
Deciding Validity in a Spatial Logic for Trees

Cristiano Calcagno1, Luca Cardelli2, and Andrew D. Gordon2

1 Queen Mary, University of London
2 Microsoft Research

Version of May 10, 2002

Abstract. We consider a propositional spatial logic for finite trees. The
logic includes A | B (spatial composition), and A . B (the implication
induced by composition), and 0 (the unit of composition). We show that
the satisfaction and validity problems are equivalent, and decidable. The
crux of the argument is devising a finite enumeration of trees to consider
when deciding whether a spatial implication is satisfied. We introduce a
sequent calculus for the logic, and show it to be sound and complete with
respect to an interpretation in terms of satisfaction. Finally, we describe
a complete proof procedure for the sequent calculus.

1 Introduction

In a spatial logic, the truth of a formula depends on its location. Models for spa-
tial logics include computational structures such as heaps [Rey00,IO01,ORY01],
trees [CG01a], graphs [CGG02], concurrent objects [CM98], as well as process
calculi such as the π-calculus [CC01,CC02] and the ambient calculus [CG00,CG01b].
Applications of spatial logics include specifying and verifying imperative and
concurrent programs, and querying semistructured data.

This paper concerns a spatial logic describing properties of finite edge-labelled
trees. In our textual notation, n1[P1] | · · · | nk[Pk] is a tree consisting of k edges,
labelled n1, . . . , nk, leading to k subtrees P1, . . . , Pk, respectively. Our logic
starts with propositional primitives: conjunction A∧B, implication A ⇒ B, and
falsity F. To this basis, we add spatial primitives: composition A|B (satisfied by
composite trees P |Q where P and Q satisfy A and B, respectively), guarantee
A . B (the spatial implication corresponding to composition, satisfied by trees
that, whenever composed with any tree that satisfies A, result in trees that
satisfy B) and void 0 (the unit of composition, satisfied by the empty tree). We
complete the logic with primitives for labelled edges: location n[A] (satisfied by
a tree n[P] if P satisfies A) and placement A@n (satisfied by a tree P if the tree
n[P] satisfies A).

We consider the satisfaction problem (whether a given tree satisfies a given
formula) and the validity problem (whether every tree satisfies a given formula).
Since satisfaction of the guarantee operatorA.B is defined as an infinite quantifi-
cation over all trees, neither problem is obviously decidable. Our first significant
result, is that both are, in fact, decidable (Theorem 2). In effect, we show how

to decide validity by model checking. The main auxiliary result (Theorem 1) is
that we need consider only a finite enumeration of trees when model checking a
formula A . B.

Subsequently, we introduce a sequent calculus for our spatial logic, and show
how to decide validity by deduction in this calculus. The finite enumeration of
trees introduced in the first half is built into the right rule for A.B. Our sequent
calculus has a standard interpretation in terms of the satisfaction predicate. By
appeal to Theorem 1, we show the sequent calculus to be sound (Theorem 3) and
complete (Theorem 4) with respect to its interpretation. Moreover, we obtain
and verify a complete algorithm for finding proofs in the sequent calculus (The-
orem 5). The resulting algorithm for validity is better suited to optimisations
than the algorithm based directly on model checking.

Section 2 gives formal definitions of our logic and its model. Section 3 develops
our first algorithm for validity, based on model checking. Section 4 develops our
second algorithm, based on our sequent calculus. Section 5 concludes.

2 Ground Propositional Spatial Logic (Review)

This section introduces our spatial logic and its model. First, we define our
notation for edge-labelled finite trees. Second, we introduce the formulas of the
logic and their semantics: the satisfaction predicate, P |= A, means that the
tree P satisfies the formula A. Third, we define the validity predicate, vld(A),
to mean P |= A for every tree P . By constructing suitable formulas, we note
that satisfaction and validity are interderivable.

2.1 Edge-Labelled Finite Trees

Let m,n range over an infinite set N of names. The model of our logic is the set
of edge-labelled trees, finitely branching and of finite depth.

Trees:

P, Q ::= tree
0 empty tree
P |Q composition
m[P] edge labelled by m, atop tree P

Let fn(P) be the set of names free in P . For any X ⊆ N, let TreeX
4= {P |

fn(P) ⊆ X}.

Structural Equivalence: P ≡ Q

P ≡ P (Struct Refl)
Q ≡ P ⇒ P ≡ Q (Struct Symm)
P ≡ Q, Q ≡ R ⇒ P ≡ R (Struct Trans)

2

P ≡ Q ⇒ P |R ≡ Q |R (Struct Par)
P ≡ Q ⇒ M [P] ≡ M [Q] (Struct Amb)

P |Q ≡ Q | P (Struct Par Comm)
(P |Q) |R ≡ P | (Q |R) (Struct Par Assoc)
P | 0 ≡ P (Struct Zero Par)

Lemma 1. If P ∈ TreeX and P ≡ Q then Q ∈ TreeX .

2.2 Logical Formulas and Satisfaction

Logical Formulas:

A,B ::= formula
F false
A ∧ B conjunction
A ⇒ B implication
0 void
A | B composition
A . B guarantee
n[A] location
A@n placement

The derived propositional connectives T, ¬A, A ∨ B, are defined in the usual
way. Name equality can be defined by m = n

4= m[T]@n; this formula holds if
and only if m = n. We write A{m←m′} for the outcome of substituting each
occurrence of the name m in the formula A with the name m′.

We define the satisfaction predicate, P |= A, as follows.

Satisfaction: P |= A
P |= F never
P |= A ∧ B 4= P |= A ∧ P |= B
P |= A ⇒ B 4= P |= A ⇒ P |= B
P |= 0 4= P ≡ 0
P |= A | B 4= ∃P ′, P ′′.P ≡ P ′ | P ′′ ∧ P ′ |= A ∧ P ′′ |= B
P |= A . B 4= ∀P ′.P ′ |= A ⇒ P | P ′ |= B
P |= n[A] 4= ∃P ′.P ≡ n[P ′] ∧ P ′ |= A
P |= A@n

4= n[P] |= A

A basic property is that structural congruence preserves satisfaction:

Lemma 2. If P |= A and P ≡ P ′ then P ′ |= A.

Proof. An easy induction on the structure of A. ut

3

It is useful to know that every tree P has a characteristic formula P . Let
0 4= 0, P |Q 4= P | Q, and m[P] 4= m[P]. The formula P identifies P up to
structural equivalence:

Lemma 3. For all P and Q, Q |= P if and only if Q ≡ P .

Proof. An easy induction on the structure of P . ut
Now, to turn the definition of satisfaction into an algorithm, that is, to build

a model checker for the logic, we must show that the three quantifications in the
clauses for A|B, A.B, and n[A] can be reduced to finite problems. It is not hard
to reduce the clauses for A | B and n[A] to finite quantifications [CG00], but it
seems far from obvious how to reduce satisfaction of A . B to a finite problem.
The principal result of the paper, Theorem 1, is that for any A′, A′′ there is a
finite set T (A′ .A′′) such that:

P |= A′ .A′′ ⇐⇒ ∀P ′ ∈ T (A′ .A′′).P ′ |= A′ ⇒ P ′ | P |= A′′

2.3 Validity of a Formula

The validity predicate, vld(A), means every tree satisfies the formula A.

Validity: vld(A)

vld(A) 4= ∀P.P |= A

The next two lemmas exhibit formulas to encode validity in terms of satis-
faction, and the converse.

Lemma 4 (Validity from Satisfaction). vld(A) if and only if 0 |= T .A
Proof. With appeal to Lemma 2, we get: vld(A) ⇔ (∀P.P |= A) ⇔ (∀P.P |=
T ⇒ P | 0 |= A) ⇔ 0 |= T .A. ut
Lemma 5 (Satisfaction from Validity). P |= A if and only if vld(P ⇒ A).

Proof. With appeal to Lemmas 2 and 3, we get: vld(P ⇒ A) ⇔ (∀Q.Q |= P ⇒
Q |= A) ⇔ (∀Q.Q ≡ P ⇒ Q |= A) ⇔ P |= A. ut

Hence, the validity and satisfaction problems are equivalent. The goal of the
paper is to show that both are decidable.

