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XML

Example Document
〈Composer〉

〈Name〉 Claude Debussy 〈/Name〉

〈Vita〉

〈Born〉 〈When〉 August 22, 1862 〈/When〉〈Where〉 Paris 〈/Where〉〈/Born〉

〈Married〉〈When〉 October 1899 〈/When〉〈Whom〉 Rosalie〈/Whom〉〈/Married〉

〈Married〉〈When〉 January 1908 〈/When〉〈Whom〉 Emma 〈/Whom〉〈/Married〉

〈Died〉〈When〉 March 25, 1918 〈/When〉〈Where〉 Paris 〈/Where〉 〈/Died〉

〈/Vita〉

〈Piece〉

〈PTitle〉 La Mer 〈/PTitle〉

〈PYear〉 1905 〈/PYear〉

〈Instruments〉 Large orchestra 〈/Instruments〉

〈Movements〉 3 〈/Movements〉

...

〈/Piece〉

...

〈/Composer〉

...
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XML

Example Tree

Composer

Name Claude Debussy

Vita

Born
When 1862

Where Paris

Married
When 1899

Whom Rosalie

Married
When 1908

Whom Emma

Died
When 1918

Where Paris

Piece

PTitle La Mer

PYear 1905

Instruments Large orchestra

Movements 3
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XML Processing

Four important kinds of XML processing
Validation

Check whether an XML document is of a given type

Navigation

Select a set of positions in an XML document

Querying

Extract information from an XML document

Transformation

Construct a new XML document from a given one
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XML Processing

Four important kinds of XML processing . . . . . . . . . . and their languages

Validation DTD, XML Schema

Check whether an XML document is of a given type

Navigation XPath

Select a set of positions in an XML document

Querying XQuery

Extract information from an XML document

Transformation XSLT

Construct a new XML document from a given one
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Validation: DTD

Example document

〈Composer〉

〈Name〉 Claude Debussy 〈/Name〉

〈Vita〉

〈Born〉 〈When〉 August 22, 1862 〈/When〉〈Where〉 Paris 〈/Where〉〈/Born〉

〈Married〉〈When〉 October 1899 〈/When〉〈Whom〉 Rosalie〈/Whom〉〈/Married〉

〈Married〉〈When〉 January 1908 〈/When〉〈Whom〉 Emma 〈/Whom〉〈/Married〉

〈Died〉〈When〉 March 25, 1918 〈/When〉〈Where〉 Paris 〈/Where〉 〈/Died〉

〈/Vita〉

〈Piece〉

〈PTitle〉 La Mer 〈/PTitle〉

〈PYear〉 1905 〈/PYear〉

〈Instruments〉 Large orchestra 〈/Instruments〉

〈Movements〉 3 〈/Movements〉

...

〈/Piece〉

...

〈/Composer〉

...

Schwentick XML: Algorithms & Complexity Introduction - XML Processing 3



Validation: DTD

Example document

〈Composer〉

〈Name〉 Claude Debussy 〈/Name〉

〈Vita〉

〈Born〉 〈When〉 August 22, 1862 〈/When〉〈Where〉 Paris 〈/Where〉〈/Born〉

〈Married〉〈When〉 October 1899 〈/When〉〈Whom〉 Rosalie〈/Whom〉〈/Married〉

〈Married〉〈When〉 January 1908 〈/When〉〈Whom〉 Emma 〈/Whom〉〈/Married〉

〈Died〉〈When〉 March 25, 1918 〈/When〉〈Where〉 Paris 〈/Where〉 〈/Died〉

〈/Vita〉

〈Piece〉

〈PTitle〉 La Mer 〈/PTitle〉

〈PYear〉 1905 〈/PYear〉

〈Instruments〉 Large orchestra 〈/Instruments〉

〈Movements〉 3 〈/Movements〉

...

〈/Piece〉

...

〈/Composer〉

...

DTD

DTDs describe types of

XML documents

Schwentick XML: Algorithms & Complexity Introduction - XML Processing 3



Validation: DTD

Example document

〈Composer〉

〈Name〉 Claude Debussy 〈/Name〉

〈Vita〉

〈Born〉 〈When〉 August 22, 1862 〈/When〉〈Where〉 Paris 〈/Where〉〈/Born〉

〈Married〉〈When〉 October 1899 〈/When〉〈Whom〉 Rosalie〈/Whom〉〈/Married〉

〈Married〉〈When〉 January 1908 〈/When〉〈Whom〉 Emma 〈/Whom〉〈/Married〉

〈Died〉〈When〉 March 25, 1918 〈/When〉〈Where〉 Paris 〈/Where〉 〈/Died〉

〈/Vita〉

〈Piece〉

〈PTitle〉 La Mer 〈/PTitle〉

〈PYear〉 1905 〈/PYear〉

〈Instruments〉 Large orchestra 〈/Instruments〉

〈Movements〉 3 〈/Movements〉

...

〈/Piece〉

...

〈/Composer〉

...

DTD

DTDs describe types of

XML documents

Example

<!DOCTYPE Composers [

<!ELEMENT Composers (Composer*)>

<!ELEMENT Composer (Name, Vita, Piece*)>

<!ELEMENT Vita (Born, Married*, Died?)>

<!ELEMENT Born (When, Where)>

<!ELEMENT Married (When, Whom)>

<!ELEMENT Died (When, Where)>

<!ELEMENT Piece (PTitle, PYear,

Instruments, Movements)>

]>
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Navigation: XPath

Example document

〈Composer〉

〈Name〉 Claude Debussy 〈/Name〉

〈Vita〉

〈Born〉 〈When〉 August 22, 1862 〈/When〉〈Where〉 Paris 〈/Where〉〈/Born〉

〈Married〉〈When〉 October 1899 〈/When〉〈Whom〉 Rosalie〈/Whom〉〈/Married〉

〈Married〉〈When〉 January 1908 〈/When〉〈Whom〉 Emma 〈/Whom〉〈/Married〉

〈Died〉〈When〉 March 25, 1918 〈/When〉〈Where〉 Paris 〈/Where〉 〈/Died〉

〈/Vita〉

〈Piece〉

〈PTitle〉 La Mer 〈/PTitle〉

〈PYear〉 1905 〈/PYear〉

〈Instruments〉 Large orchestra 〈/Instruments〉

〈Movements〉 3 〈/Movements〉

...

〈/Piece〉

...

〈/Composer〉

...
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Navigation: XPath

Example document

〈Composer〉

〈Name〉 Claude Debussy 〈/Name〉

〈Vita〉

〈Born〉 〈When〉 August 22, 1862 〈/When〉〈Where〉 Paris 〈/Where〉〈/Born〉

〈Married〉〈When〉 October 1899 〈/When〉〈Whom〉 Rosalie〈/Whom〉〈/Married〉

〈Married〉〈When〉 January 1908 〈/When〉〈Whom〉 Emma 〈/Whom〉〈/Married〉

〈Died〉〈When〉 March 25, 1918 〈/When〉〈Where〉 Paris 〈/Where〉 〈/Died〉

〈/Vita〉

〈Piece〉

〈PTitle〉 La Mer 〈/PTitle〉

〈PYear〉 1905 〈/PYear〉

〈Instruments〉 Large orchestra 〈/Instruments〉

〈Movements〉 3 〈/Movements〉

...

〈/Piece〉

...

〈/Composer〉

...

XPath

XPath expressions select sets of nodes of

XML documents by specifying navigational

patterns

Schwentick XML: Algorithms & Complexity Introduction - XML Processing 4



Navigation: XPath

Example document

〈Composer〉

〈Name〉 Claude Debussy 〈/Name〉

〈Vita〉

〈Born〉 〈When〉 August 22, 1862 〈/When〉〈Where〉 Paris 〈/Where〉〈/Born〉

〈Married〉〈When〉 October 1899 〈/When〉〈Whom〉 Rosalie〈/Whom〉〈/Married〉

〈Married〉〈When〉 January 1908 〈/When〉〈Whom〉 Emma 〈/Whom〉〈/Married〉

〈Died〉〈When〉 March 25, 1918 〈/When〉〈Where〉 Paris 〈/Where〉 〈/Died〉

〈/Vita〉

〈Piece〉

〈PTitle〉 La Mer 〈/PTitle〉

〈PYear〉 1905 〈/PYear〉

〈Instruments〉 Large orchestra 〈/Instruments〉

〈Movements〉 3 〈/Movements〉

...

〈/Piece〉

...

〈/Composer〉

...

XPath

XPath expressions select sets of nodes of

XML documents by specifying navigational

patterns

Example query

//Vita/Died/*
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Navigation: XPath

Example document

〈Composer〉

〈Name〉 Claude Debussy 〈/Name〉

〈Vita〉

〈Born〉 〈When〉 August 22, 1862 〈/When〉〈Where〉 Paris 〈/Where〉〈/Born〉

〈Married〉〈When〉 October 1899 〈/When〉〈Whom〉 Rosalie〈/Whom〉〈/Married〉

〈Married〉〈When〉 January 1908 〈/When〉〈Whom〉 Emma 〈/Whom〉〈/Married〉

〈Died〉 〈When〉 March 25, 1918 〈/When〉〈Where〉 Paris 〈/Where〉 〈/Died〉

〈/Vita〉

〈Piece〉

〈PTitle〉 La Mer 〈/PTitle〉

〈PYear〉 1905 〈/PYear〉

〈Instruments〉 Large orchestra 〈/Instruments〉

〈Movements〉 3 〈/Movements〉

...

〈/Piece〉

...

〈/Composer〉

...

XPath

XPath expressions select sets of nodes of

XML documents by specifying navigational

patterns

Example query

//Vita/Died/*
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Querying: XQuery

Example document
〈Composer〉

〈Name〉 Claude Debussy 〈/Name〉

〈Vita〉

〈Born〉 〈When〉 August 22, 1862 〈/When〉〈Where〉 Paris 〈/Where〉〈/Born〉

〈Married〉〈When〉 October 1899 〈/When〉〈Whom〉 Rosalie〈/Whom〉〈/Married〉

〈Married〉〈When〉 January 1908 〈/When〉〈Whom〉 Emma 〈/Whom〉〈/Married〉

〈Died〉〈When〉 March 25, 1918 〈/When〉〈Where〉 Paris 〈/Where〉 〈/Died〉

〈/Vita〉

〈Piece〉

〈PTitle〉 La Mer 〈/PTitle〉

〈PYear〉 1905 〈/PYear〉

〈Instruments〉 Large orchestra 〈/Instruments〉

〈Movements〉 3 〈/Movements〉

...

〈/Piece〉

...

〈/Composer〉

...
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Querying: XQuery

Example document
〈Composer〉

〈Name〉 Claude Debussy 〈/Name〉

〈Vita〉

〈Born〉 〈When〉 August 22, 1862 〈/When〉〈Where〉 Paris 〈/Where〉〈/Born〉

〈Married〉〈When〉 October 1899 〈/When〉〈Whom〉 Rosalie〈/Whom〉〈/Married〉

〈Married〉〈When〉 January 1908 〈/When〉〈Whom〉 Emma 〈/Whom〉〈/Married〉

〈Died〉〈When〉 March 25, 1918 〈/When〉〈Where〉 Paris 〈/Where〉 〈/Died〉

〈/Vita〉

〈Piece〉

〈PTitle〉 La Mer 〈/PTitle〉

〈PYear〉 1905 〈/PYear〉

〈Instruments〉 Large orchestra 〈/Instruments〉

〈Movements〉 3 〈/Movements〉

...

〈/Piece〉

...

〈/Composer〉

...

XQuery

XQuery is a full-fledged

XML query language
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Querying: XQuery

Example document
〈Composer〉

〈Name〉 Claude Debussy 〈/Name〉

〈Vita〉

〈Born〉 〈When〉 August 22, 1862 〈/When〉〈Where〉 Paris 〈/Where〉〈/Born〉

〈Married〉〈When〉 October 1899 〈/When〉〈Whom〉 Rosalie〈/Whom〉〈/Married〉

〈Married〉〈When〉 January 1908 〈/When〉〈Whom〉 Emma 〈/Whom〉〈/Married〉

〈Died〉〈When〉 March 25, 1918 〈/When〉〈Where〉 Paris 〈/Where〉 〈/Died〉

〈/Vita〉

〈Piece〉

〈PTitle〉 La Mer 〈/PTitle〉

〈PYear〉 1905 〈/PYear〉

〈Instruments〉 Large orchestra 〈/Instruments〉

〈Movements〉 3 〈/Movements〉

...

〈/Piece〉

...

〈/Composer〉

...

XQuery

XQuery is a full-fledged

XML query language

Example query
for $x in doc(‘composers.xml’)/Composer

where $x/Vita/Died/Where = ‘Paris’

return $x/Name
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Querying: XQuery

Example document
〈Composer〉

〈Name〉 Claude Debussy 〈/Name〉

〈Vita〉

〈Born〉 〈When〉 August 22, 1862 〈/When〉〈Where〉 Paris 〈/Where〉〈/Born〉

〈Married〉〈When〉 October 1899 〈/When〉〈Whom〉 Rosalie〈/Whom〉〈/Married〉

〈Married〉〈When〉 January 1908 〈/When〉〈Whom〉 Emma 〈/Whom〉〈/Married〉

〈Died〉〈When〉 March 25, 1918 〈/When〉〈Where〉 Paris 〈/Where〉 〈/Died〉

〈/Vita〉

〈Piece〉

〈PTitle〉 La Mer 〈/PTitle〉

〈PYear〉 1905 〈/PYear〉

〈Instruments〉 Large orchestra 〈/Instruments〉

〈Movements〉 3 〈/Movements〉

...

〈/Piece〉

...

〈/Composer〉

...

XQuery

XQuery is a full-fledged

XML query language

Example query
for $x in doc(‘composers.xml’)/Composer

where $x/Vita/Died/Where = ‘Paris’

return $x/Name

Result
〈Name〉 Claude Debussy 〈/Name〉

〈Name〉 Eric Satie 〈/Name〉

〈Name〉 Hector Berlioz 〈/Name〉

〈Name〉 Camille Saint-Saëns 〈/Name〉

〈Name〉 Frédéric Chopin 〈/Name〉

〈Name〉 Maurice Ravel 〈/Name〉

〈Name〉 Jim Morrison 〈/Name〉

〈Name〉 César Franck 〈/Name〉

〈Name〉 Gabriel Fauré 〈/Name〉

〈Name〉 George Bizet 〈/Name〉

...
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Transformation: XSLT

Example document
〈Composer〉

〈Name〉 Claude Debussy 〈/Name〉

〈Vita〉

〈Born〉 〈When〉 August 22, 1862 〈/When〉〈Where〉 Paris 〈/Where〉〈/Born〉

〈Married〉〈When〉 October 1899 〈/When〉〈Whom〉 Rosalie〈/Whom〉〈/Married〉

〈Married〉〈When〉 January 1908 〈/When〉〈Whom〉 Emma 〈/Whom〉〈/Married〉

〈Died〉〈When〉 March 25, 1918 〈/When〉〈Where〉 Paris 〈/Where〉 〈/Died〉

〈/Vita〉

〈Piece〉

〈PTitle〉 La Mer 〈/PTitle〉

〈PYear〉 1905 〈/PYear〉

〈Instruments〉 Large orchestra 〈/Instruments〉

〈Movements〉 3 〈/Movements〉

...

〈/Piece〉

...

〈/Composer〉

...
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Transformation: XSLT

Example document
〈Composer〉

〈Name〉 Claude Debussy 〈/Name〉

〈Vita〉

〈Born〉 〈When〉 August 22, 1862 〈/When〉〈Where〉 Paris 〈/Where〉〈/Born〉

〈Married〉〈When〉 October 1899 〈/When〉〈Whom〉 Rosalie〈/Whom〉〈/Married〉

〈Married〉〈When〉 January 1908 〈/When〉〈Whom〉 Emma 〈/Whom〉〈/Married〉

〈Died〉〈When〉 March 25, 1918 〈/When〉〈Where〉 Paris 〈/Where〉 〈/Died〉

〈/Vita〉

〈Piece〉

〈PTitle〉 La Mer 〈/PTitle〉

〈PYear〉 1905 〈/PYear〉

〈Instruments〉 Large orchestra 〈/Instruments〉

〈Movements〉 3 〈/Movements〉

...

〈/Piece〉

...

〈/Composer〉

...

XSLT

XSLT transforms documents by

means of templates
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Transformation: XSLT

Example document
〈Composer〉

〈Name〉 Claude Debussy 〈/Name〉

〈Vita〉

〈Born〉 〈When〉 August 22, 1862 〈/When〉〈Where〉 Paris 〈/Where〉〈/Born〉

〈Married〉〈When〉 October 1899 〈/When〉〈Whom〉 Rosalie〈/Whom〉〈/Married〉

〈Married〉〈When〉 January 1908 〈/When〉〈Whom〉 Emma 〈/Whom〉〈/Married〉

〈Died〉〈When〉 March 25, 1918 〈/When〉〈Where〉 Paris 〈/Where〉 〈/Died〉

〈/Vita〉

〈Piece〉

〈PTitle〉 La Mer 〈/PTitle〉

〈PYear〉 1905 〈/PYear〉

〈Instruments〉 Large orchestra 〈/Instruments〉

〈Movements〉 3 〈/Movements〉

...

