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Intro Three Questions Question 1

Why XML?

Answer
Have a look into the≥ 20 XML

papers at SIGMOD/PODS
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Intro Three Questions Question 2

Why Trees?

Look at this:

Composer

Name Claude Debussy

Vita

Born
When 1862

Where Paris

Married
When 1899

Whom Rosalie

Married
When 1908

Whom Emma

Died
When 1918

Where Paris

Piece

PTitle La Mer

PYear 1905

Instruments Large orchestra

Movements 3

PODS 2004 Thomas Schwentick Trees, Automata & XML 2



Intro Three Questions Question 3

Why Automata?

Answer
That’s our topic for the remaining 88 minutes
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Intro Three Questions More Seriously...

Question: Why is XML appealing for Theory people?

Years ago...
• Theoretical Computer Science for Database Theo-

rists: Logics, Complexity, Algorithms,...

• Database Theory for Theoretical Computer Scien-

tists: terra incognita

After the advent of XML
Many connections between Formal Languages & Au-

tomata Theory and XML & Database Theory
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Intro Three Questions More Seriously...

Question: Why trees?

A Natural Answer
• Trees reflect the hierarchical

structure of XML

• Underlying data model of

XML is tree based

Limitations
• But trees can not model all aspects

of XML (e.g., IDREFs, data values)

⇒ Sometimes extensions are needed

• E.g., directed graphs instead of trees

Nevertheless
In this tutorial we will concen-

trate on the tree view at XML

Example
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Intro Three Questions More Seriously...

Question: Why automata?

Ingredients of XML
Concepts from formal languages are obviously present around

XML:

• Labelled trees

• DTD: context-free grammars

• DTD: regular expressions

• XPath: regular path expressions

We will see
Automata turn out to be useful as:

• a means to define robust classes with clear semantics

• a tool for proofs

• an algorithmic tool for static analysis

• a tool for query evaluation
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Intro XML Processing

Four important kinds of XML processing . . . . . . . . . . and their languages

Validation DTD, XML Schema

Check whether an XML document is of a given type

Navigation XPath

Select a set of positions in an XML document

Querying XQuery

Extract information from an XML document

Transformation XSLT

Construct a new XML document from a given one
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Intro XML Processing Validation: DTD

Example document
〈Composer〉

〈Name〉 Claude Debussy 〈/Name〉

〈Vita〉

〈Born〉 〈When〉 August 22, 1862 〈/When〉〈Where〉 Paris 〈/Where〉〈/Born〉

〈Married〉〈When〉 October 1899 〈/When〉〈Whom〉 Rosalie〈/Whom〉〈/Married〉

〈Married〉〈When〉 January 1908 〈/When〉〈Whom〉 Emma 〈/Whom〉〈/Married〉

〈Died〉〈When〉 March 25, 1918 〈/When〉〈Where〉 Paris 〈/Where〉 〈/Died〉

〈/Vita〉

〈Piece〉

〈PTitle〉 La Mer 〈/PTitle〉

〈PYear〉 1905 〈/PYear〉

〈Instruments〉 Large orchestra 〈/Instruments〉

〈Movements〉 3 〈/Movements〉

...

〈/Piece〉

...

〈/Composer〉

...

DTD
DTDs describe types of

XML documents

Example
<!DOCTYPE Composers [

<!ELEMENT Composers (Composer*)>

<!ELEMENT Composer (Name, Vita, Piece*)>

<!ELEMENT Vita (Born, Married*, Died?)>

<!ELEMENT Born (When, Where)>

<!ELEMENT Married (When, Whom)>

<!ELEMENT Died (When, Where)>

<!ELEMENT Piece (PTitle, PYear,

Instruments, Movements)>

]>
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Intro XML Processing Navigation: XPath

Example document
〈Composer〉

〈Name〉 Claude Debussy 〈/Name〉

〈Vita〉

〈Born〉 〈When〉 August 22, 1862 〈/When〉〈Where〉 Paris 〈/Where〉〈/Born〉

〈Married〉〈When〉 October 1899 〈/When〉〈Whom〉 Rosalie〈/Whom〉〈/Married〉

〈Married〉〈When〉 January 1908 〈/When〉〈Whom〉 Emma 〈/Whom〉〈/Married〉

〈Died〉 〈When〉 March 25, 1918 〈/When〉〈Where〉 Paris 〈/Where〉 〈/Died〉

〈/Vita〉

〈Piece〉

〈PTitle〉 La Mer 〈/PTitle〉

〈PYear〉 1905 〈/PYear〉

〈Instruments〉 Large orchestra 〈/Instruments〉

〈Movements〉 3 〈/Movements〉

...

〈/Piece〉

...

〈/Composer〉

...

XPath
XPath expressions select sets of nodes of

XML documents by specifying navigational

patterns

Example query
//Vita/Died/*
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Intro XML Processing Querying: XQuery

Example document
〈Composer〉

〈Name〉 Claude Debussy 〈/Name〉

〈Vita〉

〈Born〉 〈When〉 August 22, 1862 〈/When〉〈Where〉 Paris 〈/Where〉〈/Born〉

〈Married〉〈When〉 October 1899 〈/When〉〈Whom〉 Rosalie〈/Whom〉〈/Married〉

〈Married〉〈When〉 January 1908 〈/When〉〈Whom〉 Emma 〈/Whom〉〈/Married〉

〈Died〉〈When〉 March 25, 1918 〈/When〉〈Where〉 Paris 〈/Where〉 〈/Died〉

〈/Vita〉

〈Piece〉

〈PTitle〉 La Mer 〈/PTitle〉

〈PYear〉 1905 〈/PYear〉

〈Instruments〉 Large orchestra 〈/Instruments〉

〈Movements〉 3 〈/Movements〉

...

〈/Piece〉

...

〈/Composer〉

...

XQuery

XQuery is a full-fledged

XML query language

Example query
for $x in doc(‘composers.xml’)/Composer

where $x/Vita/Died/Where = ‘Paris’

return $x/Name

Result
〈Name〉 Claude Debussy 〈/Name〉

〈Name〉 Eric Satie 〈/Name〉

〈Name〉 Hector Berlioz 〈/Name〉

〈Name〉 Camille Saint-Saëns 〈/Name〉

〈Name〉 Frédéric Chopin 〈/Name〉

〈Name〉 Maurice Ravel 〈/Name〉

〈Name〉 Jim Morrison 〈/Name〉

〈Name〉 César Franck 〈/Name〉

〈Name〉 Gabriel Fauré 〈/Name〉

〈Name〉 George Bizet 〈/Name〉

...
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Intro XML Processing Transformation: XSLT

Example document
〈Composer〉

〈Name〉 Claude Debussy 〈/Name〉

〈Vita〉

〈Born〉 〈When〉 August 22, 1862 〈/When〉〈Where〉 Paris 〈/Where〉〈/Born〉

〈Married〉〈When〉 October 1899 〈/When〉〈Whom〉 Rosalie〈/Whom〉〈/Married〉

〈Married〉〈When〉 January 1908 〈/When〉〈Whom〉 Emma 〈/Whom〉〈/Married〉

〈Died〉〈When〉 March 25, 1918 〈/When〉〈Where〉 Paris 〈/Where〉 〈/Died〉

〈/Vita〉

〈Piece〉

〈PTitle〉 La Mer 〈/PTitle〉

〈PYear〉 1905 〈/PYear〉

〈Instruments〉 Large orchestra 〈/Instruments〉

〈Movements〉 3 〈/Movements〉

...