3 Deciding Validity by Model Checking

The crux of our problem is the infinite quantification in the definition of sat-
isfaction for A . B. We bound this infinite quantification in three steps, which
lead to an alternative definition in terms of a finite quantification. This leads to
a model checking procedure, and hence to an algorithm for validity.

4

– In Section 3.1, we bound the alphabet of distinct names that may occur in
trees that need to be considered. Let fn(A) be the set of names occurring
free in any formula A. Let m be some other name. Proposition 1 asserts
that P |= A . B if and only if Q |= A =⇒ P | Q |= B for all trees Q with
edge-labels drawn from the set fn(A) ∪ {m}.

– In Section 3.2, we introduce a measure of the size of a tree, and bound both
the alphabet and size of trees that need to be considered. Proposition 4
asserts that P |= A . B if and only if Q |= A =⇒ P |Q |= B for all the trees
Q smaller than a size determined by A and with edge-labels drawn from a
particular finite alphabet.

– In Section 3.3, we give a procedure to enumerate a finite set of structural
equivalence classes of trees determined by a formula. Theorem 1 asserts that
P |= A . B if and only if Q |= A =⇒ P |Q |= B for all the representatives Q
of these equivalence classes. Hence, we prove in Theorem 2 that satisfaction,
and hence validity, is decidable.

3.1 Bounding the Names to Consider

Lemma 6. If n /∈ {m,m′} then:

P{m←m′} ≡ n[Q] ⇐⇒ ∃P ′.P ≡ n[P ′] ∧ P ′{m←m′} ≡ Q

Proof.

P{m←m′} |= n[Q]
⇐⇒ ∃m′′, P ′.P ≡ m′′[P ′] ∧m′′{m←m′} = n ∧ P ′{m←m′} ≡ Q

⇐⇒ ∃P ′.P ≡ n[P ′] ∧ P ′{m←m′} ≡ Q

ut
Lemma 7.

P{m←m′} ≡ Q′ |Q′′ ⇐⇒
∃P ′, P ′′.P ≡ P ′ | P ′′ ∧ P ′{m←m′} ≡ Q′ ∧ P ′′{m←m′} ≡ Q′′

Proof. Immediate since substitution preserves the structure of trees. ut
Lemma 8. If m,m′ /∈ fn(A) then P |= A ⇐⇒ P{m←m′} |= A.

Proof. By induction on the structure of A. We only consider the interesting
cases.

Case A | B. We have m,m′ /∈ fn(A) ∪ fn(B). With appeal to Lemma 2 and
Lemma 7, and the induction hypothesis, we calculate:

P |= A | B ⇐⇒ ∃P ′, P ′′.P ≡ P ′ | P ′′ ∧ P ′ |= A ∧ P ′′ |= B
⇐⇒ ∃P ′, P ′′.P ≡ P ′ | P ′′ ∧ P ′{m←m′} |= A ∧ P ′′{m←m′} |= B
⇐⇒ ∃P ′, P ′′, Q′, Q′′.P ≡ P ′ | P ′′ ∧Q′ ≡ P ′{m←m′} ∧

Q′′ ≡ P ′′{m←m′} ∧Q′ |= A ∧Q′′ |= B
⇐⇒ ∃Q′, Q′′.P{m←m′} ≡ Q′ |Q′′ ∧Q′ |= A ∧Q′′ |= B
⇐⇒ P{m←m′} |= A | B

5

Case A . B. We have m,m′ /∈ fn(A) ∪ fn(B). With appeal to the induction
hypothesis, we calculate:

P |= A . B ⇐⇒ ∀Q.Q |= A ⇒ P |Q |= B
⇐⇒ ∀Q.Q |= A ⇒ (P |Q){m←m′} |= B
⇐⇒ ∀Q.Q |= A ⇒ (P{m←m′} |Q){m←m′}) |= B
⇐⇒ ∀Q.Q |= A ⇒ P{m←m′} |Q |= B
⇐⇒ P{m←m′} |= A . B

Case n[A]. We have m,m′ /∈ {n} ∪ fn(A). With appeal to Lemma 2 and
Lemma 6, and the induction hypothesis, we calculate:

P |= n[A] ⇐⇒ ∃P ′.P ≡ n[P ′] ∧ P ′ |= A
⇐⇒ ∃P ′.P ≡ n[P ′] ∧ P ′{m←m′} |= A
⇐⇒ ∃P ′, P ′′.P ≡ n[P ′] ∧ P ′{m←m′} ≡ P ′′ ∧ P ′′ |= A
⇐⇒ ∃P ′′.P{m←m′} ≡ n[P ′′] ∧ P ′′ |= A
⇐⇒ P{m←m′} |= n[A]

Case A@n. We have m,m′ /∈ {n} ∪ fn(A). With appeal to the induction hy-
pothesis, we calculate:

P |= A@n ⇐⇒ n[P] |= A
⇐⇒ (n[P]){m←m′} |= A
⇐⇒ n[P{m←m′}] |= A
⇐⇒ P{m←m′} |= A@n

ut
This lemma does not hold for the logic extended with quantifiers: we have

m[] | n[] |= ∃x, y.(x[] | y[]) ∧ x 6= y but m[] |m[] 6|= ∃x, y.(x[] | y[]) ∧ x 6= y.

Proposition 1 (Bounding Names). Suppose m /∈ fn(A . B). Then:

P |= A . B ⇐⇒ (∀Q ∈ Treefn(A.B)∪{m}. Q |= A ⇒ P |Q |= B)

Proof. The forwards direction is immediate. For the backwards direction, assume
that (∀Q ∈ Treefn(A.B)∪{m}. Q |= A ⇒ P | Q |= B) and consider any tree Q
such that Q |= A. Suppose that fn(P |Q) ⊆ fn(A . B) ∪ {m,n1, . . . , nk} where
{n1, . . . , nk} ∩ (fn(A . B) ∪ {m}) = ∅. Let P ′ = P{n1←m} · · · {nk←m} and
Q′ = Q{n1←m} · · · {nk←m}. By repeated application of Lemma 8, we get that
Q |= A ⇐⇒ Q′ |= A. Since Q′ ∈ Treefn(A.B)∪{m} and Q′ |= A, we obtain
P |Q′ |= B by assumption. Now, we have:

(P |Q′){n1←m} · · · {nk←m} = P ′ |Q′ = (P |Q){n1←m} · · · {nk←m}
Hence, by repeated application of Lemma 8, we get that P | Q′ |= B ⇐⇒

P ′ |Q′ |= B ⇐⇒ P |Q |= B. Hence P |Q |= B follows. ut

6

3.2 Bounding the Sizes to Consider

Definition 1 (Notation). Write a ·P for a copies of P in parallel: P | . . . |P .

Definition 2 (Size of Trees).
|P |hw 4= (h,w) iff there are a1, n1, P1, . . . , ak, nk, Pk, for some k, such that:

– P ≡ a1 · n1[P1] | . . . | ak · nk[Pk]
– ∀i, j ∈ 1..k. ni[Pi] ≡ nj [Pj] ⇒ i = j
– (hi, wi) = |Pi|hw for each i ∈ 1..k
– if k = 0, h = 0; otherwise h = 1 + max(h1, . . . , hk)
– if k = 0, w = 0; otherwise h = max(a1, . . . , ak, w1, . . . , wk)

When |P |hw = (h, w), write |P |h for h and |P |w for w. Write (h1, w1) ≤ (h2, w2)
for (h1 ≤ h2) ∧ (w1 ≤ w2).

