
Positive Active XML∗

Serge Abiteboul
INRIA Futurs & Xyleme Corp.

Serge.Abiteboul@inria.fr

Omar Benjelloun
INRIA Futurs

Omar.Benjelloun@inria.fr

Tova Milo
INRIA Futurs & Tel-Aviv University

Tova.Milo@inria.fr

ABSTRACT
The increasing popularity of XML and Web services have
given rise to a new generation of documents, called Active
XML documents (AXML), where some of the data is given
explicitly while other parts are given intensionally, by means
of embedded calls to Web services. Web services in this
context can exchange intensional information, using AXML
documents as parameters and results.

The goal of this paper is to provide a formal foundation for
this new generation of AXML documents and services, and
to study fundamental issues they raise. We focus on Web
services that are (1) monotone and (2) defined declaratively
as conjunctive queries over AXML documents. We study
the semantics of documents and queries, the confluence of
computations, termination and lazy query evaluation.

1. INTRODUCTION
XML, a self-describing, semistructured data model, is be-

coming the standard for data exchange between applications
over the Web. Complementarily, recent standards for Web
services such as SOAP [23] and WSDL [27], normalize the
way programs can be invoked over the Web. Together, XML
and Web services are becoming the standard means of pub-
lishing and accessing valuable, dynamic, up-to-date sources
of information. The increasing spread of these standards
has naturally led to the introduction of a new generation of
XML documents, where some of the data is given explicitly,
while other parts are given only intensionally, by means of
embedded calls to Web services [2, 20, 17]. We refer to such
documents as Active XML documents (AXML documents
for short) [11]. Web services in this context can exchange in-
tensional information, by using AXML documents as param-
eters and results. We call services exchanging AXML data
AXML Web services. Together, AXML documents and ser-
vices constitute a powerful framework for distributed data
management.

∗This work was partially supported by EU IST project DB-
Globe (IST 2001-32645).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS 2004 June 14-16, 2004, Paris, France.
Copyright 2004 ACM 1-58113-858-X/04/06 . . . $5.00.

Consider as a simple example an AXML document that
describes the content of a Jazz portal. This document con-
tains some extensional information, e.g. a list of Jazz CD’s
reviewed by the portal, as well as some intensional infor-
mation, e.g. how other lists of Jazz CD’s and reviews may
be obtained from other portals, via calls to some Web ser-
vices. This intensional information may be materialized by
invoking the services, and the list of references of the por-
tal can thereby be enriched. The portal also provides an
AXML Web service that, given some search criteria (e.g.
the name of a musician), returns the desired information.
The answer is an AXML document that may contain, be-
sides extensional reviews, embedded calls to other portals
to obtain more information and eventually obtain music.

The goal of this paper is to provide a formal foundation for
AXML documents and services, and to study fundamental
issues they raise. The main aspects that are considered are
the following.

Confluence. In general, in AXML, the state of the system
may depend on the order of service call invocations. We fo-
cus here on AXML Web services, that enrich the documents
in a monotone manner, and on fair sequences of call invo-
cations, namely sequences where each call that may bring
new data is eventually invoked. We demonstrate a form of
confluence for this setting.

Recursion and termination. A call to a service may
activate a call to another service, and so on, possibly re-
cursively. Also, a service may return as answer some data
including new service calls, which may in turn return more
data including more calls, etc. Therefore, some computa-
tions may never terminate. We study termination detection
and enforcement, for both documents and query evaluation.

Lazy evaluation. When querying an AXML document, it
may be unnecessary to invoke all the service calls and ma-
terialize the full documents to answer the query. One would
like to focus on relevant calls only. This notion of relevance
is formally defined in the sequel, and some fundamental re-
sults on lazy query evaluation are presented.

To study the above issues, we use a simple model where
AXML documents are modeled as unordered labeled trees
having two kinds of nodes, data nodes and function nodes
(the latter represent calls to Web services). The semantics
of a document is defined as the tree obtained at the limit
of an arbitrary fair sequence of service invocations. The use
of sequences of invocations is meant to capture peer-to-peer
(P2P) data management based on streams of data (both in

pull and push mode).
In this paper, we consider only monotone Web services.

The documents containing the calls are monotonously en-
riched by the answers. This is in the style of P2P computa-
tions ala Kazaa [18], where data is incrementally collected in
a distributed network of peers. Non-monotone computations
are hard to envision in such a setting: one can never assume
that a fact is false, since this fact may be stated in some
parts of the network not investigated yet. Non-monotone
services will be ignored in this paper.

When services are monotone, the semantics of a document
is possibly infinite but unique (up to a suitable equivalence
relation), i.e. independent of the order of service invoca-
tions. A further analysis may be performed if the seman-
tics of services is known. In particular, we consider a class
of AXML documents and services, which we call positive
AXML, where Web services are defined using a monotone
query language that corresponds to a core tree-pattern frag-
ment of XQuery. Because of the recursion between doc-
uments and services, we obtain an important expressive
power. In particular, a large class of Turing machine com-
putations can be simulated.

We also highlight some nice properties of a particular sub-
class of these queries, which we call simple queries, obtained
by disallowing variables that range over subtrees of docu-
ments. Intuitively, such variables can be used to copy sub-
trees of arbitrary complexity. For instance, termination is
decidable when AXML services are defined by simple queries
(while it is undecidable in general). Furthermore, one can al-
ways construct a finite graph representation of the (possibly
infinite) document semantics. This finite representation also
facilitates lazy query evaluation. In particular, it allows to
detect which service calls are relevant for query evaluation
and which are not, a property that is also undecidable in
general. The above problems (and related ones) are shown
to be in exptime, and co-np hard. We also consider alter-
native ptime heuristics.

AXML documents and services were originally introduced
in [3]. A first implementation supporting AXML documents
and services was presented in [2]. In these, and in follow-up
works on AXML [4, 22, 1], the model was only informally
sketched. The system uses the full XML syntax, in particu-
lar, trees are ordered whereas we see them here as unordered;
and services can be defined using a full fledged XQuery-like
language while we use a more limited monotone language.
The system also has a number of complex features not dis-
cussed here, such as updates. The formalization presented
here is new, and so are the results. Since XML and Web
services are promised such a brilliant future, we believe it is
very important to develop a formal foundation for AXML,
so that this technology can be better understood and used.
Clearly, the general problem is complex, and further work is
needed. While our research originated from the AXML sys-
tem, the results are more generally applicable to other sys-
tems supporting data with embedded service calls, e.g.[20,
17].

