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Plan

• Part 1: overview of traditional query processing
– Query optimization
– Query execution

• Part 2: adaptive and self-tuning query processing
– The need for adaptativity
– Existing solutions
– Perspectives
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Part 1
Overview of traditional query processing

• General architecture of a query processor
• Brief overview of

– Data storage
– Query execution
– Query optimization

• Going global: distributed query processing
– Distributed DBMS
– Wrapper-mediator systems
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Generic query processor architecture

Data storage
• Data, indices
• Materialized views
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Centralized query processing (DBMS)

Data storage
• Data, indices
• Materialized views

Data and execution
statistics

Execution engine

Optimizer

Analyzer

Query

Internal query form

Query execution plan

User

Result

Catalog 
schema information

DBMS site
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Data storage

• Data, indexes, materialized views, statistics
• Index: redundant structure supporting fast access to records 

in a table according to a search criterion
– An index on R.a supports “select * from R where R.a=5”

• Materialized view: persistent result of a query
– A materialized view “select * from R, S where R.a=S.b”

can be used to answer “select R.c from R, S where R.a=S.b”

• Statistic: summary information on table or view column(s) 
– No. distinct R.a values, frequency of each R.a value 
– Implied by the presence of an index
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Query execution

• The execution engine contains a library of physical 
operators
– Scan(R)
– B+ tree index lookup(R, X): using the B+ tree index on R.a, 

return R tuples such that R.a = X
– Index nested loop join(R,S, R.a=S.b): 

• foreach t in S
– access matching tuples in R using R’s index

• foreach matching R tuple produce one output tuple

– Pattern Scan operator(XMLDoc, patt): using the XyIndex on 
XMLDoc, retrieve nodes matching patt [ABC2001]
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Physical operators

• Algorithms for implementing logical operators
• Run in memory and/or on disk
• Cost: disk I/Os 

– cost of IndexNLJ(S,R): read S + NS * access R index
– cost of HashJoin(R,S): read R + read S 

• Before execution, memory is reserved for operators
– For HashJoin(R,S), construct a hash table for R

• The memory needs depend on data statistics
– Hash table for R: depends on R’s size

• R may be the result of a complex plan
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Example: physical operators for HashJoin

build

probe

R

S
HashJoin

R S

is implemented by

output 
buffer

R

S

h(R.a)

build

probe

R hash table

Memory

R       S

h(S.b)
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Execution of physical plans

• Producer-consumer 
dependencies among 
operators

• Data is
• materialized
• passed along 

pipeline chains
• Pipeline chains are 

delimited by blocking 
operators (build, mat, 
sort...)

project

probe2

scan
T

build2

scan
R

probe1

scan
S

build1

project

probe2

scan
T

build2

scan
R

probe1

scan
S

build1

mat
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Execution of physical plans

• Operators in a pipeline chain 
run together at a given moment
• They have to fit in memory 

together
• Scheduling: order of execution 

of physical operators
• scanR, build1, 

scanT, build2, 
scanS, probe1, probe2,
project

• Memory allocation: splitting
memory among operators running at the same time
• scanS 10%, probe1 45%, probe2 45%, project 10%

project

probe2

scan
T

build2

scan
R

probe1

scan
S

build1
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Implementing physical operators

• The iterator model [Gra93]
– Uniform, general interface for any physical operator
– Three methods:

• Open() sets up space, performs initialization
• Next() returns one result tuple (or eof)
• Close() releases resources and exits

• Data flows upwards, control flows downwards
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Iterator example: HashJoin

• probe.open(){
build.open(); t = build.next()
while (t != eof) {

put t in table; t=build.next() }
build.close() 
probe.open() }

• probe.next() {
read t from S;
probe the hash table with t;
return one result tuple} 

• probe.close() { de-allocate table }

build

probe

R

S

output 
buffer

R

S

h(R.a)

build

probe

R hash table

Memory

R       S

h(S.b)
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Executing plans of iterators (1/3)

project

probe2

scan
T

build2

scan
R

probe1

scan
S

build1

• project.open(){
probe2.open{

build2.open() { // build hash table for T
scanT.open();
while (! eof) { 

t = scanT.next(); insert t in table;
}  scanT.close();

build2.close(); 
probe1.open() {

build1.open(); 
... // build hash table for R
build1.close();

} } } 
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Executing plans of iterators (2/3)

• project.next(){
probe2.next {

probe1.next() {
s = next tuple from S;
probe table for R with s;
return a tuple rs;

}
probe table for T with rs;
return a tuple rst;

}
rstp=projection(rst); 
return rstp

}

project

probe2

scan
T

build2

scan
R

probe1

scan
S

build1
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Executing plans of iterators (3/3)

• Producer-consumer operator relationships 
induce a partial order among the executions 
of pipeline chains (scheduling constraints)

• The iterator implementation of physical 
operators completely determines the order 
of execution of the plan (the scheduling)

• Ex. scheduling for
chainT

project

probe2

scan
T

build2

scan
R

probe1

scan
S

build1

chainR

chainS

scan A scan B scan C scan D

build1

mat

sel

probe2

nljbuild2

probe1
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Query optimization

• Input: a query in a machine-readable format

• Output: a physical query execution plan

project

select(R.a=S.a, R.b=T.b)

scan
T

cartProd

scan
S

cartProd

scan
R

build3

probe2

scan
T

build2

scan
R

probe1

scan
S

build1

dupElim&project

build3

probe2

scan
T

build2 scan
viewRxS

dupElim&project

or
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Query optimization: a search problem

