case for deterministic or finite-valued tree transducers (Z.
Zachar [Zac79], Z. Esik [Esi83], H. Seidl [Sei92, Sei94a]).

TATA — October 28, 2004 —

Chapter 7

Alternating Tree Automata

7.1 Introduction

Complementation of non-deterministic tree (or word) automata requires a deter-
minization step. This is due to an asymmetry in the definition. Two transition
rules with the same left hand side can be seen as a single rule with a disjunctive
right side. A run of the automaton on a given tree has to choose some member
of the disjunction. Basically, determinization gathers the disjuncts in a single
state.

Alternating automata restore some symmetry, allowing both disjunctions
and conjunctions in the right hand sides. Then complementation is much easier:
it is sufficient to exchange the conjunctions and the disjunction signs, as well as
final and non-final states. In particular, nothing similar to determinization is
needed.

This nice formalism is more concise. The counterpart is that decision prob-
lems are more complex, as we will see in Section 7.5.

There are other nice features: for instance, if we see a tree automaton as
a finite set of monadic Horn clauses, then moving from non-deterministic to
alternating tree automata consists in removing a very simple assumption on the
clauses. This is explained in Section 7.6. In the same vein, removing another
simple assumption yields two-way alternating tree automata, a more powerful
device (yet not more expressive), as described in Section 7.6.3.

Finally, we also show in Section 7.2.3 that, as far as emptiness is concerned,
tree automata correspond to alternating word automata on a single-letter al-
phabet, which shows the relationship between computations (runs) of a word
alternating automaton and computations of a tree automaton.

7.2 Definitions and Examples

7.2.1 Alternating Word Automata

Let us start first with alternating word automata.
If Q is a finite set of states, B+(Q) is the set of positive propositional formulas

over the set of propositional variables Q. For instance, q1∧ (q2∨q3)∧ (q2∨q4) ∈
B+({q1, q2, q3, q4}).

TATA — October 28, 2004 —

192 Alternating Tree Automata

Alternating word automata are defined as deterministic word automata, ex-
cept that the transition function is a mapping from Q×A to B+(Q) instead of
being a mapping from Q×A to Q. We assume a subset Q0 of Q of initial states
and a subset Qf of Q of final states.

Example 59. Assume that the alphabet is {0, 1} and the set of states is
{q0, q1, q2, q3, q4, q

′
1, q

′
2}, Q0 = {q0}, Qf = {q0, q1, q2, q3, q4} and the transitions

are:
q00 → (q0 ∧ q1) ∨ q′1 q01 → q0

q10 → q2 q11 → true
q20 → q3 q21 → q3

q30 → q4 q31 → q4

q40 → true q41 → true
q′10 → q′1 q′11 → q′2
q′20 → q′2 q′21 → q′1

A run of an alternating word automaton A on a word w is a finite tree ρ
labeled with Q × N such that:

• The root of ρ is labeled by some pair (q, 0).

• If ρ(p) = (q, i) and i is strictly smaller than the length of w, w(i + 1) = a,
δ(q, a) = φ, then there is a set S = {q1, . . . , qn} of states such that S |= φ,
positions p1, . . . , pn are the successor positions of p in ρ and ρ(pj) =
(qj , i + 1) for every j = 1, ...n.

The notion of satisfaction used here is the usual one in propositional calculus:
the set S is the set of propositions assigned to true, while the propositions not
belonging to S are assumed to be assigned to false. Therefore, we have the
following:

• there is no run on w such that w(i + 1) = a for some i, ρ(p) = (q, i) and
δ(q, i) = false

• if δ(q, w(i + 1)) = true and ρ(p) = (q, i), then p can be a leaf node, in
which case it is called a success node.

• All leaf nodes are either success nodes as above or labeled with some (q, n)
such that n is the length of w.

A run of an alternating automaton is successful on w if and only if

• all leaf nodes are either success nodes or labeled with some (q, n), where
n is the length of w, such that q ∈ Qf .

• the root node ρ(ε) = (q0, 0) with q0 ∈ Q0.

Example 60. Let us come back to Example 59. We show on Figure 7.1 two
runs on the word 00101, one of which is successful.

TATA — October 28, 2004 —

7.2 Definitions and Examples 193

0

0

1

1

0

q0, 2 q1, 2

q’2q′
2, 5

q0, 3

q0, 5

q0, 1

q2, 2

q3, 3

q4, 4

q1, 1q0, 1

q0, 2 q1, 2 q2, 2

q3, 3

q4, 4
q0, 4 q1, 4

q1, 1

q0, 3

q′
1, 4

q0, 0 q0, 0

Figure 7.1: Two runs on the word 00101 of the automaton defined in Exam-
ple 59. The right one is successful.

Note that non-deterministic automata are the particular case of alternating
automata in which only disjunctions (no conjunctions) occur in the transition
relation. In such a case, if there is a succesful run on w, then there is also a
successful run, which is a string.

Note also that, in the definition of a run, we can always choose the set S to
be a minimal satisfaction set: if there is a successful run of the automaton, then
there is a successful one in which we always choose a minimal set S of states.

7.2.2 Alternating Tree Automata

Now, let us switch to alternating tree automata: the definitions are simple
adaptations of the previous ones.

Definition 14. An alternating tree automaton over F is a tuple A = (Q,F , I,∆)
where Q is a set of states, I ⊆ Q is a set of initial states and ∆ is a mapping
from Q×F to B+(Q×N) such that ∆(q, f) ∈ B+(Q×{1, . . . ,Arity(f)}) where
Arity(f) is the arity of f .

Note that this definition corresponds to a top-down automaton, which is
more convenient in the alternating case.

Definition 15. Given a term t ∈ T (F) and an alternating tree automaton A
on F , a run of A on t is a tree ρ on Q × N

∗ such that ρ(ε) = (q, ε) for some
state q and

if ρ(π) = (q, p), t(p) = f and δ(q, f) = φ, then there is a subset S =
{(q1, i1), . . . , (qn, in)} of Q × {1, . . . ,Arity(f)} such that S |= φ, the
successor positions of π in ρ are {π1, . . . , πn} and ρ(π ·j) = (qj , p·ij)
for every j = 1..n.

A run ρ is successful if ρ(ε) = (q, ε) for some initial state q ∈ I.

TATA — October 28, 2004 —

194 Alternating Tree Automata

Note that (completely specified) non-deterministic top-down tree automata
are the particular case of alternating tree automata. For a set of non-deterministic
rules q(f(x1, . . . , xn)) → f(q1(x1), . . . , qn(xn)), Delta(q, f) is defined by:

∆(q, f) =
∨

(q1,...,qn)∈S

Arity(f)∧

i=1

(qi, i)

Example 61. Consider the automaton on the alphabet {f(,), a, b} whose
transition relation is defined by:

∆ f a b
q2 [((q1, 1) ∧ (q2, 2)) ∨ ((q1, 2) ∧ (q2, 1))] ∧ (q4, 1) true false
q1 ((q2, 1) ∧ (q2, 2)) ∨ ((q1, 2) ∧ (q1, 1)) false true
q4 ((q3, 1) ∧ (q3, 2)) ∨ ((q4, 1) ∧ (q4, 2)) true true
q3 ((q3, 1) ∧ (q2, 2)) ∨ ((q4, 1) ∧ (q1, 2)) ∧ (q5, 1)) false true
q5 false true false

Assume I = {q2}. A run of the automaton on the term t = f(f(b, f(a, b)), b).
is depicted on Figure 7.2.

In the case of a non-deterministic top-down tree automaton, the different
notions of a run coincide as, in such a case, the run obtained from Definition 15
on a tree t is a tree whose set of positions is the set of positions of t, possibly
changing the ordering of sons.

Words over an alphabet A can be seen as trees over the set of unary function
symbols A and an additional constant #. For convenience, we read the words
from right to left. For instance, aaba is translate into the tree a(b(a(a(#)))).
Then an alternating word automaton A can be seen as an alternating tree
automaton whose initial states are the final states of A, the transitions are the
same and there is additional rules δ(q0,#) = true for the initial state q0 of A
and δ(q,#) = false for other states.