The paper is organized as follows. The monotone AXML
data model where services are arbitrary monotone functions,
is defined in Section 2. Positive AXML systems, where ser-
vices are defined by queries in a particular conjunctive lan-
guage, are studied in Section 3. Lazy query evaluation is
considered in Section 4. To simplify the presentation, we
use, up to Section refsec-lazy, a very simple query language.

Extensions to this language are considered in Section 5. We
review related work and conclude in Section 6.

2. MONOTONE ACTIVE XML
In this section, we formally present AXML documents and

monotone systems, i.e., those using monotone Web services.
We first ignore service implementations, thus viewing them
as black-boxes. Then, in the next section, we will consider
a particular class of monotone services, called positive ser-
vices, that are defined by conjunctive queries over AXML
documents.

2.1 AXML documents
AXML documents are modeled as unordered labeled trees

with data and function nodes. The function nodes corre-
spond to service calls, and their children subtrees represent
call parameters. We assume the existence of some disjoint
domains: D of document names, N of nodes, L of labels, F
of function names 1, and V of atomic values.

Definition 2.1. An (unordered) AXML document (a doc-
ument for short) is an expression (T, λ), where T = (N, E)
is a finite unordered tree. N ⊂ N is a finite set of nodes,
E ⊂ N ×N are the directed edges, and λ : N → L∪F ∪V is
a function over nodes, such that (i) only leaf nodes may be
assigned atomic values and (ii) the root is assigned a label
or an atomic value.

For a node n, λ(n) is called its marking. Nodes with a
marking in L ∪ V are called data nodes while those with
a marking in F are called function nodes. The children
subtrees of a function node are the call parameters. We
will use a compact syntactic representation of trees. In the
examples, we represent labels with strings, function names
with bold strings and atomic values with quoted strings. A
sample document is as follows:

directory{cd{title{"L’amour"},
singer{"Carla Bruni"},
rating{"***"}},

cd{title{"Body and Soul"},
singer{"Billie Holiday"},
GetRating{"Body and Soul"}},

cd{title{"Where or When"},
singer{"Peggy Lee"},
rating{"*****"}},

FreeMusicDB{type{"Jazz"}},
GetMusicMoz{

FindSingerOf{"Hotel California"}}}
This tree contains cd nodes with title, singer, and rat-

ing children. For some cds, the rating is given explicitly,
while for others it may be obtained by calling the GetRating
function. The tree also contains a function node, FreeMu-
sicDB returning more data on jazz, and a function node
GetMusicMoz searching for more songs by the singer of
“Hotel California”. Observe that call parameters may them-
selves contain function nodes. Here, the parameter of Get-
MusicMoz is a call to the FindSingerOf service, retrieves
the singer name.

1Intuitively, function nodes correspond to invocations of
Web services. So, the real world analog of a function name
involves notions such as service URL and operation name,
that are needed to invoke the service.

When a function is called, the parameter subtrees are
passed to it. The return value, a forest of AXML docu-
ments, is then appended as sibling of the function node in
the document. We define this process formally later on.

Reduced documents. In this paper, we focus on mono-
tone information and monotone functions, which motivates
the following definition of reduced documents. Intuitively,
consider a node n with two subtrees t, t′ with t′ containing
strictly more information than t, then t is basically useless
(from the viewpoint of the query languages considered here).

To formally define reduced documents, we use the auxil-
iary concept of tree subsumption.

Definition 2.2. A document (T1, λ1) is subsumed by a
document (T2, λ2), denoted (T1, λ1) ⊆ (T2, λ2), if there ex-
ists a mapping h from the nodes of T1 to those of T2, map-
ping the root of T1 to that of T2, preserving the parent-child
relationships among nodes and the marking of nodes (i.e.,
λ1(n) = λ2(h(n)) for each n).

For two documents d1, d2, when both d1 ⊆ d2 and d2 ⊆ d1

hold, we say that d1 and d2 are equivalent, and denote it
by d1 ≡ d2. A document d is said to be reduced if there is
no subtree 2 of d equivalent to d. A reduced version of a
document d is a reduced document d′ equivalent to d.

For instance, the document a{b{c,c},b{c,d,d}} is not re-
duced, since b{c,c} ⊆ b{c,d,d}. The tree a{b{c,d}} is a
reduced version of it. We can prove:

Proposition 2.1. (1) Document subsumption is a tran-
sitive and reflexive relation. (2) Each document has a unique
(up to node isomorphism) reduced version. (3) Subsumption
can be tested in ptime. (4) A reduced version of a document
can be computed in ptime.

Proof. (Sketch) The transitivity and reflexivity follow
immediately from the definitions. We show that the map-
ping h can be constructed in ptime, by first building a sim-
ulation relation [16] between the trees, and then trimming it
down to form the desired mapping. A reduced version of a
tree can be constructed by iteratively prunning from it the
nodes and the subtrees rooted at them that are subsumed by
one of their siblings. Its uniqueness follows from the transi-
tivity of the subsumption relation and the minimality of the
reduced tree.

The notions of document subsumption, equivalence, and
reduction, extend naturally to forests, i.e. sets of documents.
A forest ϕ is subsumed by a forest ϕ′ if each tree in ϕ is
subsumed by some tree in ϕ′. A forest ϕ is reduced if all
its trees are reduced, and no tree is subsumed by another.
In the following, we identify each document (resp. forest)
with its equivalence class, and use the reduced version as a
representative for that class.

We also use the following related notion. Given two docu-
ments d and d′, with the same root label, one can verify that
they have a least upper bound (w.r.t. ⊆), up to equivalence.
We denote it by d ∪ d′. It can be obtained by constructing
(and then reducing) a tree having the same root label as d
and d′, and having as children subtrees all the children sub-
trees of the roots of d and d′. Trees with distinct root labels
are incomparable.

2A subtree of a tree d is a tree whose nodes and edges are
subsets of the nodes and edges of d.

Remarks. Observe the following.

• Document subsumption ignores function semantics. For
instance, even if for some functions f and g , for any
x, f (x) ⊆ g(x), still the documents a{f {“5”}} and
a{g{“5”}} are incomparable. If more information were
available on services, one could define a more power-
ful notion of subsumption, by considering also func-
tion subsumption. As our query language (introduced
further) may refer explicitely to the names of services
appearing in the documents, we will not do it here.

• One could also introduce node identifiers (ala IDref).
Subsumption would then require the mapping to pre-
serve node identifiers. This will also be ignored here.

