
1

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Adaptive and Self-Tuning Query Processing

Ioana Manolescu
DEI, Politecnico di Milano

(soon: INRIA Futurs, Gemo team)

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Plan

• Part 1: overview of traditional query processing
– Query optimization
– Query execution

• Part 2: adaptive and self-tuning query processing
– The need for adaptativity
– Existing solutions
– Perspectives

2

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Part 1
Overview of traditional query processing

• General architecture of a query processor
• Brief overview of

– Data storage
– Query execution
– Query optimization

• Going global: distributed query processing
– Distributed DBMS
– Wrapper-mediator systems

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Generic query processor architecture

Data storage
• Data, indices
• Materialized views

Data and execution
statistics

Execution engine

Optimizer

Analyzer

Query

Internal query form

Query execution plan

User

Result

Catalog
schema information

3

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Centralized query processing (DBMS)

Data storage
• Data, indices
• Materialized views

Data and execution
statistics

Execution engine

Optimizer

Analyzer

Query

Internal query form

Query execution plan

User

Result

Catalog
schema information

DBMS site

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Data storage

• Data, indexes, materialized views, statistics
• Index: redundant structure supporting fast access to records

in a table according to a search criterion
– An index on R.a supports “select * from R where R.a=5”

• Materialized view: persistent result of a query
– A materialized view “select * from R, S where R.a=S.b”

can be used to answer “select R.c from R, S where R.a=S.b”

• Statistic: summary information on table or view column(s)
– No. distinct R.a values, frequency of each R.a value
– Implied by the presence of an index

4

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Query execution

• The execution engine contains a library of physical
operators
– Scan(R)
– B+ tree index lookup(R, X): using the B+ tree index on R.a,

return R tuples such that R.a = X
– Index nested loop join(R,S, R.a=S.b):

• foreach t in S
– access matching tuples in R using R’s index

• foreach matching R tuple produce one output tuple

– Pattern Scan operator(XMLDoc, patt): using the XyIndex on
XMLDoc, retrieve nodes matching patt [ABC2001]

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Physical operators

• Algorithms for implementing logical operators
• Run in memory and/or on disk
• Cost: disk I/Os

– cost of IndexNLJ(S,R): read S + NS * access R index
– cost of HashJoin(R,S): read R + read S

• Before execution, memory is reserved for operators
– For HashJoin(R,S), construct a hash table for R

• The memory needs depend on data statistics
– Hash table for R: depends on R’s size

• R may be the result of a complex plan

5

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Example: physical operators for HashJoin

build

probe

R

S
HashJoin

R S

is implemented by

output
buffer

R

S

h(R.a)

build

probe

R hash table

Memory

R S

h(S.b)

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Execution of physical plans

• Producer-consumer
dependencies among
operators

• Data is
• materialized
• passed along

pipeline chains
• Pipeline chains are

delimited by blocking
operators (build, mat,
sort...)

project

probe2

scan
T

build2

scan
R

probe1

scan
S

build1

project

probe2

scan
T

build2

scan
R

probe1

scan
S

build1

mat

6

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Execution of physical plans

• Operators in a pipeline chain
run together at a given moment
• They have to fit in memory

together
• Scheduling: order of execution

of physical operators
• scanR, build1,

scanT, build2,
scanS, probe1, probe2,
project

• Memory allocation: splitting
memory among operators running at the same time
• scanS 10%, probe1 45%, probe2 45%, project 10%

project

probe2

scan
T

build2

scan
R

probe1

scan
S

build1

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Implementing physical operators

• The iterator model [Gra93]
– Uniform, general interface for any physical operator
– Three methods:

• Open() sets up space, performs initialization
• Next() returns one result tuple (or eof)
• Close() releases resources and exits

• Data flows upwards, control flows downwards

7

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Iterator example: HashJoin

• probe.open(){
build.open(); t = build.next()
while (t != eof) {

put t in table; t=build.next() }
build.close()
probe.open() }

• probe.next() {
read t from S;
probe the hash table with t;
return one result tuple}

• probe.close() { de-allocate table }

build

probe

R

S

output
buffer

R

S

h(R.a)

build

probe

R hash table

Memory

R S

h(S.b)

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Executing plans of iterators (1/3)

project

probe2

scan
T

build2

scan
R

probe1

scan
S

build1

• project.open(){
probe2.open{

build2.open() { // build hash table for T
scanT.open();
while (! eof) {

t = scanT.next(); insert t in table;
} scanT.close();

build2.close();
probe1.open() {

build1.open();
... // build hash table for R
build1.close();

} } }

8

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Executing plans of iterators (2/3)

• project.next(){
probe2.next {

probe1.next() {
s = next tuple from S;
probe table for R with s;
return a tuple rs;

}
probe table for T with rs;
return a tuple rst;

}
rstp=projection(rst);
return rstp

}

project

probe2

scan
T

build2

scan
R

probe1

scan
S

build1

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Executing plans of iterators (3/3)

• Producer-consumer operator relationships
induce a partial order among the executions
of pipeline chains (scheduling constraints)

• The iterator implementation of physical
operators completely determines the order
of execution of the plan (the scheduling)

• Ex. scheduling for
chainT

project

probe2

scan
T

build2

scan
R

probe1

scan
S

build1

chainR

chainS

scan A scan B scan C scan D

build1

mat

sel

probe2

nljbuild2

probe1

9

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Query optimization

• Input: a query in a machine-readable format

• Output: a physical query execution plan

project

select(R.a=S.a, R.b=T.b)

scan
T

cartProd

scan
S

cartProd

scan
R

build3

probe2

scan
T

build2

scan
R

probe1

scan
S

build1

dupElim&project

build3

probe2

scan
T

build2 scan
viewRxS

dupElim&project

or

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Query optimization: a search problem

• The space of physical plans logically equivalent to the
optimizer’s input: search space

• Every physical plan has a set of properties
– Total work, e.g. total number of disk I/Os
– Time to the first tuple
– Time to the last tuple (to completion, response time)