〈/Piece〉

...

〈/Composer〉

...

XSLT
XSLT transforms documents by

means of templates

Example
〈xsl:template match=”Composer[Vita//Where=’Paris’]”〉

〈ParisComposer〉

〈xsl:copy-of select=“Name”/〉

〈xsl:copy-of select=“Vita/Born”/〉

〈/ParisComposer〉

〈/xsl:template〉

Result
〈ParisComposer〉

〈Name〉 Claude Debussy 〈/Name〉

〈Born〉

〈When〉 August 22, 1862 〈/When〉

〈Where〉 Paris 〈/Where〉

〈/Born〉

〈/ParisComposer〉

〈ParisComposer〉

〈Name〉 Fŕedéric Chopin 〈/Name〉

〈Born〉

〈When〉 March 1, 1810 〈/When〉

〈Where〉 Želazowa 〈/Where〉

〈/Born〉

〈/ParisComposer〉

〈ParisComposer〉

〈Name〉 Camille Saint-Saëns 〈/Name〉

〈Born〉

〈When〉 October 9, 1835 〈/When〉

〈Where〉 Paris 〈/Where〉

〈/Born〉

〈/ParisComposer〉
PODS 2004 Thomas Schwentick Trees, Automata & XML 12



Intro XML Processing A Schematic View

DTD/ XML Schema

→ yes/no

XPath

→

�

�

�

�

�

XQuery

→ →

XSLT

→
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Intro XML Processing About this Talk

Aim
• Introduction

• Basic techniques and models

• Not a survey

• In particular: many important papers are not mentioned

Overall structure
Part 1: Background on tree automata and how they can be

adapted for XML purposes

Part 2: Examples for the use of automata for XML

• Two robust classes of schema languages

• A robust class of node-selecting queries

• Automata as an algorithmic tool for checking XPath query

containment

Part 3: Some words about related results and about extensions

and limitations
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Pre-XML From Strings to Trees

A String
abcab

String as Tree
a

b

c

a

b

A Ranked Tree
a

b

c

a

b a

b

a

b c

c

An Unranked Tree
a

e c e

a

e c

a a e

e c

a · · · e

a

e c

e c e

e a

e
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Pre-XML From Strings to Trees (cont.)

XML and Trees

• XML trees are unranked :

the number of children of a node is not restricted

• Automata have first been considered on ranked trees,

where each symbol has a fixed number of children (rank)

• Most important ideas were already developed for ranked

trees

→ Let us take a look at this first
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Pre-XML From String Automata to Tree Automata

Question
How do automata generalize to trees?

Sequential

a

e

c

a

e a

e

a

e c

c

Parallel
a

e

c

a

e a

e

a

e c

c
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Pre-XML Parallel Tree Automata Bottom-Up Automata

Example: Tree-structured Boolean Circuits

∧

∨

∧

0 1

∨

1 0

∧

∨

0 1

∧

1 1q0 q1 q1 q0 q0 q1 q1 q1

q0 q1 q1 q1

q1 q1

q1

Idea
Tree-structured Boolean

circuits

Two states: q0, q1

Accepting at the root: q1

Transitions
δ(∧, q1) = {(q1, q1)}

δ(∧, q0) = {(q0, q1), (q1, q0), (q0, q0)}

δ(∨, q1) = {(q0, q1), (q1, q0), (q1, q1)}

δ(∨, q0) = {(q0, q0)}

δ(0, q0) = {ε}; δ(0, q1) = ∅

δ(1, q1) = {ε}; δ(1, q0) = ∅
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Pre-XML Parallel Tree Automata Non-det. Top-Down Automata

Example

∧

∨

∧

0 1

∨

1 0

∧

∨

0 1

∧

1 1

q1

q1 q1

q0 q1 q1 q1

q0 q1 q1 q0 q0 q1 q1 q1

acc acc acc acc acc acc acc acc

Idea
Guess the correct values starting

from the root

Check at the leaves

Three states: q0, q1, acc

Initial state q1 at the root

Accepting if all leaves end in acc

Transitions
δ(∧, q1) = {(q1, q1)}

δ(∧, q0) = {(q0, q1), (q1, q0), (q0, q0)}

δ(∨, q1) = {(q0, q1), (q1, q0), (q1, q1)}

δ(∨, q0) = {(q0, q0)}

δ(0, q0) = {acc}; δ(0, q1) = ∅

δ(1, q1) = {acc}; δ(1, q0) = ∅
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Pre-XML Parallel Tree Automata Regular Tree Languages

Definition

A bottom-up automaton is deterministic if

for each a and p 6= q: δ(a, p) ∩ δ(a, q) = ∅

Theorem
The following are equivalent for a tree language L:

(a) L is accepted by a nondeterministic bottom-up automaton

(b) L is accepted by a deterministic bottom-up automaton

(c) L is accepted by a nondeterministic top-down automaton

Proof Idea
(a) =⇒ (b): Powerset construction

(a)⇐⇒ (c): Just the same thing, viewed in two different ways
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Pre-XML Parallel Tree Automata Automata as Tiling Systems

Observation
• (q0, q1) ∈ δ(∨, q1) can be inter-

preted as an allowed pattern:
∨, q1

q0 q1

• A tree is accepted, iff there is a labelling with states such that

– all local patterns are allowed

– the root is labelled with q1
Example

∧

∨

∧

0 1

∨

1 0

∧

∨

0 1

∧

1 1

q1

q1 q1

q0 q1 q1 q1

q0 q1 q1 q0 q0 q1 q1 q1
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Pre-XML Parallel Tree Automata Regular tree languages and logic

Definition (MSO logic)

• Formulas talk about

– edges of the tree (E)

– node labels (Q0, Q1, Q∧, Q∨)

– the root of the tree (root)

• First-order-variables represent nodes

• Monadic second-order (MSO) variables represent sets of nodes

Example: Boolean Circuits
Boolean circuit true ≡ ∃X X(root) ∧ ∀x

(Q0(x)→ ¬X(x)) ∧

((Q∧(x) ∧X(x)) → (∀y[E(x, y)→ X(y)])) ∧

((Q∨(x) ∧X(x)) → (∃y[E(x, y) ∧X(y)]))

Theorem (Doner 1970; Thatcher, Wright 1968)

MSO ≡ Regular Tree Languages
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Pre-XML Parallel Tree Automata Regular tree languages and logic (cont.)