〈/Piece〉

...

〈/Composer〉

...

XSLT

XSLT transforms documents by

means of templates

Example

〈xsl:template match=”Composer[Vita//Where=’Paris’]”〉

〈ParisComposer〉

〈xsl:copy-of select=“Name”/〉

〈xsl:copy-of select=“Vita/Born”/〉

〈/ParisComposer〉

〈/xsl:template〉
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Transformation: XSLT

Example document
〈Composer〉

〈Name〉 Claude Debussy 〈/Name〉

〈Vita〉

〈Born〉 〈When〉 August 22, 1862 〈/When〉〈Where〉 Paris 〈/Where〉〈/Born〉

〈Married〉〈When〉 October 1899 〈/When〉〈Whom〉 Rosalie〈/Whom〉〈/Married〉

〈Married〉〈When〉 January 1908 〈/When〉〈Whom〉 Emma 〈/Whom〉〈/Married〉

〈Died〉〈When〉 March 25, 1918 〈/When〉〈Where〉 Paris 〈/Where〉 〈/Died〉

〈/Vita〉

〈Piece〉

〈PTitle〉 La Mer 〈/PTitle〉

〈PYear〉 1905 〈/PYear〉

〈Instruments〉 Large orchestra 〈/Instruments〉

〈Movements〉 3 〈/Movements〉

...

〈/Piece〉

...

〈/Composer〉

...

XSLT

XSLT transforms documents by

means of templates

Example

〈xsl:template match=”Composer[Vita//Where=’Paris’]”〉

〈ParisComposer〉

〈xsl:copy-of select=“Name”/〉

〈xsl:copy-of select=“Vita/Born”/〉

〈/ParisComposer〉

〈/xsl:template〉

Result
〈ParisComposer〉

〈Name〉 Claude Debussy 〈/Name〉

〈Born〉

〈When〉 August 22, 1862 〈/When〉

〈Where〉 Paris 〈/Where〉

〈/Born〉

〈/ParisComposer〉

〈ParisComposer〉

〈Name〉 Fŕedéric Chopin 〈/Name〉

〈Born〉

〈When〉 March 1, 1810 〈/When〉

〈Where〉 Želazowa 〈/Where〉

〈/Born〉

〈/ParisComposer〉

〈ParisComposer〉

〈Name〉 Camille Saint-Saëns 〈/Name〉

〈Born〉

〈When〉 October 9, 1835 〈/When〉

〈Where〉 Paris 〈/Where〉

〈/Born〉

〈/ParisComposer〉
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A Schematic View
DTD/ XML Schema

→ yes/no

XPath

→

�

�

�

�

�

XQuery

→ →

XSLT

→

Schwentick XML: Algorithms & Complexity Introduction - XML Processing 7



Focus of this Talk

Topics
• Expressive power of XML languages

• Complexity of algorithmic tasks related to XML processing

• Tradeoff between expressiveness and complexity

Goals of this Research
• Understand expressive power and complexity of XML

languages

• Identify interesting fragments with good tradeoff
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Algorithmic Tasks
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Algorithmic Tasks
Evaluation

Evaluation (Combined)

I: Tree t, Query q

O: q(t)

Evaluation (Data(q))

I: Tree t

O: q(t)

Incremental Eval. (q)

I: Tree t,

Changes of t

O: q(t)

Static Analysis

Satisfiability

I: Query q

Q: Is q(t) 6= ∅

for some t?

Containment

I: Queries q1, q2

Q: Is always

q1(t) ⊆ q2(t)?

Equivalence

I: Queries q1, q2

Q: Is always

q1(t) = q2(t)?

Type Checking

I: Types d1, d2,

Transformation T

Q:Does t |= d1 imply

T (t) |= d2?

Type Inference

I: Types d,

Transformation T

O:Type of

{T (t) | t |= d}
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Expressive power

Question: How do we measure expressive power?

Remarks
• Classes of logical formulas are a good yardstick

→ They provide methods to prove that a query can not be

expressed
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Expressive power

Question: How do we measure expressive power?

Remarks
• Classes of logical formulas are a good yardstick

→ They provide methods to prove that a query can not be

expressed

Recall Relational Databases
• Core of SQL ≡ First-order Logic

• Most frequently asked queries ≡ Conjunctive queries
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Background on Tree Automata and Logic

Schema Languages

XPath and Node-selecting Queries

XSLT

XQuery

Conclusion



Background: Complexity Classes
Overview of Complexity Classes

LOGSPACE

NL

LOGCFL

NC

P

coNP NP

PSPACE

EXPTIME

EXPSPACE

Decidable

. . . . . . . . . . . . . . . . . . . Reachability in directed forests

. . . . . . . . . . . . . . . . . . . Reachability in directed graphs

. . . . . . . . . . . . . . . . . . . . . . . Acyclic conjunctive queries

. . . . . . . . . . . . . . . . . Efficiently parallelizable problems

. . . . . . . . . . . . . . . . . . . . . . . .Boolean circuit evaluation

. . . . . . . . . . . . . . . . . . . . Satisfiability of prop. formulas

. . . . . . . . . . . . . . . . . . . . .Quantified Boolean Formulas

. . . . . . . . . . . . . . . . . . . . . . . . . . 2-Player Corridor Tiling

. . . . . . Equivalence of reg. expressions with squaring
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XML, Trees and Automata

Question: Why is XML appealing for Theory people?
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XML, Trees and Automata
Question: Why trees?

A Natural Answer
• Trees reflect the hierarchical

structure of XML

• Underlying data model of

XML is tree based

Limitations
• But trees can not model all aspects

of XML (e.g., IDREFs, data values)

⇒ Sometimes extensions are needed

• E.g., directed graphs instead of

trees

Nevertheless
In this tutorial we will concentrate on the

tree view at XML

Example
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XML, Trees and Automata
Question: Why automata?

Ingredients of XML

Concepts from formal languages are obviously present around

XML:

• Labelled trees

• DTD: context-free grammars

• DTD: regular expressions

• XPath: regular path expressions

We will see
Automata turn out to be useful as:

• a means to define robust classes with clear semantics

• a tool for proofs

• an algorithmic tool for static analysis

• a tool for query evaluation
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From Strings to Trees (cont.)

XML and Trees

• XML trees are unranked :

the number of children of a node is not restricted

• Automata have first been considered on ranked trees,

where each symbol has a fixed number of children (rank)

• Most important ideas were already developed for ranked trees

→ Let us take a look at this first
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Trees as Terms

Remark
Sometimes trees are viewed as terms

Example
a

b

c

a

b a

b

a

b c

c

Example Tree as Term

a1(b2(c1(a2(b, a)), b2(a2(b, c), c)))
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From String Automata to Tree Automata
Question

How do automata generalize to trees?
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Bottom-Up Automata
Example: Tree-structured Boolean Circuits

∧

∨

∧

0 1

∨

1 0

∧

∨

0 1

∧

1 1

Idea
Tree-structured Boolean

circuits

Two states: q0, q1

Accepting at the root: q1

Transitions
δ(∧, q1) = {(q1, q1)}

δ(∧, q0) = {(q0, q1), (q1, q0), (q0, q0)}

δ(∨, q1) = {(q0, q1), (q1, q0), (q1, q1)}

δ(∨, q0) = {(q0, q0)}

δ(0, q0) = {ε}; δ(0, q1) = ∅

δ(1, q1) = {ε}; δ(1, q0) = ∅
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Non-det. Top-Down Automata
Example

∧

∨

∧

0 1

∨

1 0

∧

∨

0 1

∧

1 1

Idea
Guess the correct values starting

from the root

Check at the leaves

Three states: q0, q1, acc

Initial state q1 at the root

Accepting if all leaves end in acc

Transitions
δ(∧, q1) = {(q1, q1)}

δ(∧, q0) = {(q0, q1), (q1, q0), (q0, q0)}

δ(∨, q1) = {(q0, q1), (q1, q0), (q1, q1)}

δ(∨, q0) = {(q0, q0)}

δ(0, q0) = {acc}; δ(0, q1) = ∅

δ(1, q1) = {acc}; δ(1, q0) = ∅
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Regular Tree Languages

Definition

A bottom-up automaton is deterministic if

for each a and p 6= q: δ(a, p) ∩ δ(a, q) = ∅

Theorem
The following are equivalent for a tree language L:

(a) L is accepted by a nondeterministic bottom-up automaton

(b) L is accepted by a deterministic bottom-up automaton

(c) L is accepted by a nondeterministic top-down automaton

Proof idea
(a) =⇒ (b): Powerset construction

(a)⇐⇒ (c): Just the same thing, viewed in two different ways
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Automata as Tiling Systems
Observation

• (q0, q1) ∈ δ(∨, q1) can be inter-

preted as an allowed pattern:
∨, q1

q0 q1

• A tree is accepted, iff there is a labelling with states such that

– all local patterns are allowed

– the root is labelled with q1
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Regular tree languages and logic

Definition: (MSO logic)

• Formulas talk about

– edges of the tree (E)

– node labels (Q0, Q1, Q∧, Q∨)

– the root of the tree (root)

• First-order-variables represent nodes

• Monadic second-order (MSO) variables represent sets of nodes

Example: Boolean Circuits
Boolean circuit true ≡ ∃X X(root) ∧ ∀x

(Q0(x)→ ¬X(x)) ∧

((Q∧(x) ∧X(x)) → (∀y[E(x, y)→ X(y)])) ∧

((Q∨(x) ∧X(x)) → (∃y[E(x, y) ∧X(y)]))

Theorem [Doner 70; Thatcher, Wright 68]

MSO ≡ Regular Tree Languages
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Regular tree languages and logic (cont.)

Theorem
MSO ≡ Regular Tree Languages

Proof idea
Automata ⇒ MSO:

Formula expresses that there exists a correct tiling

MSO ⇒ Automata: more involved

Basic idea:

Automaton computes for each node v the set of formulas which hold

in the subtree rooted at v
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Regular tree languages and logic (cont.)

Formula⇒ automaton
• Let ϕ be an MSO-formula, k := quantifier-depth of ϕ

• k-type of a tree t := (essentially)

set of MSO-formulas ψ of quantifier-depth ≤ k which hold in t

• t1 ≡k t2 : k-type(t1) = k-type(t2)

• Automaton computes k-type of tree and concludes whether ϕ holds

Crucial fact

t1 ≡k t′1

t2 ≡k t′2

=⇒

�

� �

l

t1 t2
≡k

�

� �

l

t′1 t′2
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Det. Top-Down Automata

Question
What is the right notion for deterministic top-down

automata?

3 Possibilities
State at a node v might depend on

state and symbol of parent a q

v
state and symbol of parent and

symbol of v a q

v c
state and symbol of parent and

symbols at v and its sibling a q

v c e
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Det. Top-Down Automata: Acceptance

Question
What is a good acceptance mechanism for

deterministic top-down automata?

Several possibilitites

(1) At all leaves states have to be accepting

(2) There is a leave with an accepting state

(2) is problematic for complement and intersection

(1) is problematic for complement and union
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Det. Top-Down Automata: Acceptance (cont.)

Definition: (Root-to-frontier automata with regular acceptance condition)

• Tree automata A are equipped with an additional regular string

language L over Q× Σ

• A accepts t if the (state,symbol)-string at the leaves (from left to

right) is in L [Jurvanen, Potthoff, Thomas 93]

Illustration

(q1, a1) · · · (qn, an)

A robust class
• The resulting class is closed under Boolean operations

• Good algorithmic properties

• Does not capture all regular tree languages
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Summary

Regular tree languages
• Regular tree languages are a robust class

• Characterized by

– parallel tree automata

– MSO logic

– several other models

• They are the natural analog of regular string languages

• Deterministic top-down automata with regular

acceptance conditions define a weaker but nevertheless

robust class
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Tree-Walk Automata
Definition: (Tree-walk automata)
Depending on

• current state

• symbol of current node

• position of current node wrt

its siblings

the automaton moves to a

neighbor and takes a new state

TWA

T

r e

e A u t

o s

Question
What is the expressive power

of tree-walk automata?
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Tree-Walk Automata (cont.)
Fact

• Tree-walk automata can evaluate

Boolean circuit trees

• 5 states
Example

∧

∨

∧

0 1

∨

1 0

∧

∨

0 1

∧

1 1

Idea

∧

0

q0

∧

1

∨

1

q1

∨

0
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A Recent Result and an Even More Recent Result

Theorem [Bojanczyk, Colcombet 04]
Deterministic TWAs are weaker than

nondeterministic TWAs

Corollary
Deterministic TWAs do not capture all

regular tree languages

Theorem [Bojanczyk, Colcombet 04]
Nondeterministic TWAs do not capture all

regular tree languages
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Overview of Models

Non-det. top-down tree automata

Non-det. bottom-up tree automata

Det. bottom-up tree automata

Det. top-down tree automata

Non-det. tree walk automata

Det. tree walk automata
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Decision Problems

Algorithmic problems
• We consider the following algorithmic problems

• All of them will be useful in the XML context

Membership test for A

Given: Tree t

Question: Is t ∈ L(A)?

Membership test (combined)

Given: Automaton A, tree t

Question: Is t ∈ L(A)?

Non-emptiness

Given: Automaton A

Question: Is L(A) 6= ∅?

Containment

Given: Automata A1,A2

Question: Is L(A1) ⊆ L(A2)?

Equivalence

Given: Automata A1,A2

Question: Is L(A1) = L(A2)?
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Membership Test

Facts
Time Bounds for the combined complexity of membership test for tree

automata:

• Deterministic (parallel) tree automata: O(|A||t|)

• Nondeterministic (parallel) tree automata: O(|A|2|t|)

(Compute, for each node, the set of reachable states)

• Deterministic TWAs: O(|A|2|t|)

(Compute, for each node v, the aggregated behavior of A on its

subtree: Behavior function )

• Nondeterministic TWAs: O(|A|3|t|)

(Compute, for each node v, the aggregated behavior of A on its

subtree: Behavior relation )
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Behavior Function

� v

f : Q→ Q
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Membership Test (cont.)

Question: What is the structural complexity for the various models?