• These properties are aggregated into a cost
• Optimizing = exploring part of the search space

following a search strategy
– returns an explored physical plan minimizing the cost

10

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Distributed query processing: what
changes

• Distributed query processing architectures
– Distributed DBMS

• Master-slave scenario
• Negociation scenario

– Wrapper-mediator systems

• Impact of distribution on
– Query execution
– Query optimization

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Distributed query processing system –
master-slave scenario

Distributed and
execution statistics

User

Distributed catalog
schema information

Optimizer

Analyzer

Data storage

Execution engine

Data storage

Execution engine

Data storage

Execution engine

Site S1
Site S2

Site S3

Distributed
query execution
plan

11

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Distributed query processing system -
negociation scenario

Distributed and
execution statistics

User

Distributed catalog
schema information

Optimizer

Analyzer

Data storage

Execution engine

Site S1
Site S2

Site S3

Distributed
query execution
plan

Data storage

Execution engine

Optimizer

Data storage

Execution engine

Optimizer

Nego-
ciation
of work
distri-
bution

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Wrapper-mediator system

User

Optimizer

Analyzer

Data storage

Execution engine

Mediator

Distributed
query execution
plan

Wrapper W1 (web source)

Wrapper W2 (file system)

Execution
engine

Execution
engine

Execution
engine

Wrapper W3 (program)

12

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Influence of distribution on query execution (1/2)

• Operators run on several sites
– Opportunities for parallelism
– The basic iterator model is sequential
– Solution: Exchange operators [Gra93]

p

q

Site S1

Site S2

p q
next()

next()

idle
time

p

q

Site S1

Site S2

Xq

Xp

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

• Operators run on several sites
– Variable performances of an operator on different sites

• Different algorithms, memory conditions
– Distributed scheduling
– Remote sites may fail

• Intermediate results are transferred
– Characterizing data transfer

time

transfer
volume

t0

r
t0 startup cost
r transfer rate (bytes/sec)

Influence of distribution on query execution (2/2)

13

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Influence of distribution on query
optimization

• The search space increases
– Several sites to which an operator can be assigned
– ... therefore, even stronger usage of heuristics

• The cost model incorporates
– Data transfer times
– Parallelism

• Between processors
• Between processor and transfer

– Metric: response time
• Until the last result tuple

arrives at the query site

project

probe2

scan
T

build2

scan
R

probe1

scan
S

build1

S site

R site

T site

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Query processing in wrapper-mediator
systems

• Wrappers may provide only simple operators
– Scan, callProgram(arg1, arg2, ..., argn)

• Statistics are absent or ill-defined
– Data changes without notice
– Data presented by wrappers can be the result of a mapping

• “Average result of program p” ?...
• Most frequent value of //book/@title, if the data is stored

in relations ?...

• Loss of distributed view and control
– Wrappers run on autonomous sites
– We only control the mediator

14

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Putting it all together: what determines the
performance of query processing ?

Query
Query results
(measurable
performance)

Query processing system

Query
Optimizer

Execution
Engine

Physical
query
plan

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

What determines the optimizer’s choice

chosen physical plan

pruning
rules

heuristics

acceptable
search

duration
estimated

data
statistics

cost
formulas

memory
estimates

estimated
runtime

parameters

search space search strategycost model

views

indexes
physical

operators
implemented

chosen
physical

operators

15

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

What determines the execution
performance

real
data

statistics

execution performance

efficiency
of physical
operators

available
memory

real
runtime

parameters

schedulingmemory
allocation

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Part 2: adaptive and self-tuning query
processing

• The need for adaptativity

• Existing solutions

• Perspectives

16

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Adaptive query processing: definition

• An adaptive query processor [HFC+00]:
1. Receives information from its environment
2. Uses this information to determine its behavior
3. Performs the two above in a feedback loop

• We adopt a broader perspective: adapting means
1. Reacting to the unexpected (aka dynamic)
2. Learning about the unknown (aka self-tuning)

• For maintaining or improving query processing
performance

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Unexpected events at runtime (1/2)

1. Insufficient memory for an operator
2. Data transfer rates (distributed setting)
3. Data characteristics

– Cardinality, number of distinct values
– Value distribution (skew)
– Order w.r. operators: “varying operator selectivity”

filter

scanR

build

probe

scanS
time

tuples
output by

filter

build is idle
probe is blocked

17

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Unexpected events at runtime (2/2)

• Causes
– Wrong estimates

• Cardinality
– Intrinsic variable parameters

• Memory on a remote site, network bandwidth

• Occurence increasingly likely in
– Centralized DBMSs
– Distributed DBMSs
– Wrapper-mediator systems
– Changing environments (e.g. continuous queries)

• Solution: react fast to maintain performance

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Insufficient memory at runtime

• Memory assigned to some operator(s) is insufficient
– “The hash table outgrows the memory”

• Causes
– Memory estimates rely on estimated statistics, whose errors

propagate and amplify in the physical plan [IC91]

• Consequences
– OS paging, very inefficient

– Sample performance penalty [BKV98]

% degradation

100
90
80
70
60
50

0
50
160
350
625

1200

% of avail.
memory

18

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Levels of adaptation to runtime memory
limitations

• Physical operators with important memory needs
[DeWG85, KNT89, ZG90, PCL93, HN96, IFF+99, BFP+01, MBF+02]

– Use disk, more efficiently than OS paging
– Local adaptation

• Memory allocation and scheduling [MDeW93, BKV98]

– Schedule execution to avoid paging
– Global adaptation

• Query re-optimization [KDeW98, IHW01]

– Change plan to ensure that execution holds in memory
– Global adaptation

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Physical operators adapting to insufficient
memory

• A success story: the hybrid hash join [DeWG85]

– Algorithm
– Applications

• Adaptive hash join algorithms in commercial
implementations

• Others (not presented here)
– Memory-adaptive sorting [PCL93], ...