Theorem
MSO ≡ Regular Tree Languages

Proof Idea
Automata ⇒ MSO:

Formula expresses that there exists a correct tiling

MSO ⇒ Automata: more involved

Basic idea:

Automaton computes for each node v the set of formulas which hold

in the subtree rooted at v
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Pre-XML Parallel Tree Automata Regular tree languages and logic (cont.)

Formula⇒ automaton
• Let ϕ be an MSO-formula, k := quantifier-depth of ϕ

• k-type of a tree t := (essentially)

set of MSO-formulas ψ of quantifier-depth ≤ k which hold in t

• t1 ≡k t2 : k-type(t1) = k-type(t2)

• Automaton computes k-type of tree and concludes whether ϕ holds

Crucial fact

t1 ≡k t′
1

t2 ≡k t′
2

=⇒

�

� �

l

t1 t2
≡k

�

� �

l

t′
1

t′
2
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Pre-XML Parallel Tree Automata Det. Top-Down Automata

Question
What is the right notion for deterministic top-down automata?

3 Possibilities
State at a node v might depend on

state and symbol of parent a q

v
state and symbol of parent and

symbol of v a q

v c
state and symbol of parent and

symbols at v and its sibling a q

v c e
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Pre-XML Parallel Tree Automata Det. Top-Down Automata: Acceptance

Question
What is a good acceptance mechanism for deterministic

top-down automata?

Several possibilitites
(1) At all leaves states have to be accepting

(2) There is a leave with an accepting state

(2) is problematic for complement and intersection

(1) is problematic for complement and union
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Pre-XML Parallel Tree Automata Det. Top-Down Automata: Acceptance (cont.)

Definition (Root-to-frontier automata with regular acceptance condition)

• Tree automata A are equipped with an additional regular string

language L over Q× Σ

• A accepts t if the (state,symbol)-string at the leaves (from left to

right) is in L

Illustration

(q1, a1) · · · (qn, an)

A robust class
• The resulting class is closed under Boolean operations

• Good algorithmic properties

• Does not capture all regular tree languages
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Pre-XML Parallel Tree Automata Summary

Regular tree languages
• Regular tree languages are a robust class

• Characterized by

– parallel tree automata

– MSO logic

– several other models

• They are the natural analog of regular string languages

• Deterministic top-down automata with regular acceptance

conditions define a weaker but also robust class
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Pre-XML Sequential Tree Automata Tree-Walk Automata

Definition (Tree-walk automata)
Depending on

• current state

• symbol of current node

• position of current node wrt

its siblings

the automaton moves to a

neighbor and takes a new state

TWA

T

r e

e A u t

o s

Question
What is the expressive power of

tree-walk automata?
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Pre-XML Sequential Tree Automata Tree-Walk Automata (cont.)

Fact
• Tree-walk automata can evaluate

Boolean circuit trees

• 5 states
Example

∧

∨

∧

0 1

∨

1 0

∧

∨

0 1

∧

1 1

Idea

∧

0

q0

∧

1

∨

1

q1

∨

0
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Pre-XML Sequential Tree Automata A Recent Result

Theorem (Bojanczyk, Colcombet 2004)

Deterministic TWAs are weaker than nondeterministic

TWAs

Corollary
Deterministic TWAs do not capture all regular tree lan-

guages

Conjecture
Nondeterministic TWAs do not capture all regular tree

languages
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Pre-XML Sequential Tree Automata Overview of Models

Non-det. top-down tree automata

Non-det. bottom-up tree automata

Det. bottom-up tree automata

Det. top-down tree automata

Non-det. tree walk automata

Det. tree walk automata
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Pre-XML Decision Problems Decision Problems

Algorithmic problems
• We consider the following algorithmic problems

• All of them will be useful in the XML context

Membership test for A

Given: Tree t

Question: Is t ∈ L(A)?

Membership test (combined)

Given: Tree AutomatonA, tree t

Question: Is t ∈ L(A)?

Non-emptiness

Given: Automaton A

Question: Is L(A) 6= ∅?

Containment

Given: Automata A1,A2

Question: Is L(A1) ⊆ L(A2)?

Equivalence

Given: Automata A1,A2

Question: Is L(A1) = L(A2)?
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Pre-XML Decision Problems Membership Test

Facts
Time Bounds for the combined complexity of membership test for tree

automata:

• Deterministic (parallel) tree automata: O(|A||t|)

• Nondeterministic (parallel) tree automata: O(|A|2|t|)

(Compute, for each node, the set of reachable states)

• Deterministic TWAs: O(|A|2|t|)

(Compute, for each node v, the aggregated behavior of A on its

subtree: Behavior function )

• Nondeterministic TWAs: O(|A|3|t|)

(Compute, for each node v, the aggregated behavior of A on its

subtree: Behavior relation )
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Pre-XML Decision Problems Membership Test (cont.)

Question: What is the structural complexity for the various models?

(Lohrey 2001, Segoufin 2003)

Model Time Complexity Structural Complexity

Det. top-down TA O(|A||t|) LOGSPACE

Det. bottom-up TA O(|A||t|) LOGDCFL

Nondet. bottom-up TA O(|A|2|t|) LOGCFL

Nondet. top-down TA O(|A|2|t|) LOGCFL

Det. TWA O(|A|2|t|) LOGSPACE

Nondet. TWA O(|A|3|t|) NLOGSPACE
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Pre-XML Decision Problems Non-emptiness

Facts
• Non-emptiness for string automata corresponds to Graph

Reachability (complete for NLOGSPACE)

•
Non-emptiness for tree automata

corresponds to Path Systems
:

p2

p1

q

p2

p1

q

Result
• Non-emptiness for bottom-up tree automata can be

checked in linear time

• It is complete for PTIME
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Pre-XML Decision Problems Containment/Equivalence

Observations
• Of course:

L(A1) = L(A2)⇐⇒ [L(A1) ⊆ L(A2) and L(A2) ⊆ L(A1)]

• Complexity of containment problem is very different for determinis-

tic and non-deterministic automata

• Deterministic automata: construct product automaton
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Pre-XML Decision Problems Containment: Complexity

Deterministic bottom-up tree automata
• Product automaton analogous as for string automata

– Set of states: Q1 ×Q2

– Transitions component-wise

• To check L(A1) ⊆ L(A2):

– Compute B = A1 ×A2

– Accepting states: F1 × (Q2 − F2)

– Check whether L(B) = ∅

– If so, L(A1) ⊆ L(A2) holds

Theorem
Complexity of Containment for deterministic bottom-up tree automata:

O(|A1| × |A2|)
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Pre-XML Decision Problems Containment: Complexity (cont.)