Intuitively |P |h is the height of P , and |P |w is the width, defined as the maximum
multiplicity of the subtrees of P . The multiplicity is the number of structurally
equivalent trees under the same edge. For example:

– |0|hw = (0, 0)
– |n[0]|hw = (1, 1)
– |n[0] |m[0]|hw = (1, 1)
– |n[0] | n[0]|hw = (1, 2)
– |n[m[0]]|hw = (2, 1)
– |n[n[0]]|hw = (2, 1)

Size of Logical Formulas

|F|h 4= 0 |F|w 4= 0
|A ∧ B|h 4= max(|A|h, |B|h) |A ∧ B|w 4= max(|A|w, |B|w)
|A ⇒ B|h 4= max(|A|h, |B|h) |A ⇒ B|w 4= max(|A|w, |B|w)
|0|h 4= 1 |0|w 4= 1
|A | B|h 4= max(|A|h, |B|h) |A | B|w 4= |A|w + |B|w
|A . B|h 4= |B|h |A . B|w 4= |B|w
|n[A]|h 4= 1 + |A|h |n[A]|w 4= max(2, |A|w)
|A@n|h 4= max(|A|h − 1, 0) |A@n|w 4= |A|w

Here are the sizes for the derived propositional connectives:

|T|h 4= 0 |T|w 4= 0
|¬A|h 4= |A|h |¬A|w 4= |A|w
|A ∨ B|h 4= max(|A|h, |B|h) |A ∨ B|w 4= max(|A|w, |B|w)

We define a relation ∼h,w between trees, parameterized by the size (h,w). The
main property of the relation is that if P ∼h,w Q then no formula with size
(h,w) can distinguish between P and Q (Proposition 2).

7

Definition 3 (Relation P ∼h,w Q).

P ∼0,w Q always

P ∼h+1,w Q ⇐⇒ ∀i ∈ 1..w.∀n, Pj with j ∈ 1..i.
if P ≡ n[P1] | · · · | n[Pi] | Pi+1

then Q ≡ n[Q1] | · · · | n[Qi] | Qi+1

such that Pj ∼h,w Qj for j ∈ 1..i
and vice versa

Note that ∼h,w is an equivalence relation: reflexivity, symmetry, and transi-
tivity are immediate consequences of the definition. Moreover, it is preserved by
structural congruence:

Lemma 9. If P ∼h,w Q and Q ≡ R then P ∼h,w R.

Proof. By an easy induction on h. ut
The following lemma shows that the relation ∼h,w is monotone in (h, w).

Lemma 10 (Monotonicity). If P ∼h,w Q and (h′, w′) ≤ (h,w) then P ∼h′,w′

Q.

Proof. By induction on h. The case h = 0 is immediate.
For h + 1, suppose P ∼h+1,w Q and (h′, w′) ≤ (h + 1, w). If h′ = 0 then

clearly P ∼h′,w′ Q. If h′ = h′′ + 1 for some h′′, then consider any i ∈ 1..w′, n,
Pj for j ∈ 1..i such that

P ≡ n[P1] | · · · | n[Pi] | Pi+1

Since w′ ≤ w, then i ∈ 1..w, and from P ∼h+1,w Q we have

Q ≡ n[Q1] | · · · | n[Qi] | Qi+1 such that Pj ∼h,w Qj for j ∈ 1..i

Since (h′′, w′) ≤ (h,w), by induction hypothesis we have Pj ∼h′′,w′ Qj for j ∈
1..i. This proves P ∼h′′+1,w′ Q, that is, P ∼h′,w′ Q. ut

The following lemma shows that the relation ∼h,w is a congruence.

Lemma 11 (Congruence). The following hold:

(1) If P ∼h,w Q then n[P] ∼h+1,w n[Q].
(2) If P ∼h,w P ′ and Q ∼h,w Q′ then P |Q ∼h,w P ′ |Q′.
Proof. We prove both parts directly.

(1) Suppose P ∼h,w Q. If w = 0 then the conclusion is immediate. Otherwise,
consider any i ∈ 1..w, n, Pj for j ∈ 1..i such that

n[P] ≡ n[P1] | · · · | n[Pi] | Pi+1

Then i = 1 and P1 ≡ P and Pi+1 ≡ 0. We have n[Q] ≡ n[Q] | 0, and
P1 ∼h,w Q by Lemma 9. This proves n[P] ∼h+1,w n[Q].

8

(2) There are two cases. If h = 0 then the conclusion is immediate.
For h+1, suppose P ∼h+1,w P ′ and Q ∼h+1,w Q′; then consider any i ∈ 1..w,
n, Rj for j ∈ 1..i such that

P | Q ≡ n[R1] | · · · | n[Ri] | Ri+1

Suppose without loss of generality that the Rj are ordered in a way that
there exist k ∈ 1..i, P†, Q† such that

P ≡ n[R1] | · · · | n[Rk] | P† Q ≡ n[Rk+1] | · · · | n[Ri] | Q† Ri+1 ≡ P† | Q†
Since k ∈ 1..w, from P ∼h+1,w P ′ we have

P ′ ≡ n[P ′1] | · · · | n[P ′k] | P ′† such that Rj ∼h,w P ′j for j ∈ 1..k

Similarly, from Q ∼h+1,w Q′ we have

Q′ ≡ n[Q′k+1] | · · · | n[Q′i] | Q′† such that Rj ∼h,w Q′j for j ∈ (k + 1)..i

Hence, we have

P ′ | Q′ ≡ n[P ′1] | · · · | n[P ′k] | n[Q′k+1] | · · · | n[Q′i] | P ′† | Q′†
Since Rj ∼h,w P ′j for j ∈ 1..k and Rj ∼h,w Q′j for j ∈ (k + 1)..i, this proves
P | Q ∼h+1,w P ′ | Q′. ut

Lemma 12 (Inversion). If P ′ | P ′′ ∼h,w1+w2 Q then there exist Q′, Q′′ such
that Q ≡ Q′ |Q′′ and P ′ ∼h,w1 Q′ and P ′′ ∼h,w2 Q′′.

Proof. There are two cases. If h = 0 then the conclusion is immediate.
For h + 1, suppose P ′ | P ′′ ∼h+1,w1+w2 Q. Consider the following definition:

A tree P is in (h,w)-normal form if whenever P ≡ n[P1] | n[P2] | P3

for some P1, P2, P3, if P1 ∼h,w P2 then P1 ≡ P2. Note that P ∼h+1,w

n[P1] | n[P1] | P3, hence it is always possible to find a P † such that P †

is in (h,w)-normal form and P ∼h+1,w P †.

We can assume without loss of generality that P ′ and P ′′ are in (h,w)-normal
form, and by Lemma 10 that Q is in (h,w)-normal form. Hence, there exist k,
Pj , a

′
j , a

′′
j , bj for j ∈ 1..k such that

P ′ ≡ a′1 · n1[P1] | · · · | a′k · nk[Pk]
P ′′ ≡ a′′1 · n1[P1] | · · · | a′′k · nk[Pk]
Q ≡ b1 · n1[P1] | · · · | bk · nk[Pk]

where if Pi ∼h,w Pj and ni = nj then i = j.
To split Q into two parts, we now specify how to split each bi, for i ∈ 1..k,

into b′i and b′′i , such that:

bi = b′i + b′′i
a′i · ni[Pi] ∼h+1,w1 b′i · ni[Pi]
a′′i · ni[Pi] ∼h+1,w2 b′′i · ni[Pi]

For each i ∈ 1..k, we choose b′i and b′′i according to the following cases:

9

– Case a′i + a′′i < w1 + w2. Then P ′ | P ′′ ∼h+1,w Q implies bi = a′i + a′′i , so we
can choose b′i = a′i and b′′i = a′′i .

– Case a′i +a′′i ≥ w1 +w2. Then P ′ | P ′′ ∼h+1,w Q implies bi ≥ w1 +w2. There
are three subcases:
• Subcase a′i ≥ w1 and a′′i ≥ w2. Then we choose b′i = w1 and b′′i = bi−w1

(note that b′′i is saturated, that is, b′′i ≥ w2, since bi ≥ w1 + w2).
• Subcase a′i < w1. We must have a′′i ≥ w2. Then we choose b′i = a′i and

b′′i = bi − a′i. So b′′i ≥ w2 since bi ≥ w1 + w2 and b′i < w1.
• Subcase a′′i < w2. This is symmetric to the previous case. We must

have a′i ≥ w1. We choose b′′i = a′′i and b′i = bi − a′′i . So b′i ≥ w1 since
bi ≥ w1 + w2 and b′′i < w2.