2.2 Monotone AXML systems
A monotone AXML system consists of a set of AXML

documents, plus the services used in these documents.
We first ignore the specification of Web services, and view

them as “black-boxes”. In this view, a Web service s over a
set of document names {d1, . . . , dn} using a set F of func-
tion names is defined as follows. Given an assignment θ,
mapping d1, ..., dn to AXML documents, s(θ), returns a for-
est of AXML documents with only function names in F .
We will see that services may use two reserved document
names, input and context, that represent respectively the
call parameters and context (to be defined precisely in the
sequel).

We focus here on monotone services. These are services s
such that, for each θ, θ′, if for every i, θ(di) ⊆ θ′(di), then
s(θ) ⊆ s(θ′).

Definition 2.3. A monotone AXML system, (a system
for short) is an expression (D, F, I) where

• D is a finite set of document names, not containing
input and context;

• F is a finite set of function names;

• I is a mapping over D ∪ F such that for every d ∈
D, I(d) is a document with only function names in
F , and for every f ∈ F , I(f) is a monotone service
over D ∪ {input, context} using the set F of function
names. We require that documents do not have nodes
in common.

For brevity, when D and F are understood from the con-
text, we will simply use I to denote a system. The fact that
I(d) = t for some document name d and tree t, is denoted
d/t. An example of a system is I1, containing d/a{b,c} and
d’/a{f {c}}, and such that I1(f) is some monotone function.

To define the semantics of monotone AXML systems, we
need first to define formally the semantics of service call
invocations.

Service call invocations. Consider a document d in a sys-
tem I , and a function node v marked f in it. When the
function is invoked, I(f) is evaluated, and its result is ap-
pended to the document, as siblings of the node v.

To define this formally, we first need to give a meaning θ
to the document names di used by the function, namely to
input, context and the names in D. The meaning of input,
θ(input), is the tree with a root labeled input and all the

subtrees of v as children. The meaning of context, denoted
θ(context), is the subtree rooted at the parent of v. The
meaning of the names in D is the one given by I . Let the
forest ϕ be the result of the function (i.e., ϕ = I(f)(θ)).
Then, the result of the invocation of v is obtained by ap-
pending ϕ to the tree, as siblings of v (assuming the nodes
of ϕ are disjoint from those of I), and reducing the obtained
tree.

For instance, consider the AXML music directory pre-
sented above and assume that the GetRating function in
it is invoked. Here, the meaning of input is the tree “Body
and Soul”. Assume that the function returns the tree rat-
ing{“****”}. The document, after the function invocation
has the following form.

directory{...
cd{title{"Body and Soul"},

singer{"Billie Holiday"},
GetRating{"Body and Soul"}
rating{"****"}},

...}

Sequences of invocations. The semantics of an AXML
system is defined to be the set of (possibly infinite) docu-
ments obtained at the limit of an arbitrary fair sequence
of service invocations, that is, a sequence where any func-
tion invocation that may bring new data eventually happens.
This is formalized next.

Definition 2.4. For a system I, we say that I
v→ I ′ if I ′

is obtained from I by the invocation of some function node v
in I, and I �≡ I ′. A (possibly infinite) rewriting is a sequence

I
v1→ I1

v2→ I2 → . . .
vn→ In . . . We say that I rewrites to In,

denoted I
∗→ In. We say that the system terminates at In

if there is no function node vn+1 in In and no In+1 s.t.

In
vn+1→ In+1. An infinite sequence is said to be fair if for

every i and every function node v ∈ Ii there exists j > i s.t.
at least one of the following conditions hold: (i) Ij

v→ Ij+1,
or (ii) an invocation of v would not modify Ij.

Observe that I
v→ I ′ entails I ⊆ I ′ and requires that

I �≡ I ′. So, the rewriting is strictly increasing, i.e., the
documents are enriched by this rewriting.

To be able to formally define the semantics of mono-
tone AXML systems, we just need the last notion of in-
finite AXML documents. An infinite AXML document is
one where the set of nodes is not restricted to be finite. The
definition of an infinite monotone AXML system is obtained
from that of a monotone AXML system by allowing docu-
ments to be infinite. (Note that we still assume that there
are finitely many documents and functions.)

Definition 2.5. Let I be a monotone AXML system. The
semantics of I, denoted [I], is defined as follows:

• either [I] = J for some finite system J such that I
∗→ J

and the system terminates at J;

• or [I] = ∪{Ii} for some infinite fair rewriting I
v1→

I1... → . . .
vi→ Ii..., i.e each document name in I is as-

signed the least upper bound of the corresponding doc-
uments in the rewriting.

The semantics of a document d ∈ I , denoted [d], is given
by [I]. Similarly, for a document d not in I , but which uses
only functions in I , the semantics of d can be given by that
of the system I augmented with d. The latter will be useful
in the sequel to define the semantics of queries, since their
results are new documents which are not in I .

Since service invocations may bring new data and new
function nodes, a rewriting may never terminate, as illus-
trated next.

Example 2.1. Consider a system having a document d/a{f }
with a function f that always returns the tree a{f }.
One can show that the only rewriting for this system is:

d/a{a{f}, f}
d/a{a{a{f}, f}, f}
d/a{a{a{a{f}, f}, f}, f} . . .

Observe that once some occurrence of f has been invoked,
it is useless to invoke it again. The infiniteness here is
caused by the explicit introduction, at each step, of a new
function node. We will see an example where repeated ac-
tivations of the same call brings infinitely new data in the
sequel.

Observe that infinite systems naturally model real world
situations, such as subscriptions that keep sending new data
to a user. We will see further that, while termination anal-
ysis is intricate, it can nevertheless be detected (and even
enforced) under certain conditions.

We next show that the semantics is well-defined, i.e. in-
dependent of the order of function invocations. As a first
step, we prove that any information that can be derived in
one particular sequence will also be eventually derived in
any other sequence.

Lemma 2.1. Let I be a system, and suppose I
∗→ J and

I
∗→ K. Then, (i) if J terminates at J ′, then K ⊆ J ′; and

(ii) if J
v1→ J1

v2→ J2
v3→ . . ., is an infinite fair rewriting, then

for some i, K ⊆ Ji.

Proof. (Sketch) The proof works by induction on the
number of function invocations in the rewriting that lead
to K. It follows from the fact that the rewritings are (1)
monotone w.r.t ⊆, and (2) fair. Thus, for every function

invocation in I
∗→ K, either all the data it generates already

belongs to the “current” system (J , at the induction base),
or an analogous invocation will eventually occur (by fairness

of the J
v1→ J1

v2→ J2
v3→ . . . rewriting), that will bring at least

as much data (by monotonicity).

From the previous Lemma, it is easy to show that:

Theorem 2.1. The semantics of monotone AXML sys-
tems is well-defined. Namely, if one rewriting terminates,
any rewriting terminates at the same finite system. If one
rewriting does not terminate, no rewriting terminates and
any fair rewriting produces the same infinite system.