7.2.3 Tree Automata versus Alternating Word Automata

It is interesting to remark that, guessing the input tree, it is possible to reduce
the emptiness problem for (non-deterministic, bottom-up) tree automata to
the emptiness problem for an alternating word automaton on a single letter
alphabet: assume that A = (Q,F , Qf ,∆) is a non-deterministic tree automaton,
then construct the alternating word automaton on a one letter alphabet {a} as
follows: the states are Q × F , the initial states are Qf × F and the transition
rules:

δ((q, f), a) =
∨

f(q1,...,qn)→q∈∆

n∧

i=1

∨

fj∈F

((qi, fj), i)

Conversely, it is also possible to reduce the emptiness problem for an alter-
nating word automaton over a one letter alphabet {a} to the emptiness prob-
lem of non-deterministic tree automata, introducing a new function symbol for
each conjunction; assume the formulas in disjunctive normal form (this can

TATA — October 28, 2004 —

7.2 Definitions and Examples 195

f

f b

b f

a b

q2,ε

q2,1 q4,1 q1,2

q1,11 q2,12 q4,11 q3,11 q3,12

q4,121 q2,121 q1,122 q5,121 q4,121 q1,122

Figure 7.2: A run of an alternating tree automaton

TATA — October 28, 2004 —

196 Alternating Tree Automata

be assumed w.l.o.g, see Exercise 82), then replace each transition δ(q, a) =∨n
i=1

∧ki

j=1(qi,j , i) with fi(qi,1, . . . , qi,ki
) → q.

7.3 Closure Properties

One nice feature of alternating automata is that it is very easy to perform the
Boolean operations (for short, we confuse here the automaton and the language
recognized by the automaton). First, we show that we can consider automata
with only one initial state, without loss of generality.

Lemma 10. Given an alternating tree automaton A, we can compute in linear
time an automaton A′ with only one initial state and which accepts the same
language as A.

Proof. Add one state q0 to A, which will become the only initial state, and the
transitions:

δ(q0, f) =
∨

q∈I

δ(q, f)

Proposition 47. Union, intersection and complement of alternating tree au-
tomata can be performed in linear time.

Proof. We consider w.l.o.g. automata with only one initial state. Given A1 and
A2, with a disjoint set of states, we compute an automaton A whose states are
those of A1 and A2 and one additional state q0. Transitions are those of A1

and A2 plus the additional transitions for the union:

δ(q0, f) = δ1(q
0
1 , f) ∨ δ2(q

0
2 , f)

where q0
1 , q0

2 are the initial states of A1 and A2 respectively. For the intersection,
we add instead the transitions:

δ(q0, f) = δ1(q
0
1 , f) ∧ δ2(q

0
2 , f)

Concerning the complement, we simply exchange ∧ and ∨ (resp. true and

false) in the transitions. The resulting automaton Ã will be called the dual
automaton in what follows.

The proof that these constructions are correct for union and intersection are
left to the reader. Let us only consider here the complement.

We prove, by induction on the size of t that, for every state q, t is accepted
either by A or Ã in state q and not by both automata.

If t is a constant a, then δ(q, a) is either true or false. If δ(q, a) = true,

then δ̃(q, a) = false and t is accepted by A and not by Ã. The other case is
symmetric.

Assume now that t = f(t1, . . . , tn) and δ(q, f) = φ. Let S be the set of
pairs (qj , ij) such that tij

is accepted from state qj by A. t is accepted by A, iff

S |= φ. Let S̃ be the complement of S in Q × [1..n]. By induction hypothesis,

(qj , i) ∈ S̃ iff ti is accepted in state qj by Ã.

We show that S̃ |= φ̃ iff S 6|= φ. (φ̃ is the dual formula, obtained by ex-
changing ∧ and ∨ on one hand and true and false on the other hand in φ). We

TATA — October 28, 2004 —

7.4 From Alternating to Deterministic Automata 197

show this by induction on the size of φ: if φ is true (resp. false), then S |= φ

and S̃ 6|= φ̃ (resp. S̃ = ∅) and the result is proved. Now, let, φ be, e.g., φ1 ∧ φ2.
S 6|= φ iff either S 6|= φ1 or S 6|= φ2, which, by induction hypothesis, is equivalent

to S̃ |= φ̃1 or S̃ |= φ̃2. By construction, this is equivalent to S̃ |= φ̃. The case
φ = φ1 ∨ φ2 is similar.

Now t is accepted in state q by A iff S |= φ iff S̃ 6|= φ̃ iff t not accepted in

state q by Ã.

7.4 From Alternating to Deterministic Automata

The expressive power of alternating automata is exactly the same as finite
(bottom-up) tree automata.

Theorem 54. If A is an alternating tree automaton, then there is a finite
deterministic bottom-up tree automaton A′ which accepts the same language.
A′ can be computed from A in deterministic exponential time.

Proof. Assume A = (Q,F , I,∆), then A′ = (2Q,F , Qf , δ) where Qf = {S ∈
2Q | S ∩ I 6= ∅} and δ is defined as follows:

f(S1, . . . , Sn) → {q ∈ Q | S1 × {1} ∪ . . . ∪ Sn × {n} |= ∆(q, f)}

A term t is accepted by A′ in state S iff t is accepted by A in all states q ∈ S.
This is proved by induction on the size of t: if t is a constant, then t is accepted in
all states q such that ∆(q, t) = true. Now, if t = f(t1, . . . , tn) we let S1, . . . , Sn

are the set of states in which t1, . . . , tn are respectively accepted by A. t is
accepted by A in a state q iff there is S0 ⊆ Q×{1, . . . , n} such that S0 |= ∆(q, f)
and, for every pair (qi, j) ∈ S0, tj is accepted in qi. In other words, t is accepted
by A in state q iff there is an S0 ⊆ S1×{1}∪. . .∪Sn×{n} such that S0 |= ∆(q, f),
which is in turn equivalent to S1 ×{1}∪ . . .∪Sn ×{n} |= ∆(q, f). We conclude
by an application of the induction hypothesis.

Unfortunately the exponential blow-up is unavoidable, as a consequence of
Proposition 47 and Theorems 14 and 11.

7.5 Decision Problems and Complexity Issues

Theorem 55. The emptiness problem and the universality problem for alter-
nating tree automata are DEXPTIME-complete.

Proof. The DEXPTIME membership is a consequence of Theorems 11 and 54.

The DEXPTIME-hardness is a consequence of Proposition 47 and Theo-
rem 14.

The membership problem (given t and A, is t accepted by A ?) can be
decided in polynomial time. This is left as an exercise.

TATA — October 28, 2004 —

198 Alternating Tree Automata

7.6 Horn Logic, Set Constraints and Alternat-
ing Automata

7.6.1 The Clausal Formalism

Viewing every state q as a unary predicate symbol Pq, tree automata can be
translated into Horn clauses in such a way that the language recognized in state
q is exactly the interpretation of Pq in the least Herbrand model of the set of
clauses.

There are several advantages of this point of view:

• Since the logical setting is declarative, we don’t have to distinguish be-
tween top-down and bottom-up automata. In particular, we have a defi-
nition of bottom-up alternating automata for free.

• Alternation can be expressed in a simple way, as well as push and pop
operations, as described in the next section.

• There is no need to define a run (which would correspond to a proof in
the logical setting)

• Several decision properties can be translated into decidability problems for
such clauses. Typically, since all clauses belong to the monadic fragment,
there are decision procedures e.g. relying on ordered resolution strategies.

There are also weaknesses: complexity issues are harder to study in this
setting. Many constructive proofs, and complexity results have been obtained
with tree automata techniques.

Tree automata can be translated into Horn clauses. With a tree automaton
A = (Q,F , Qf ,∆) is associated the following set of Horn clauses:

Pq(f(x1, . . . , xn)) ← Pq1
(x1), . . . , Pqn

(xn)

if f(q1, . . . , qn) → q ∈ ∆. The language accepted by the automaton is the union
of interpretations of Pq, for q ∈ Qf , in the least Herbrand model of clauses.

Also, alternating tree automata can be translated into Horn clauses. Alter-
nation can be expressed by variable sharing in the body of the clause. Con-
sider an alternating tree automaton (Q,F , I,∆). Assume that the transi-
tions are in disjunctive normal form (see Exercise 82). With a transition

∆(q, f) =
∨m

i=1

∧ki

j=1(qj , ij) is associated the clauses

Pq(f(x1, . . . , xn)) ←
ki∧

j=1

Pqj
(xij

)

We can also add ε-transitions, by allowing clauses

P (x) ← Q(x)

In such a setting, automata with equality constraints between brothers,
which are studied in Section 4.3, are simply an extension of the above class
of Horn clauses, in which we allow repeated variables in the head of the clause.

TATA — October 28, 2004 —

7.6 Horn Logic, Set Constraints and Alternating Automata 199

Allowing variable repetition in an arbitrary way, we get alternating automata
with contraints between brothers, a class of automata for which emptiness is
decidable in deterministic exponential time. (It is expressible in Lwenheim’s
class with equality, also called sometimes the monadic class).

