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Context: XML query processing

XML assumed known

XML querying: not as simple as it seems
• XQuery, XQuery processing model

Several possible flows
• Data comes from persistent (disk-based) storage

– First load, then query

• Query processing "at first sight"
– Data is queried when it is first seen

– Not our topic [LMP02], [FSC+03], [BCF03], [FHK+03]
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XML query processing scenarios

<XML doc>

Loading

Query Result
Querying

endElem("XML")
...
beginElem("XML")

Query

Result

Java /
Lisp /
CAML...

<XML doc>

In-memory
data structures

Result
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XML query processing scenarios (1/2)

"Persistent store"

Logging / archiving an ongoing 
activity
• Clients, orders, products...

Dana used purchase orders :-)
• Structured text (documentation, 

news, image annotations, 
scientific data...)

Warehousing XML

"At first sight"

Fast processing of incoming 
documents
• Web service messages

• Workflow coordination

Many small documents to 
process
• In-memory, programming 

language approach feasible
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XML query processing scenarios (2/2)

"Persistent store"

Heavier
• Needs loading

All DBMS goodies
• Set-at-a-time processing

• Query optimization
• Persistence

• Transactions
• Concurrence control

• View-based management...

"At first sight"

Lighter

May blend easily into a 
programming framework
• Data marshalling is a pain
• In real life, there are not just 

databases
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Our topic

Disprove:

"XML research is magmatic"

Disprove:

"Nothing has been/can be done; despair and die"

Disprove:

"Everybody has his own storage scheme": not true, some people 
have others' 

Classify what has been done to take care of the details under the 
very, very, very, high level

With a database view
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XML query processing on persistent stores

Preliminaries
• What is there to store ?

• What do queries ask for ?
• The long and winding road between the two

Storage schemes for XML
• What is stored where ?

• What is not stored ?
• How would queries be answered ?

Wrap-up and missing things
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Preliminaries

What is there to store in XML data ?
What do queries ask for ?
Where do storage systems stand ?
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Preliminaries: 

What is there to store in XML data ?
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Sample XML document
auctions

item item

name description

text parlist

listitem listitem

parlist

listitem listitem

text text

text

comment name description

text parlist

listitem

text

"Gold pin"

"Art Nouveau
gold pin"

"Circa 1900" "Large diamond"

"also pendant"

"Surveillance
camera"

"8 channel"

"Video recorder,
8 dome

cameras"

"Remarkable
dragon 
brooch"

id="item1" id="item2"



11

Nodes and node identity

7 types of nodes: document, element, attribute, text, namespace, 
processing instruction, comment [XQDM]

Element, attribute, namespace, PI nodes have a unique identity

(ElemID, attr name) determine attr. value ⇒
key issue is element identity
• In-memory processing: "the pointer is the ID"

• Persistent stores: must materialize some persistent IDs (not necessarily 
for all elements)
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20

21

16

4

9

8

11

10

126

Assigning persistent IDs to elements
auctions

item item

name description

text parlist

listitem listitem

parlist

listitem listitem

text text

text

comment name description

text parlist

listitem

text

"Gold pin"

"Art Nouveau
gold pin"

"Circa 1900" "Large diamond"

"also pendant"

"Surveillance
camera"

"8 channel"

"Video recorder,
8 dome

cameras"

"Remarkable
dragon 
brooch"

id="item1" id="item2"

1

2

14

15

17

18 19

32

5

137
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Data values

Text nodes

Level 0: bunch of
strings

Level 1: strings, numbers,
booleans

Level 2: bags of words, numbers, 
boolean

This is still a simplification

item

name description

text parlist

listitem

text

"Surveillance
camera"

"8 channel"

"Video recorder,
8 dome

cameras"

id="item2"

...

price

"200"



14Document structure: relationships among 
nodes

Level 0: store parent-child relationships
• Given a node, it must be possible to find

– Its children
– Its parent

• Parent-child relationships between elements
• "Ownership" relationships between an element and an attribute

• "Text value" relationships between elements and text
• Elements may have several text children



15Document structure: relationships among 
nodes

Element 1 is parent of elements 2 and 15

Element 2 has the attribute id="item1"

Element 2 has the text child "Gold pin"

16

4

auctions

item item

name description

text parlist

comment name description

text parlist

"Gold pin" "Surveillance
camera"

"Remarkable
dragon 
brooch"

id="item1" id="item2"

1

2

14

15

17

18 19

32

5



16

Document order

Nodes in an XML document appear in a well-defined total order

It must be possible to retrieve this order

4

126

item

name description

text parlist

listitem listitem

comment

"Gold pin" "Remarkable
dragon 
brooch"

2

1432

5

...

"Art Nouveau
gold pin"

Item name 
before
item description
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Document structure: node names 

Element and attribute names must be stored

Can be considered "document schema"...

"Semistructured data contains its own schema"
"XML is semistructured data"

"XML contains its own schema"

Not any longer [XSch,XFS]
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Document structure, revisited

Structure =
• Invariants ("constraints", "schema", "DTD") +

• Instances (particular instantiations of a degree of freedom left by the 
invariants)

Many formalisms for specifying the invariants
• DTDs, XML Schemas
• Structural summaries [GW97]

• Graph schemas [FS98]

• Richer constraint languages
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"Circa 1900"

20

21

16

4

9

8

11

10

126

Invariants in XML document structure
auctions

item item

name description

text parlist

listitem listitem

parlist

listitem listitem

text text

text

comment name description

text parlist

listitem

text

"Gold pin"

"Art Nouveau
gold pin"

"Large diamond"

"also pendant"

"Surveillance
camera"

"8 channel"

"Video recorder,
8 dome

cameras"

"Remarkable
dragon 
brooch"

id="item1" id="item2"

1

2

14

15

17

18 19

32

5

137

All element children of the <auctions> 
element are named <item>
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20

21

16
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11
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Invariants in XML document structure
auctions

item item

name description

text parlist

listitem listitem

parlist

listitem listitem

text text

text

comment name description

text parlist

listitem

text

"Gold pin"

"Art Nouveau
gold pin"

"Circa 1900" "Large diamond"

"also pendant"

"Surveillance
camera"

"8 channel"

"Video recorder,
8 dome

cameras"

"Remarkable
dragon 
brooch"

id="item1" id="item2"

1

2

14

15

17

18 19

32

5

137

Each <item> element has an attribute
labeled "id"
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Invariants in document structure

"For each value of the
item attribute of an<open_auction> element, 
there exists an <item> element 
having the itemID attribute with the same value"

Change the "item" attribute into a subelement...

open_auctions

open_auction
item="item1"

open_auctions

open_auction

item

"item1"

"All itemID values in a
document are unique."
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Instance structure information

20

21

16

4

9

8

11

10

126

auctions

item item

name description

text parlist

listitem listitem

parlist

listitem listitem

text text

text

comment name description

text parlist

listitem

text

"Gold pin"