Non-deterministic automata
• Naive approach:

– Make A2 deterministic (size: O(2|A2|))

– Construct product automaton

⇒ Exponential time

Unfortunately...
There is essentially no better way

Theorem (Seidl 1990)

Containment for non-deterministic tree automata

is complete for EXPTIME
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Pre-XML Decision Problems Det. Top-Down Automata: Non-Emptiness

Theorem
Nonemptiness for deterministic top-down automata A

can be checked in polynomial time

Proof Idea
Check for each state p of A and each pair (q, q′) of

the leaves automaton B:

Is there is a tree t such that A starts from state p and

obtains a leave string which brings B from q to q′?

Illustration

q · · · q′

p
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Pre-XML Decision Problems Det. Top-Down Automata: Containment

Theorem
Containment for deterministic top-down automata A

can be checked in polynomial time

Proof Idea
• Tree automata A1, A2 with leaves automata

B1,B2

• Check

– for each pair (p1, p2) of states of A1 and A2

and

– for each two pairs (q1, q
′
1
) and (q2, q

′
2
) of B1

and B2, resp.:

Is there is a tree t such that for both i = 1, i = 2:

Ti starts from state pi and obtains a leave string

which brings Bi from qi to q
′
i?
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Pre-XML Decision Problems Summary

Complexities of basic algorithmic problems

Model Membership Non-emptiness Containment

Det. top-down TA LOGSPACE PTIME PTIME

Det. bottom-up TA LOGDCFL PTIME PTIME

Nondet. bottom-up TA LOGCFL PTIME EXPTIME

Nondet. top-down TA LOGCFL PTIME EXPTIME

Det. TWA LOGSPACE PTIME (∗) PTIME (∗)

Nondet. TWA NLOGSPACE PTIME (∗) EXPTIME (∗)

(∗: upper bounds)

A further result to remember
Theorem (Stockmeyer, Meyer 1971) Containment and Equivalence

for regular expressions on strings are complete for PSPACE

PODS 2004 Thomas Schwentick Trees, Automata & XML 46



I

II

III

Introduction

Pre-XML Tree Automata

Tree Automata for XML

Schemas

Node Selecting Queries

XPath Query Containment

Extensions

Conclusion

PODS 2004 Thomas Schwentick Trees, Automata & XML 47



I

II

III

Introduction

Pre-XML Tree Automata

Tree Automata for XML

Parallel Tree Automata

Sequential Tree Automata

A Third Kind of AutomataSchemas

Node Selecting Queries

XPath Query Containment

Extensions

Conclusion

PODS 2004 Thomas Schwentick Trees, Automata & XML 48



XML-Automata Parallel Automata From Ranked to Unranked Trees

Composer

Name Claude Debussy

Vita

Born
When 1862

Where Paris

Married
When 1899

Whom Rosalie

Married
When 1908

Whom Emma

Died
When 1918

Where Paris

Piece

PTitle La Mer

PYear 1905

Instruments Large orchestra

Movements 3
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XML-Automata Parallel Automata From Ranked to Unranked Trees

Agenda
• Now we move from ranked to unranked trees

• There is a basic choice:

– Either: we encode unranked trees as binary trees

and go on with ranked automata

– Or: we adapt the ranked automata models

• In both cases: not many surprises, most results re-

main
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XML-Automata Parallel Automata Encoding Unranked Trees as Binary Trees

Encoding via ...

first child

next sibling

Example: Unranked Tree
a

c

a c e

e a

c c

a e

e

c

a

Encoding as Binary Tree
a

c
a

c
e

e
a

c
c

a
e

e

c
a
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XML-Automata Parallel Automata From Ranked to Unranked Tree Automata

Ranked trees

Transitions are described by finite sets:

δ(σ, q) = {(q1, q2), (q3, q4), . . .}

q

q1 q2

σ

σ1 σ2

Unranked trees

q1 q2 qn ∈ δ(σ, q)?

σ

σ1 σ2 σn

q

q1 q2 qn

δ(σ, q)

• For unranked trees, δ(σ, q) is a regular language

• δ(σ, q) can be specified by regular expression or finite string automaton

[Brüggemann-Klein, Murata, Wood 2001]
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XML-Automata Parallel Automata Representation of δ(σ, q)

Remark
• Representation of δ(σ, q) has influence on complexity

• Natural choice:

– For nondeterministic tree automata:

represent δ(σ, q) by NFAs or regular expressions

– For deterministic tree automata:

represent δ(σ, q) by DFAs

⇒ Same complexity results as for ranked trees
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XML-Automata Parallel Automata Regular sets of unranked trees

Theorem
The following are equivalent for a set L of unranked trees:

(a) L is accepted by a nondeterministic bottom-up automaton

(b) L is accepted by a deterministic bottom-up automaton

(c) L is accepted by a nondeterministic top-down automaton

(d) L is characterized by an MSO-formula
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XML-Automata Parallel Automata Deterministic Top-Down Automata

State at v might depend on ...

state and symbol of

parent
a q

v

state and symbol of

parent and symbol

of v

a q

v c

simple

state and symbol of

parent and symbols

at v and its left sib-

lings

a q

a c v c

left-siblings aware

state and symbol of

parent and symbols

at v and its siblings

a q

a c v c e a
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XML-Automata Parallel Automata Checking Existence of Paths

Fact
A simple deterministic top-down automata can check the existence

of vertical paths with regular properties

Construction
• For a node v let s(v) denote the se-

quence of labels from the root to v

• LetA be a deterministic string automaton

• A′ := top-down automaton which takes

at v state of A after reading s(v)

⇒ A′ is deterministic

• There is a path from the root to a leaf

v with s(v) ∈ L(A) iff A′ assumes at

least one state from F at a leave

Illustration

�

v

s(v)

Streaming XML
Similar construction used for XPath evaluation on streams [Green et al. 2003]
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XML-Automata Sequential Automata Sequential Automata on Unranked Trees

Generalization of Tree-Walk Automata

Allowed transitions: Go up

Go to first child

Go to left sibling

Go to right sibling

→ Caterpillar automata [Brüggemann-Klein, Wood 2000]

Basic design choice
Should a transition to a sibling be aware of the label of the parent?

a

v w
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XML-Automata Document Automata Document Automata

A third kind of automata for XML

• Document automata are string automata reading XML documents

as text

• Tags are represented by symbols from a given alphabet

• Variants:

– Finite document automata

– Pushdown document automata

• Useful especially in the context of streaming XML

Theorem (Segoufin, Vianu 2002)
• Regular languages of XML-trees can be recognized by deterministic

push-down document automata.

• Depth of push-down is bounded by depth of tree
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XML-Automata Document Automata Summary

Summary
• Moving from ranked to unranked automata requires some adap-

tations

• Transitions can be defined with regular string languages δ(σ, q)

• By and large, things work smoothly

• In particular:

– there is an equally robust notion of regular tree languages

– The complexities are the same as for ranked automata

(if the sets δ(σ, q) are represented in a sensible way)
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XML-Automata Document Automata Refined Overview of Models

Non-det. top-down tree automata

Non-det. bottom-up tree automata

det. bottom-up tree automata

Pushdown document automata

Det. top-down tree automata

Non-det. tree walk automata

Det. tree walk automata

Finite document automata
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Schemas Specialized DTDs Validation wrt a DTD

Example Tree

Composer

Name

Debussy

Vita

Born

When

1862

Where

Paris

Married

When

1899

Whom

Rosalie

Married

When

1908

Whom

Emma

Died

When

1918

Where

Paris

Piece

PTitle

La Mer

PYear

1905

Instruments

Orch.