Now we define Q′ and Q′′ as follows:

Q′ ≡ b′1 · n1[P1] | · · · | b′k · nk[Pk] Q′′ ≡ b′′1 · n1[P1] | · · · | b′′k · nk[Pk]

We have Q ≡ Q′ | Q′′, and by repeated application of Lemma 11 we get
P ′ ∼h+1,w1 Q′ and P ′′ ∼h+1,w2 Q′′. ut
Proposition 2. If |A|hw = (h,w) and P |= A and P ∼h,w Q then Q |= A.

Proof. By induction on the structure of A. We consider only some interesting
cases.

Case 0. Suppose P |= 0 and P ∼1,1 Q. Then P ≡ 0. Since P ∼1,1 Q, if
Q ≡ n[Q1] | Q2 for some n,Q1, Q2 then P ≡ n[P1] | P2 for some P1, P2.
Hence Q ≡ 0; thus Q |= 0.

Case A1 | A2. Suppose |Ai|hw = (hi, wi) for i = 1, 2 and P |= A1 | A2. We
have |(A1 | A2)|hw = (max(h1, h2), w1 + w2) and there exist P1, P2 such
that P ≡ P1 | P2 and Pi |= Ai for i = 1, 2. Then by Lemma 12 there exist
Q1, Q2 such that Q ≡ Q1 | Q2 and Pi ∼max(h1,h2),wi

Qi for i = 1, 2. Then
Pi ∼hi,wi Qi for i = 1, 2 by Lemma 10, hence Qi |= Ai for i = 1, 2 by
induction hypothesis. This proves Q |= A1 | A2.

Case A . B. Suppose |B|hw = (h, w) and P |= A.B. We have |A.B|hw = (h,w)
and P ∼h,w Q. Consider any P1 such that P1 |= A; then P | P1 |= B. Since
P ∼h,w Q and P1 ∼h,w P1 we have P | P1 ∼h,w Q | P1 by Lemma 11. Hence
Q | P1 |= B by induction hypothesis. This proves Q |= A . B.

Case n[A]. Suppose |A|hw = (h,w). We have |n[A]|hw = (h+1,max(w, 2)) and
P ∼h+1,max(w,2) Q and P |= n[A]. Then there exists P ′ such that P ≡ n[P ′]
and P ′ |= A. ¿From P ∼h+1,max(w,2) Q we deduce that there exists Q′ such
that Q ≡ n[Q′] and P ′ ∼h,max(w,2) Q′. Lemma 10 implies P ′ ∼h,w Q′, and
by induction hypothesis we have Q′ |= A. This proves Q |= n[A].

Case A@n. Suppose |A|hw = (h,w). We have |A@n|hw = (max(h−1, 0), w) and
P ∼max(h−1,0),w Q. If h > 0 then we have n[P] ∼h,w n[Q] by Lemma 11.
If h = 0 then n[P] ∼h,w n[Q] is immediate. With appeal to the induction
hypothesis, we calculate:

P |= A@n ⇐⇒ n[P] |= A
⇐⇒ n[Q] |= A
⇐⇒ Q |= A@n

10

ut
The following lemma shows that each equivalence class determined by ∼h,w

contains a tree of size bounded by (h,w).

Lemma 13 (Pruning). For all P ∈ TreeX , h, w there exists P ′ ∈ TreeX such
that P ∼h,w P ′ and |P ′|hw ≤ (h,w).

Proof. We describe how to construct P ′ by induction on h. For h = 0 define
P ′ 4= 0.

For h + 1, suppose P ≡ n1[P1] | · · · | nk[Pk], for some k and nj , Pj with
j ∈ 1..k. Let P ′j , for j ∈ 1..k, be the tree obtained by pruning Pj to size h,w.
Define Q

4= n1[P ′1] | · · · | nk[P ′k]. We can write Q in a canonical form with
respect to ≡, that is, there exist i and aj ,mj , Qj for j ∈ 1..i such that Q ≡
a1 · m1[Q1] | · · · | ai · mi[Qi] and, for all j, j′ ∈ 1..i, if mj [Qj] ≡ mj′ [Qj′]
then j = j′. For each j ∈ 1..i, define bi

4= min(ai, w). Then we can define
P ′ 4= b1 ·m1[Q1] | · · · | bi ·mi[Qi]. It is easy to see that |P ′|hw ≤ (h + 1, w) and
P ∼h+1,w P ′. ut
Proposition 3 (Bounding Size). For any tree P , set of names X and for-
mulas A and B, if h = max(|A|h, |B|h) and w = max(|A|w, |B|w) then

(∀Q ∈ TreeX . Q |= A ⇒ P |Q |= B) ⇐⇒
(∀Q ∈ TreeX . |Q|hw ≤ (h, w) ∧Q |= A ⇒ P |Q |= B)

Proof. The forwards direction is immediate. For the backwards direction, assume
that the right hand side holds. Take any Q ∈ TreeX such that Q |= A. Then

∃Q′. Q ∼h,w Q′ ∧ |Q′|hw ≤ (h,w) by Lemma 13
Q ∼|A|h,|A|w Q′ by Lemma 10 since |A|hw ≤ (h,w)
Q′ |= A by Proposition 2
P |Q′ |= B by assumption
P |Q ∼h,w P |Q′ by Lemma 11
P |Q ∼|B|h,|B|w P |Q′ by Lemma 10 since |B|hw ≤ (h, w)
P |Q |= B by Proposition 2

ut
Proposition 4 (Bounding Size and Names). For any tree P and formulas
A and B, if m /∈ fn(A . B) and X = fn(A . B) ∪ {m} and h = max(|A|h, |B|h)
and w = max(|A|w, |B|w), then:

P |= A . B ⇐⇒ (∀Q ∈ TreeX . |Q|hw ≤ (h, w) ∧Q |= A ⇒ P |Q |= B)

Proof. We have:

P |= A . B ⇐⇒ (∀Q ∈ TreeX . Q |= A ⇒ P |Q |= B)
⇐⇒ (∀Q ∈ TreeX . |Q|hw ≤ (h,w) ∧Q |= A ⇒ P |Q |= B)

Proposition 1 justifies the first step, Proposition 3 the second. ut

11

So, to check satisfaction ofA.B, we need only consider trees whose free names
are drawn from fn(A.B)∪{m}, and whose size is no more than max(|A|hw, |A|hw).
We show in the next section, that the number of such trees, modulo structural
equivalence, is finite. Hence, we obtain an algorithm for satisfaction of A . B.

3.3 Enumerating Equivalence Classes

In this section we present an explicit characterization of the equivalence classes
on trees, modulo structural equivalence, determined by ∼h,w .

Definition 4 (Notation). Consider the following notation, where c ranges over
sets of trees modulo structural congruence:

〈P 〉≡ 4= {P ′ | P ≡ P ′}
〈P 〉h,w

4= {P ′ | P ∼h,w P ′}
c1 + c2

4= c1 ∪ c2

n[c] 4= {〈n[P]〉≡ | 〈P 〉≡ ∈ c}
c≤n 4= {〈a1 · P1 | · · · | ak · Pk〉≡ | 0 ≤ ai ≤ n for i ∈ 1..k} when c = {〈P1〉≡, . . . , 〈Pk〉≡}

We can now give a direct definition of the set of equivalence classes EQX
h,w

determined by ∼h,w , given a set of names X.

Definition 5. For X = {n1, . . . , nk}, define EQX
h,w as follows:

EQX
0,w

4= {〈0〉≡}
EQX

h+1,w
4= (n1[EQX

h,w] + · · ·+ nk[EQX
h,w])≤w

Lemma 14. If |P |hw ≤ (h, w) and |P ′|hw ≤ (h,w), then

(1) P ∈ TreeX implies 〈P 〉≡ ∈ EQX
h,w.

(2) P ≡ P ′ ⇐⇒ P ∼h,w P ′.