"Art Nouveau
gold pin"

"Circa 1900" "Large diamond"

"also pendant"

"Surveillance
camera"

"8 channel"

"Video recorder,
8 dome

cameras"

"Remarkable
dragon 
brooch"

id="item1" id="item2"

1

2

14

15

17

18 19

32

5

137

The first <item> element has a 
<comment> child; 
the second <item> element does not.
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Instance structure information

20

21

16

4

9

8

11

10

126

auctions

item item

name description

text parlist

listitem listitem

parlist

listitem listitem

text text

text

comment name description

text parlist

listitem

text

"Gold pin"

"Art Nouveau
gold pin"

"Circa 1900" "Large diamond"

"also pendant"

"Surveillance
camera"

"8 channel"

"Video recorder,
8 dome

cameras"

"Remarkable
dragon 
brooch"

id="item1" id="item2"

1

2

14

15

17

18 19

32

5

137

The <listitem> element number 6 has
a <parlist> child; the <listitem> elem. number 
8, 10, 12, 20 do not have  <parlist> children.
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Wrap-up: what should we store

Node identity and order

(Typed) data values

Document structure = invariants + particular instances

Many invariants is good (regular data)... but they should remain small  
(to handle easily)

DTDs, XML Schemas are there, but do not express all desireable 
constraints

Complex constraints require special care for updates
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Preliminaries: 
what do queries ask for ?
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One (popular) example: XQuery

Several W3C documents help define this

XQuery Data Model [XQDM]: 
• what information does the XML document contain, with respect to 

the XQuery processor

XQuery Function and Operators [XQFO]:
• which operations are permitted in XQuery on various data type, and 

what do they mean

XQuery Formal Semantics [XQFS]:
• what should be the answer to a given query

(what it means)
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XQuery Formal Semantics

Every XQuery expression can be equivalently reduced to an 
expression in a simpler language, XQuery Core

To an XQuery Core expression is associated
• A type

– More or less precise, depending on the availability of type 
information on the input

• A value

The whole picture: XQuery Processing Model
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The XQuery processing model

"This processing model is not intended to

describe an actual implementation, although a

naive implementation might be based upon it. 

It does not prescribe an implementation

technique, but any implementation should

produce the same results as obtained by

following this processing model and applying

the rest of the Formal Semantics specification."
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Essential part of XQuery: path expressions

Navigation axes:
• child, parent
• descendent, ancestor,
• descendent-or-self, ancestor-or-self
• attribute, 
• self, 
• following, preceding,
• following-sibling, preceding-sibling.

Path predicates: order-related, or path branches



31Sample path expressions:
//item[@id="item1"]//parlist//listitem/text/text()
//item/description[parlist/listitem/text]//listitem[3]

20

21

16

4

9

8

11

10

126

auctions

item item

name description

text parlist

listitem listitem

parlist

listitem listitem

text text

text

comment name description

text parlist

listitem

text

"Gold pin"

"Art Nouveau
gold pin"

"Circa 1900" "Large diamond"

"also pendant"

"Surveillance
camera"

"8 channel"

"Video recorder,
8 dome

cameras"

"Remarkable
dragon 
brooch"

id="item1" id="item2"

1

2

14

15

17

18 19

32

5

137



32

A few things you should know about XQuery

Path expressions result in duplicate-free lists of nodes
E.g. //parlist//listitem

Lots of existential semantics
• [1, 2] = [2, 3] true   
• [2, 3] = [3, 4] true

• [1, 2] = [3, 4] false   
• [1, 2] != [3, 4] true

Constructed elements must have fresh identity

parlist

listitem listitem

parlist

listitem listitem
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A few things you should know about XQuery

It is more than tree pattern queries

item

name descript.

TPQ

text

for $i in //item, $t in $i/description/text
return $i/name

for $i in //item[name] 
return <res> for $d in $i//description 

return <a> $d/text </a> </a>

for $i in //item
$n in $i/name
$d in $i/description, $t in $i/text

return <res> {$t} </res>

How do we write TPQ in XQuery ? 
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A few other things about XQuery

The semantics of x op y is defined by a large switch on the types 
associated to x and y 

There are many atomic types for time durations, moments in time (with 
timezone) etc. 

Equality on atomic numeric types may not be transitive...

These should not stop anyone from doing XQuery research

Good to have a viewpoint on what is supported from the processing 
model, and what to do with the rest
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Preliminaries: 

Where do storage systems stand wrt
the XQuery processing model
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Where (most) persistent storage systems 
stand 

Ignore comments, processing instructions, entities

Simplify the set of atomic types
• "Error ! We do not support timezones  yet."

Some focus on the child and descendent axes only

Keep little trace of schemas and complex types
• Common assumption: support for these can be plugged in the 

front-end

Focus on: storing simple values, and ordered data trees.
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Where (most) persistent storage systems 
stand

Provide selective data access

Provide set-at-a-time execution primitives, 
for a language whose formal semantics 
is defined tuple-at-a-time (recall: this is allowed by FS !)

Advantage: performance
• Selective data access
• Set-at-a-time processing allows for better disk access locality 

– Hash join vs. nested loops join
• Naive navigation-based tuple-at-a-time path query processors 

have complexity exponential in the size of the query [GKP02]; 
set-at-a-time scales better.
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Where (most) persistent storage systems 
stand

Provide set-at-a-time execution primitives, 
for a language whose formal semantics 
is defined tuple-at-a-time (recall: this is allowed by FS !)

Disadvantages: 
• Must make explicit effort to prove correctness 
• Some features may not be doable this way
• But they do not seem to be the essential ones
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Towards the end of the religious war

Completeness vs. efficiency

Work started at opposite ends grows towards convergence

Incompleteness is fine for academic research, as long as it's clear 
• what is left out
• how it could be added
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Towards the end of the religion war

From www.w3.org/XML/Query#specs

Specifications:

XML Query Requirements

XML Query Use Cases

XQuery 1.0 and XPath 2.0 Data Model

XSLT 2.0 and XQuery 1.0 Serialization

XQuery 1.0 and XPath 2.0 Formal Semantics

XQuery 1.0: An XML Query Language

XML Syntax for XQuery 1.0 (XQueryX)

XQuery 1.0 adn XPath 2.0 Functions and 
Operators

XPath Requirements Version 2.0

XML Path Language (XPath) 2.0

1008 p.
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2. 
XML storage and 
indexing models
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Some well-known relevant problems

Access path selection: choosing the best way to retrieve from disk a 
given data set

Parameters: data model, available storage structures
• Relational scan vs. index-based access

• Object navigation vs. scanning class extents

View-based query rewriting: reformulating a query based on a set of 
(materialized) views

Parameters: data model, view and query languages
• Local-as-view data integration

Mediator schema

Source schema 1 Source schema 2

view definitionsview definitionsview definitionsview definitions
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Some well-known relevant problems

Materialized view selection: choosing a set of views to materialize to 
speed up certain queries (supposes view-based query rewriting)

Parameters: query language, query workload, space
• Materialized view selection in a data warehouse: all sales of beer, or   

sales of beer in May, or sales of beer in France by brand...

