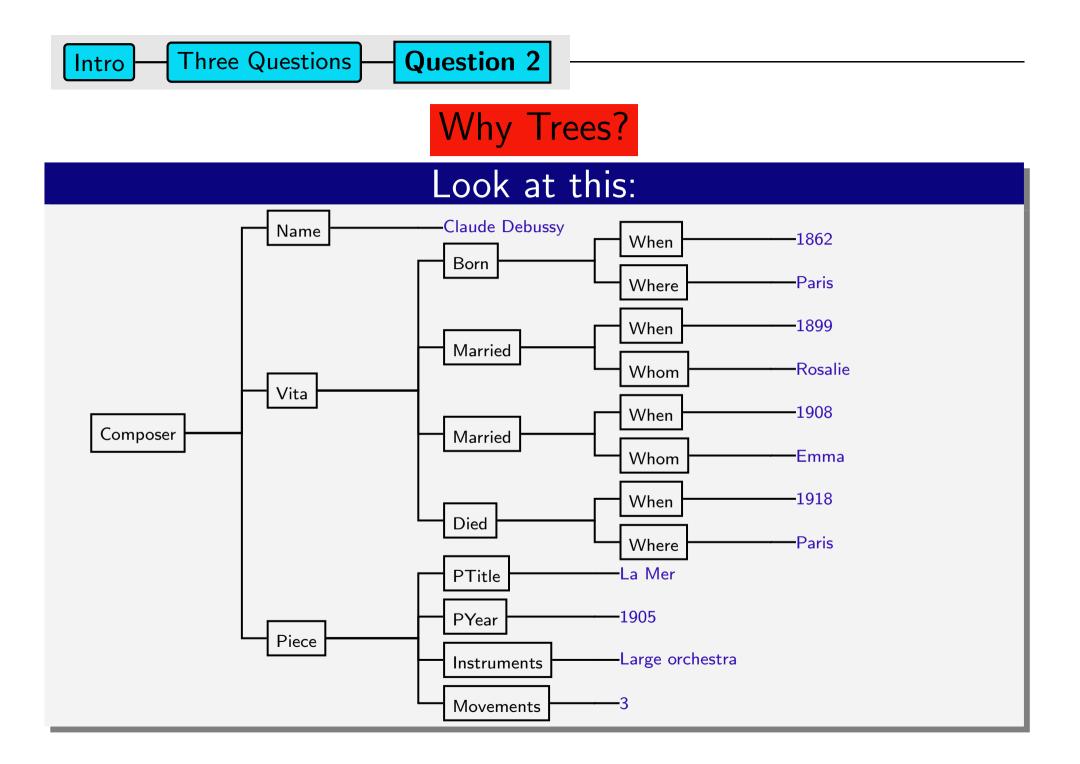


Answer

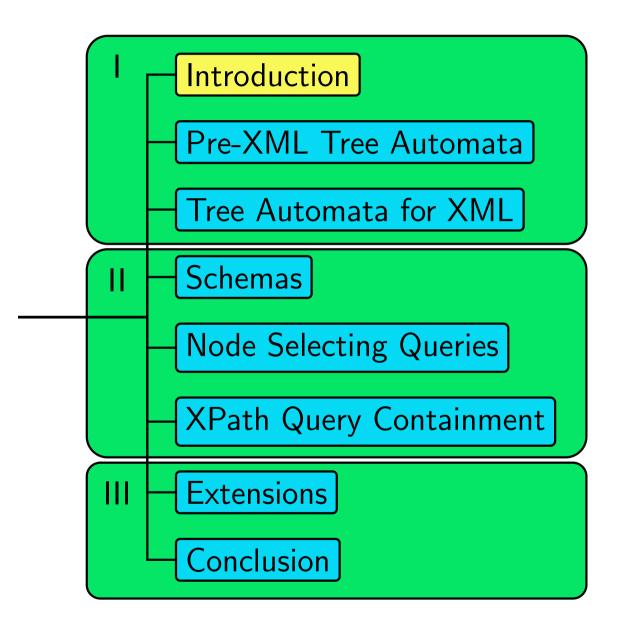
Have a look into the $\geq 20~\text{XML}$ papers at SIGMOD/PODS



Why Automata?

Answer

That's our topic for the remaining 88 minutes



Question: Why is XML appealing for Theory people?

Years ago...

- Theoretical Computer Science for Database Theorists: Logics, Complexity, Algorithms,...
- Database Theory for Theoretical Computer Scientists: terra incognita

After the advent of XML

Many connections between Formal Languages & Automata Theory and XML & Database Theory

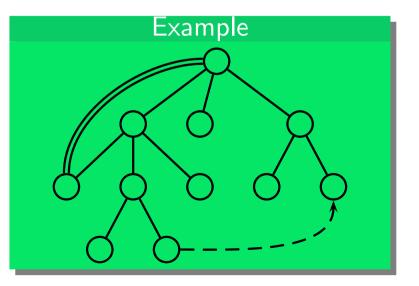
Question: Why trees?

<u>A Natural Answer</u>

- Trees reflect the hierarchical structure of XML
- Underlying data model of XML is tree based

<u>Limitations</u>

- But trees can not model all aspects of XML (e.g., IDREFs, data values)
- \Rightarrow Sometimes extensions are needed
 - E.g., directed graphs instead of trees



Nevertheless

In this tutorial we will concentrate on the tree view at XML

More Seriously...

Question: Why automata?

Ingredients of XML

Concepts from formal languages are obviously present around XML:

- Labelled trees
- DTD: context-free grammars
- DTD: regular expressions
- XPath: regular path expressions

We will see

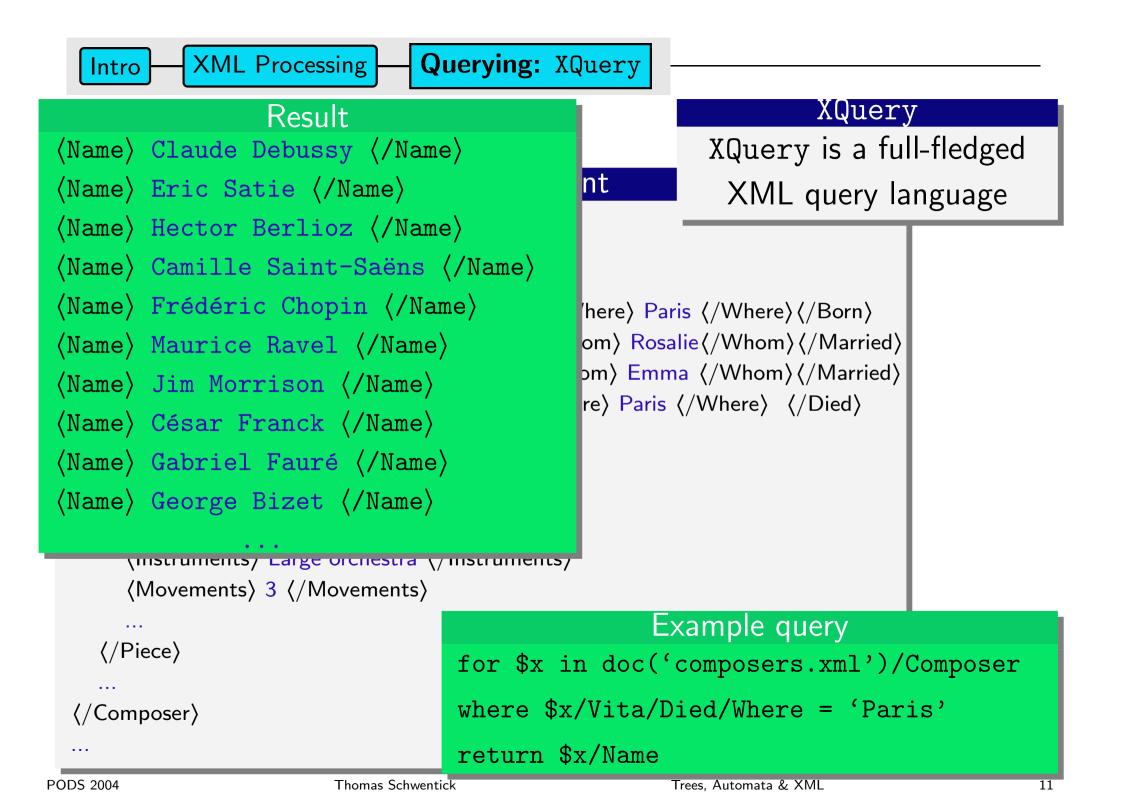
Automata turn out to be useful as:

- a means to define robust classes with clear semantics
- a tool for proofs
- an algorithmic tool for static analysis
- a tool for query evaluation

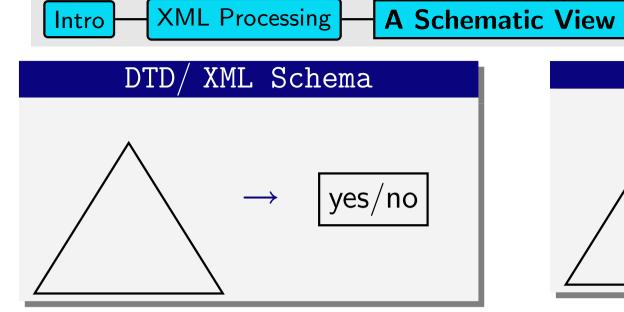
Four important kinds of XML processing	and	their	languages
Validation	DTD,	XML	Schema
Check whether an XML document is of a given	type		
Navigation			XPath
Select a set of positions in an XML document			
Querying			XQuery
Extract information from an XML document			
Transformation			XSLT
Construct a new XML document from a given of	one		

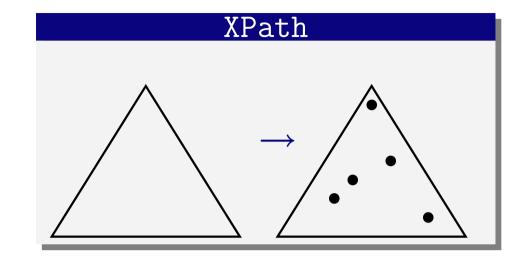
Intro XML Processing Validation	on: DTD	
Example doc	umont	DTD DTDs describe types of XML documents
<pre> 〈Composer〉 〈Name〉 Claude Debussy 〈/Name〉 〈Vita〉 〈Born〉 〈When〉 August 22, 1862 〈/Whe 〈Married〉〈When〉 October 1899 〈/When 〈Married〉〈When〉 January 1908 〈/When 〈Died〉〈When〉 March 25, 1918 〈/When〉</pre>	en〉〈Where〉 Paris 〈/Wh n〉〈Whom〉 Rosalie〈/Wh n〉〈Whom〉 Emma 〈/Wh	nere〉〈/Born〉 nom〉〈/Married〉 nom〉〈/Married〉
<pre>{/Vita} {Piece} {PTitle} La Mer {/PTitle} {PYear} 1905 {/PYear} {Instruments} Large orchestra {/Instrum {Movements} 3 {/Movements} {/Piece}</pre>	<pre><!DOCTYPE Composers <!--ELEMENT Compo<br--><!--ELEMENT Compo<br--><!--ELEMENT Vita<br--><!--ELEMENT Born<br--><!--ELEMENT Marr:<br--><!--ELEMENT Died</pre--></pre>	osers (Composer*)> oser (Name, Vita, Piece*)> (Born, Married*, Died?)> (When, Where)> ied (When, Whom)> (When, Where)>
<pre>//Composer></pre>		e (PTitle, PYear, ts, Movements)>
DDS 2004 Thomas Schwentick	Trees, Autor	mata & XML 9

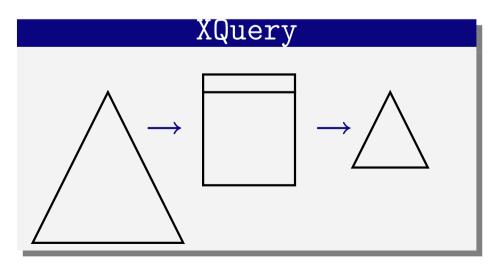
Intro XML Processing Navigat	ion: XPath
	XPath
	XPath expressions select sets of nodes of
Example doc	XML documents by specifying navigational
(Composer)	patterns
<pre> {Name> Claude Debussy </pre>	
(Vita)	
(Born) (When) August 22, 1862 (/Wh	en〉〈Where〉 Paris 〈/Where〉〈/Born〉
(Married) (When) October 1899 (/When	n> <whom> Rosalie</whom>
(Married) (When) January 1908 (/Wher	n〉〈Whom〉 Emma 〈/Whom〉〈/Married〉
(Died) (When) March 25, 1918 (/When)	<mark>n〉〈Where〉Paris〈/Where〉</mark> 〈/Died〉
$\langle /Vita \rangle$	
<pre>〈Piece〉</pre>	
<pre></pre>	
<pre>〈PYear〉 1905 〈/PYear〉</pre>	
<pre> {Instruments > Large orchestra <!-- Instrum</pre--></pre>	nents
<pre>〈Movements〉 3 〈/Movements〉</pre>	
$\langle / Piece \rangle$	
	Example query
•••	//Vita/Died/*
ODS 2004 Thomas Schwentick	Trees, Automata & XML 10

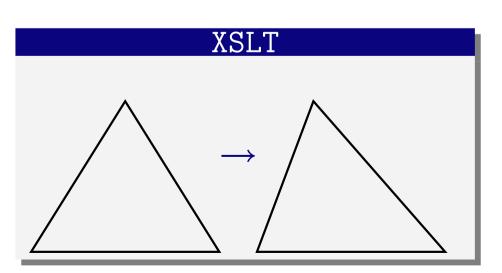


Intro XML Processing Transformation: XSLT			
Result 〈ParisComposer〉 〈Name〉 Claude Debussy 〈/Name〉 〈Born〉	XSLTVCUMENVCUMENMeans of templates		
<pre>{When> August 22, 1862 {/When></pre>	'hen〉{Where〉 Paris 〈/Where〉{/Born〉 en〉{Whom〉 Rosalie{/Whom〉{/Married〉 en〉{Whom〉 Emma 〈/Whom〉{/Married〉 n〉{Where〉 Paris 〈/Where〉 〈/Died〉		
<pre></pre>	Example <pre>plate match="Composer[Vita//Where='Paris']" > sComposer> sl:copy-of select= "Name" / > sl:copy-of select= "Vita/Born" / > risComposer> melate></pre>		
<pre></pre>	mplate>		









Trees, Automata & XML

Thomas Schwentick

About this Talk

Aim

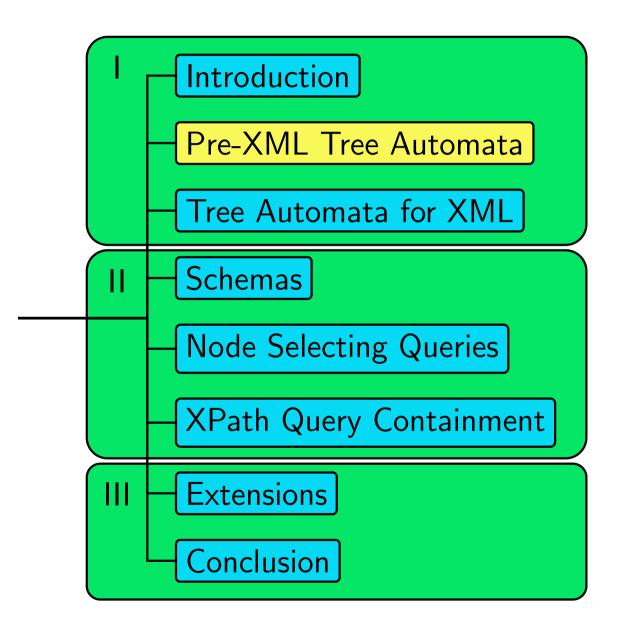
- Introduction
- Basic techniques and models
- Not a survey
- In particular: many important papers are not mentioned