• The space of physical plans logically equivalent to the 
optimizer’s input: search space

• Every physical plan has a set of properties
– Total work, e.g. total number of disk I/Os
– Time to the first tuple
– Time to the last tuple (to completion, response time)

• These properties are aggregated into a cost
• Optimizing = exploring part of the search space 

following a search strategy
– returns an explored physical plan minimizing the cost
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Distributed query processing: what 
changes

• Distributed query processing architectures
– Distributed DBMS

• Master-slave scenario
• Negociation scenario

– Wrapper-mediator systems

• Impact of distribution on 
– Query execution
– Query optimization
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Distributed query processing system –
master-slave scenario
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Distributed query processing system -
negociation scenario

Distributed and 
execution statistics

User

Distributed catalog 
schema information

Optimizer

Analyzer

Data storage

Execution engine

Site S1
Site S2
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query  execution 
plan

Data storage
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Wrapper-mediator system

User

Optimizer

Analyzer

Data storage

Execution engine

Mediator

Distributed
query  execution 
plan

Wrapper W1 (web source)

Wrapper W2 (file system)

Execution 
engine

Execution 
engine

Execution
engine

Wrapper W3 (program)
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Influence of distribution on query execution (1/2)

• Operators run on several sites
– Opportunities for parallelism
– The basic iterator model is sequential
– Solution: Exchange operators  [Gra93]

p

q

Site S1

Site S2

p q
next()

next()

idle
time

p

q

Site S1

Site S2

Xq

Xp
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• Operators run on several sites
– Variable performances of an operator on different sites 

• Different algorithms, memory conditions
– Distributed scheduling
– Remote sites may fail

• Intermediate results are transferred
– Characterizing data transfer

time

transfer
volume

t0

r
t0 startup cost
r transfer rate (bytes/sec)

Influence of distribution on query execution (2/2)
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Influence of distribution on query 
optimization

• The search space increases 
– Several sites to which an operator can be assigned
– ... therefore, even stronger usage of heuristics

• The cost model incorporates
– Data transfer times 
– Parallelism 

• Between processors
• Between processor and transfer

– Metric: response time 
• Until the last result tuple

arrives at the query site

project

probe2

scan
T

build2

scan
R

probe1

scan
S

build1

S site

R site

T site
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Query processing in wrapper-mediator 
systems

• Wrappers may provide only simple operators
– Scan, callProgram(arg1, arg2, ..., argn)

• Statistics are absent or ill-defined
– Data changes without notice
– Data presented by wrappers can be the result of a mapping

• “Average result of program p” ?...
• Most frequent value of //book/@title, if the data is stored 

in relations ?...

• Loss of distributed view and control 
– Wrappers run on autonomous sites
– We only control the mediator
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Putting it all together: what determines the 
performance of query processing ?

Query
Query results
(measurable
performance)

Query processing system

Query
Optimizer

Execution
Engine

Physical
query
plan
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What determines the optimizer’s choice

chosen physical plan

pruning
rules

heuristics

acceptable
search

duration
estimated

data
statistics

cost
formulas

memory
estimates

estimated
runtime

parameters

search space search strategycost model

views

indexes
physical

operators
implemented

chosen
physical

operators
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What determines the execution 
performance

real
data

statistics

execution performance

efficiency
of physical
operators

available
memory

real
runtime

parameters

schedulingmemory
allocation
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Part 2: adaptive and self-tuning query 
processing

• The need for adaptativity

• Existing solutions

• Perspectives
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Adaptive query processing: definition

• An adaptive query processor [HFC+00]:
1. Receives information from its environment
2. Uses this information to determine its behavior
3. Performs the two above in a feedback loop

• We adopt a broader perspective: adapting means
1. Reacting to the unexpected (aka dynamic)
2. Learning about the unknown (aka self-tuning)

• For maintaining or improving query processing 
performance
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Unexpected events at runtime (1/2)

1. Insufficient memory for an operator
2. Data transfer rates (distributed setting)
3. Data characteristics

– Cardinality, number of distinct values
– Value distribution (skew)
– Order w.r. operators: “varying operator selectivity”

filter

scanR

build

probe

scanS
time

tuples
output by

filter

build is idle
probe is blocked



17

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Unexpected events at runtime (2/2)

• Causes
– Wrong estimates 

• Cardinality
– Intrinsic variable parameters

• Memory on a remote site, network bandwidth

• Occurence increasingly likely in
– Centralized DBMSs
– Distributed DBMSs
– Wrapper-mediator systems
– Changing environments (e.g. continuous queries)

• Solution: react fast to maintain performance
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Insufficient memory at runtime 

• Memory assigned to some operator(s) is insufficient
– “The hash table outgrows the memory”

• Causes
– Memory estimates rely on estimated statistics, whose errors 

propagate and amplify in the physical plan [IC91]

• Consequences
– OS paging, very inefficient

– Sample performance penalty [BKV98]