Automatic index and view selection: choosing a set of views and 
indexes to speed up certain queries

Parameters: query language, query workload, space
• Index tuning wizards (SQL Server, DB2)
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Plan 

2.1  The precursors: OEM
and Lore

2. 2  Relational stores 
schemes

2.3  Native stores

Storage 
and indexing

Query
processing
primitives
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2.1
Storage, indexing, and 
query processing for 
OEM data
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...
...

... ... ...

open_auctions

Labeled, directed, unordered graph of objects

Objects have unique identity

Atomic objects =  values (simple atomic types)

OEM data model  [PGW95]

Auctions
item item

...

name

description
name descriptionauctionauction

object object

...

......

comment

initial
bids bids

initial
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The interest of OEM today

Many interesting ideas for XML indexing
• Tree / graph data model for XML

Graph-structured data has interesting applications
• Category hierarchies

• This document is a Presentation and an EDBT2004Document and an 
XMLStorageDocument

• (Heard of database file system ?)

OEM featured cycles; today's applications more focused on DAGs
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Storing OEM objects

No invariants ! Need to store
• Object identity, simple values

• Named edges

...
...

... ... ...

open_auctions

Auctions
item item

...

name

description
name descriptionauctionauction

object object

...

......

comment

initial bids bidsinitial
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Storing OEM objects in LORE [MAG+97]

Objects clustered in pages in depth-first order, including simple value 
leaves

Basic physical operator: Scan(obj, path)

...
...

... ... ...

open_auctions

Auctions
item item

...

name

description
name descriptionauctionauction

object object

...

......

comment

initial bids bidsinitial
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Scanning objects in Lore

Navigation-based, tuple-at-a-time, pointer-chasing

...
...

... ... ...

open_auctions

Auctions
item item

...

name

description
name descriptionauctionauction

object object

...

......

comment

initial bids bidsinitial

Scan(Auctions, "item"): 2 pages accessed
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Scanning objects in Lore

Scan(Auctions, "item.description"): 4 pages accessed

...
...

... ... ...

open_auctions

Auctions
item item

...

name

description
name descriptionauctionauction

object object

...

......

comment

initial bids bidsinitial

Scan(Auctions, "open_auctions.auction.object"): 4  pages accessed
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Indexing OEM objects in Lore  
[MW97,MWA+98,MW99a,MW99b]

VIndex(l, o, pred): all objects o with an incoming l-edge, satisfying 
the predicate  

LIndex(o, l, p): all parents of o via an l-edge
• "Reverse pointer chasing"

BIndex(x, l, y): all edges labeled l

select X
from Auction.open_auctions.auction X
where X.initial < 10

bulk
access

tuple at 
a time

VIndex("initial", n1, "<10")

LIndex(n1, "initial", n2)

LIndex(n2, "auction",n3)

LIndex(n3, "open_auctions", n4)

Name(n4,"Auctions")

Return(n2)
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Indexing OEM objects in Lore  [MW97]

PIndex(p, o): all objects o reachable by the path p

select X
from Auction.open_auctions.auction.initial  X
where X.initial < 10

VIndex("initial", n1, "<10")
PIndex("Auction.
open_auctions.auction", n2)

LIndex(n1,"initial",n3)

Intersect(n2,n3)

Return(n2)

Bulk
access

Bulk
access

Tuple 
at a 
time

Set at
a time
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The idea behind path indexes: DataGuides [GW97]

...
...

... ... ...

open_auctions

Auctions
item item

...

name

description
name descriptionauctionauction

object object

...

......

comment

initial bids bidsinitial

...

open_auctions

Auctions

item

auction

...

object

... ...

name
description

...

comment

initial bids
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The idea behind path indexes: DataGuides 
[GW97]

Graph-shaped summaries of graph data
• Invariants extracted from the data ("a posteriori schema")
• Groups all nodes reachable

by the same paths

...

open_auctions

Auctions

item

auction

...

object

... ...

name
description

...

comment
initial bids

{oid1}

{oid2,oid15}
{oid12}

{oid15,oid16}

{oid24,oid25}
{oid20, oid21}

{oid22,oid23}
{oid30, oid31}

{oid40,oid41}



56Another OEM indexing scheme: 
Template-index [MS99]

A T-index is meant for queries of the form
P1 x1 P2 x2 ... Pk xk, returning x1, x2, ..., xk

where each Pis is a general path expression, and may include 
wildcards (Example:  *.item x P y)

Partition nodes in equivalence classes dictated by the template. 

Simple case: 1-Index
• Groups nodes having the same sets of incoming paths
• DataGuides group nodes under each of their incoming paths
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Another OEM indexing scheme: 
graph schemas [FS98]

Simplifications of the data instance (less labels)

Collapse l1, l2, ..., lk in l1|l2|...|lk; introduce other

...
...

... ... ...

open_auctions

Auctions
item item

...

name

description
name descriptionauctionauction

object object

...

......

comment

initial bids bidsinitial

...

other

Auctions

item

...

name

description

other

...
comment

other

Choose Auctions, 
item, comment, 
name, description



58Path query optimization based on graph 
schemas [FS98]

Prune path queries:
Auctions.*.description.*.listitem

becomes
Auctions.item.description.*listitem

~ schema-based simplification

Associate extents to graph 
states, and use the
extents to answer

~ indexing

...

other
Auctions

item

...

name

description
other

...

comment

other

Choose Auctions, item, 
comment, name,
description
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More on graph indexing

Graph indexing:
1. Partition nodes into equivalence classes

2. Store the extent of each equivalence class, use it as "pre-cooked" 
answer to some queries

Equivalence notions:
1. Reachable by some common paths: DataGuide [MW97]

2. Reachable by exactly the same paths: 1-index [MS99] or, equivalently,
indistinguishable by any forward path expression

3. Indistinguishable by any (forward and backward) path expression: F&B 
Index [ABS99,KBN+02]

4. Indistinguishable by the (forward and backward) path expressions in the 
set Q: covering index [KBN+02] 

5. Indistinguishable by any path expression of length < k: A(k) index
[KSB+02]
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F&B index

Group together nodes reachable by exactly the same paths

Path language: 
• Navigate along one edge in both directions
• Navigate along any number of edges, in both directions

n1 ~ n2: for any path expression p, either n1 and n2 are in the 
answer of p, or neither are in the answer of p.

a
a a a

b bbc

1

2 3 4 5

5 6 7 8

a
a a

bbc

7 8

1

2

65

3 4 5
Data
graph

F&B
index
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Computing the F&B index

Group of nodes A is succ-stable wrt B iff
A ⊂ succ(B)          or            A and succ(B) are disjoint

All nodes in A have a parent in 
B, or none does.All nodes in A have a parent in 

group B|C|D|..., or none does.All nodes in any group have 
parents in exactly the same 

groups

Index built on succ-stable partition: 
• if there is an edge from A to B in the index,
• then from every node in ext(A) there is an edge to node in ext(B)

A partition is pred-stable if all node groups are pairwise pred-stable.