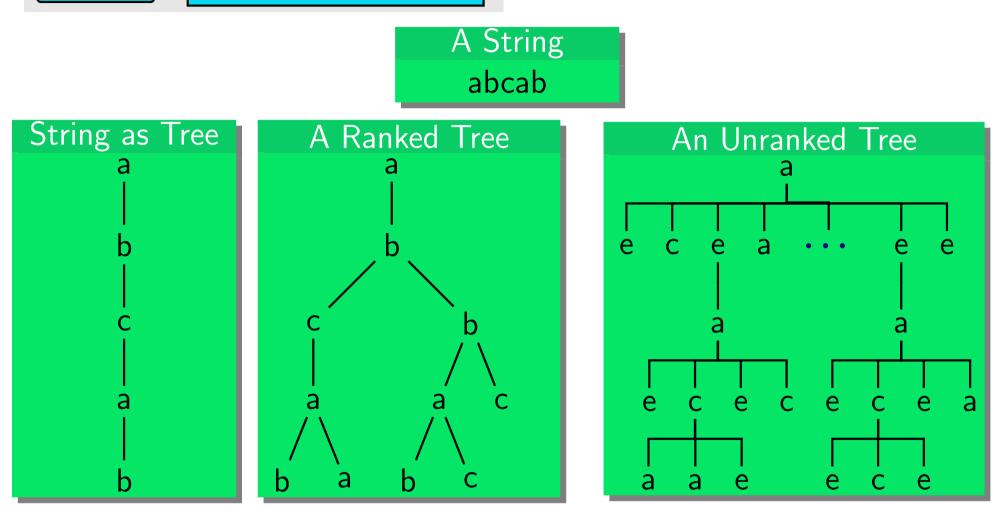
Overall structure

Part 1: Background on tree automata and how they can be adapted for XML purposes

Part 2: Examples for the use of automata for XML

- Two robust classes of schema languages
- A robust class of node-selecting queries
- Automata as an algorithmic tool for checking XPath query containment
- **Part 3:** Some words about related results and about extensions and limitations





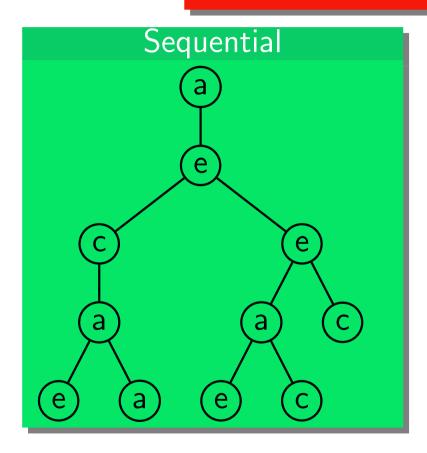
XML and Trees

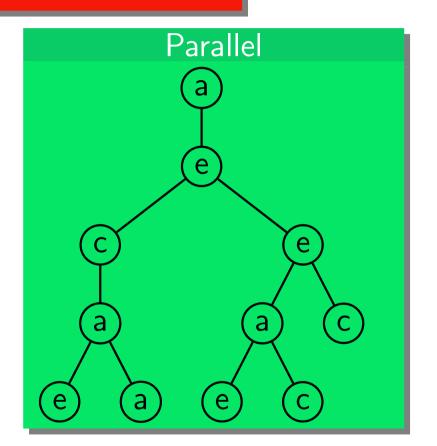
- XML trees are unranked : the number of children of a node is not restricted
- Automata have first been considered on **ranked** trees, where each symbol has a fixed number of children (rank)
- Most important ideas were already developed for ranked trees
- \rightarrow Let us take a look at this first

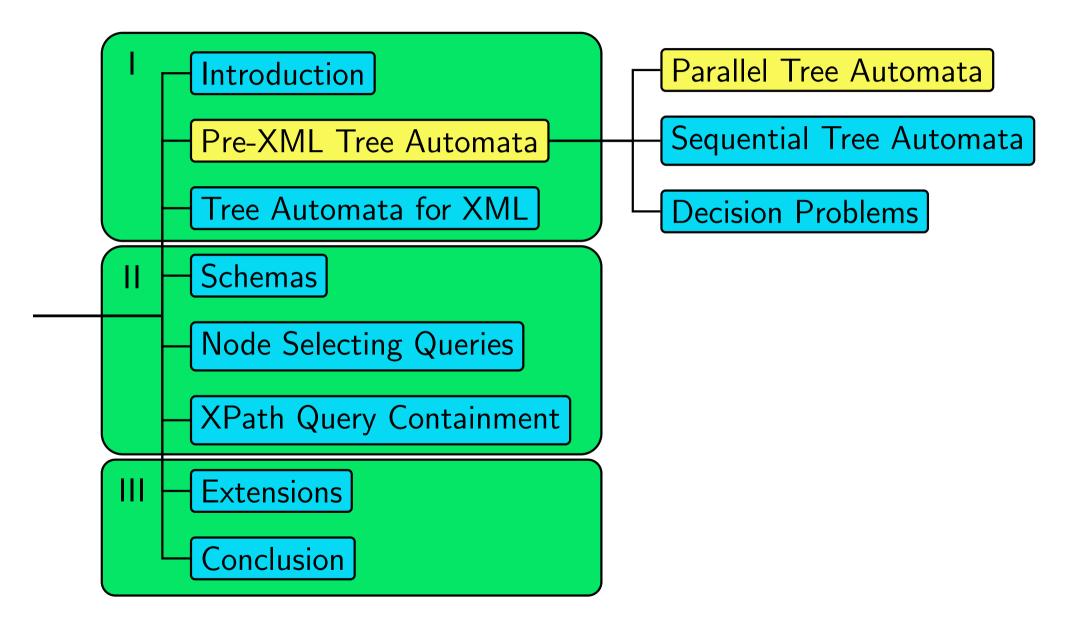
Pre-XML

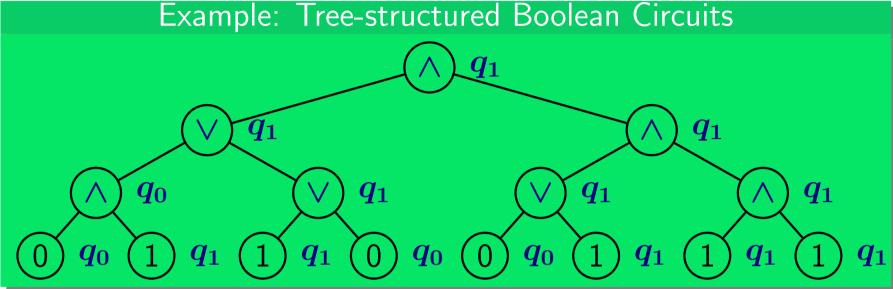
From String Automata to Tree Automata

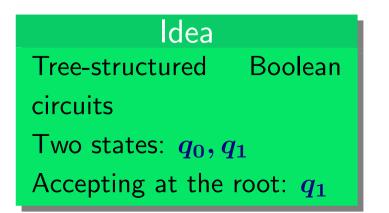
Question How do automata generalize to trees?











Transitions $\{(q_1, q_1)\}$

$$\delta(\wedge, q_1) = \{(q_1, q_1)\}$$

$$\delta(\wedge, q_0) = \{(q_0, q_1), (q_1, q_0), (q_0, q_0)\}$$

$$\delta(\vee, q_1) = \{(q_0, q_1), (q_1, q_0), (q_1, q_1)\}$$

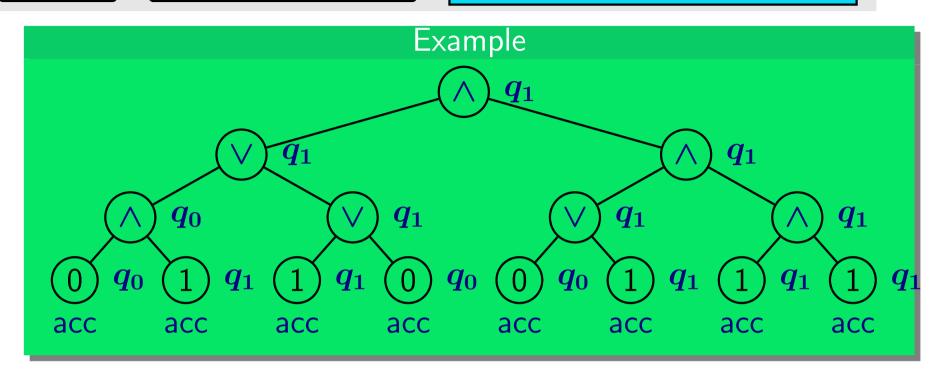
$$\delta(\vee, q_0) = \{(q_0, q_0)\}$$

$$\delta(0, q_0) = \{\epsilon\}; \delta(0, q_1) = \emptyset$$

$$\delta(1, q_1) = \{\epsilon\}; \delta(1, q_0) = \emptyset$$

Thomas Schwentick

Parallel Tree Automata



Idea

Guess the correct values starting

from the root

Pre-XML

Check at the leaves

Three states: q_0, q_1, acc

Initial state q_1 at the root

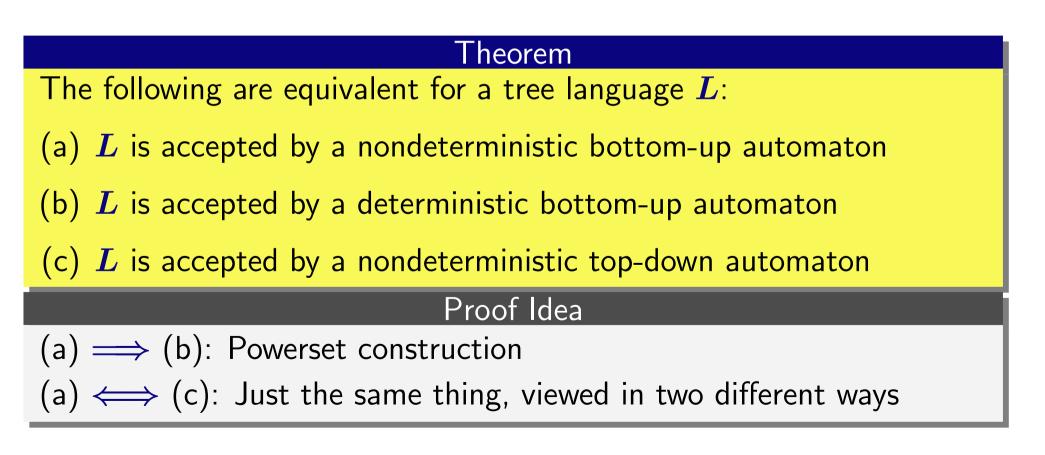
Accepting if all leaves end in acc

Transitions

$$\begin{split} \delta(\wedge, q_1) &= \{(q_1, q_1)\} \\ \delta(\wedge, q_0) &= \{(q_0, q_1), (q_1, q_0), (q_0, q_0)\} \\ \delta(\vee, q_1) &= \{(q_0, q_1), (q_1, q_0), (q_1, q_1)\} \\ \delta(\vee, q_0) &= \{(q_0, q_0)\} \\ \delta(0, q_0) &= \{acc\}; \delta(0, q_1) = \emptyset \\ \delta(1, q_1) &= \{acc\}; \delta(1, q_0) = \emptyset \end{split}$$

Definition

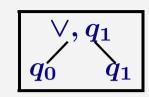
A bottom-up automaton is deterministic if for each a and $p \neq q$: $\delta(a, p) \cap \delta(a, q) = \emptyset$



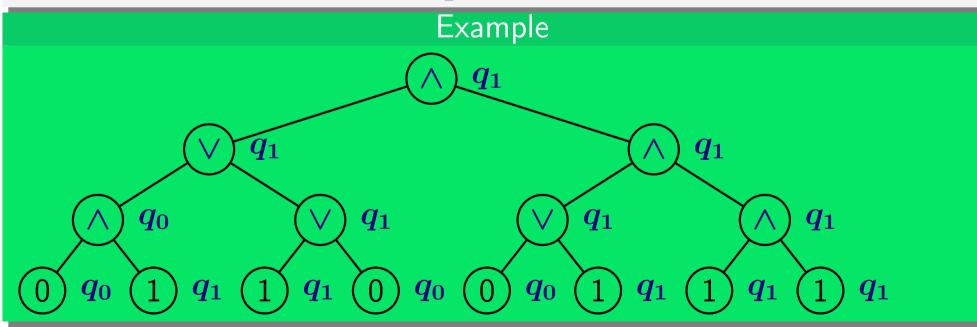
Pre-XML

Observation

• $(q_0, q_1) \in \delta(\lor, q_1)$ can be interpreted as an allowed pattern:



- A tree is accepted, iff there is a labelling with states such that
 - all local patterns are allowed
 - the root is labelled with q_1



Pre-XML

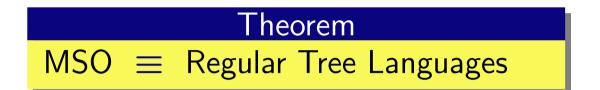
Definition (MSO logic)

- Formulas talk about
 - edges of the tree (E)
 - node labels (Q_0,Q_1,Q_\wedge,Q_ee)
 - the root of the tree (root)
- First-order-variables represent nodes
- Monadic second-order (MSO) variables represent sets of nodes

Example: Boolean Circuits		
Boolean circuit true	\equiv	$\exists X \ X(root) \land \ \forall x$
		$(Q_0(x) ightarrow eg X(x)) \wedge$
		$((Q_\wedge(x)\wedge X(x)) ightarrow (orall y[E(x,y) ightarrow X(y)]))\wedge$
		$((Q_ee(x)\wedge X(x)) ightarrow (\exists y[E(x,y)\wedge X(y)]))$

Theorem (Doner 1970; Thatcher, Wright 1968)

 $MSO \equiv Regular Tree Languages$



Proof Idea

Automata \Rightarrow MSO:

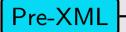
Formula expresses that there exists a correct tiling

 $MSO \Rightarrow Automata$: more involved

Basic idea:

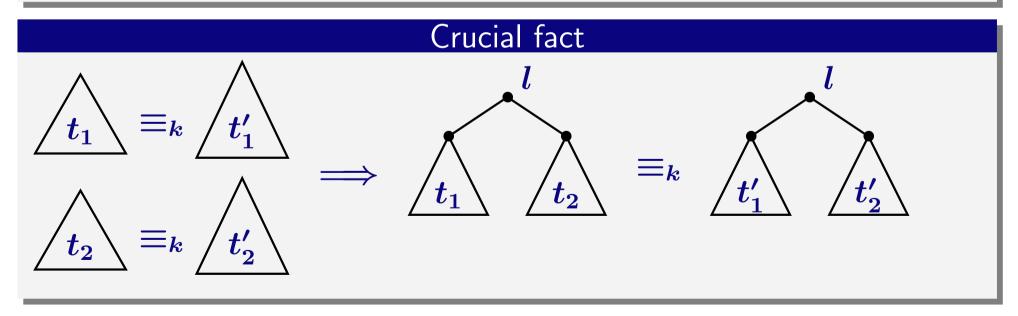
Automaton computes for each node v the set of formulas which hold

in the subtree rooted at $oldsymbol{v}$

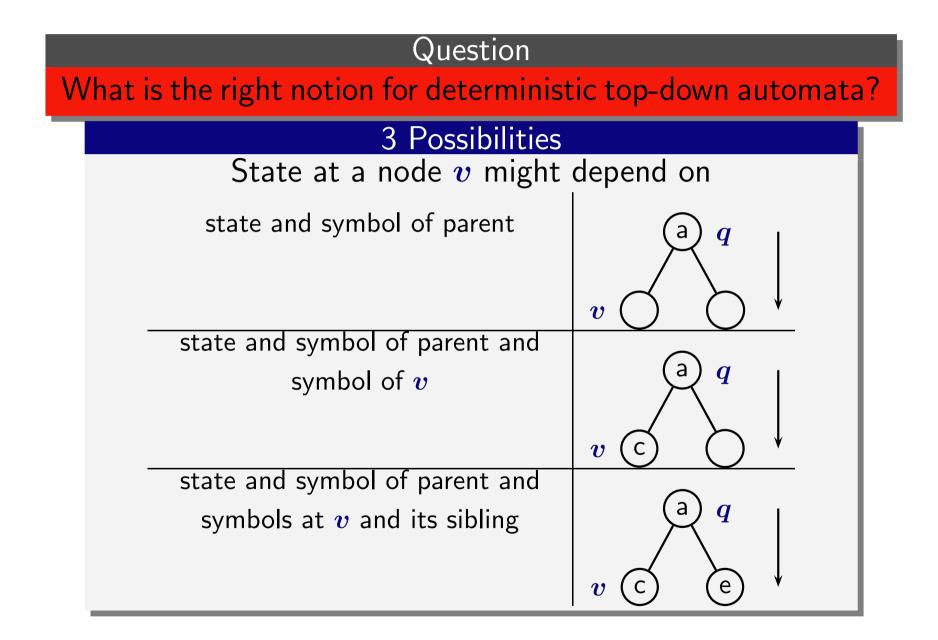


$Formula \Rightarrow automaton$

- Let arphi be an MSO-formula, k:= quantifier-depth of arphi
- k-type of a tree t:= (essentially) set of MSO-formulas ψ of quantifier-depth $\leq k$ which hold in t
- $t_1 \equiv_k t_2$: k-type $(t_1) = k$ -type (t_2)
- Automaton computes k-type of tree and concludes whether arphi holds



Parallel Tree Automata



Pre-XML

Question

What is a good acceptance mechanism for deterministic top-down automata?

