
Conjunctive Queries over Trees∗

Georg Gottlob and Christoph Koch
DBAI, TU Wien

A-1040 Vienna, Austria
{gottlob,koch}@dbai.tuwien.ac.at

Klaus U. Schulz
CIS, LMU München

D-80536 München, Germany
schulz@cis.uni-muenchen.de

ABSTRACT
We study the complexity and expressive power of conjunc-
tive queries over unranked labeled trees, where the tree
structures are represented using “axis relations” such as
“child”, “descendant”, and “following” (we consider a su-
perset of the XPath axes) as well as unary relations for
node labels. (Cyclic) conjunctive queries over trees occur
in a wide range of data management scenarios related to
XML, the Web, and computational linguistics. We estab-
lish a framework for characterizing structures representing
trees for which conjunctive queries can be evaluated effi-
ciently. Then we completely chart the tractability frontier
of the problem for our axis relations, i.e., we find all subset-
maximal sets of axes for which query evaluation is in poly-
nomial time. All polynomial-time results are obtained im-
mediately using the proof techniques from our framework.
Finally, we study the expressiveness of conjunctive queries
over trees and compare it to the expressive power of frag-
ments of XPath. We show that for each conjunctive query,
there is an equivalent acyclic positive query (i.e., a set of
acyclic conjunctive queries), but that in general this query
is not of polynomial size.

1. INTRODUCTION
The theory of conjunctive queries over relational struc-

tures is, from a certain point of view, the greatest success
story of the theory of database queries. These queries corre-
spond to the most common queries in database practice, e.g.
SQL select-from-where queries with conditions combined us-
ing “and” only. They are surprisingly well-behaved: Many
important properties hold for conjunctive queries but fail for
more general query languages (cf. [5, 1, 18]).

Unranked labeled trees are a clean abstraction of HTML,
XML, and LDAP. This motivates the study of the special
case of conjunctive queries over trees, where the tree struc-
tures are represented using unary node label relations and

∗
This work was partially supported by project Z29-N04 of the

Austrian Science Fund (FWF), by a project of the German Re-
search Foundation (DFG), and by the REWERSE Network of
Excellence of the EU.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS 2004, June 14–16, 2004, Paris, France.
Copyright 2004 ACM 1-58113-858-X/04/06 . . . $5.00.

binary relations (often referred to as axes) such as Child ,
Descendant , and Following .

XML Queries. Conjunctive queries over trees are nat-
urally related to the problem of evaluating queries (e.g.,
XQuery or XSLT) on XML data (cf. [8]). However, con-
junctive queries are a cleaner and simpler model whose com-
plexity and expressiveness can be formally studied (while
XQuery and XSLT are Turing-complete).

(Acyclic) conjunctive queries over trees are a generaliza-
tion of the most frequently used fragment of XPath. For
example, the XPath query //A[B]/following::C is equivalent
to the (acyclic) conjunctive query

Q(z)← A(x), Child(x, y), B(y), Following(x, z), C(z).

While XPath has been studied extensively (see e.g. [14, 15]
on its complexity, [3, 23] on its expressive power, and [16] on
the satisfiability problem), little work so far has addressed
the theoretical properties of cyclic conjunctive queries over
trees. Sporadic results on their complexity can be found in
[21, 12, 13, 20].

Data extraction and integration. (Cyclic) conjunctive
queries on trees have been used previously in data integra-
tion, where queries in languages such as XQuery were canon-
ically mapped to conjunctive queries over trees to build
upon the existing work on data integration with conjunc-
tive queries [8, 9]. Another application is Web information
extraction using a datalog-like language over trees [2, 13].
(Of course, each nonrecursive datalog rule is a conjunctive
query.)

Queries in computational linguistics. A further area
in which such queries are employed is computational lin-
guistics, where one needs to search in, or check properties
of, large corpora of parsed natural language. Corpora such
as Penn Treebank [17] are unranked trees labeled with the
phrase structure of parsed (for Treebank, financial news)
text. A query asking for prepositional phrases following
noun phrases in the same sentence can be phrased as the
conjunctive query

Q(z)← S(x), Descendant(x, y), NP(y),

Descendant(x, z), PP(z), Following(y, z).

Figure 1 shows this query in the intuitive graphical notation
that we will use throughout the paper (in which nodes cor-
respond to variables, node labels to unary atoms, and edges
to binary atoms).

Dominance constraints. Another important issue in com-
putational linguistics are conjunctions of dominance con-

S

Descendant Descendant

PPNP
Following

Figure 1: A query graph.

straints [19], which turn out to be equivalent to (Boolean)
conjunctive queries over trees. Dominance constraints have
been influential as a means of incompletely specifying parse
trees of natural language, in cases where (intermediate) re-
sults of parsing and disambiguation remain ambiguous. One
problem of practical importance is the rewriting of sets of
dominance constraints into equivalent but simpler sets (in
particular, so-called solved forms [4], which correspond to
acyclic queries). This implies that studying the expressive
power of conjunctive queries over trees, and the problem of
deciding whether there is a set of acyclic conjunctive queries
equivalent to a given conjunctive query, is relevant to com-
putational linguistics.

Higher-order unification. The query evaluation problem
for conjunctive queries over trees is also closely related to the
context matching problem [25] in higher-order unification1.
Some tractability frontier for the context matching problem
is outlined in [26]. However, little insight is gained from this
for the database context, since the classes studied in [26]
become unnatural when formulated as conjunctive queries2.

Contributions
Given the substantial number of applications that we have
hinted at above and the nice connection between database
theory, computational linguistics, and term rewriting, it is
surprising that conjunctive queries over trees have never
been the object of a concerted study3.

In particular, three questions seem worth studying:

1. The complexity of (cyclic) conjunctive queries on trees
has only been scratched in the literature. There is lit-
tle understanding of how the complexity of conjunctive
queries over trees depends on the relations used to model
the tree.

2. There is a natural connection between conjunctive queries
and XPath. Since all XPath queries are acyclic, the
question arises whether the acyclic positive queries (i.e.,
unions of conjunctive queries) are as expressive as the full
class of conjunctive queries over trees.4

3. If that is the case, how much bigger do the acyclic ver-
sions of queries get than their cyclic counterparts? Ex-
cept from being of theoretical interest, first translating

1To be precise, the analogy is most direct with ranked trees.
2These conjunctive queries require node inequality 6= as a
binary relation in addition to the tree structure relations.
If 6= is removed, the queries become acyclic. However, it
is easy to see that already conjunctive queries using only
the inequality relation over a fixed tree of three nodes are
NP-complete, by a reduction from Graph 3-Colorability.
3Of course, as mentioned above, there are a number of pa-
pers that implicitly contain relevant results [21, 20, 16, 26].
4This is equivalent to asking whether for all conjunctive
queries over trees there exist equivalent positive Core XPath
queries [14].

queries into their acyclic versions, if that is possible, and
then evaluating them as such may be a practical query
evaluation strategy, because there are particularly good
algorithms for evaluating such queries [29, 6, 11, 13].

We thus study conjunctive queries on tree structures rep-
resented using the XPath axis relations child , descendant ,
descendant-or-self , following-sibling , and following .5 For a
more principled symmetric framework, we study the axes
Child, Child+ (= descendant), Child∗ (= descendant-or-self),
NextSibling, NextSibling+ (= following-sibling), NextSibling∗,
and Following. (NextSibling and NextSibling∗ are not sup-
ported in XPath but are nevertheless considered here.)

The main contributions of this paper are as follows.

• We establish a framework for proving the tractability of
the conjunctive query evaluation problem for a signature
τ defining trees based on the new notion of <-hemichordal
relations. The precise definition of <-hemichordality is
technical. The idea is that of “guarding” such a relation
R using a total order < on the elements of the struc-
ture (i.e., nodes of the tree) and requiring R to satisfy
a weak condition somewhat reminiscent of chordality in
graphs. If all relations in τ are <-hemichordal (which
can be shown easily and independently for each binary
relation in τ), the query can be evaluated in polynomial
time on all trees of signature τ . The <-hemichordality of
τ implies that queries can be evaluated by eliminating lo-
cally inconsistent solutions. This can be done efficiently.
Here, our techniques are reminiscent of work related to
arc-consistency in constraint satisfaction (cf. e.g. [7]).