Still, for tight complexity bounds, for closure properties (typically by com-
plementation) of automata with equality tests between brothers, we refer to
Section 4.3. Note that it is not easy to derive the complexity results obtained
with tree automata techniques in a logical framework.

7.6.2 The Set Constraints Formalism

We introduced and studied general set constraints in Chapter 5. Set constraints
and, more precisely, definite set constraints provide with an alternative descrip-
tion of tree automata.

Definite set constraints are conjunctions of inclusions

e ⊆ t

where e is a set expression built using function application, intersection and
variables and t is a term set expression, constructed using function application
and variables only.

Given an assignment σ of variables to subsets of T (F), we can interpret the
set expressions as follows:

[[f(e1, . . . , en)]]σ
def
= {f(t1, . . . , tn) | ti ∈ [[ei]]σ}

[[e1 ∩ e2]]σ
def
= [[e1]]σ ∩ [[e2]]σ

[[X]]σ
def
= Xσ

Then σ is a solution of a set constraint if inclusions hold for the corresponding
interpretation of expressions.

When we restrict the left members of inclusions to variables, we get an-
other formalism for alternating tree automata: such set constraints have always
a least solution, which is accepted by an alternating tree automaton. More
precisely, we can use the following translation from the alternating automaton
A = (Q,F , I,∆): assume again that the transitions are in disjunctive normal
form (see Exercise 82) and construct, the inclusion constraints

f(X1,f,q,d, . . . ,Xn,f,q,d) ⊆ Xq

⋂

(q′,j)∈d

Xq′ ⊆ Xj,f,q,d

for every (q, f) ∈ Q × F and d a disjunct of ∆(q, f). (An intersection over an
empty set has to be understood as the set of all trees).

Then, the language recognized by the alternating tree automaton is the
union, for q ∈ I, of Xqσ where σ is the least solution of the constraint.

Actually, we are constructing the constraint in exactly the same way as we
constructed the clauses in the previous section. When there is no alternation, we
get an alternative definition of non-deterministic automata, which corresponds
to the algebraic characterization of Chapter 2.

Conversely, if all right members of the definite set constraint are variables,
it is not difficult to construct an alternating tree automaton which accepts the
least solution of the constraint (see Exercise 85).

TATA — October 28, 2004 —

200 Alternating Tree Automata

7.6.3 Two Way Alternating Tree Automata

Definite set constraints look more expressive than alternating tree automata,
because inclusions

X ⊆ f(Y,Z)

cannot be directly translated into automata rules.
We define here two-way tree automata which will easily correspond to definite

set constraints on one hand and allow to simulate, e.g., the behavior of standard
pushdown word automata.

It is convenient here to use the clausal formalism in order to define such
automata. A clause

P (u) ← P1(x1), . . . , Pn(xn)

where u is a linear, non-variable term and x1, . . . , xn are (not necessarily dis-
tinct) variables occurring in u, is called a push clause. A clause

P (x) ← Q(t)

where x is a variable and t is a linear term, is called a pop clause. A clause

P (x) ← P1(x), . . . , Pn(x)

is called an alternating clause (or an intersection clause).

Definition 16. An alternating two-way tree automaton is a tuple (Q,Qf ,F , C)
where Q is a finite set of unary function symbols, Qf is a subset of Q and C is a
finite set of clauses each of which is a push clause, a pop clause or an alternating
clause.

Such an automaton accepts a tree t if t belongs to the interpretation of some
P ∈ Qf in the least Herbrand model of the clauses.

Example 62. Consider the following alternating two-way automaton on the
alphabet F = {a, f(,)}:

1. P1(f(f(x1, x2), x3)) ← P2(x1), P2(x2), P2(x3)
2. P2(a)
3. P1(f(a, x)) ← P2(x)
4. P3(f(x, y)) ← P1(x), P2(y)
5. P4(x) ← P3(x), P1(x)
6. P2(x) ← P4(f(x, y))
7. P1(y) ← P4(f(x, y))

The clauses 1,2,3,4 are push clauses. Clause 5 is an alternating clause and
clauses 6,7 are pop clauses.

If we compute the least Herbrand model, we successively get for the five first
steps:

step 1 2 3 4 5

P1 f(a, a), f(f(a, a), a) a

P2 a f(a, a)

P3 f(f(a, a), a), f(f(f(a, a), a), a)

P4 f(f(a, a), a)

TATA — October 28, 2004 —

7.6 Horn Logic, Set Constraints and Alternating Automata 201

These automata are often convenient in expressing some problems (see the
exercises and bibliographic notes). However they do not increase the expressive
power of (alternating) tree automata:

Theorem 56. For every alternating two-way tree automaton, it is possible to
compute in deterministic exponential time a tree automaton which accepts the
same language.

We do not prove the result here (see the bibliographic notes instead). A
simple way to compute the equivalent tree automaton is as follows: first flat-
ten the clauses, introducing new predicate symbols. Then saturate the set of
clauses, using ordered resolution (w.r.t. subterm ordering) and keeping only
non-subsumed clauses. The saturation process terminates in exponential time.
The desired automaton is obtained by simply keeping only the push clauses of
this resulting set of clauses.

Example 63. Let us come back to Example 62 and show how we get an equiv-
alent finite tree automaton.

First flatten the clauses: Clause 1 becomes

1. P1(f(x, y)) ← P5(x), P2(y)
8. P5(f(x, y)) ← P2(x), P2(y)

Now we start applying resolution;

From 4 + 5: 9. P4(f(x, y)) ← P1(x), P2(y), P1(f(x, y))
Form 9 + 6: 10. P2(x) ← P1(x), P2(y)
From 10 + 2: 11. P2(x) ← P1(x)

Clause 11 subsumes 10, which is deleted.

From 9 + 7: 12. P1(y) ← P1(x), P2(y)
From 12 +1: 13. P1(y) ← P2(y), P5(x), P2(z)
From 13 + 8: 14. P1(y) ← P2(y), P2(x1), P2(x2), P2(z)

Clause 14. can be simplified and, by superposition with 2. we get

From 14 + 2: 15. P1(y) ← P2(y)

At this stage, from 11. and 15. we have P1(x) ↔ P2(x), hence, for simplicity,
we will only consider P1, replacing every occurrence of P2 with P1.

From 1 +5: 16. P4(f(x, y)) ← P3(f(x, y)), P5(x), P1(y)
From 1 + 9: 17. P4(f(x, y)) ← P1(x), P1(y), P5(x)
From 2 +5: 18. P4(a) ← P3(a)
From 3 +5: 19. P4(f(a, x)) ← P3(f(a, x)), P1(x)
From 3+ 9: 20. P4(f(a, x)) ← P1(x), P1(a)
From 2 + 20: 21. P4(f(a, x)) ← P1(x)

TATA — October 28, 2004 —

202 Alternating Tree Automata

Clause 21. subsumes both 20 and 19. These two clauses are deleted.

From 5 + 6: 22. P1(x) ← P3(f(x, y)), P1(f(x, y))
From 5 +7: 23. P1(y) ← P3(f(x, y)), P1(f(x, y))
From 16 + 6: 24. P1(x) ← P3(f(x, y)), P5(x), P1(y)
From 23 +1: 25. P1(y) ← P3(f(x, y)), P5(x), P1(y)

Now every new inference yields a redundant clause and the saturation termi-
nates, yielding the automaton:

1. P1(f(x, y)) ← P5(x), P2(y)
2. P1(a)
3. P1(f(a, x)) ← P1(x)
4. P3(f(x, y)) ← P1(x), P1(y)
8. P5(f(x, y)) ← P1(x), P1(y)
11. P1(x) ← P1(y)
15. P2(x) ← P1(x)
21. P4(f(a, x)) ← P1(x)

Of course, this automaton can be simplified: P1 and P2 accept all terms in
T (F).

It follows from Theorems 56, 55 and 11 that the emptiness problem (resp.
universality problems) are DEXPTIME-complete for two-way alternating au-
tomata.

7.6.4 Two Way Automata and Definite Set Constraints

There is a simple reduction of two-way automata to definite set constraints:
A push clause P (f(x1, . . . , xn)) ← P1(xi1), . . . , Pn(xin

) corresponds to an
inclusion constraint

f(e1, . . . , en) ⊆ XP

where each ej is the intersection, for ik = j of the variables XPk
. A (conditional)

pop clause P (xi) ← Q(f(x1, . . . , xn)), P1(x1), . . . Pk(xk) corresponds to

f(e1, . . . , en) ∩ XQ ⊆ f(>, . . . ,XP ,>, . . .)

where, again, each ej is the intersection, for ik = j of the variables XPk
and > is a

variable containing all term expressions. Intersection clauses P (x) ← Q(x), R(x)
correspond to constraints

XQ ∩ XR ⊆ XP

Conversely, we can translate the definite set constraints into two-way au-
tomata, with additional restrictions on some states. We cannot do better since
a definite set constraint could be unsatisfiable.