19

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

The hybrid hash join algorithm

• Hybrid of regular (optimistic) and Grace (pessimistic) join
[NKT86]

• Implemented in: MS SQLServer, IBM DB2, Oracle, ...
• Phase 1: regular hash join

output
buffer

R

S

h(R.a)

build
R hash table

Memory

R S

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

The hybrid hash join algorithm

• Phase 2: hash table reaches memory limit
• Flush some R bucket(s) to disk

output
buffer

R

S

h(R.a)
build

R hash table

Memory

R S

R buckets

h(R.a)

20

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

The hybrid hash join algorithm

• Phase 3: R tuples has been exhausted
• Start probing the hash table with S tuples

output
buffer

R

S

R hash table

Memory

R S

R buckets

probe
h(S.b)

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

The hybrid hash join algorithm

• Phase 3: R tuples has been exhausted
• Start probing the hash table with S tuples

output
buffer

R

S

R hash table

Memory

R S

R buckets S buckets

probe
h(S.b)

21

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

The hybrid hash join algorithm

• Phase 3: S tuples has been exhausted
• Re-hash one disk-resident R partition in memory

output
buffer

R

S

R hash table

Memory

R S

R buckets S buckets

g(R.b)

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

The hybrid hash join algorithm

• Phase 3: S tuples has been exhausted
• Join by pairs R and S overflow buckets

R

S

R buckets S buckets

output
buffer

probe

R hash table

Memory

R S

g(S.b)

22

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Application of hybrid hash: hybrid cache

• Physical operator for calling user-defined functions using
cache [HN96]

Memory

hash(x)

Call f

function cache
x f(x) x f(x) y

x f(x) yx y

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Application of hybrid hash: hybrid cache

g(x)

• The function cache may outgrow the memory
• Stop calling f; apply second hash function g(x) on (x,y)

tuples and write them to disk

Memory
function cache

x f(x)

hash(x)

x f(x) y

x y

23

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Application of hybrid hash: hybrid cache

Memory
function cache

x f(x)

• When (x,y) tuples are exhausted
– Discard cache
– Load one by one buckets from disk, process them

building a new cache

hash(x)

Call f

x f(x) y

x f(x) y

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Other adaptive variants of hash join

• SQL Server [GBC98]

– Starts as regular hash join (optimistic)
– Degrades successively into

• Hybrid hash join
• Grace hash join [FKT86] : partition both relations and

write all partitions to disk; join partitions by pairs

• Recursive hash join: if a partition overflows memory,
apply a second hash function

– Also applies: bit vector filtering, role reversal, partition
tuning [GBC98]

– ... Or gets discouraged by too many duplicates and
resorts to sort-merge join [Gra00]

24

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Adapting to memory limitations:
scheduling and memory allocation

• Adaptive operators may run between [Mmin, Mmax], run at Mavail

• Mavail memory assignments to operators may be optimized
globally

• Operator scheduling may be optimized globally

• Adaptive scheduling & allocation [BKP98]:

– Given a physical QEP and a memory limit
– Schedule and allocate memory so that

• Paging is avoided
• Response time is reduced

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Adaptive scheduling and memory
allocation

• Choose a pipeline chain
scheduling

• Execute in order pipeline chains
• On overflow (building HTX):

– If another table HTY in memory
• If HTY will be used after HTX

• Then write HTY to disk
• Else suspend current

pipeline chain and consume
HTY; then resume

– Otherwise write HTX to disk

probe6.3

probe6.2

scan6

pc4

scan5

probe5

build5

scan4

build4

pc5

scan1

build1 scan2

probe1

build2

pc1

pc2

scan3

build3 probe6.1

pc6

25

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Adaptive scheduling and memory
allocation

• [pc1, pc2, pc4, pc5, pc3, pc6]
• Run pc1: HT1 in memoryprobe6.3

probe6.2

scan6

pc4

scan5

probe5

build5

scan4

build4

pc5

scan1

build1 scan2

probe1

build2

pc1

pc2

scan3

build3 probe6.1

pc6

• Run pc2 using HT1
– overflow in build2
– write HT2 to disk, HT1 erased

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Adaptive scheduling and memory
allocation

• [pc1, pc2, pc4, pc5, pc3, pc6]
• Run pc1: HT1 in memory
• Run pc2 using HT1

– overflow in build2
– write HT2 to disk, HT1 erased

• Run pc4: HT4 in memory

probe6.3

probe6.2

scan6

pc4

scan5

probe5

build5

scan4

build4

pc5

scan1

build1 scan2

probe1

build2

pc1

pc2

scan3

build3 probe6.1

pc6

scan4

build4

26

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Adaptive scheduling and memory
allocation

• [pc1, pc2, pc4, pc5, pc3, pc6]
• Run pc1: HT1 in memory
• Run pc2 using HT1

– overflow in build2
– write HT2 to disk, HT1 erased

• Run pc4: HT4 in memory

probe6.3

probe6.2

scan6

pc4

scan5

probe5

build5

scan4

build4

pc5

scan1

build1 scan2

probe1

build2

pc1

pc2

scan3

build3 probe6.1

pc6 • Run pc5 using HT4: HT5 in
memory, HT4 erased

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Adaptive scheduling and memory
allocation

• [pc1, pc2, pc4, pc5, pc3, pc6]
• Run pc1: HT1 in memory
• Run pc2 using HT1

– overflow in build2
– write HT2 to disk, HT1 erased

• Run pc4: HT4 in memory
• Run pc5 using HT4: HT5 in

memory, HT4 erased
• Run pc3

– overflow in build3
– need to consume HT5

probe6.3

probe6.2

scan6

pc4

scan5

probe5

build5

scan4

build4

pc5

scan1

build1 scan2

probe1

build2

pc2

pc2

scan3

build3 probe6.1

pc6

27

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Adaptive scheduling and memory
allocation

probe6.3

probe6.2

scan6

pc4

scan5

probe5

build5

scan4

build4

pc5

scan1

build1 scan2

probe1

build2

pc2

pc2

scan3

build3 probe6.1

pc6

• [pc1, pc2, pc4, pc5, pc3, pc6]
• Run pc3

– overflow in build3
– need to consume HT5
– suspend pc3
– cut pc6 in pc6.1 and pc6.2