Movements

3

Example DTD
<!DOCTYPE Composers [

<!ELEMENT Composers (Composer*)>

<!ELEMENT Composer (Name, Vita, Piece*)>

<!ELEMENT Vita (Born, Married*, Died?)>

<!ELEMENT Born (When, Where)>

<!ELEMENT Married (When, Whom)>

<!ELEMENT Died (When, Where)>

<!ELEMENT Piece (PTitle, PYear,

Instruments, Movements)>

]>

Validation Algorithm
For each node:

Check that the children

are ok wrt the parent’s

rule
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Schemas Specialized DTDs Validation wrt a DTD (cont.)

Observation
• Validation wrt DTDs is a simple task

• Can be done by

– Bottom-up automata

– Deterministic top-down automata

(if siblings contribute to new state)

– Deterministic tree-walk automata:

Just a depth-first left-to-right traversal

• In particular: Validation possible in linear

time during one pass through the document

( 1-pass validation )

• But DTDs are also rather weak...
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Schemas Specialized DTDs Weakness of DTDs

A classical example
<!DOCTYPE Dealer [

<!ELEMENT Dealer (UsedCars NewCars)>

<!ELEMENT UsedCars (ad*)>

<!ELEMENT NewCars (ad*)>

<!ELEMENT ad ((model, year) | model)> ]>

Intention
Intention:

Dealer

UsedCars

ad

model year

NewCars

ad

model

Observation
• Elements with the same name may have dif-

ferent structure in different contexts

→ It would be nice to have types for elements

→ Specialized DTDs
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Schemas Specialized DTDs Specialized DTDs

Definition (Papakonstantinou, Vianu 2000)

A specialized DTD (SDTD) over alphabet Σ is

a pair (d, µ), where

• d is a DTD over the alphabet Σ′ of types

• µ : Σ′ → Σ maps types to tag names

Note
Concerning the name:

“specialized” refers to types, not to DTDs

Example
Dealer→ UsedCars NewCars µ(Dealer) = Dealer

UsedCars→ adUsed∗ µ(UsedCars) = UsedCars

NewCars→ adNew∗ µ(NewCars) = NewCars

adUsed→ model year µ(adUsed) = ad

adNew→ model µ(adNew) = ad
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Schemas Specialized DTDs A Further Example

Example: SDTD for Boolean circuit trees

1-AND → (1-OR | 1-AND | 1-leaf)*

1-OR → .∗ (1-OR | 1-AND | 1-leaf) .∗

0-AND → .∗ (0-OR | 0-AND | 0-leaf) .∗

0-OR → (0-OR | 0-AND | 0-leaf)*

1-leaf → ε

0-leaf → ε

Tag h(Tag)

1-AND AND

0-AND AND

1-OR OR

0-OR OR

1-leaf 1

0-leaf 0

PODS 2004 Thomas Schwentick Trees, Automata & XML 69



Schemas Specialized DTDs Specialized DTDs (cont.)

Observation
• A tree conforms to a specialized DTD (d, µ) if there is a labeling

of its nodes by types which is valid wrt. d

• This reminds us of something...

Theorem
Specialized DTDs capture exactly the regular tree languages

Question: What about 1-pass validation?
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Schemas Specialized DTDs Typing

Definition (Validation)

Given: Specialized DTD d, tree t

Qeustion: Is t valid wrt d?

Definition (Typing)

Given: Specialized DTD d, tree t

Output: Consistent type assignment for the nodes of t

Facts
• Specialized DTDs ≡ regular tree languages

→ Validation by a deterministic push-down automaton

• Validation in linear time during one pass through the document

Question: What about 1-pass typing?
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Schemas Specialized DTDs Typing (cont.)

Observations
• Type of a node ≡ state of deterministic bottom-up automaton

• Deterministic push-down automaton can assign types during 1 pass

• But the type of a node v is determined after visiting its subtree

• 1-pass preorder typing :

determine type of v before visiting the subtree of v

...after visiting subtree

�v

...before visiting subtree

�v
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Schemas 1-Pass Typing 1-Pass Preorder Typing

Question
When would it be important to

know the type of v before visit-

ing the subtree of v?

...before visiting subtree

�v

Answer
Whenever the processing proceeds in document order, e.g.:

• Streaming XML: Typing as the first operator in a pipeline

• SAX-based processing

Our next goal
Find out which schemas admit 1-pass preorder typing
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Schemas 1-Pass Typing Restrictions of Schemas

Restricted Schemas
(Murata, Lee, Mani 2001) introduced∗ restrictions on specialized DTDs to ensure

efficient validation (∗: in a slightly different framework)

• Two types b, b′ compete if µ(b) = µ(b′)

• A specialized DTD is single-type if no competing types occur in the same rule

(e.g., a→ bcb′ is not single-type)

• A specialized DTD is restrained-competition if no rule allows strings wbv,

wb′v′ with competing types b, b′

(e.g., a→ c(b+ d∗b′) is not restrained-competition)

• The authors argue that XML-Schema roughly corresponds to single-type

SDTDs

Fact
Both restrictions are sufficient to get 1-pass preorder typing!

Question: Are they also necessary?
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Schemas 1-Pass Typing 1-Pass Preorder Typing (cont.)

Remarks
• The definition of “1-pass preorder typing” does not yet restrict

the efficiency of determining the type of a node

• Typing could be 1-pass preorder but very time consuming

• It turns out that essentially this never happens

Theorem (Martens, Neven, Sch. 2004)
For a regular tree language L the following are equivalent

(a) L can be described by a 1-pass preorder typable SDTD

(b) L can be described by a restrained-competition SDTD

(c) L has linear time 1-pass pre-order typing

(d) L can be preorder-typed by a deterministic pushdown document automaton

(e) Types for trees in L can be computed by a left-siblings-aware top-down deter-

ministic tree automaton
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Schemas 1-Pass Typing A Very Robust Class

Further characterizations
• This class has further in-

teresting characterizations

• E.g., by closure under

ancestor-sibling-guarded

subtree exchange

Illustration

t1
u1

t′
1

t2
u2

t′
2

t1
u1

t′
2
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Schemas 1-Pass Typing A Related Result

Theorem (Martens, Neven, Sch. 2004)
For a regular tree language L the following are equivalent

(a) L can be described by a single-type SDTD

(b) Types for trees in L can be computed by a simple top-down deter-

ministic tree automaton

(c) L is closed under ancestor-guarded subtree exchange
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Schemas Schema Containment Schema Containment

Schema Containment

Given: Schemas d1, d2

Question: Is L(d1) ⊆ L(d2)?