[Lohrey 01, Segoufin 03]

Model Time Complexity Structural Complexity

Det. top-down TA O(|A||t|) LOGSPACE

Det. bottom-up TA O(|A||t|) LOGDCFL

Nondet. bottom-up TA O(|A|2|t|) LOGCFL

Nondet. top-down TA O(|A|2|t|) LOGCFL

Det. TWA O(|A|2|t|) LOGSPACE

Nondet. TWA O(|A|3|t|) NLOGSPACE
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Non-emptiness
Facts

• Non-emptiness for string automata corresponds to Graph

Reachability (complete for NLOGSPACE)

•
Non-emptiness for tree automata

corresponds to Path Systems
:

p2

p1

q
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Non-emptiness
Facts

• Non-emptiness for string automata corresponds to Graph

Reachability (complete for NLOGSPACE)

•
Non-emptiness for tree automata

corresponds to Path Systems
:

p2

p1

q

p2

p1

q

Result
• Non-emptiness for bottom-up tree

automata can be checked in linear time

• It is complete for PTIME
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Containment/Equivalence

Observations
• Of course:

L(A1) = L(A2)⇐⇒ [L(A1) ⊆ L(A2) and L(A2) ⊆ L(A1)]

• Complexity of containment problem is very different for

deterministic and non-deterministic automata

• Deterministic automata: construct product automaton
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Reminder: Product automaton
Product of 2 string automata

• ”even number of zeros”

• ”contains substring 00”

a

b

c d e f
0 1 0

1 0 0,1

1

00

1

1
0110100

Schwentick XML: Algorithms & Complexity Introduction - XML Processing 44



Reminder: Product automaton
Product of 2 string automata

• ”even number of zeros”

• ”contains substring 00”

a

b

c d e f
0 1 0

1 0 0,1

1

00

1

1

a

c

|0110100

Schwentick XML: Algorithms & Complexity Introduction - XML Processing 44



Reminder: Product automaton
Product of 2 string automata

• ”even number of zeros”

• ”contains substring 00”

a

b

c d e f
0 1 0

1 0 0,1

1

00

1

1

b

d

0|110100

Schwentick XML: Algorithms & Complexity Introduction - XML Processing 44



Reminder: Product automaton
Product of 2 string automata

• ”even number of zeros”

• ”contains substring 00”

a

b

c d e f
0 1 0

1 0 0,1

1

00

1

1

b

e

01|10100

Schwentick XML: Algorithms & Complexity Introduction - XML Processing 44



Reminder: Product automaton
Product of 2 string automata

• ”even number of zeros”

• ”contains substring 00”

a

b

c d e f
0 1 0

1 0 0,1

1

00

1

1

b

c

011|0100

Schwentick XML: Algorithms & Complexity Introduction - XML Processing 44



Reminder: Product automaton
Product of 2 string automata

• ”even number of zeros”

• ”contains substring 00”

a

b

c d e f
0 1 0

1 0 0,1

1

00

1

1

a

d

0110|100

Schwentick XML: Algorithms & Complexity Introduction - XML Processing 44



Reminder: Product automaton
Product of 2 string automata

• ”even number of zeros”

• ”contains substring 00”

a

b

c d e f
0 1 0

1 0 0,1

1

00

1

1

a

e

01101|00

Schwentick XML: Algorithms & Complexity Introduction - XML Processing 44



Reminder: Product automaton
Product of 2 string automata

• ”even number of zeros”

• ”contains substring 00”

a

b

c d e f
0 1 0

1 0 0,1

1

00

1

1

b

f

011010|0

Schwentick XML: Algorithms & Complexity Introduction - XML Processing 44



Reminder: Product automaton
Product of 2 string automata

• ”even number of zeros”

• ”contains substring 00”

a

b

c d e f
0 1 0

1 0 0,1

1

00

1

1

a

f

0110100|
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Reminder: Product automaton
Product of 2 string automata

• ”even number of zeros”

• ”contains substring 00”

a

b

c d e f
0 1 0

1 0 0,1

1

00

1

1

ac ad ae af

bc bd be bf

0

0
1
1

1

1

00

0

0

1

1
1

1

00

0110100
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Reminder: Product automaton
Product of 2 string automata

• ”even number of zeros”

• ”contains substring 00”

a

b

c d e f
0 1 0

1 0 0,1

1

00

1

1

ac ad ae af

bc bd be bf

0

0
1
1

1

1

00

0

0

1

1
1

1

00

a

c

ac

|0110100
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Reminder: Product automaton
Product of 2 string automata

• ”even number of zeros”

• ”contains substring 00”

a

b

c d e f
0 1 0

1 0 0,1

1

00

1

1

ac ad ae af

bc bd be bf

0

0
1
1

1

1

00

0

0

1

1
1

1

00

b

d

bd

0|110100
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Reminder: Product automaton
Product of 2 string automata

• ”even number of zeros”

• ”contains substring 00”

a

b

c d e f
0 1 0

1 0 0,1

1

00

1

1

ac ad ae af

bc bd be bf

0

0
1
1

1

1

00

0

0

1

1
1

1

00

b

e

be

01|10100

Schwentick XML: Algorithms & Complexity Introduction - XML Processing 44



Reminder: Product automaton
Product of 2 string automata

• ”even number of zeros”

• ”contains substring 00”

a

b

c d e f
0 1 0

1 0 0,1

1

00

1

1

ac ad ae af

bc bd be bf

0

0
1
1

1

1

00

0

0

1

1
1

1

00

b

c

bc

011|0100
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Reminder: Product automaton
Product of 2 string automata

• ”even number of zeros”

• ”contains substring 00”

a

b

c d e f
0 1 0

1 0 0,1

1

00

1

1

ac ad ae af

bc bd be bf

0

0
1
1

1

1

00

0

0

1

1
1

1

00

a

d

ad

0110|100
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Reminder: Product automaton
Product of 2 string automata

• ”even number of zeros”

• ”contains substring 00”

a

b

c d e f
0 1 0

1 0 0,1

1

00

1

1

ac ad ae af

bc bd be bf

0

0
1
1

1

1

00

0

0

1

1
1

1

00

a

e

ae

01101|00
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Reminder: Product automaton
Product of 2 string automata

• ”even number of zeros”

• ”contains substring 00”

a

b

c d e f
0 1 0

1 0 0,1

1

00

1

1

ac ad ae af

bc bd be bf

0

0
1
1

1

1

00

0

0

1

1
1

1

00

b

f

bf

011010|0
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Reminder: Product automaton
Product of 2 string automata

• ”even number of zeros”

• ”contains substring 00”

a

b

c d e f
0 1 0

1 0 0,1

1

00

1

1

ac ad ae af

bc bd be bf

0

0
1
1

1

1

00

0

0

1

1
1

1

00

a

f

af

0110100|
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Containment: Complexity
Deterministic bottom-up tree automata

• Product automaton analogous as for string

automata

– Set of states: Q1 ×Q2

– Transitions component-wise

• To check L(A1) ⊆ L(A2):

– Compute B = A1 ×A2

– Accepting states: F1 × (Q2 − F2)

– Check whether L(B) = ∅

– If so, L(A1) ⊆ L(A2) holds

Theorem
Complexity of Containment for deterministic

bottom-up tree automata:

O(|A1| × |A2|)
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Containment: Complexity (cont.)
Non-deterministic automata

• Naive approach:

– Make A2 deterministic (size: O(2|A2|))

– Construct product automaton

⇒ Exponential time
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Containment: Complexity (cont.)
Non-deterministic automata

• Naive approach:

– Make A2 deterministic (size: O(2|A2|))

– Construct product automaton

⇒ Exponential time

Unfortunately...
There is essentially no better way
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Containment: Complexity (cont.)
Non-deterministic automata

• Naive approach:

– Make A2 deterministic (size: O(2|A2|))

– Construct product automaton

⇒ Exponential time

Unfortunately...
There is essentially no better way

Theorem [Seidl 1990]
Containment for non-deterministic tree automata

is complete for EXPTIME
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Det. Top-Down Automata: Non-Emptiness

Theorem
Nonemptiness for deterministic top-down automata A

can be checked in polynomial time

Proof idea
Check for each state p of A and each pair (q, q′) of

the leaves automaton B:

Is there a tree t such that A starts from state p and

obtains a leave string which brings B from q to q′?

Illustration

q · · · q′

p
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Det. Top-Down Automata: Containment

Theorem
Containment for deterministic top-down automata A

can be checked in polynomial time

Proof idea
• Tree automata A1, A2 with leaves automata

B1,B2

• Check

– for each pair (p1, p2) of states of A1 and A2

and

– for each two pairs (q1, q
′
1) and (q2, q

′
2) of B1

and B2, resp.:

Is there a tree t such that for both i = 1, i = 2:

Ti starts from state pi and obtains a leave string

which brings Bi from qi to q
′
i?
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Summary

Complexities of basic algorithmic problems

Model Membership Non-emptiness Containment

Det. top-down TA LOGSPACE PTIME PTIME

Det. bottom-up TA LOGDCFL PTIME PTIME

Nondet. bottom-up TA LOGCFL PTIME EXPTIME

Nondet. top-down TA LOGCFL PTIME EXPTIME

Det. TWA LOGSPACE PTIME (∗) PTIME (∗)

Nondet. TWA NLOGSPACE PTIME (∗) EXPTIME (∗)

(∗: upper bounds)
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From Ranked to Unranked Trees

Example Tree

Composer

Name Claude Debussy

Vita

Born
When 1862

Where Paris

Married
When 1899

Whom Rosalie

Married
When 1908

Whom Emma

Died
When 1918

Where Paris

Piece

PTitle La Mer

PYear 1905

Instruments Large orchestra

Movements 3
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From Ranked to Unranked Trees

Agenda
• Now we move from ranked to unranked trees

• There is a basic choice:

– Either: we encode unranked trees as binary trees

and go on with ranked automata

– Or: we adapt the ranked automata models

• In both cases: not many surprises, most results

remain
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Encoding Unranked Trees as Binary Trees
Example: Unranked Tree

a

c

a c e

e a

c c

a e

e

c

a

Encoding via ...

first child

next sibling
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Encoding Unranked Trees as Binary Trees
Example: Unranked Tree

a

c

a c e

e a

c c

a e

e

c

a

Encoding via ...

first child

next sibling

... as Binary Tree
a

c
a

c
e

e
a

c
c

a
e

e

c
a
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Encoding Unranked Trees as Binary Trees (cont.)
Example: Unranked Tree

b

a a a n

o e

c

... if path expressions matter (Milo,Suciu,Vianu 00)

b |

− − − − − |

a a a n c || | | |

| | | − − |

o e| |

| |
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Binary vs. unranked trees

Remark
• There are still other ways to encode unranked trees

as binary trees

→ e.g., [Carme, Niehren, Tommasi 04]

• We consider automata for unranked trees next
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Unranked Trees: Formal Definition

Definition

A (finite) tree domain V over N is a (finite) subset of N∗, such that if

v · i ∈ V , where v ∈ N∗ and i ∈ N,

• then v ∈ V
Note

ε represents the root

• and v · (i− 1) ∈ V , if i > 1

Definition

A labelled tree t is a pair (V, λ), where V is a tree domain over N, and λ is a

function from V to the set Σ of labels.

Remark

XML tags can be captured by the set Σ of labels. But what about text?

• This depends on the context

• E.g., for type checking, text is irrelevant.

• In many applications, the relevant information about text nodes can be

represented by predicates, e.g., whether the name = ’Debussy’.
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From Ranked to Unranked Tree Automata
Ranked trees

Transitions are described by finite sets:

δ(σ, q) = {(q1, q2), (q3, q4), . . .}

q

q1 q2

σ

σ1 σ2
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From Ranked to Unranked Tree Automata
Ranked trees

Transitions are described by finite sets:

δ(σ, q) = {(q1, q2), (q3, q4), . . .}

q

q1 q2

σ

σ1 σ2

Unranked trees

σ

σ1 σ2 σn

q

q1 q2 qn
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From Ranked to Unranked Tree Automata
Ranked trees

Transitions are described by finite sets:

δ(σ, q) = {(q1, q2), (q3, q4), . . .}

q

q1 q2

σ

σ1 σ2

Unranked trees

q1 q2 qn ∈ δ(σ, q)?

σ

σ1 σ2 σn

q

q1 q2 qn
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From Ranked to Unranked Tree Automata
Ranked trees

Transitions are described by finite sets:

δ(σ, q) = {(q1, q2), (q3, q4), . . .}

q

q1 q2

σ

σ1 σ2

Unranked trees

q1 q2 qn ∈ δ(σ, q)?

σ

σ1 σ2 σn

q

q1 q2 qn

δ(σ, q)

• For unranked trees, δ(σ, q) is a regular language

• δ(σ, q) can be specified by regular expression or finite string automaton

[Brüggemann-Klein, Murata, Wood 2001]
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Representation of δ(σ, q)

Remark
• Representation of δ(σ, q) has influence on complexity

• Natural choice:

– For nondeterministic tree automata:

represent δ(σ, q) by NFAs or regular expressions

– For deterministic tree automata:

represent δ(σ, q) by DFAs

⇒ Same complexity results as for ranked trees
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Regular sets of unranked trees

Theorem
The following are equivalent for a set L of unranked trees:

(a) L is accepted by a nondeterministic bottom-up automaton

(b) L is accepted by a deterministic bottom-up automaton

(c) L is accepted by a nondeterministic top-down automaton

(d) L is characterized by an MSO-formula
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Deterministic Top-Down Automata

State at v might depend on ...

state and symbol of

parent
a q

v

state and symbol of

parent and symbol

of v

a q

v c

simple

state and symbol of

parent and symbols

at v and its left sib-

lings

a q

a c v c

left-siblings aware

state and symbol of

parent and symbols

at v and its siblings

a q

a c v c e a
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Checking Existence of Paths
Fact

A simple deterministic top-down automaton can check the

existence of vertical paths with regular properties

Construction

• For a node v let s(v) denote the

sequence of labels from the root to v

• Let A be a deterministic string

automaton

• A′ := top-down automaton which takes

at v state of A after reading s(v)

⇒ A′ is deterministic

• There is a path from the root to a leaf v

with s(v) ∈ L(A) iff A′ assumes at

least one state from F at a leave

Illustration

�

v

s(v)

Streaming XML
Similar construction used for XPath evaluation on streams [Green et al. 2003]
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Sequential Automata on Unranked Trees

Generalization of Tree-Walk Automata

Allowed transitions: Go up

Go to first child

Go to left sibling

Go to right sibling

→ Caterpillar automata [Brüggemann-Klein, Wood 2000]

Basic design choice
Should a transition to a sibling be aware of the label of the parent?

a

v w
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Document Automata

A third kind of automata for XML

• Document automata are string automata reading XML

documents as text

• Tags are represented by symbols from a given alphabet

• Variants:

– Finite document automata

– Pushdown document automata

• Useful especially in the context of streaming XML

Theorem [Segoufin, Vianu 02]
• Regular languages of XML-trees can be recognized by

deterministic push-down document automata.

• Depth of push-down is bounded by depth of tree
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Summary: Unranked Tree Automata

Summary
• Moving from ranked to unranked automata requires some

adaptations

• Transitions can be defined with regular string languages

δ(σ, q)

• By and large, things work smoothly

• In particular:

– there is an equally robust notion of regular tree languages

– The complexities are the same as for ranked automata

(if the sets δ(σ, q) are represented in a sensible way)
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Refined Overview of Models

Non-det. top-down tree automata

Non-det. bottom-up tree automata

det. bottom-up tree automata

Pushdown document automata

Det. top-down tree automata

Non-det. tree walk automata

Det. tree walk automata

Finite document automata
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DTDs

Example DTD

<!DOCTYPE Composers [

<!ELEMENT Composers (Composer*)>

<!ELEMENT Composer (Name, Vita, Piece*)>

<!ELEMENT Vita (Born, Married*, Died?)>

<!ELEMENT Born (When, Where)>

<!ELEMENT Married (When, Whom)>

<!ELEMENT Died (When, Where)>

<!ELEMENT Piece (PTitle, PYear,

Instruments, Movements)>

]>

Some Facts
• DTDs ≡ generalized context-free grammars

→ [Berstel,Boasson 00] provide characterizations

• Additional restriction: one-unambiguous
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One-unambiguous Regular Expressions
Definition: One-unambiguous Regular Expression

• Let r be a regular expression

• r 7→ r′: number the symbols of r from left to right

• w ∈ L(r)←→ there is a numbered string w′ ∈ L(r′)

• r is one-unambiguous if

uxiv ∈ L(r
′), uyjw ∈ L(r

′), i 6= j ⇒ x 6= y

Example

• (a+ b)∗ac+ c 7→ (a1 + b2)
∗a3c4 + c5

• babbac ∈ L(r) and b2a1b2b2a3c4 ∈ L(r
′)

• (a+ b)∗ac+ c is not one-unambiguous because

b2b2a3c4 ∈ L(r
′) and b2b2a1a3c4 ∈ L(r

′)

• (b∗a)∗c is one-unambiguous

Schwentick XML: Algorithms & Complexity Introduction - Document Automata 70



One-unambiguous Regular Expressions
Definition: One-unambiguous Regular Expression

• Let r be a regular expression

• r 7→ r′: number the symbols of r from left to right

• w ∈ L(r)←→ there is a numbered string w′ ∈ L(r′)

• r is one-unambiguous if

uxiv ∈ L(r
′), uyjw ∈ L(r

′), i 6= j ⇒ x 6= y

Example

• (a+ b)∗ac+ c 7→ (a1 + b2)
∗a3c4 + c5

• babbac ∈ L(r) and b2a1b2b2a3c4 ∈ L(r
′)

• (a+ b)∗ac+ c is not one-unambiguous because

b2b2 a3 c4 ∈ L(r
′) and b2b2 a1 a3c4 ∈ L(r

′)

• (b∗a)∗c is one-unambiguous
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One-unambiguous Regular Expressions
Definition: One-unambiguous Regular Expression

• Let r be a regular expression

• r 7→ r′: number the symbols of r from left to right

• w ∈ L(r)←→ there is a numbered string w′ ∈ L(r′)

• r is one-unambiguous if

uxiv ∈ L(r
′), uyjw ∈ L(r

′), i 6= j ⇒ x 6= y

Example

• (a+ b)∗ac+ c 7→ (a1 + b2)
∗a3c4 + c5

• babbac ∈ L(r) and b2a1b2b2a3c4 ∈ L(r
′)

• (a+ b)∗ac+ c is not one-unambiguous because

b2b2 a3 c4 ∈ L(r
′) and b2b2 a1 a3c4 ∈ L(r

′)

• (b∗a)∗c is one-unambiguous

Restriction
• Expressions in DTDs have to be one-unambiguous

• Inherited from SGML
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Validation wrt a DTD
Example Tree

Composer

Name

Debussy

Vita

Born

When

1862

Where

Paris

Married

When

1899

Whom

Rosalie

Married

When

1908

Whom

Emma

Died

When

1918

Where

Paris

Piece

PTitle

La Mer

PYear

1905

Instruments

Orch.

Movements

3

Example DTD
<!DOCTYPE Composers [

<!ELEMENT Composers (Composer*)>

<!ELEMENT Composer (Name, Vita, Piece*)>

<!ELEMENT Vita (Born, Married*, Died?)>

<!ELEMENT Born (When, Where)>

<!ELEMENT Married (When, Whom)>

<!ELEMENT Died (When, Where)>

<!ELEMENT Piece (PTitle, PYear,

Instruments, Movements)>

]>

Validation Algorithm
For each node:

Check that the children

are ok wrt the parent’s

rule
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Validation wrt a DTD (cont.)