Our framework is not restricted to trees, but was not gen-
eralized from signatures with unary and binary relations
here in order not to weaken its intuitive appeal.

• We determine the complexity of conjunctive queries on
trees represented by axis relations and provide a complete
characterization of the tractability frontier of the prob-
lem (under the assumption that P 6= NP). The subset-
maximal sets of axis relations for which the problem is
tractable turn out to be disjoint; they are

{Child,NextSibling,NextSibling
∗
,NextSibling

+},

{Child∗
,Child+}, and {Following}.

Table 1 shows the complexities of conjunctive queries over
structures containing unary relations and either one or
two axes. Of course, all problems are in NP because
conjunctive queries over arbitrary finite structures are [5].
All NP-hardness results hold already for fixed data trees
(query complexity).

Interestingly, the sufficient condition for tractability yiel-
ded by our framework serves to immediately detect all
the polynomial cases.

Metatheorem 1.1. Unless P = NP , for any

F ⊆ {Child,Child∗
,Child+

,NextSibling,

NextSibling
∗
,NextSibling

+
,Following},

5Since we are free to use these relations with any pair
of variables of our conjunctive queries (differently from
XPath), these five axes render all others, i.e. parent , an-
cestor , ancestor-or-self , preceding-sibling , and preceding , re-
dundant. Typed child axes such as attribute are redundant
with the child axis and unary relations in our framework.

Child Child+ Child∗ NextSibling NextSibling+ NextSibling∗ Following

Child in P NP-hard NP-hard in P in P in P NP-hard
(4.4 [13]) (5.1) (5.1) (4.4 [13]) (4.4) (4.4) (5.2)

Child+ in P in P NP-hard NP-hard NP-hard NP-hard
(4.2 [12]) (4.2 [12]) (5.7) (5.7) (5.7) (5.3)

Child∗ in P NP-hard NP-hard NP-hard NP-hard
(4.2 [12]) (5.5) (5.4) (5.6) (5.3)

NextSibling in P in P in P NP-hard
(4.4) (4.4) (4.4) (5.8)

NextSibling+ in P in P NP-hard
(4.4) (4.4) (5.8)

NextSibling∗ in P NP-hard
(4.4) (5.8)

Following in P
(4.3)

Table 1: Complexity results for signatures with one or two axes. Numbers are pointers to relevant theorems.

the conjunctive queries over structures with unary rela-
tions and binary relations from F are in P iff there is a
total order < such that all axes in F are <-hemichordal.

• We study the expressive power of conjunctive queries on
trees. We show that for each conjunctive query over trees,
there is an equivalent acyclic positive query (APQ) over
the same tree relations. The blowup in size of the APQs
produced is exponential in the worst case.

It follows that there is an equivalent XPath query for
each conjunctive query over trees, since each APQ can
be translated into XPath in linear time.

• Finally, we provide a result that sheds some light at
the succinctness of (cyclic) conjunctive queries and which
demonstrates that the blow-up observed in our trans-
lation is actually necessary. We prove that there are
conjunctive queries over trees for which no equivalent
polynomially-sized APQ exists.

The structure of the paper is as follows. We start with
basic notions in Section 2. Section 3 presents our framework
for finding classes of conjunctive queries that can be evalu-
ated in polynomial time. Section 4 contains our polynomial-
time complexity results. Section 5 completes our tractability
frontier with the NP-hardness results. Finally, in Section 6,
we provide our expressiveness results.

2. PRELIMINARIES
Let Σ be a labeling alphabet. Throughout the paper, if

not explicitly stated otherwise, we will not assume it to be
fixed. An unranked tree is a tree in which each node may
have an unbounded number of children. We allow for tree
nodes to be labeled with multiple labels. However, through-
out the paper, our tractability results will support multiple
labels while our NP-hardness and expressiveness results will
not make use of them.

We represent trees as relational structures using unary
label relations (Labela)a∈Σ and binary relations called axes.
For a relational structureA, let A = |A| denote the finite do-
main (in the case of a tree, the nodes) and let ||A|| denote the
size of the structure (see e.g. [10]). We use the binary axis
relations Child (defined in the normal way) and NextSibling

(where NextSibling(v, w) iff w is the right neighboring sib-
ling of v in the tree), their transitive and reflexive and
transitive closures (denoted Child+, NextSibling+, Child∗,

NextSibling∗), and the axis Following (where Following(v, w)
iff, when the tree is represented as XML, the end tag of v
appears before the start tag of w in the XML text). By
Child+ = Descendant, Child∗ = Descendant-or-self, and
NextSibling+ = Following-sibling, this set of axes covers the
standard XPath axes (cf. [28]).

We consider three well-known total orderings on finite or-
dered trees. The pre-order ≤pre corresponds to a depth first
left-to-right traversal of a tree. If XML-documents are repre-
sented as trees in the usual way, the pre-order coincides with
the document order . It is given by the sequence of opening
tags of the XML elements (corresponding to nodes). The
post-order ≤post corresponds to a bottom-up left-to-right
traversal of the tree and is given by the sequence of closing
tags of elements. Furthermore, we also consider the ordering
≤bflr which is given by the sequence of opening tags if we
traverse the tree breadth-first left-to-right.

Boolean (0-ary), monadic (unary), and k-ary conjunctive
queries are defined in the normal way (cf. [1]). Let Q be a
conjunctive query and let Var(Q) denote the variables ap-
pearing in Q. The query graph of Q over unary and binary
relations is the directed multigraph G = (V,E) with edge
labels and multiple node labels such that V = Var(Q), node
x is labeled P iff Q contains unary atom P (x), and E con-

tains labeled directed edge x
R
→ y iff Q contains binary atom

R(x, y). Figure 1 shows an example of such a query graph.
Throughout the paper, we use lower case node and vari-

able names and upper case label and relation names.

3. GLOBAL VS. ARC-CONSISTENCY
Let Q be a conjunctive query and let A denote the finite

domain, i.e. in case of a tree the set of nodes. A pre-valuation
for Q is a total function Θ : Var(Q) → 2A that assigns to
each variable of Q a nonempty subset of A. A valuation for
Q is a total function θ : Var(Q)→ A.

Let A be a relational structure of unary and binary re-
lations. A pre-valuation Θ is called arc-consistent6 iff for
each unary atom P (x) in Q and each v ∈ Θ(x), P (v) is
true (in A) and for each binary atom R(x, y) in Q, for each
v ∈ Θ(x) there exists w ∈ Θ(y) s.t. R(v, w) is true and for
each w ∈ Θ(y) there exists v ∈ Θ(x) s.t. R(v,w) is true.

Proposition 3.1 (Folklore). There is an algorithm
which checks in time O(||A|| · |Q|) whether an arc-consistent
pre-valuation of Q on A exists, and if it does, returns one.
6This notion is well-known in constraint satisfaction, c.f. [7].

Proof Sketch. We phrase the problem of computing Θ by
deciding, for each x, v, whether v 6∈ Θ(x) as an instance P
of propositional Horn-SAT. The propositional predicates are
the pairs (x, v), and the Horn clauses are

{(x, v)← . | P (x) ∈ Q, v ∈ A, ¬PA(v)} ∪
{(x, v)←

V

{(y, w) | RA(v, w)}. | R(x, y) ∈ Q, v ∈ A} ∪
{(y, w)←

V

{(x, v) | RA(v, w)}. | R(x, y) ∈ Q, w ∈ A}

The program P can be computed and solved (e.g. using Mi-
noux’ algorithm [22]), and the solution complemented, in
time linear in the size of the program, which is O(||A|| · |Q|).
If there is a variable x such that for no node v, (x, v) is in the
solution of P, no arc-consistent pre-valuation of Q on A ex-
ists and Q is not satisfied. Otherwise, the pre-valuation de-
fined by Θ(x) 7→ {v | (x, v) is in the solution of P}, for each
x, is obviously arc-consistent and contains all arc-consistent
pre-valuations of Q and A. 2

Actually, this algorithm computes the unique subset-ma-
ximal arc-consistent pre-valuation of Q on A.