Several possibilitites

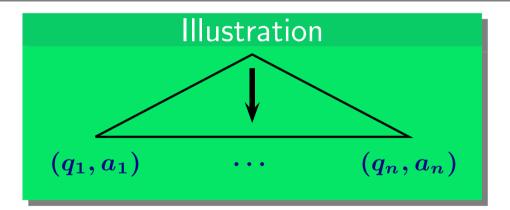
(1) At all leaves states have to be accepting

- (2) There is a leave with an accepting state
- (2) is problematic for complement and intersection
- (1) is problematic for complement and union

Pre-XML Parallel Tree Automata Det. Top-Down Automata: Acceptance (cont.)

Definition (Root-to-frontier automata with regular acceptance condition)

- Tree automata ${\cal A}$ are equipped with an additional regular string language L over $Q imes \Sigma$
- *A* accepts *t* if the (state,symbol)-string at the leaves (from left to right) is in *L*

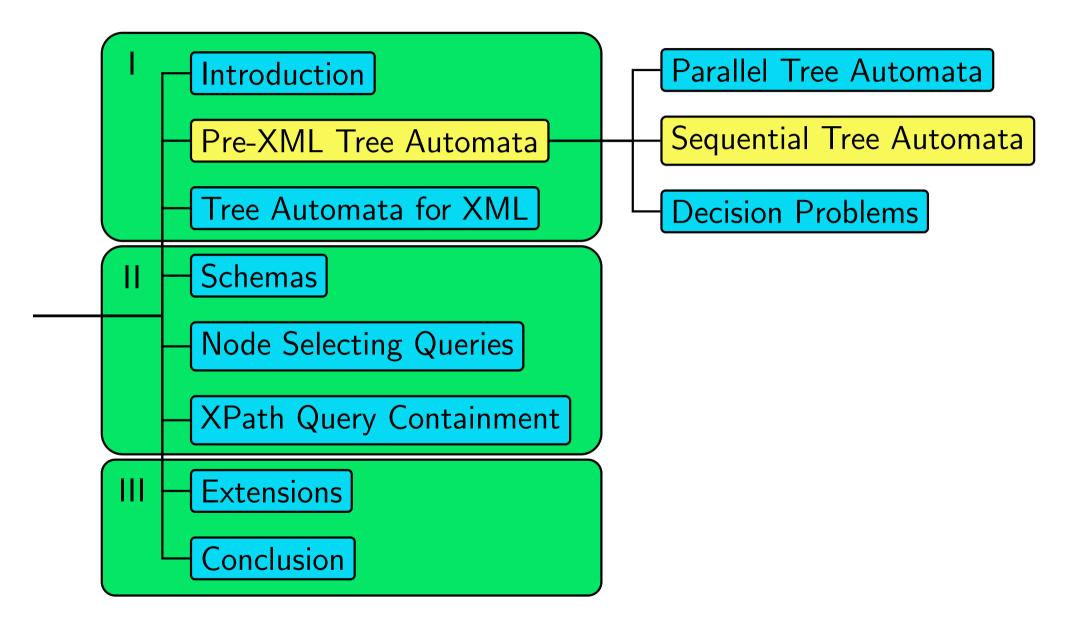


A robust class

- The resulting class is closed under Boolean operations
- Good algorithmic properties
- Does not capture all regular tree languages

Regular tree languages

- Regular tree languages are a robust class
- Characterized by
 - parallel tree automata
 - MSO logic
 - several other models
- They are the natural analog of regular string languages
- Deterministic top-down automata with regular acceptance conditions define a weaker but also robust class



Definition (Tree-walk automata) Depending on

- current state
- symbol of current node
- position of current node wrt its siblings

the automaton moves to a neighbor and takes a new state

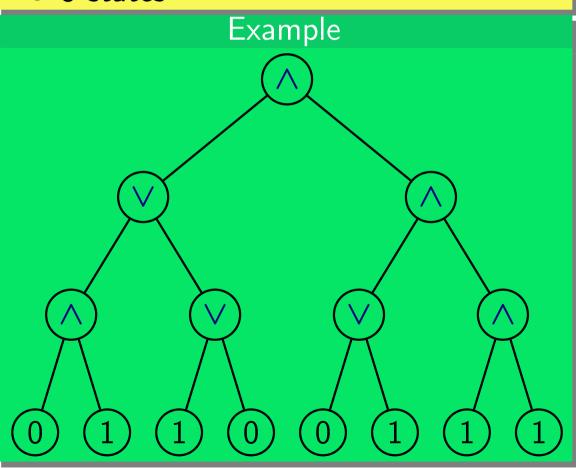
TWA
T
r
e A u t
\odot \bigcirc \bigcirc

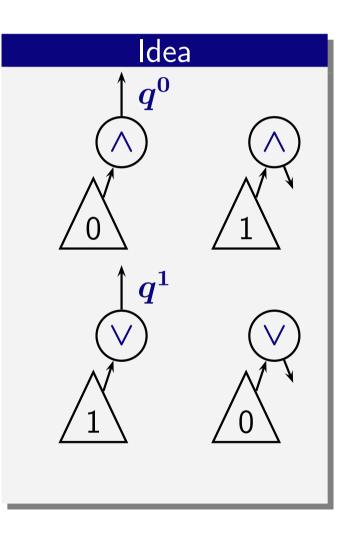
Thomas Schwentick

Trees, Automata & XML

Fact

- Tree-walk automata can evaluate Boolean circuit trees
- 5 states





Theorem (Bojanczyk, Colcombet 2004)

Deterministic TWAs are weaker than nondeterministic TWAs

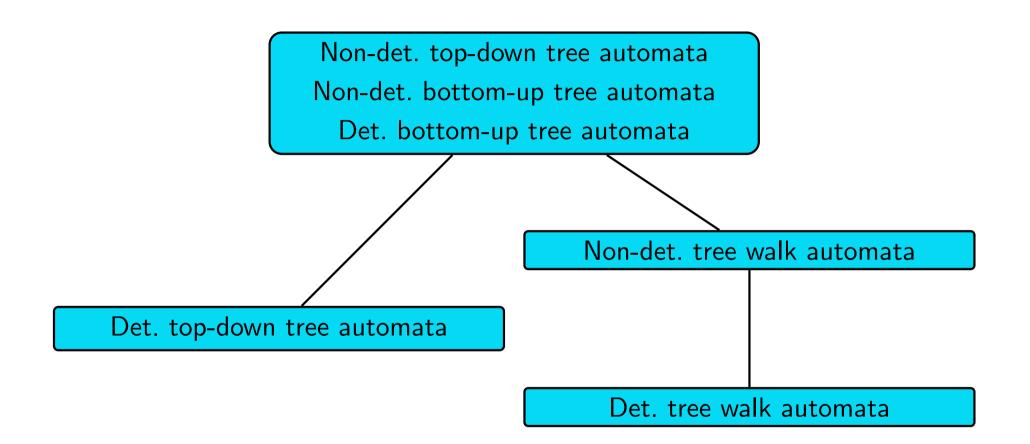
Corollary

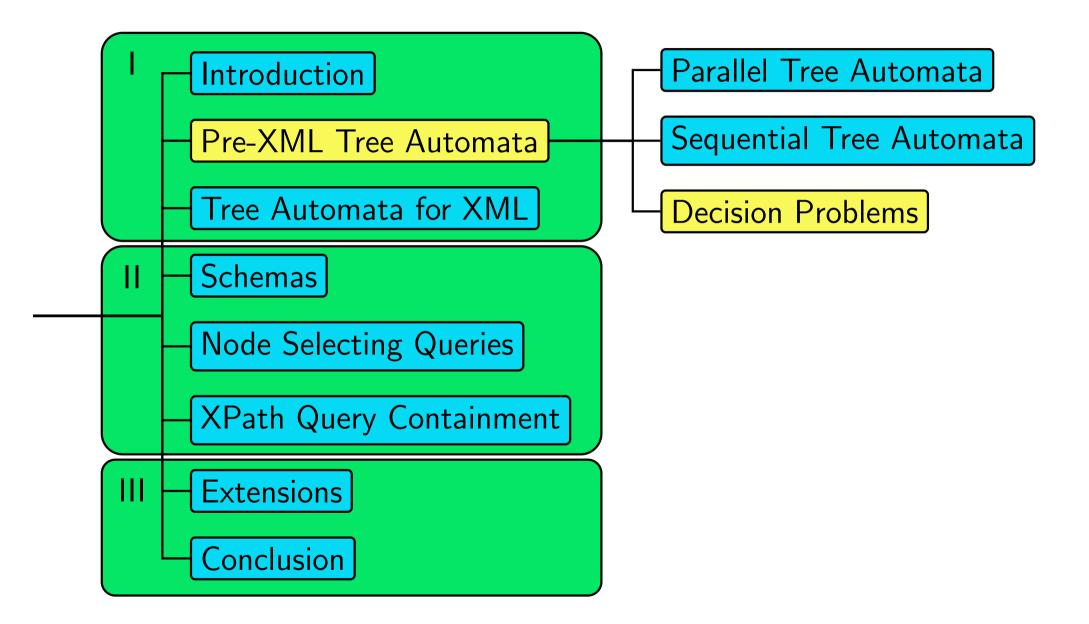
Deterministic TWAs do not capture all regular tree lan-

guages

Conjecture

Nondeterministic TWAs do not capture all regular tree languages





Pre-XML

Algorithmic problems

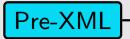
- We consider the following algorithmic problems
- All of them will be useful in the XML context

Membership test for ${\cal A}$	Membership test (combined)				
Given: Tree t	Given: Tree Automaton \mathcal{A} , tree t				
Question: Is $t \in L(\mathcal{A})$?	Question: Is $t \in L(\mathcal{A})$?				
Non-emptiness					
Given: A	Given: Automaton <i>A</i>				
Question: Is $L(\mathcal{A}) \neq \emptyset$?					
Containment	Equivalence				
Given: Automata $\mathcal{A}_1, \mathcal{A}_2$	Given: Automata $\mathcal{A}_1, \mathcal{A}_2$				
Question: Is $L(\mathcal{A}_1) \subseteq L(\mathcal{A}_2)$	Question: Is $L(\mathcal{A}_1) = L(\mathcal{A}_2)$?				

Facts

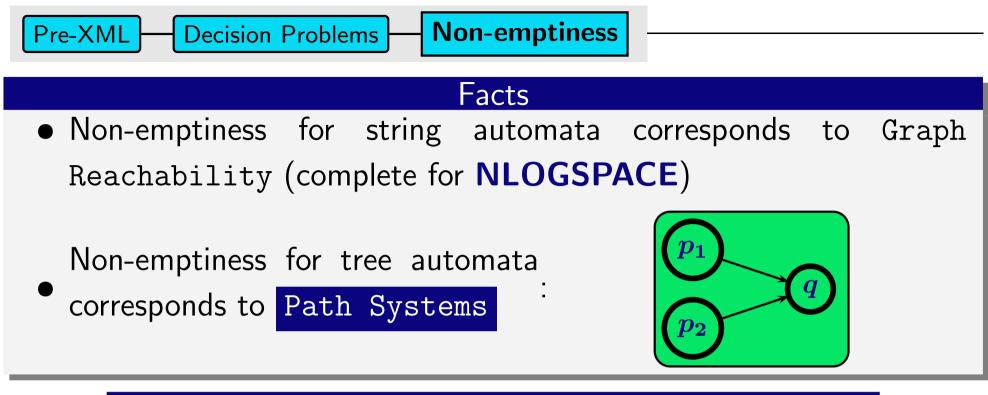
Time Bounds for the combined complexity of membership test for tree automata:

- Deterministic (parallel) tree automata: $O(|\mathcal{A}||t|)$
- Nondeterministic (parallel) tree automata: $O(|\mathcal{A}|^2|t|)$ (Compute, for each node, the set of reachable states)
- Deterministic TWAs: O(|A|²|t|) (Compute, for each node v, the aggregated behavior of A on its subtree: Behavior function)
- Nondeterministic TWAs: O(|A|³|t|) (Compute, for each node v, the aggregated behavior of A on its subtree: Behavior relation)



-1

Question: What is the structural complexity for the various models?				
(Lohrey 2001, Segoufin 2003)				
Model	Time Complexity	Structural Complexity		
Det. top-down TA	$O(\mathcal{A} t)$	LOGSPACE		
Det. bottom-up TA	$O(\mathcal{A} t)$	LOGDCFL		
Nondet. bottom-up TA	$O(\mathcal{A} ^2 t)$	LOGCFL		
Nondet. top-down TA	$O(\mathcal{A} ^2 t)$	LOGCFL		
Det. TWA	$O(\mathcal{A} ^2 t)$	LOGSPACE		
Nondet. TWA	$O(\mathcal{A} ^3 t)$	NLOGSPACE		



Result

- Non-emptiness for bottom-up tree automata can be checked in linear time
- It is complete for **PTIME**

Observations

• Of course:

$$L(\mathcal{A}_1) = L(\mathcal{A}_2) \iff [L(\mathcal{A}_1) \subseteq L(\mathcal{A}_2) \text{ and } L(\mathcal{A}_2) \subseteq L(\mathcal{A}_1)]$$

- Complexity of containment problem is very different for deterministic and non-deterministic automata
- Deterministic automata: construct product automaton

Deterministic bottom-up tree automata

- Product automaton analogous as for string automata
 - Set of states: $Q_1 imes Q_2$
 - Transitions component-wise
- To check $L(\mathcal{A}_1) \subseteq L(\mathcal{A}_2)$:
 - Compute $\mathcal{B} = \mathcal{A}_1 imes \mathcal{A}_2$
 - Accepting states: $F_1 imes (Q_2 F_2)$
 - Check whether $L(\mathcal{B}) = \emptyset$
 - If so, $L(\mathcal{A}_1)\subseteq L(\mathcal{A}_2)$ holds

<u>Theorem</u>

Complexity of Containment for deterministic bottom-up tree automata: $O(|\mathcal{A}_1| \times |\mathcal{A}_2|)$ Non-deterministic automata

- Naive approach:
 - Make \mathcal{A}_2 deterministic (size: $O(2^{|\mathcal{A}_2|}))$
 - Construct product automaton
 - \Rightarrow Exponential time

Unfortunately...