Observation
• Validation wrt DTDs is a very simple task

• Can be done by

– Bottom-up automata

– Deterministic top-down automata

(if siblings contribute to new state)

– Deterministic tree-walk automata:

Just a depth-first left-to-right traversal

• In particular: Validation possible in linear time

during one pass through the document

( 1-pass validation )

• Further: DTDs are always satisfiable
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Containment of DTDs

Lemma [Martens, Neven, Sch. 04]
Containment of DTDs with regular expressions from R is in C

⇐⇒

Containment of regular expressions from R is in C

Corollary

Containment of DTDs (with one-unambiguous regular expressions)

is in PTIME

Proof sketch
• One-unambiguous regular expressions have deterministic

automata of linear size

⇒ Containment of regular expressions r1, r2 by product

automaton of size O(|r1||r2|)
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Containment of DTDs (cont.)

Question
What if the requirement of being one-unambiguous is dropped?

A classical result
Theorem [Stockmeyer, Meyer 71]

Containment and Equivalence for regular expressions on strings are

complete for PSPACE

Corollary

Containment of DTDs (with unrestricted regular expressions) is

PSPACE-complete

Theorem [Martens, Neven, Sch. 04]

Containment and Equivalence for regular expressions are

• coNP-complete for concatenations of a, b, c and a∗, b∗, c∗

• coNP-complete for concatenations of a, b, c and a?, b?, c?

• PSPACE-complete for concatenations of a, b, c and

(a∗ + b∗ + · · ·+ c∗)

Schwentick XML: Algorithms & Complexity Introduction - Document Automata 74



Contents
Introduction

Background on Tree Automata and Logic

Schema Languages

DTDs

Specialized DTDs

1-pass Preorder Typing

XPath and Node-selecting Queries

XSLT

XQuery

Conclusion



Weakness of DTDs
A classical example

<!DOCTYPE Dealer [

<!ELEMENT Dealer (UsedCars NewCars)>

<!ELEMENT UsedCars (ad*)>

<!ELEMENT NewCars (ad*)>

<!ELEMENT ad ((model, year) | model)> ]>

Intention
Intention:

Dealer

UsedCars

ad

model year

NewCars

ad

model

Observation
• Elements with the same name may have

different structure in different contexts

→ It would be nice to have types for elements

→ Specialized DTDs
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Specialized DTDs
Definition: [Papakonstantinou, Vianu 2000]

A specialized DTD (SDTD) over alphabet Σ is

a pair (d, µ), where

• d is a DTD over the alphabet Σ′ of types

• µ : Σ′ → Σ maps types to tag names

Note
Concerning the name:

“specialized” refers to types, not to DTDs

Example

Dealer→ UsedCars NewCars µ(Dealer) = Dealer

UsedCars→ adUsed∗ µ(UsedCars) = UsedCars

NewCars→ adNew∗ µ(NewCars) = NewCars

adUsed→ model year µ(adUsed) = ad

adNew→ model µ(adNew) = ad
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A Further Example

Example: SDTD for Boolean circuit trees

1-AND → (1-OR | 1-AND | 1-leaf)*

1-OR → .∗ (1-OR | 1-AND | 1-leaf) .∗

0-AND → .∗ (0-OR | 0-AND | 0-leaf) .∗

0-OR → (0-OR | 0-AND | 0-leaf)*

1-leaf → ε

0-leaf → ε

Tag µ(Tag)

1-AND AND

0-AND AND

1-OR OR

0-OR OR

1-leaf 1

0-leaf 0
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Specialized DTDs (cont.)

Observation
• A naive validation by exhaustively trying all possible functions

µ requires exponential time

• But help comes from automata...

•

•
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Specialized DTDs (cont.)

Observation
• A naive validation by exhaustively trying all possible functions

µ requires exponential time

• But help comes from automata...

• A tree conforms to a specialized DTD (d, µ) if there is a

labeling of its nodes by types which is valid wrt. d

•
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Specialized DTDs (cont.)

Observation
• A naive validation by exhaustively trying all possible functions

µ requires exponential time

• But help comes from automata...

• A tree conforms to a specialized DTD (d, µ) if there is a

labeling of its nodes by types which is valid wrt. d

• This reminds us of something...
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Specialized DTDs (cont.)

Observation
• A naive validation by exhaustively trying all possible functions

µ requires exponential time

• But help comes from automata...

• A tree conforms to a specialized DTD (d, µ) if there is a

labeling of its nodes by types which is valid wrt. d

• This reminds us of something...

Theorem
Specialized DTDs capture exactly the regular tree languages
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Validation and Typing

Definition: (Validation)
Given: Specialized DTD d, tree t

Qeustion: Is t valid wrt d?

Definition: (Typing)
Given: Specialized DTD d, tree t

Output: Consistent type assignment for the nodes of t

Facts
• Specialized DTDs ≡ regular tree languages

→ Validation in linear time by deterministic push-down automata

• Typing in linear time (Bottom-up automaton) the document

• Satisfiability ≡ Non-emptiness of tree automata: PTIME
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Restrictions of Schemas
Restricted Schemas

(Murata, Lee, Mani 2001) introduced∗ restrictions on specialized DTDs to ensure

efficient validation (∗: in a slightly different framework)

• Two types b, b′ compete if µ(b) = µ(b′)

• A specialized DTD is single-type if no competing types occur in the same

rule (e.g., a→ bcb′ is not single-type)

• A specialized DTD is restrained-competition if no rule allows strings wbv,

wb′v′ with competing types b, b′

(e.g., a→ c(b+ d∗b′) is not restrained-competition)

• The authors argue that XML-Schema roughly corresponds to single-type

SDTDs
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Restricted Schemas

(Murata, Lee, Mani 2001) introduced∗ restrictions on specialized DTDs to ensure
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• Two types b, b′ compete if µ(b) = µ(b′)

• A specialized DTD is single-type if no competing types occur in the same

rule (e.g., a→ bcb′ is not single-type)

• A specialized DTD is restrained-competition if no rule allows strings wbv,
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Schema Containment

Schema Containment

Given: Schemas d1, d2

Question: Is L(d1) ⊆ L(d2)?

Observations
• Important, e.g., for data integration

• Recall: Specialized DTDs are essentially non-deterministic tree

automata

⇒ Containment of specialized DTDs is in EXPTIME

• But the restricted forms have lower complexity

• Complexity of containment depends on the allowed regular

expressions
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Schema Containment: Complexity

Results (partly from [Martens, Neven, Sch. 04])

Schema type unrestricted
deterministic

expressions

DTDs PSPACE PTIME

single-type SDTDs PSPACE PTIME
restrained-competition

SDTDs
PSPACE PTIME

unrestricted SDTDs EXPTIME EXPTIME

Observations
• For unrestricted SDTDs the complexity is dominated by tree

automata containment

• For the others it is dominated by the sub-task of checking

containment for regular expressions
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Schema Containment: Complexity

Observations (cont.)
• ... for the others it is dominated by the sub-task of checking

containment for regular expressions

• Actually, this observation can be made more precise

Theorem [Martens, Neven, Sch. 04]
For a class R of regular expressions and a complexity class C, the

following are equivalent

(a) The containment problem for R expressions is in C.

(b) The containment problem for DTDs with regular expressions

from R is in C.

(c) The containment problem for single-type SDTDs with regular

expressions from R is in C.
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Typing (cont.)
Observations

• Type of a node ≡ state of deterministic bottom-up automaton

• Deterministic push-down automaton can assign types during 1 pass

• But the type of a node v is determined after visiting its subtree

•

...after visiting subtree

�v
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Typing (cont.)
Observations

• Type of a node ≡ state of deterministic bottom-up automaton

• Deterministic push-down automaton can assign types during 1 pass

• But the type of a node v is determined after visiting its subtree

• 1-pass preorder typing :

determine type of v before visiting the subtree of v

...after visiting subtree

�v

...before visiting subtree

�v
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1-Pass Preorder Typing
Question

When would it be important to

know the type of v before

visiting the subtree of v?

...before visiting subtree

�v
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1-Pass Preorder Typing
Question

When would it be important to

know the type of v before

visiting the subtree of v?

...before visiting subtree

�v

Answer
Whenever the processing proceeds in document order, e.g.:

• Streaming XML: Typing as the first operator in a pipeline

• SAX-based processing
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1-Pass Preorder Typing
Question

When would it be important to

know the type of v before

visiting the subtree of v?

...before visiting subtree

�v

Answer
Whenever the processing proceeds in document order, e.g.:

• Streaming XML: Typing as the first operator in a pipeline

• SAX-based processing

Our next goal
Find out which schemas admit 1-pass preorder typing
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1-Pass Preorder Typing (cont.)
Remarks

• The definition of “1-pass preorder typing” does not yet restrict the

efficiency of determining the type of a node

• Typing could be 1-pass preorder but very time consuming

• It turns out that essentially this never happens

• Clearly, restrained competition is sufficient for 1-pass preorder typing

• Is it also necessary?
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1-Pass Preorder Typing (cont.)
Remarks

• The definition of “1-pass preorder typing” does not yet restrict the

efficiency of determining the type of a node

• Typing could be 1-pass preorder but very time consuming

• It turns out that essentially this never happens

• Clearly, restrained competition is sufficient for 1-pass preorder typing

• Is it also necessary?

Theorem [Martens, Neven, Sch. 2004]
For a regular tree language L the following are equivalent

(a) L can be described by a 1-pass preorder typable SDTD

(b) L can be described by a restrained-competition SDTD

(c) L has linear time 1-pass pre-order typing

(d) L can be preorder-typed by a deterministic pushdown document automaton

(e) Types for trees in L can be computed by a left-siblings-aware top-down

deterministic tree automaton
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A Very Robust Class

Further characterizations
• This class has further

interesting

characterizations

• E.g., by closure under

ancestor-sibling-guarded

subtree exchange

Illustration

t1
u1

t′1
t2

u2

t′2

t1
u1

t′2
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A Related Result

Theorem [Martens, Neven, Sch. 2004]
For a regular tree language L the following are equivalent

(a) L can be described by a single-type SDTD

(b) Types for trees in L can be computed by a simple top-down

deterministic tree automaton

(c) L is closed under ancestor-guarded subtree exchange
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Summary: Schema Languages

Summary

Expressive power

• Regular tree languages offer a nice framework (≡ MSO logic!)

• Restrained competition ≡ Deterministic top-down automata

Validation Linear time

Typing

• Linear time

• Efficient 1-pass preorder typing for restrained competition

SDTDs

Satisfiability

• DTDs: trivial

• SDTDs: PTIME

Containment

• General SDTDs: EXPTIME

• Restrained competition SDTDs: PTIME
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Node-Selecting Queries
Example document

〈Composer〉

〈Name〉 Claude Debussy 〈/Name〉

〈Vita〉

〈Born〉 〈When〉 August 22, 1862 〈/When〉〈Where〉 Paris 〈/Where〉〈/Born〉

〈Married〉〈When〉 October 1899 〈/When〉〈Whom〉 Rosalie〈/Whom〉〈/Married〉

〈Married〉〈When〉 January 1908 〈/When〉〈Whom〉 Emma 〈/Whom〉〈/Married〉

〈Died〉 〈When〉 March 25, 1918 〈/When〉〈Where〉 Paris 〈/Where〉 〈/Died〉

〈/Vita〉

〈Piece〉

〈PTitle〉 La Mer 〈/PTitle〉

〈PYear〉 1905 〈/PYear〉

〈Instruments〉 Large orchestra 〈/Instruments〉

〈Movements〉 3 〈/Movements〉

...

〈/Piece〉

...

〈/Composer〉

...

Example query
//Vita/Died/*
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Node-Selecting Queries
Example document

〈Composer〉

〈Name〉 Claude Debussy 〈/Name〉

〈Vita〉

〈Born〉 〈When〉 August 22, 1862 〈/When〉〈Where〉 Paris 〈/Where〉〈/Born〉

〈Married〉〈When〉 October 1899 〈/When〉〈Whom〉 Rosalie〈/Whom〉〈/Married〉

〈Married〉〈When〉 January 1908 〈/When〉〈Whom〉 Emma 〈/Whom〉〈/Married〉

〈Died〉 〈When〉 March 25, 1918 〈/When〉〈Where〉 Paris 〈/Where〉 〈/Died〉

〈/Vita〉

〈Piece〉

〈PTitle〉 La Mer 〈/PTitle〉

〈PYear〉 1905 〈/PYear〉

〈Instruments〉 Large orchestra 〈/Instruments〉

〈Movements〉 3 〈/Movements〉

...

〈/Piece〉

...

〈/Composer〉

...

Observation

XPath expressions define sets of nodes → node-selecting queries

Example query
//Vita/Died/*
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Node-Selecting Queries (cont.)
Question

Is there a class of node-selecting queries, as robust

as the regular tree languages?
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Node-Selecting Queries (cont.)
Question

Is there a class of node-selecting queries, as robust

as the regular tree languages?

Observation
• There is a simple way to define node selecting queries by

monadic second-order formulas:

• Simply use one free variable: ϕ(x)

• Is there a corresponding automaton model?

• It is relatively easy to add node selection to

nondeterministic bottom-up automata
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Node-Selecting Queries (cont.)
Question

Is there a class of node-selecting queries, as robust

as the regular tree languages?

Observation
• There is a simple way to define node selecting queries by

monadic second-order formulas:

• Simply use one free variable: ϕ(x)

• Is there a corresponding automaton model?

• It is relatively easy to add node selection to

nondeterministic bottom-up automata

Definition: (Nondetermistic bottom-up node-selecting automata)
• Nondeterministic bottom-up automata plus select function:

s : Q× Σ→ {0, 1}

• Node v is in result set for tree t :⇐⇒ there is an accepting computation

on t in which v gets a state q such that s(q, λ(v)) = 1
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Example Automaton
Example query

//∗[a]//b

Query tree

∗

a b

Example automaton
• Q = {q0, qa, qb}

• L(qa, a) = Q∗

• L(qb, σ) = Q∗

• L(q0, σ) =

ε+ q∗0 +Q
∗qaQ

∗

• all other sets empty

• s(qb, b) = 1

• all others: 0

• Accepting: q0

Example tree: Run 1

c

e

a c

b c

c e

b c

e b
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Example Automaton
Example query

//∗[a]//b

Query tree

∗

a b

Example automaton
• Q = {q0, qa, qb}

• L(qa, a) = Q∗

• L(qb, σ) = Q∗

• L(q0, σ) =

ε+ q∗0 +Q
∗qaQ

∗

• all other sets empty

• s(qb, b) = 1

• all others: 0

• Accepting: q0

Example tree: Run 1

c

e

a c

b c

c e

b c

e bqb q0 q0 q0b
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Example Automaton
Example query

//∗[a]//b

Query tree

∗

a b

Example automaton
• Q = {q0, qa, qb}

• L(qa, a) = Q∗

• L(qb, σ) = Q∗

• L(q0, σ) =

ε+ q∗0 +Q
∗qaQ

∗

• all other sets empty

• s(qb, b) = 1

• all others: 0

• Accepting: q0

Example tree: Run 1

c

e

a c

b c

c e

b c

e bqb q0 q0 q0b

qa qb q0 q0

Schwentick XML: Algorithms & Complexity Introduction - 1-Pass Typing 95



Example Automaton
Example query

//∗[a]//b

Query tree

∗

a b

Example automaton
• Q = {q0, qa, qb}

• L(qa, a) = Q∗

• L(qb, σ) = Q∗

• L(q0, σ) =

ε+ q∗0 +Q
∗qaQ

∗

• all other sets empty

• s(qb, b) = 1

• all others: 0

• Accepting: q0

Example tree: Run 1

c

e

a c

b c

c e

b c

e bqb q0 q0 q0b

qa qb q0 q0

q0 q0 q0
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Example Automaton
Example query

//∗[a]//b

Query tree

∗

a b

Example automaton
• Q = {q0, qa, qb}

• L(qa, a) = Q∗

• L(qb, σ) = Q∗

• L(q0, σ) =

ε+ q∗0 +Q
∗qaQ

∗

• all other sets empty

• s(qb, b) = 1

• all others: 0

• Accepting: q0

Example tree: Run 1

c

e

a c

b c

c e

b c

e bqb q0 q0 q0b

qa qb q0 q0

q0 q0 q0

q0
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Example Automaton
Example query

//∗[a]//b

Query tree

∗

a b

Example automaton
• Q = {q0, qa, qb}

• L(qa, a) = Q∗

• L(qb, σ) = Q∗

• L(q0, σ) =

ε+ q∗0 +Q
∗qaQ

∗

• all other sets empty

• s(qb, b) = 1

• all others: 0

• Accepting: q0

Example tree: Run 2

c

e

a c

b c

c e

b c

e b
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Example Automaton
Example query