% degradation

100
90
80
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60
50

0
50
160
350
625

1200

% of avail. 
memory
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Levels of adaptation to runtime memory 
limitations

• Physical operators with important memory needs 
[DeWG85, KNT89, ZG90, PCL93, HN96, IFF+99, BFP+01, MBF+02]

– Use disk, more efficiently than OS paging
– Local adaptation

• Memory allocation and scheduling [MDeW93, BKV98] 

– Schedule execution to avoid paging
– Global adaptation

• Query re-optimization [KDeW98, IHW01] 

– Change plan to ensure that execution holds in memory
– Global adaptation
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Physical operators adapting to insufficient 
memory

• A success story: the hybrid hash join [DeWG85]

– Algorithm
– Applications

• Adaptive hash join algorithms in commercial 
implementations

• Others (not presented here)
– Memory-adaptive sorting [PCL93], ...
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The hybrid hash join algorithm

• Hybrid of regular (optimistic) and Grace (pessimistic) join 
[NKT86]

• Implemented in: MS SQLServer, IBM DB2, Oracle, ...
• Phase 1: regular hash join

output 
buffer

R

S

h(R.a)

build
R hash table

Memory

R       S
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The hybrid hash join algorithm

• Phase 2: hash table reaches memory limit
• Flush some R bucket(s) to disk

output 
buffer

R

S

h(R.a)
build

R hash table

Memory

R       S

R buckets

h(R.a)
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The hybrid hash join algorithm

• Phase 3: R tuples has been exhausted
• Start probing the hash table with S tuples

output 
buffer

R

S

R hash table

Memory

R       S

R buckets

probe
h(S.b)
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The hybrid hash join algorithm

• Phase 3: R tuples has been exhausted
• Start probing the hash table with S tuples

output 
buffer

R

S

R hash table

Memory

R       S

R buckets S buckets

probe
h(S.b)
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The hybrid hash join algorithm

• Phase 3: S tuples has been exhausted
• Re-hash one disk-resident R partition in memory

output 
buffer

R

S

R hash table

Memory

R       S

R buckets S buckets

g(R.b)

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

The hybrid hash join algorithm

• Phase 3: S tuples has been exhausted
• Join by pairs R and S overflow buckets

R

S

R buckets S buckets

output 
buffer

probe

R hash table

Memory

R       S

g(S.b)
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Application of hybrid hash: hybrid cache

• Physical operator for calling user-defined functions using 
cache [HN96]

Memory

hash(x)

Call f 

function cache
x   f(x) x   f(x)   y

x   f(x)   yx    y
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Application of hybrid hash: hybrid cache

g(x)

• The function cache may outgrow the memory
• Stop calling f; apply second hash function g(x) on (x,y) 

tuples and write them to disk

Memory
function cache

x   f(x)

hash(x)

x   f(x)   y

x    y
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Application of hybrid hash: hybrid cache

Memory
function cache

x   f(x)

• When (x,y) tuples are exhausted
– Discard cache
– Load one by one buckets from disk, process them 

building a new cache

hash(x)

Call f 

x   f(x)   y

x   f(x)   y
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Other adaptive variants of hash join

• SQL Server [GBC98]

– Starts as regular hash join (optimistic)
– Degrades successively into

• Hybrid hash join
• Grace hash join [FKT86] : partition both relations and 

write all partitions to disk; join partitions by pairs 

• Recursive hash join: if a partition overflows memory, 
apply a second hash function

– Also applies: bit vector filtering, role reversal, partition 
tuning [GBC98]

– ... Or gets discouraged by too many duplicates and 
resorts to sort-merge join [Gra00]
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Adapting to memory limitations: 
scheduling and memory allocation

• Adaptive operators may run between [Mmin, Mmax], run at Mavail

• Mavail memory assignments to operators may be optimized 
globally

• Operator scheduling may be optimized globally 

• Adaptive scheduling & allocation [BKP98]:

– Given a physical QEP and a memory limit  
– Schedule and allocate memory so that

• Paging is avoided
• Response time is reduced
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Adaptive scheduling and memory 
allocation

• Choose a pipeline chain 
scheduling

• Execute in order pipeline chains
• On overflow (building HTX):

– If another table HTY in memory
• If HTY will be used after HTX

• Then write HTY to disk
• Else suspend current 

pipeline chain and consume 
HTY; then resume

– Otherwise write HTX to disk

probe6.3

probe6.2

scan6

pc4

scan5

probe5

build5

scan4

build4

pc5

scan1

build1 scan2

probe1

build2

pc1

pc2

scan3

build3 probe6.1

pc6
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Adaptive scheduling and memory 
allocation

• [pc1, pc2, pc4, pc5, pc3, pc6]
• Run pc1: HT1 in memoryprobe6.3

probe6.2

scan6

pc4

scan5

probe5

build5

scan4

build4

pc5

scan1

build1 scan2

probe1

build2

pc1

pc2

scan3

build3 probe6.1

pc6

• Run pc2 using HT1
– overflow in build2
– write HT2 to disk, HT1 erased
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Adaptive scheduling and memory 
allocation