There is essentially no better way

Theorem (Seidl 1990)

Containment for non-deterministic tree automata is complete for **EXPTIME**

Pre-XML

Pre-XML

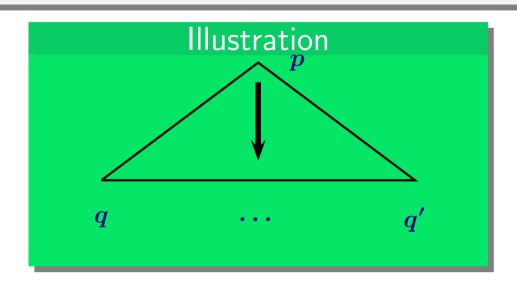
Theorem

Nonemptiness for deterministic top-down automata \mathcal{A} can be checked in polynomial time

Proof Idea

Check for each state p of \mathcal{A} and each pair (q, q') of the leaves automaton \mathcal{B} :

Is there is a tree t such that A starts from state p and obtains a leave string which brings \mathcal{B} from q to q'?



Decision Problems

Theorem

Containment for deterministic top-down automata \mathcal{A} can be checked in polynomial time

Pro	of Id	ea
1_	4	۱۸/

- ullet Tree automata \mathcal{A}_1 , \mathcal{A}_2 with leaves automata $\mathcal{B}_1, \mathcal{B}_2$
- Check

Pre-XML

- for each pair (p_1,p_2) of states of \mathcal{A}_1 and \mathcal{A}_2 and
- for each two pairs (q_1, q_1') and (q_2, q_2') of \mathcal{B}_1 and \mathcal{B}_2 , resp.:

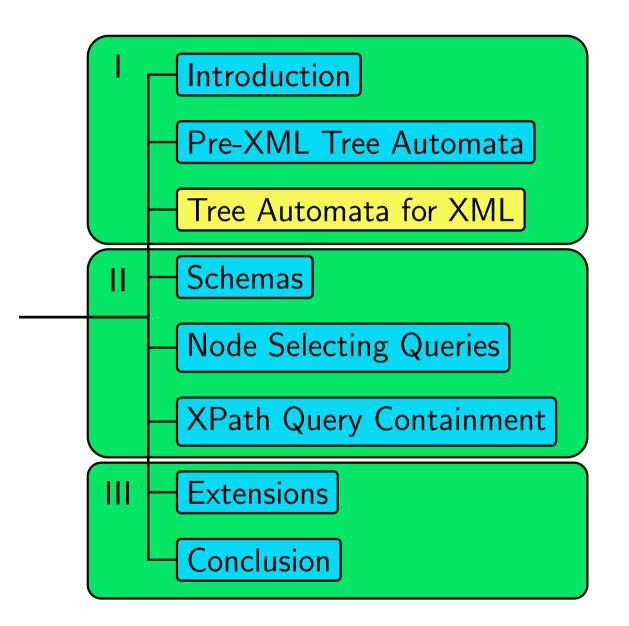
Is there is a tree t such that for both i = 1, i = 2: T_i starts from state p_i and obtains a leave string which brings \mathcal{B}_i from q_i to q'_i ?

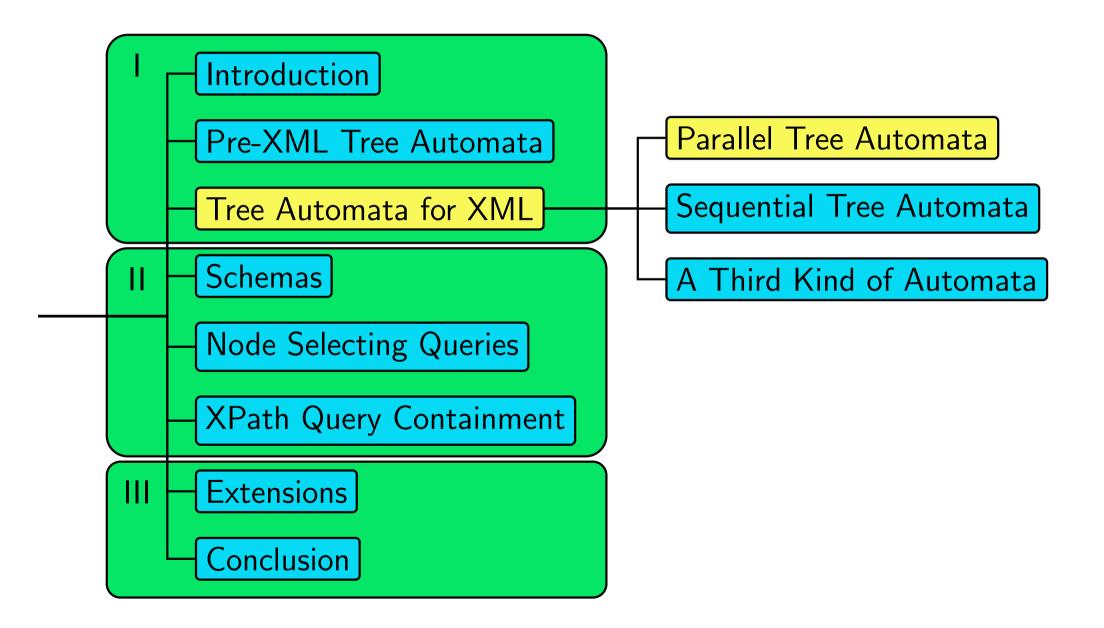
Complexities of basic algorithmic problems					
Model	Membership	Non-emptiness	Containment		
Det. top-down TA	LOGSPACE PTIME P		PTIME		
Det. bottom-up TA	LOGDCFL	PTIME	PTIME		
Nondet. bottom-up TA	LOGCFL	ΡΤΙΜΕ	EXPTIME		
Nondet. top-down TA	LOGCFL	PTIME	EXPTIME		
Det. TWA	LOGSPACE	PTIME (*)	PTIME (*)		
Nondet. TWA	NLOGSPACE PTIME (*) EXPTIME (EXPTIME (*)		
(*: upper bounds)					

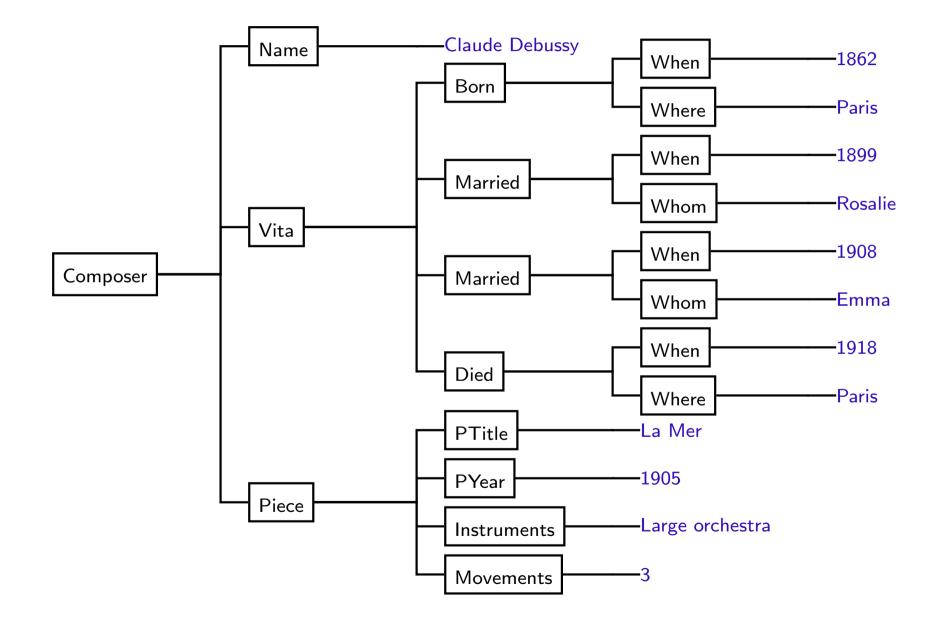
(*: upper bounds)

A further result to remember

Theorem (Stockmeyer, Meyer 1971) Containment and Equivalence for regular expressions on strings are complete for **PSPACE**

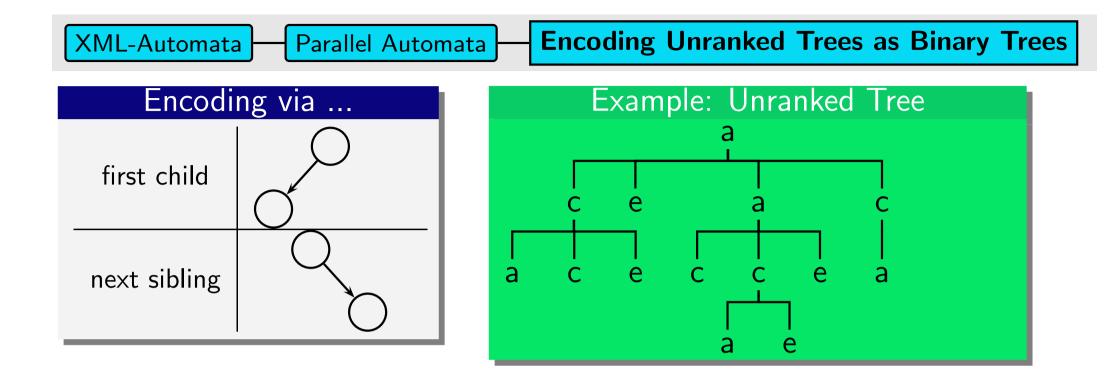


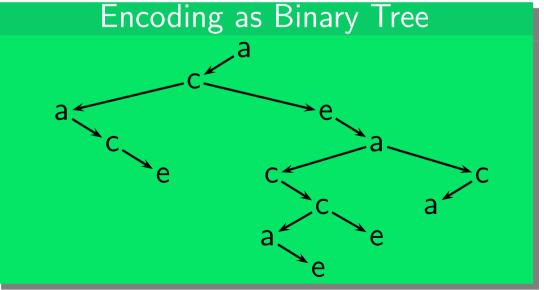




Agenda

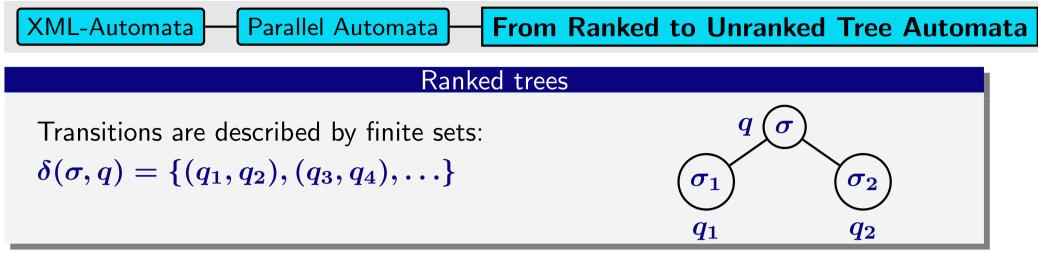
- Now we move from ranked to unranked trees
- There is a basic choice:
 - Either: we encode unranked trees as binary trees and go on with ranked automata
 - Or: we adapt the ranked automata models
- In both cases: not many surprises, most results remain

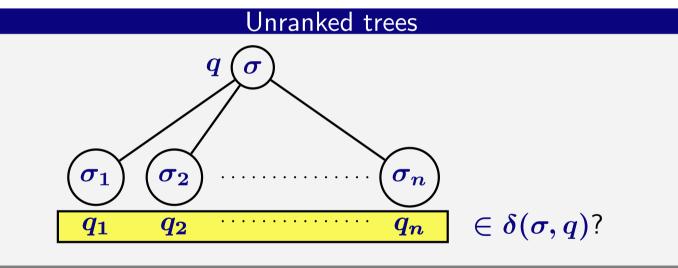




Thomas Schwentick

Trees, Automata & XML





$\delta(\sigma,q)$

- For unranked trees, $\delta(\sigma, q)$ is a regular language
- $\delta(\sigma, q)$ can be specified by regular expression or finite string automaton [Brüggemann-Klein, Murata, Wood 2001]

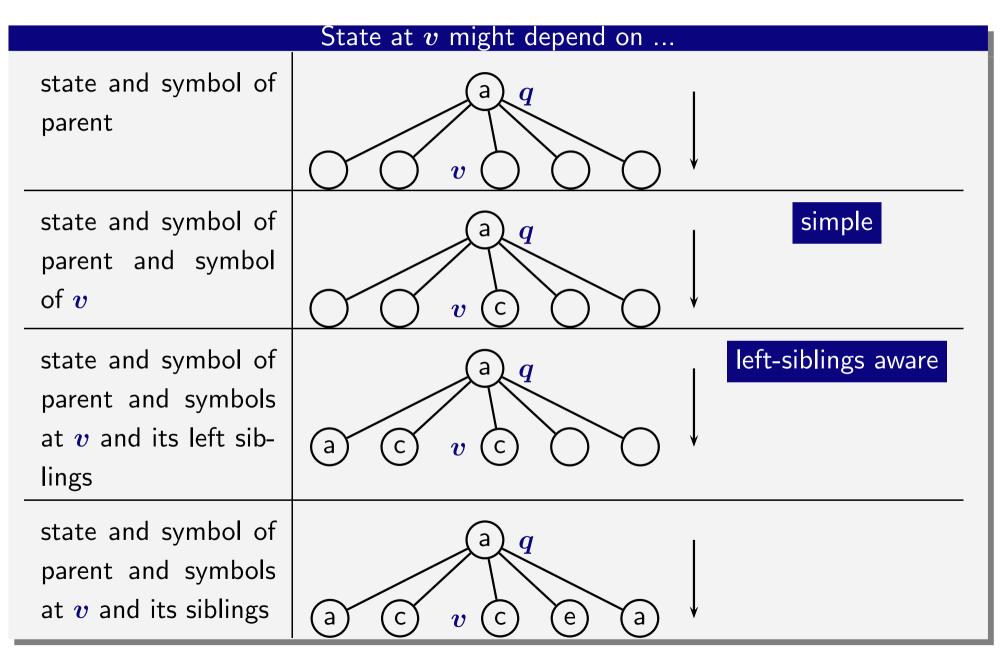
Remark

- Representation of $\delta(\sigma,q)$ has influence on complexity
- Natural choice:
 - For nondeterministic tree automata: represent $\delta(\sigma, q)$ by NFAs or regular expressions
 - For deterministic tree automata:
 represent $\delta(\sigma, q)$ by DFAs
- \Rightarrow Same complexity results as for ranked trees

Theorem

The following are equivalent for a set L of unranked trees:

- (a) L is accepted by a nondeterministic bottom-up automaton
- (b) L is accepted by a deterministic bottom-up automaton
- (c) L is accepted by a nondeterministic top-down automaton
- (d) L is characterized by an MSO-formula



XML-Automata

Fact

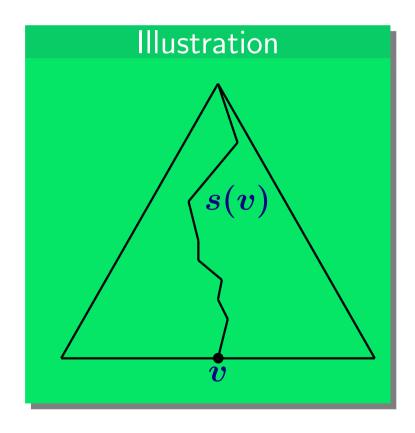
A simple deterministic top-down automata can check the existence of vertical paths with regular properties

Construction

- For a node v let s(v) denote the sequence of labels from the root to v
- Let \mathcal{A} be a deterministic string automaton
- $\mathcal{A}' :=$ top-down automaton which takes at v state of \mathcal{A} after reading s(v)