Observe that in a rewriting sequence, each call is activated
repeatedly, in a pull mode, until it brings no more new data.
An alternative view, adopted in [8], would be to consider
that services are continuous, i.e., that they react to changes
of the documents they depend on, and push to their callers
new derived results. In such a model, calls need only be

activated once, but the subsequent computation may still
be infinite. These two push and pull models are essentially
equivalent, and our actual implementation can use both [2].

3. POSITIVE ACTIVE XML
We consider next a particular class of monotone systems

called positive systems, where service definitions are known
(in contrast to the black-box semantics of services in gen-
eral monotone systems) and are defined as queries. We use
the additional semantics to obtain results on termination
and finiteness. But first, we need to introduce the query
language of positive systems.

3.1 Positive queries
We consider a query language that corresponds to a mono-

tone conjunctive fragment of XQuery [28]. Intuitively, posi-
tive (AXML) queries are rules of the form head :- body. The
body performs a selection analogous to the from and where
clauses of XQuery, and contains tree patterns that we try
to match. The head corresponds to the return clause, and
contains a tree pattern describing the structure of the result.

To simplify the presentation, we first consider a rather
restricted language, excluding useful features such as regular
path expressions, and present our results in this context.
Once this is clear, we will consider some extensions, and in
particular the use of regular path expressions, in Section 5.

Queries may use four kinds of variables. The first three,
label, function, and value variables correspond respectively
to the three kinds of nodes in an AXML tree, i.e., nodes
marked with labels, function names, atomic values. The
last one, tree variables, are used to represent subtrees of the
document. The core component of queries is tree patterns. A
positive AXML tree pattern is a subtree of an AXML docu-
ment where some node labels are replaced by label variables,
some function names by function variables, and some atomic
values (recall that they are assigned to leaves) by value or
tree variables.

Definition 3.1. A positive query q is an expression

r : −d1/p1, ..., dn/pn, e1, ..., em where

1. The di’s are document names, and r, pi, for i = 1, . . . , n,
are positive AXML tree patterns;

2. Each variable occurring in r also occurs in some pi;

3. The ej , j = 1 . . . , m, are inequalities of the form x �= y,
where x, y are label, function, or values variables (not
tree variables) or constants; and no tree variable occurs
twice in the body of the rule.

A simple query is a query that uses no tree variables.

Observe that, because of (3), the language prohibits test-
ing for tree (in)equality. This turns out to be essential for
guaranteeing monotonicity.

The following is a simple example of a query on a docu-
ment doc1 similar to our previous example (with x being a
value variable).

songs{x} :- doc1/directory{cd{title{x},
singer{"Carla Bruni"},
rating{"***"}}

We distinguish between two possible semantics for a query.
First, the snapshot result is the result of the query when
evaluated on a system in its current state, without invoking
any of the function calls it contains. By contrast, the (full)
result of a query represents its result when evaluated on the
instance corresponding to the semantics of the monotone
system, i.e., when all possible calls have been evaluated.
These two notions are formalized next.

Snapshot result of queries. A variable assignment µ re-
spects typing if it assigns labels, function names, atomic val-
ues or trees to label, function, atomic or tree variables, re-
spectively. Given a pattern p, µ(p) denotes the tree obtained
from the pattern by substituting each variable by its corre-
sponding value.

Consider a positive query

q = r : − d1/p1, ..., dn/pn, e1, ..., em

Let I be some monotone AXML system containing the doc-
uments d1, . . . , dn. Then the snapshot result of q on I , de-
noted q(I), is the forest consisting of all documents µ(r)
such that:

• µ is a variable assignment respecting typing and satis-
fying the inequalities.

• for each di/pi expression in the body, µ(pi) ⊆ I(di).

(More precisely, the q(I) forest consists of copies of the µ(r)
over disjoint sets of nodes.)

Example 3.1. As an example, consider the following two
documents d and d′:

d / r{t{a{1},b{c{2},d{3}}}, d’/ a{1}
t{a{1},b{c{3},e{3}}},
t{a{2},b{c{2},k{6}}}}

The document d encodes a binary relation. Let x be a value
variable and z a label variable. The following query projects
out the labels of b children in tuples having the same a value
as one given in d′:

z :- d’/a{x}, d/r{t{a{x},b{z}}}
Its snapshot result is the set of labels {c,d,e}. On the other
hand, consider the query obtained by replacing z by the tree
variable Z. Its snapshot result is the forest:
{c{2},d{3},c{3},e{3}}.

As shown in the example, tree variables allow to replicate
full subtrees of the documents. By contrast, simple queries
without such variables, can only copy individual nodes. As
we shall see in the sequel, this difference is significant. The
expressive power of simple queries is more limited, but in
return, their analysis is much simpler.

The following holds for the snapshot semantics of queries:

Proposition 3.1. (1) The snapshot semantics of positive
queries is monotone, i.e., I ⊆ J implies that q(I) ⊆ q(J).
(2) It is not monotone anymore if (in)equalities of tree vari-
ables are allowed. (3) The snapshot semantics of positive
queries can be evaluated in ptime.

Proof. (Sketch) The proofs of (1-2) are straightforward.
The proof of (3) is based on a relational encoding of docu-
ments. The valid body assignments can be computed by a

conjunctive query over this relational representation. Tree
variable assignments are represented by the id of the root
node of the assigned tree. For each assignment, the construc-
tion of the result specified by the head is straightforward.
The obtained tree is of size polynomial in the input, and
thus can be reduced in polynomial time.

Query result. The snapshot result of a query takes only
into consideration the data currently present in the docu-
ment, and essentially ignores the intensional data available
via service calls. This kind of snapshot result is not what we
really expect as an answer to a query. The result of a posi-
tive query over a monotone system I , that we denote [q](I),
considers all the data, extensional as well as intensional, and
is defined as follows. If I converges to a finite system [I],
then [q](I) = q([I]). Otherwise, considering any infinite fair
rewriting I = I1 . . . Ii . . ., we define [q](I) as ∪q(Ii). Because
of the fairness and the monotonicity of the rewriting and the
query, one can verify (using essentially the same arguments
as for Lemma 2.1) that:

Theorem 3.1. The result of a positive query over a mono-
tone system is well-defined, i.e., it is independent of the
rewriting sequence.

3.2 Positive systems
So far, we viewed services as “black-boxes”. In the re-

maining of the paper, we consider services defined by pos-
itive queries whose declarative definitions are known. The
systems thereby obtained are called positive systems. More
precisely, a positive AXML system (D, F, I) is defined as
in Definition 2.3, except that for every function name f ∈
F , I(f) is a positive query using document names in D ∪
{input, context} and function names in F . A positive sys-
tem where all functions are defined by simple queries (namely
queries with no tree variables) is called a simple positive sys-
tem.