Introducing auxiliary variables, we only have to consider constraints:

1. f(X1, . . . ,Xn) ⊆ X,

2. X1 ∩ . . . ∩ Xn ⊆ X,

3. X ⊆ f(X1, . . . ,Xn).

TATA — October 28, 2004 —

7.7 An (other) example of application 203

The first constraints are translated to push clauses, the second kind of con-
straints is translated to intersection clauses. Consider the last constraints. It
can be translated into the pop clauses:

PXi
(xi) ← PX(f(x1, . . . , xn))

with the provision that all terms in PX are headed with f .
Then the procedure which solves definite set constraints is essentially the

same as the one we sketched for the proof of Theorem 56, except that we have
to add unit negative clauses which may yield failure rules

Example 64. Consider the definite set constraint

f(X,Y) ∩ X ⊆ f(Y,X), f(a, Y) ⊆ X, a ⊆ Y, f(f(Y, Y), Y) ⊆ X

Starting from this constraint, we get the clauses of Example 62, with the addi-
tional restriction

26. ¬P4(a)

since every term accepted in P4 has to be headed with f .
If we saturate this constraint as in Example 63, we get the same clauses, of

course, but also negative clauses resulting from the new negative clause:

From 26 + 18 27. ¬P3(a)

And that is all: the constraint is satisfiable, with a minimal solution described
by the automaton resulting from the computation of Example 63.

7.6.5 Two Way Automata and Pushdown Automata

Two-way automata, though related to pushdown automata, are quite differ-
ent. In fact, for every pushdown automaton, it is easy to construct a two-way
automaton which accepts the possible contents of the stack (see Exercise 86).
However, two-way tree (resp. word) automata have the same expressive power
as standard tree (resp. word) automata: they only accept regular languages,
while pushdown automata accept context-free languages, which strictly contain
regular languages.

Note still that, as a corollary of Theorem 56, the language of possible stack
contents in a pushdown automaton is regular.

7.7 An (other) example of application

Two-way automata naturally arise in the analysis of cryptographic protocols.
In this context, terms are constructed using the function symbols { } (binary
encryption symbols), < , > (pairing) and constants (and other symbols which
are irrelevant here). The so-called Dolev-Yao model consists in the deduction
rules of Figure 7.3, which express the capabilities of an intruder. For simplicity,
we only consider here symmetric encryption keys, but there are similar rules for
public key cryptosystems. The rules basically state that an intruder can encrypt

TATA — October 28, 2004 —

204 Alternating Tree Automata

Pairing
u v

< u, v >
Encryption

u v

{u}v

Unpairing L
< u, v >

u
Unpairing R

< u, v >

v

Decryption
{u}v v

u

Figure 7.3: The Dolev-Yao intruder capabilities

a known message with a known key, can decrypt a known message encrypted
with k, provided he knows k and can form and decompose pairs.

It is easy to construct a two-way automaton which, given a regular set of
terms R, accepts the set of terms that can be derived by an intruder using the
rules of Figure 7.3 (see Exercise 87).

7.8 Exercises

Exercise 82. Show that, for every alternating tree automaton, it is possible to com-
pute in polynomial time an alternating tree automaton which accepts the same lan-
guage and whose transitions are in disjunctive normal form, i.e. each transition has
the form

δ(q, f) =

m
_

i=1

kî

j=1

(qj , lj)

Exercise 83. Show that the membership problem for alternating tree automata can

be decided in polynomial time.

Exercise 84. An alternating automaton is weak if there is an ordering on the set of
states such that, for every state q and every function symbol f , every state q′ occurring
in δ(q, f) satisfies q′ ≤ q.

Prove that the emptiness of weak alternating tree automata is in PTIME.

Exercise 85. Given a definite set constraint whose all right hand sides are variables,

show how to construct (in polynomial time) k alternating tree automata which accept

respectively X1σ, . . . , Xkσ where σ is the least solution of the constraint.

Exercise 86. A pushdown automaton on words is a tuple (Q, Qf , A, Γ, δ) where Q is
a finite set of states, Qf ⊆ Q, A is a finite alphabet of input symbols, Γ is a finite
alphabet of stack symbols and δ is a transition relation defined by rules: qa

w
−→ q′

and qa
w−1

−−−→ q′ where q, q′ ∈ Q, a ∈ A and w, w′ ∈ Γ∗.

A configuration is a pair of a state and a word γ ∈ Γ∗. The automaton may move
when reading a, from (q, γ) to (q′, γ′) if either there is a transition qa

w
−→ q′ and

γ′ = w · γ or there is a transition qa
w−1

−−−→ q′ and γ = w · γ′.

TATA — October 28, 2004 —

7.9 Bibliographic Notes 205

1. Show how to compute (in polynomial time) a two-way automaton which accepts
w in state q iff the configuration (q, w) is reachable.

2. This can be slightly generalized considering alternating pushdown automata:

now assume that the transitions are of the form: qa
w
−→ φ and qa

w−1

−−−→ φ

where φ ∈ B+(Q). Give a definition of a run and of an accepted word, which is
consistent with both the definition of a pushdown automaton and the definition
of an alternating automaton.

3. Generalize the result of the first question to alternating pushdown automata.

4. Generalize previous questions to tree automata.

Exercise 87. Given a finite tree automaton A over the alphabet {a, { } , < , >},
construct a two-way tree automaton which accepts the set of terms t which can be
deduced by the rule of Figure 7.3 and the rule

t
If t is accepted by A

7.9 Bibliographic Notes

Alternation has been considered for a long time as a computation model, e.g. for
Turing machines. The seminal work in this area is [CKS81], in which the rela-
tionship between complexity classes defined using (non)-deterministic machines
and alternating machines is studied.

Concerning tree automata, alternation has been mainly considered in the
case of infinite trees. This is especially useful to keep small representations
of automata associated with temporal logic formulas, yielding optimal model-
checking algorithms [KVW00].

Two-way automata and their relationship with clauses have been first consid-
ered in [FSVY91] for the analysis of logic programs. They also occur naturally
in the context of definite set constraints, as we have seen (the completion mecha-
nisms are presented in, e.g., [HJ90a, CP97]), and in the analysis of cryptographic
protocols [Gou00].

There several other definitions of two-way tree automata. We can distinguish
between two-way automata which have the same expressive power as regular
languages and what we refer here to pushdown automata, whose expressive
power is beyond regularity.

Decision procedures based on ordered resolution strategies could be found
in [Jr.76].

Alternating automata with contraints between brothers define a class of
languages expressible in Lwenheim’s class with equality, also called sometimes
the monadic class. See for instance [BGG97].

TATA — October 28, 2004 —

Bibliography

[AD82] A. Arnold and M. Dauchet. Morphismes et bimorphismes d’arbres.
Theorical Computer Science, 20:33–93, 1982.

[AG68] M. A. Arbib and Y. Give’on. Algebra automata I: Parallel program-
ming as a prolegomena to the categorical approach. Information
and Control, 12(4):331–345, April 1968.

[AKVW93] A. Aiken, D. Kozen, M. Vardi, and E. Wimmers. The complex-
ity of set constraints. In E. Börger, Y. Gurevich, and K. Meinke,
editors, Proceedings of Computer Science Logic, volume 832 of Lec-
ture Notes in Computer Science, pages 1–17, 1993. Techn. Report
93-1352, Cornell University.

[AKW95] A. Aiken, D. Kozen, and E.L. Wimmers. Decidability of systems
of set constraints with negative constraints. Information and Com-
putation, 122(1):30–44, October 1995.

[AM78] M.A. Arbib and E.G. Manes. Tree transformations and semantics
of loop-free programs. Acta Cybernetica, 4:11–17, 1978.

[AM91] A. Aiken and B. R. Murphy. Implementing regular tree expressions.
In Proceedings of the ACM conf. on Functional Programming Lan-
guages and Computer Architecture, pages 427–447, 1991.

[AU71] A. V. Aho and J. D. Ullmann. Translations on a context-free gram-
mar. Information and Control, 19:439–475, 1971.

[AW92] A. Aiken and E.L. Wimmers. Solving Systems of Set Constraints.
In Proceedings, Seventh Annual IEEE Symposium on Logic in Com-
puter Science [IEE92], pages 329–340.

[Bak78] B.S. Baker. Generalized syntax directed translation, tree transduc-
ers, and linear space. Journal of Comput. and Syst. Sci., 7:876–891,
1978.