• [pc1, pc2, pc4, pc5, pc3, pc6]
• Run pc1: HT1 in memory
• Run pc2 using HT1

– overflow in build2
– write HT2 to disk, HT1 erased

• Run pc4: HT4 in memory

probe6.3

probe6.2

scan6

pc4

scan5

probe5

build5

scan4

build4

pc5

scan1

build1 scan2

probe1

build2

pc1

pc2

scan3

build3 probe6.1

pc6

scan4

build4
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Adaptive scheduling and memory 
allocation

• [pc1, pc2, pc4, pc5, pc3, pc6]
• Run pc1: HT1 in memory
• Run pc2 using HT1

– overflow in build2
– write HT2 to disk, HT1 erased

• Run pc4: HT4 in memory

probe6.3

probe6.2

scan6

pc4

scan5

probe5

build5

scan4

build4

pc5

scan1

build1 scan2

probe1

build2

pc1

pc2

scan3

build3 probe6.1

pc6 • Run pc5 using HT4: HT5 in 
memory, HT4 erased
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Adaptive scheduling and memory 
allocation

• [pc1, pc2, pc4, pc5, pc3, pc6]
• Run pc1: HT1 in memory
• Run pc2 using HT1

– overflow in build2
– write HT2 to disk, HT1 erased

• Run pc4: HT4 in memory
• Run pc5 using HT4: HT5 in 

memory, HT4 erased
• Run pc3

– overflow in build3
– need to consume HT5

probe6.3

probe6.2

scan6

pc4

scan5

probe5

build5

scan4

build4

pc5

scan1

build1 scan2

probe1

build2

pc2

pc2

scan3

build3 probe6.1

pc6
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Adaptive scheduling and memory 
allocation

probe6.3

probe6.2

scan6

pc4

scan5

probe5

build5

scan4

build4

pc5

scan1

build1 scan2

probe1

build2

pc2

pc2

scan3

build3 probe6.1

pc6

• [pc1, pc2, pc4, pc5, pc3, pc6]
• Run pc3

– overflow in build3
– need to consume HT5
– suspend pc3
– cut pc6 in pc6.1 and pc6.2
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Adaptive scheduling and memory 
allocation

• [pc1, pc2, pc4, pc5, pc3, pc6]
• Run pc3

– overflow in build3
– need to consume HT5
– suspend pc3
– cut pc6 in pc6.1 and pc6.2scan6

pc4

scan5

probe5

build5

scan4

build4

pc5

probe6.1

pc6.1

probe6.3

probe6.2

scan1

build1 scan2

probe1

build2

pc2

pc2

scan3

build3 mat

pc6.2

• Run pc6.1 using HT5, HT6.1 on 
disk, HT5 destroyed
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Adaptive scheduling and memory 
allocation

• [pc1, pc2, pc4, pc5, pc3, pc6]
• Run pc3

– overflow in build3
– need to consume HT5
– suspend pc3
– cut pc6 in pc6.1 and pc6.2scan6

pc4

scan5

probe5

build5

scan4

build4

pc5

probe6.1

pc6.1

probe6.3

probe6.2

scan1

build1 scan2

probe1

build2

pc2

pc2

scan3

build3 mat

pc6.2

• Run pc6.1 using HT5, HT6.1 on 
disk, HT5 destroyed

• Resume pc3, HT3 in memory
• Run pc6.2 using HT6.1 and HT3
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Adapting to memory limitations: summary

• React during query execution
• Adaptive operators

– Relatively easy to implement, local adaptation
– Adopted in industrial products
– “Degrades gracefully with limited memory” generally required

• Adaptive scheduling and memory allocation
– More complex, better global control
– Scheduling requires suspending and resuming pipeline chains
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Unexpected data transfer rate (1/2)

• In distributed settings
– Distributed DBMSs, wrapper-mediator systems

• Causes:
– Remote site or network failure
– Variations in network bandwidth
– Any variation on a remote site (load, memory,...)

• Consequences:
– Impossibility to answer query (failures)
– Idle times: operator waits for input

• Increased query response time
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Unexpected data transfer rate (2/2)

• Data trasfer rate (      ) is different from expectation (      )
– Blocked (site or link failure)

– Delayed

– Slow

– Bursty

time

transfer
volume

time

transfer
volume

time

transfer
volume

time

transfer
volume
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Adapting to unexpected transfer rates

• Adapting to failure
– Evaluate the feasible part of the query, evaluate the 

query later using the partial results (parachute queries
[BT98])

• Adapting to delays
– While a source is blocked, schedule some other work, 

perhaps re-optimize (query scrambling [AFT+96, UFA98])

• Adapting to delays, slow or bursty transfer
– Dynamic scheduling [BFM+00]

– Adaptive operators: double pipelined join [WA91, IFF99], 
XJoin [UF00]; also Eddies [AH00, MSH+02]
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parachute
query

parachute
query

failure

Parachute queries

• Context: wrapper-mediator system
• Wrapper on remote site fails

– Parachute queries: 
executable fragments 
of the plan

– Materialize results
as temporary
relations

probe

probe

scan U

scan S

filter

scan T

build probe

buildscan R

filter

build

wrapper W1

wrapper W2

wrapper W3
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Parachute queries

• When remote source becomes 
available, run incremental query on
– Results of parachute queries
– Remote source