The F&B index is the smallest graph index both pred-stable and 
succ-stable.

A partition is succ-stable if all node groups are pairwise succ-stable.All nodes in any group have 
children in exactly the same 

groups

Pred- and succ-stable partition
leads to an index covering all 

path expressions
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Computing the F&B index

P = label partition on the nodes (XML style)

Repeat

Reverse edges in the graph.

Refine P to make it succ-stable.

Reverse back edges in the graph.

Refine P to make it pred-stable.

Until P does no longer change.

a
a a a

b bbc

1

2 3 4 5

5 6 7 8

a

bc

1

2 3 4 5

5 6 7 8group a is not included in succ(b)
but it intersects succ(b)
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Computing the F&B index

P = label partition on the nodes (XML style)

Repeat

Reverse edges in the graph.

Refine P to make it succ-stable.

Reverse back edges in the graph.

Refine P to make it pred-stable.

Until P does no longer change.

a1

bc

1

2 3 4 5

5 6 7 8

a2

group a1 is included in succ(b),
group a2 is disjoint from succ(b)

group a1 intersects succ(c),
and is not included in succ(c)

a4

bc

1

2 3 4 5

5 6 7 8

a2a3

group 1 included in succ(a2, a3, a4)
group a4 included in succ(a3)
group a3, a4 included in succ(a2)
succ-stable partition
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Computing the F&B index

P = label partition on the nodes (XML style)

Repeat

Reverse edges in the graph.

Refine P to make it succ-stable.

Reverse back edges in the graph.

Refine P to make it pred-stable.

Until P does no longer change.

a4

bc

1

2 3 4 5

5 6 7 8

a2a3

Pred(a4) intersects group b
and is not included in group b

a4

b1c

1

2 3 4 5

5 6 7 8

a2a3

b2

Now P is pred-stable 
and succ-stable
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Summary: OEM storage and indexing

Very simple storage models

Quite simple value indexing [MWA+98]

Multiple graph schema/index structures
• Identify invariants / regularity / interesting node groups
• Use interesting node groups:

– Simplify path queries
– Basis for indexing:

– Store IDs of all nodes in an interesting group. Access 
them directly (avoid navigation).

– Formalism behind it: bisimulation [ABS99]
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2.2
XML storage, indexing, 
and query processing 
based on relational 
databases
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Managing XML documents in RDBMSs

RDBMS:
• ACID properties
• Performance

XML document

Load in RDBMS

Recompose document

Query processing:

• Translate XQuery in SQL 
• Run SQL query
• Serialize XML result



68Choosing a relational storage schema for 
XML (1/2)

It must be possible to store any document

Documents may have an XML schema

Relational schemas seek to:
• Exploit / identify structural invariants

– "Tables for fixed or frequent structures"
• Factorize or avoid storage of labels

• Factorize storage of values

Compared to OEM storage, relational XML storage is "already" 
indexing the data

Translation / mapping information sometimes hard to pinpoint



69Choosing a relational storage schema for 
XML (2/2)

It must support efficient query processing (workload) 
This depends on:

– The data (XML document shape and size, data values etc.)

– Physical data layout in the RDBMS
– XQuery-to-SQL translation; RDBMS optimizer, ...

It must support data and schema updates

It may adapt to data and workload changes

It should be compact
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Classification of relational storage schemes 
for XML documents

No XML schema assumption (~ "Tree OEM")
l Generic: same relational schema for all 
l Derive relational schema from the data

Based on an XML schema
l Based only on an XML schema
l Based on schema and cost information

User-defined



71

2.2.1 
Relational storage for XML 
in the absence of an XML schema
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6

3

The "Edge" storage scheme [FK99]

Simplest possible baseline: ordered edges

7 8

95

auctions

item

name description

text parlist

listitem listitem

parlist

listitem listitem

text text

text

comment

"Gold pin"

"Art Nouveau
gold pin"

"Circa 1900""Large diamond"

"also pendant"

"Remarkable
dragon 
brooch"

id="item1"

1

2

4

Edge( pID, ord, name, target         ) 
- 1 auctions 1
1     1 item     2
2 1 id                    "item1"  
2 2 name             "Gold pin"
2     3 comment "Remark.."
3     1     text                   "Art..."
3     2     parlist                  4
.................................................

General (no schema or queries used)
No regularity assumed
ID may reflect document order

Index on pID, and (name,target)
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Query processing on the "Edge" storage

//item

//comment/text()

//item
[@id="item1"]/
description

select target from Edge 
where name="item"

select target from Edge
where name="comment"

select e3.target
from Edge e1, Edge e2,  

Edge e3
where e1.name="item" and   

e1.target=e2.pID and    
e2.name="id" and 
e2.target="item1" and
e1.target=e3.pID and 
e3.name="descr"

Edge( pID, ord, name, target         ) 
- 1 auctions 1
1     1 item     2
2 1 id              "item1"  
2 2 name        "Gold pin"
2     3 comment "Remark.."
3     1     text           "Art..."
3     2     parlist            4
.........................................

(Index-) join algorithms better than navigation
Still, too much data to read

Actual query 
answering also 

requires 
reconstructing the 

element... will discuss 
that later

3-way join on
the Edge table
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Partitioned "Edge"

EdgeAuction(pID,ord,target)

EdgeItem(pID,ord,target)

EdgeID(pID,ord,target)

EdgeDescription(pID,ord,target)

select e3.target
from EdgeItem e1, EdgeID

e2, EdgeDescription e3
where e1.target=e2.pID and    

e2.target="item1" and
e1.target=e3.pID and 

//item[@id="item1"]/description

Similar to Lore's BIndex,
but this is the storage

Interesting groups of nodes: those with the same label

Store tags in schema, not in data

Some code on the side keeps the mapping between tags and table names

3-way join on 
(much) 

smaller tables
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Other storage schemes derived from "Edge"

Universal relation [FK99]:
EdgeAuction        EdgeItem         EdgeID       ...