[BGG97] E. Börger, E. Grädel, and Y. Gurevich. The Classical Decision
Problem. Perspectives of Mathematical Logic. Springer Verlag,
1997.

[BGW93] L. Bachmair, H. Ganzinger, and U. Waldmann. Set constraints are
the monadic class. In Proceedings, Eighth Annual IEEE Sympo-
sium on Logic in Computer Science, pages 75–83. IEEE Computer
Society Press, 19–23 June 1993.

TATA — October 28, 2004 —

208 BIBLIOGRAPHY

[BJ97] A. Bouhoula and J.-P. Jouannaud. Automata-driven automated
induction. In Proceedings, 12th Annual IEEE Symposium on Logic
in Computer Science [IEE97].

[BKMW01] A. Brggemann-Klein, M.Murata, and D. Wood. Regular tree and
regular hedge languages over unranked alphabets. Technical Report
HKTUST-TCSC-2001-05, HKUST Theoretical Computer Science
Center Research, 2001.

[Boz99] S. Bozapalidis. Equational elements in additive algebras. Theory
of Computing Systems, 32(1):1–33, 1999.

[Boz01] S. Bozapalidis. Context-free series on trees. ICOMP, 169(2):186–
229, 2001.

[BR82] Jean Berstel and Christophe Reutenauer. Recognizable formal
power series on trees. TCS, 18:115–148, 1982.

[Bra68] W. S. Brainerd. The minimalization of tree automata. Information
and Control, 13(5):484–491, November 1968.

[Bra69] W. S. Brainerd. Tree generating regular systems. Information and
Control, 14(2):217–231, February 1969.

[BT92] B. Bogaert and S. Tison. Equality and disequality constraints on
direct subterms in tree automata. In A. Finkel and M. Jantzen, ed-
itors, 9th Annual Symposium on Theoretical Aspects of Computer
Science, volume 577 of Lecture Notes in Computer Science, pages
161–171, 1992.

[Büc60] J. R. Büchi. On a decision method in a restricted second order
arithmetic. In Stanford Univ. Press., editor, Proc. Internat. Congr.
on Logic, Methodology and Philosophy of Science, pages 1–11, 1960.

[CCC+94] A.-C. Caron, H. Comon, J.-L. Coquidé, M. Dauchet, and F. Jacque-
mard. Pumping, cleaning and symbolic constraints solving. In Pro-
ceedings, International Colloquium Automata Languages and Pro-
gramming, volume 820 of Lecture Notes in Computer Science, pages
436–449, 1994.

[CD94] H. Comon and C. Delor. Equational formulae with membership
constraints. Information and Computation, 112(2):167–216, Au-
gust 1994.

[CDGV94] J.-L. Coquide, M. Dauchet, R. Gilleron, and S. Vagvolgyi. Bottom-
up tree pushdown automata : Classification and connection with
rewrite systems. Theorical Computer Science, 127:69–98, 1994.

[CG90] J.-L. Coquidé and R. Gilleron. Proofs and reachability problem
for ground rewrite systems. In Proc. IMYCS’90, Smolenice Castle,
Czechoslovakia, November 1990.

[Chu62] A. Church. Logic, arithmetic, automata. In Proc. International
Mathematical Congress, 1962.

TATA — October 28, 2004 —

BIBLIOGRAPHY 209

[CJ97a] H. Comon and F. Jacquemard. Ground reducibility is EXPTIME-
complete. In Proceedings, 12th Annual IEEE Symposium on Logic
in Computer Science [IEE97], pages 26–34.

[CJ97b] H. Comon and Y. Jurski. Higher-order matching and tree au-
tomata. In M. Nielsen and W. Thomas, editors, Proc. Conf. on
Computer Science Logic, volume 1414 of LNCS, pages 157–176,
Aarhus, August 1997. Springer-Verlag.

[CK96] A. Cheng and D. Kozen. A complete Gentzen-style axiomatization
for set constraints. In Proceedings, International Colloquium Au-
tomata Languages and Programming, volume 1099 of Lecture Notes
in Computer Science, pages 134–145, 1996.

[CKS81] A.K. Chandra, D.C. Kozen, and L.J. Stockmeyer. Alternation.
Journal of the ACM, 28:114–133, 1981.

[Com89] H. Comon. Inductive proofs by specification transformations. In
Proceedings, Third International Conference on Rewriting Tech-
niques and Applications, volume 355 of Lecture Notes in Computer
Science, pages 76–91, 1989.

[Com95] H. Comon. Sequentiality, second-order monadic logic and tree au-
tomata. In Proceedings, Tenth Annual IEEE Symposium on Logic
in Computer Science. IEEE Computer Society Press, 26–29 June
1995.

[Com98a] H. Comon. Completion of rewrite systems with membership con-
straints. Part I: deduction rules. Journal of Symbolic Computation,
25:397–419, 1998. This is a first part of a paper whose abstract ap-
peared in Proc. ICALP 92, Vienna.

[Com98b] H. Comon. Completion of rewrite systems with membership con-
straints. Part II: Constraint solving. Journal of Symbolic Compu-
tation, 25:421–453, 1998. This is the second part of a paper whose
abstract appeared in Proc. ICALP 92, Vienna.

[Cou86] B. Courcelle. Equivalences and transformations of regular systems–
applications to recursive program schemes and grammars. Theori-
cal Computer Science, 42, 1986.

[Cou89] B. Courcelle. On Recognizable Sets and Tree Automata, chapter
Resolution of Equations in Algebraic Structures. Academic Press,
m. Nivat and Ait-Kaci edition, 1989.

[Cou92] B. Courcelle. Recognizable sets of unrooted trees. In M. Nivat
and A. Podelski, editors, Tree Automata and Languages. Elsevier
Science, 1992.

[CP94a] W. Charatonik and L. Pacholski. Negative set constraints with
equality. In Proceedings, Ninth Annual IEEE Symposium on Logic
in Computer Science, pages 128–136. IEEE Computer Society
Press, 4–7 July 1994.

TATA — October 28, 2004 —

210 BIBLIOGRAPHY

[CP94b] W. Charatonik and L. Pacholski. Set constraints with projections
are in NEXPTIME. In Proceedings of the 35th Symp. Foundations
of Computer Science, pages 642–653, 1994.

[CP97] W. Charatonik and A. Podelski. Set Constraints with Intersec-
tion. In Proceedings, 12th Annual IEEE Symposium on Logic in
Computer Science [IEE97].

[Dau94] M. Dauchet. Rewriting and tree automata. In H. Comon and J.-P.
Jouannaud, editors, Proc. Spring School on Theoretical Computer
Science: Rewriting, Lecture Notes in Computer Science, Odeillo,
France, 1994. Springer Verlag.

[DCC95] M. Dauchet, A.-C. Caron, and J.-L. Coquidé. Reduction properties
and automata with constraints. Journal of Symbolic Computation,
20:215–233, 1995.

[DGN+98] A. Degtyarev, Y. Gurevich, P. Narendran, M. Veanes, and
A. Voronkov. The decidability of simultaneous rigid e-unification
with one variable. In T. Nipkow, editor, 9th International Con-
ference on Rewriting Techniques and Applications, volume 1379 of
Lecture Notes in Computer Science, 1998.

[DJ90] N. Dershowitz and J.-P. Jouannaud. Handbook of Theoretical Com-
puter Science, volume B, chapter Rewrite Systems, pages 243–320.
Elsevier, 1990.

[DM97] I. Durand and A. Middeldorp. Decidable call by need computations
in term rewriting. In W. McCune, editor, Proc. 14th Conference on
Automated Deduction, volume 1249 of Lecture Notes in Artificial
Intelligence, pages 4–18. Springer Verlag, 1997.

[Don65] J. E. Doner. Decidability of the weak second-order theory of two
successors. Notices Amer. Math. Soc., 12:365–468, March 1965.

[Don70] J. E. Doner. Tree acceptors and some of their applications. Journal
of Comput. and Syst. Sci., 4:406–451, 1970.

[DT90] M. Dauchet and S. Tison. The theory of ground rewrite systems
is decidable. In Proceedings, Fifth Annual IEEE Symposium on
Logic in Computer Science, pages 242–248. IEEE Computer Soci-
ety Press, 4–7 June 1990.

[DT92] M. Dauchet and S. Tison. Structural complexity of classes of tree
languages. In M. Nivat and A. Podelski, editors, Tree Automata
and Languages, pages 327–353. Elsevier Science, 1992.

[DTHL87] M. Dauchet, S. Tison, T. Heuillard, and P. Lescanne. Decidability
of the confluence of ground term rewriting systems. In Proceed-
ings, Symposium on Logic in Computer Science, pages 353–359.
The Computer Society of the IEEE, 22–25 June 1987.