Proof. Part (1) is a simple induction on h.
For Part (2), the interesting direction is ⇐. We proceed by induction on h.

If h = 0 then |P |h = |Q|h = 0, hence P ≡ Q ≡ 0.
For the case h + 1, suppose |P |hw ≤ (h + 1, w) and |P ′|hw ≤ (h + 1, w) and

P ∼h+1,w P ′. Write P and P ′ in canonical form with respect to ≡, that is, there
exist k and aj , a

′
j , nj , Pj for j ∈ 1..k such that

P ≡ a1 · n1[P1] | · · · | ak · nk[Pk] P ′ ≡ a′1 · n1[P1] | · · · | a′k · nk[Pk]

where, for all i, j ∈ 1..k, if ni[Pi] ≡ nj [Pj] then i = j. Since |P |hw ≤ (h + 1, w)
and |P ′|hw ≤ (h + 1, w) we have aj ≤ w and a′j ≤ w for each j ∈ 1..k. For each
i ∈ 1..k we show ai ≤ a′i:

12

There exists P† such that P ≡ ai · ni[Pi] | P †. Then by definition of
P ∼h+1,w P ′ there exist P ′1, . . . , P

′
ai

, P ′† such that P ′ ≡ ni[P ′1] | · · · |
ni[P ′ai

] | P ′† and Pi ∼h,w P ′j for j ∈ 1..ai. By induction hypothesis we
have Pi ≡ P ′j for each j ∈ 1..ai, hence P ′ ≡ ai · ni[Pi] | P ′†. This proves
ai ≤ a′i.

With a symmetric argument we can show a′i ≤ ai for each i ∈ 1..k. This proves
P ≡ P ′. ut
The following lemma shows that EQX

h,w contains exactly the trees (modulo ≡)
of size at most (h,w) with free names drawn from X.

Lemma 15. 〈P 〉≡ ∈ EQX
h,w ⇐⇒ P ∈ TreeX ∧ |P |hw ≤ (h,w).

Proof. By construction, if 〈P 〉≡ ∈ EQX
h,w then P ∈ TreeX and |P |hw ≤ (h, w).

The converse follows from Lemma 14. ut
The following proposition shows that EQX

h,w is an enumeration of the represen-
tants of the equivalence classes in TreeX/∼h,w .

Proposition 5. The function f : TreeX → TreeX/∼h,w sending P to 〈P 〉h,w

extends to a bijection f ′ : EQX
h,w → TreeX/∼h,w .

Proof. Let f ′ be the function sending 〈P 〉≡ to 〈P 〉h,w. Clearly f ′ is well defined
since P ≡ P ′ implies P ∼h,w P ′.

To show that f ′ is surjective, take any 〈P 〉h,w ∈ TreeX/∼h,w . By lemma 13
there exists P ′ ∈ TreeX such that P ∼h,w P ′ and |P ′|hw ≤ (h,w). So 〈P ′〉h,w =
〈P 〉h,w and 〈P ′〉≡ ∈ EQX

h,w by lemma 14.
To show that f ′ is injective, consider any P, Q ∈ TreeX such that 〈P 〉≡, 〈Q〉≡ ∈

EQX
h,w and 〈P 〉h,w = 〈Q〉h,w. Then |P |hw ≤ (h, w) and |Q|hw ≤ (h,w) by

Lemma 15, hence P ≡ Q by Lemma 14. This proves 〈P 〉≡ = 〈Q〉≡. ut
Theorem 1 (Finite Bound). Consider any formulas A and B. Let EQX

h,w =
{〈Q1〉≡, . . . , 〈Qn〉≡}, where h = max(|A|h, |B|h) and w = max(|A|w, |B|w) and
X = fn(A . B) ∪ {m} for some m /∈ fn(A . B).

Then, for any tree P :

P |= A . B ⇐⇒ (∀i ∈ 1..n. Qi |= A ⇒ P |Qi |= B)

Proof. Using Proposition 4, Lemma 15, and Lemma 2:

P |= A . B ⇐⇒ (∀Q ∈ TreeX . |Q|hw ≤ (h,w) ∧Q |= A ⇒ P |Q |= B)
⇐⇒ (∀Q. 〈Q〉≡ ∈ EQX

h,w ∧Q |= A ⇒ P |Q |= B)
⇐⇒ (∀Q. (∃i ∈ 1..n.Q ≡ Qi) ∧Q |= A ⇒ P |Q |= B)
⇐⇒ (∀i ∈ 1..n.∀Q.Q ≡ Qi ∧Q |= A ⇒ P |Q |= B)
⇐⇒ (∀i ∈ 1..n.Qi |= A ⇒ P |Q |= B)

ut

13

Given this result, we can now show that each of the three quantifications in the
definition of satisfaction can be reduced to a finite problem.

Finite Test Sets: T (P), T (A . B), and T (n, P)

T (P) is the finite non-empty set {〈Q,R〉 | P ≡ Q |R}/(≡×≡).
T (A . B) is the finite non-empty set EQX

h,w, where h = max(|A|h, |B|h)
and w = max(|A|w, |B|w) and X = fn(A . B) ∪ {m} for some m /∈ fn(A . B).
T (n, P) is the finite, possibly empty, set {Q | P ≡ n[Q]}/ ≡.

Lemma 16.

(1) For any P , P |= A′ | A′′ ⇐⇒ ∃〈P ′, P ′′〉 ∈ T (P).P ′ |= A′ ∧ P ′′ |= A′′.
(2) For any A, B, P |= A . B ⇐⇒ ∀Q ∈ T (A . B).Q |= A ⇒ Q | P |= B.
(3) For any P , P |= n[A′] ⇐⇒ ∃P ′ ∈ T (n, P).P ′ |= A′.
Proof. Part (2) follows at once from Theorem 1. The other parts follow easily,
as in earlier work [CG00]. ut
Theorem 2. Satisfaction and validity are interderivable and decidable.

Proof. As noted in Section 2, Lemmas 4 and 5 establish the equivalence of sat-
isfaction and validity. An algorithm for satisfaction follows from the rules of its
definition in Section 2, together with the facts in Lemma 16. ut
Validity is defined in terms of an infinite quantification over trees. We end with
a corollary of Lemma 4 and Theorem 1, which reduces validity to a finite quan-
tification over a computable sequence of trees. Hence, we obtain an explicit
algorithm for validity.

Corollary 1. Consider any formula A. Suppose EQX
h,w = {〈P1〉≡, . . . , 〈Pn〉≡},

where (h,w) = |A|hw and X = fn(A) ∪ {m} for some m /∈ fn(A). Then

vld(A) ⇐⇒ (∀i ∈ 1..n. Pi |= A)

It is straightforward to implement the algorithms for satisfaction and validity
suggested above. A precise complexity analysis is currently missing, but certainly
there can be a state explosion on quite small formulas. Still, the algorithm ter-
minates in a reasonable time on many formulas. Here is a selection of formulas
found to be valid by our implementation.

– (0 ∨ p[0]) | ¬(p[0])
– q[¬0] . ¬(0)
– ¬((q[q[0]] | q[0])@q)
– (T . ¬((q[0] ∨T) . 0))@q
– ((0 ∨ p[0])@p)@p@p
– (¬(p[T]) ∨ ¬(q[T]))@q
– p[T] . (p[T] |T)
– ¬(p[T] . 0)
– ¬(T | (T . q[0])@q)
– (T | (¬(0) ∨ 0)) |T
– (T | q[T])@q ∨ 0

14

4 Deciding Validity by Deduction

We present a sequent calculus for our spatial logic, following the pattern of
Caires and Cardelli [CC02]. We show the calculus to be sound and complete with
respect to an interpretation in terms of the satisfaction relation, and present a
complete proof procedure. Hence, we obtain an algorithm for deciding validity
by deduction in the sequent calculus.

4.1 A Sequent Calculus

A context, Γ or ∆, is a finite multiset of entries of the form P : A where P
is a tree and A is a formula. A sequent is a judgment Γ ` ∆ where Γ and
∆ are contexts. The following table states the rules for deriving sequents. The
rules depend on the finite test sets T (P), T (A . B), and T (n, P) introduced in
Section 3. All that matters for the purpose of this section is that these sets are
computable and that they satisfy the properties stated in Lemma 16. Hence, this
is a finitary proof system; note the form of the rules (| L), (. R), and (n[] L).