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Adaptive scheduling and memory
allocation

• [pc1, pc2, pc4, pc5, pc3, pc6]
• Run pc3

– overflow in build3
– need to consume HT5
– suspend pc3
– cut pc6 in pc6.1 and pc6.2scan6

pc4

scan5

probe5

build5

scan4

build4

pc5

probe6.1

pc6.1

probe6.3

probe6.2

scan1

build1 scan2

probe1

build2

pc2

pc2

scan3

build3 mat

pc6.2

• Run pc6.1 using HT5, HT6.1 on
disk, HT5 destroyed

28

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Adaptive scheduling and memory
allocation

• [pc1, pc2, pc4, pc5, pc3, pc6]
• Run pc3

– overflow in build3
– need to consume HT5
– suspend pc3
– cut pc6 in pc6.1 and pc6.2scan6

pc4

scan5

probe5

build5

scan4

build4

pc5

probe6.1

pc6.1

probe6.3

probe6.2

scan1

build1 scan2

probe1

build2

pc2

pc2

scan3

build3 mat

pc6.2

• Run pc6.1 using HT5, HT6.1 on
disk, HT5 destroyed

• Resume pc3, HT3 in memory
• Run pc6.2 using HT6.1 and HT3

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Adapting to memory limitations: summary

• React during query execution
• Adaptive operators

– Relatively easy to implement, local adaptation
– Adopted in industrial products
– “Degrades gracefully with limited memory” generally required

• Adaptive scheduling and memory allocation
– More complex, better global control
– Scheduling requires suspending and resuming pipeline chains

29

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Unexpected data transfer rate (1/2)

• In distributed settings
– Distributed DBMSs, wrapper-mediator systems

• Causes:
– Remote site or network failure
– Variations in network bandwidth
– Any variation on a remote site (load, memory,...)

• Consequences:
– Impossibility to answer query (failures)
– Idle times: operator waits for input

• Increased query response time

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Unexpected data transfer rate (2/2)

• Data trasfer rate () is different from expectation ()
– Blocked (site or link failure)

– Delayed

– Slow

– Bursty

time

transfer
volume

time

transfer
volume

time

transfer
volume

time

transfer
volume

30

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Adapting to unexpected transfer rates

• Adapting to failure
– Evaluate the feasible part of the query, evaluate the

query later using the partial results (parachute queries
[BT98])

• Adapting to delays
– While a source is blocked, schedule some other work,

perhaps re-optimize (query scrambling [AFT+96, UFA98])

• Adapting to delays, slow or bursty transfer
– Dynamic scheduling [BFM+00]

– Adaptive operators: double pipelined join [WA91, IFF99],
XJoin [UF00]; also Eddies [AH00, MSH+02]

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

parachute
query

parachute
query

failure

Parachute queries

• Context: wrapper-mediator system
• Wrapper on remote site fails

– Parachute queries:
executable fragments
of the plan

– Materialize results
as temporary
relations

probe

probe

scan U

scan S

filter

scan T

build probe

buildscan R

filter

build

wrapper W1

wrapper W2

wrapper W3

31

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Parachute queries

• When remote source becomes
available, run incremental query on
– Results of parachute queries
– Remote source

• Incremental query is re-optimized
– Needs query rewriting using views

probe

temp1 probe

build

failurescan S

filter

wrapper W2

temp2

scan S

filter

temp1

merge join

sort

wrapper W2
temp2

nlj

• Sensitive to timeout for failure
detection

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Query scrambling

• Changes scheduling to hide delayed sources
– Blocked for a while, then available
– A delayed source blocks a set of operators in the QEP
– Run some other non-blocked operators while waiting

for the delayed source

• Runnable subtree
– QEP subtree whose operators do not depend on

delayed sources or blocked operators

• Two phases:
– Re-scheduling
– Re-optimization

32

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Query scrambling in presence of delayed
sources

• Re-schedule:
– Run the next scheduled runnable subtree, materialize the

result
– After processing a runnable subtree

• If delayed data started to arrive, revert to normal
• Otherwise, pick another runnable subtree
• When no runnable subtrees are left, re-optimize

• Re-optimize: combine materialized results via new
operators
– After executing an operator

• If delayed data started to arrive, revert to normal
• Otherwise, re-optimize

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Query scrambling in the presence of
delayed sources

• Starts from the scheduling
dictated by iterators
[1,2,3,4,5,6,7,8]

• A delayed: 1, 4, 8 blocked

D E

8

7

5 6

4

1 3

F2 G H ICBA
• Identify next runnable subtree

in the scheduling, materialize it

33

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Query scrambling

• In the meantime, G becomes
unavailable, 5 and 7 blocked

8

7

5 6

4

1

F G H IBA

temp1

8

7

5 6

4

1

F G H IBA

temp1

8

7

5 temp2

4

1

F GBA

temp1

• Identify next maximum
runnable subtree, materialize it

• Nothing left to run: re-optimize

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Query scrambling

• Re-optimization: join F and
temp2

8

7

5 temp2

4

1

F GBA

temp1
• Nothing left to do: block,

waiting for data

8

10

9

temp2

4

1

F

G

BA

temp1

8

104

1
G

BA

temp1 temp3

34

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Effect of query scrambling

• Optimization has a high overhead
– decision to scramble bets on the future

• Very sensitive to timeout value

initial delay of A

re
sp

on
se

 ti
m

e

initial delay of A
scrambling

no scrambling
execution time
once A available

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Effect of query scrambling

8

7

5 6

4

1 3

FD G H ICBA

• Strongly influenced by the iterator-dictated scheduling
– If H is the first source delayed, nothing left to scramble

35

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Dynamic scheduling

• Attempts to find an optimal scheduling with respect to
– Delays
– Bursty arrival
– Slow arrival