A valuation θ is called consistent if it satisfies the query.7

Obviously, this is true iff the pre-valuation Θ defined by
Θ(x) 7→ {θ(x)} is arc-consistent. Let < be a total order on
A = |A| and Θ be a pre-valuation. Then the valuation θ

with θ(x) 7→ v iff v is the smallest node in Θ(x) w.r.t. < is
called the minimum valuation w.r.t. < in Θ.

Definition 3.2. Let A be a relational structure, R a bi-
nary relation in A, and < a total order on A = |A|. Then, R
is called <-hemichordal iff for all n0, n1, n2, n3 s.t. n0 < n1

and n0 ≤ n2 ≤ n3,

1. R(n1, n2) ∧R(n0, n3)→ R(n0, n2) and

2. R(n2, n1) ∧R(n3, n0)→ R(n2, n0). 2

Let A be a structure of unary and binary relations and let
< be a total order on A = |A|. A is called <-hemichordal if
all binary relations R in A are <-hemichordal.

Lemma 3.3. Let A be a <-hemichordal structure and let
Θ be an arc-consistent pre-valuation on A for a given con-
junctive query over the relations of A. Then, the minimum
valuation in Θ w.r.t. < is consistent.

Proof. Let θ denote the minimum valuation in Θ w.r.t.
<. We show the following: If α is any binary atom of Q
with variables x, y then α holds under assignment θ. Let
θ(x) = n0 and θ(y) = n2. W.l.o.g., we assume that n0 ≤ n2,
and distinguish two cases:

Case 1 (α has the form R(x, y)): Since Θ is arc-consistent
there exists a node n1 ∈ Θ(x) s.t. R(n1, n2) and a node
n3 ∈ Θ(y) s.t. R(n0, n3). As θ is a minimum valuation and
R(n1, n2), we have θ(x) = n0 ≤ n1. Since R(n0, n3) is true,
we have θ(y) = n2 ≤ n3. If n0 = n1 then R(θ(x), θ(y)) is
true and we are done. Otherwise, n0 < n1, thus it follows
from condition 1 of Definition 3.2 that R(n0, n2).

Case 2 (α has the form R(y, x)): Since Θ is arc-consistent
there exists a node n1 ∈ Θ(x) s.t. R(n2, n1) and a node
n3 ∈ Θ(y) s.t. R(n3, n0). As θ is a minimum valuation and
R(n2, n1), we have θ(x) = n0 ≤ n1. Since R(n3, n0) is true,
we have θ(y) = n2 ≤ n3. If n0 = n1 then R(θ(y), θ(x)) is

7In this case, and for a Boolean query, we also say that the
structure is a model of the query.

true and we are done. Otherwise, n0 < n1, thus it follows
from condition 2 of Definition 3.2 that R(n2, n0). 2

Clearly, if no arc-consistent pre-valuation ofQ onA exists,
there is no consistent valuation for Q on A.

Theorem 3.4. Given a <-hemichordal structure A and
a Boolean conjunctive query Q over A, Q can be evaluated
on A in time O(||A|| · |Q|).

Proof. By Lemma 3.3, to check whether a Boolean query
Q is satisfied, all we need to do is to try to compute the
subset-maximal arc-consistent pre-valuation Θ w.r.t. Q. By
Proposition 3.1, this can be done in time O(||A|| · |Q|). If it
exists, Q returns true, otherwise, it returns false. 2

If follows that checking whether a given tuple 〈a1, . . . , ak〉
is in the result of a k-ary conjunctive query on <-hemi-
chordal structures can be decided in time O(||A|| · |Q|) as
well. All we need to do is to add (new) singleton unary
relations X1 = {a1}, . . . , Xk = {ak} to A and to rewrite
the query Q(x1, . . . , xk) ← Φ(x1, . . . , xk) into the Boolean
query Q ← Φ(x1, . . . , xk) ∧ X1(x1) ∧ · · · ∧ Xk(xk). A k-
ary conjunctive query Q over A with A = |A| can thus be
evaluated on A in time O(|A|k · ||A|| · |Q|).

For relations that are subsets of the given total order ≤,
a simpler condition for <-hemichordality can be given.

Lemma 3.5. Let A be a structure, < a total order on A =
|A|, and R a binary relation of A such that R ⊆≤. Then,
R is <-hemichordal iff for all n0, n1, n2, n3 ∈ A,

n0 < n1 ≤ n2 < n3 ∧R(n1, n2) ∧ R(n0, n3)→ R(n0, n2).

Proof Sketch. Obviously, if the condition for <-hemichorda-
lity of Definition 3.2 holds for a given R and <, the (strictly
weaker) condition of our lemma holds as well.

For the other direction, assume that R ⊆≤ and the con-
dition of our lemma holds. Then the two conditions of
Definition 3.2 hold as well: (1) If R(n1, n2) is true then
n1 ≤ n2 and if n2 = n3 then R(n0, n3) entails R(n0, n2), so
R(n1, n2)∧R(n0, n3)→ R(n0, n2) is true whenever n0 < n1

and n0 ≤ n2 ≤ n3. (2) If R(n3, n0) is true then n3 ≤ n0,
and thus, since n0 ≤ n2 ≤ n3, n0 = n2 = n3. But then,
R(n3, n0) trivially implies R(n2, n0). 2

Remark 3.6. Note that Lemma 3.5 extends to the case
where R ⊆≥. If R ⊆≥ and for all n0, n1, n2, n3 ∈ |A|,

n0 < n1 ≤ n2 < n3 ∧R(n3, n0) ∧ R(n2, n1)→ R(n2, n0),

then R−1 is <-hemichordal by Lemma 3.5. We may replace
all atoms of the form R(x, y) in Q by R−1(y, x) without
affecting the meaning. 2

For total order <, let

Succ< := {〈x, y〉 | x < y ∧ @z x < z < y}.

It is trivial to verify that Succ<, <, and≤ are <-hemichordal.

4. POLYNOMIAL-TIME RESULTS
Lemma 3.5 and the results of the previous section pro-

vide us with a simple technique for proving polynomial-time
complexity results for conjunctive queries over trees. In-
deed, there is a wealth of inclusions of axis relations in the
total orders introduced in Section 2: the axes (1) Child,

Child+, Child∗, NextSibling, NextSibling+, NextSibling∗,
and Following are subsets of the pre-order ≤pre, (2) Child−1,
(Child+)−1, (Child∗)−1, Following, NextSibling, NextSibling+,
and NextSibling∗ are subsets of the post-order ≤post, and

(3) Child, (Child+)−1, (Child∗)−1, NextSibling, NextSibling+,
and NextSibling∗ are subsets of the order ≤bflr.

Using Lemma 3.5, it is straightforward to show that

Theorem 4.1. The axes

1. Child+ and Child∗ are <pre-hemichordal,

2. Following is <post-hemichordal, and

3. Child, NextSibling, NextSibling∗, and NextSibling+ are
<bflr-hemichordal.

Proof. All proof arguments use Lemma 3.5.
We first show that Child∗ is <pre-hemichordal. (The

proof for Child+ is similar.) Consider nodes n0, . . . , n3 s.t.
n0<pren1≤pren2<pren3, Child∗(n0, n3), and Child∗(n1, n2).
It is simple to see that ≤pre is the disjoint union of Child∗

and Following. Therefore, either Child∗(n0, n1), which im-
plies Child∗(n0, n2), or Following(n0, n1). The latter case
would yield n3<pren1, a contradiction.