Rules of the Sequent Calculus:

(Id)
P ≡ Q

Γ,P : A ` Q : A,∆

(Cut)
Γ ` P : A,∆ Γ, P : A ` ∆

Γ ` ∆

(C L)
Γ, P : A, P : A ` ∆

Γ, P : A ` ∆

(C R)
Γ ` P : A, P : A,∆

Γ ` P : A,∆

(F L)

Γ, P : F ` ∆

(F R)
Γ ` ∆

Γ ` P : F,∆

(∧ L)
Γ, P : A, P : B ` ∆

Γ,P : A ∧ B ` ∆

(∧ R)
Γ ` P : A,∆ Γ ` P : B,∆

Γ ` P : A ∧ B, ∆

(⇒ L)
Γ ` P : A,∆ Γ, P : B ` ∆

Γ, P : A ⇒ B ` ∆

(⇒ R)
Γ, P : A ` P : B,∆

Γ ` P : A ⇒ B, ∆

(0 L)
P 6≡ 0

Γ, P : 0 ` ∆

(0 R)
P ≡ 0

Γ ` P : 0,∆

15

(| L)
∀〈Q,R〉 ∈ T (P). Γ, Q : A, R : B ` ∆

Γ, P : A | B ` ∆

(| R)
Γ ` Q : A,∆ Γ ` R : B,∆ P ≡ Q |R

Γ ` P : A | B,∆

(. L)
Γ ` Q : A,∆ Γ, Q | P : B ` ∆

Γ, P : A . B ` ∆

(. R)
∀Q ∈ T (A . B). Γ, Q : A ` Q|P : B,∆

Γ ` P : A . B,∆

(n[] L)
∀Q ∈ T (n, P). Γ, Q : A ` ∆

Γ,P : n[A] ` ∆

(n[] R)
Γ ` Q : A,∆ P ≡ n[Q]

Γ ` P : n[A],∆

(@n L)
Γ, n[P] : A ` ∆

Γ,P : A@n ` ∆

(@n R)
Γ ` n[P] : A,∆

Γ ` P : A@n,∆

The variables Q, R in (| L) and the variable Q in (. R) cannot occur free (in
a formalistic reading) in Γ , P , ∆. Compare the side conditions on these rules
in Caires and Cardelli [CC02]. Here, these are meta-level variables ranging over
terms, so there is no need for such side conditions. Note that (n[] L) applies
also when T (n, P) is empty (something that never happens for (| L)), so we can
conclude, for example, Γ,0 : n[A] ` ∆. The fact that T (n, P) may be empty
explains also the irregular form of Lemma 18(n[] R).

Lemma 17 (Weakening). If Γ ` ∆ is derivable, then Γ, P : A ` ∆ and
Γ ` P : A,∆ are derivable. Moreover, if there is a derivation of Γ ` ∆ free
of (Id), (Cut), (C L), (C R), then there are derivations of Γ, P : A ` ∆ and
Γ ` P : A,∆ free of (Id), (Cut), (C L), (C R).

Proof. By induction on the derivation of Γ ` ∆. The second part of the state-
ment comes from inspection of the cases different from (Id), (Cut), (C L), (C
R). ut

4.2 Soundness and Completeness

We make a conventional interpretation of sequents:

∧[[P1 : A1, ..., Pn : An]] 4= P1 |= A1 ∧ . . . ∧ Pn |= An

∨[[Q1 : B1, ..., Qm : Bm]] 4= Q1 |= B1 ∨ . . . ∨Qm |= Bm

[[Γ ` ∆]] 4= ∧[[Γ]] ⇒ ∨[[∆]]

Lemma 18 (Validity of Antecedents).

16

(F L) [[Γ, P : F ` ∆]]
(F R) [[Γ ` P : F,∆]] iff [[Γ ` ∆]]
(∧ L) [[Γ, P : A′ ∧ A′′ ` ∆]] iff [[Γ, P : A′, P : A′′ ` ∆]]
(∧ R) [[Γ ` P : A′ ∧ A′′,∆]] iff [[Γ ` P : A′,∆]] ∧ [[Γ ` P : A′′,∆]]
(∨ L) [[Γ, P : A′ ∨ A′′ ` ∆]] iff [[Γ ` P : A′,∆]] ∧ [[Γ, P : A′′ ` ∆]]
(∨ R) [[Γ ` P : A′ ∨ A′′,∆]] iff [[Γ, P : A′ ` P : A′′,∆]]
(0 L) [[Γ, P : 0 ` ∆]] iff P ≡ 0 ⇒ [[Γ ` ∆]]
(0 R) [[Γ ` P : 0,∆]] iff P 6≡ 0 ⇒ [[Γ ` ∆]]
(| L) [[Γ, P : A′ | A′′ ` ∆]] iff ∀P ′, P ′′.P ≡ P ′ | P ′′ ⇒ [[Γ, P ′ : A′, P ′′ : A′′ ` ∆]]
(| R) [[Γ ` P : A′ |A′′,∆]] iff ∃P ′, P ′′.P ≡ P ′ |P ′′∧ [[Γ ` P ′ : A′, ∆]]∧ [[Γ ` P ′′ :

A′′,∆]]
(. L) [[Γ, P : A′ .A′′ ` ∆]] iff ∃P ′.[[Γ ` P ′ : A′,∆]] ∧ [[Γ, P ′ | P : A′′ ` ∆]]
(. R) [[Γ ` P : A′ .A′′,∆]] iff ∀P ′.[[Γ, P ′ : A′ ` P ′ | P : A′′,∆]]
(n[] L) [[Γ, P : n[A′] ` ∆]] iff ∀P ′.P ≡ n[P ′] ⇒ [[Γ, P ′ : A′ ` ∆]]
(n[] R) [[Γ ` P : n[A′],∆]] iff (∀P ′.P 6≡ n[P ′]∧[[Γ ` ∆]])∨(∃P ′.P ≡ n[P ′]∧[[Γ `

P ′ : A′,∆]])
(@n L) [[Γ, P : A′@n ` ∆]] iff [[Γ, n[P] : A′ ` ∆]]
(@n R) [[Γ ` P : A′@n, ∆]] iff [[Γ ` n[P] : A′,∆]]

Proof. By detailed, but straightforward, calculations. ut
Lemma 19 (Finite Test Sets).

(1) For any P there is a finite set T (P) such that:
∀P ′, P ′′.P ≡ P ′ | P ′′ ⇒ [[Γ, P ′ : A′, P ′′ : A′′ ` ∆]]
iff ∀〈P ′, P ′′〉 ∈ T (P).[[Γ, P ′ : A′, P ′′ : A′′ ` ∆]].

(2) For any A′, A′′, there is a finite set T (A′ .A′′) such that:
∀P ′.[[Γ, P ′ : A′ ` P ′ | P : A′′,∆]]
iff ∀P ′ ∈ T (A′ .A′′).[[Γ, P ′ : A′ ` P ′ | P : A′′,∆]].

(3) For any P there is a finite set T (n, P) such that:
∀P ′.P ≡ n[P ′] ⇒ [[Γ, P ′ : A′ ` ∆]]
iff ∀P ′ ∈ T (n, P).[[Γ, P ′ : A′ ` ∆]].

Proof. By expanding definitions, and appeal to Lemma 16. ut
Theorem 3 (Soundness). If Γ ` ∆ is derivable, then [[Γ ` ∆]].

Proof. By induction on the derivation of Γ ` ∆. ut
Theorem 4 (Completeness). If [[Γ ` ∆]], then Γ ` ∆ has a derivation. More-
over, it has a derivation that does not use (Id), (Cut), (C L), (C R).

Proof. By induction on the sum of the sizes of all the formulas in Γ ` ∆. The
interesting cases are (| L), (n[] L) and, particularly, (. R), relying on Lemma 19.
These are the only cases we show.