Observations
• Important, e.g., for data integration

• Recall: Specialized DTDs are essentially non-deterministic tree

automata

⇒ Containment of specialized DTDs is in EXPTIME

• But the restricted forms have lower complexity

• Complexity of containment depends on the allowed regular ex-

pressions
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Schemas Schema Containment Schema Containment: Complexity

Results (partly from Martens, Neven, Sch. 2004)

Schema type unrestricted
deterministic

expressions

DTDs PSPACE PTIME

single-type SDTDs PSPACE PTIME
restrained-competition

SDTDs
PSPACE PTIME

unrestricted SDTDs EXPTIME EXPTIME

Observations
• For unrestricted SDTDs the complexity is dominated by tree

automata containment

• For the others it is dominated by the sub-task of checking con-

tainment for regular expressions
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Schemas Schema Containment Schema Containment: Complexity

Observations (cont.)
• ... for the others it is dominated by the sub-task of checking

containment for regular expressions

• Actually, this observation can be made more precise

Theorem (Martens, Neven, Sch. 2004)
For a class R of regular expressions and a complexity class C, the

following are equivalent

(a) The containment problem for R expressions is in C.

(b) The containment problem for DTDs with regular expressions

from R is in C.

(c) The containment problem for single-type SDTDs with regular

expressions from R is in C.
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Schemas Schema Containment Summary

Summary
• Regular tree languages are a nice framework for

schema languages

– Linear time validation

– Static analysis is expensive

• They also serve as a basis for restricted classes with

better algorithmic properties:

– 1-pass preorder typing

– more feasible static analysis, in particular if the

δ(σ, q) are given by deterministic automata

• Restrained competition ≡ Deterministic top-down

automata ≡ 1-pass preorder typable
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Node-Selecting Q. A Robust Class Node-Selecting Queries

Example document
〈Composer〉

〈Name〉 Claude Debussy 〈/Name〉

〈Vita〉

〈Born〉 〈When〉 August 22, 1862 〈/When〉〈Where〉 Paris 〈/Where〉〈/Born〉

〈Married〉〈When〉 October 1899 〈/When〉〈Whom〉 Rosalie〈/Whom〉〈/Married〉

〈Married〉〈When〉 January 1908 〈/When〉〈Whom〉 Emma 〈/Whom〉〈/Married〉

〈Died〉 〈When〉 March 25, 1918 〈/When〉〈Where〉 Paris 〈/Where〉 〈/Died〉

〈/Vita〉

〈Piece〉

〈PTitle〉 La Mer 〈/PTitle〉

〈PYear〉 1905 〈/PYear〉

〈Instruments〉 Large orchestra 〈/Instruments〉

〈Movements〉 3 〈/Movements〉

...

〈/Piece〉

...

〈/Composer〉

...

Observation

XPath expressions define sets of nodes → node-selecting queries

Example query
//Vita/Died/*
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Node-Selecting Q. A Robust Class Node-Selecting Queries (cont.)

Question
Is there a class of node-selecting queries, as robust

as the regular tree languages?

Observation
• There is a simple way to define node selecting queries by

monadic second-order formulas:

• Simply use one free variable: ϕ(x)

• Is there a corresponding automaton model?

• It is relatively easy to add node selection to nondeterministic

bottom-up automata

Definition (Nondetermistic bottom-up node-selecting automata)
• Nondeterministic bottom-up automata plus select function:

s : Q× Σ→ {0, 1}

• Node v is in result set for tree t :⇐⇒ there is an accepting computation

on t in which v gets a state q such that s(q, λ(v)) = 1

PODS 2004 Thomas Schwentick Trees, Automata & XML 87



Node-Selecting Q. A Robust Class Example Automaton

Example query

//∗[a]//b

Query tree

∗

a b

Example automaton
• Q = {q0, qa, qb}

• L(qa, a) = Q∗

• L(qb, σ) = Q∗

• L(q0, σ) =

ε+ q∗
0
+Q∗qaQ

∗

• all other sets empty

• s(qb, b) = 1

• all others: 0

• Accepting: q0

Example tree: Run 2

c

e

a c

b c

c e

b c

e bqb q0 q0 qbb b

qa qb q0 qb

q0 q0 qb

qb
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Node-Selecting Q. A Robust Class Node-Selecting Automata

Fact
• Existential semantics: a node is in the result if there

exists an accepting run which selects it

• Universal semantics: a node is in the result if every

accepting run selects it

• Both semantics define the same class of queries

Result
A node selecting query is MSO-definable iff it is expressible by a

nondeterministic bottom-up node selecting automaton
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Node-Selecting Q. A Robust Class Node-Selecting Automata (cont.)

Result
A node selecting query is MSO-definable iff it is expressible by a nondetermin-

istic bottom-up node selecting automaton

Proof Idea
• Given formula ϕ(x) of quantifier-depth k and tree t,

for each node v the automaton does the following:

– Compute k-type of subtree at v

– Guess k-type of ”envelope tree” at v

– Conclude whether v is in the output

– Check consistency upwards towards the root

⇒ one unique accepting run

Crucial fact

�

e1

≡k �

e2

�

t1 ≡k

�

t2

=⇒ �
�

e1

t1
≡k

�
�

e2

t2
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Node-Selecting Q. A Robust Class Equivalent Models

More query models
• Unfortunately, the translation from formula to automaton can be pro-

hibitively expensive: number of states ∼ 22
··

·2
2
|ϕ|

}

|ϕ|

• Actually: If P 6= NP there is no elementary f , such that MSO-formulas

can be evaluated in time f(|formula|×p(|tree|)) with polynomial p [Frick,

Grohe 2002]

→ query languages with better complexity properties needed

• Good candidate: Monadic Datalog [Gottlob, Koch 2002] and its restricted

dialects like TMNF

• Further models:

– Attributed Grammars [Neven, Van den Bussche 1998]

– µ-formulas [Neumann 1998]

– Context Grammars [Neumann 1999]

– Deterministic Node-Selecting Automata [Neven, Sch. 1999]
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Node-Selecting Q. A Robust Class Evaluation Complexity

Some facts about query evaluation
• MSO node-selecting queries can be evaluated in two passes

through the tree

– first pass, bottom-up: essentially computes the types of the

subtrees

– second pass, top-down: essentially computes the types of the

envelopes and combines it with the subtree information

• This can be implemented by a 2-pass pushdown document au-

tomaton which in its first pass attaches information to each

node [Neumann, Seidl 1998; Koch 2003]

• In particular: queries can be evaluated in linear time
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Node-Selecting Q. XPath Pebble Automata: Example

Example Query Tree

a

b

c d

e

f g

aX

bX

cX dX

eX

fX gX

Example Tree

b

a

c

b

c d

d

e

f c

g

c

b c

a 1

b
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Node-Selecting Q. XPath Pebble Automata and XPath

Definition (Pebble Automata)
• Extension of tree-walk automata by fixed number k of pebbles