Query-dictated materialized views over the partitioned Edge tables
EdgeAuction     EdgeItem
EdgeAuction      EdgeID

~ Materialized view selection problem
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The STORED approach [DFS99]

Derive relational schema from the XML data
• Analyze elements to find frequent patterns
• Create one table for each type with enough support in the database

E.g. one relation for articles with up to 3 authors

• Stores the remaining elements in overflow tables
E.g. the remaining article authors

~ Materialized views over partitioned Edge, based on pattern 
frequency

Performance benefits: less joins for many queries

"Interesting node groups" are frequent ones

Most tags stored in the schema, not in the data
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1211

10

5

6

15

16
8

9

4

Path partitioning in Monet [SKV+00]

1 relation per root-to-leaf data path: Path(id1, id2, ord)

1 relation per root-to-inner node data path: Val(id, val)

7

auctions

item

name description

text parlist

listitem listitem

comment

"Gold pin"

"Art Nouveau
gold pin"

"Remarkable
dragon 
brooch"

id="item1"

1

2 3

auctions (id1, id2, ord)
auctions.item(id1, id2, ord)
auctions.item.id(id1, id2, ord)
auctions.item.name(id1, id2, ord)
...
auctions.item.id.val (id, val)
auction.item.name.val (id, val)
...
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Path partitioning in Monet [SKV+00]

(Very) similar to Lore's PIndex, DataGuides and 1-Index

But this is the storage 

IDs are stored once per 
descendent

Values stored once

No join required for linear
path expressions + wildcards

Path summary is needed
to find elementary paths for a 
given path expression

auctions (id1, id2, ord)
auctions.item(id1, id2, ord)
auctions.item.id(id1, id2, ord)
auctions.item.name(id1, id2, ord)
...
auctions.item.id.val (id, val)
auction.item.name.val (id, val)
...
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Path partitioning in Monet [SKV+00]

(Very) similar to Lore's PIndex, DataGuides

But this is the storage 

IDs are stored once per 
descendent

Values stored once

No join required for linear
path expressions + wildcards

Path summary is needed
to find elementary paths for a 
given path expression

auctions

item

name description

text parlist

listitem

comment

text

text

id

text

text
parlist

listitem

text

//listitem
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The XRel approach [YAT+01]

Path(PathID,PathExpr)

Element(DocID, PathID, Start, End, Ordinal)

Text(DocID, PathID, Start, End, Value)

Attribute(DocID, PathID, Start, End, Value)

auctions

[491,495]

[18,25]

[15,30]

[10,500]

[205,380]

[40,400]

[45,200]
[15,30]

[15,30]

[455,490]
[35,450]

[460,485]

item

name description

text parlist

listitem
listitem

comment

"Gold pin"

"Art Nouveau
gold pin"

"Remarkable
dragon 
brooch"

id="item1"

[1,1000]

... ...

...

Factorize path information in 
Path table 
(1, "/auctions")
(2, "/auctions/item")
(3, /auctions/item/name")

Assign region IDs 
[Start, End] to nodes

N1 ancestor of N2 iff
N1.Start < N2.Start and
N1.End > N2.End

Children relationship: extra 
condition on paths
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The XRel approach [YAT+01]

Path(PathID,PathExpr)

Element(DocID, PathID, Start, End, Ordinal)

Text(DocID, PathID, Start, End, Value)

Attribute(DocID, PathID, Start, End, Value)

Processing regular path expressions: match PE against Path.PathExpr 
(string pattern matching)

Thanks to region IDs,  no joins required for linear path expressions

Theta-joins still needed for branching path expressions
• match paths, then use indexes on Element.pathID
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The XParent approach [JLW+01]

LabelPath(ID, lengh, pathExpr)

Data(pathID, nID, ord, value)

Element(pathID, ord, nID)

ParentChild(pID, cID)

Same string-based path encoding scheme as XRel

Drops region-based IDs, to avoid theta-joins

Parent-child relationships stored as such

Ancestor-descendent relationships established based on paths

XRel, XParent: still single large tables, only viable with indices
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2.2.2 
Relational storage for XML 
using an XML schema
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DTD-derived relational storage schemes [STH+99]

Use a DTD graph derived from the DTD

<!ELEMENT a (b*, f)>

<!ELEMENT b (c+,d)>

<!ATTLIST b bID REQUIRED #ID>

<!ELEMENT b (e, g*)>

<!ATTLIST e eREF REQUIRED #IDREF>

<!ELEMENT d|e|f|g #PCDATA>

XML document:

a

b

e

d

*
*

g

?

f

*
c

f

a

b

e

d

g

c

b

e

d

g

c

e g

c

g

d
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"Basic" relational storage [STH+99]

1 relation for every DTD graph node
• XML documents can be rooted at any element

This relation contains all data contents accessible from 
the DTD graph node, except:
• * children (create separate relation)
• nodes with backpointers (create separate relation)

A(a.ID, a.f.val, a.d.val)
B(b.ID, b.parentID, b.ID.val, b.d.val)
A.B(a.b.ID, a.b.parentID, a.b.ID.val, a.b.d.val)
C(c.ID, c.parentID, c.e.val, c.e.attrE.val)
B.C(b.c.ID, b.c.parentID)
C.G(c.g.ID, c.g.parentID, c.g.val)
D(d.ID, d.parentID, d.val)   
E(e.ID, e.parentID, e.val, e.attrE.val)
F(f.ID, f.parentID, f.val)
G(g.ID, g.parentID, g.val) 

a

b

e

d

*

*

g

?

f

*
c
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"Basic" relational storage [STH+99]

Node labels stored in the relational schema

Parent-child links materialized; // requires joins

Path information split between relational schema and 
DTD (graph?)

Many tables, unions required, redundancy

A(a.ID, a.f.val, a.d.val)
B(b.ID, b.parentID, b.ID.val, b.d.val)
A.B(a.b.ID, a.b.parentID, a.b.ID.val, a.b.d.val)
C(c.ID, c.parentID, c.e.val, c.e.attrE.val)
B.C(b.c.ID, b.c.parentID)
C.G(c.g.ID, c.g.parentID, c.g.val)
D(d.ID, d.parentID, d.val)   
E(e.ID, e.parentID, e.val, e.attrE.val)
F(f.ID, f.parentID, f.val)
G(g.ID, g.parentID, g.val)

a

b

e

d

*

*

g

?

f

*
c
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"Shared" relational storage [STH+99]

1 relation for every DTD graph node with in-degree 0 or >1, or 
under a * or backpointer

Less relations, no redundancy

Requires joins for reconstruction

Order support is complicated by ID absence

a

b

e

d

*
*

g

?

f

*
c

A(a.ID, a.f.val, a.f.isRoot)
B(b.ID, b.parentID, b.ID.val)
C(c.ID, c.parentID, c.e.val, c.e.attrE.val, c.e.isRoot)
D(d.ID, d.parentID, d.parentCode, d.val)   
G(g.ID, g.parentID, g.val) 
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"Hybrid" relational storage [STH+99]

1 relation for every DTD graph node with indegree 0, under a 
*, or under a backpointer

Less relations, no redundancy

Requires joins for reconstruction

Order support is complicated by ID absence

A(a.ID, a.f.val, a.f.isRoot, a.d.val)
B(b.ID, b.parentID, b.ID.val, b.d.val)
C(c.ID, c.parentID, c.e.val, c.e.attrE.val, c.e.isRoot)
D(d.ID, d.parentID, d.val)
G(g.ID, g.parentID, g.val) 

a

b

e

d

*
*

g

?

f

*
c
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DTD-derived relational storage schemes

Labels stored in the schema; only some IDs stored

~ E-R analysis of data in XML:
• "If every <a> has 1 <d>, and all <d>s  have <a> parents, then <d> is an 

attributes of <a>s; otherwise, <d> is an entity"
• DTD (graph) must be kept and exploited to translate queries, handle 

inlined elements, ...