Positive systems are particular cases of monotone systems.
We only have to explain the behavior of positive service
calls. So, consider a positive system I and a function node
n labeled f in a document d , where I(f) is a positive query.

r :- (input/q1,)(context/q2,)
d1/p1, ..., dn/pn,
e1, ..., em

When the function is invoked, the corresponding query is
evaluated (with input, context and d1, . . . , dn instantiated
as defined in Subsection 2.2), and its snapshot result is ap-
pended to the document as siblings of the node n. Because
of the monotonicity of the snapshot semantics of positive
queries (see Proposition 3.1), it is clear that the system is
monotone.

This is illustrated next by two examples. In the first one,
the semantics is finite.

Example 3.2. Consider the simple positive system I con-
taining the documents d0, d1, where d0 encodes a binary re-
lation:

I(d0) = r{t{1, 2}, t{2, 3}, t{3, 4}}
I(d1) = r{g, f}
I(g) = t{x, y} :- d0/r{t{x, y}}
I(f) = t{x, y} :- d1/r{t{x, z}, t{z, y}}

It is easy to see that any fair rewriting converges to a fi-
nite system where d1 contains the transitive closure of the
relation encoded in d0.

Observe that the previous simple positive system com-
putes the fixpoint of a datalog program (a transitive clo-
sure). More generally, any datalog program can be simu-
lated by a simple positive system. This and other connec-
tions between positive AXML and extensions of datalog are
considered in [8]. In particular, an extension of the opti-
mization technique for datalog, Query-sub-Query [25], for
positive AXML is considered there.

We now consider a positive system with infinite semantics.

Example 3.3. Consider the document d’/a{a{b},g} with
the function g defined as

a{a{X}} :- context/a{a{X}}.
X is a tree variable, hence the system is not simple. One
can show that the only rewriting for this system is:

d/a{a{b}, a{a{b}}, g}
d/a{a{b}, a{a{b}}, a{a{a{b}}}, g}
d/a{a{b}, a{a{b}}, a{a{a{b}}}, a{a{a{a{b}}}}, g}
. . .

Here, the same function call returns more and more data.
One can verify that the limit is the infinite document where
the root a has a single function node child labeled g , and
infinitely many distinct subtrees ai{b} for i ≥ 1.

The service in this second, non terminating, example is
defined by a query with a tree variable. However, non ter-
mination may even occur for simple positive systems, i.e.
systems where the service queries contain no tree variable;
see for instance Example 2.1, whose single service can be
defined by the simple query a{f} :-. We will see below that
termination analysis is intricate in general. To understand
why, let us first consider the expressive power of AXML.

Expressiveness and completeness. AXML computations
are generic in the sense that they do not interpret atomic
values, labels and function names. AXML systems are not
complete in the Turing sense; indeed they are not even com-
plete in the relational sense because they are monotone. On
the other hand, they can encode very complex computations
using recursion and calls to simulate object creation in the
style of IQL [7].

We first show that any Turing machine computation can
be simulated by a AXML system, and derive from that an
undecidability result for the termination of AXML systems,
then consider the expressive power of AXML systems.

Lemma 3.1. Any Turing machine can be simulated by a
positive AXML system, with the input tape represented by
an AXML tree.

Proof. (Sketch) W.l.o.g., we restrict ourselves to non-
cycling Turing machines. The input tape of the machine is
encoded as a “line” tree (e.g., #{a1{a2{...an{#}}}}), that
is fed as input to a service in the system. Each configu-
ration the machine goes through is also encoded as a tree,
comprising the current state, and two line trees, for the left
and right hand side of the head. Services, defined as non-
simple queries, perform the transitions of the machine, and
all the configurations the system goes through are accumu-
lated in a single document. If the machine terminates, a last

service recognizes the end of the computation, and outputs
the result tape, again encoded as a line tree.

As a consequence of the above proof, in particular, it fol-
lows that:

Corollary 3.1. It is undecidable whether a positive sys-
tem terminates.

Now, to analyze the expressive power of Active XML, one
would like to understand what computations over the gen-
eral AXML trees defined in our data model can be per-
formed using an AXML system. Although we showed above
that arbitrary computations can be performed on strings,
the difficulty here lies in the encoding of AXML trees into
a representation that is suitable for the subsequent compu-
tation. One can show that:

Theorem 3.2. Given a monotone, recursively enumer-
able, Boolean function f over AXML trees without function
symbols, over some finite domains, there exists a positive
AXML system with a service that computes f 3.

Proof. (Sketch) The computation proceeds in two steps:
First, the AXML system generates, from the input tree, an
infinite family of line trees that represent serializations of
subtrees of the input tree, possibly with duplicates. The
computation of the boolean r.e. function is represented as a
Turing machine (simulated as above) that operates (in par-
allel) on each of these serializations. The output is taken to
be the infinite union of the outputs of all these parallel runs.
The correctness is guaranteed because of the monotonicity
of the function.

Note that genericity is not an issue here because of the
finiteness of the alphabets. It is open whether AXML sys-
tems capture the generic, monotone and recursively enumer-
able functions.

We next consider two particular kinds of systems. For
the first one, namely acyclic systems, termination is always
guaranteed. For the second, namely simple positive systems,
non-termination will be manageable. Both turn out to be
quite useful in practice.

Acyclic systems. We next define the auxiliary notion of
dependency graph and the concept of acyclic systems.

Definition 3.2. Consider the dependency graph whose
nodes are document and function names of the system, and
whose edges are defined as follows. Let d be a document
name and f , g be function names,

• there is an edge (d, f) if f occurs in I(d).

• there is an edge (f , d) (resp. (f , g)) if d (resp. g)
occurs in I(f).

A system is acyclic if its dependency graph is acyclic.

It is easy to see that acyclic systems always terminate. In
such systems, functions and documents can be totally or-
dered (based on the dependency graph), starting from the

3By computes f , we mean that the semantics of the AXML
answer of the service represents the value true iff f returns
true.

documents and functions that depends on no other docu-
ment or function. Then one can start evaluating the func-
tions based on this order. Interestingly, each function node
has to be invoked only once, since reevaluating it would not
produce more data.