Next, we show is that Following is <post-hemichordal. As-

sume that n0<postn1≤postn2<postn3 and Following(n1, n2),

Following(n0, n3). Clearly, the relation ≤post is the disjoint
union of Following and the inverse of Descendant-or-self.
Since n0<postn1 is true, either Descendant-or-self(n1, n0)

or Following(n0, n1) must hold. In both cases it follows that
Following(n0, n2). Thus, Following is <post-hemichordal.

The fact that Child is <bflr-hemichordal follows trivially

from Lemma 3.5: Assume that n0 <bflr n1 ≤bflr n2 <bflr
n3, Child(n0, n3), and Child(n1, n2). Since n0 <bflr n1 ≤bflr
n3 and Child(n0, n3), there are just the following three cases:
(1) n1 is a left sibling of n3, (2) n1 = n3, or (3) n1 is a right
sibling of n0. In all cases, Child(n1, n2) ∧ n2 ≤bflr n3 leads

to a contradiction.
It is easy to verify that NextSibling, NextSibling∗, and

NextSibling+ are <bflr-hemichordal using Lemma 3.5. 2

Now, it follows immediately from Lemma 3.3 that

Corollary 4.2 ([12]). Conjunctive queries over the sig-
nature

τ1 := 〈(Labela)a∈Σ,Child+
,Child∗〉

are in polynomial time w.r.t. combined complexity.

Corollary 4.3. Conjunctive queries over the signature

τ2 := 〈(Labela)a∈Σ,Following〉

are in polynomial time w.r.t. combined complexity.

Corollary 4.4. Conjunctive queries over the signature

τ3 := 〈(Labela)a∈Σ,Child,NextSibling,

NextSibling
∗
,NextSibling

+〉

are in polynomial time w.r.t. combined complexity.

1

2

3 4

5

6 7 1 64

5

7

2 3

8

9

<pre <post

(a) (b)

Figure 2: (a) Following is not <pre-hemichordal; (b)
Descendant−1 and Descendant-or-self−1 are not <post-

hemichordal.

Remark 4.5. The remaining inclusions between axis re-
lations and total orders introduced at the beginning of this
section do not extend to <-hemichordality.

The examples in Figure 2 show that (a) Following does
not satisfy Lemma 3.5 w.r.t. pre-order <pre and that (b)
Descendant−1 and Descendant-or-self−1 do not satisfy the
condition of Remark 3.6 w.r.t. post-order <post. 2

5. NP-HARDNESS RESULTS
In this section, we study the complexity of the conjunc-

tive query evaluation problem for the remaining sets of axis
relations. We are able to show that for all cases for which
our techniques based on <-hemichordality do not yield a
polynomial-time complexity result, we are able to prove NP-
hardness. All NP-hardness results hold already for query
complexity, i.e., in a setting where the data tree is fixed and
only the query is assumed variable.

All reductions are from one-in-three 3SAT , which is the
following NP-complete [24] problem: Given a set U of vari-
ables, a collection C of clauses over U such that each clause
C ∈ C has |C| = 3, is there a truth assignment for U such
that each clause in C has exactly one true literal? 1-in-3
3SAT remains NP-complete if all clauses contain only posi-
tive literals.

Below, we will use shortcuts of the form χk(x, y), where χ
is an axis, in queries to denote chains of k χ-atoms leading
from variable x to y. For example, Child2(x, y) is a shortcut
for Child(x, z),Child(z, y), where z is a new variable.

The first theorem strengthens a known result for combined
complexity [21] to query complexity.

Theorem 5.1. Conjunctive queries over the signatures

τ4 := 〈(Labela)a∈Σ,Child,Child+〉

τ5 := 〈(Labela)a∈Σ,Child,Child∗〉

are NP-complete w.r.t. query complexity.

Proof. Let C1, . . . , Cm be a 1-in-3 3SAT instance over pos-
itive literals. We assume that Ci is an ordered sequence
of three positive literals. We may assume w.l.o.g. that no
clause contains a particular literal more than once.

We encode this instance as one of the Boolean conjunctive
query evaluation problem for τ4 (τ5). The fixed data tree is
shown in Figure 3.

For the query, we introduce variables xi, yi for 1 ≤ i ≤ m
and in addition a variable zk,l,i,j whenever the k-th literal
of Ci coincides with the l-th literal of Cj (1 ≤ i ≤ m, 1 ≤
j ≤ m, i 6= j, 1 ≤ k, l ≤ 3).

The Boolean query consists of the following atoms:

L1, L2

B

C

v3

v2

v1

C

C

Bw1,2 w2,2 w3,2

w1,1 w2,1 w3,1

L1, L3

L2, L3 L1, L2

L1, L3

w1,7

w1,8

w1,9

w1,10 w2,10

w2,8

w2,7 w3,7

w3,8

w3,9

w3,10
L2, L3

B

L1, L3 L1, L2

L2, L3 L1, L2

L1, L3

w1,3

w1,4

w1,5

w1,6 w2,6

w2,5

w2,4

w2,3 w3,3

w3,4

w3,5

w3,6

L2, L3

L2, L3

L2, L3

L1, L2, L3

L1, L2, L3

L1, L3

L1, L2

L1, L2

L1, L3

L1, L2, L3

w2,9

Figure 3: Data tree of the proof of Theorem 5.1.

• for 1 ≤ i ≤ m,

C(xi), B(yi), Child3(xi, yi),

• for each variable zk,l,i,j ,

Lk(zk,l,i,j),Child◦(yi, zk,l,i,j),Child
8+k−l(xj, zk,l,i,j)

where ◦ is “+” on signature τ4 and “∗” on τ5.

“⇒”. To prove correctness of the encoding scheme, we
first show that given any solution mapping

σ : {1, . . . ,m} → {1, 2, 3}

of C1, . . . , Cm (i.e., σ(i) = k′ iff σ selects the k′-th literal
from Ci) we can define a satisfaction θ of the query. We
first define a valuation θ of our query and then show that
all constraints are satisfied. We set

• θ(xi) := vσ(i) for 1 ≤ i ≤ m,

• θ(yi) := wσ(i),σ(i) for 1 ≤ i ≤ m, and

• for each variable zk,l,i,j , θ(zk,l,i,j) := wσ(i),5+k−l+σ(j).

We now prove that θ is a satisfaction of the query. Our
choice implies that the variables xi and yi are mapped to
nodes with labels C andB, respectively. Furthermore, θ(yi) =
wσ(i),σ(i) can be reached from θ(xi) = vσ(i) with three child-
steps. For any variable of the form zk,l,i,j , θ(zk,l,i,j) =
wσ(i),5+k−l+σ(j) is always a Child◦ of wσ(i),σ(i). If σ(i) 6=
k, then θ(zk,l,i,j) = wσ(i),5+k−l+σ(j) has label Lk because
4 ≤ 5 + k − l+ σ(j) ≤ 10 and the nodes wσ(i),4, . . . , wσ(i),10

all have (at least) the two labels Lk′ for which σ(i) 6= k′. If
σ(i) = k, then σ(j) = l. By going 8 + k − l steps downward
from vσ(j), passing through wk,k, we reach node wk,5+k,
which has label Lk. Since θ(zk,l,i,j) = wσ(i),5+k−l+σ(j) =

wk,5+k, the constraints Child8+k−l(xj , zk,l,i,j) are satisfied.
Therefore, θ is indeed a satisfaction of our query.