• Incremental query is re-optimized
– Needs query rewriting using views

probe

temp1 probe

build

failurescan S

filter

wrapper W2

temp2

scan S

filter

temp1

merge join

sort

wrapper W2
temp2

nlj

• Sensitive to timeout for failure 
detection
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Query scrambling

• Changes scheduling to hide delayed sources
– Blocked for a while, then available
– A delayed source blocks a set of operators in the QEP
– Run some other non-blocked operators while waiting 

for the delayed source 

• Runnable subtree
– QEP subtree whose operators do not depend on 

delayed sources or blocked operators

• Two phases:
– Re-scheduling
– Re-optimization
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Query scrambling in presence of delayed 
sources

• Re-schedule: 
– Run the next scheduled runnable subtree, materialize the 

result
– After processing a runnable subtree 

• If delayed data started to arrive, revert to normal
• Otherwise, pick another runnable subtree
• When no runnable subtrees are left, re-optimize

• Re-optimize: combine materialized results via new 
operators
– After executing an operator

• If delayed data started to arrive, revert to normal
• Otherwise, re-optimize
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Query scrambling in the presence of 
delayed sources 

• Starts from the scheduling 
dictated by iterators
[1,2,3,4,5,6,7,8]

• A delayed: 1, 4, 8 blocked

D E

8

7

5 6

4

1 3

F2 G H ICBA
• Identify next runnable subtree 

in the scheduling, materialize it
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Query scrambling 

• In the meantime, G becomes 
unavailable, 5 and 7 blocked

8

7

5 6

4

1

F G H IBA

temp1

8

7

5 6

4

1

F G H IBA

temp1

8

7

5 temp2

4

1

F GBA

temp1

• Identify next maximum 
runnable subtree, materialize it

• Nothing left to run: re-optimize
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Query scrambling 

• Re-optimization: join F and 
temp2

8

7

5 temp2

4

1

F GBA

temp1
• Nothing left to do: block, 

waiting for data

8

10

9

temp2

4

1

F

G

BA

temp1

8

104

1
G

BA

temp1 temp3
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Effect of query scrambling 

• Optimization has a high overhead 
– decision to scramble  bets on the future

• Very sensitive to timeout value 

initial delay of A 

re
sp

on
se

 ti
m

e

initial delay of A
scrambling

no scrambling
execution time
once A available
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Effect of query scrambling 

8

7

5 6

4

1 3

FD G H ICBA

• Strongly influenced by the iterator-dictated scheduling
– If H is the first source delayed, nothing left to scramble
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Dynamic scheduling

• Attempts to find an optimal scheduling with respect to 
– Delays
– Bursty arrival
– Slow arrival

• The network is the bottleneck
• Interleaves execution of many concurrent pipeline chains, 

limited by  
• Producer-consumer dependencies
• Available memory

• Give priority to critical pipeline chains: those processing 
data faster than it arrives
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Dynamic scheduling

• Pipeline chains are ordered 
according to their critical 
degree
– The order is recomputed if 

transfer rates vary 
significantly

• Scheduling:
– Process one batch of 

tuples at a time from the 
most critical pipeline chain 
(mcp)

probe6.3

probe6.2

scan6
scan5

probe5

build5

scan4

build4

scan1

build1

scan2

probe1

build2

scan3

build3
probe6.1

Mediator

Monitor
transfer

rates
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Dynamic scheduling

• Scheduling (cont’d):
– If mcp does not hold in 

memory, cut it as high as 
possible, run lower fragment, 
materialize

– If mcp cannot run because of 
dependencies, cut it, 
materialize source data 

– Interleaves the execution of 
concurrent pipeline chains

• More general than scrambling
– More complex

• Lower overhead

probe6.3

probe6.2

scan6
scan5

probe5

build5

scan4

build4

scan1

build1

scan2

probe1

build2

scan3

build3
probe6.1

Mediator
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Operators adapting to unexpected 
transfer rates

• Context 
– Remote (hash) join processing

• Goal 
– Transfer rates for build and/or probe inputs may vary
– Avoid stalling 

• Solutions 
– Double pipelined hash join
– XJoin
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The double pipelined hash join 

• The goal: avoid stalling while the build input is slow
– The transfer rates of build and probe inputs may vary
– Build both relations at the same time

a  c b  d

hash(a) hash(b)

Memory

– On arrival, each tuple is built and probes
• Non-blocking on both sides

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

The double pipelined hash join

• Blocks only when both inputs are blocked
• Bigger memory needs (two hash tables)

– Adapts gracefully to memory limitations [IFF+99]

• Needs 3 threads to conform to the iterator model

a  c b  d

hash(a) hash(b)

Memory
output buffer
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The XJoin 

• May work even with both inputs blocked
• Needs less memory: each bucket resides partially on disk 

a  c b  dhash(a) hash(b)

Memory
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The XJoin 

• When both inputs are blocked
– bring in memory one disk-resident bucket part
– probe a memory-resident bucket part 

Memory

• One disk-resident bucket part may be brougt in memory 
many times
• Tuple timestamps to ensure correctness
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Unexpected data characteristics at runtime 
(1/2)

• Occurence: source data or intermediate results 
• Causes

– Existing statistics are very imprecise
• Commercial systems: significant research on histograms
• Impossible to construct all histograms
• Continued use of “magic numbers” 