\Rightarrow \mathcal{A}' is deterministic

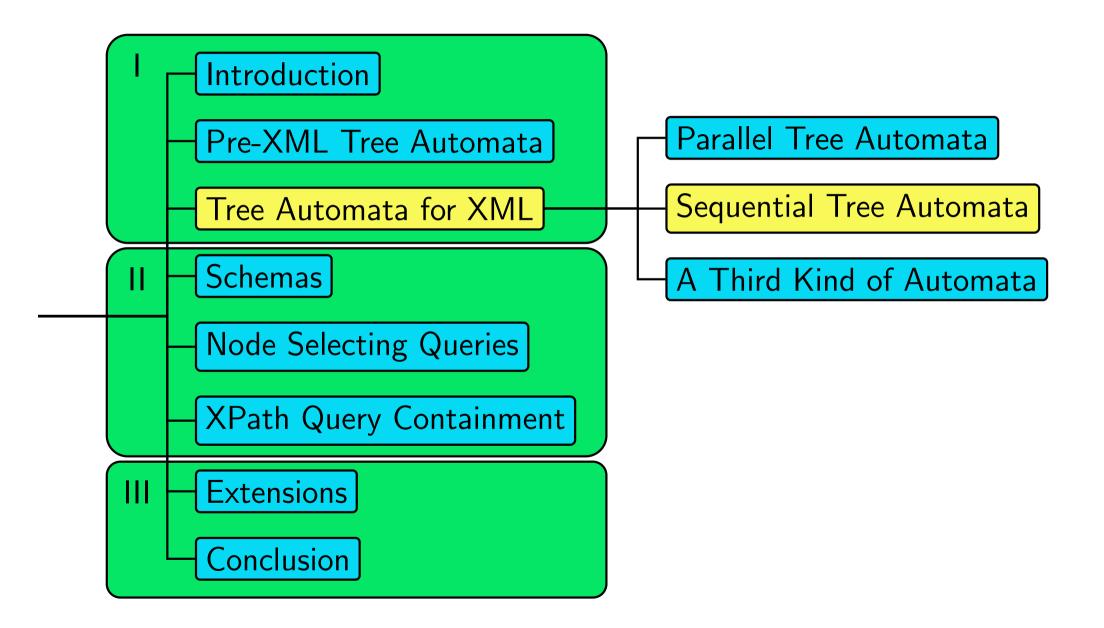
• There is a path from the root to a leaf v with $s(v) \in L(\mathcal{A})$ iff \mathcal{A}' assumes at least one state from F at a leave



Streaming XML

Similar construction used for XPath evaluation on streams [Green et al. 2003]

Trees, Automata & XML



Generalization of Tree-Walk Automata

Allowed transitions: Go up

Go to first child

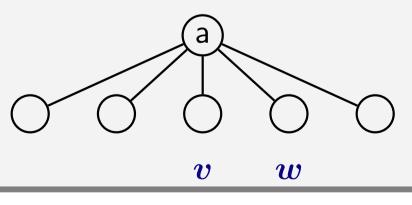
Go to left sibling

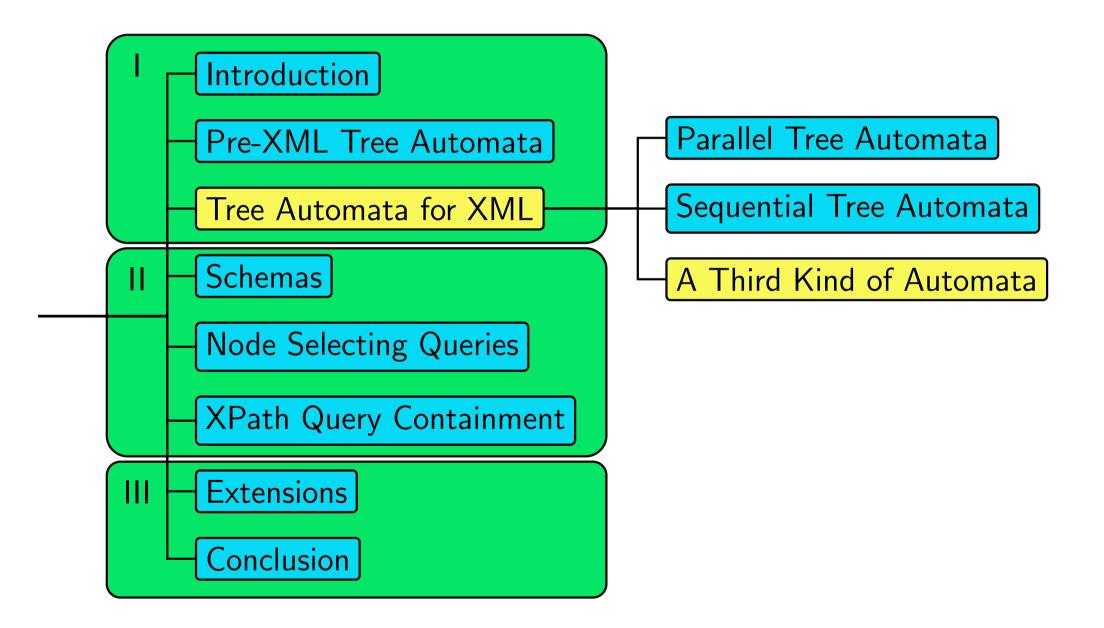
Go to right sibling

→ Caterpillar automata [Brüggemann-Klein, Wood 2000]

Basic design choice

Should a transition to a sibling be aware of the label of the parent?





A third kind of automata for XML

 Document automata are string automata reading XML documents as text

- Tags are represented by symbols from a given alphabet
- Variants:
 - Finite document automata
 - Pushdown document automata
- Useful especially in the context of streaming XML

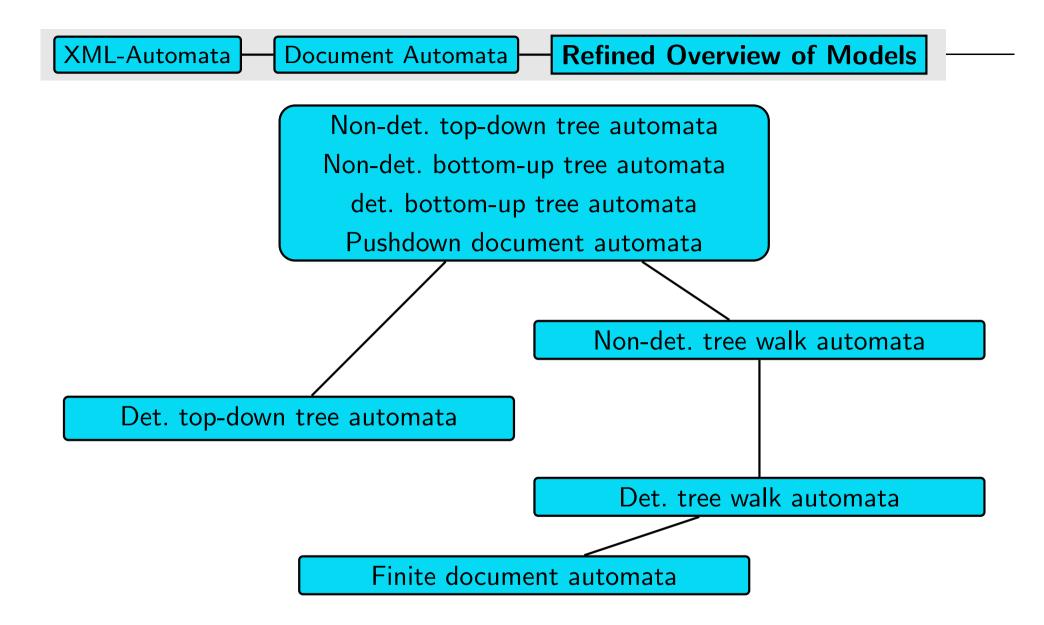
Theorem (Segoufin, Vianu 2002)

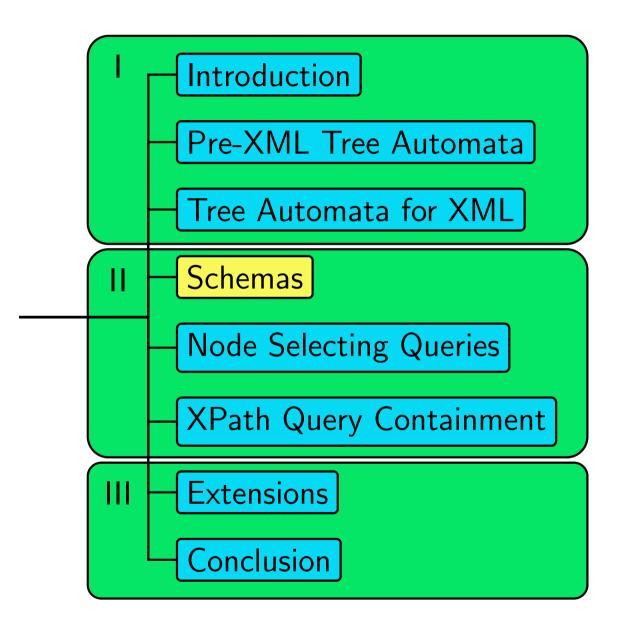
 Regular languages of XML-trees can be recognized by deterministic push-down document automata.

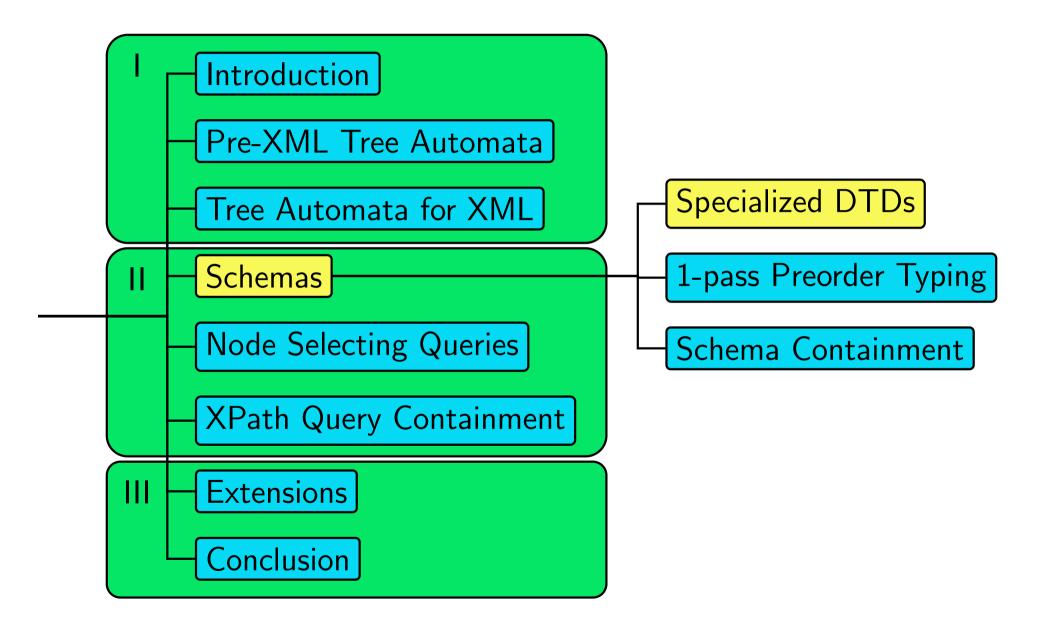
• Depth of push-down is bounded by depth of tree

Summary

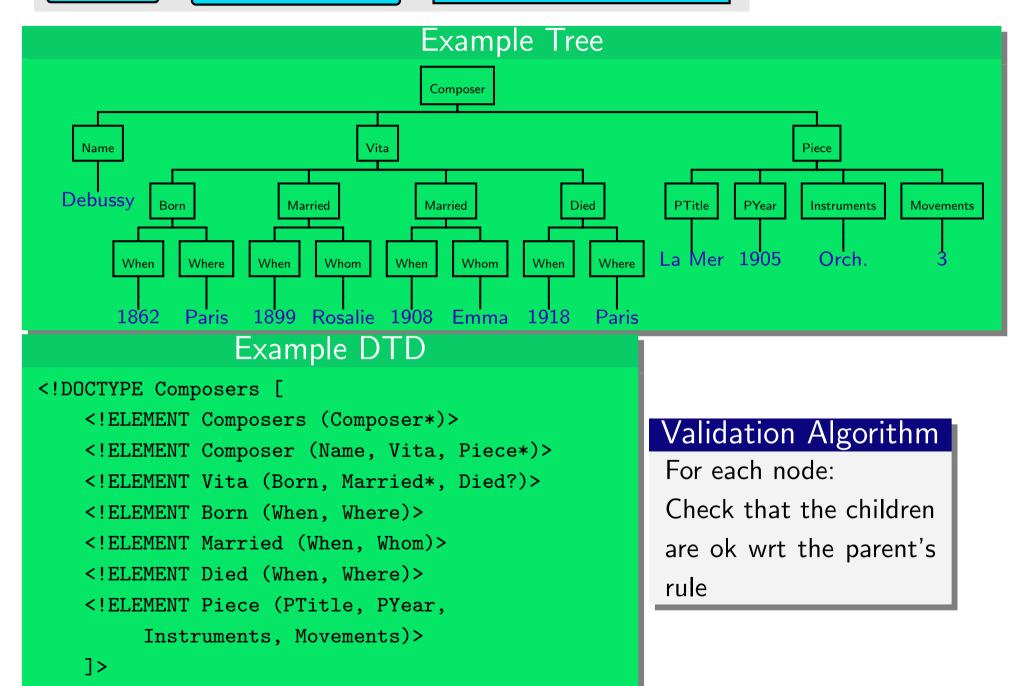
- Moving from ranked to unranked automata requires some adaptations
- Transitions can be defined with regular string languages $\delta(\sigma,q)$
- By and large, things work smoothly
- In particular:
 - there is an equally robust notion of regular tree languages
 - The complexities are the same as for ranked automata (if the sets $\delta(\sigma, q)$ are represented in a sensible way)





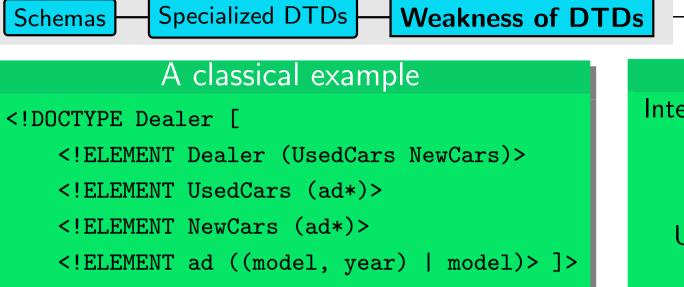


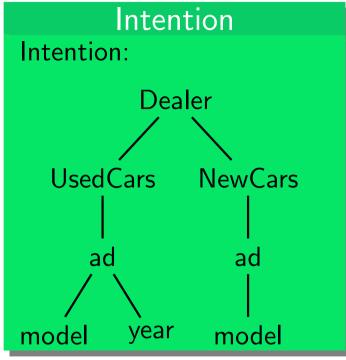
Schemas



Observation

- Validation wrt DTDs is a simple task
- Can be done by
 - Bottom-up automata
 - Deterministic top-down automata (if siblings contribute to new state)
 - Deterministic tree-walk automata:
 Just a depth-first left-to-right traversal
- In particular: Validation possible in linear time during one pass through the document (1-pass validation)
- But DTDs are also rather weak...