Subcase [[Γ, P : A′ | A′′ ` ∆]]. By Lemma 18(| L) we have ∀P ′, P ′′.P ≡ P ′ |
P ′′ ⇒ [[Γ, P ′ : A′, P ′′ : A′′ ` ∆]]. By Lemma 19(1) there is a finite set
T (P) such that ∀〈P ′, P ′′〉 ∈ T (P).[[Γ, P ′ : A′, P ′′ : A′′ ` ∆]]. By IndHyp,
∀〈P ′, P ′′〉 ∈ T (P).Γ, P ′ : A′, P ′′ : A′′ ` ∆ has a derivation. Hence by (| L)
we can construct a (finite) derivation for Γ, P : A′ | A′′ ` ∆.

17

Subcase [[Γ, P : n[A′] ` ∆]]. By Lemma 18(n[] L) we have ∀P ′.P ≡ n[P ′] ⇒
[[Γ, P ′ : A′ ` ∆]]. By Lemma 19(3) there is a finite set T (n, P) such that
∀P ′ ∈ T (n, P).[[Γ, P ′ : A′ ` ∆]]. By IndHyp, ∀P ′ ∈ T (n, P).Γ, P ′ : A′ ` ∆
has a derivation. Hence by (n[] L) we can construct a (finite) derivation for
Γ, P : n[A′] ` ∆.

Subcase [[Γ ` P : A′ .A′′,∆]]. By Lemma 18(. R) we have ∀P ′.[[Γ, P ′ : A′ `
P ′ | P : A′′,∆]]. By Lemma 19(2) there is a finite set T (A′ . A′′) such
that ∀P ′ ∈ T (A′ . A′′).[[Γ, P ′ : A′ ` P ′ | P : A′′,∆]]. By IndHyp, ∀P ′ ∈
T (A′ . A′′).Γ, P ′ : A′ ` P ′ | P : A′′,∆ has a derivation. Hence by (. R) we
can construct a (finite) derivation for Γ ` P : A′ .A′′,∆.

For the second part of the statement, it is sufficient to note that the rules (Id),
(Cut), (C L), (C R) are never used in the proof to construct the derivation, and
that the cases (0 L), (0 R), (n[] R) use Lemma 17 applied to a derivation that,
inductively, does not contain (Id), (Cut), (C L), (C R). ut
Proposition 6 (Id, Cut and Contraction Elimination). If there is a deriva-
tion of Γ ` ∆, then there is a derivation of Γ ` ∆ that does not use (Id), (Cut),
(C L), (C R).

Proof. If Γ ` ∆ is derivable in the full system, then [[Γ ` ∆]] by Theorem 3
(Soundness). Then, by Theorem 4 (Completeness), Γ ` ∆ has a derivation that
does not use (Id), (Cut), (C L), (C R). ut
Proposition 7 (Decidability). It is decidable whether Γ ` ∆ is derivable.

Proof. Suppose that Γ = P1 : A1, ..., Pn : An and ∆ = Q1 : B1, ..., Qm : Bm.
By Theorems 3 (Soundness) and 4 (Completeness), P1 : A1, ..., Pn : An ` Q1 :
B1, ..., Qm : Bm is derivable if and only if ∧[[P1 : A1, . . . , Pn : An]] ⇒ ∨[[Q1 :
B1, . . . , Qm : Bm]]. By Theorem 2 we know that P |= A is decidable. Therefore,
we just need to test that either there is an i with Pi 6|= Ai, or there is a j with
Qj |= Bj . ut

4.3 A Complete Proof Procedure

The following theorem essentially implies Completeness, and uses Lemma 18 in
a similar way, but is not quite as clean as Completeness, since it talks about an
algorithm. Moreover, the cases for (. L), (| R) and (n[] R) are harder than in
Completeness.

On the other hand, the proposition is interesting because it shows that there
is a complete proof procedure that actually builds a derivation, unlike the one
in Proposition 7.

Lemma 20 (More on Finite Test Sets).

(1) For any P there is a finite set T (P) such that:
∃P ′, P ′′.P ≡ P ′ | P ′′ ∧ [[Γ ` P ′ : A′,∆]] ∧ [[Γ ` P ′′ : A′′,∆]]
iff ∃〈P ′, P ′′〉 ∈ T (P).[[Γ ` P ′ : A′, ∆]] ∧ [[Γ ` P ′′ : A′′,∆]].

18

(2) For any A′, A′′, there is a finite set T (A′ . A′′) such that: ∃P ′.[[Γ ` P ′ :
A′,∆]] ∧ [[Γ, P ′ | P : A′′ ` ∆]]
iff ∃P ′ ∈ T (A′ .A′′).[[Γ ` P ′ : A′,∆]] ∧ [[Γ, P ′ | P : A′′ ` ∆]].

(3) For any P there is a finite set T (n, P) such that:
∃P ′.P ≡ n[P ′] ∧ [[Γ ` P ′ : A′,∆]]
iff ∃P ′ ∈ T (n, P).[[Γ ` P ′ : A′,∆]].

Proof. By expanding definitions, and appeal to Lemma 16. ut
Theorem 5 (Complete Proof Procedure). For any Γ ` ∆ there is a pro-
cedure such that: if ¬[[Γ ` ∆]], then the procedure terminates with failure; if
[[Γ ` ∆]], then the procedure terminates with a derivation for Γ ` ∆.

Proof. We describe the procedure, but omit the proof of correctness, which, in
addition to the properties used in the proof of Theorem 4, uses also Lemma 20.
The procedure picks nondeterministically any formula in the sequent to operate
on. It terminates because at every recursive call it either reduces the total size,
size, of the formulas in the sequent, or stops with success or failure.

Case size = 0, that is, the empty sequent − ` −.
The procedure terminates with failure.

Case size ≥ 1, left rules.
Subcase Γ, P : F ` ∆.

The procedure succeeds with derivation Γ, P : F ` ∆.
Subcase Γ, P : A′ ∧ A′′ ` ∆.

The procedure recurses with Γ, P : A′, P : A′′ ` ∆; if the recursion fails,
it fails; if the recursion succeeds with a derivation for Γ, P : A′, P : A′′ `
∆, it produces a derivation for Γ, P : A′ ∧ A′′ ` ∆ by (∧ L).

Subcase Γ, P : A′ ⇒ A′′ ` ∆.
The procedure recurses with Γ ` P : A′,∆ and Γ, P : A′′ ` ∆; if
either recursion fails, the procedure fails. If the recursions succeed with
derivations for Γ ` P : A′,∆ and Γ, P : A′′ ` ∆ the procedure produces
a derivation for Γ, P : A′ ⇒ A′′ ` ∆ by (⇒ L).

Subcase Γ, P : 0 ` ∆.
If P 6≡ 0 (a decidable test) the procedure returns with the derivation
Γ, P : 0 ` ∆ by (0 L), otherwise it recurses with Γ ` ∆. If the recursion
fails, it fails; if it succeeds with a derivation for Γ ` ∆, it returns a
derivation for Γ, P : 0 ` ∆ by weakening.

Subcase Γ, P : A′ | A′′ ` ∆.
The procedure computes the finite set T (P), and for every 〈P ′, P ′′〉 be-
longing to it, it recurses with Γ, P ′ : A′, P ′′ : A′′ ` ∆. If all the recursive
calls succeed, the procedure builds a derivation for Γ, P : A′ | A′′ ` ∆ by
(| L), otherwise it fails.

Subcase Γ, P : A′ .A′′ ` ∆.
The procedure computes the finite set T (A′ . A′′), and for every P ′

belonging to it, it recurses with Γ ` P ′ : A′,∆ and Γ, P ′ | P : A′′ ` ∆.
If one pair of recursive calls succeeds, the procedure builds a derivation
for Γ, P : A′ .A′′ ` ∆ by (. L), otherwise it fails.

19

Subcase Γ, P : n[A′] ` ∆.
The procedure computes the finite set T (n, P) (which may be empty).
For every P ′ belonging to it, the procedure recurses with Γ, P ′ : A′ ` ∆.
If all the recursive calls succeed, the procedure builds a derivation for
Γ, P : n[A′] ` ∆ by (n[] L), otherwise it fails.