//∗[a]//b

Query tree

∗

a b

Example automaton
• Q = {q0, qa, qb}

• L(qa, a) = Q∗

• L(qb, σ) = Q∗

• L(q0, σ) =

ε+ q∗0 +Q
∗qaQ

∗

• all other sets empty

• s(qb, b) = 1

• all others: 0

• Accepting: q0

Example tree: Run 2

c

e

a c

b c

c e

b c

e bqb q0 q0 qbb b
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Example Automaton
Example query

//∗[a]//b

Query tree

∗

a b

Example automaton
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∗qaQ

∗
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• all others: 0
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Example Automaton
Example query
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Example Automaton
Example query

//∗[a]//b

Query tree

∗

a b

Example automaton
• Q = {q0, qa, qb}

• L(qa, a) = Q∗

• L(qb, σ) = Q∗

• L(q0, σ) =

ε+ q∗0 +Q
∗qaQ

∗

• all other sets empty

• s(qb, b) = 1

• all others: 0

• Accepting: q0

Example tree: Run 2

c
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a c
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b c
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qa qb q0 qb

q0 q0 qb
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Node-Selecting Automata

Fact
• Existential semantics: a node is in the result if

there exists an accepting run which selects it

• Universal semantics: a node is in the result if every

accepting run selects it

• Both semantics define the same class of queries

Result
A node selecting query is MSO-definable iff it is expressible by a

nondeterministic bottom-up node selecting automaton
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Node-Selecting Automata (cont.)
Result

A node selecting query is MSO-definable iff it is expressible by a

nondeterministic bottom-up node selecting automaton

Proof idea
• Given formula ϕ(x) of quantifier-depth k and tree t,

for each node v the automaton does the following:

– Compute k-type of subtree at v

– Guess k-type of ”envelope tree” at v

– Conclude whether v is in the output

– Check consistency upwards towards the root

⇒ one unique accepting run

Crucial fact

�

e1
≡k �

e2

�

t1 ≡k

�

t2

=⇒ �
�

e1

t1
≡k

�
�

e2

t2
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Equivalent Models

More query models

• Unfortunately, the translation from formula to automaton can be

prohibitively expensive: number of states ∼ 22··
·2

2|ϕ|
}

|ϕ|

• Actually: If P 6= NP there is no elementary f , such that MSO-formulas

can be evaluated in time f(|formula| × p(|tree|)) with polynomial p

[Frick, Grohe 2002]

→ query languages with better complexity properties needed

• Good candidate: Monadic Datalog [Gottlob, Koch 2002] and its restricted

dialects like TMNF

• Further models:

– Attributed Grammars [Neven, Van den Bussche 1998]

– µ-formulas [Neumann 1998]

– Context Grammars [Neumann 1999]

– Deterministic Node-Selecting Automata [Neven, Sch. 1999]
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Node-selecting Queries: Evaluation Complexity

Some facts about query evaluation
• MSO node-selecting queries can be evaluated in two passes

through the tree

– first pass, bottom-up: essentially computes the types of the

subtrees

– second pass, top-down: essentially computes the types of

the envelopes and combines it with the subtree information

• This can be implemented by a 2-pass pushdown document

automaton which in its first pass attaches information to each

node [Neumann, Seidl 1998; Koch 2003]

• In particular: queries can be evaluated in linear time
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Node-selecting Queries: Static Analysis

Facts
• Satisfiability: Non-emptiness of node-selecting automata

is PTIME-complete

• Satisfiability of MSO-queries is non-elementary

• Containment of node-selecting automata is

EXPTIME-complete
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Summary: Node-Selecting Queries

Summary
• There is a natural notion of

regular node-selecting queries generalizing regular

tree languages

• Probably for most practical purposes too strong

• But it offers a useful framework for the study of

other classes of queries

• A robust but weaker class of queries is captured by

pebble automata
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XPath Fragments

XPath and Important Fragments
• Many fragments of XPath have been defined

• The main fragments we consider are:

– Full XPath : XPath 1.0

(besides the namespace related functions)

– Navigational XPath [Gottlob, Koch, Pichler 03,

Benedikt, Fan, Kuper 03]:

Location paths along all axes plus Boolean operations

(no attributes, no relational operators)

– Forward XPath : Navigational XPath restricted to

child, descendant, self, descendant-or-self
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XPath

Main Ingredients of Navigational XPath

• Location Step :

p = Axis :: Node-Test Predicate∗

• Predicate : [Expression]

• Location Path :

π = Location Step / Location Path

More explicitly: π = p1/ · · · /pk

• Expression : basically a Boolean combination of location steps

Example
/descendant::a/

child::∗[descendant::c and not following-sibling::b]/

descendant::a
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XPath Example

Example XPath Expression
/desc::a/child::∗[desc::c and not foll-sib::b]/desc::a

Example Tree

c

a

c

b a c

b

b

a

b

c a b

c a

a

c b a

c
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XPath Example

Example XPath Expression
/desc::a/child::∗[desc::c and not foll-sib::b]/desc::a

Example Tree

c

a

c

b a c

b

b

a

b

c a b

c a
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c b a

c

a
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XPath Semantics

XPath Semantics
• Result of an expression is a node set or a single value

(Boolean, number or string)

• Expressions are evaluated relative to a context , in

particular relative to a context node

• Location step: p = (a :: n q) relative to context node

u yields the set [[p]](u) of nodes v such that

– (u, v) are in a-relation

– v is labeled according to n (arbitrary, if n = ∗)

– all predicates of q hold at v

• Extended to sets S of nodes: [[p]](S) = ∪u∈S[[p]](u)

• Location path: [[p/π]](S) = [[π]]([[p]](S))
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Example Revisited

Example XPath Expression
/desc::a/child::∗[desc::c and not foll-sib::b]/desc::a

Example Tree
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Example Revisited

Example XPath Expression

/ desc::a /child::∗[desc::c and not foll-sib::b]/desc::a

Example Tree
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Example Revisited

Example XPath Expression

/desc::a/ child::∗ [desc::c and not foll-sib::b]/desc::a

Example Tree
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b a c
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b
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c b
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c b a
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Example Revisited

Example XPath Expression

/desc::a/child::∗[ desc::c and not foll-sib::b]/desc::a

Example Tree

c

a

c

b a c

b

b
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c a b
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Example Revisited

Example XPath Expression

/desc::a/child::∗[desc::c and not foll-sib::b ]/desc::a

Example Tree
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c

b a c

b

b

a

b

c a b

c a

a

c b a

cb
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Example Revisited

Example XPath Expression

/desc::a/child::∗[desc::c and not foll-sib::b]/ desc::a

Example Tree

c

a

c

b a c

b

b

a

b

c a b

c a

a

c b a

c

a
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XPath Expression as Query Tree

Example XPath Expression
/desc::a/child::∗[desc::c and not foll-sib::b]/desc::a

Example Query Tree

root

desc::a

child::∗

desc::a and

desc::c not

foll-sib::b
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A simplified Notation [Benedikt, Fan, Kuper 03]

Notation
• ↓, ↑,→,←, ª:

child, parent, next-sibling, previous-sibling, self

• ↓+, ↑+,→+,←+:

descendant, ancestor, following-sibling,

preceding-sibling

• ↓∗, ↑∗,→∗,←∗:

descendant-or-self, ancestor-or-self,

following-sibling-or-self, preceding-sibling-or-self

Example
• child::a/descendant::c/following-sibling::∗/parent::b can

be expressed as ↓/a/↓+/c/→/↑/b

• The following-axis can be expressed via ↑∗/→+/↓∗
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Xpath and Existential First-order Logic
Characterizations of XPath [Benedikt, Fan, Kuper 03]

• Navigational XPath (without not and and) corresponds

to positive existential first-order logic

• Different XPath axes correspond to different signatures

Proof idea
• Basic idea:

For each node v of the query tree: guess a node h(u) in

the document tree and check that h is a

“homomorphism”

• Main difficulty in proof:

Deal with conjunctions of conditions

Further Results on
• closure properties

• axiomatizations of equivalence
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Backward vs. Forward Axes

Elimination of Backward Axes [Olteanu et al. 02]

• In absolute XPath expressions, all backward axes can be

eliminated

• Two sets of rewrite rules:

– introducing equality expressions, linear time (and size)

– without equality expressions, possibly exponential size
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Xpath and First-Order Logic
Reminder

Navigational XPath without negation corresponds to positive

existential first-order logic

Question: What is needed to capture full first-order logic?
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Xpath and First-Order Logic
Reminder

Navigational XPath without negation corresponds to positive

existential first-order logic

Question: What is needed to capture full first-order logic?

Conditional axes

Conditional axes :

Expressions of the kind P+, where P is an expression

Example
(child :: a[desc :: b or child :: c])+

holds between u and v if

• v is a descendant of u and

• all intermediate nodes

– are labelled with a and

– have a c-child or a b-descendant
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Xpath and First-Order Logic (cont.)

Theorem [Marx 04]
Navigational XPath with conditional axes corresponds

exactly to first-order logic (wrt node-selecting queries)

Proof idea
The proof uses a decomposition technique similar to the

proof that LTL corresponds to first-order logic over linear

structures [Gabbay et al. 80]
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Pebble Automata and XPath

Definition: Pebble Automata
• Extension of tree-walk automata by fixed number of pebbles

• Only pebble with highest number ( current pebble ) can move,

depending on state, number of pebbles symbols under pebbles and

incidence of pebbles

• Possible pebble movements:

– stay, go to left sibling, go to right sibling, go to parent

– lift current pebble or place new pebble at current position

• Nondeterminism possible

Fact
Deterministic pebble automata capture navigational XPath queries

Proof idea
For each node of the query tree:

cycle through all possible nodes of the document tree
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Automata and Logic

Some observations

• On strings, MSO logic and (unary) transitive closure logic ( TC-logic )

coincide

• On trees

– MSO ≡ parallel automata

– TC-logic ≡ pebble automata (i.e., strongest sequential automata)

• Whether on trees MSO ≡ TC-logic is open

• The relationship between logics and automata models between FO and

TC-logic is largely unexplored:

– Tree-walk automata,

– FO-logic + regular expressions

– Conditional XPath + arbitrary star operator

– ...
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XPath Query Evaluation
Naive Evaluation

Procedure Eval(p1/ · · · /pn,v)

S := [[p1]]v

IF n = 1 RETURN S ELSE S′ := ∅

FOR u ∈ S DO S′ := S′∪ Eval(p2/ · · · /pn,u)

RETURN S′
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XPath Query Evaluation
Naive Evaluation

Procedure Eval(p1/ · · · /pn,v)

S := [[p1]]v

IF n = 1 RETURN S ELSE S′ := ∅

FOR u ∈ S DO S′ := S′∪ Eval(p2/ · · · /pn,u)

RETURN S′

Complexity
• T (p1/ · · · /pn, t) = O(size of t)× T (p2/ · · · /pn, t)

• Could be exponential

• Experiments (reported in [Gottlob, Koch, Pichler 02]) show

that available XPath processors had exponential complexity

Example
/descendant::a(/child::b/parent::a)n on document

a

b b
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Evaluation of Navigational XPath

Basic Idea
Combine top-down evaluation of the “main path” with

bottom-up evaluation of predicates [Gottlob, Koch, Pichler 02]

Example Query Tree

root

desc::a

child::∗

desc::a and

desc::c not

foll-sib::b

Example Document

c

a

c

b a c

b

b

a

b

c a b

c a

a

c b a

c
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Evaluation of Navigational XPath

Basic Idea
Combine top-down evaluation of the “main path” with

bottom-up evaluation of predicates [Gottlob, Koch, Pichler 02]

Example Query Tree

root

desc::a

child::∗

desc::a and

desc::c not

foll-sib::b

Example Document

c

a

c

b a c

b

b

a

b

c a b

c a

a

c b a

c

desc::a
a

a

a

a

a

a

a
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Evaluation of Navigational XPath

Basic Idea
Combine top-down evaluation of the “main path” with

bottom-up evaluation of predicates [Gottlob, Koch, Pichler 02]

Example Query Tree

root

desc::a

child::∗

desc::a and

desc::c not

foll-sib::b

Example Document

c

a

c

b a c

b

b

a

b

c a b

c a

a

c b a

c

child::∗
c b

b c a

c b a

c
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Evaluation of Navigational XPath

Basic Idea
Combine top-down evaluation of the “main path” with

bottom-up evaluation of predicates [Gottlob, Koch, Pichler 02]

Example Query Tree

root

desc::a

child::∗

desc::a and

desc::c not

foll-sib::b

Example Document

c

a

c

b a c

b

b

a

b

c a b

c a

a

c b a

c

child::∗
c b

b c a

c b a

c

foll-sib::b

a

c

a

c
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Evaluation of Navigational XPath

Basic Idea
Combine top-down evaluation of the “main path” with

bottom-up evaluation of predicates [Gottlob, Koch, Pichler 02]

Example Query Tree

root

desc::a

child::∗

desc::a and

desc::c not

foll-sib::b

Example Document

c

a

c

b a c

b

b

a

b

c a b

c a

a

c b a

c

child::∗
c b

b c a

c b a

c
not

c

b a

b a b a

b a c b c a c

c b
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Evaluation of Navigational XPath

Basic Idea
Combine top-down evaluation of the “main path” with

bottom-up evaluation of predicates [Gottlob, Koch, Pichler 02]

Example Query Tree

root

desc::a

child::∗

desc::a and

desc::c not

foll-sib::b

Example Document

c

a

c

b a c

b

b

a

b

c a b

c a

a

c b a

c

child::∗
c b

b c a

c b a

c
desc::c
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a b a
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b
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Evaluation of Navigational XPath

Basic Idea
Combine top-down evaluation of the “main path” with

bottom-up evaluation of predicates [Gottlob, Koch, Pichler 02]

Example Query Tree

root

desc::a

child::∗

desc::a and

desc::c not

foll-sib::b

Example Document

c

a

c

b a c

b

b

a

b

c a b

c a

a

c b a

c

child::∗
c b

b c a

c b a

c
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Evaluation of Navigational XPath

Basic Idea
Combine top-down evaluation of the “main path” with

bottom-up evaluation of predicates [Gottlob, Koch, Pichler 02]

Example Query Tree

root

desc::a

child::∗

desc::a and

desc::c not

foll-sib::b

Example Document

c
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c

b a c

b

b
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b
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Evaluation of Navigational XPath

Basic Idea
Combine top-down evaluation of the “main path” with

bottom-up evaluation of predicates [Gottlob, Koch, Pichler 02]

Example Query Tree

root

desc::a

child::∗

desc::a and

desc::c not

foll-sib::b

Example Document

c

a

c

b a c

b

b

a

b

c a b

c a

a

c b a

c

desc::a

a
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Evaluation of Navigational XPath (cont.)
Evaluation Algorithm for Navigational XPath

Procedure NEval(p1/ · · · /pn,v)

S′ := {v}

FOR i := 1 TO n

(∗ pi = ai::ni qi ∗)

S′ := {u | v ∈ S′, (v, u) in ai-relation, u matches ni}

Compute S′′ := {u | [[qi]](u) 6= ∅} bottom-up

S′ := S′ ∩ S′′

RETURN S′
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Evaluation of Navigational XPath (cont.)
Evaluation Algorithm for Navigational XPath

Procedure NEval(p1/ · · · /pn,v)

S′ := {v}

FOR i := 1 TO n

(∗ pi = ai::ni qi ∗)

S′ := {u | v ∈ S′, (v, u) in ai-relation, u matches ni}

Compute S′′ := {u | [[qi]](u) 6= ∅} bottom-up

S′ := S′ ∩ S′′

RETURN S′

Complexity

• For each node of the query tree: O(|t|) steps

• Overall: O(query size× |t|)
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Beyond Navigational XPath

Example expression
/desc::a/child::∗[desc::c[position() > 1]]/desc::a

Observations
• In general, a subexpression does not only depend on a context

node but also on

– context position (position())

– context size (last())

→ predicates can no longer be evaluated in a bottom-up fashion

• Basic idea of [Gottlob, Koch, Pichler 02]: Compute the value

of each subexpression for each triple (v, i, l) of

– a node v

– a position i

– a size l
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Two Algorithms for XPath Evaluation

Results from [Gottlob, Koch, Pichler 02/03]
• The basic idea can be turned into different algorithms:

– a bottom-up algorithm:

∗ Computing the value for each e, (v, i, l) in a dynamic

programming fashion

∗ Time bound: O((tree size)5 × (query size)2)

– a (mixed) top-down algorithm:

∗ Compute as much information as possible in top-down

fashion to evaluate subexpressions only for relevant triples

(v, i, l)

∗ Time bound: O((tree size)4 × (query size)2)

• Further time bound for the “extended Wadler fragment”:

O((tree size)2 × (query size)2)
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Structural Complexity of XPath Evaluation

Further Results
• In [Gottlob, Koch, Pichler 03] the complexity of XPath evaluation

is considered

• Data Complexity:

– Navigational XPath: LOGSPACE-complete

(e.g., via pebble automata)

– Full XPath: also LOGSPACE (?)