Simple positive systems. Consider the system in Exam-
ple 2.1, with its single service defined by a simple query as
above. While its semantics is infinite, the resulting tree is
regular. A regular tree t is a (possibly infinite) tree where
the number of distinct subtrees of t is finite (up to isomor-
phism). Such trees can be represented by finite graphs [14].
We will say that a system is regular if all its trees are regular.
We show next that if a positive system is simple, its (pos-
sibly infinite) semantics is regular. By contrast, non simple
systems may generate non regular trees. An example is the
infinite tree of Example 3.3.

Lemma 3.2. For every simple positive system I, [I] is reg-
ular; and a finite graph representation of [I] can be computed
in exptime.

Proof. (Sketch) The crux is the observation that (1) for
all nodes v in [I], each child subtree either belongs to the
original system I or is (a rewriting of) the instantiated head
of some service query, and (2) identical instantiations, even
when located in different places of a document, have equiv-
alent rewritings, providing that their root is not labeled by
a function name. (For functions, a somewhat more delicate
analysis is required.) Since in simple positive systems rules
contain only label/data/function variables, the number of
possible instantiations is at most exponential in the size of
I , and so is the number of distinct subtrees. The finite graph
representation of the result is obtained by recording the in-
stantiations that have already been returned by previous
calls, and pointing to their root when the same answer is
returned again, rather than constructing a new subtree.

The graph representation of the (possibly infinite) seman-
tics of simple positive systems eases their analysis. For in-
stance, termination for such systems is decidable:

Theorem 3.3. For simple positive systems, termination
is decidable in exptime, and the problem is co-np hard.

The exponential algorithm to decide termination builds
the graph representation of Lemma 3.2 and checks whether
it contains cycles. The co-np hardness is by reduction from
the non-satisfiability problem of 3NF formulas.

3.3 Querying positive systems
We considered above termination for AXML systems. To

conclude this section let us consider the (full) result of queries
over such systems. We will say that a system I is q-finite if
[q](I) is finite. Note that [I] may be infinite and the system
still be q-finite. Since the query is defined on the system
semantics, detecting query finiteness may be as difficult as
detecting system termination.

Proposition 3.2. For a non-simple query q, (1) it is un-
decidable whether a positive system I is q-finite, (2) acyclic
systems are q-finite, (3) for a simple positive system I, de-
ciding q-finiteness is co-np hard (in the size of I), and can
be done in exptime.

Note that when a query q is simple, its result is always
finite. This is because the number of possible assignments
of each variable in the body of the query is bounded by the
size of the (original) system. Nevertheless, when the system
itself is not simple, an effective construction of this finite
result may be impossible, as it requires knowing the system’s
semantics. This is illustrated by the following Proposition.

Proposition 3.3. The problem of testing for a (non sim-
ple) positive system I and a simple query q the emptiness of
[q](I) is undecidable.

4. LAZY QUERY EVALUATION
To answer a query, one may attempt to first fully ex-

pand the documents in I , i.e., compute [I], then evaluate q
over the resulting documents. As we will see, this simplis-
tic approach suffers from serious drawbacks which can be
overcome by using lazy query evaluation.

We first briefly argue that it makes sense to use intensional
documents to answer queries. Suppose someone wants to
know the rating of Billy Holiday’s “Body and Soul” song.
A possible answer is “****” (assuming that this is what
the GetRating service returns). But it may be preferable
to simply answer GetRating{“Body and Soul”}. Both an-
swers entail the same information, but the latter delegates
the task of invoking the service to the receiver of the re-
sult. Formally, we will say that an AXML document α is
a possible answer to q if it has the same semantics as q’s
result, that is, if [α] = [[q](I)]. In that sense, both “****”
and GetRating{“Body and Soul”} are possible answers.

The choice of which data to materialize and which to leave
intensional may be influenced by various parameters, such
as performance, communication cost, or security considera-
tions. In [22], typing is used to decide whether particular
data should be materialized or not. This issue will not be
considered here. The focus here is on query evaluation. We
will see that a lazy expansion presents many advantages for
query evaluation.

The naive approach that starts by fully expanding all the
documents would materialize lots of unneeded information.
First, it may materialize information in parts of the doc-
uments that are irrelevant to the query. Second, it may
invoke a call when it suffices to just keep it in the answer
(e.g. evaluate GetRating{“Body and Soul”} although it is
not essential to do so). In both cases, this may result in at-
tempting to materialize an infinite amount of information,
and consequently lead to a non-terminating computation,
although there may exist a finite computation of a possible
answer.

This said, the problem becomes one of lazy evaluation, i.e.,
how to expand documents just enough to obtain a possible
answer. We will say that a set of function nodes N is q-
unneeded if the query may be answered even if no service call
in N is invoked (see formal definition further). Note that
if we have detected that all function nodes in the system
are q-unneeded, then we are at a point where enough data
has been gathered, and no more calls need to be invoked to
answer the query. We then say that the system is q-stable.

We will see next that these properties are undecidable
in the general case, and very expensive to check for simple
positive systems. A practical implementation would thus
need to rely on heuristics.

But first, we define formally these notions. To do so, we

use the following notation. For a system I and a set N of
function nodes in I , let [I↓N] denote the limit of a (possibly
infinite) rewriting sequence that never invokes calls in N ,
and is fair for all other function nodes. As before, let [q](I↓N

) be the union of q(Ii), for all Ii in the rewriting sequence.
Using the same proof as for Lemma 2.1, one can show that
[I↓N] and [q](I↓N) do not depend on the particular sequence
that was chosen (assuming fairness for all nodes but those
in N).

Definition 4.1. Given a system I and a query q over I,
a set N of function nodes occurring in I is q-unneeded if
[q](I↓N) is a possible answer to q.

I is q-stable if the set of all its function nodes is q-unneeded.

Observe that the notion of being unneeded is subtle. It
may be the case that some unneeded call v indeed produces
useful information, but is not needed because some other
calls provide this same information. Note that, in particular,
being unneeded is not closed under union, i.e., it is possible
that N and N ′ are q-unneeded but N ∪ N ′ is not.

We can show the following.

Theorem 4.1. (1) It is undecidable, given a positive AXML
system I, a query q, a set N of function nodes in I, and a
document d whether (i) d is a possible answer to q, (ii) N
is q-unneeded, (iii) I is q-stable.
(2) For simple systems, the three problems are decidable even
if q is a non simple query. They are co-np hard w.r.t I, even
for simple queries, and can be solved in nexptime.

Proof. (Sketch) The undecidability and co-np hardness
proofs use constructions similar to the ones of Corollary
3.1 and Theorem 3.3. The nexptime algorithms are based
on building finite graph representations of [d], [[q](I)] and
[[q](I↓N)], and comparing them.