TATA — October 28, 2004 —

BIBLIOGRAPHY 211

[DTT97] P. Devienne, J.-M. Talbot, and S. Tison. Solving classes of set
constraints with tree automata. In G. Smolka, editor, Proceedings
of the 3th International Conference on Principles and Practice of
Constraint Programming, volume 1330 of Lecture Notes in Com-
puter Science, pages 62–76, oct 1997.

[Eng75] J. Engelfriet. Bottom-up and top-down tree transformations. a
comparision. Mathematical System Theory, 9:198–231, 1975.

[Eng77] J. Engelfriet. Top-down tree transducers with regular look-ahead.
Mathematical System Theory, 10:198–231, 1977.

[Eng78] J. Engelfriet. A hierarchy of tree transducers. In Proceedings of the
third Les Arbres en Algèbre et en Programmation, pages 103–106,
Lille, 1978.

[Eng82] J. Engelfriet. Three hierarchies of transducers. Mathematical Sys-
tem Theory, 15:95–125, 1982.

[ES78] J. Engelfriet and E.M. Schmidt. IO and OI II. Journal of Comput.
and Syst. Sci., 16:67–99, 1978.

[Esi83] Z. Esik. Decidability results concerning tree transducers. Acta
Cybernetica, 5:303–314, 1983.

[EV91] J. Engelfriet and H. Vogler. Modular tree transducers. Theorical
Computer Science, 78:267–303, 1991.

[EW67] S. Eilenberg and J. B. Wright. Automata in general algebras. In-
formation and Control, 11(4):452–470, 1967.

[FSVY91] T. Frühwirth, E. Shapiro, M. Vardi, and E. Yardeni. Logic pro-
grams as types for logic programs. In Proc. 6th IEEE Symp. Logic
in Computer Science, Amsterdam, pages 300–309, 1991.

[FV88] Z. Fülöp and S. Vágvölgyi. A characterization of irreducible sets
modulo left-linear term rewiting systems by tree automata. Un
type rr ??, Research Group on Theory of Automata, Hungarian
Academy of Sciences, H-6720 Szeged, Somogyi u. 7. Hungary, 1988.

[FV89] Z. Fülöp and S. Vágvölgyi. Congruential tree languages are the
same as recognizable tree languages–A proof for a theorem of D.
kozen. Bulletin of the European Association of Theoretical Com-
puter Science, 39, 1989.

[FV98] Z. Fülöp and H. Vögler. Formal Models Based on Tree Transduc-
ers. Monographs in Theoretical Computer Science. Springer Verlag,
1998.

[GB85] J. H. Gallier and R. V. Book. Reductions in tree replacement
systems. Theorical Computer Science, 37(2):123–150, 1985.

[Gen97] T. Genet. Decidable approximations of sets of descendants and
sets of normal forms - extended version. Technical Report RR-
3325, Inria, Institut National de Recherche en Informatique et en
Automatique, 1997.

TATA — October 28, 2004 —

212 BIBLIOGRAPHY

[GJV98] H. Ganzinger, F. Jacquemard, and M. Veanes. Rigid reachability.
In Proc. ASIAN’98, volume 1538 of Lecture Notes in Computer
Science, pages 4–??, Berlin, 1998. Springer-Verlag.

[GMW97] H. Ganzinger, C. Meyer, and C. Weidenbach. Soft typing for or-
dered resolution. In W. McCune, editor, Proc. 14th Conference on
Automated Deduction, volume 1249 of Lecture Notes in Artificial
Intelligence. Springer Verlag, 1997.

[Gou00] Jean Goubault-Larrecq. A method for automatic cryptographic
protocol verification. In Proc. 15 IPDPS 2000 Workshops, Can-
cun, Mexico, May 2000, volume 1800 of Lecture Notes in Computer
Science, pages 977–984. Springer Verlag, 2000.

[GRS87] J. Gallier, S. Raatz, and W. Snyder. Theorem proving using rigid
E-unification: Equational matings. In Proc. 2nd IEEE Symp. Logic
in Computer Science, Ithaca, NY, June 1987.

[GS84] F. Gécseg and M. Steinby. Tree Automata. Akademiai Kiado, 1984.

[GS96] F. Gécseg and M. Steinby. Tree languages. In G. Rozenberg and
A. Salomaa, editors, Handbook of Formal Languages, volume 3,
pages 1–68. Springer Verlag, 1996.

[GT95] R. Gilleron and S. Tison. Regular tree languages and rewrite sys-
tems. Fundamenta Informaticae, 24:157–176, 1995.

[GTT93] R. Gilleron, S. Tison, and M. Tommasi. Solving systems of set
constraints with negated subset relationships. In Proceedings of
the 34th Symp. on Foundations of Computer Science, pages 372–
380, 1993. Full version in the LIFL Tech. Rep. IT-247.

[GTT99] R. Gilleron, S. Tison, and M. Tommasi. Set constraints and au-
tomata. Information and Control, 149:1 – 41, 1999.

[Gue83] I. Guessarian. Pushdowm tree automata. Mathematical System
Theory, 16:237–264, 1983.

[Hei92] N. Heintze. Set Based Program Analysis. PhD thesis, Carnegie
Mellon University, 1992.

[HJ90a] N. Heintze and J. Jaffar. A Decision Procedure for a Class of Set
Constraints. In Proceedings, Fifth Annual IEEE Symposium on
Logic in Computer Science, pages 42–51. IEEE Computer Society
Press, 4–7 June 1990.

[HJ90b] N. Heintze and J. Jaffar. A finite presentation theorem for approx-
imating logic programs. In Proceedings of the 17th ACM Symp. on
Principles of Programming Languages, pages 197–209, 1990. Full
version in the IBM tech. rep. RC 16089 (#71415).

[HJ92] N. Heintze and J. Jaffar. An engine for logic program analysis. In
Proceedings, Seventh Annual IEEE Symposium on Logic in Com-
puter Science [IEE92], pages 318–328.

TATA — October 28, 2004 —

BIBLIOGRAPHY 213

[HL91] G. Huet and J.-J. Lévy. Computations in orthogonal rewriting
systems I. In J.-L. Lassez and G. Plotkin, editors, Computational
Logic: Essays in Honor of Alan Robinson, pages 395–414. MIT
Press, 1991. This paper was written in 1979.

[HU79] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison Wesley, 1979.

[IEE92] IEEE Computer Society Press. Proceedings, Seventh Annual IEEE
Symposium on Logic in Computer Science, 22–25 June 1992.

[IEE97] IEEE Computer Society Press. Proceedings, 12th Annual IEEE
Symposium on Logic in Computer Science, 1997.

[Jac96] F. Jacquemard. Decidable approximations of term rewriting sys-
tems. In H. Ganzinger, editor, Proceedings. Seventh International
Conference on Rewriting Techniques and Applications, volume 1103
of Lecture Notes in Computer Science, 1996.

[JM79] N. D. Jones and S. S. Muchnick. Flow Analysis and Optimization
of LISP-like Structures. In Proceedings of the 6th ACM Symposium
on Principles of Programming Languages, pages 244–246, 1979.

[Jon87] N. Jones. Abstract interpretation of declarative languages, chapter
Flow analysis of lazy higher-order functional programs, pages 103–
122. Ellis Horwood Ltd, 1987.

[Jr.76] William H. Joyner Jr. Resolution strategies as decision procedures.
Journal of the ACM, 23(3):398–417, 1976.

[KFK97] Y. Kaji, T. Fujiwara, and T. Kasami. Solving a unification problem
under constrained substitutions using tree automata. Journal of
Symbolic Computation, 23(1):79–118, January 1997.

[Koz92] D. Kozen. On the Myhill-Nerode theorem for trees. Bulletin of
the European Association of Theoretical Computer Science, 47:170–
173, June 1992.

[Koz93] D. Kozen. Logical aspects of set constraints. In E. Börger, Y. Gure-
vich, and K. Meinke, editors, Proceedings of Computer Science
Logic, volume 832 of Lecture Notes in Computer Science, pages
175–188, 1993.

[Koz95] D. Kozen. Rational spaces and set constraints. In Proceedings of
the 6th International Joint Conference on Theory and Practice of
Software Development, volume 915 of Lecture Notes in Computer
Science, pages 42–61, 1995.

[Koz98] D. Kozen. Set constraints and logic programming. Information
and Computation, 142(1):2–25, 1998.

[Kuc91] G. A. Kucherov. On relationship between term rewriting systems
and regular tree languages. In R. Book, editor, Proceedings. Fourth
International Conference on Rewriting Techniques and Applica-
tions, volume 488 of Lecture Notes in Computer Science, pages
299–311, April 1991.