• Combined Complexity:

– Navigational XPath: PTIME-complete

– Positive Navigational XPath: LOGCFL-complete

– An even much larger fragment (pXPath) is in LOGCFL
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XPath satisfiability
Observation

Not all XPath expressions are satisfiable, e.g.:

child::a/child::b/following-sibling::c/parent::d

Question
What is the complexity of checking satisfiability of an XPath

expression for different fragments?
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XPath satisfiability
Observation

Not all XPath expressions are satisfiable, e.g.:

child::a/child::b/following-sibling::c/parent::d

Question
What is the complexity of checking satisfiability of an XPath

expression for different fragments?

Theorem [Hidders 03]
• Satisfiability for positive navigational XPath expressions is in NP

• Even for expressions without Boolean operators it is NP-hard

• For relative expressions without Boolean operators it is in P
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XPath satisfiability
Observation

Not all XPath expressions are satisfiable, e.g.:

child::a/child::b/following-sibling::c/parent::d

Question
What is the complexity of checking satisfiability of an XPath

expression for different fragments?

Theorem [Hidders 03]
• Satisfiability for positive navigational XPath expressions is in NP

• Even for expressions without Boolean operators it is NP-hard

• For relative expressions without Boolean operators it is in P

Remark
As navigational XPath can express star-free regular expressions along

a path:

Satisfiability of navigational XPath is non-elementary
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XPath Satisfiability: Upper Bound

Theorem [Hidders 03]
Satisfiability for positive navigational XPath

expressions is in NP

Proof idea
• If an expression e without ∪ is satisfiable it has a

model of size ≤ |e|

• For an arbitrary (negation-free) expression guess a

disjunct of the disjunctive normal form
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XPath Satisfiability: Lower Bound

Theorem [Hidders 03]
Satisfiability for positive navigational XPath expressions

without Boolean operators is NP-hard

Proof idea
• Reduction from Bounded Multiple String Matching (BMS):

– Given: Pattern strings p1, . . . , pn over {0, 1, ∗}

– Question: Is there a string over {0, 1} of length |p1| which

matches all patterns?

• Example: ∗0∗∗1, 00∗1, ∗111 has solution 00111

• As XPath expression:

/↓/↓/0/↓/↓/↓/1 [↑∗/1/↑/↑/0/↑/0] [↑∗/1/↑/1/↑/1]
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Forward XPath

Example document
〈Composer〉

〈Name〉 Claude Debussy 〈/Name〉

〈Vita〉

〈Born〉 〈When〉 August 22, 1862 〈/When〉〈Where〉 Paris 〈/Where〉〈/Born〉

〈Married〉〈When〉 October 1899 〈/When〉〈Whom〉 Rosalie〈/Whom〉〈/Married〉

〈Married〉〈When〉 January 1908 〈/When〉〈Whom〉 Emma 〈/Whom〉〈/Married〉

〈Died〉〈When〉 March 25, 1918 〈/When〉〈Where〉 Paris 〈/Where〉 〈/Died〉

〈/Vita〉

〈Piece〉

〈PTitle〉 La Mer 〈/PTitle〉

〈PYear〉 1905 〈/PYear〉

〈Instruments〉 Large orchestra 〈/Instruments〉

〈Movements〉 3 〈/Movements〉

...

〈/Piece〉

...

〈/Composer〉

...

Example query
//Vita/Died/*
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Forward XPath

Example document
〈Composer〉

〈Name〉 Claude Debussy 〈/Name〉

〈Vita〉

〈Born〉 〈When〉 August 22, 1862 〈/When〉〈Where〉 Paris 〈/Where〉〈/Born〉

〈Married〉〈When〉 October 1899 〈/When〉〈Whom〉 Rosalie〈/Whom〉〈/Married〉

〈Married〉〈When〉 January 1908 〈/When〉〈Whom〉 Emma 〈/Whom〉〈/Married〉

〈Died〉 〈When〉 March 25, 1918 〈/When〉〈Where〉 Paris 〈/Where〉 〈/Died〉

〈/Vita〉

〈Piece〉

〈PTitle〉 La Mer 〈/PTitle〉

〈PYear〉 1905 〈/PYear〉

〈Instruments〉 Large orchestra 〈/Instruments〉

〈Movements〉 3 〈/Movements〉

...

〈/Piece〉

...

〈/Composer〉

...

Example query
//Vita/Died/*

Schwentick XML: Algorithms & Complexity Introduction - XPath 129



Abbreviated Syntax for Forward XPath

Example document
〈Composer〉

〈Name〉 Claude Debussy 〈/Name〉

〈Vita〉

〈Born〉 〈When〉 August 22, 1862 〈/When〉〈Where〉 Paris 〈/Where〉〈/Born〉

〈Married〉〈When〉 October 1899 〈/When〉〈Whom〉 Rosalie〈/Whom〉〈/Married〉

〈Married〉〈When〉 January 1908 〈/When〉〈Whom〉 Emma 〈/Whom〉〈/Married〉

〈Died〉〈When〉 March 25, 1918 〈/When〉〈Where〉 Paris 〈/Where〉 〈/Died〉

〈/Vita〉

〈Piece〉

〈PTitle〉 La Mer 〈/PTitle〉

〈PYear〉 1905 〈/PYear〉

〈Instruments〉 Large orchestra 〈/Instruments〉

〈Movements〉 3 〈/Movements〉

...

〈/Piece〉

...

〈/Composer〉

...
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Abbreviated Syntax for Forward XPath

Example document
〈Composer〉

〈Name〉 Claude Debussy 〈/Name〉

〈Vita〉

〈Born〉 〈When〉 August 22, 1862 〈/When〉〈Where〉 Paris 〈/Where〉〈/Born〉

〈Married〉〈When〉 October 1899 〈/When〉〈Whom〉 Rosalie〈/Whom〉〈/Married〉

〈Married〉〈When〉 January 1908 〈/When〉〈Whom〉 Emma 〈/Whom〉〈/Married〉

〈Died〉〈When〉 March 25, 1918 〈/When〉〈Where〉 Paris 〈/Where〉 〈/Died〉

〈/Vita〉

〈Piece〉

〈PTitle〉 La Mer 〈/PTitle〉

〈PYear〉 1905 〈/PYear〉

〈Instruments〉 Large orchestra 〈/Instruments〉

〈Movements〉 3 〈/Movements〉

...

〈/Piece〉

...

〈/Composer〉

...

Another example query
(/*[Name]//When) | (//Where)
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Abbreviated Syntax for Forward XPath

Example document
〈Composer〉

〈Name〉 Claude Debussy 〈/Name〉

〈Vita〉

〈Born〉 〈When〉 August 22, 1862 〈/When〉〈Where〉 Paris 〈/Where〉〈/Born〉

〈Married〉〈When〉 October 1899 〈/When〉〈Whom〉 Rosalie〈/Whom〉〈/Married〉

〈Married〉〈When〉 January 1908 〈/When〉〈Whom〉 Emma 〈/Whom〉〈/Married〉

〈Died〉〈When〉 March 25, 1918 〈/When〉〈Where〉 Paris 〈/Where〉 〈/Died〉

〈/Vita〉

〈Piece〉

〈PTitle〉 La Mer 〈/PTitle〉

〈PYear〉 1905 〈/PYear〉

〈Instruments〉 Large orchestra 〈/Instruments〉

〈Movements〉 3 〈/Movements〉

...

〈/Piece〉

...

〈/Composer〉

...

Another example query
(/*[Name]//When) | (//Where)

More XPath operators

Operator Meaning

p/q child

p//q descendant

p[q] filter

∗ wildcard

p | q disjunction
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Abbreviated Syntax for Forward XPath

Example document
〈Composer〉

〈Name〉 Claude Debussy 〈/Name〉

〈Vita〉

〈Born〉 〈When〉 August 22, 1862 〈/When〉〈Where〉 Paris 〈/Where〉 〈/Born〉

〈Married〉 〈When〉 October 1899 〈/When〉 〈Whom〉 Rosalie〈/Whom〉〈/Married〉

〈Married〉 〈When〉 January 1908 〈/When〉 〈Whom〉 Emma 〈/Whom〉〈/Married〉

〈Died〉 〈When〉 March 25, 1918 〈/When〉〈Where〉 Paris 〈/Where〉 〈/Died〉

〈/Vita〉

〈Piece〉

〈PTitle〉 La Mer 〈/PTitle〉

〈PYear〉 1905 〈/PYear〉

〈Instruments〉 Large orchestra 〈/Instruments〉

〈Movements〉 3 〈/Movements〉

...

〈/Piece〉

...

〈/Composer〉

...

Another example query
(/*[Name]//When) | (//Where)

More XPath operators

Operator Meaning

p/q child

p//q descendant

p[q] filter

∗ wildcard

p | q disjunction
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XPath containment

Question

Does //Vita/Died/* always select a subset of

positions of (/*[Name]//When) | (//Where) ?
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XPath containment

Question

Does //Vita/Died/* always select a subset of

positions of (/*[Name]//When) | (//Where) ?

Answer
No!
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XPath containment

Question

Does //Vita/Died/* always select a subset of

positions of (/*[Name]//When) | (//Where) ?

Answer
No!

Counter-example

〈Vita〉

〈Died〉

〈How〉 Heart disease 〈/How〉

〈/Died〉

〈/Vita〉
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XPath containment

Question

Does //Vita/Died/* always select a subset of

positions of (/*[Name]//When) | (//Where) ?

Answer
No!

Counter-example

〈Vita〉

〈Died〉

〈How〉 Heart disease 〈/How〉

〈/Died〉

〈/Vita〉

Further question
But what if the type of documents is constrained?
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XPath Containment (cont.)

Fact
For all XML documents of type

<!DOCTYPE Composers [

<!ELEMENT Composers (Composer*)>

<!ELEMENT Composer (Name, Vita, Piece*)>

<!ELEMENT Vita (Born, Married*, Died?)>

<!ELEMENT Born (When, Where)>

<!ELEMENT Married (When, Whom)>

<!ELEMENT Died (When, Where)>

<!ELEMENT Piece (PTitle, PYear,

Instruments, Movements)>

]>

the pattern //Vita/Died/* always selects a subset of positions of

(/*[Name]//When) | (//Where)
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XPath Containment: Definition

Definition: Containment for XPath(S)

Let S be a set of XPath-operators. The containment problem for XPath(S) is:

Given: XPath(S)-expression p, q

Question: Is p(t) ⊆ q(t) for all documents t?

Definition: Containment for XPath (S) with DTD

Let S be a set of XPath-operators. The containment problem for XPath(S) in the

presence of DTDs is:

Given: XPath(S)-expression p, q, DTD d

Question: Is p(t) ⊆ q(t) for all documents t satisfying t |= d?

Observation
These problems are crucial for static analysis and query optimization

Question
For which fragments S are these problems

• decidable?

• efficiently solvable?
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Results

General remarks
• The XPath containment problem has been

considered for various sets of operators

• Focus on Forward XPath

• Results vary from PTIME to “undecidable”

• Various methods have been used:

– Canonical model technique

– Homomorphism technique

– Chase technique

• More about this in [Miklau, Suciu 2002; Deutsch,

Tanen 2001; Sch. 2004]

• We will consider automata based techniques
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The Automata Technique

Definition: (Relative Containment for XPath (S) wrt DTD)
Let S be a set of XPath-operators. The containment problem for

XPath(S) relative to a DTD is:

Given: XPath(S)-expression p, q, DTD d

Question: Is p(D) ⊆ q(D) for all documents D satisfying

D |= d?

A vague plan
• Construct an automaton Ap for p

• Construct an automaton Aq for q

• Construct an automaton Ad for d

• Combine these automata suitably to get an

automaton which accepts all counter-example

documents
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A Simplification

Definition: (Boolean containment)

p ⊆b q :⇐⇒ whenever p selects some node in a

tree t then q also selects some node in t.

Useful observation [Miklau, Suciu 2002]

In the presence of [ ], Boolean containment has the

same complexity as containment.

Crucial idea

x

p1 p2

⊆ x′

p′1 p′2

if and only if

x

p1 # p2

⊆b
x′

p′1 # p′2
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XPath Containment: 2 Examples

Result 1 [Neven, Sch. 2003]

The Boolean containment problem for XPath(/, //)

in the presence of DTDs is in PTIME

Result 2 [Neven, Sch. 2003]
The Boolean containment problem for

XPath(/, //, [ ], ∗, |) in the presence of DTDs is in

EXPTIME

Note
Both results are optimal wrt complexity:

the problems are complete for these classes
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Containment for XPath(/, //) and DTDs

Result 1 [Neven, Sch. 2003]

The Boolean containment problem for XPath(/, //)

in the presence of DTDs is in PTIME

Proof idea
• XPath(/, //)-expressions can only describe vertical paths in a tree

• Each expression is basically of the form p1//p2// · · · //pk, where each pi is

of the form li1/ · · · /limi

• On strings this is a sequence of string matchings corresponding to a regular

language L

⇒ Deterministic string automaton of linear size

• Recall: there is a deterministic top-down automaton which checks whether a

p-path exists

⇒ Deterministic top-down automaton Ap

⇒ Deterministic top-down automaton Aq checking that no q-path exists
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Containment for XPath(/, //) and DTDs

Result 1 [Neven, Sch. 2003]

The containment problem for XPath(/, //) in the

presence of DTDs is in PTIME

Proof idea (cont.)

• Deterministic top-down automaton Ap

• Deterministic top-down automaton Aq checking that no q-path exists

• There is a deterministic top-down automaton Ad checking whether t

conforms to d

• p ⊆b q in the presence of d⇐⇒ L(Ap ×Aq ×Ad) = ∅

• The latter can be checked in polynomial time
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Containment for XPath(/, //, [ ], ∗, |) and DTDs
Result 2 [Neven, Sch. 2003]

The containment problem for XPath(/, //, [ ], ∗, |) in

the presence of DTDs is in EXPTIME

Proof idea
We again represent patterns like

(/*[Name]//When) | (//Where)

as query trees:

Example query tree

|

∗

Name When

Where

Lemma
For each XPath(/, //, [ ], ∗, |)-expression p there is a deterministic

bottom-up automaton Ap of exponential size which checks whether in a tree

p holds
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Containment for XPath(/, //, [ ], ∗, |) and DTDs

Lemma
For each XPath(/, //, [ ], ∗, |)-expression p there is a

deterministic bottom-up automaton Ap of exponential size which

checks whether in a tree p holds

Proof idea for Lemma
• States of Ap are of the form (S/, S//)

• Both S/ and S// are sets of positions of the query tree:

– S/: positions matching v

– S//: positions matching some node in the subtree of v
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Containment for XPath(/, //, [ ], ∗, |) and DTDs

Result 2 [Neven, Sch. 2003]

The containment problem for XPath(/, //, [ ], ∗, |) in

the presence of DTDs is in EXPTIME

Proof idea (cont.)
• Construct deterministic bottom-up automaton Ap of

exponential size

• Construct deterministic bottom-up automaton Aq of

exponential size

• Construct deterministic bottom-up automaton Ad of

exponential size

• p ⊆b q in the presence of d⇐⇒ L(Ap×Aq ×Ad) = ∅

⇒ exponential time
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Corresponding Lower Bound
Theorem

The containment problem for XPath(/, //, [ ], ∗, |) in the presence of DTDs is

EXPTIME-hard

Proof sketch
Proof by reduction from Two-player corridor tiling

Example

Example:

Top row T = c a a c

Bottom row B = a c a c

Vertical and horizontal constraints:

V =

c

c ,

a

c ,

c

a

H = a c , a a , c a

c a a c
...

...
...

...

a c a c

Player I to move
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Corresponding Lower Bound
Theorem

The containment problem for XPath(/, //, [ ], ∗, |) in the presence of DTDs is

EXPTIME-hard

Proof sketch
Proof by reduction from Two-player corridor tiling

Example

Example:

Top row T = c a a c

Bottom row B = a c a c

Vertical and horizontal constraints:

V =

c

c ,

a

c ,

c

a

H = a c , a a , c a

c a a c
...

...
...

...

a c a c

Player II to move

c
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Corresponding Lower Bound
Theorem

The containment problem for XPath(/, //, [ ], ∗, |) in the presence of DTDs is

EXPTIME-hard

Proof sketch
Proof by reduction from Two-player corridor tiling

Example

Example:

Top row T = c a a c

Bottom row B = a c a c

Vertical and horizontal constraints:

V =

c

c ,

a

c ,

c

a

H = a c , a a , c a

c a a c
...

...
...

...

a c a c

Player I to move

c a
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Corresponding Lower Bound
Theorem

The containment problem for XPath(/, //, [ ], ∗, |) in the presence of DTDs is

EXPTIME-hard

Proof sketch
Proof by reduction from Two-player corridor tiling

Example

Example:

Top row T = c a a c

Bottom row B = a c a c

Vertical and horizontal constraints:

V =

c

c ,

a

c ,

c

a

H = a c , a a , c a

c a a c
...