Long path queries may be simplified, then matched accessing few 
tables

To bind many branches, (several) joins still needed
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Choosing a relational schema based on an XML 
Schema and a query workload [BFR+02]

The idea:
• Different relational schemas work best for different workloads
• Fixed storage for a given physical XML Schema (~shared)
• Transformation rules for moving between p-Schemas

– Equivalent p-Schemas: the sets of valid documents are the 
same

– Differences due to XML Schema syntax

Cost-based optimization in the space of possible transformations
• Impact of a given p-Schema transformation estimated by the 

RDBMS's optimizer
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Cost-based choice of a relational schema

XML
schema

Query
workload

RDBMS
optimizer

R-schema 2
R-schema 3

p-Schema 1

p-Schema 3
p-Schema 2

cost if
p-Schema1

R-schema 1

cost if
p-Schema 2

cost if
p-Schema 3
...
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Schema transformation rules based on 
queries

Inlining / Outlining
• type A=[b [Integer], C, d*], type C=e [String] equivalent to

type A=[b [Integer], e [String], d*]

• Inlining useful if C is always queried through ancestor A

Union Factorization / Distribution
• (a, (b|c)) equivalent to (a, b) | (a, c)

• a[t1|t2] equivalent to [t1] | a[t2] 
• Useful to separate if a[t1] often queried together, a[t2] rarely or never 

queried together
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Schema transformation rules based on 
queries

Repetitions merge / split
• a+ equivalent to (a, a*) 
• If the first <a> is isolated, it can be inlined with parent

Wildcard rewritings
• A[b ~[String]*] equivalent to a[ b[ (c|d)*]], where 

c=tag1[String] and d=(~! tag1)[String]
• If a/b/tag1 often queried, a/b/other never queried, separate them.
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Cost-based choice of relational schema

~ Materialized view selection for a dataset and workload

This is the storage

Optimizer estimates can be wrong, but the optimizer will make the 
same mistake when choosing the best plan

Search space explored in [BFR+02]:
• Node labels factorized in the schema

• Schema management module needed to identify pertinent relations
• Various points in the search space vary the number of unions and joins

required by a query
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2.2.3 
User-defined relational mappings for 
XML documents
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Express (relational) storage by custom expressions over the XML 
document
• Relation = materialized view over the XML document

Finding useful tables requires view-based query rewriting

R(y,z) :- Auctions.item x, x.@id.text() y, x.price.text() z

S(u,v) :- Auctions.item t, t.@id.text() u, t.description.text() v

for $x in //item

return <res> {$x/price}, {$x/description} </res>

User-defined XML-to-relational mappings 
[MFK01,DS03]

select z, v
from R, S
where R.y=S.u

�

Is Auctions.item 
the same as //item ?

Not so fast.

���� �����	
��
�
����
� ��

Does each 
item have 

exactly one 
price ?

����������

	
��������

�
��
�������

�����	�
	����
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Express (relational) storage by custom expressions over the XML 
document
• Relation = materialized view over the XML document

Finding useful tables requires view-based query rewriting

XPath containment
������
�����
�
��
���

����	���	
�constraints

User-defined XML-to-relational mappings 
[MFK01,DS03]

Is Auctions.item 
the same as //item ?

���� �����	
��
�
����
� ��

Does each 
item have 

exactly one 
price ?

����������

	
��������

�
��
�������

�����	�
	����

Query containment /rewriting under constraints

Techniques based on the chase [DS03]
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Express (relational) storage by custom expressions over the XML 
document
• Relation = materialized view over the XML document

Other issue: we would want to write

R(XID, y,z) :- Auctions.item x, x.id XID, x.@id.text() y, x.price.text() z

S(XID, u,v) :- Auctions.item t, x.id XID t.@id.text() u, 
t.description.text() v

x.id not in the document ! But, in the data model [XQDM]

User-defined XML-to-relational mappings 
[MFK01,DS03]
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Express (relational) storage by custom expressions over the XML

Must check storage completeness

Most generic; potential for good performance (materialized views !)

Can also express non-relational storage models

Rewriting is complex.

Poor man's solution: cut in flexibility (and performance)

Less freedom in the mappings
• Assign IDs to all elements
• Map each element to a table...

Summary: user-defined XML-to-relational 
mappings
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Query: /Auctions/item

This concerns:

/Auctions/item
/Auctions/item/name
/Auctions/item/@id
/Auctions/item/comment
/Auctions/item/description
/Auctions/item/description/text
/Auctions/item/description/parlist
/Auctions/item/description/parlist/listitem
.............

Simplification: item, comment, name

The reconstruction issue

item
i1,..i5

comment
c1,...c4

name
n1,...n4

i1 -
i2 -
i3 c1
i4 c2
i5 c3
i5 c4

i1 i2 i3 i4 i5

c1 n2 n3n1 c3 c4c2 n4

i1  - -
i2  - n1
i3 c1  -
i4 c2  n2
i5 c3  n3
i5 c3  n4
i5 c4  n3
i5 c4  n4
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/Auctions/item

The reconstruction issue

item
i1,..i5

name
n1,...n4

comment
c1,...c4

i1 
i2
i3 c1
i4 c2
i5 c3
i5 c4

i1 i2 i3 i4 i5

c1 n2 n3n1 c3 c4c2 n4

i1
i2 n1
i3
i4 n2
i5 n3
i5 n4

i1 
i2
i2 n1
i3
i3      c1
i4
i4  n2
i4       c2
i5
i5  n3
i5  n4
i5       c3
i5       c4
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/Auctions/item

The reconstruction issue

name
n1,...n4

comment
c1,...c4

i1 
i2
i3 c1
i4 c2
i5 c3
i5 c4

i1 i2 i3 i4 i5

c1 n2 n3n1 c3 c4c2 n4

i1
i2 n1
i3
i4 n2
i5 n3
i5 n4

i1 
i2
i2 n1
i3
i3      c1
i4
i4  n2
i4       c2
i5
i5  n3
i5  n4
i5       c3
i5       c4

Plan P

Two alternatives:

• Run P twice

• Materialize 
intermediary results

Result of fragmentation 

Same problem for 
complex returned 
results
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3Summary of relational storage models for 

XML

Relations alone only go that far

Many solutions around S-P-J materialized view selection over 
partitioned Edge table

Flexible (or generic) storage requires view-based query rewriting

Interesting performance advantages stem from various encodings: 
path, ID, ...