Observation

- Elements with the same name may have different structure in different contexts
- \rightarrow It would be nice to have types for elements

PODS 2004

Thomas Schwentick

Trees, Automata & XML

Definition (Papakonstantinou, Vianu 2000)

A specialized DTD (SDTD) over alphabet Σ is

a pair (d, μ) , where

- d is a DTD over the alphabet Σ' of types
- $\mu: \Sigma' \to \Sigma$ maps types to tag names

Note

Concerning the name:

"specialized" refers to types, not to DTDs

Example

Dealer \rightarrow UsedCars NewCars μ (Dealer) = Dealer

- NewCars \rightarrow adNew*
- adUsed \rightarrow model year
- $adNew \rightarrow model$

UsedCars \rightarrow adUsed* μ (UsedCars) = UsedCars μ (NewCars) = NewCars μ (adUsed) = ad μ (adNew) = ad

Schemas

Example: SDTD for Boolean circuit trees				
$1-\text{AND} \rightarrow (1-\text{OR} \mid 1-\text{AND} \mid 1-\text{leaf})^*$	Tag	h(Tag)		
		1-AND	AND	
	→ .* (1-OR 1-AND 1-leaf) .*	0-AND	AND	
	\rightarrow .* (0-OR 0-AND 0-leaf) .*	1-OR	OR	
	→ (0-OR 0-AND 0-leaf)*	0-OR	OR	
1-leaf —	$ ightarrow \epsilon$	1-leaf	1	
0-leaf —	$ ightarrow \epsilon$	0-leaf	0	
		0 ICal		



Observation

- A tree conforms to a specialized DTD (d, μ) if there is a labeling of its nodes by types which is valid wrt. d
- This reminds us of something...

Theorem

Specialized DTDs capture exactly the regular tree languages

Question: What about 1-pass validation?

Definition (Validation)

Given: Specialized DTD d, tree t

Qeustion: Is t valid wrt d?

Definition (Typing)

Given: Specialized DTD d, tree t

Output: Consistent type assignment for the nodes of t

Facts

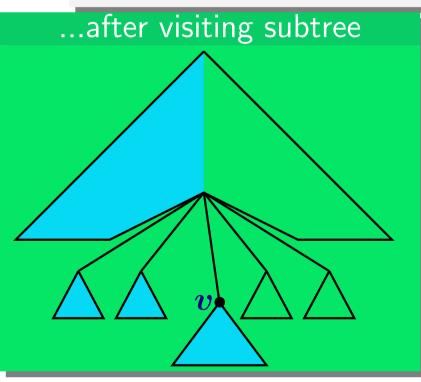
- Specialized DTDs \equiv regular tree languages
- \rightarrow Validation by a deterministic push-down automaton
 - Validation in linear time during one pass through the document

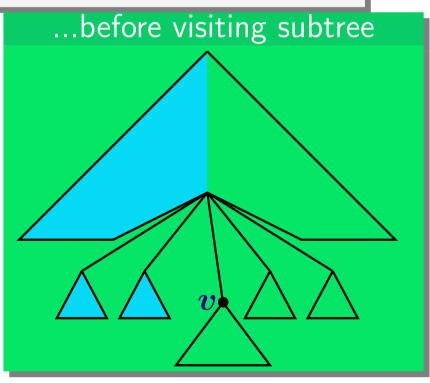
Question: What about 1-pass typing?

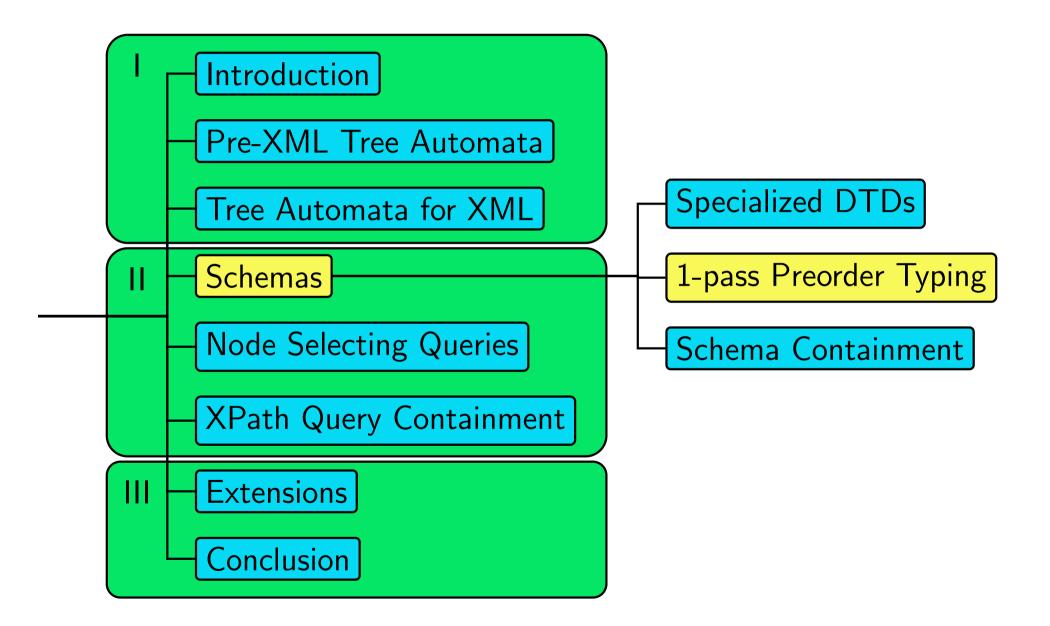
Observations

- Type of a node \equiv state of deterministic bottom-up automaton
- Deterministic push-down automaton can assign types during 1 pass
- But the type of a node v is determined after visiting its subtree
- 1-pass preorder typing

determine type of v before visiting the subtree of v







1-Pass Typing **1-Pass Preorder Typing** Schemas ...before visiting subtree Question When would it be important to know the type of \boldsymbol{v} before visiting the subtree of v?

Answer

Whenever the processing proceeds in document order, e.g.:

- Streaming XML: Typing as the first operator in a pipeline
- SAX-based processing

Our next goal

Find out which schemas admit 1-pass preorder typing

Restricted Schemas

(Murata, Lee, Mani 2001) introduced* restrictions on specialized DTDs to ensure efficient validation (*: in a slightly different framework)

- Two types b,b' compete if $\mu(b)=\mu(b')$
- A specialized DTD is single-type if no competing types occur in the same rule (e.g., $a \rightarrow bcb'$ is not single-type)
- A specialized DTD is restrained-competition if no rule allows strings wbv, wb'v' with competing types b, b'

(e.g., $a
ightarrow c(b + d^*b')$ is not restrained-competition)

 The authors argue that XML-Schema roughly corresponds to single-type SDTDs

Fact

Both restrictions are sufficient to get 1-pass preorder typing!

Question: Are they also necessary?

Remarks

- The definition of "1-pass preorder typing" does not yet restrict the efficiency of determining the type of a node
- Typing could be 1-pass preorder but very time consuming
- It turns out that essentially this never happens

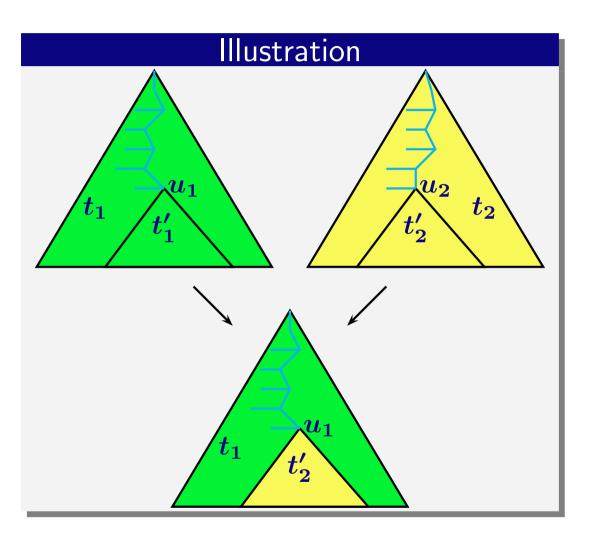
Theorem (Martens, Neven, Sch. 2004)

For a regular tree language L the following are equivalent

- (a) L can be described by a 1-pass preorder typable SDTD
- (b) L can be described by a restrained-competition SDTD
- (c) *L* has linear time 1-pass pre-order typing
- (d) L can be preorder-typed by a deterministic pushdown document automaton
- (e) Types for trees in L can be computed by a left-siblings-aware top-down deterministic tree automaton

Further characterizations

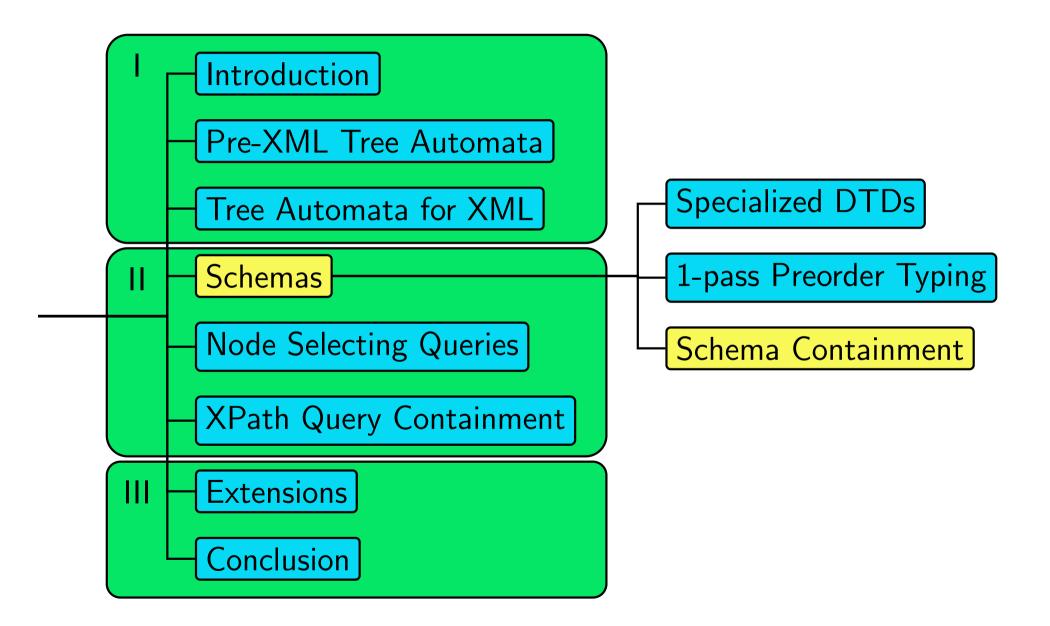
- This class has further interesting characterizations
- E.g., by closure under ancestor-sibling-guarded subtree exchange



Theorem (Martens, Neven, Sch. 2004)

For a regular tree language L the following are equivalent

- (a) L can be described by a single-type SDTD
- (b) Types for trees in L can be computed by a simple top-down deterministic tree automaton
- (c) L is closed under ancestor-guarded subtree exchange



Schema Containment

Given: Schemas d_1, d_2 **Question:** Is $L(d_1) \subseteq L(d_2)$?

Observations

- Important, e.g., for data integration
- Recall: Specialized DTDs are essentially non-deterministic tree automata
- \Rightarrow Containment of specialized DTDs is in **EXPTIME**
 - But the restricted forms have lower complexity
 - Complexity of containment depends on the allowed regular expressions

Schemas

Results (partly from Martens, Neven, Sch. 2004)					
	Schema type	unrestricted	deterministic expressions		
	DTDs	PSPACE	PTIME		
	single-type SDTDs	PSPACE	PTIME		
	restrained-competition SDTDs	PSPACE	ΡΤΙΜΕ		
	unrestricted SDTDs	EXPTIME	EXPTIME		

Observations

- For unrestricted SDTDs the complexity is dominated by tree automata containment
- For the others it is dominated by the sub-task of checking containment for regular expressions

Observations (cont.)

- ... for the others it is dominated by the sub-task of checking containment for regular expressions
- Actually, this observation can be made more precise

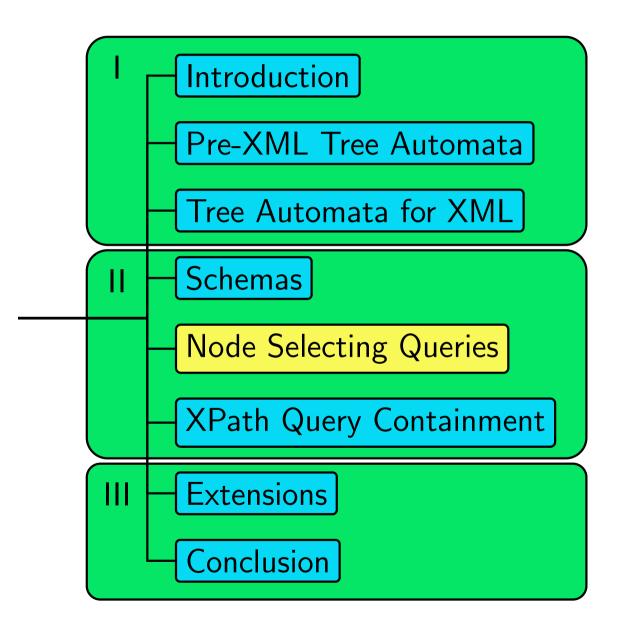
Theorem (Martens, Neven, Sch. 2004)

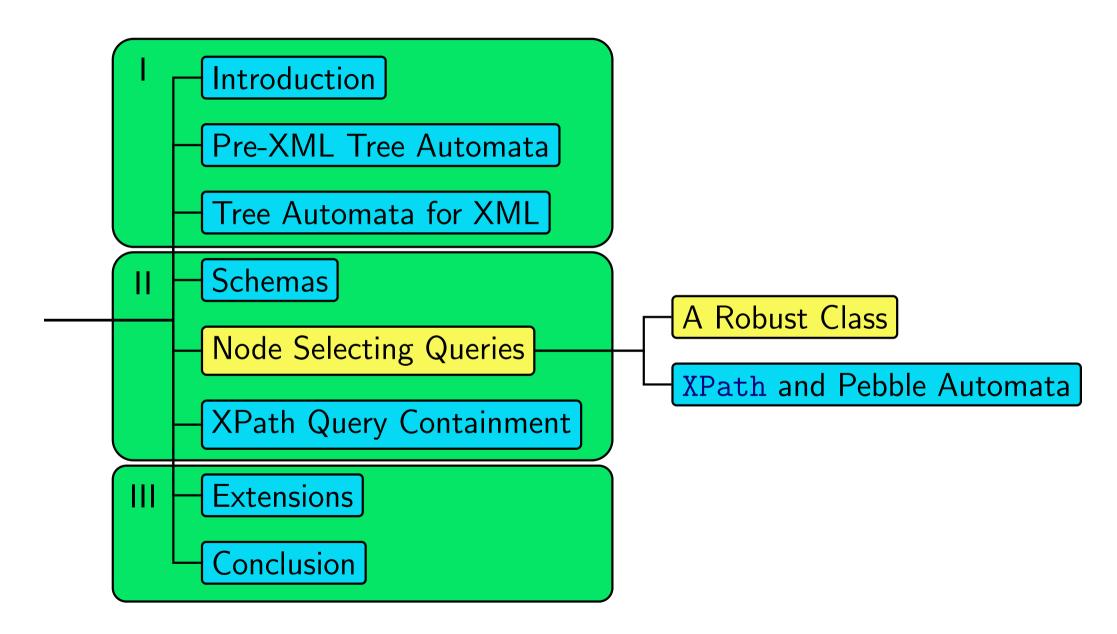
For a class \mathcal{R} of regular expressions and a complexity class \mathcal{C} , the following are equivalent

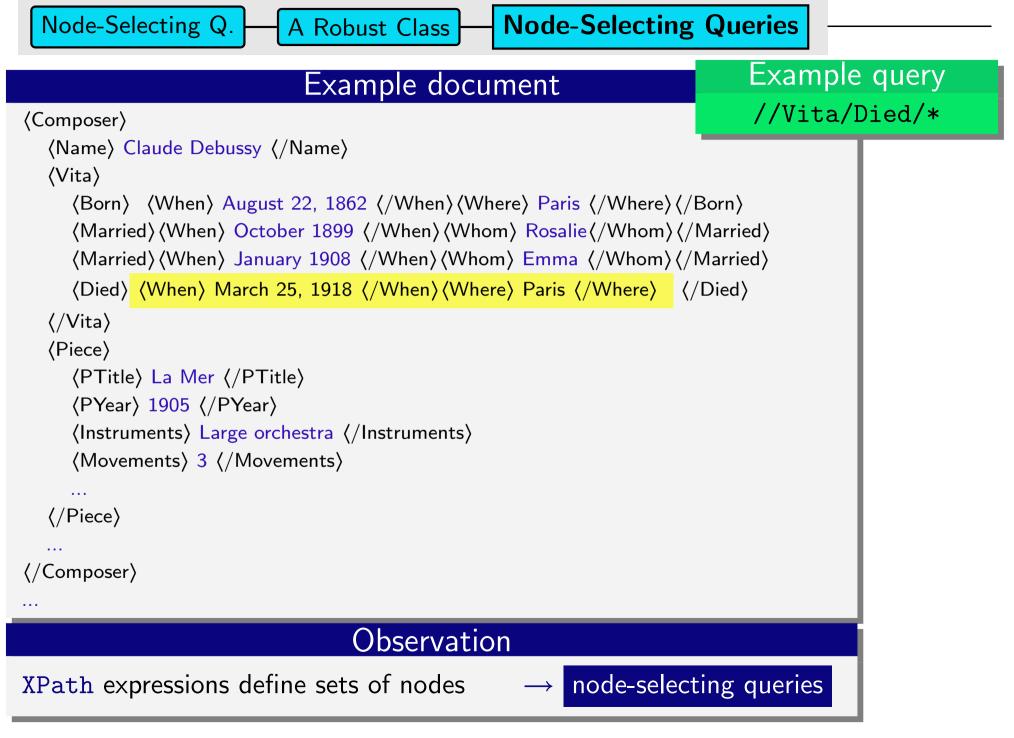
- (a) The containment problem for \mathcal{R} expressions is in \mathcal{C} .
- (b) The containment problem for DTDs with regular expressions from \mathcal{R} is in \mathcal{C} .
- (c) The containment problem for single-type SDTDs with regular expressions from \mathcal{R} is in \mathcal{C} .