• The network is the bottleneck
• Interleaves execution of many concurrent pipeline chains,

limited by
• Producer-consumer dependencies
• Available memory

• Give priority to critical pipeline chains: those processing
data faster than it arrives

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Dynamic scheduling

• Pipeline chains are ordered
according to their critical
degree
– The order is recomputed if

transfer rates vary
significantly

• Scheduling:
– Process one batch of

tuples at a time from the
most critical pipeline chain
(mcp)

probe6.3

probe6.2

scan6
scan5

probe5

build5

scan4

build4

scan1

build1

scan2

probe1

build2

scan3

build3
probe6.1

Mediator

Monitor
transfer

rates

36

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Dynamic scheduling

• Scheduling (cont’d):
– If mcp does not hold in

memory, cut it as high as
possible, run lower fragment,
materialize

– If mcp cannot run because of
dependencies, cut it,
materialize source data

– Interleaves the execution of
concurrent pipeline chains

• More general than scrambling
– More complex

• Lower overhead

probe6.3

probe6.2

scan6
scan5

probe5

build5

scan4

build4

scan1

build1

scan2

probe1

build2

scan3

build3
probe6.1

Mediator

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Operators adapting to unexpected
transfer rates

• Context
– Remote (hash) join processing

• Goal
– Transfer rates for build and/or probe inputs may vary
– Avoid stalling

• Solutions
– Double pipelined hash join
– XJoin

37

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

The double pipelined hash join

• The goal: avoid stalling while the build input is slow
– The transfer rates of build and probe inputs may vary
– Build both relations at the same time

a c b d

hash(a) hash(b)

Memory

– On arrival, each tuple is built and probes
• Non-blocking on both sides

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

The double pipelined hash join

• Blocks only when both inputs are blocked
• Bigger memory needs (two hash tables)

– Adapts gracefully to memory limitations [IFF+99]

• Needs 3 threads to conform to the iterator model

a c b d

hash(a) hash(b)

Memory
output buffer

38

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

The XJoin

• May work even with both inputs blocked
• Needs less memory: each bucket resides partially on disk

a c b dhash(a) hash(b)

Memory

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

The XJoin

• When both inputs are blocked
– bring in memory one disk-resident bucket part
– probe a memory-resident bucket part

Memory

• One disk-resident bucket part may be brougt in memory
many times
• Tuple timestamps to ensure correctness

39

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Unexpected data characteristics at runtime
(1/2)

• Occurence: source data or intermediate results
• Causes

– Existing statistics are very imprecise
• Commercial systems: significant research on histograms
• Impossible to construct all histograms
• Continued use of “magic numbers”

“R S returns NR*NS*0.1 tuples”

• Wrapper-mediator systems: data statistics most difficult to
obtain

– Source data has changed since the last statistics
gathering

R.a=S.b

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Unexpected data characteristics at runtime
(2/2)

• Occurence: source data or intermediate results
• Consequences

– Operators’ data structures may not hold in the memory
that was assumed available for them

• The choice of the physical plan is wrong
• Memory-adaptive solutions apply

– Data is transmitted in bursts between operators
• Idle then busy periods (“variable selectivity”)
• Increased response time

40

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Unexpected data characteristics: adaptive
solutions

• Adaptive operators [BFP+01, MBF+02]

• Change the physical query plan
– Build a limited degree of choice in physical query plans

and choose at runtime [GW89, GC94]

– Gather statistics during execution and re-optimize if
needed [KDeW98, IFF+99, IHW01]

• Give up the physical query plan
– Allow different processing orders for each tuple [AH00,

MSH+02]

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Operators adapting to data statistics

• Early Rate BindJoin [MBF+02]: operator for expensive
functions calls Memory

function cache
x f(x)

cache
lookup

x f(x) y

x y
Call f

x f(x) y

• Data output rate tends to be:
• Slow at the beginning (cache empty, all values have to

be processed): small early rate
• Fast towards the end (results are available in cache)

• Large early rate is desirable

41

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Early rate BindJoin

• Solution:
– Accumulate arguments in internal buffer
– Call function on most frequent values first

function cache
x f(x)

x y

cache
lookup

x y

Memory

x f(x) y

waiting tuples
x y

Call f

x f(x) y

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Dynamic query execution plans

• Goal: use 1 query execution plan for several similar user
queries (avoid re-optimising) [GW89, GC94]

• For queries containing user-supplied constants, different
plans may be optimal
– Allow runtime choice

• Adaptive within
the set of
specified
options

scan(R)

filter(R.a<x)

indexLookup(R)

choose-plan
depending on
the value of a

scan(S)

build build
probeprobe

choose-plan
depending on
card(filter(R))

42

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Mid-query re-optimization

• Gather statistics during execution, use them to optimize
the remaining work [KDeW98]

• While executing a pipeline, collect

– Cardinality, size, min and max
for every intermediate result

– Statistics with a high innacuracy potential
• Current estimate suspected wrong

• At the end of the pipeline
– Re-estimate cost based on new statistics
– If very bad, re-optimize

• [IHW01] takes similar approach, re-optimizes within pipeline

probe1

scan3

scan2

filter2

scan1

build1 probe2

build2

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Eddies: per-tuple operator reordering

• Context: wrapper-mediator system [AH99]

– Unknown or variable operator selectivities
– Variable tuple transfer rates

• Solution: replace the query plan with an Eddie
– Routes each tuple on a potentially different path

scanT

filter

scanSscanR

join

join

join

Index
lookup U

joinR,S

joinS,T
IndexLookupU

filterT

scanR scanS scanT

Eddie

43

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Eddies: per-tuple operator reordering

• Join inputs may switch correctly only at moments of symmetry
– Standard hash join: never
– Double pipeline join: at any point (instance of Ripple Join [HH99])

• Uses bitmaps to keep track of
completion of each tuple

• Routing policy to give
tuples to competing operators
– Favors operators who drain

tuples, i.e., fast and selective

joinR,S

joinS,T
IndexLookupU

filterT

scanR scanS scanT

Eddie

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Eddies: benefits of adaptativity