Fragmentation (horizontal/vertical) facilitates navigation and 
complicates reconstruction
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2.3
Native stores for XML: 
storage, indexing, and 
query processing 
primitives
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Plan

Labeling schemes

Query primitives: structural joins

Native storage models for XML

Indexing models for XML

Conclusions
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Why start with labeling schemes ? 

Idea: assign labels to XML elements 
• unique identifiers +

• useful information for query processing

Source of big performance improvements over relational storage +
traditional joins

Many labeling schemes 
• trade-off between space occupancy, information contents, and 

suitability to updates [CKM02]

• most frequent one: region-based ("pre-post")

– shortcomings and alternatives
• new ones still being produced
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Region-based labeling schemes

Idea: label elements to reflect nesting (containment)

<a> Some content here and then a <b> element </b> </a>

Label <a> with [1, 2], and <b> with [2, 1]

Add also nesting level
• label <a> with [1, 2, 1]

• label <b> with [2, 1, 2]

Variant: start and end counting in characters in the file (recycled IR 
indexing technique)

<b> child of <a>
region of <b> included 

in region of <a>
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Region-based structural identifiers
auctions

item item

name description

text parlist

listitem listitem

parlist

listitem listitem

text text

text

comment name description

text parlist

listitem

text

"Gold pin"

"Art Nouveau
gold pin"

"Circa 1900" "Large diamond"

"also pendant"

"Surveillance
camera"

"8 channel"

"Video recorder,
8 dome

cameras"

"Remarkable
dragon 
brooch"

id="item1" id="item2"

[1,1,22]
[2,2,14]

[3,3,1] [4,2,12]

[5,3,2]
[6,3,11]

[7,4,8]

[8,5,7]

[9,6,4]

[10,7,3]

[11,6,6]

[12,7,5]

[13,4,10]

[14,5,9]

[15,2,13]

[16,2,21]

[17,3,15]
[18,3,20]

[19,4,16] [20,4,19]

[21,5,18]

[22,6,17]



10
9

The interest of region-based identifiers

Element e1 is an ancestor of element e2 iff 
e1.pre < e2.pre and e1.post > e2.post

Element e1 is a parent of element e2 iff
e1.pre < e2.pre and e1.post > e2.post and e1.depth+1=e2.depth

Establishing ancestor-descendent relationships becomes as easy as 
establishing parent-child relationships

Structural join (see next):

Plan P1 (ID1) Plan P2 (ID2)

ID1 ancestor 
of ID2

The end
of navigation !
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Region-based identifiers and updates

item

name description

text parlist

listitem

text

...

"8 channel"

...

id="item2"
[16,2,21]

[17,3,15]
[18,3,20]

[19,4,16] [20,4,19]

[21,5,18]

[22,6,17]

comment

...
[18,4,16]

Possible solutions:

• Leave empty intervals 
[LM+01]

• Use real numbers [JKC+02]
• Multi-versioning [CTZ+02]
• Append another 

"discriminating" label to 
[pre, depth, post]



11
1

Other labeling scheme: ORDPATHS [NNP+04]

Implemented in MS SQL Server

Label each node by a sequence of integer numbers
• Initial loading: all odd numbers

This scheme records: order; depth; parent;
ancestor-descendent relationships. 

1

1.1 1.3 1.5

1.3.1 1.3.3

1.3.-1 1.3.51.3. 2.1

1.3. 2.3
Insert first sibling: decrease leftmost code by 2

Insert last sibling: increase rightmost code by 2

Insert between siblings: use even numbers (does not affect node 
depth)
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Internal representation of ORDPATHs

L0 O0 L1 O1 ... Li Oi ...      where:
• Oi is the i-th number 

• Li encodes Oi's length
• Li's must satisfy prefix property 

Partition [-max, max] in intervals of length 2i

Build prefix tree on the partitioning

1

1.1 1.3 1.5

1.3.1 1.3.3

1.3.-1 1.3.51.3. 2.1

1.3. 2.3

1.3.-3

1.3.-1.1

[-21,-6]
[-5,-2]
[-1,0]
[1,1]      
[2,3]
[4,7]
[8,23]

0

1

1
1

1

1
1

0

0
0

0
0 If Oi∈[-21,-6], Li=000,  -21 is 0000, ...,  -6 is 1111 

If Oi∈[-5,-2],   Li=001,  -5 is 00, ...,  -2 is 11
If Oi∈[-1,0],    Li=01,    -1 is 0,  0 is 1
If Oi∈[1,1],     Li=10,     Oi is not represented     
If Oi∈[2,3],     Li=110,   2 is 0,   3 is 1
If Oi∈[4,7],     Li=1110, 4 is 00,   7 is 11
If Oi∈[8,23],   Li=1111, 8 is 0000,   23 is 1111Moderate length on 

real-life documents 
[MBF03]
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Query primitive: structural join

Relationship established through
simple comparisons

select *
from Element e1, Element e2
where e1.doc = e2.doc and e1.pre < e2.pre and e1.post > e2.post

Non-equality join !

Relational implementations perform poorly [ZND+01]

Alternative efficient stack-based algorithms [AJK+02]

Algorithm StackTreeDesc [AJK+02], holistic twig joins [BKS02]

Supporting indexes [JLW+03], join ordering [WPJ03] 

Plan P1 (ID1) Plan P2 (ID2)

ID1 ancestor 
of ID2
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Algorithm StackTreeDesc

a

fb

e

d

g

b

b

e

d

g

b

e g

c

g

1

162

3

4 5

6

7

8

9 10

11

12 13 14

15

1 2

3 4

5

6 7

8

9 10 11

12 13

14 15

16 1

4
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//b //g Stack Result

2,   5, 2
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Algorithm StackTreeDesc
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//b //g Stack Result

3, 3, 3
2,   5, 2

[2,   5, 2], [5,  2, 4]
[3,   3, 3], [5,  2, 4]
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Algorithm StackTreeDesc
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//b //g Stack Result
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2,   5, 2

[2,   5, 2], [5,  2, 4]
[3,   3, 3], [5,  2, 4]
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Algorithm StackTreeDesc
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[2,   5, 2], [5,  2, 4]
[3,   3, 3], [5,  2, 4]
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Algorithm StackTreeDesc
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13,10, 4
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//b //g Stack Result

11,12,3
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[2,   5, 2], [5,  2, 4]
[3,   3, 3], [5,  2, 4]
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Algorithm StackTreeDesc
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//b //g Stack Result