“⇐”. To finish the proof we show that from any satis-
faction θ of the query we obtain a corresponding solution
for the 1-in-3 3SAT instance C1, . . . , Cm. If θ(xi) = vk, we

7

(a)

B

BB

L2

C

L3L1

A

631

L2 L3

5

Child

Following7

Child Child

B Following4 CA Following4

(b)

L2 L3L1

Following2 Following2

A C

L1 L2

2 4

Figure 4: Clause gadget of proof of Theorem 5.2.

interpret this as the k-th literal of clause Ci being chosen
to be true. Obviously, under any valuation of the query, we
select precisely one literal from each clause Ci. We have to
verify that if a literal L occurs in two clauses Ci and Cj

and we select L in Ci, we also select L in Cj . Let L be the
k-th literal of Ci and let θ(xi) = vk (i.e., L is selected in
Ci). Then θ(zk,l,i,j) = wk,5+k because that is the only node
below θ(yi) = wk,k that has label Lk. The query contains
the atom Child8+k−l(xj, zk,l,i,j) for variable zk,l,i,j . From
node wk,5+k, by 8+ k− l upward steps we arrive at node vl.
Hence θ(xj) = vl, and we select L from clause Cj .

Some nodes in the data tree carry multiple labels. How-
ever, since the Child axis is available in both τ4 and τ5,
multiple labels can be eliminated by pushing them down
to new children in the data tree and modifying the queries
accordingly. 2

Theorem 5.2. Conjunctive queries over the signature

τ6 := 〈(Labela)a∈Σ,Child,Following〉

are NP-complete w.r.t. query complexity.

Proof Sketch. Consider the construction shown in Fig-
ure 4, consisting of the fragment of a data tree (a) and of a
query (b) over the labeling alphabet Σ = {A,B,C, L1, L2, L3}.

Observe that the labels L1, L2, and L3 occur only once
each in Figure 4 (b). We will refer to the nodes (= query
variables) labeled L1, L2, and L3 by v1, v2, and v3, respec-
tively. For the following discussion, we have annotated some
of the nodes of the data tree with numbers (1–7). Below,
node 1 (resp. 3, 6) is called the topmost position of variable
v1 (resp. v2, v3). We start with three simple observations.

1. In any satisfaction θ of the query on the data tree, at
most one of the variables v1, v2, and v3 is mapped to
its topmost position under θ. In fact, assume, e.g., that
θ(v1) = 1. From node 1, node 3 (resp. 6) cannot be
reached by a sequence of 2 (resp. 7) Following-steps.
Hence we have θ(v2) 6= 3 and θ(v3) 6= 6.

k\l 1 2 3
1 10 13 18
2 5 8 13
3 2 5 10

Table 2: The function NAND(k, l).

2. In any solution θ of the problem, at least one of the vari-
ables v1, v2, and v3 is mapped to its topmost position
under θ. In fact, assume that θ(v1) = 2 and θ(v2) 6= 3.
The constraints in the query (in particular, on the vari-
ables corresponding to nodes on the bottom of the query
graph) require that θ(v2) 6= 4. Hence θ(v2) = 5 is the
only remaining possibility. But now the query requires
that θ(v3) 6= 7. Hence θ(v3) = 6.

Thus, precisely the three partial assignments

(a) θ(Pi) := 1, θ(Qi) := 4, θ(Ri) := 7

(b) θ(Pi) := 2, θ(Qi) := 3, θ(Ri) := 7

(c) θ(Pi) := 2, θ(Qi) := 5, θ(Ri) := 6

can be extended to a satisfaction of the query. Precisely
one of the variables v1, v2, and v3 is mapped to its topmost
position under each of the above assignments. Conversely,
for each variable there is a satisfying assignment in which it
takes its topmost position.

Given a clause C, an ordered list of three positive literals,
we interpret a satisfaction θ in which variable vk is mapped
to its topmost position as the selection of the k-th literal
from C to be true. The encoding described above thus as-
sures that exactly one variable of clause C is selected and
becomes true.

Now consider a 1-in-3 3SAT problem instance over pos-
itive literals with clauses C1, . . . , Cm. We encode such an
instance as a conjunctive query over τ6 and a fixed data tree
over labeling alphabet Σ = {A,B,C, L1, L2, L3}. This tree
consists of two copies of the tree of Figure 4 (a) under a
common root, i.e.,

T T

where T denotes the tree of Figure 4 (a).
The query is obtained as follows. Each clause Ci is repre-

sented using two copies of the query gadget of Figure 4 (b)
(a “left” copy Qi and a “right” copy Q′

i). We wire the two
sets of subqueries Q1, . . . , Qm, Q

′
1, . . . , Q

′
m as follows.

Consider first the integer function NAND(k, l) defined by
Table 2. We can enforce that two variables, x and y, labeled
Lk and Ll in their respective subqueries, cannot both match
the topmost node labeled Lk resp. Ll in the left, respective
right, part of the data tree by adding a constraint of the
form FollowingNAND(k,l)(x, y) to the query.

For each pair of clauses Ci, Cj , variable x such that Qi

(resp., Q′
i) contains the unary atom Lk(x), and variable y

such that Q′
j (resp., Qj) contains the unary atom Ll(y), if

• the k-th literal of Ci occurs also in Cj and

• the k-th literal of Ci and the l-th literal of Cj are different,

then we add an atom FollowingNAND(k,l)(x, y) to the query.

These constraints make sure that if a literal is chosen to
be true in one clause, it must be selected to be true in all
other clauses as well. In the case that i = j, the idea is
to make sure that both copies of the query gadget of each
clause, Qi and Q′

i, make the same choice of selected literal.
The case that i 6= j models the interaction between distinct
clauses. The constraints assure that each literal is assigned
the same truth value in all clauses.

Using two copies of the query gadget for each clause and
two copies of the tree gadget of Figure 4 (a) in the data
tree is necessary, as we cannot use Followingk-constraints
to make sure that two variables are not both assigned their
topmost positions in the data tree (corresponding to “true”)
if the data tree consists just of the tree of Figure 4 (a) and
these two topmost positions in the data tree coincide.

This concludes the construction, which can be easily im-
plemented to run in logarithmic space. It is not difficult to
verify that the fixed data tree satisfies the query precisely if
the 1-in-3 3SAT instance is satisfiable. 2

Theorem 5.3. Conjunctive queries over the signatures

τ7 := 〈(Labela)a∈Σ,Child+
,Following〉,

τ8 := 〈(Labela)a∈Σ,Child∗
,Following〉

are NP-complete w.r.t. query complexity.

Proof Sketch. The same encoding as in the previous proof
can be used, with the only difference that Child∗ resp. Child+

is used instead of Child in the query. In fact, if the topmost
position for v1 (resp. v2, v3) is chosen, there are two possi-
ble matches for “A” (resp. three for “B” and two for “C”).
This has no impact on the constraints across clauses or the
constraints that at most one variable of each clause is as-
signed to its topmost position. To make sure that at least
one variable of each clause is assigned its topmost position,
the constraints of the query assure that either “A”, “B”,
or “C” are assigned to the correspondingly labeled node at
depth two in the subtree of the clause (rather than depth
three). 2

Since by definition,

Following(x, y) = ∃z1∃z2 Child∗(z1, x)∧

NextSibling
+(z1, z2) ∧ Child∗(z2, y),

Corollary 5.4. Conjunctive queries over the signature

τ9 := 〈(Labela)a∈Σ,Child∗
,NextSibling

+〉

are NP-complete w.r.t. query complexity.

Theorem 5.5. Conjunctive queries over the signature

τ10 := 〈(Labela)a∈Σ,Child∗
,NextSibling〉

are NP-complete w.r.t. query complexity.

Proof Sketch. If we replace Following by

Following
′(x, y) := ∃z1∃z2 Child∗(z1, x)∧

NextSibling(z1, z2) ∧ Child∗(z2, y),

we can reuse the construction of the proof of Theorem 5.2
(in the modified form of the proof of Theorem 5.3). 2

L3B

BB

L2

C

L3

A

63
H H

H H

T ′H

1L1

A C

HH H HHH

T ′

2 L1
4L2

5 L2
7

Figure 5: Data tree of proof of Theorem 5.6.

Theorem 5.6. Conjunctive queries over the signature

τ11 := 〈Child∗
,NextSibling

∗
, (Labela)a∈Σ〉

are NP-complete w.r.t. query complexity.