• Only pebble with highest number ( current pebble ) can move, depending on

state, number of pebbles symbols under pebbles and incidence of pebbles

• Possible pebble movements:

– stay, go to left sibling, go to right sibling, go to parent

– lift current pebble or place new pebble at current position

• Nondeterminism possible

Facts
• Pebble automata capture navigational XPath queries

• Extended by alternation, branching and an output mechanism they even capture

a large part of XSLT [Papakonstantinou, Vianu 2000]
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Node-Selecting Q. XPath Automata and Logic

Some observations
• On strings, MSO logic and (unary) transitive closure logic ( TC-logic ) coincide

• On trees

– MSO ≡ parallel automata

– TC-logic ≡ pebble automata (i.e., strongest sequential automata)

• Whether MSO ≡ TC-logic is open

• First-order logic ≡ XPath + conditional axes [Marx 2004]

• The relationship between logics and automata models between FO and TC-logic

is largely unexplored:

– Tree-walk automata,

– FO-logic + regular expressions

– Conditional XPath + arbitrary star operator

– ...
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Node-Selecting Q. XPath Summary

Summary
• There is a natural notion of

regular node-selecting queries generalizing regular

tree languages

• Probably for most practical purposes too strong

• But it offers a useful framework for the study of

other classes of queries

• A robust but weaker class of queries is captured by

pebble automata
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XPath Query Containment. Recall our XPath Example

Example document
〈Composer〉

〈Name〉 Claude Debussy 〈/Name〉

〈Vita〉

〈Born〉 〈When〉 August 22, 1862 〈/When〉〈Where〉 Paris 〈/Where〉〈/Born〉

〈Married〉〈When〉 October 1899 〈/When〉〈Whom〉 Rosalie〈/Whom〉〈/Married〉

〈Married〉〈When〉 January 1908 〈/When〉〈Whom〉 Emma 〈/Whom〉〈/Married〉

〈Died〉 〈When〉 March 25, 1918 〈/When〉〈Where〉 Paris 〈/Where〉 〈/Died〉

〈/Vita〉

〈Piece〉

〈PTitle〉 La Mer 〈/PTitle〉

〈PYear〉 1905 〈/PYear〉

〈Instruments〉 Large orchestra 〈/Instruments〉

〈Movements〉 3 〈/Movements〉

...

〈/Piece〉

...

〈/Composer〉

...

Example query
//Vita/Died/*
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XPath Query Containment. More XPath

Example document
〈Composer〉

〈Name〉 Claude Debussy 〈/Name〉

〈Vita〉

〈Born〉 〈When〉 August 22, 1862 〈/When〉〈Where〉 Paris 〈/Where〉 〈/Born〉

〈Married〉 〈When〉 October 1899 〈/When〉 〈Whom〉 Rosalie〈/Whom〉〈/Married〉

〈Married〉 〈When〉 January 1908 〈/When〉 〈Whom〉 Emma 〈/Whom〉〈/Married〉

〈Died〉 〈When〉 March 25, 1918 〈/When〉〈Where〉 Paris 〈/Where〉 〈/Died〉

〈/Vita〉

〈Piece〉

〈PTitle〉 La Mer 〈/PTitle〉

〈PYear〉 1905 〈/PYear〉

〈Instruments〉 Large orchestra 〈/Instruments〉

〈Movements〉 3 〈/Movements〉

...

〈/Piece〉

...

〈/Composer〉

...

Another example query
(/*[Name]//When) | (//Where)

More XPath operators

Operator Meaning

p/q child

p//q descendant

p[q] filter

∗ wildcard

p | q disjunction
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XPath Query Containment. XPath containment

Question

Does //Vita/Died/* always select a subset of posi-

tions of (/*[Name]//When) | (//Where) ?

Answer
No!

Counter-example

〈Vita〉

〈Died〉

〈How〉 Heart disease 〈/How〉

〈/Died〉

〈/Vita〉

Further question
But what if the type of documents is constrained?
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XPath Query Containment. XPath Containment (cont.)

Fact
For all XML documents of type

<!DOCTYPE Composers [

<!ELEMENT Composers (Composer*)>

<!ELEMENT Composer (Name, Vita, Piece*)>

<!ELEMENT Vita (Born, Married*, Died?)>

<!ELEMENT Born (When, Where)>

<!ELEMENT Married (When, Whom)>

<!ELEMENT Died (When, Where)>

<!ELEMENT Piece (PTitle, PYear,

Instruments, Movements)>

]>

the pattern //Vita/Died/* always selects a subset of positions of

(/*[Name]//When) | (//Where)
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XPath Query Containment. XPath Containment: Definition

Definition (Containment for XPath(S))

Let S be a set of XPath-operators. The containment problem for XPath(S) is:

Given: XPath(S)-expression p, q

Question: Is p(t) ⊆ q(t) for all documents t?

Definition ( Containment for XPath (S) with DTD)

Let S be a set of XPath-operators. The containment problem for XPath(S) in the

presence of DTDs is:

Given: XPath(S)-expression p, q, DTD d

Question: Is p(t) ⊆ q(t) for all documents t satisfying t |= d?

Observation
These problems are crucial for static analysis and query optimization

Question
For which fragments S are these problems

• decidable?

• efficiently solvable?
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XPath Query Containment. Results

General remarks
• The XPath containment problem has been consid-

ered for various sets of operators

• Results vary from PTIME to “undecidable”

• Various methods have been used:

– Canonical model technique

– Homomorphism technique

– Chase technique

• More about this in [Miklau, Suciu 2002; Deutsch,

Tanen 2001; Sch. 2004]

• We will consider automata based techniques
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XPath Query Containment. The Automata Technique

Definition (Relative Containment for XPath (S) wrt DTD)
Let S be a set of XPath-operators. The containment problem for

XPath(S) relative to a DTD is:

Given: XPath(S)-expression p, q, DTD d

Question: Is p(D) ⊆ q(D) for all documents D satisfying

D |= d?

A vague plan
• Construct an automaton Ap for p

• Construct an automaton Aq for q

• Construct an automaton Ad for d

• Combine these automata suitably to get an automa-

ton which accepts all counter-example documents
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XPath Query Containment. A Simplification

Definition (Boolean containment)

p ⊆b q :⇐⇒ whenever p selects some node in a tree

t then q also selects some node in t.

Useful observation [Miklau, Suciu 2002]

In the presence of [ ], Boolean containment has the same

complexity as containment.