This result is in the line of [9], where answering XML
queries over incomplete information is studied. The un-
decidability should not come as a surprise, since positive
AXML systems can simulate Turing machines. The de-
cidability is more interesting. Indeed, decidability can be
shown for other properties as well. For instance, properties
linked to the order of call invocations can be considered.
The ordering of calls is essential when one wants to com-
pute rewritings of minimal length. One can show that this
problem is also decidable (but very expensive) for simple
systems. This is omitted here for space reasons.

Weaker properties. Recall that our original motivation for
studying these properties was to improve execution time, by
calling as few services as possible. The previous results show
that an exact analysis may be as expensive as the full query
computation. Instead, one can use some sufficient “weak”
corresponding properties. Intuitively, these weak proper-
ties ignore the semantics of functions and just view them
as monotone independent black-boxes. One can show that
the weak notions, e.g. “weak stability”, are sufficient to
guarantee their corresponding properties (e.g., weak stabil-
ity implies stability) and that they are decidable in ptime.
We omit this here for space constraints. In a Web context,
these weak notions are very relevant, since we often have no
way of knowing the code of many Web services that we use,
i.e., they indeed are black-boxes.

Fire-once semantics. To conclude this section, let us high-
light connections between the notion of query stability and
an alternative semantics for positive AXML systems, where
each service call is invoked just once, returning a single an-
swer. In this case, one would like, before answering a call to
a service defined by a query q, to decide whether the system
is q-stable (or weakly stable in a Web context where some
services are black boxes). One can define formally a fire-once
semantics which considers rewritings where only services for
which the system is stable can be invoked. (This may cor-
respond in practice to answering a service only when one
knows that the entire answer has been obtained.) One can
show that this semantics is well-defined, but may not allow
to derive as much data as with the positive semantics. For
instance, in Example 3.2, the fire-once semantics would not
compute the transitive closure. (The recursive rule will not
be evaluated.) In restricted cases, e.g., acyclic systems, the
fire-once and the positive semantics coincide.

5. EXTENDING THE QUERY LANGUAGE
We considered so far a very restricted query language.

This was primarily to simplify the presentation. In the gen-
eral case, positive AXML systems are difficult to analyze.
So, of particular importance, are extensions of simple posi-
tive systems that leave us in subclasses with desirable prop-
erties. To extend the query language, one could consider
introducing any query language feature (e.g., from popular
query languages for XML), as long as it is monotone.

To see an obvious candidate, consider regular path expres-
sions. In our query language, the path expressions captured
by tree patterns are very restricted. Now, consider the ex-
tension of the query language obtained by allowing, the use
of regular expressions instead of labels in tree patterns. The
interpretation is that there must be a path going down the
document tree such that the sequence of labels forms a word
in the regular language of the path expression.

We call a positive query that uses regular path expressions
a positive+reg query. Systems whose services are defined by
positive+reg queries are called positive+reg systems. Since
regular expressions can be simulated by deductive programs
(which, as mentioned in Section 3, can be expressed by a
positive system), any positive+reg system can be simulated
by a positive one. However, an issue is that such a simula-
tion requires introducing non-simple features, i.e., using tree
variables to copy subtrees. It is possible, however, to find a
more complex simulation that does not require it:

Proposition 5.1. There is a ptime translation ψ such
that, for each system I and query q that are positive+reg,

1. ψ(I, q) = (I ′, q′) where I ′, q′ are positive.

2. I ′, q′ are simple if I, q are.

3. [q](I) = [q′](I ′); and in particular, I is q-finite iff I ′ is
q′-finite.

4. I is q-stable iff I ′ is q′-stable.

Furthermore, ψ also provides a mapping over function nodes
such that for each set N of function nodes in I, N is q-
unneeded (in I) iff ψ(N) is q′-unneeded (in I ′).

Proof. (Sketch) For each regular path expression, we
consider the automaton of the corresponding regular lan-
guage. The idea is to add to the documents (1) nodes that

represent the states of the automaton potentially relevant for
each node in the document, and (2) calls to services that,
based on the former, compute (backwards) the transitions
of the automaton, adding new state information.

For each automata move δ(q, a) = p, the corresponding
service is defined by a query that tests if the given (context)
node has a child of state p and whose label is a, and if so
returns the state q. When the function is invoked, this state
is stored in the tree. So the states propagate upward in the
tree. (To start the computation the final state is stored in
all nodes of the tree.) Along with the propagation of states,
the services also propagate up the label of the node at the
end of the path (for simple I, q) or the node’s subtree (for
non simple services/queries).

It is important to note that, since the above translation
is in ptime, and preserves simple systems and queries, the
decidability and complexity results presented earlier stay
the same for queries whith regular path expressions. For
instance, termination is decidable for simple positive+reg
queries.

To conclude this section, we briefly consider another im-
portant feature of query languages for trees, namely nesting.
Consider for instance a binary relation:

d/r{t{a{1}, b{2}}, t{a{1}, b{3}}, t{a{2}, b{2}}}.
Suppose we want to nest it on the a-column to obtain:

d/r{t{a{1}, b{2}, b{3}}, t{a{2}, b{2}}}
This can be achieved with a simple system containing the
document d above plus a document d′ and functions f ,g :

d′/r{f}
f : t{a{x}, g} :- d/r{t{a{x}}}
g : b{y} :- context/t{a{x}}, d/r{t{a{x}, b{y}}}

In the example, we compute nesting using a simple sys-
tem. In general, nesting seems non-simple. For instance,
suppose that the b components are complex. Then the g
query has to be turned into a non-simple one, by replacing
y by a tree variable Y . This is a case where a non-simple
query does not bring us out of the realm of regular lan-
guages. One can find in [7] a powerful language over trees
where the representation remains regular; the crux there is
the use of strict typing. More work is clearly needed along
this line for obtaining systems with more powerful query lan-
guages, but where important issues such as stability remain
decidable.

6. CONCLUSION
We have presented formal foundations for positive AXML

systems. We also showed that the systems obtained by dis-
allowing the use of tree variables, namely the simple positive
systems, present nice properties.

The positive AXML model is closely related to models
of complex objects and object databases; a survey of the
topic may be found in [6]. The AXML model is also in the
spirit of previous functional approaches to databases, e.g.,
[13] and, to a lesser extent, also of object databases [10].
We mentioned also a connection with deductive databases.
A main difference with languages that mix complex objects
and deduction, e.g., [5, 19], is the semistructured data model
(namely, XML) with much less emphasis on typing. There
exists an abundant literature on query languages for XML
and trees, that have led to XQuery [28].