Proof Sketch. The proof basically uses the same argu-
ment as Corollary 5.4. However, since we now have to deal
with NextSibling∗ rather than NextSibling+, we need a way
to ensure that NextSibling∗ moves at least one step to the
right. We thus replace each occurrence of Following in the
construction of the proof of Theorem 5.2 by

Following
′(x, y) := ∃z1∃z2∃z3 Child∗(z1, x)∧

NextSibling
∗(z1, z2) ∧H(z2)∧

NextSibling
∗(z2, z3) ∧ Child∗(z3, y).

The modified data tree is as shown in Figure 5. It uses
specially labeled auxiliary nodes inserted between each pair
of adjacent siblings in the data tree of the proof of Theo-
rem 5.2. 2

Theorem 5.7. Conjunctive queries over the signatures

τ12 := 〈Child+
,NextSibling, (Labela)a∈Σ〉,

τ13 := 〈Child+
,NextSibling

+
, (Labela)a∈Σ〉,

τ14 := 〈Child+
,NextSibling

∗
, (Labela)a∈Σ〉

are NP-complete w.r.t. query complexity.

Proof Sketch. The proofs are analogous to the proofs for
the respective signatures with Child∗ rather than Child+,
except that we modify the respective data trees as follows:
Each edge 〈u,w〉 is replaced by two edges 〈u, v〉, 〈v, w〉, where
v is a new node. Now, to make a Following-step between two
nodes corresponding to original tree nodes, we can use the
relation

Following
′′(x, y) := ∃z1∃z2∃z3 Child+(z1, x)∧

NextSibling
α(z2, z3) ∧ Child+(z3, y).

where α is “1” for τ12, “+” for τ13, and “∗” for τ14. 2

Theorem 5.8. Conjunctive queries over the signatures

τ15 := 〈Following,NextSibling, (Labela)a∈Σ〉,

τ16 := 〈Following,NextSibling
+
, (Labela)a∈Σ〉,

τ17 := 〈Following,NextSibling
∗
, (Labela)a∈Σ〉

are NP-complete w.r.t. query complexity.

L2

L2L2

L2

L2L1

(a)

Following11

(b)

L2 L3L1

Following4 Following4

Following8 Following8

NextSibling NextSibling
NextSibling NextSibling

3

2

4 5

7

61 L1

Figure 6: Encoding the selection of exactly one of
the positive literals P , Q, R from clause C = {P,Q,R}
as a conjunctive query over signature τ15.

Proof Sketch. We first look at signature τ15. Consider the
data tree shown in Figure 6 (a) and the query of Figure 6 (b).

As in the proof of Theorem 5.2, there is again one variable
per label L1 (L2, L3), which we call v1 (v2, v3). Again,
at most one variable v1, v2, and v3 can be mapped to its
topmost position. The query shown in Figure 6 (a) requires
that precisely the partial assignments

θ(v1) := 1, θ(v2) := 4, θ(v3) := 7

θ(v1) := 2, θ(v2) := 3, θ(v3) := 7

θ(v1) := 2, θ(v2) := 5, θ(v3) := 6

can be extended to solutions of query.
This provides us with an encoding for the selection of

exactly one literal from a given clause with three positive
literals. The full reduction can be obtained analogously to
the previous proofs to yield an encoding for 1-in-3 3SAT
over positive literals.

The same reduction can be used to prove the correspond-
ing result for the signatures τ16 and τ17. 2

6. EXPRESSIVENESS
Let F be a set of XPath axes and let F−1 denote their in-

verses (e.g., Parent for Child, see [28]). We denote by CQ[F]
the conjunctive queries over signatures 〈(Labela)a∈Σ, F 〉. By
PQ[F] we denote the positive (first-order) queries (written
as finite unions of conjunctive queries) over F . We denote
the acyclic positive queries over F by APQ[F]. 8

8We lack the space to formally introduce XPath, but it is
easy to show that for the positive, navigation-only fragment
of XPath (called positive Core XPath in [15]), for some set
F of axes, APQ[F] captures positive Core XPath[F ∪ F−1]
on trees in which each node has (at most) one label.

v

x

y Child
∗

Child
+

Child
+

zChild
∗

NextSibling+

vu

x

y

Child
+

z

Child
+

NextSibling+
vu

Child
∗

Child
∗

x

Child
+

Child
+

zy
Following

x

y

Child
∗

Child
+

Child
+

NextSibling+

Child
∗

z

x

y

Child
+

zChild
∗

v
NextSibling+

u

Child
+

Child
∗

⇓

⇓

⇓

⇓

⇒ ⇒

⇓ ⇓

x

y

Child
+

z

v
NextSibling+

u

Child
+

Child
∗

Child
∗

⇑

x

y

Child
+

z

Child
+

NextSibling+
vu

Child
∗

Child
∗

(unsatisfiable)

x

y zChild
∗

NextSibling+
u

Child
+

Child
∗

Child
+

(unsatisfiable)

(unsatisfiable)

x

y zChild
∗

NextSibling+
u

Child
+

Child
+

Child
∗

⇓ ⇓

x

Child
+

zChild
∗

v

NextSibling+

y

Child
∗

Child
+

u

u

x

Child
+

z
y

Child
∗

Child
+

vNextSibling+

Child
∗

(unsatisfiable)

u

x

y

Child
∗

Child
+

NextSibling+

Child
∗

z

u v

v v

Figure 7: Translation of a conjunctive query into an APQ.

Theorem 6.1. Let F be a set of XPath axes. Then,

CQ[F] ⊆ APQ[F].

Proof (Rough Sketch). We first rewrite all occurrences of
Following using Child∗ and NextSibling+.

Then we proceed as follows. If there is a directed cycle
of the query qraph that consists exclusively of Child∗ and
NextSibling∗ edges, we eliminate it by unifying all variables
in the cycle. We proceed analogously with undirected cycles
which ensure that all variables in the cycle may be unified,
such as Child∗(x, y),NextSibling(x, y). If there is another
kind of directed cycle, the query is unsatisfiable and we
are done. There are a few further cases of undirected cy-
cles that entail unsatisfiability and which are easy to detect,
such as Child∗(x, y), R(x, y), where R is either NextSibling

or NextSibling+. If there is no directed but an undirected cy-
cle, the query contains two atoms R1(x, y), R2(x

′, y). Now,
for any combination of

R1, R2 ∈ {Child,Child∗
,Child+

,

NextSibling,NextSibling
∗
,NextSibling

+},

we can rewrite these two atoms into at most two alternative
atoms such that the cycle gets smaller and moves up or left
in the tree. For example,

• if R1 = Child and R2 = Child or R1 = NextSibling and
R2 = NextSibling, we set x = x′.

• ifR1 is Child or Child+ andR2 is NextSibling, NextSibling∗,
or NextSibling+, we rewrite the two atoms into

R1(x, x
′), R2(x

′
, y).

• if R1 = Child and R2 = Child+, we rewrite the two atoms
into Child(x, y),Child∗(x′, x)

• if R1 = NextSibling and R2 = NextSibling+, we rewrite
the two atoms into NextSibling(x, y),NextSibling∗(x′, x).

• if R1 = Child and R2 = Child∗, we rewrite the two atoms
either into Child(x, y),Child∗(x′, x) or set x′ = y. (This
means, in such a case we have to produce two alternative
rewritings and continue rewriting both.)

• if R1 = Child∗ andR2 = Child∗, we rewrite the two atoms
either into

Child∗(x, y),Child∗(x′
, x)

or into

Child∗(x, x′),Child∗(x′
, y).

(The remaining cases are obtained analogously.)
We repeat this (recursively for both alternative rewrit-

ings) until we either obtain an unsatisfiable cycle or a tree.
In both cases we are done. The result is the union of the
conjunctive queries that we compute and for which we do
not infer unsatisfiability.

Note that the rewrite system is confluent and the ordering
in which we choose pairs of binary atoms to rewrite does not
matter. 2

Therefore, each CQ[F] query can also be formulated as an
XPath query over axes F ∪ F−1. Using the rewriting tech-
nique sketched in the previous proof, each conjunctive query
can be rewritten into a singly exponentially-sized APQ.