Summary

- Regular tree languages are a nice framework for schema languages
 - Linear time validation
 - Static analysis is expensive
- They also serve as a basis for restricted classes with better algorithmic properties:
 - 1-pass preorder typing
 - more feasible static analysis, in particular if the $\delta(\sigma, q)$ are given by deterministic automata
- Restrained competition \equiv Deterministic top-down automata \equiv 1-pass preorder typable







A Robust Class

Node-Selecting Q.

Question

Is there a class of node-selecting queries, as robust as the regular tree languages?

Observation

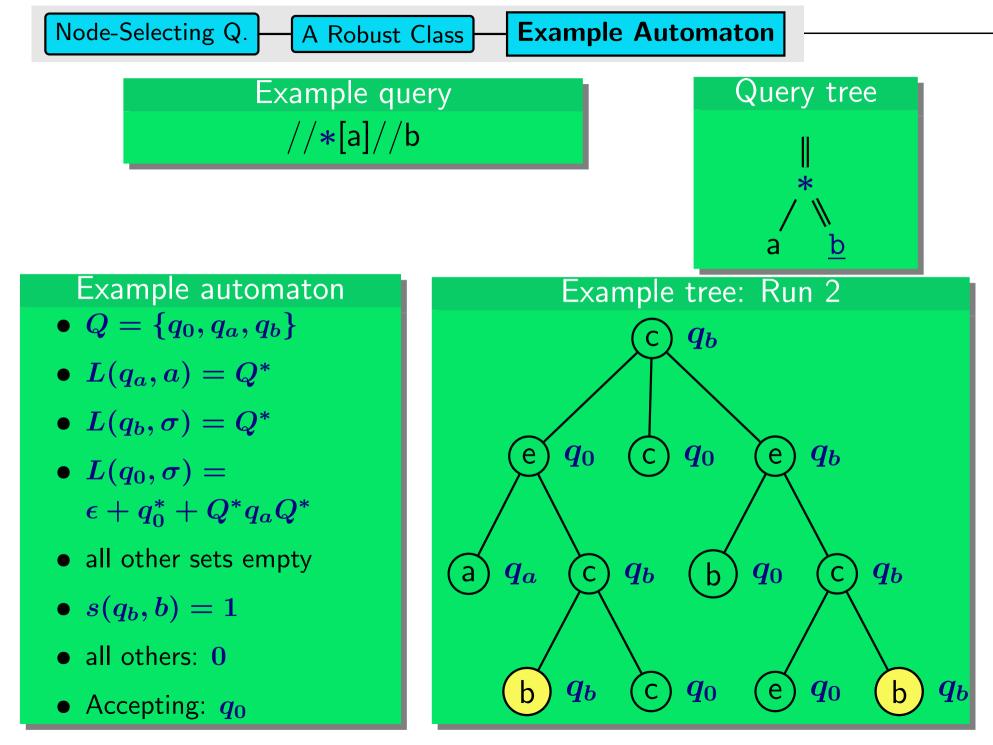
- There is a simple way to define node selecting queries by monadic second-order formulas:
- Simply use one free variable: $\varphi(x)$
- Is there a corresponding automaton model?
- It is relatively easy to add node selection to nondeterministic bottom-up automata

Definition (Nondetermistic bottom-up node-selecting automata)

• Nondeterministic bottom-up automata plus select function:

$$s:Q imes \Sigma o \{0,1\}$$

• Node v is in result set for tree $t:\iff$ there is an accepting computation on t in which v gets a state q such that $s(q,\lambda(v))=1$



PODS 2004

Fact

- Existential semantics: a node is in the result if there exists an accepting run which selects it
- Universal semantics: a node is in the result if every accepting run selects it
- Both semantics define the same class of queries

Result

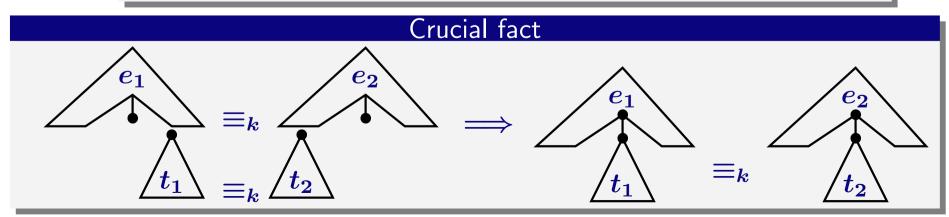
A node selecting query is MSO-definable iff it is expressible by a nondeterministic bottom-up node selecting automaton

Result

A node selecting query is MSO-definable iff it is expressible by a nondeterministic bottom-up node selecting automaton

Proof Idea

- Given formula $\varphi(x)$ of quantifier-depth k and tree t, for each node v the automaton does the following:
 - Compute k-type of subtree at v
 - Guess k-type of "envelope tree" at v
 - Conclude whether $oldsymbol{v}$ is in the output
 - Check consistency upwards towards the root
- \Rightarrow one unique accepting run

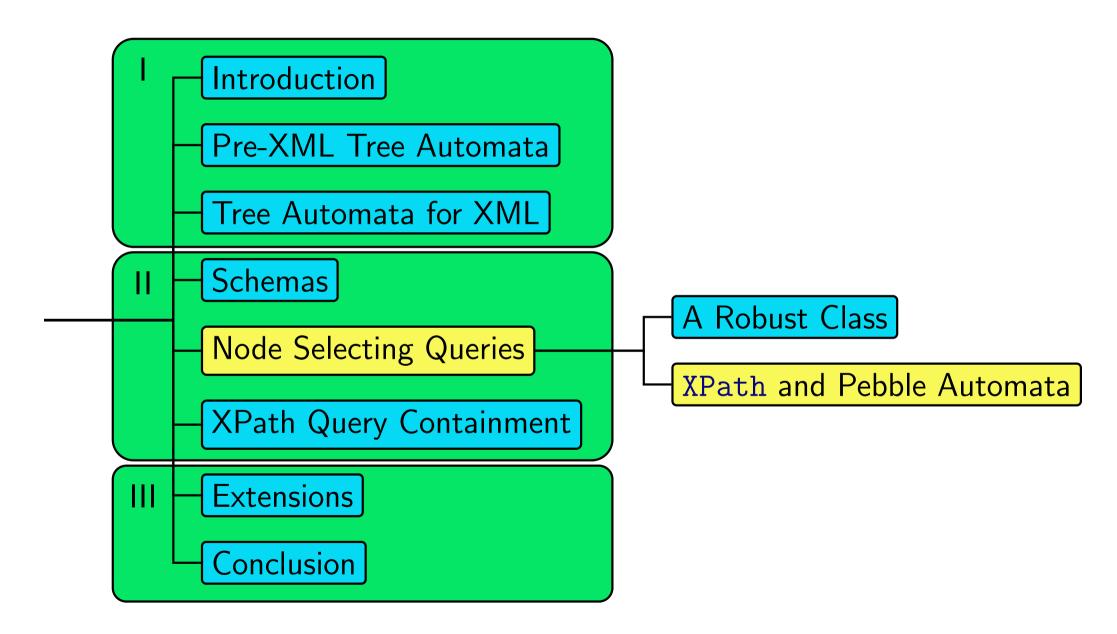


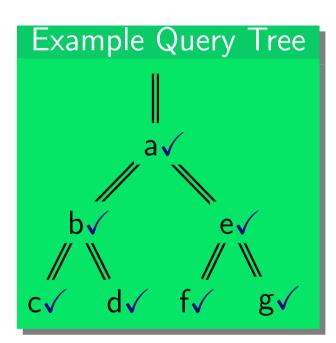
More query models

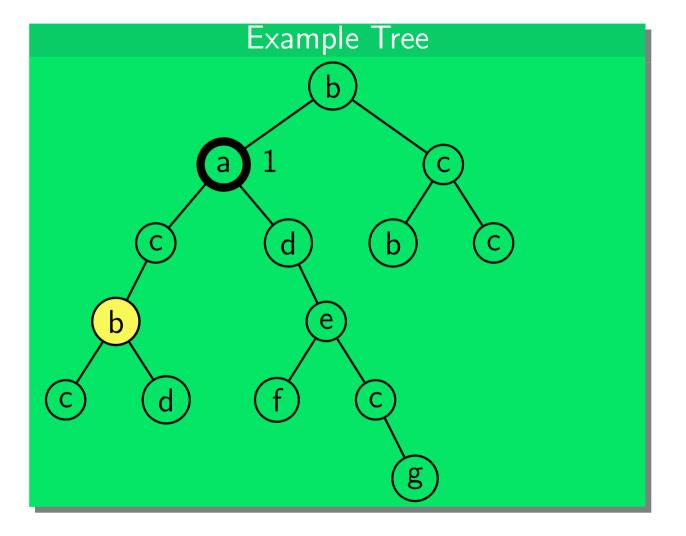
- Unfortunately, the translation from formula to automaton can be prohibitively expensive: number of states $\sim 2^{2^{-2^{|\varphi|}}}$
- Actually: If P ≠ NP there is no elementary *f*, such that MSO-formulas can be evaluated in time *f*(|formula|×*p*(|tree|)) with polynomial *p* [Frick, Grohe 2002]
- $\rightarrow\,$ query languages with better complexity properties needed
 - Good candidate: Monadic Datalog [Gottlob, Koch 2002] and its restricted dialects like TMNF
 - Further models:
 - Attributed Grammars [Neven, Van den Bussche 1998]
 - μ -formulas [Neumann 1998]
 - Context Grammars [Neumann 1999]
 - Deterministic Node-Selecting Automata [Neven, Sch. 1999]

Some facts about query evaluation

- MSO node-selecting queries can be evaluated in two passes through the tree
 - first pass, bottom-up: essentially computes the types of the subtrees
 - second pass, top-down: essentially computes the types of the envelopes and combines it with the subtree information
- This can be implemented by a 2-pass pushdown document automaton which in its first pass attaches information to each node [Neumann, Seidl 1998; Koch 2003]
- In particular: queries can be evaluated in linear time







Definition (Pebble Automata)

- Extension of tree-walk automata by fixed number k of pebbles
- Only pebble with highest number (current pebble) can move, depending on state, number of pebbles symbols under pebbles and incidence of pebbles
- Possible pebble movements:

Node-Selecting Q.

- stay, go to left sibling, go to right sibling, go to parent
- lift current pebble or place new pebble at current position
- Nondeterminism possible

<u>Facts</u>

- Pebble automata capture navigational XPath queries
- Extended by alternation, branching and an output mechanism they even capture a large part of XSLT [Papakonstantinou, Vianu 2000]

Automata and Logic

Some observations

- On strings, MSO logic and (unary) transitive closure logic (TC-logic) coincide
- On trees

Node-Selecting Q.

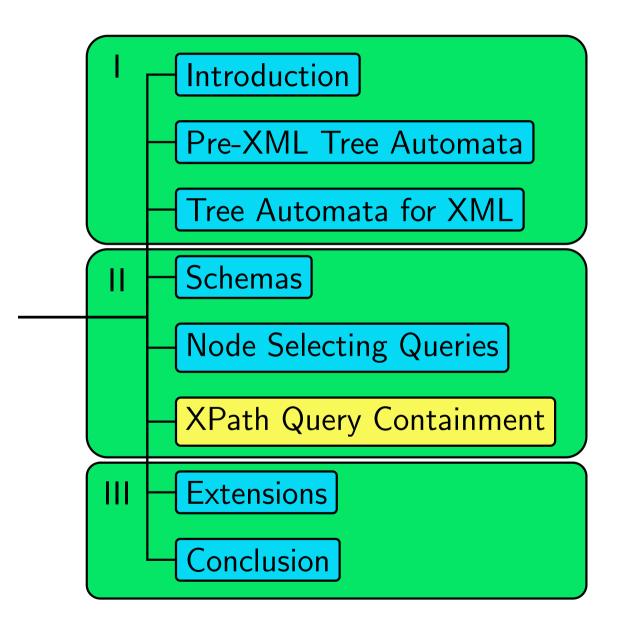
– MSO \equiv parallel automata

XPath

- TC-logic \equiv pebble automata (i.e., strongest sequential automata)
- Whether MSO \equiv TC-logic is open
- First-order logic \equiv XPath + conditional axes [Marx 2004]
- The relationship between logics and automata models between FO and TC-logic is largely unexplored:
 - Tree-walk automata,
 - FO-logic + regular expressions
 - Conditional XPath + arbitrary star operator

Summary	
There is a natural notion of	
regular node-selecting queries	generalizing regular
tree languages	

- Probably for most practical purposes too strong
- But it offers a useful framework for the study of other classes of queries
- A robust but weaker class of queries is captured by pebble automata



Example query //Vita/Died/*

Example document

```
(Composer)
```

```
 {Name > Claude Debussy  /Name >
```

```
\langle Vita \rangle
```

```
(Married) (When) January 1908 (/When) (Whom) Emma (/Whom) (/Married)
```

```
(Died) (When) March 25, 1918 (/When) (Where) Paris (/Where) (/Died)
```

```
\langle /Vita \rangle
```

</ vita </pre>

```
〈PTitle〉La Mer 〈/PTitle〉
〈PYear〉1905 〈/PYear〉
〈Instruments〉Large orchestra 〈/Instruments〉
```

```
(Movements) 3 (/Movements)
```

```
\langle / \mathsf{Piece} \rangle
```

```
\langle / Composer \rangle
```

```
...
```

More XPath

Example doc

Another example query

(/*[Name]//When) | (//Where)

(Composer)

(Name) Claude Debussy (/Name) (Vita)

(Born) (When) August 22, 1862 (/When) (Where) Paris (/Where) (/Born)

(Married) (When) October 1899 (/When) (Whom) Rosalie (/Whom) (/Married)

(Married) (When) January 1908 (/When) (Whom) Emma (/Whom) (/Married)

(Died) (When) March 25, 1918 (/When) (Where) Paris (/Where) (/Died)

$\langle /Vita \rangle$
<pre>〈Piece〉</pre>
〈PTitle〉 La Mer 〈/PTitle〉
〈PYear〉 1905 〈/PYear〉
<pre> (Instruments) Large orchestra (/Instruments)</pre>
<pre>〈Movements〉 3 〈/Movements〉</pre>

 $\langle / Piece \rangle$

. . .