11,12,3
7, 14, 2

[2,   5, 2], [5,  2, 4]
[3,   3, 3], [5,  2, 4]
[7, 14, 2],  [10, 7, 4]
[7,   4, 2], [13,10,4]
[11,12,3], [13,10,4]
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Algorithm StackTreeDesc
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//b //g Stack Result

11,12,3
7, 14, 2

[2,   5, 2], [5,  2, 4]
[3,   3, 3], [5,  2, 4]
[7, 14, 2],  [10, 7, 4]
[7,   4, 2], [13,10,4]
[11,12,3], [13,10,4]
[7,   4, 2], [14,11,4]
[11,12,3], [14,11,4]
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Algorithm StackTreeDesc
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//b //g Stack Result

[2,   5, 2], [5,  2, 4]
[3,   3, 3], [5,  2, 4]
[7, 14, 2],  [10, 7, 4]
[7,   4, 2], [13,10,4]
[11,12,3], [13,10,4]
[7,   4, 2], [14,11,4]
[11,12,3], [14,11,4]
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Remarks on StackTreeDesc
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Result  //b join //g

[2,   5, 2], [5,  2, 4]
[3,   3, 3], [5,  2, 4]
[7, 14, 2],  [10, 7, 4]
[7,   4, 2], [13,10,4]
[11,12,3], [13,10,4]
[7,   4, 2], [14,11,4]
[11,12,3], [14,11,4]

I/O cost in O(m+n) + stack

Does not compute //b//g (duplicates !)

Returns result in descendent order

Similar algorithm for result in ancestor order
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Skipping structural joins

Avoid useless comparisons: avoid scanning all the input

Can be replaced with:

��

�� ���� �� ��

�� ��

This requires searching the descendent by pre

��

��

�� ���� �� ��

�� ��

��
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Holistic twig joins [BKS02]
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Idea: avoid constructing intermediary results when matching twig
patterns

E.g. for $x in //b,  $y in $x//e,  $z in $x//d...
Avoid constructing ($x, $y) pairs for $x without $z bindings

1 holistic twig join operator with 3 inputs, 1 stack per input
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Structural joins: summary [BKS02]

Linear complexity join algorithms based on region identifiers

Sub-linear variants exist, based on skipping
• Algorithmic vs. disk I/O reduction
• Based on ordered storage/indexes [JLW+03,MAB+04,G02]

Holistic twig joins reduce intermediary results

Cost of matching a twig pattern =
• Data access cost +
• Join cost (including intermediary results) +

• [Sort cost] + [Duplicate elimination cost]

Depends on storage/index

Depends on algorithm

Depends on join order
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Native storage models for XML

Native storage = persistent trees [JKC+02,FHK+02]

XML nodes split among disk pages

Logical XML document                Physical representation

Tags encoded with a dictionary

Node representation optimized based on fixed page size

Storage evolution on updates ~ B-trees [FHK+02]
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Native XML storage and indexing models

Persistent trees only allow navigation... remember Lore ?

Approach taken in Timber and Natix: 
• Attach region-based labels to XML elements
• Twig pattern matching = structural join or region labels

• Index labels by tag. This largely outperforms navigation [HBG+03].

Another approach: partition region labels by incoming path (as 
storage) [MAB+04]

• More concise (tags stored in schema)
• Less duplicate elimination, joins; more unions required

More native encoding & storage & indexing schemes

[WKF+03], [K03] based on binary tree encoding, [RM04],[ZKO04]



12
9Path-partitioned storage with structural 

identifiers [MAB+04]

XQueC: started out as an XML compression + querying project 

Assign region identifiers to all elements

Group together IDs found under the same exact path
• Equivalence: incoming path (1-Index coincides with DataGuide)

• Store an ID sequence per path

Group together values found under the same exact path
• Store a (pre, value) sequence per path

Keep path summary (dataguide) with
• Structure information

• Cardinality constraints: min(a,b), max(a,b) for parent-child a,b



13
0



13
1

Query processing on path-partitioned 
storage

Linear path queries: / or //-separated labels 
• Match the query on the path summary -> summary nodes

• Merge the ID sequences of the corresponding summary nodes
• No sort, duplicate-elimination needed

More complex XQuery queries
• Infer possible paths for every variable
• Prune some paths based on path summary

~ constraint-based minimization
~ query simplification

• Scan and join just IDs on the proper paths
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Query processing based on a path summary

for $n in //item/name...
Paths for $n: {/site/regions/africa/item/name, 

/site/regions/asia/item/name,...
/site/regions/samerica/item/name}

IDScan(p2) IDScan(p4)IDScan(p3) IDScan(p5) IDScan(p6)IDScan(p1)

Merge

Tag partitioning: Lots of useless 
data reads

IDScan(//item)
6 paths

IDScan(//name)
~20 paths

StructJoin

Lots of useless
comparisons
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Query processing based on a path summary

for $v in (/|//) t1 (/|//) t2 (/|//) t3 ... (/|//) tk...
• Path partitioning: 1 merge

• Tag partitioning: extra data reads + (k-1) way join

for $v1 in p1, $v2 in $v1/p2, ..., vk in (v1|v2|...vk-1)/pk...
• Path partitioning: k-way join (need to bind all vi's !)
• Tag partitioning: m-way join, m= (length(pi))

Minimization
• Eliminate existential branches: //item[name]

• Reduce path sets: //listitem//parlist

Reasoning about duplicates and order
• //anc//desc: iff anc is not recursive, anc and desc order coincide



13
5Native storage and indexing models: 

summary

Overall transformation:
• Document -- logical encoding/labeling -- mapping to physical store

Some labeling schemes reduce the number of joins (ORDPATHS)

Navigation outperformed by index-based access

Persistent trees provide for fast serialization

Construction of new, complex result remains complex

Likely to yield interesting encoding and storage solutions
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Summing up
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XML databases: if they ever exist, they should have: 

1. storage model  

2. indexes, 

3. materialized views

Right now, work in these directions is well mixed up

The problem is difficult because XML is so far from what should go on disk
• Verbose (labels); type-heterogeneous

• Difficult to reconciliate order, conciseness, and updates
• Fragmentation favors "for" clause and hurts "return" clause (selective 

access vs. fast serialization)

Maybe it's not good for disk (data exchange...) But it raises neat problems.

Summing up
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mat. view selection

General methods for identifying useful storage structures
• Combine Shared and XRel and make them work with the IndexFabric 

(automatically)

Good will for testing actual queries on actual data
• Not "we picked 5 path expressions of length 3, because we considered 

them to be representative" (and return node IDs)
• "XMark without presentation tags"

• Many trade-offs exist; do not fill a hole by digging another one

Consensus as to the usefulness of various language schemas
• [MBV03]: DTD 40%, XMLSchema < 1%

Practical, general approach for handling XML constraints as storage 
metadata (many documents...)
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Merci
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