Crucial idea

x

p1 p2

⊆ x′

p′
1

p′
2

if and only if

x

p1 # p2

⊆b
x′

p′
1

# p′
2
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XPath Query Containment. XPath Containment: 2 Examples

Result 1 [Neven, Sch. 2003]

The Boolean containment problem for XPath(/, //) in

the presence of DTDs is in PTIME

Result 2 [Neven, Sch. 2003]

The Boolean containment problem for

XPath(/, //, [ ], ∗, |) in the presence of DTDs is

in EXPTIME

Note
Both results are optimal wrt complexity:

the problems are complete for these classes
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XPath Query Containment. Containment for XPath(/, //) and DTDs

Result 1 [Neven, Sch. 2003]

The Boolean containment problem for XPath(/, //) in

the presence of DTDs is in PTIME

Proof Idea
• XPath(/, //)-expressions can only describe vertical paths in a tree

• Each expression is basically of the form p1//p2// · · · //pk, where each pi is

of the form li1/ · · · /limi

• On strings this is a sequence of string matchings corresponding to a regular

language L

⇒ Deterministic string automaton of linear size

• Recall: there is a deterministic top-down automaton which checks whether a

p-path exists

⇒ Deterministic top-down automaton Ap

⇒ Deterministic top-down automaton Aq checking that no q-path exists

PODS 2004 Thomas Schwentick Trees, Automata & XML 108



XPath Query Containment. Containment for XPath(/, //) and DTDs

Result 1 [Neven, Sch. 2003]

The containment problem for XPath(/, //) in the pres-

ence of DTDs is in PTIME

Proof idea (cont.)
• Deterministic top-down automaton Ap

• Deterministic top-down automaton Aq checking that no q-path exists

• There is a deterministic top-down automaton Ad checking whether t conforms

to d

• p ⊆b q in the presence of d⇐⇒ L(Ap ×Aq ×Ad) = ∅

• The latter can be checked in polynomial time
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XPath Query Containment. Containment for XPath(/, //, [ ], ∗, |) and DTDs

Result 2 [Neven, Sch. 2003]

The containment problem for XPath(/, //, [ ], ∗, |) in

the presence of DTDs is in EXPTIME

Proof Idea
We again represent patterns like

(/*[Name]//When) | (//Where)

as query trees:
Example query tree

|

∗

Name When

Where

Lemma
For each XPath(/, //, [ ], ∗, |)-expression p there is a deterministic bottom-up

automaton Ap of exponential size which checks whether in a tree p holds
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XPath Query Containment. Containment for XPath(/, //, [ ], ∗, |) and DTDs

Lemma
For each XPath(/, //, [ ], ∗, |)-expression p there is a deterministic

bottom-up automatonAp of exponential size which checks whether

in a tree p holds

Proof idea for Lemma
• States of Ap are of the form (S/, S//)

• Both S/ and S// are sets of positions of the query tree:

– S/: positions matching v

– S//: positions matching some node in the subtree of v
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XPath Query Containment. Containment for XPath(/, //, [ ], ∗, |) and DTDs

Result 2 [Neven, Sch. 2003]

The containment problem for XPath(/, //, [ ], ∗, |) in

the presence of DTDs is in EXPTIME

Proof idea (cont.)
• Construct deterministic bottom-up automaton Ap of expo-

nential size

• Construct deterministic bottom-up automaton Aq of expo-

nential size

• Construct deterministic bottom-up automaton Ad of expo-

nential size

• p ⊆b q in the presence of d⇐⇒ L(Ap×Aq ×Ad) = ∅

⇒ exponential time
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XPath Query Containment. Summary

Summary (Automata and XPath containment)
• Automata are a useful algorithmic tool

• In particular, if several algorithmic tasks have to be

combined

• Complexity depends on type of automata

Summary (XPath containment in general)
• Many more results in other papers, e.g., [Miklau,

Suciu 2002; Deutsch, Tanen 2001; Sch. 2004]

• The complexity of XPath query containment varies

strongly with the allowed operators

• Even undecidable in general

• Exact borderline between undecidable and decidable

has to be identified
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Extensions XSLT and automata

Pebble automata
• As mentioned before: XSLT transormations can be

modeled by k-pebble transducers

(k-pebble automata + alternation, branching, out-

put)

• Pebbles are mainly used to evaluate XPath expres-

sions

XSLT Typechecking problem

Given: Transformation T , Schemas d1, d2

Question: Is T (t) valid wrt d2 whenever t is

valid wrt d1?

Theorem (Milo, Suciu, Vianu 2000)

The typechecking problem for (core) XSLT is decidable
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Extensions XSLT Typechecking problem (cont.)

Theorem (Milo, Suciu, Vianu 2000)

The typechecking problem for (core) XSLT is decidable

Proof Idea
• Obvious approach:

– Compute T (L(d1))

– Check that T (L(d1)) ⊆ L(d2)

• Problem: T (L(d1)) does not need to be regular:

Transform b

a a a a

into b
a
a
a
a

a
a
a
a

• Better approach:

Compute T−1(L(d2)) and check L(d1) ⊆ T−1(L(d2))
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Extensions XSLT Typechecking problem (cont.)

Proof idea (cont.)

• k-pebble acceptor : k-pebble transducer without output

• Prove: T−1(L) is accepted by a k-pebble acceptor if L is regular

• Prove: Behavior of k-pebble acceptors can be described by MSO-

formulas

⇒ k-pebble acceptors only accept regular tree languages

⇒ T−1(L(d2)) is regular

• Algorithm:

– Construct automaton for T−1(L(d2))

– Construct an equivalent MSO-formula ϕ

– Construct bottom-up tree automaton A for ¬ϕ

– Check that L(d1) ⊆ L(A)

• Complexity: VERY bad (non-elementary)
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Extensions General Queries

So far...
• We have seen that automata are useful for

– Validation, Typing

– Navigation

– Transformation

• What about more general queries?

– results of higher arity?

– joins, i.e., comparisons of data values

– counting

• Are automata useful for XQuery?

• ... for tree pattern queries?
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Extensions General Queries (cont.)

Higher arity
• Nonemptiness and containment questions can be handled by automata: tuples

can be encoded by additional labels

• What about query evaluation for higher arity?

Data values
• When data values in XML documents are taken into account, things become

more complicated, e.g.:

– Even First-order logic becomes undecidable

– Pebble automata become undecidable

– Automata with data registers become undecidable when they are allowed to

move up and down

• What is the right notion for regular (string) languages over infinite alphabets?

• What are sensible decidable restrictions of logics and automata in the context

of data values?
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Extensions General Queries (cont.)

Counting
• Automata can be equipped with counting facilities, e.g.:

Presburger tree automata: δ(σ, q) is Boolean combination of

– regular expressions and

– quantifier-free Presburger formulas like

“number of children in state q1 = number of children in state q2”

• Nondet. Presburger automata:

– ≡ MSO logic

– Whether automaton accepts all trees is undecidable

• Det. Presburger automata:

– ≡ Presburger µ-formulas

– Membership test: O(|A||t|)

– Non-emptiness: PSPACE

– Containment: PSPACE

[Seidl, Sch., Muscholl, Habermehl 2004]
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Conclusion ...and Question

We saw...
• A broad variety of automata models which can be used for XML

and its theory

• Well-established in the context of validation, typing, navigation,

transformation

• Well-established as

– means to define robust classes

– proof tools

– algorithmic tools

Big question
Can automata be employed as a tool for XQuery evaluation?
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