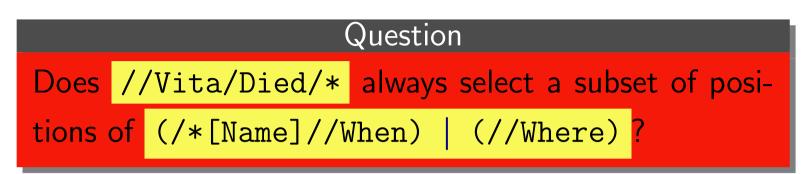
```
(/Composer)
```

More XPath operators

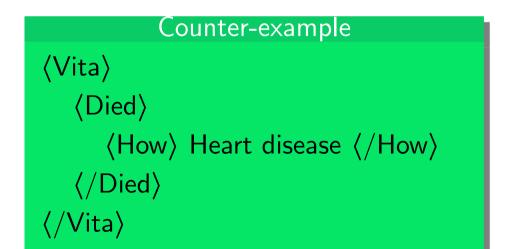
Operator	Meaning	
p/q	child	
p//q	descendant	
$oldsymbol{p}[oldsymbol{q}]$	filter	
*	wildcard	
$p \mid q$	disjunction	

Trees, Automata & XML

XPath Query Containment.







Further question

But what if the type of documents is constrained?

Thomas Schwentick

Trees, Automata & XML

Fact

For all XML documents of type

<!DOCTYPE Composers [<!ELEMENT Composers (Composer*)> <!ELEMENT Composer (Name, Vita, Piece*)> <!ELEMENT Vita (Born, Married*, Died?)> <! ELEMENT Born (When, Where) > <! ELEMENT Married (When, Whom)> <!ELEMENT Died (When, Where)> <!ELEMENT Piece (PTitle, PYear, Instruments, Movements)> 1> the pattern //Vita/Died/* always selects a subset of positions of

(/*[Name]//When) | (//Where)

Definition (Containment for XPath(S))

Let S be a set of XPath-operators. The containment problem for XPath(S) is:

Given: XPath(S)-expression p,q

Question: Is $p(t) \subseteq q(t)$ for all documents t?

Definition (Containment for XPath (S) with DTD)

Let S be a set of XPath-operators. The containment problem for XPath(S) in the presence of DTDs is:

Given: XPath(S)-expression p, q, DTD d

Question: Is $p(t) \subseteq q(t)$ for all documents t satisfying $t \models d$?

Observation

These problems are crucial for static analysis and query optimization

Question			
For which fragments $oldsymbol{S}$ are these problems			
• decidable?			
• efficiently solvable?			

General remarks

- The XPath containment problem has been considered for various sets of operators
- Results vary from **PTIME** to "undecidable"
- Various methods have been used:
 - Canonical model technique
 - Homomorphism technique
 - Chase technique
- More about this in [Miklau, Suciu 2002; Deutsch, Tanen 2001; Sch. 2004]
- We will consider automata based techniques

Definition (Relative Containment for XPath (S) wrt DTD)

Let S be a set of XPath-operators. The containment problem for XPath(S) relative to a DTD is:

Given: XPath(S)-expression p, q, DTD d

Question: Is $p(D) \subseteq q(D)$ for all documents D satisfying $D \models d$?

A vague plan

- Construct an automaton \mathcal{A}_p for p
- Construct an automaton \mathcal{A}_q for q
- Construct an automaton \mathcal{A}_d for d
- Combine these automata suitably to get an automaton which accepts all counter-example documents

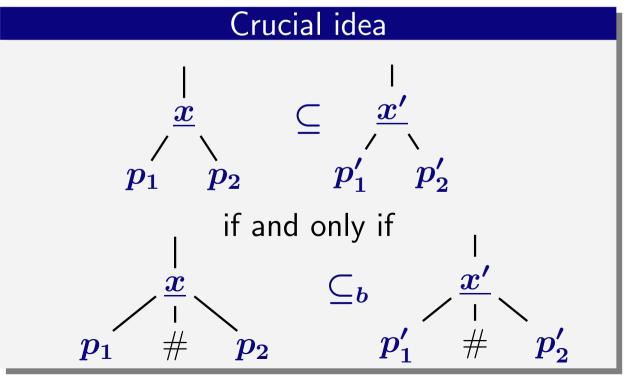
Definition (Boolean containment)

 $p \subseteq_b q :\iff$ whenever p selects *some* node in a tree

t then q also selects some node in t.

Useful observation [Miklau, Suciu 2002]

In the presence of [], Boolean containment has the same complexity as containment.



Result 1 [Neven, Sch. 2003]

The Boolean containment problem for XPath(/, //) in the presence of DTDs is in **PTIME**

Result 2 [Neven, Sch. 2003]							
The	Boolean	cont	ainm	ent p	oroble	em	for
XPath(/, //, [], *,) in the presence of DTDs is			s is				
in EXPTIME							

Note

Both results are optimal wrt complexity:

the problems are complete for these classes

Result 1 [Neven, Sch. 2003]

The Boolean containment problem for XPath(/, //) in the presence of DTDs is in **PTIME**

Proof Idea

- XPath(/,//)-expressions can only describe vertical paths in a tree
- Each expression is basically of the form $p_1//p_2//\cdots//p_k$, where each p_i is of the form $l_{i1}/\cdots/l_{im_i}$
- \bullet On strings this is a sequence of string matchings corresponding to a regular language L
- \Rightarrow Deterministic string automaton of linear size
 - Recall: there is a deterministic top-down automaton which checks whether a p-path exists
- \Rightarrow Deterministic top-down automaton \mathcal{A}_p
- \Rightarrow Deterministic top-down automaton $\mathcal{A}_{\overline{q}}$ checking that no q-path exists

Result 1 [Neven, Sch. 2003]

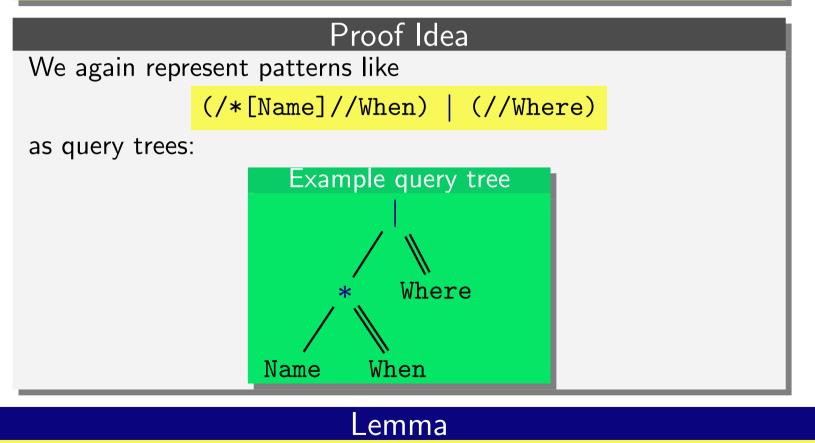
The containment problem for XPath(/, //) in the presence of DTDs is in **PTIME**

Proof idea (cont.)

- Deterministic top-down automaton \mathcal{A}_p
- Deterministic top-down automaton $\mathcal{A}_{\overline{q}}$ checking that no q-path exists
- There is a deterministic top-down automaton \mathcal{A}_d checking whether t conforms to d
- $p \subseteq_b q$ in the presence of $d \Longleftrightarrow L(\mathcal{A}_p imes \mathcal{A}_{\overline{q}} imes \mathcal{A}_d) = \emptyset$
- The latter can be checked in polynomial time

Result 2 [Neven, Sch. 2003]

The containment problem for XPath(/, //, [], *, |) in the presence of DTDs is in **EXPTIME**



For each XPath(/, //, [], *, |)-expression p there is a deterministic bottom-up automaton \mathcal{A}_p of exponential size which checks whether in a tree p holds

Lemma For each XPath(/,//,[], *, |)-expression p there is a deterministic bottom-up automaton \mathcal{A}_p of exponential size which checks whether in a tree p holds

Proof idea for Lemma

- States of \mathcal{A}_p are of the form $(S_{/},S_{//})$
- Both $S_{/}$ and $S_{//}$ are sets of positions of the query tree:
 - $-S_{\prime}$: positions matching v
 - $S_{//}$: positions matching some node in the subtree of v

Result 2 [Neven, Sch. 2003]

The containment problem for XPath(/, //, [], *, |) in the presence of DTDs is in **EXPTIME**

Proof idea (cont.)

- Construct deterministic bottom-up automaton \mathcal{A}_p of exponential size
- Construct deterministic bottom-up automaton $\mathcal{A}_{\overline{q}}$ of exponential size
- Construct deterministic bottom-up automaton \mathcal{A}_d of exponential size
- $p \subseteq_b q$ in the presence of $d \Longleftrightarrow L(\mathcal{A}_p \times \mathcal{A}_{\overline{q}} \times \mathcal{A}_d) = \emptyset$

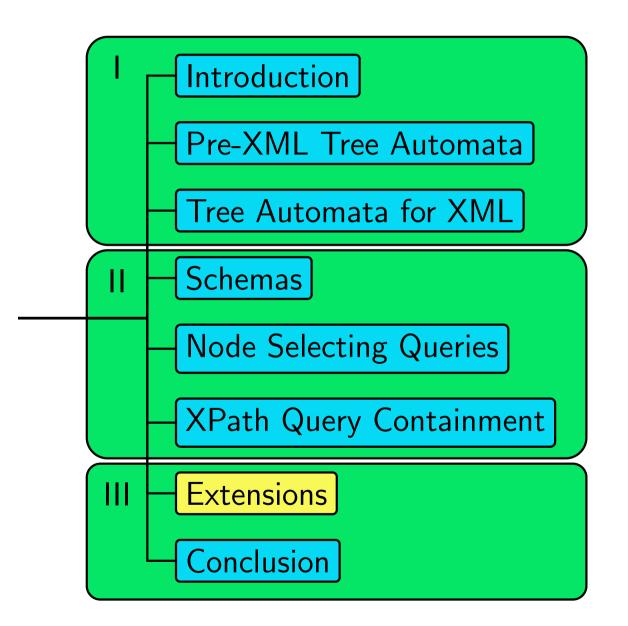
 \Rightarrow exponential time

Summary (Automata and XPath containment)

- Automata are a useful algorithmic tool
- In particular, if several algorithmic tasks have to be combined
- Complexity depends on type of automata

Summary (XPath containment in general)

- Many more results in other papers, e.g., [Miklau, Suciu 2002; Deutsch, Tanen 2001; Sch. 2004]
- The complexity of XPath query containment varies strongly with the allowed operators
- Even undecidable in general
- Exact borderline between undecidable and decidable has to be identified



Pebble automata

- As mentioned before: XSLT transormations can be modeled by *k*-pebble transducers
 (*k*-pebble automata + alternation, branching, output)
- Pebbles are mainly used to evaluate XPath expressions

XSLT Typechecking problem	
Given:	Transformation T , Schemas d_1, d_2
Question:	Is $oldsymbol{T}(t)$ valid wrt $oldsymbol{d_2}$ whenever $oldsymbol{t}$ is
	valid wrt d_1 ?

Theorem (Milo, Suciu, Vianu 2000)

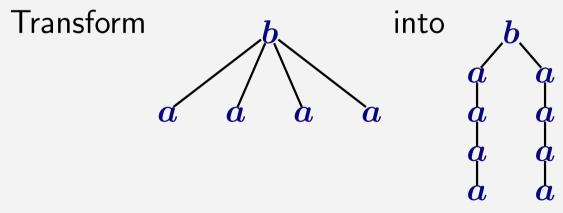
The typechecking problem for (core) XSLT is decidable

Theorem (Milo, Suciu, Vianu 2000)

The typechecking problem for (core) XSLT is decidable

Proof Idea

- Obvious approach:
 - Compute $T(L(d_1))$
 - Check that $T(L(d_1)) \subseteq L(d_2)$
- Problem: $T(L(d_1))$ does not need to be regular:



• Better approach:

Compute $T^{-1}(L(d_2))$ and check $L(d_1) \subseteq T^{-1}(L(d_2))$

Proof idea (cont.)

- *k*-pebble acceptor : *k*-pebble transducer without output
- Prove: $T^{-1}(L)$ is accepted by a k-pebble acceptor if L is regular
- Prove: Behavior of k-pebble acceptors can be described by MSOformulas
- \Rightarrow **k**-pebble acceptors only accept regular tree languages
- $\Rightarrow T^{-1}(\overline{L(d_2)})$ is regular
 - Algorithm:
 - Construct automaton for $T^{-1}(\overline{L(d_2)})$
 - Construct an equivalent MSO-formula arphi
 - Construct bottom-up tree automaton ${\mathcal A}$ for $\neg arphi$
 - Check that $L(d_1) \subseteq L(\mathcal{A})$
 - Complexity: VERY bad (non-elementary)

So far...

- We have seen that automata are useful for
 - Validation, Typing
 - Navigation
 - Transformation
- What about more general queries?
 - results of higher arity?
 - joins, i.e., comparisons of data values
 - counting
- Are automata useful for XQuery?
- ... for tree pattern queries?

Higher arity

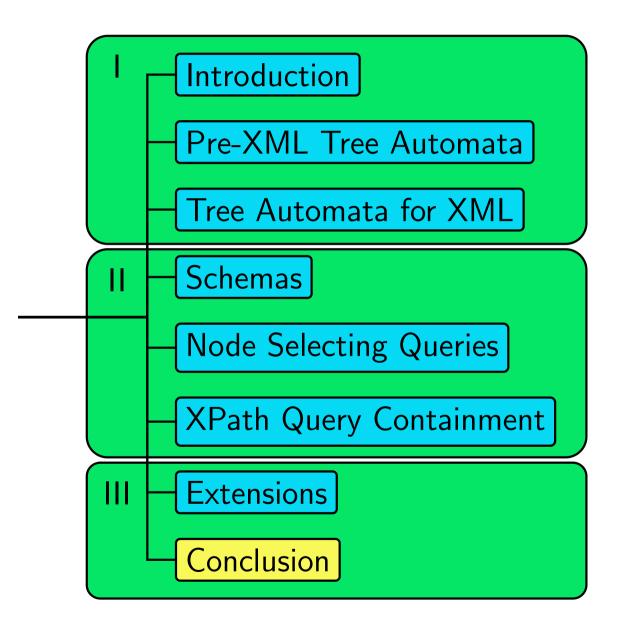
- Nonemptiness and containment questions can be handled by automata: tuples can be encoded by additional labels
- What about query evaluation for higher arity?

Data values

- When data values in XML documents are taken into account, things become more complicated, e.g.:
 - Even First-order logic becomes undecidable
 - Pebble automata become undecidable
 - Automata with data registers become undecidable when they are allowed to move up and down
- What is the right notion for regular (string) languages over infinite alphabets?
- What are sensible decidable restrictions of logics and automata in the context of data values?

Counting

- Automata can be equipped with counting facilities, e.g.: Presburger tree automata: $\delta(\sigma, q)$ is Boolean combination of
 - regular expressions and
 - quantifier-free Presburger formulas like
 - "number of children in state q_1 = number of children in state q_2 "
- Nondet. Presburger automata:
 - $\equiv MSO \log ic$
 - Whether automaton accepts all trees is undecidable
- Det. Presburger automata:
 - \equiv Presburger μ -formulas
 - Membership test: $O(|\mathcal{A}||t|)$
 - Non-emptiness: **PSPACE**
 - Containment: **PSPACE**



We saw....

- A broad variety of automata models which can be used for XML and its theory
- Well-established in the context of validation, typing, navigation, transformation
- Well-established as
 - means to define robust classes
 - proof tools
 - algorithmic tools

Big question

Can automata be employed as a tool for XQuery evaluation?