• Experiment: select * from R where c1(R.a) and c2(R.b)

selectivity
of C20.0 0.5 1.0

time

c1
 before c2

c2 before c1
eddie

filterC1 filterC2

scanR

Eddie

• Finds best execution order without a static plan

• Execution time:

• Selectivity of c1: 0.5; selectivity of c2: varies from 0 to 1

44

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Eddies and SteMs

• Context: long-running queries over streams [MSH+02]

• No estimate stays correct during query lifetime
– Drop query plans alltogether
– Use 1 Eddie + 1 State Module per source

filterT

scanR scanS scanT

Eddie

SteM S
SteM RSteM T

filterS
filter(S, filter(T, join(R,S,T)))

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Eddies and SteMs

• Eddie + State Modules: multi-way double pipelined join
• Each tuple

– Is built into the
corresponding SteM

– Probes in any order
other SteMs

• Advantage: factorization
– For all queries on R, one

SteMR, one filterR

filterT

scanR scanS scanT

Eddie

SteM S
SteM RSteM T

filterS

45

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Eddies and SteMs: ensuring correctness

• Many, many more bitmaps
• Each tuple must be built before it probes
• Two tuples may (still) erroneously join an

unbound number of times.
– Timestamp every tuple
– Joined tuple is correct iff

build component is older
than probe component

• “build, then probe”
– Eddie kills incorrect tuples

• Unknown overhead

filterT

scanR scanS scanT

Eddie

SteM S
SteM RSteM T

filterS

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Adapting to unexpected data
characteristics: summary

• The problem appears in all query processing
scenarios
– Most difficult for wrapper-mediator systems
– In stream processing, statistics are ill-defined

• Granularity of adaptive solutions
– Dynamic query optimization / scheduling
– Operator level
– Per-tuple adaptivity: local, centralized approach

• Commercial systems attempt to refine their statistics
– Over longer time intervals, off-line (to be seen)

46

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Adapting to unexpected events at
runtime: summary (1/2)

• Unexpected events at runtime:
– Insufficient memory
– Data transfer rates
– Data characteristics

• Adaptive mechanisms incorporated in
– Regular operators (e.g. Hybrid Hash Join, DPHJ, XJoin)
– Special operators (e.g. “choose plan”, Eddy)
– Scheduler (e.g. query scrambling, dynamic query

scheduling)
– Runtime control: gather statistics, re-invoke the optimizer

(mid-query re-optimization)

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Adaptivity at runtime: summary (2/2)

• Memory-adaptive operators: success in industrial systems
• Delay-adaptive operators: useful in wrapper-mediator

systems
• Some thoughts of Goetz Graefe

– at U.Portland, U.Oregon: dynamic query evaluation plans
[GW89, GW94]

– at Microsoft [Gra00]
“In modern systems [..] there are many adaptive techniques [...]
typically ignored in the cost functions of commercial query
optimizers, partially because they are too difficult to incorporate,
and partially because a sufficient strong case for incorporating them
has not been made. What does that say about techniques as
adaptive as dynamic query evaluation plans ?”

47

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Long-term adaptativity: learning about the
unknown

• Optimizer knowledge is wrong or incomplete, but stable,
correct values exist
– Data statistics
– Set of useful statistics, indexes
– Data transfer rates

• Typical in centralized or distributed DBMS
• Refine optimizer knowledge to improve performance

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Long-term adaptativity: learning the
unknown

views

chosen physical plan

search
strategy

cost model

estimated
data

statistics

estimated
runtime

parameters

search
space

indexes

chosen
physical

operators

Re-compute

48

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Learning about data characteristics

• Indexes and statistics are:
– Chosen for a given workload

• Typical DBA task, part of database tuning [Sha]
• Recent DBMSs (DB2, SQL Server) recommend or

choose them [AA]

– Built
• From scratch, after significant data changes

[SAC+79]

• Maintained by gathering information while running
queries [SLM+01]

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

The AutoAdmin project

• Purpose: make DBMS (MS SQL Server) self-tuning
to reduce cost of ownership

• Given a workload of queries {Q1, ... Qn} and a DBMS,
automatically choose:
– Indexes [CN97], statistics [CN00], materialized views and

indexes [ACN00], statistics on intermediate results [BC02]

• Minimizing the estimated cost of the workload:
�

iOptimizerEvalCost(Qi)
• Indexes etc. are good only if the optimizer uses them

49

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

AutoAdmin: outline of the index selection
procedure (1/3)

• Given a workload W={Q1, Q2, ..., Qn}
• Choose a configuration (set of indexes) of size k

minimizing the estimated cost of the workload
• Search space potentially huge

– Avoids asking the optimizer to evaluate all possible
configurations [CN97]

– Usage of heuristics

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

AutoAdmin: outline of the index selection
procedure (2/3)

1. Choose C, a set of one-column candidate indexes for W:
a) Choose one-column candidate indexes for every Qi

b) Candidate indexes for W: ∪i(candIndexes(Qi))
Heuristic: an optimal index for the workload has to be
an optimal index for at least one Qi

2. Choose Ck = best k one-column indexes from C;
let C = Ck.

Up to now, C only contains one-column indexes !!!