Results on the completeness of query languages may be
found in [6]. We mentioned the issue of the expressive power
of positive AXML that remains open. Recent works on
querying the Web combined standard logical querying with
Web style navigation [21, 24]. Their computation models
are somewhat closer to automata. It would be interesting
to investigate whether AXML systems can be simulated by
such models and compare their respective expressive powers.

AXML systems are primarily meant for data management
on the Web, using a P2P architecture. In AXML systems,
functions calls are invoked repeatedly. This is meant to cap-
ture both a pull mode where clients keeps asking for data
and a push mode where servers keeps sending data to clients
(pub/sub style). These streams of data are in sharp contrast
to a more traditional mode, where queries are asked and an-
swered once. In that sense, the work presented here presents
connections with continuous and stream queries [12].

AXML systems are typically distributed over several peers.
Each peer contains AXML documents and offers AXML ser-
vices that are used by other peers. A peer often ignores the
semantics of services offered by other peers (i.e. the queries
implementing them). This is typical, for instance, of today’s
Web services. Observe that this affects dramatically the sys-
tems analysis. Regarding termination, each peer may know
that it reached a fixpoint, but a distributed mechanism is
needed to detect termination for the global, distributed sys-
tem. This aspect, and an optimization technique for lazy
query evaluation (along the lines of Query-subQuery) are
proposed in a companion paper [8]. The distributed set-
ting also suggests revisiting notions such as query stability,
adding to them a dimension of distributed knowledge, e.g.,
[15]. The high complexity results presented here motivated
the use of approximations. We proposed efficient lenient al-
gorithms for finding, in a distributed setting, a superset of
the calls relevant to a given query [1]. These algorithms are
based on query rewriting techniques and use a specialized
access structure for better performance.

To conclude, we should observe that the positive AXML
systems considered here are very restricted compared to (ar-
bitrary) AXML systems [2]. First, they allow non-monotone
queries (and services), as well as updates. So, confluence is
not guaranteed anymore. Also, they are based on ordered
trees (vs. unordered here). Finally, AXML systems offer
more control over the invocation of calls, which brings them
closer in spirit to active databases [26]. For instance, one
can specify that a call should be activated periodically (e.g.,
daily) or when a certain event occurs. Aspects related to dis-
tribution and non-monotonicity are important in practice,
and deserve to be formally studied as well.

7. REFERENCES
[1] S. Abiteboul, O. Benjelloun, B. Cautis, I. Manolescu,

T. Milo, and N. Preda. Lazy Query Evaluation for
Active XML. In Proc. of ACM SIGMOD, 2004.

[2] S. Abiteboul, O. Benjelloun, I. Manolescu, T. Milo,
and R. Weber. Active XML: Peer-to-peer data and
web services integration (demo). In Proc. of VLDB,
2002.

[3] S. Abiteboul, O. Benjelloun, and T. Milo. Towards a
flexible model for data and web services integration.
proc. Internat. Workshop on Foundations of Models
and Languages for Data and Objects, Italy, 2001.

[4] S. Abiteboul, A. Bonifati, G. Cobena, I. Manolescu,
and T. Milo. Dynamic XML documents with
distribution and replication. In Proc. of ACM
SIGMOD, 2003.

[5] S. Abiteboul and S. Grumbach. A rule-based language
with functions and sets. ACM TODS, 16(1), 1991.

[6] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison-Wesley Publishing Company,
Reading, Massachusetts, 1995.

[7] S. Abiteboul and P . C. Kanellakis. Object identity as
a query language primitive. In Proc. of ACM
SIGMOD, 1989.

[8] S. Abiteboul and T. Milo. Web Services meet Datalog.
Technical report, INRIA, 2004.

[9] S. Abiteboul, L. Segoufin, and V. Vianu. Representing
and Querying XML with Incomplete Information. In
Proc. of ACM PODS, 2001.

[10] M. Atkinson, D. DeWitt, D. Maier, F. Bancilhon,
K. Dittrich, and S. Zdonik. The object-oriented
database system manifesto. In Proc. of DOOD, 1989.

[11] The Active XML Website.
http://www-rocq.inria.fr/verso/Gemo/Projects/axml/.

[12] B. Babcock, S. Babu, M. Datar, R. Motwani, and
J. Widom. Models and issues in data stream systems.
In Proc. of ACM PODS, 2002.

[13] P. Buneman, R. E. Frankel, and R. S. Nikhil. An
implementation technique for database query
languages. ACM TODS, 7(2), 1982.

[14] A. Colmerauer. Prolog and infinite trees. In K. L.
Clark and S.-A. Tärnlund, editors, Logic
Programming, volume 16, pages 231–251. Academic
Press, London, 1982.

[15] R. Fagin, J.Y. Halpern, Y. Moses, and M.Y. Vardi.
Reasoning about Knowledge. MIT Press, 1995.

[16] M. R. Henzinger, T. A. Henzinger, and P. W. Kopke.
Computing simulations on finite and infinite graphs.
In Proc. of FOCS, 1995.

[17] Jelly: Executable XML.
http://jakarta.apache.org/commons/sandbox/jelly.

[18] The Kazaa file-sharing system.
http://www.kazaa.com.

[19] M. Kifer, G. Lausen, and J. Wu. Logical foundations
of object-oriented and frame-based languages. J.
ACM, 42(4):741–843, 1995.

[20] Macromedia Coldfusion MX.
http://www.macromedia.com/software/coldfusion/.

[21] A. O. Mendelzon and T. Milo. Formal models of web
queries. In Proc. of ACM PODS, 1997.

[22] T. Milo, S. Abiteboul, B. Amann, O. Benjelloun, and
F. Dang Ngoc. Exchanging intensional XML data. In
Proc. of ACM SIGMOD, 2003.

[23] Simple Object Access Protocol (SOAP) 1.1.
http://www.w3.org/TR/SOAP.

[24] M. Spielmann, J. Tyszkiewicz, and J. Van den
Bussche. Distributed computation of web queries
using automata. In Proc. of ACM PODS, 2002.

[25] L. Vieille. Recursive axioms in deductive databases:
The query-subquery approach. In Proc. 1st Int. Conf.
on Expert Database Systems, 1986.

[26] J. Widom and S. Ceri. Active database systems:
Triggers and rules for advanced database processing.

Morgan Kaufmann Publishers, San Francisco, CA,
1996.

[27] Web Services Definition Language (WSDL).
http://www.w3.org/TR/wsdl.

[28] XQuery 1.0: An XML Query Language.
http://www.w3.org/TR/xquery.

	page1: 35
	page2: 36
	page3: 37
	page4: 38
	page5: 39
	page6: 40
	page7: 41
	page8: 42
	page9: 43
	page10: 44
	page11: 45