TATA — October 28, 2004 —

214 BIBLIOGRAPHY

[Kui99] W. Kuich. Full abstract families of tree series i. In Juhani
Karhumäki, Hermann A. Maurer, and Gheorghe Paun andy Grze-
gorz Rozenberg, editors, Jewels are Forever, pages 145–156. SV,
1999.

[Kui01] W. Kuich. Pushdown tree automata, algebraic tree systems, and
algebraic tree series. Information and Computation, 165(1):69–99,
2001.

[KVW00] O. Kupferman, M. Vardi, and P. Wolper. An automata-theoretic
approach to branching time model-checking. Journal of the ACM,
47(2):312–360, 2000.

[LD02] Denis Lugiez and Silvano DalZilio. Multitrees automata, pres-
burger’s constraints and tree logics. Technical Report 8, Labo-
ratoire d’Informatique Fondamentale de Marseille, 2002.

[LM87] J.-L. Lassez and K. Marriott. Explicit representation of terms
defined by counter examples. Journal of Automated Reasoning,
3(3):301–318, September 1987.

[LM93] D. Lugiez and J.-L. Moysset. Complement problems and tree au-
tomata in AC-like theories. In P. Enjalbert, A. Finkel, and K. W.
Wagner, editors, 10th Annual Symposium on Theoretical Aspects
of Computer Science, volume 665 of Lecture Notes in Computer
Science, pages 515–524, Würzburg, 25–27 February 1993.

[LM94] Denis Lugiez and Jean-Luc Moysset. Tree automata help one to
solve equational formulae in ac-theories. Journal of Symbolic Com-
putation, 18(4):297–318, 1994.

[Loh01] M. Lohrey. On the parallel complexity of tree automata. In Proceed-
ings of the 12th Conference on Rewriting and Applications, pages
201–216, 2001.

[MGKW96] D. McAllester, R. Givan, D. Kozen, and C. Witty. Tarskian set con-
straints. In Proceedings, 11th Annual IEEE Symposium on Logic in
Computer Science, pages 138–141. IEEE Computer Society Press,
27–30 July 1996.

[Mis84] P. Mishra. Towards a Theory of Types in PROLOG. In Proceedings
of the 1st IEEE Symposium on Logic Programming, pages 456–461,
Atlantic City, 1984.

[MLM01] M. Murata, D. Lee, and M. Mani. Taxonomy of xml schema lan-
guages using formal language theory. In In Extreme Markup Lan-
guages, 2001.

[Mon81] J. Mongy. Transformation de noyaux reconnaissables d’arbres.
Forêts RATEG. PhD thesis, Laboratoire d’Informatique Fonda-
mentale de Lille, Université des Sciences et Technologies de Lille,
Villeneuve d’Ascq, France, 1981.

TATA — October 28, 2004 —

BIBLIOGRAPHY 215

[MS96] A. Mateescu and A. Salomaa. Aspects of classical language theory.
In G. Rozenberg and A. Salomaa, editors, Handbook of Formal
Languages, volume 1, pages 175–246. Springer Verlag, 1996.

[Mur00] M. Murata. “Hedge Automata: a Formal Model for XML
Schemata”. Web page, 2000.

[MW67] J. Mezei and J. B. Wright. Algebraic automata and context-free
sets. Information and Control, 11:3–29, 1967.

[Niv68] M. Nivat. Transductions des langages de Chomsky. Thèse d’etat,
Paris, 1968.

[NP89] M. Nivat and A. Podelski. Resolution of Equations in Algebraic
Structures, volume 1, chapter Tree monoids and recognizable sets
of finite trees, pages 351–367. Academic Press, New York, 1989.

[NP93] J. Niehren and A. Podelski. Feature automata and recognizable
sets of feature trees. In Proceedings TAPSOFT’93, volume 668 of
Lecture Notes in Computer Science, pages 356–375, 1993.

[NP97] M. Nivat and A. Podelski. Minimal ascending and descending tree
automata. SIAM Journal on Computing, 26(1):39–58, February
1997.

[NT99] T. Nagaya and Y. Toyama. Decidability for left-linear growing
term rewriting systems. In M. Rusinowitch F. Narendran, editor,
10th International Conference on Rewriting Techniques and Appli-
cations, volume 1631 of Lecture Notes in Computer Science, pages
256–270, Trento, Italy, 1999. Springer Verlag.

[Ohs01] Hitoshi Ohsaki. Beyond the regularity: Equational tree automata
for associative and commutative theories. In Proceedings of CSL
2001, volume 2142 of Lecture Notes in Computer Science. Springer
Verlag, 2001.

[Oya93] M. Oyamaguchi. NV-sequentiality: a decidable condition for call-
by-need computations in term rewriting systems. SIAM Journal
on Computing, 22(1):114–135, 1993.

[Pel97] N. Peltier. Tree automata and automated model building. Funda-
menta Informaticae, 30(1):59–81, 1997.

[Pla85] D. A. Plaisted. Semantic confluence tests and completion method.
Information and Control, 65:182–215, 1985.

[Pod92] A. Podelski. A monoid approach to tree automata. In Nivat and
Podelski, editors, Tree Automata and Languages, Studies in Com-
puter Science and Artificial Intelligence 10. North-Holland, 1992.

[PQ68] C. Pair and A. Quere. Dfinition et tude des bilangages rguliers.
Information and Control, 13(6):565–593, 1968.

TATA — October 28, 2004 —

216 BIBLIOGRAPHY

[Rab69] M. O. Rabin. Decidability of Second-Order Theories and Automata
on Infinite Trees. Transactions of the American Mathematical So-
ciety, 141:1–35, 1969.

[Rab77] M. O. Rabin. Handbook of Mathematical Logic, chapter Decidable
theories, pages 595–627. North Holland, 1977.

[Rao92] J.-C. Raoult. A survey of tree transductions. In M. Nivat and
A. Podelski, editors, Tree Automata and Languages, pages 311–
325. Elsevier Science, 1992.

[Rey69] J. C. Reynolds. Automatic Computation of Data Set Definition.
Information Processing, 68:456–461, 1969.

[Sal73] A. Salomaa. Formal Languages. Academic Press, New York, 1973.

[Sal88] K. Salomaa. Deterministic tree pushdown automata and monadic
tree rewriting systems. Journal of Comput. and Syst. Sci., 37:367–
394, 1988.

[Sal94] K. Salomaa. Synchronized tree automata. Theorical Computer
Science, 127:25–51, 1994.

[Sei89] H. Seidl. Deciding equivalence of finite tree automata. In Annual
Symposium on Theoretical Aspects of Computer Science, 1989.

[Sei90] H. Seidl. Deciding equivalence of finite tree automata. SIAM Jour-
nal on Computing, 19, 1990.

[Sei92] H. Seidl. Single-valuedness of tree transducers is decidable in poly-
nomial time. Theorical Computer Science, 106:135–181, 1992.

[Sei94a] H. Seidl. Equivalence of finite-valued tree transducers is decidable.
Mathematical System Theory, 27:285–346, 1994.

[Sei94b] H. Seidl. Haskell overloading is DEXPTIME-complete. Information
Processing Letters, 52(2):57–60, 1994.

[Sén97] G. Sénizergues. The equivalence problem for deterministic push-
down automata is decidable. In P. Degano, R. Gorrieri, and
A. Marchetti-Spaccamela, editors, Automata, Languages and Pro-
gramming, 24th International Colloquium, volume 1256 of Lec-
ture Notes in Computer Science, pages 671–681, Bologna, Italy,
7–11 July 1997. Springer-Verlag.

[Sey94] F. Seynhaeve. Contraintes ensemblistes. Master’s thesis, LIFL,
1994.

[Slu85] G. Slutzki. Alternating tree automata. Theorical Computer Sci-
ence, 41:305–318, 1985.

[SM73] L. J. Stockmeyer and A. R. Meyer. Word problems requiring ex-
ponential time. In Proc. 5th ACM Symp. on Theory of Computing,
pages 1–9, 1973.

TATA — October 28, 2004 —

BIBLIOGRAPHY 217

[Ste94] K. Stefansson. Systems of set constraints with negative constraints
are nexptime-complete. In Proceedings, Ninth Annual IEEE Sym-
posium on Logic in Computer Science, pages 137–141. IEEE Com-
puter Society Press, 4–7 July 1994.

[SV95] G. Slutzki and S. Vagvolgyi. Deterministic top-down tree transduc-
ers with iterated look-ahead. Theorical Computer Science, 143:285–
308, 1995.

[Tha70] J. W. Thatcher. Generalized sequential machines. Journal of Com-
put. and Syst. Sci., 4:339–367, 1970.