50

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

AutoAdmin: outline of the index selection
procedure (3/3)

3. For idxSize=2,...,maxIndexSize
a) Let newCand = { idx(col1, col2, ..., colidxSize) such that

idx(col1, col2, ..., colidxSize-1) ∈ C }
b) Add newCand to C
c) Choose Ck = best k one-column indexes from C

Heuristic: a good index on idxSize columns is an
“extension” of a good index on idxSize-1 columns
• The prefix of a good index is a good index

How to choose indexes on several columns:

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Details: choosing one-column candidate
indexes for query Qi

• Only on attributes used in the query
– select * from R, S where R.a=S.b and R.c between 0

and 7: consider only R.a, S.b, R.c
– Heuristic: query engines do not use more than

• j indexes for a single table, j=1 or 2
• indexes on more than t tables for a given query, t=2

51

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Details: choosing one-column indexes for
the workload

• Candidate indexes for W: C=∪i(candIndexes(Qi)),
size(C)=n

If n is larger than the limit k, need to prune

• Choose best k indexes from C: many possible
configurations

• Heuristic search:
• Explore all configurations of size m, m<k (m=2)
• Let Cm be the best configuration of size m
• Apply a greedy algorithm to add the most profitable

k-m indexes from C

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

AutoAdmin: choosing materialized views
and indexes for a workload

• Given a workload W={Q1, Q2, ..., Qn}
choose a configuration of
– Indexes
– Materialized views
– Indexes on materialized views

• ...occupying less than S space
• Minimizing the estimated cost of the workload

52

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

AutoAdmin: why choose materialized
views and indexes together ?

• They are redundant structures that speed up query
processing
– The presence of an index may change the utility of a

materialized view
– Proposing indexes and views separately may lead to

redundancy
– Views should be selected first... blocking the proposal

of interesting indexes
• They compete for the same resource: space

– Allocating � *S for indexes and (1- �)*S for views is
suboptimal

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

AutoAdmin: choosing materialized views
and indexes (1/2)

1. Choose a set of candidate views
a) Identify sets of interesting table subsets T={T1, ..., Tr}

• Materializing views on T significantly reduces the
cost of the workload

b) For each interesting table subset propose
• A view cummulating all joins and selections on T

appearing in Qi

• (If some Qi performs aggregation) a similar view
with aggregation

c) Merge similar views into more general ones

53

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

AutoAdmin: choosing materialized views
and indexes (2/2)

2. Choose a set of candidate indexes (seen)
• on tables and materialized views

3. From the n candidate indexes and materialized
views, greedily select the most profitable ones until
the space limit S is reached

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

AutoAdmin: choosing statistics for a
workload

• Given
– a query Q
– The set S0 of syntactically relevant statistics

• On all join and selection columns (too large)

• Choose a set C of at most k statistics such that
– The cost estimates of the QEPs chosen by the

optimizer for (W, S0) and (W, C) are close
• Typical value: within 20% range

54

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

AutoAdmin: choosing statistics for a
workload

• Start with no statistics (C empty)
• While (more statistics are needed)

– Identify the most important statistic to build
– Add it to C

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

AutoAdmin: when are statistics needed ?

• When statistics are missing, the optimizer uses
magic numbers (selectivity variables s1, s2, ... sn.)

• The optimizer’s estimate for the cost of a query Q is
monotonic in the values of s1, s2, ..., sn.

• Let Sx be a set of statistics and � ≈0.
– Plow: the optimizer’s chosen QEP for Q, using Sx, if

s1=s2=...=sn= �
– Phigh : the same for s1=s2=...=sn= 1 - �

• If Plow and Phigh are close enough, Sx contains enough
statistics

55

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

AutoAdmin: which statistics are most
important ?

• For a given query Q:
– Find most expensive operator op in the QEP proposed

by the optimizer for Q
• Maximizing cost(op) - Σ(cost children of op)

– Consider statistics for op

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Learning data characteristics: summary

• Going towards self-tuning DBMSs
– The DBMS adapts to the workload

• Complex algorithms implemented in commercial
products
– Heavy use of heuristics and rules of thumb

• As indexes, statistics, and materialized views get
smarter, optimizer’s estimates get better
– Long-term and short-term adaptativity are competing
– (In centralized industrial systems) long-term is a more

robust choice

56

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Learning transfer times

• Context: wrapper-mediator systems
• Network transfer times vary a lot, depending on:

– Day of the week
– Time of day
– Quantity of data transferred

• WebPT [RZB+99]: Web Prediction Tool
– Monitor transfer rates while executing queries
– Refine knowledge about transfer rates based on

experience

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

WebPT: learning network transfer times

• Gather query feedback in cells along the dimensions Date,
Time, Quantity.

• Start with a single cell [Monday-Sunday], containing a
static estimate of transfer rates

• Every query execution yields a query feedback
[D, T, Q, rate]
– If rate is different from the estimate of the cell

containing [D, T, Q]
• Split the cell in two
• Adjust the estimates of the new cells

– Otherwise, increase confidence of the cell

57

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

WebPT: example

• Query feedback at 12am on Saturday, different from cell estimate:

Day Monday-Friday Saturday-Sunday

Time

Qty

8pm-8am

any any

8am-8am8am-2pm 2pm-8pm

<100K>100K >700K<100K <700K

v1 v2 v3 v4 v5 v6 v7

Day Monday-Friday Sunday

Time

Qty any

12am-8am

Saturday

12pm-8am8am-12pm

any any

v1 ... v6 v10v8 v9

(the same)

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Learning the unknown: summary

• Robust methods exist for learning
– Values of data statistics
– For a given workload, the optimal sets of

• Statistics
• Materialized views
• Indexes

– Data transfer times

• Off-line learning has less overhead than run-time
reacting, but similar goals

58

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Adaptive query processing: summary

• Heterogeneous mix of technologies
• Comparisons possible among common dimensions

– Double pipelined join vs XJoin

• No common testbed to compare relative and
combined efficiency
– If statistics are known, how useful is memory adaptiveness ?
– If transfer rates are known, how useful is query scrambling ?

• From innovative, extremely new techniques to strong,
proven industrial implementations

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Remember the goal: performance

• Thoughts of Goetz Graefe [Gra00]:

“An improvement measured by a small factor, say 3, is laudable and
useful, but not a breakthrough - improvement in hardware technology
will give us the same [...] in just one or two years.
In order to be truly a breakthrough, a performance improvement has to
be measured in orders or magnitude. Materialized views are one such
technique. Dynamic query plans, on the other hand, so far have not
achieved this level of success on a broad scale.
Can we achieve consistent and predictable order-of-magnitude
improvements for database systems by combining dynamic query plans
with on-the-fly indexing and materialized views ?”