...
...

...

a c a c

Player II to move

c a c

Schwentick XML: Algorithms & Complexity Introduction - XPath 143



Corresponding Lower Bound
Theorem

The containment problem for XPath(/, //, [ ], ∗, |) in the presence of DTDs is

EXPTIME-hard

Proof sketch
Proof by reduction from Two-player corridor tiling

Example

Example:

Top row T = c a a c

Bottom row B = a c a c

Vertical and horizontal constraints:

V =

c

c ,

a

c ,

c

a

H = a c , a a , c a

c a a c
...

...
...

...

a c a c

Player I to move

c a c a
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Corresponding Lower Bound
Theorem

The containment problem for XPath(/, //, [ ], ∗, |) in the presence of DTDs is

EXPTIME-hard

Proof sketch
Proof by reduction from Two-player corridor tiling

Example

Example:

Top row T = c a a c

Bottom row B = a c a c

Vertical and horizontal constraints:

V =

c

c ,

a

c ,

c

a

H = a c , a a , c a

c a a c
...

...
...

...

a c a c

Player II to move

c a c a
c
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Corresponding Lower Bound
Theorem

The containment problem for XPath(/, //, [ ], ∗, |) in the presence of DTDs is

EXPTIME-hard

Proof sketch
Proof by reduction from Two-player corridor tiling

Example

Example:

Top row T = c a a c

Bottom row B = a c a c

Vertical and horizontal constraints:

V =

c

c ,

a

c ,

c

a

H = a c , a a , c a

c a a c
...

...
...

...

a c a c

Player I to move

c a c a
cc c

Player II lost

Deciding whether player I has a winning strategy is EXPTIME-complete
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Strategies as trees
Proof Sketch (cont.)

Tiles over {a, b, c}

II

I

II

I

S

b

a

b

a b c

b

c

c

a

Schwentick XML: Algorithms & Complexity Introduction - XPath 144



Strategies as trees
Proof Sketch (cont.)

Tiles over {a, b, c}

II

I

II

I

S

b

a

b

a b c

b

c

c

a

This DTD describes all strategy trees:

S → (a, I) + (b, I) + (c, I)

(σ, I)→ (a, II)(b, II)(c, II) + #+ $II

(σ, II)→ (a, I) + (b, I) + (c, I) + #+ $I+!

$II → (a, II)(b, II)(c, II)

$I → (a, I) + (b, I) + (c, I)

$ = line separator # = terminal symbol

! indicates misplaced tile
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Strategies as trees
Proof Sketch (cont.)

Tiles over {a, b, c}

II

I

II

I

S

b

a

b

a b c

b

c

c

a

This DTD describes all strategy trees:

S → (a, I) + (b, I) + (c, I)

(σ, I)→ (a, II)(b, II)(c, II) + #+ $II

(σ, II)→ (a, I) + (b, I) + (c, I) + #+ $I+!

$II → (a, II)(b, II)(c, II)

$I → (a, I) + (b, I) + (c, I)

$ = line separator # = terminal symbol

! indicates misplaced tile

One path corresponds to one game
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Winning strategies and paths
Proof Sketch (cont.)

There are various kinds of paths in a game tree:

(a) Legal tilings =⇒ Player I wins

(b) Syntactically wrong: some row of wrong length

(c) II places a wrong tile =⇒ Player I wins

(d) I places a wrong tile =⇒ Player II wins

Player I has a winning strategy

⇐⇒

there is a tree in which all paths are of the form (a) or (c)

We want to construct q such that all paths of the form (b) or (d) are selected

Then: Player I wins iff /S 6⊆ q wrt DTD
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Winning strategies and paths
Proof Sketch (cont.)

There are various kinds of paths in a game tree:

(a) Legal tilings =⇒ Player I wins

(b) Syntactically wrong: some row of wrong length

(c) II places a wrong tile =⇒ Player I wins

(d) I places a wrong tile =⇒ Player II wins

Player I has a winning strategy

⇐⇒

there is a tree in which all paths are of the form (a) or (c)

We want to construct q such that all paths of the form (b) or (d) are selected

Then: Player I wins iff /S 6⊆ q wrt DTD

Problem: if II places a wrong tile, I might be forced to place a wrong tile, too

=⇒ We let player I mark wrong tiles of II by !

=⇒ We have to check that I does this correctly
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Path conditions
Proof Sketch (cont.)

Player I has winning strategy ⇐⇒ /S 6⊆ q

q expresses that one of the following holds

• Player I violates a horizontal constraint:

• Player I violates a vertical constraint:

• Some row does not contain exactly n tiles

• Player I wrongly claims a mistake of II:

• Some more conditions on B and T
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Path conditions
Proof Sketch (cont.)

Player I has winning strategy ⇐⇒ /S 6⊆ q

q expresses that one of the following holds

• Player I violates a horizontal constraint:

For each (x, y) 6∈ H: //(x, II)/(y, I)

• Player I violates a vertical constraint:

• Some row does not contain exactly n tiles

• Player I wrongly claims a mistake of II:

• Some more conditions on B and T

∗ = OR of all symbols, σi = σ/ · · · /σ (i times)
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Path conditions
Proof Sketch (cont.)

Player I has winning strategy ⇐⇒ /S 6⊆ q

q expresses that one of the following holds

• Player I violates a horizontal constraint:

For each (x, y) 6∈ H: //(x, II)/(y, I)

• Player I violates a vertical constraint:

For each (x, y) 6∈ V : //(x, I)/ ∗n+1 /(y, I)

• Some row does not contain exactly n tiles

• Player I wrongly claims a mistake of II:

• Some more conditions on B and T

∗ = OR of all symbols, σi = σ/ · · · /σ (i times)
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Path conditions
Proof Sketch (cont.)

Player I has winning strategy ⇐⇒ /S 6⊆ q

q expresses that one of the following holds

• Player I violates a horizontal constraint:

For each (x, y) 6∈ H: //(x, II)/(y, I)

• Player I violates a vertical constraint:

For each (x, y) 6∈ V : //(x, I)/ ∗n+1 /(y, I)

• Some row does not contain exactly n tiles

Dn+1 |

n−1
⋃

i=0

($I|$II|S)/Di/($I|$II|#)

• Player I wrongly claims a mistake of II:

• Some more conditions on B and T

∗ = OR of all symbols, σi = σ/ · · · /σ (i times)

D = (d1, I)| · · · |(dm, I)|(d1, II)| · · · |(dm, II)
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Path conditions
Proof Sketch (cont.)

Player I has winning strategy ⇐⇒ /S 6⊆ q

q expresses that one of the following holds

• Player I violates a horizontal constraint:

For each (x, y) 6∈ H: //(x, II)/(y, I)

• Player I violates a vertical constraint:

For each (x, y) 6∈ V : //(x, I)/ ∗n+1 /(y, I)

• Some row does not contain exactly n tiles

Dn+1 |

n−1
⋃

i=0

($I|$II|S)/Di/($I|$II|#)

• Player I wrongly claims a mistake of II:

For each (x, y) ∈ V, (x′, y) ∈ H:

//(x, II)/ ∗n /(x′, I)/(y, II)/ !

• Some more conditions on B and T

∗ = OR of all symbols, σi = σ/ · · · /σ (i times)

D = (d1, I)| · · · |(dm, I)|(d1, II)| · · · |(dm, II)
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Related work on XPath containment
More Results

• Containment of XPath with / and a subset of {//, [ ], ∗} was studied in

[Miklau and Suciu 2002]:

– Containment of XPath(//, [ ], ∗) is coNP-complete even if the number of

∗ or the number of [ ] is bounded

– If the number of // is bounded then it is in polynomial time

• XPath containment in the presence of DTDs and simple integrity constraints

was investigated in [Deutsch and Tanen 2001]:

– In general (unbounded constraints): undecidable

• More complexity results between coNP and undecidable for other fragments

and extensions in [Neven and S. 2003]

Some Open Questions

• What’s the exact borderline between fragments of XPath with decidable and

undecidable containment problem?

• To what extent can the presented result be extended to other axes (siblings,

backward)?
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Summary: XPath
Summary

Expressive Power

Closely related to first-order logic

Evaluation

• In general: Polynomial time

• Large fragments in linear time

• Structural complexity between LOGSPACE and

PTIME

Satisfiability

• Without negation: PTIME or NP

• With negation: non-elementary

Containment

• Varying from PTIME to undecidable

• Upper bound for positive navigational XPath?
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XSLT Typechecking
Definition: Transformation typechecking

Given: DTDs d1 and d2 and a transformation T

Result: Is T (t) valid wrt. d2, for each document t valid

wrt. d1?
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XSLT Typechecking
Definition: Transformation typechecking

Given: DTDs d1 and d2 and a transformation T

Result: Is T (t) valid wrt. d2, for each document t valid

wrt. d1?

Question: Is XSLT typechecking decidable?

Question: What is the complexity?
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XSLT Typechecking
Definition: Transformation typechecking

Given: DTDs d1 and d2 and a transformation T

Result: Is T (t) valid wrt. d2, for each document t valid

wrt. d1?

Question: Is XSLT typechecking decidable?

Question: What is the complexity?

Outline of the Following
• Provide an automata model for XSLT transformations

• Show that the behaviour of these automata can be

captured by MSO logic

• Use manipulation of regular tree languages to solve type

checking problem

→ This part is based on [Milo,Suciu,Vianu 01]
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XSLT in more detail

How XSLT Roughly Works

Templates:

〈xsl:template name=TName match=pattern mode=MName〉

Template application:

〈xsl:apply-templates select=Expression mode=MName〉

XSLT Processing Whenever xsl:apply-templates is called at a node v the

following happens:

• Compute set S(v) of nodes, reachable from v via Expression (if select is not

present, S(v) = children of v)

• For each w ∈ S(v) compute which templates that can be applied to w:

– w has to match pattern of a template

– the mode of the template has to be the same as the mode of

xsl:apply-templates

• If no template matches, take the default template

• For each w ∈ S(v) select the best template and apply it.

The process starts at the root of the tree
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XSLT: Example
Example Transformation

Remove everything below a c. Translate a below b into d

Example XSLT

〈xsl:template match=”a”〉

〈a〉 〈xsl:apply-templates〉 〈/a〉

〈/xsl:template〉

〈xsl:template match=”a” mode=”below”〉

〈d〉 〈xsl:apply-templates〉 〈/d〉

〈/xsl:template〉

〈xsl:template match=”b”〉

〈b〉 〈xsl:apply-templates mode=”below”〉 〈/b〉

〈/xsl:template〉

〈xsl:template match=”b” mode=”below”〉

〈b〉 〈xsl:apply-templates mode=”below”〉 〈/b〉

〈/xsl:template〉

〈xsl:template match=”c”〉

〈c〉 〈/c〉

〈/xsl:template〉

〈xsl:template match=”c” mode=”below”〉

〈c〉 〈/c〉

〈/xsl:template〉
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XSLT: Example
Example Transformation

Remove everything below a c. Translate a below b into d

Example XSLT (Abbreviated)

〈... match=”a”〉 〈a〉 〈xsl:apply-templates〉 〈/a〉 〈/...〉

〈... match=”a” mode=”below”〉 〈d〉 〈xsl:apply-templates〉 〈/d〉 〈/...〉

〈... match=”b”〉 〈b〉 〈xsl:apply-templates mode=”below”〉 〈/b〉 〈/...〉

〈... match=”b” mode=”below”〉 〈b〉 〈xsl:apply-templates mode=”below”〉 〈/b〉 〈/...〉

〈... match=”c”〉 〈c〉 〈/c〉 〈/...〉

〈... match=”c” mode=”below”〉 〈c〉 〈/c〉 〈/...〉
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XSLT: Example
Example Transformation

Remove everything below a c. Translate a below b into d

Example XSLT (Abbreviated)

〈... match=”a”〉 〈a〉 〈xsl:apply-templates〉 〈/a〉 〈/...〉

〈... match=”a” mode=”below”〉 〈d〉 〈xsl:apply-templates〉 〈/d〉 〈/...〉

〈... match=”b”〉 〈b〉 〈xsl:apply-templates mode=”below”〉 〈/b〉 〈/...〉

〈... match=”b” mode=”below”〉 〈b〉 〈xsl:apply-templates mode=”below”〉 〈/b〉 〈/...〉

〈... match=”c”〉 〈c〉 〈/c〉 〈/...〉

〈... match=”c” mode=”below”〉 〈c〉 〈/c〉 〈/...〉

Example Trees
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XSLT: Example
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Example Transformation
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Example Transformation
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Example XSLT (Abbreviated)
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XSLT: More involved example
Remark

The previous example corresponds to top-down tree transducers

Example XSLT

〈xsl:template match=”/b”〉

〈b〉 〈xsl:apply-templates select=’child[1]’ mode=”acopy”〉 〈/b〉

〈/xsl:template〉

〈xsl:template match=”a” mode=”acopy”〉

〈a〉

〈xsl:apply-templates select=’child[1]’ mode=”acopy”〉

〈xsl:copy-of select=’/child[last()]’〉

〈/a〉

〈/xsl:template〉

Example Trees
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Example XSLT
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XSLT: More involved example
Remark

The previous example corresponds to top-down tree transducers

Example XSLT

〈xsl:template match=”/b”〉

〈b〉 〈xsl:apply-templates select=’child[1]’ mode=”acopy”〉 〈/b〉
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XSLT: More involved example
Remark

The previous example corresponds to top-down tree transducers

Example XSLT

〈xsl:template match=”/b”〉

〈b〉 〈xsl:apply-templates select=’child[1]’ mode=”acopy”〉 〈/b〉
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XSLT: More involved example
Remark

The previous example corresponds to top-down tree transducers

Example XSLT
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〈b〉 〈xsl:apply-templates select=’child[1]’ mode=”acopy”〉 〈/b〉
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Remark

The previous example corresponds to top-down tree transducers

Example XSLT

〈xsl:template match=”/b”〉

〈b〉 〈xsl:apply-templates select=’child[1]’ mode=”acopy”〉 〈/b〉
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〈a〉
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XSLT: More involved example
Remark

The previous example corresponds to top-down tree transducers

Example XSLT

〈xsl:template match=”/b”〉

〈b〉 〈xsl:apply-templates select=’child[1]’ mode=”acopy”〉 〈/b〉

〈/xsl:template〉

〈xsl:template match=”a” mode=”acopy”〉

〈a〉

〈xsl:apply-templates select=’child[1]’ mode=”acopy”〉

〈xsl:copy-of select=’/child[last()]’〉

〈/a〉

〈/xsl:template〉
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An automaton model for XSLT

Definition: k-pebble Transducer

• Work on binary tree encodings of unranked trees

• Up to k pebbles can be placed on the tree

• Only pebble with highest number (current pebble) can move, depending on

state, number of pebbles symbols under pebbles and incidence of pebbles

• possible pebble movements:

– stay

– go to left child, right child or parent

– lift current pebble

– place new pebble on the root

• Nondeterminism allowed

• If current pebble stays it is possible to produce output:

– a node with two (forthcoming) subtrees; in this case two independent

subcomputations (branches) are started, which construct the left subtree

and right subtree, respectively

– a leaf; in this case the computation branch stops
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• Work on binary tree encodings of unranked trees
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• If current pebble stays it is possible to produce output:

– a node with two (forthcoming) subtrees; in this case two independent

subcomputations (branches) are started, which construct the left subtree

and right subtree, respectively

– a leaf; in this case the computation branch stops

Example: Unranked Tree
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a a a n

o e

c

... as binary tree

b |

− − − − − |

a a a n c || | | |

| | | − − |

o e| |

| |
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An automaton model for XSLT
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• Only pebble with highest number (current pebble) can move, depending on

state, number of pebbles symbols under pebbles and incidence of pebbles
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Computing XSLT transformations by k-pebble transducers

Fact
k-pebble transducers can evaluate most XPath expressions

(and produce as output an encoded version of the result list)

- even with other axes than the forward axis

Proof idea
• Whenever xsl:apply-templates is called at a node v the following

happens:

– Cycle through the set S(v) of nodes, reachable from v via Expression (if

select is not present, S(v) = children of v)

– For each w ∈ S(v) check which templates can be applied to w:

∗ w has to match pattern of a template

∗ the mode of xsl:apply-templates is stored in the state of the automaton

– For each w ∈ S(v) select the best template and branch into

∗ a subcomputation which handles the next node in S(v) (via the right child)

∗ a subcomputation which applies the template to the current node

• The computation starts at the root of the tree
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Back to the Typechecking Question
Question: Is XSLT typechecking decidable?

Proof idea
• How can we check that T (t) ∈ L(d2), for each

t ∈ L(d1)?

• Obvious approach:

– Compute T (L(d1))

– Check that T (L(d1)) ⊆ L(d2)
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t ∈ L(d1)?