Example 6.2. Figure 7 illustrates the translation of the
previous proof by means of an example (the example query
Q from the introduction). All conjunctive queries that we
obtain are unsatisfiable, except for one. Thus, for Q there
is an equivalent acyclic conjunctive query.

Note that in Figure 7 we make an exception by labeling
the nodes of the query graph with the variable names in
order to allow for the variables to be tracked through the
rewrite steps more easily. 2

Similar techniques to the one of the previous proof were
used in [23] to eliminate backward axes from XPath expres-
sions and in [27] to rewrite first-order queries over trees given
by certain regular path relations.

Corollary 6.3. PQ[F] = APQ[F].

Obviously, the CQ[F] are not closed under union. On
trees of one node only, conjunctive queries are equivalent to
ones which do not use binary atoms. It is easy to see that
the query {x | A(x)∨B(x)} has no conjunctive counterpart.

Proposition 6.4. CQ[F] 6= APQ[F].

Now, there are signatures for which all conjunctive queries
can be rewritten into APQ’s in polynomial time and there
are signatures for which this is not possible.

Proposition 6.5 ([13]). Every CQ[Child,NextSibling]
can be rewritten in linear time into an equivalent acyclic
CQ[Child,NextSibling,NextSibling∗].

It is easy to verify by inspecting the proof in [13] that
rewriting each CQ[Child,NextSibling] into an equivalent a-
cyclic CQ[Child,NextSibling] in linear time is also possible.
(The proof there also deals with relations such as FirstChild.
If these are not present, NextSibling∗ is not required.)

Finally, we show that there are conjunctive queries over
trees that cannot be polynomially translated into equivalent
APQs.

Let Dn denote the n-diamond query

Dn ← Y1(y1) ∧
n̂

i=1

`

Child+(yi, xi) ∧ Child+(yi, x
′
i)∧

Child+(x′
i, yi+1) ∧ Child+(x′

i, yi+1)∧

Xi(xi) ∧X
′
i(x

′
i) ∧ Yi+1(yi+1)

´

.

A graphical representation of this Boolean CQ[{Child+}] is
given in Figure 8 (a).

Theorem 6.6. For Dn, no equivalent APQ over XPath
axes exists that is of size polynomial in |Dn|.

Proof. By contradiction.
Let A & B be a shortcut for the regular expression (A.B |

B.A) and let s be a shortcut for the path of 2n unlabeled
nodes. The regular expression

Y1.s.(X1.s & X
′
1.s).Y2.s.(X2.s & X

′
2.s).Y3.s. · · ·

· · · .Yn.s.(Xn.s & X
′
n.s).Yn+1

defines 2n path-structures (i.e., trees that are paths) over al-
phabet Σ = {X1, . . . , Xn, X

′
1, . . . , X

′
n, Y1, . . . , Yn+1}, as ske-

tched in Figure 8 (b).

...

Yn

Xn

X ′

n

Yn+1

...
}

2n

...
}

2n

...
}

2n

Y1

X1

X ′

1

Y2

...
}

2n

...
}

2n

...
}

2n

...

...
}

2n

Yn

...
}

2n

...
}

2n

Yn+1

Y1

Y2

...
}

2n

...
}

2n

...
}

2n

Xn

X ′

n

X1

X ′

1

...

Yn+1

X ′

2

X ′

1X1

X2

Xn X ′

n

Y2

Y1

Yn

· · ·

(b)(a)

Y3

Figure 8: Query Dn (a) and path models (b) from
proof of Theorem 6.6.

Assume there is a polynomially-sized (Boolean) APQ Q =
Q1 ∨ · · · ∨Qm which is equivalent to Dn. Then there is (at
least) one subquery Qi which returns true for exponentially
many of our path-structures (let P denote this set of struc-
tures) and which does not return true for any structure for
which Dn does not return true.

We only need to consider the Child+ axis for binary rela-
tions in Qi. Indeed, for each model A of Dn and each valua-
tion θ, θ will map all variables of Dn into a single path in A.
Thus, if Qi uses either the NextSibling or NextSibling+ axis,
Qi can be dropped from Q without changing it (i.e., Q ≡ Q−
Qi). Similarly, each occurrence of an atom NextSibling∗(x, y)
entails that x and y must match the same node. Such an
atom can be removed and all occurrences of y in Qi be
replaced by x. Since in our models, any two nodes that
may match a variable from Dn (because of the unary pred-
icates that can be matched at these nodes) are only reach-
able through a path of length at least 2n, we cannot build
a path between two variables from Dn using Child atoms,
nor can we define a relationship between the two variables
that we cannot define using just Child+. (As required above,
the nodes along the paths of length 2n are unlabeled.) By
similar considerations, it becomes clear that Child∗ is not
necessary either.

Consider the set of paths Π ⊆ Var(Qi)
∗ from nodes with

in-degree zero to nodes with out-degree zero that occur in
the query graph of Qi. Since Qi is acyclic, the number of
such paths is bounded by the square of the number of its
nodes. Since Qi is moreover of polynomial size, there are
only polynomially many paths.

Given a path π ∈ Π, let l(π) denote the path of labels
(unary atoms) associated to the path π of variables. (Since
in our path-structures in P, each node has at most one label,
we may assume the same for π, otherwise Qi is always false
on the path models. We supplement “ ” for variables which
do not have a unary atom associated.) Let l(Π) = {l(π) |
π ∈ Π}.

There are exponentially many distinct paths over

X1, X
′
1, . . . , Xn, X

′
n

to be matched in our set of path-structures P. Whenever

Y1

X1

...
}

2n

...
}

2n

...
}

2n

Y2

X2 ...
}

2n

Y3 ...
}

2n

...
}

2n

...
}

2n

...
}

2n

Y1

X1

Y2

X ′

2 ...
}

2n

Y3 ...
}

2n

...
}

2n

...
}

2n

...
}

2n

Y1

X ′

1

Y2

X ′

2 ...
}

2n

Y3

X1

Y2

Y1

X ′

1X1

Y2

Y1 Y1

Y3

X2 X ′

2

X ′

2

X ′

1X1

X2

Y2

Y1

Y3

(b)

(a)

(c)

Figure 9: Example of the path structure construc-
tion of the proof of Theorem 6.6.

there is a path u.Xj .v.X
′
j .w or u.X ′

j .v.Xj .w in l(Π) (where
u, v, and w are words), an order between Xj and X ′

j is
fixed which must be reflected in all path-structures in P,
because in each path-structure precisely one node is labeled
Xj and precisely one (different) node is labeled X ′

j . To
match exponentially many path-structures as we required
for Qi, there must be sufficiently – polynomially – many
indexes j for which no such order between Xj and X ′

j is
determined.

To simplify the presentation, we may now assume that
there is no pair of variables for which this order is determined
by Qi. (Otherwise, there is a straightforward way to modify
the queries Q and Dn and the path-structures of P to get to
an equivalent problem where this is the case.) It follows that
in no path in l(Π), both a label Xj and the corresponding
X ′

j may occur.
Since there are only polynomially many paths in Π, there

is a path in (X1 | X
′
1). · · · .(Xn | X

′
n) which does not occur

in l(Π). W.l.o.g., let this path be X ′
1.X

′
2. · · · .X

′
n.

We now construct a path-model M of Qi which is not a
model of Dn. M is obtained by concatenating the paths in
Π in a special order which is obtained as follows. Let Π(X)
(resp., Π(¬X)) denote the set of paths in l(Π) which contain
label X (resp., do not contain label X). Let Π(φ ∧ ψ) =

Π(φ)∩Π(ψ). As a shortcut, let φk =
Vk

i=1(¬Xi∧X
′
i). Now,

we define M as the path

M = Π(X1).Π(¬X1 ∧ ¬X
′
1).