[Tha73] J. W. Thatcher. Tree automata: an informal survey. In A.V.
Aho, editor, Currents in the theory of computing, pages 143–178.
Prentice Hall, 1973.

[Tho90] W. Thomas. Handbook of Theoretical Computer Science, volume B,
chapter Automata on Infinite Objects, pages 134–191. Elsevier,
1990.

[Tho97] W. Thomas. Languages, automata and logic. In G. Rozenberg and
A. Salomaa, editors, Handbook of Formal Languages, volume 3,
pages 389–456. Springer Verlag, 1997.

[Tiu92] J. Tiuryn. Subtype inequalities. In Proceedings, Seventh Annual
IEEE Symposium on Logic in Computer Science [IEE92], pages
308–317.

[Tom92] M. Tommasi. Automates d’arbres avec tests d’égalité entre cousins
germains. Mémoire de DEA, Univ. Lille I, 1992.

[Tom94] M. Tommasi. Automates et contraintes ensemblistes. PhD thesis,
LIFL, 1994.

[Tra95] B. Trakhtenbrot. Origins and metamorphoses of the trinity: Logic,
nets, automata. In Proceedings, Tenth Annual IEEE Symposium on
Logic in Computer Science. IEEE Computer Society Press, 26–29
June 1995.

[Tre96] R. Treinen. The first-order theory of one-step rewriting is undecid-
able. In H. Ganzinger, editor, Proceedings. Seventh International
Conference on Rewriting Techniques and Applications, volume 1103
of Lecture Notes in Computer Science, pages 276–286, 1996.

[TW65] J. W. Thatcher and J. B. Wright. Generalized finite automata.
Notices Amer. Math. Soc., 820, 1965. Abstract No 65T-649.

[TW68] J. W. Thatcher and J. B. Wright. Generalized finite automata
with an application to a decision problem of second-order logic.
Mathematical System Theory, 2:57–82, 1968.

[Uri92] T. E. Uribe. Sorted Unification Using Set Constraints. In D. Ka-
pur, editor, Proceedings of the 11th International Conference on
Automated Deduction, New York, 1992.

TATA — October 28, 2004 —

218 BIBLIOGRAPHY

[Vea97a] M. Veanes. On computational complexity of basic decision prob-
lems of finite tree automata. Technical report, Uppsala Computing
Science Department, 1997.

[Vea97b] M. Veanes. On simultaneous rigid E-unification. PhD thesis, Com-
puting Science Department, Uppsala University, Uppsala, Sweden,
1997.

[Zac79] Z. Zachar. The solvability of the equivalence problem for determin-
istic frontier-to-root tree transducers. Acta Cybernetica, 4:167–177,
1979.

TATA — October 28, 2004 —

Index

α-equivalence, 98
β-reduction, 99
ε-free, 28
ε-rules, 17
η-long form, 98
|=, 82, 108
Rec, 70
Rec×, 69
AWCBB, 115

axiom, 45
equivalent, 46
non-terminal, 46
regular tree grammars, 46
terminal, 46

acceptance
by an automaton, 109

accepted, 129
accepts, 109
accessible, 18, 130
alphabetic, 29
alternating

tree automaton, 187
word automaton, 187

alternating automaton
weak, 200

arity, 9
automaton

2-automaton, 99
generalized reduction automa-

ton, 126
pushdown, 200
reduction automaton, 122
with constraints between broth-

ers, 115
with equality and disequality con-

straints, 108
automaton with constraints between

brothers, 115

automaton with equality and dise-
quality constraints, 108

bimorphism
word, 170

c, 61
close equalities, 123
closed, 10
closure, 50
closure properties

for Rec×,Rec, 74
for GTTs, 76

closure property, 23
complementation, 24
intersection, 24
union, 24

complete, 29, 111, 130
complete specification

of an automaton with constraints,
111

concatenation, 50
congruence, 29

finite index, 30
constraint

disequality constraint, 108
equality constraint, 108

context, 11
context-free tree grammar, 61
context-free tree language, 61
context-free word grammar, 58
cryptographic protocols, 199
cylindrification, 75

definable
set, 85

definite set constraints, 195
delabeling, 29
derivation relation, 46
derivation trees, 58
determinacy

TATA — October 28, 2004 —

220 INDEX

of an automaton with constraints,
111

deterministic, 111, 130
determinization, 19, 111
DFTA, see tree automaton
disequality constraint, 108
domain, 11
DUTT, see tree transducer

E-unification, 97
encompassment, 92
equality constraint, 108
equivalent, 15, 129

finite states, 108
first order logic

monadic fragment, 194
Flat terms, 127
flat tree automaton with arithmetic

constraints, 128
free variables, 98
frontier position, 10
FTA, see tree automaton

generalized reduction automata, 126
generalized tree set, 146

accepted, 147
regular, 150

generalized tree set automaton, 146,
see GTSA

ground, 128
ground reducibility, 93, 121, 126
ground rewriting

theory of, 95
ground substitution, 11
ground terms, 9
Ground Tree Transducer, 70
GTS, see generalized tree set
GTSA

complete, 147
deterministic, 147
run, 146
simple, 147
strongly deterministic, 147
sucessful run, 146

GTT, 70

height, 10

index, 95
IO, 62

Lwenheim class, 195, 201
language

accepted by an automaton with
constraints, 109

recognizable, 15
recognized, 15

language accepted, 109
language generated, 46
linear, 9, 26
local, 64

matching problem, 99
monadic class, 195
monotonic

predicate, 95
move relation

for NFTA, 14
for rational transducers, 168

Myhill-Nerode Theorem, 29

NDTT, see tree transducer
NFTA, see tree automaton
normalized, 47
NUTT, see tree transducer

OI, 62
order, 98
order-sorted signatures, 91
overlapping constraints, 137

pop clause, 196
position, 10
Presburger’s arithmetic, 67
production rules, 46
productive, 47
program analysis, 142
projection, 74
pumping, 118
pumping lemma, 22

for automata with constraints
between brothers, 118

push clause, 196
pushdown automaton, 199

Rabin
automaton, 68, 90
theorem, 90

ranked alphabet, 9
RATEG, 107
reachable, 46
recognition

TATA — October 28, 2004 —

INDEX 221

by an automaton, 109
recognized, 109
recognizes, 109
reduced, 47, 130
reducibility

theory, 93
reducibility theory, 121, 126
reduction automaton, 122
regular equation systems, 55
regular tree expressions, 52
regular tree language, 46
relation

rational relation, 101
of bounded delay, 101

remote equalities, 123
replacement

simultaneous replacement, 118
root, 128
root symbol, 10
rules

ε-rules, 17
run, 16, 109

of an alternating tree automa-
ton, 189

of an alternating word automa-
ton, 188

of an automaton, 109
successful, 16

semilinear, 129
semilinear flat languages, 129
sequential calculus, 67
sequentiality, 96
set constraints

definite, 195
set constraints, 141
size, 10, 110, 111

of a constraint, 110
of an automaton with constraints,

111
SkS, 82
solution, 99
sort

constraint, 91
expression, 91
symbol, 91

state
accessible, 18
dead, 18

substitution, 11

subterm, 10
subterm ordering, 10
success node, 188
symbol to symbol, 29
synchronization states, 70

target state, 108
temporal logic

propositional linear time tem-
poral logic, 103

term
accepted, 15
in the simply typed lambda cal-

culus, 98
well-formed, 91

terms, 9, 98
theory

of reducibility, 93
transducer

ε-free, 168
rational, 168

transition rules, 108
tree, 9
tree automaton

product, 24
tree homomorphism

ε-free, 28
tree automaton

alternating, 189
tree automaton

generalized, see GTSA
reduced, 19

tree automaton, 14
flat tree automaton, 41
alternating, 187
complete, 18
deterministic, 17
dual, 192
reduced, 18
reduction automaton, 107
top down, 32
two-way, 196
weak alternating, 200
with ε-rules, 16
with constraints between broth-

ers, 107
tree grammar, 45
tree homomorphism, 25

alphabetic, 29
complete, 29

TATA — October 28, 2004 —

222 INDEX

delabeling, 29
linear, 26
symbol to symbol, 29

tree substitution, 49
tree transducer

ε-free, 177
bottom-up, 177
complete, 177
deterministic, 177
linear, 177
non-erasing, 177
top-down, 178

two-way tree automaton, 196
type

in the simply typed lambda cal-
culus, 98

type inference, 142

variable position, 10
variables, 9

Weak Second-order monadic logic with
K successors, 90

WS1S, 67
WSkS, 67, 82, 90

Yield, 58

TATA — October 28, 2004 —