• Obvious approach:
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• Problem: T (L(d1)) does not need to be regular:
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Question: Is XSLT typechecking decidable?

Proof idea
• How can we check that T (t) ∈ L(d2), for each

t ∈ L(d1)?

• Obvious approach:

– Compute T (L(d1))

– Check that T (L(d1)) ⊆ L(d2)

• Problem: T (L(d1)) does not need to be regular:

Transform b

a a a a

into b

a

a

a

a

a

a

a

a
• Alternative approach:

– Compute T−1(L(d2))

– Check L(d1) ∩ T
−1(L(d2)) = ∅
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Pebble acceptors

Definition: k-pebble acceptors

• Basically the same as k-pebble transducers

• Instead of output producing steps:

– accept

– branch into two independent subcomputations

• A tree is accepted if all subcomputations accept

Main Steps of the Proof

(i) T−1(L(d2)) is accepted by a k-pebble acceptor

(ii) k-pebble acceptors only accept regular tree languages
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Step (i)

Lemma

T−1(L(d2)) is accepted by a k-pebble acceptor

Proof

• Let B be a nondeterministic top-down tree automaton which accepts L(d2)

• Let T be a k-pebble tree transducer

• We construct k-pebble acceptor A for T−1(L(d2)), i.e., an automaton

which on input t decides whether there is a tree in T (t) which is accepted by

B:

– Simulate T on t and B

– Simulate at the same time the behaviour of B on the (virtual) output tree

- this is possible as the output tree is produced top-down and can be

instantly consumed by B

– The simulation involves branching, whenever T branches, and produces

two new subtrees
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Step (ii)

Lemma
k-pebble acceptors only accept regular tree languages

Proof idea
Show that the language of a k-pebble acceptor can be

expressed by an MSO-formula:

1. Reduce k-pebble automaton acceptance to AGAP

(Alternating Graph Accessibility)

2. Show that AGAP can be expressed in MSO

3. Some adjustments necessary
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Alternating Graph Accessibility
Definition: Accessible Nodes

Let G = (V,E), V = V∧ ∪ V∨. A node w is accesible if

• w ∈ V∧ and all successors of w are accessible, or

• w ∈ V∨ and at least one successor of w is accessible

Example

v

∨

∧

∧

∧

∨

∧

∨

∧

∧

∨
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Alternating Graph Accessibility
Definition: Accessible Nodes

Let G = (V,E), V = V∧ ∪ V∨. A node w is accesible if

• w ∈ V∧ and all successors of w are accessible, or

• w ∈ V∨ and at least one successor of w is accessible

Example

v

∨

∧

∧

∧

∨

∧

∨

∧

∧

∨

Definition: Alternating Graph Accessibility Problem (AGAP)

Given: Graph G = (V,E), V = V∧ ∪ V∨, and v ∈ V

Question: Is v accessible?
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Alternating Graph Accessibility (cont.)

Construction of GA,t from Automaton A and Tree t

• Nodes in V∨ are the configurations of A on t:

tuples [i, q, θ], where θ : {1, . . . , i} → t

• Nodes in V∧ are ε and pairs (γ1, γ2) of configurations with ”the same θ”

• Edges: – (γ1, γ2) → γ1, (γ1, γ2) → γ2

– γ → γ ′, if this is a step of A

– γ → ε, if A can get into the accept state from γ

– γ → (γ1, γ2) if this is a branching step of A

Fact
A k-pebble acceptor A accepts a tree t⇐⇒ γ is accessible in (GA,t)
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AGAP is MSO-expressible

Definition: Reverse-closed Sets of Nodes

A set S of nodes is reverse-closed if the following holds

• if v is in V∧ and w ∈ S, for all nodes w with (v, w) ∈ E, then v ∈ S

• if v is in V∨ and w ∈ S, for some node w with (v, w) ∈ E, then v ∈ S

Example

v
∨
∧

∧

∧

∨

∧

∨

∧

∧

∨

Fact
Node v is accessible iff it is in every reverse-closed

set of nodes.

...as MSO-Formula
v accessible ≡ ∀S (reverse-closed(S)→ S(v)), where

reverse-closed(S) ≡ ∀x ([V∧(x) ∧ ∀y (E(x, y)→ S(y))]→ S(x)) ∧

([V∨(x) ∧ ∃y (E(x, y) ∧ S(y))]→ S(x))
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k-pebble acceptors and MSO

Proof idea
Unfortunately, GA,t has too many nodes to use this

directly:

• MSO can only quantify over sets of linear size in

the given structure (i.e., t)

• GA,t has Ω(|t|
k) configurations

• But GA,t has a special structure:

Nodes are only connected if their number of

pebbles is the same ±1 and they agree in all but

at most the last pebble
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k-pebble acceptors and MSO (cont.)

Proof (cont.)

• Wlog assume that each state of A is only used for a fixed number of pebbles:

Q = Q1 ∪ · · · ∪Qk, where the states in Qi are only used, when i pebbles

are present

• Further assume that all sets Qi are of equal size m: Qi = {qi1, . . . , qim}

• k = 1:

– Use one relation S1
i for each state q1i

– Intended meaning of v ∈ S1
i :

there is an accepting subcomputation of A starting at v in state q1i

– ϕ = ∀S1
1 · · · ∀S

1
m (reverse-closed→ S1

1(root))

– reverse-closed is a conjunction of subformulas, induced by the transitions

of A, e.g.:

∗ if (q1i, a)→ accept then ∀xQa(x)→ S1
i (x)

∗ if (q1i, a)→ (q1j, down-right) then

∀x ∀y (Qa(x) ∧ Er(x, y) ∧ S
1
j (y))→ S1

i (x)
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k-pebble acceptors and MSO (cont.)

Proof (cont.)

k = 2:

• reverse-closed1 and reverse-closed2 describe reverse closure for configurations

with one and two pebbles, respectively

• reverse-closed2 expresses the same as reverse-closed before, but with the

(immobile) pebble 1 represented by variable x1

• reverse-closed1 also refers to subcomputations with a second pebble

• Conjuncts corresponding to simple movements are essentially the same

• Conditions which check whether pebbles are at the same node have to be

added

• The following conjuncts are added for pebble placement and lifting:

– (q2i, a)→ (q1j, lift) adds ∀x2 (Qa(x2) ∧ S
1
j (x1))→ S2

i (x2) to

reverse-closed2

– (q1i, a)→ (q2j, place) adds ∀x1 (Qa(x1) ∧ ϕ
2)→ S1

i (x1) to

reverse-closed1, where ϕ2 is ∀S2
1 · · · ∀S

2
m(reverse-closed

2 → S2
j (root))
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Summary of Proof

Proof (cont.)

• To solve the type checking problem, given d1, d2 and T , we can proceed as

follows.

(1) Construct the k-pebble acceptor A for T−1(L(d2))

(2) Transform A into an equivalent MSO formula Φ

(3) Φ holds for all trees t for which T (t) 6⊆ L(d2)

(4) Construct a nondeterministic bottom-up automaton A′ equivalent to ¬Φ

(5) Check that L(d1) ⊆ L(A
′)

• Hence, the type-checking problem is decidable

• Steps (1) and (4) can be done in poly-time

• Step (2) is exponential in k, FO-quantifier depth of Φ is k, MSO-quantifier

depth of Φ is |Q|

• Step (3) is non-elementary (exponentiation tower of height k)

• Hence,

the algorithm for the type-checking problem has a very bad complexity
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Summary: Typechecking

Related Work
• If transformations are allowed to compare data values in the input document

type checking becomes undecidable very quickly, even for restricted types and

transformations [Alon et al. 2001]

• Typechecking for deterministic top-down tree transducers is more tractable.

Complexity depends on exact representation of DTDs and restrictions on the

transducers: between PTIME and EXPTIME [Martens and Neven 2003]

• If P 6= NP there is no elementary f , such that MSO-formulas can be

evaluated in time f(|formula|)× p(|tree|) with polynomial p [Frick and

Grohe 2002]

Open

• Find (more) transformations with a tractable typechecking problem

• In particular, with data values
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Theory of XQuery

Remarks
• In general, the theoretical foundations of XQuery have to

be developed

• Clearly: XQuery is Turing-complete and therefore static

analysis is generally impossible

• What about important fragments with better properties?

• E.g., Tree pattern queries

• Here, we concentrate on:

– Conjunctive queries for trees

– Some questions related to automata for XQuery
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Conjunctive Queries

Introduction
• Navigational XPath expressions (without or and not) can be

written as conjunctive queries

• /child::a/desc::∗[child::c]/parent::d corresponds to

Q(x) =root(x1) ∧ child(x1, x2) ∧ La(x2) ∧ desc(x2, x3)∧

child(x3, x4) ∧ Lc(x4) ∧ child(x, x3) ∧ Ld(x)

• Conjunctive Queries can express queries of higher arity:

Q(x, y) = child(x, x1) ∧ child(x1, y)

• What is the complexity of evaluating conjunctive queries on

trees?

• Data complexity is in PTIME (even in LOGSPACE):

Cycle through all valuations of the variables

• What about combined complexity?
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A Generic Algorithm
Definition

• Pre-valuation : mapping from variables to non-empty sets of nodes

• For a conjunctive query Q a pre-valuation θ is consistent if:

– for each atom Lσ(x): v ∈ θ(x)⇒ Lσ(v)

– for each atom R(x, y):

∗ v ∈ θ(x)⇒ ∃u ∈ θ(y)R(v, u)

∗ v ∈ θ(y)⇒ ∃u ∈ θ(x)R(u, v)

Example Query

Q(x, y) = child(x, y)∧La(x)

Example Pre-Valuation

θ(x) = . . .

θ(y) = . . .

Example Document

c

a

c

b a c

b

b

a

b

c a b

c a

a

c b a

c
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A Generic Algorithm
Definition

• Pre-valuation : mapping from variables to non-empty sets of nodes

• For a conjunctive query Q a pre-valuation θ is consistent if:

– for each atom Lσ(x): v ∈ θ(x)⇒ Lσ(v)

– for each atom R(x, y):

∗ v ∈ θ(x)⇒ ∃u ∈ θ(y)R(v, u)

∗ v ∈ θ(y)⇒ ∃u ∈ θ(x)R(u, v)

Example Query

Q(x, y) = child(x, y)∧La(x)

Example Pre-Valuation

θ(x) = . . .

θ(y) = . . .

Example Document

c

a

c

b a c

b

b

a

b

c a b

c a

a

c b a

c

a a

a ac b c b a

cb c a
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A Generic Algorithm (cont.)

Fact
A maximal consistent pre-valuation θ can

be computed in time

O(query size× tree size)

Algorithmic Idea

• Let < be a total order on the nodes

• For query Q and tree t:

Compute maximal consistent

pre-valuation θ

Define <-minimal valuation h via:

For each variable x:

h(x) := minimal node in θ(x) wrt <

Example Document

c

a

c

b a c

b

b

a

b

c a b

c a

a

c b a

c

Let < be the breadth-first

left-to-right order

a a

a ac b c b a

cb c a
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A Generic Algorithm (cont.)

Fact
A maximal consistent pre-valuation θ can

be computed in time

O(query size× tree size)

Algorithmic Idea

• Let < be a total order on the nodes

• For query Q and tree t:

Compute maximal consistent

pre-valuation θ

Define <-minimal valuation h via:

For each variable x:

h(x) := minimal node in θ(x) wrt <

Example Document

c

a

c

b a c

b

b

a

b

c a b

c a

a

c b a

c

Let < be the breadth-first

left-to-right order

a

c
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A Generic Algorithm (cont.)

Fact
A maximal consistent pre-valuation θ can

be computed in time

O(query size× tree size)

Algorithmic Idea

• Let < be a total order on the nodes

• For query Q and tree t:

Compute maximal consistent

pre-valuation θ

Define <-minimal valuation h via:

For each variable x:

h(x) := minimal node in θ(x) wrt <

Example Document

c

a

c

b a c

b

b

a

b

c a b

c a

a

c b a

c

Let < be the breadth-first

left-to-right order

a

c

Question: Is h always a solution?
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A Generic Algorithm (cont.)

Example Query

Q(x, y) = child(x, y)∧La(x)

Example Pre-Valuation

θ(x) = . . .

θ(y) = . . .

Example Document

c

a

c

b a c

b

b

a

b

c a b

c a

a

c b a

c

a a

a ac b c b a

cb c a

Question: Is h always a solution?
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A Generic Algorithm (cont.)

Example Query

Q(x, y) = child(x, y)∧La(x)

Example Pre-Valuation

θ(x) = . . .

θ(y) = . . .

Example Document

c

a

c

b a c

b

b

a

b

c a b

c a

a

c b a

c

a a

a ac b c b a

cb c a

Question: Is h always a solution?

Observations
• Let u = h(x), v = h(y)

• As u ∈ θ(x) there is v′ such that child(u, v′)

• As v ∈ θ(y) there is u′ such that child(u′, v)

• As u ≤ u′ and v ≤ v′ we get child(u, v)
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A Generic Algorithm (cont.)
Definition

A binary relation R is <-hemichordal if for all u, u′, v, v′ with

u < u′ and u ≤ v ≤ v′

• R(u, v′) ∧R(u′, v)→ R(u, v) and

• R(v′, u) ∧R(v, u′)→ R(v, u)

Theorem [Gottlob, Koch, Schulz 04]
If the relations of a query Q are <-hemichordal and θ is a

consistent pre-valuation for Q

then the <-minimal valuation for θ is a solution for Q
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A Generic Algorithm (cont.)
Definition

A binary relation R is <-hemichordal if for all u, u′, v, v′ with

u < u′ and u ≤ v ≤ v′

• R(u, v′) ∧R(u′, v)→ R(u, v) and

• R(v′, u) ∧R(v, u′)→ R(v, u)

Theorem [Gottlob, Koch, Schulz 04]
If the relations of a query Q are <-hemichordal and θ is a

consistent pre-valuation for Q

then the <-minimal valuation for θ is a solution for Q

Corollary
If the axes used in a conjunctive query Q are <-hemichordal then

Q can be evaluated in time O(query size× tree size)
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Combined Complexity of Conjunctive Queries
Observation

It is sufficient to consider the axes child, child+, child∗,

NextSibling,NextSibling+,NextSibling∗, Following

Theorem [Gottlob, Koch, Schulz 04]

• child+ and child∗ are preorder-hemichordal

• following is postorder-hemichordal

• child,NextSibling,NextSibling+,NextSibling∗ are

breadth-first-left-to-right-hemichordal

Corollary
For each of these sets of axes conjunctive queries can be

evaluated in time O(query size× tree size)
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Combined Complexity of Conjunctive Queries
Observation

It is sufficient to consider the axes child, child+, child∗,

NextSibling,NextSibling+,NextSibling∗, Following

Theorem [Gottlob, Koch, Schulz 04]

• child+ and child∗ are preorder-hemichordal

• following is postorder-hemichordal

• child,NextSibling,NextSibling+,NextSibling∗ are

breadth-first-left-to-right-hemichordal

Corollary
For each of these sets of axes conjunctive queries can be

evaluated in time O(query size× tree size)

Amazing Result
For sets of axes not contained in those, the combined

complexity of conjunctive query evaluation is NP-complete
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Automata and XQuery

So far...
• We have seen that automata are useful for

– Validation, Typing

– Navigation

– Transformation

• What about more general queries?

– results of higher arity?

– joins, i.e., comparisons of data values

– counting

• Are automata useful for XQuery?

• ... for tree pattern queries?
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General Queries (cont.)

Higher arity
• Nonemptiness and containment questions can be handled by automata: tuples

can be encoded by additional labels

• What about query evaluation for higher arity?

Data values
• When data values in XML documents are taken into account, things become

more complicated, e.g.:

– Even First-order logic becomes undecidable

– Pebble automata become undecidable

– Automata with data registers become undecidable when they are allowed

to move up and down

• What is the right notion for regular (string) languages over infinite alphabets?

• What are sensible decidable restrictions of logics and automata in the context

of data values?
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General Queries (cont.)

Counting
• Automata can be equipped with counting facilities, e.g.:

Presburger tree automata: δ(σ, q) is Boolean combination of

– regular expressions and

– quantifier-free Presburger formulas like

“number of children in state q1 = number of children in state q2”

• Nondet. Presburger automata:

– ≡ MSO logic

– Whether automaton accepts all trees is undecidable

• Det. Presburger automata:

– ≡ Presburger µ-formulas

– Membership test: O(|A||t|)

– Non-emptiness: PSPACE

– Containment: PSPACE

[Seidl, Sch., Muscholl, Habermehl 2004]
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Conclusion

Summary
• Schema languages and XPath are well understood

• There are some nice results on transformations

• Theory for XQuery still has to be developed
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Conclusion

Summary
• Schema languages and XPath are well understood

• There are some nice results on transformations

• Theory for XQuery still has to be developed

Finally...

Thanks for your patience
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