Subcase Γ, P : A′@n ` ∆.
The procedure recurses with Γ, n[P] : A′ ` ∆. If the recursive call suc-
ceeds, the procedure builds a derivation for Γ, P : A′@n ` ∆ by (@n L),
otherwise it fails.

Case size ≥ 1, right rules.
Subcase Γ ` P : F,∆.

The procedure recurses with Γ ` ∆. If the recursion fails, the procedure
fails. If the recursion succeeds with a derivation for Γ ` ∆, the procedure
returns a derivation for Γ ` P : F,∆ by (F R).

Subcase Γ ` P : A′ ∧ A′′,∆.
The procedure recurses with Γ ` P : A′,∆ and Γ ` P : A′′,∆. If both
recursive calls succeeds, the procedure builds a derivation for Γ ` P :
A′ ∧ A′′,∆ by (∧ R), otherwise it fails.

Subcase Γ ` P : A′ ⇒ A′′, ∆.
The procedure recurses with Γ, P : A′ ` P : A′′,∆. If the recursion fails,
it fails; if the recursion succeeds with a derivation for Γ, P : A′ ` P :
A′′, ∆, it produces a derivation for Γ, P : A′ ⇒ A′′ ` ∆ by (⇒ R).

Subcase Γ ` P : 0,∆.
If P ≡ 0 (a decidable test) the procedure returns with the derivation
Γ ` P : 0,∆ by (0 R), otherwise it recurses with Γ ` ∆. If the recursion
fails, it fails; if it succeeds with a derivation for Γ ` ∆, it returns a
derivation for Γ ` P : 0, ∆ by weakening.

Subcase Γ ` P : A′ | A′′, ∆.
The procedure computes the finite set T (P), and for every 〈P ′, P ′′〉 be-
longing to it, it recurses with Γ ` P ′ : A′,∆ and Γ ` P ′′ : A′′,∆. If
one pair of recursive calls succeeds, the procedure builds a derivation for
Γ ` P : A′ | A′′,∆ by (| R), otherwise it fails.

Subcase Γ ` P : A′ .A′′,∆.
The procedure computes the finite set T (A′ . A′′), and for every P ′

belonging to it, it recurses with Γ, P ′ : A′ ` P ′ | P : A′′,∆. If all these
recursive calls are successful, the procedure builds a derivation for Γ `
P : A′ .A′′,∆ by (. R), otherwise it fails.

Subcase Γ ` P : n[A′],∆.
The procedure computes the finite set T (n, P). If T (n, P) is empty, then
it recurses with Γ ` ∆; if the recursion fails the procedure fails, and if it
succeeds with a derivation for Γ ` ∆, the procedure returns a derivation
for Γ ` P : n[A′],∆ by weakening. If T (n, P) is not empty, then for
every P ′ belonging to it, the procedure recurses with Γ ` P ′ : A′,∆. If
one of the recursive calls succeeds, the procedure builds a derivation for
Γ ` P : n[A′],∆ by (n[] R), otherwise it fails.

20

Subcase Γ ` P : A′@n, ∆.
The procedure recurses with Γ ` n[P] : A′,∆. If the recursive call suc-
ceeds, the procedure builds a derivation for Γ ` P : A′@n,∆ by (@n R),
otherwise it fails. ut

By combining Lemma 4 and Theorems 3 and 4, we can equate the validity
problem to a particular proof search problem.

Corollary 2. vld(A) if and only if ` 0 : T .A has a derivation.

Hence, by Theorem 5, we obtain an algorithm for validity based on deduction.

5 Conclusions

This paper concerns a propositional spatial logic for finite edge-labelled trees.
The spatial modalities are composition A | B, guarantee A . B, void 0, location
n[A], and placement A@n. We show two main things. First, satisfaction and
validity are equivalent and decidable. Second, there is a sound and complete
proof system for validity. We know of no previous algorithms for satisfaction or
validity in the presence of the guarantee operator.

The spatial logic of this paper is a fragment of the ambient logic introduced
by Cardelli and Gordon [CG00,CG01b]. Model checking algorithms for various
fragments without guarantee have been proposed [CDZG+01,CT01].

The proof of decidability for validity presented here is based on a technique
introduced by Calcagno, Yang, and O’Hearn [CYO01], in the setting of a spatial
logic for mutable data structures.

We briefly consider the prospects of extending our results:

– Charatonik and Talbot [CT01] show that validity becomes undecidable in
a spatial logic with name quantification. (Their result depends only on the
presence of propositional logic, 0, n[A], A | B, and ∀x.A.)

– Caires and Monteiro [CM98] and Cardelli and Gordon [CG01b] introduce
logical modalities to deal with fresh names. A prerequisite of studying these
operators would be to enrich our tree model with fresh names.

References

CC01. L. Caires and L. Cardelli. A spatial logic for concurrency (part I). In
Theoretical Aspects of Computer Software (TACS 2001), volume 2215 of
Lecture Notes in Computer Science, pages 1–37. Springer, 2001.

CC02. L. Caires and L. Cardelli. A spatial logic for concurrency (part II). Sub-
mitted for publication, 2002.

CDZG+01. W. Charatonik, S. Dal Zilio, A. D. Gordon, S. Mukhopadhyay, and J.-M.
Talbot. The complexity of model checking mobile ambients. In Proceedings
FoSSaCS’01, volume 2030 of LNCS, pages 152–167. Springer, 2001. An ex-
tended version appearas as Technical Report MSR–TR–2001–03, Microsoft
Research, 2001.

21

CG00. L. Cardelli and A.D. Gordon. Anytime, anywhere: Modal logics for mo-
bile ambients. In 27th ACM Symposium on Principles of Programming
Languages (POPL’00), pages 365–377, 2000.

CG01a. L. Cardelli and G. Ghelli. A query language based on the ambient logic. In
Proceedings of the 9th European Symposium on Programming (ESOP’01),
volume 2028 of LNCS, pages 1–22. Springer, 2001.

CG01b. L. Cardelli and A.D. Gordon. Logical properties of name restriction. In
Proceedings of the 5th International Conference on Typed Lambda Calculi
and Applications (TLCA’01), volume 2044 of Lecture Notes in Computer
Science, pages 46–60. Springer, 2001.

CGG02. L. Cardelli, P. Gardner, and G. Ghelli. A spatial logic for querying graphs.
In ICALP’02, 2002. To appear.

CM98. L. Caires and L. Monteiro. Verifiable and executable logic specifications of
concurrent objects in Lπ. In Proceedings of the 7th European Symposium
on Programming (ESOP’99), volume 1381 of Lecture Notes in Computer
Science, pages 42–56. Springer, 1998.

CT01. W. Charatonik and J.-M. Talbot. The decidability of model checking
mobile ambients. In Proceedings of the 15th Annual Conference of the
European Association for Computer Science Logic, volume 2142 of LNCS,
pages 339–354. Springer, 2001.

CYO01. C. Calcagno, H. Yang, and P. O’Hearn. Computability and complexity
results for a spatial assertion language for data structures. In Proceedings
of the 22nd Conference on Foundations of Software Technology and Theo-
retical Computer Science (FSTTCS’01), volume 2245 of Lecture Notes in
Computer Science, pages 108–119. Springer, 2001.

IO01. S. Ishtiaq and P. W. O’Hearn. BI as an assertion language for mutable data
structures. In 28th ACM SIGPLAN-SIGACT Symposium on Principles of
Programmoing Languages (POPL), pages 14–26. ACM Press, jan 2001.

ORY01. P. O’Hearn, J. Reynolds, and H. Yang. Local reasoning about programs
that alter data structures. In L. Fribourg, editor, CSL 2001, pages 1–19.
Springer-Verlag, 2001. LNCS 2142.

Rey00. J. C. Reynolds. Intuitionistic reasoning about shared mutable data struc-
ture. In Millennial Perspectives in Computer Science. Palgrave, 2000.

22