“R        S returns NR*NS*0.1 tuples”

• Wrapper-mediator systems: data statistics most difficult to 
obtain

– Source data has changed since the last statistics 
gathering

R.a=S.b
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Unexpected data characteristics at runtime 
(2/2)

• Occurence: source data or intermediate results 
• Consequences

– Operators’ data structures may not hold in the memory 
that was assumed available for them

• The choice of the physical plan is wrong
• Memory-adaptive solutions apply

– Data is transmitted in bursts between operators
• Idle then busy periods (“variable selectivity”)
• Increased response time
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Unexpected data characteristics: adaptive 
solutions 

• Adaptive operators [BFP+01, MBF+02]

• Change the physical query plan 
– Build a limited degree of choice in physical query plans

and choose at runtime [GW89, GC94]

– Gather statistics during execution and re-optimize if 
needed [KDeW98, IFF+99, IHW01]

• Give up the physical query plan
– Allow different processing orders for each tuple [AH00, 

MSH+02]
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Operators adapting to data statistics

• Early Rate BindJoin [MBF+02]: operator for expensive 
functions calls Memory

function cache
x   f(x)

cache
lookup

x   f(x)   y

x    y
Call f

x   f(x)   y

• Data output rate tends to be:
• Slow at the beginning (cache empty, all values have to 

be processed): small early rate
• Fast towards the end (results are available in cache)

• Large early rate is desirable
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Early rate BindJoin

• Solution:
– Accumulate arguments in internal buffer
– Call function on most frequent values first

function cache
x   f(x)

x    y

cache
lookup

x    y

Memory

x   f(x)   y

waiting tuples
x    y

Call f

x   f(x)   y
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Dynamic query execution plans

• Goal: use 1 query execution plan for several similar user 
queries (avoid re-optimising) [GW89, GC94]

• For queries containing user-supplied constants, different 
plans may be optimal
– Allow runtime choice

• Adaptive within
the set of 
specified
options

scan(R)

filter(R.a<x)

indexLookup(R)

choose-plan
depending on 
the value of a

scan(S)

build build
probeprobe

choose-plan
depending on 
card(filter(R))



42

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Mid-query re-optimization

• Gather statistics during execution, use them to optimize 
the remaining work [KDeW98]

• While executing a pipeline, collect

– Cardinality, size, min and max
for every intermediate result

– Statistics with a high innacuracy potential
• Current estimate suspected wrong

• At the end of the pipeline
– Re-estimate cost based on new statistics
– If very bad, re-optimize

• [IHW01] takes similar approach, re-optimizes within pipeline

probe1

scan3

scan2

filter2

scan1

build1 probe2

build2

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Eddies: per-tuple operator reordering

• Context: wrapper-mediator system [AH99]

– Unknown or variable operator selectivities 
– Variable tuple transfer rates

• Solution: replace the query plan with an Eddie
– Routes each tuple on a potentially different path

scanT

filter

scanSscanR

join

join

join

Index
lookup U

joinR,S

joinS,T
IndexLookupU

filterT

scanR scanS scanT

Eddie
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Eddies: per-tuple operator reordering

• Join inputs may switch correctly only at moments of symmetry
– Standard hash join: never
– Double pipeline join: at any point (instance of Ripple Join [HH99])

• Uses bitmaps to keep track of
completion of each tuple

• Routing policy to give 
tuples to competing operators
– Favors operators who drain

tuples, i.e., fast and selective

joinR,S

joinS,T
IndexLookupU

filterT

scanR scanS scanT

Eddie
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Eddies: benefits of adaptativity

• Experiment: select * from R where c1(R.a) and c2(R.b)

selectivity
of C20.0 0.5 1.0

time

c1
 before c2

c2 before c1
eddie

filterC1 filterC2

scanR

Eddie

• Finds best execution order without a static plan

• Execution time:

• Selectivity of c1: 0.5; selectivity of c2: varies from 0 to 1
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Eddies and SteMs

• Context: long-running queries over streams [MSH+02]

• No estimate stays correct during query lifetime
– Drop query plans alltogether
– Use 1 Eddie + 1 State Module per source

filterT

scanR scanS scanT

Eddie

SteM S
SteM RSteM T

filterS
filter(S, filter(T, join(R,S,T)))
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Eddies and SteMs

• Eddie + State Modules: multi-way double pipelined join 
• Each tuple

– Is built into the 
corresponding SteM

– Probes in any order 
other SteMs

• Advantage: factorization
– For all queries on R, one

SteMR, one filterR

filterT

scanR scanS scanT

Eddie

SteM S
SteM RSteM T

filterS
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Eddies and SteMs: ensuring correctness

• Many, many more bitmaps
• Each tuple must be built before it probes
• Two tuples may (still) erroneously join an 

unbound number of times.
– Timestamp every tuple
– Joined tuple is correct iff

build component is older 
than probe component

• “build, then probe”
– Eddie kills incorrect tuples

• Unknown overhead

filterT

scanR scanS scanT

Eddie

SteM S
SteM RSteM T

filterS
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Adapting to unexpected data 
characteristics: summary

• The problem appears in all query processing 
scenarios
– Most difficult for wrapper-mediator systems
– In stream processing, statistics are ill-defined