59

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

References

• [AA] The AutoAdmin Project. http://research.microsoft.com/dmx/autoadmin

• [ABC01] V.Aguilera, S.Boiscuvier, S.Cluet. “Pattern Tree Queries in Xyleme”.
INRIA Technical Report, 2001.

• [ACN00] S.Agrawal, S.Chaudhuri, V.Narasayya. “Automated Selection of
Materialized Views and Indexes for SQL Databases”, VLDB 2000.

• [AFT+96] L.Amsaleg, M.Franklin, A.Tomasic, T.Urhan. “Scrambling Query Plans
to Cope with Unexpected Delays”, PDIS 1996.

• [AH00] R. Avnur, J.Hellerstein. “Eddies: Continuously Adaptive Query
Processing”, SIGMOD 2000.

• [BC02] N.Bruno, S.Chaudhuri. “Exploiting Statistics on Query Expressions for
Optimization”. SIGMOD 2002.

• [BFP+01] L.Bouganim, F.Fabret, F.Porto, P.Valduriez. “Processing Queries with
Expensive Functions and Large Objects in Distributed Mediator Systems. ICDE
2001.

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

References

• [BFM+00] L.Bouganim, F.Fabret, C.Mohan, P.Valduriez. “Dynamic Query
Scheduling in Data Integration Systems”. ICDE 2000.

• [BKV98] L.Bouganim, O.Kapitskaia, P.Valduriez. “Memory-Adaptive Scheduling
for Large Query Execution”, CIKM 1998.

• [BT98] P.Bonnet, A.Tomasic. “Parachute queries in the presence of unavailable
data sources”. Technical Report RR-3429, INRIA, 1998.

• [CN97] S.Chaudhuri, V.Narasayya. “An Efficient, Cost-Driven Index Selection
Tool for Microsoft SQL Server”. VLDB 1997.

• [CN00] S.Chaudhuri, V.Narasayya. “Automating Statistics Management for
Query Optimizers”, ICDE 2000.

• [DeWG85] D.DeWitt, R.Gerber. “Multi-processor Hash-based Join Algorithms”,
VLDB 1985.

• [FKT86] S. Fushimi, M. Kitsuregawa, H.Tanaka. “An Overview of the System
Software of a Parallel Relational Database Machine GRACE”. VLDB 1986.

60

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

References

• [GBC98] G.Graefe, R.Bunker, S.Cooper. “Hash Joins and Hash Teams in
Microsoft SQL Server”, VLDB 1998.

• [Gra90] G.Graefe. “Encapsulation of Parallelism in the Volcano Query
Processing System”, SIGMOD 1990.

• [Gra93] G.Graefe. “Query Evaluation Techniques for Large Databases”, ACM
Computing Surveys 25(2), 1993.

• [Gra00] G.Graefe. “Dynamic Query Evaluation Plans: Some Course
Corrections ?”, IEEE Data Engineering Bulletin, 2000.

• [HFC+00] J.Hellerstein, M.Franklin, S.Chandrasekaran et al. “Adaptive Query
Processing: Technology in Evolution”, IEEE Data Engineering Bulletin, 2000.

• [HH99] P.Haas, J.Hellerstein. “Ripple Joins for Online Aggregation”. SIGMOD
1999.

• [HN96] J.Hellerstein, J.Naughton. “Query Execution Techniques for Caching
Expensive Methods”, SIGMOD 1996.

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

References

• [IC91] I.Ioannidis, S.Christodoulakis. “On the Propagation of Errors in the Size of
Join Results”, SIGMOD 1991.

• [IFF+99] Z. Ives, D. Florescu, M. Friedman, A. Levy, D.Weld. “An Adaptive
Query Execution System for Data Integration”, SIGMOD 1999.

• [IHW01] Z.Ives, A.Halevy, D.Weld. “Convergent Query Processing”, submitted
for publication, 2001.

• [KNT89] M.Kitsuregawa, M.Nakayama, M.Takagi. “The Effect of Bucket Size
Tuning in the Dynamic Hybrid Grace Hash Join Method”. VLDB 1989.

• [MBF+02] I. Manolescu, L.Bouganim, F.Fabret, E.Simon. “Efficient Data and
Program Integration Using Binding Patterns”. BDA 2002.

• [MDeW93] M.Mehta, D.DeWitt. “Dynamic Memory Allocation for Multiple-Query
Workloads”, VLDB 1993.

• [MSH+02] S. Madden, M. Shah, J. Hellerstein, V.Raman. “Continously Adaptive
Continuous Queries over Streams”. SIGMOD 2002.

• [PCL93] H.Pang, M.Carey, M.Livny. “Memory-adaptive External Sorting”. VLDB
1993.

61

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

References

• [RZB+99] L.Raschid, V.Zadorozhny, L.Bright, T.Zhan. “A Comparison of a Web
Prediction Tool and a Neural Network in Learning Response Time for
WebSources using Query Feedback”. CoopIS 1999.

• [SAC+79] P.Sellinger, M.Astrahan, D.Chamberlin, R.Lorie, T.Price. “Access
Path Selection in a Relational Data Management System”, SIGMOD 1979.

• [Sha] Dennis Shasha. “Database Tuning”, 2nd edition, 2002.

• [SLM+01] M.Stillger, G.Lohman, V.Markl, M.Kandil. “LEO - DB2’s Learning
Optimizer”, VLDB 2001.

• [UFA98] T.Urhan, M.Franklin, L.Amsaleg. “Cost-Based Query Scrambling for
Initial Delays”, SIGMOD 1998.

• [WA91] A.Wilschut, P.Apers. “Dataflow Query Execution in a Parallel Main-
Memory Environment. PDIS 1991.

• [YC93] P.Yu, D.Cornell. “Buffer Management Based on Return on Consumption
in a Multi-Query Environment”. VLDB Journal, 1993.

• [ZG90] H.Zeller, J.Gray. “An Adaptive Hash Join Algorithm for Multiuser
Environments”, VLDB 1990.