Π(φ1 ∧X2).Π(φ1 ∧ ¬X2 ∧ ¬X
′
2). · · ·

Π(φn−1 ∧Xn).Π(φn−1 ∧ ¬Xn ∧ ¬X
′
n).

Π(φn−1 ∧ ¬Xn ∧X
′
n)

The paths in each Π(ψ) may be concatenated in any order.

Consider for example the acyclic conjunctive query Q′

of Figure 9 (b). Here, the only path of the 2-diamond
query D2 shown in Figure 9 (a) which does not occur in
Q′ is Y1.X

′
1.Y2.X2.Y3. The path-structure M5 constructed

as described above is shown in Figure 9 (c). It consists
of a concatenation of the two paths Y1.X1.Y2.X2.Y3 and
Y1.X1.Y2.X

′
2.Y3 – which do contain X1 (and which we can

add to M5 in any order) – and the path Y1.X
′
1.Y2.X

′
2.Y3,

which contains X ′
1 rather than X1 and which is therefore

added to M5 after the other two paths. It is easy to see that
indeed Q′ is true on M5, but that D2 is not (the unique
occurrence of X ′

1 in M5 is below the unique occurrence of
X2).
M is indeed a model of Qi. In fact, any concatenation of

the paths in l(Π) would satisfy Qi. We define a valuation θ

as follows. Let π1.x.π
′
1, . . . , πk.x.π

′
k be the set of all paths

in Π in which x occurs. Then,

θ(x) = v ⇔ v is the topmost node in M s.t.

π1.x, . . . , πk.x can be matched in the

path from the root of M to v.

Since each of the paths in l(Π) occurs in M , θ is a complete
function, i.e. defined for all variables in Var(Qi).

The valuation θ is also consistent. Assume that θ(x) = v,
y is a variable that occurs in a path of the form π.y.π′.x.π′′ ∈
Π (i.e., y occurs above x in the query graph), and θ(y) = w.
By definition, w is the topmost node for which all paths with
a prefix π.y can be matched in the subpath of M from the
root to w. For each such π.y, π.y.π′.x must match the path
from the root of M to v. Thus, v must be below w in M .

On the other hand, M is not a model of Dn. The top-
most node in M matching variable x′

j is never above the
Π(φj)-interval of the path. However, since no path with the
ordering X ′

1 . . . X
′
2 . . . X

′
3 . . . · · · . . . X

′
n−1 . . . X

′
n exists in Qi,

the Π(φn)-interval is empty.
This concludes our proof. 2

7. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases. Addison-Wesley, 1995.
[2] R. Baumgartner, S. Flesca, and G. Gottlob. “Visual Web

Information Extraction with Lixto”. In Proceedings of the
27th International Conference on Very Large Data Bases
(VLDB’01), 2001.

[3] M. Benedikt, W. Fan, and G. Kuper. “Structural Properties
of XPath Fragments”. In Proc. of the 9th International
Conference on Database Theory (ICDT’03), 2003.

[4] M. Bodirsky, D. Duchier, J. Niehren, and S. Miele. “A New
Algorithm for Normal Dominance Constraints”. In Proc.
SODA, 2004.

[5] A. K. Chandra and P. M. Merlin. “Optimal
Implementation of Conjunctive Queries in Relational Data
Bases”. In Conference Record of the Ninth Annual ACM
Symposium on Theory of Computing (STOC’77), pages
77–90, Boulder, CO USA, May 1977.

[6] C. Chekuri and A. Rajaraman. Conjunctive Query
Containment Revisited”. In Proc. of the 6th International
Conference on Database Theory (ICDT’97), pages 56–70,
1997.

[7] R. Dechter. “Constraint Processing”. Morgan Kaufmann,
May 2003.

[8] A. Deutsch and V. Tannen. “MARS: A System for
Publishing XML from Mixed and Redundant Storage”. In
Proceedings of the 29th International Conference on Very
Large Data Bases (VLDB’03), pages 201–212, 2003.

[9] A. Deutsch and V. Tannen. “Reformulation of XML
Queries and Constraints”. In Proc. of the 9th International
Conference on Database Theory (ICDT’03), pages
225–241, 2003.

[10] H.-D. Ebbinghaus and J. Flum. Finite Model Theory.
Springer-Verlag, 1999. Second edition.

[11] J. Flum, M. Frick, and M. Grohe. “Query Evaluation via
Tree-Decompositions”. In J. Van den Bussche and
V. Vianu, editors, Proc. of the 8th International
Conference on Database Theory (ICDT’01), volume 1973
of Lecture Notes in Computer Science, pages 22–38,
London, UK, Jan. 2001. Springer.

[12] G. Gottlob and C. Koch. “Monadic Queries over
Tree-Structured Data”. In Proceedings of the 17th Annual
IEEE Symposium on Logic in Computer Science (LICS),
pages 189–202, Copenhagen, Denmark, July 2002.

[13] G. Gottlob and C. Koch. “Monadic Datalog and the
Expressive Power of Web Information Extraction
Languages”. Journal of the ACM, 51(1):74–113, 2004.

[14] G. Gottlob, C. Koch, and R. Pichler. “Efficient Algorithms
for Processing XPath Queries”. In Proceedings of the 28th
International Conference on Very Large Data Bases
(VLDB’02), Hong Kong, China, 2002.

[15] G. Gottlob, C. Koch, and R. Pichler. “The Complexity of
XPath Query Processing”. In Proceedings of the 22nd ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems (PODS’03), 2003.

[16] J. Hidders. “Satisfiability of XPath Expressions”. In Proc.
DBPL, 2003.

[17] LDC. “The Penn Treebank Project”, 1999.
http://www.cis.upenn.edu/∼treebank/home.html.

[18] D. Maier. The Theory of Relational Databases. Computer
Science Press, 1983.

[19] M. P. Marcus, D. Hindle, and M. M. Fleck. “D-Theory:
Talking about Talking about Trees”. In Proc. ACL, pages
129–136, 1983.

[20] H. Meuss and K. U. Schulz. “Complete Answer Aggregates
for Tree-like Databases: A Novel Approach to Combine
Querying and Navigation”. ACM Transactions on
Information Systems, 19(2):161–215, 2001.

[21] H. Meuss, K. U. Schulz, and F. Bry. “Towards Aggregated
Answers for Semistructured Data”. In Proc. of the 8th
International Conference on Database Theory (ICDT’01),
pages 346–360, 2001.

[22] M. Minoux. “LTUR: A Simplified Linear-Time Unit
Resolution Algorithm for Horn Formulae and Computer
Implementation”. Information Processing Letters,
29(1):1–12, 1988.

[23] D. Olteanu, H. Meuss, T. Furche, and F. Bry. “Symmetry
in XPath”. In Proc. EDBT Workshop on XML Data
Management, 2002.

[24] T. Schaefer. “The Complexity of Satisfiability Problems”.
In Proc. 10th Ann. ACM Symp. on Theory of Computing
(STOC), pages 216–226, 1978.

[25] M. Schmidt-Schauss and K. U. Schulz. “On the Exponent
of Periodicity of Minimal Solutions of Context Equations”.
In Proc. 9th Int. Conf. on Rewriting Techniques and
Applications, pages 61–75, 1998.

[26] M. Schmidt-Schauß and J. Stuber. “On the Complexity of
Linear and Stratified Context Matching Problems”, 2001.
Unpublished manuscript.

[27] T. Schwentick. “On Diving in Trees”. In Proc. MFCS,
pages 660–669, 2000.

[28] World Wide Web Consortium. XML Path Language
(XPath) Recommendation.
http://www.w3c.org/TR/xpath/, Nov. 1999.

[29] M. Yannakakis. “Algorithms for Acyclic Database
Schemes”. In Proceedings of the 7th International
Conference on Very Large Data Bases (VLDB’81), 1981.

	page1: 189
	page2: 190
	page3: 191
	page4: 192
	page5: 193
	page6: 194
	page7: 195
	page8: 196
	page9: 197
	page10: 198
	page11: 199
	page12: 200