• Granularity of adaptive solutions 
– Dynamic query optimization / scheduling
– Operator level
– Per-tuple adaptivity: local, centralized approach

• Commercial systems attempt to refine their statistics
– Over longer time intervals, off-line (to be seen)
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Adapting to unexpected events at 
runtime: summary (1/2)

• Unexpected events at runtime:
– Insufficient memory
– Data transfer rates
– Data characteristics

• Adaptive mechanisms incorporated in
– Regular operators (e.g. Hybrid Hash Join, DPHJ, XJoin)
– Special operators (e.g. “choose plan”, Eddy)
– Scheduler (e.g. query scrambling, dynamic query 

scheduling)
– Runtime control: gather statistics, re-invoke the optimizer 

(mid-query re-optimization)
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Adaptivity at runtime: summary (2/2)

• Memory-adaptive operators: success in industrial systems
• Delay-adaptive operators: useful in wrapper-mediator 

systems
• Some thoughts of Goetz Graefe 

– at U.Portland, U.Oregon: dynamic query evaluation plans
[GW89, GW94]

– at Microsoft [Gra00]
“In modern systems [..] there are many adaptive techniques [...]
typically ignored in the cost functions of commercial query 
optimizers, partially because they are too difficult to incorporate, 
and partially because a sufficient strong case for incorporating them 
has not been made. What does that say about techniques as 
adaptive as dynamic query evaluation plans ?”
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Long-term adaptativity: learning about the 
unknown

• Optimizer knowledge is wrong or incomplete, but stable, 
correct values exist
– Data statistics
– Set of useful statistics, indexes
– Data transfer rates

• Typical in centralized or distributed DBMS
• Refine optimizer knowledge to improve performance
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Long-term adaptativity: learning the 
unknown

views

chosen physical plan

search
strategy

cost model

estimated
data

statistics

estimated
runtime

parameters

search 
space

indexes

chosen
physical

operators

Re-compute
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Learning about data characteristics

• Indexes and statistics are:
– Chosen for a given workload

• Typical DBA task, part of database tuning [Sha]
• Recent DBMSs (DB2, SQL Server)  recommend or

choose them [AA] 

– Built
• From scratch, after significant data changes 

[SAC+79]

• Maintained by gathering information while running 
queries [SLM+01]
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The AutoAdmin project

• Purpose: make DBMS (MS SQL Server) self-tuning 
to reduce cost of ownership

• Given a workload of queries {Q1, ... Qn} and a DBMS, 
automatically choose:
– Indexes [CN97], statistics [CN00], materialized views and 

indexes [ACN00], statistics on intermediate results [BC02]

• Minimizing the estimated cost of the workload:
�

iOptimizerEvalCost(Qi)
• Indexes etc. are good only if the optimizer uses them
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AutoAdmin: outline of the index selection 
procedure (1/3)

• Given a workload W={Q1, Q2, ..., Qn} 
• Choose a configuration (set of indexes) of size k 

minimizing the estimated cost of the workload
• Search space potentially huge

– Avoids asking the optimizer to evaluate all possible 
configurations [CN97] 

– Usage of heuristics
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AutoAdmin: outline of the index selection 
procedure (2/3)

1. Choose C, a set of one-column candidate indexes for W:
a) Choose one-column candidate indexes for every Qi

b) Candidate indexes for W:  ∪i(candIndexes(Qi))
Heuristic: an optimal index for the workload has to be 
an optimal index for at least one Qi

2. Choose Ck = best k one-column indexes from C; 
let C = Ck.

Up to now, C only contains one-column indexes !!!
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AutoAdmin: outline of the index selection 
procedure (3/3)

3. For idxSize=2,...,maxIndexSize
a) Let newCand = { idx(col1, col2, ..., colidxSize) such that 

idx(col1, col2, ..., colidxSize-1) ∈ C }
b) Add newCand to C
c) Choose Ck = best k one-column indexes from C

Heuristic: a good index on idxSize columns is an 
“extension” of a good index on idxSize-1 columns
• The prefix of a good index is a good index

How to choose indexes on several columns:
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Details: choosing one-column candidate 
indexes for query Qi

• Only on attributes used in the query 
– select * from R, S where R.a=S.b and R.c between 0 

and 7: consider only R.a, S.b, R.c
– Heuristic: query engines do not use more than 

• j indexes for a single table, j=1 or 2
• indexes on more than t tables for a given query, t=2
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Details: choosing one-column indexes for 
the workload

• Candidate indexes for W: C=∪i(candIndexes(Qi)), 
size(C)=n

If n is larger than the limit k, need to prune

• Choose best k indexes from C:  many possible 
configurations

• Heuristic search:
• Explore all configurations of size m, m<k (m=2)
• Let Cm be the best configuration of size m
• Apply a greedy algorithm to add the most profitable 

k-m indexes from C
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AutoAdmin: choosing materialized views 
and indexes for a workload

• Given a workload W={Q1, Q2, ..., Qn} 
choose a configuration of
– Indexes
– Materialized views
– Indexes on materialized views

• ...occupying less than S space
• Minimizing the estimated cost of the workload
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AutoAdmin: why choose materialized 
views and indexes together ?

• They are redundant structures that speed up query 
processing
– The presence of an index may change the utility of a 

materialized view 
– Proposing indexes and views separately may lead to 

redundancy
– Views should be selected first... blocking the proposal 

of interesting indexes
• They compete for the same resource: space

– Allocating � *S for indexes and (1- � )*S for views is 
suboptimal
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AutoAdmin: choosing materialized views 
and indexes (1/2)

1. Choose a set of candidate views
a) Identify sets of interesting table subsets T={T1, ..., Tr}

• Materializing views on T significantly reduces the 
cost of the workload

b) For each interesting table subset propose
• A view cummulating all joins and selections on T 

appearing in Qi

• (If some Qi performs aggregation) a similar view 
with aggregation

c) Merge similar views into more general ones
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AutoAdmin: choosing materialized views 
and indexes (2/2)

2. Choose a set of candidate indexes (seen)
• on tables and materialized views

3. From the n candidate indexes and materialized 
views, greedily select the most profitable ones until 
the space limit S is reached
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AutoAdmin: choosing statistics for a 
workload

• Given 
– a query Q
– The set S0 of syntactically relevant statistics

• On all join and selection columns (too large)

• Choose a set C of at most k statistics such that 
– The cost estimates of the QEPs chosen by the 

optimizer for (W, S0) and (W, C) are close
• Typical value: within 20% range
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AutoAdmin: choosing statistics for a 
workload

• Start with no statistics (C empty)
• While (more statistics are needed)

– Identify the most important statistic to build
– Add it to C
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AutoAdmin: when are statistics needed ?

• When statistics are missing, the optimizer uses 
magic numbers (selectivity variables s1, s2, ... sn.)

• The optimizer’s estimate for the cost of a query Q is 
monotonic in the values of s1, s2, ..., sn.

• Let Sx be a set of statistics and � ≈0.
– Plow: the optimizer’s chosen QEP for Q, using Sx,  if 

s1=s2=...=sn= �
– Phigh : the same for s1=s2=...=sn= 1 - �

• If Plow and Phigh are close enough, Sx contains enough 
statistics
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AutoAdmin: which statistics are most 
important ? 

• For a given query Q:
– Find most expensive operator op in the QEP proposed 

by the optimizer for Q
• Maximizing    cost(op) - Σ(cost children of op)

– Consider statistics for op

Adaptive and Self-Tuning Query Processing EDBT Summer School 2002

Learning data characteristics: summary

• Going towards self-tuning DBMSs
– The DBMS adapts to the workload

• Complex algorithms implemented in commercial 
products
– Heavy use of heuristics and rules of thumb

• As indexes, statistics, and materialized views get 
smarter, optimizer’s estimates get better
– Long-term and short-term adaptativity are competing
– (In centralized industrial systems) long-term is a more 

robust choice
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Learning transfer times

• Context: wrapper-mediator systems
• Network transfer times vary a lot, depending on:

– Day of the week
– Time of day
– Quantity of data transferred

• WebPT [RZB+99]: Web Prediction Tool
– Monitor transfer rates while executing queries
– Refine knowledge about transfer rates based on 

experience
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WebPT: learning network transfer times

• Gather query feedback in cells along the dimensions Date, 
Time, Quantity.

• Start with a single cell [Monday-Sunday], containing a 
static estimate of transfer rates

• Every query execution yields a query feedback
[D, T, Q, rate]
– If rate is different from the estimate of the cell 

containing [D, T, Q]
• Split the cell in two
• Adjust the estimates of the new cells 

– Otherwise, increase confidence of the cell
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WebPT: example

• Query feedback at 12am on Saturday, different from cell estimate:

Day Monday-Friday Saturday-Sunday

Time

Qty

8pm-8am

any any

8am-8am8am-2pm 2pm-8pm

<100K>100K >700K<100K <700K

v1 v2 v3 v4 v5 v6 v7

Day Monday-Friday Sunday

Time

Qty any

12am-8am

Saturday

12pm-8am8am-12pm

any any

v1 ... v6 v10v8 v9

(the same)
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Learning the unknown: summary

• Robust methods exist for learning
– Values of data statistics
– For a given workload, the optimal sets of 

• Statistics
• Materialized views
• Indexes

– Data transfer times

• Off-line learning has less overhead than run-time 
reacting, but similar goals
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Adaptive query processing: summary

• Heterogeneous mix of technologies
• Comparisons possible among common dimensions

– Double pipelined join vs XJoin

• No common testbed to compare relative and 
combined efficiency
– If statistics are known, how useful is memory adaptiveness ?
– If transfer rates are known, how useful is query scrambling ?

• From innovative, extremely new techniques to strong, 
proven industrial implementations
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Remember the goal: performance

• Thoughts of Goetz Graefe [Gra00]: 

“An improvement measured by a small factor, say 3, is laudable and 
useful, but not a breakthrough - improvement in hardware technology 
will give us the same [...] in just one or two years. 
In order to be truly a breakthrough, a performance improvement has to 
be measured in orders or magnitude. Materialized views are one such 
technique. Dynamic query plans, on the other hand, so far have not 
achieved this level of success on a broad scale.
Can we achieve consistent and predictable order-of-magnitude 
improvements for database systems by combining dynamic query plans 
with on-the-fly indexing and materialized views ?”
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