Relational DBMS Internals

Antonio Albano
University of Pisa
Department of Computer Science

Dario Colazzo
University Paris-Dauphine
LAMSADE

Giorgio Ghelli
University of Pisa
Department of Computer Science

Renzo Orsini

University of Venezia

Department of Environmental Sciences,
Informatics and Statistics

Copyright (© 2015 by A. Albano, D. Colazzo, G. Ghelli, R. Orsini

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that the
first page of each copy bears this notice and the full citation including
title and authors. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission from the copyright
owner.

May 21, 2020






CONTENTS

Preface

1

DBMS Functionalities and Architecture

1.1 OverviewofaDBMS . . . . .. ... .. ... ... . ...,
1.2 ADBMS Architecture . . . . . ... ...
1.3 TheJRSSystem . . . . . . ... ... .. ...
1.4 Summary . . ... ... ..
Permanent Memory and Buffer Management

2.1 PermanentMemory . . . . . ... ..o
2.2 Permanent Memory Manager . . . . .. ... ... .. .......
2.3 BufferManager . . . . . ... ... ...
24 Summary ... ... e e e e e e e e e e e
Heap and Sequential Organizations

3.1 Storing Collections of Records . . . . . .. ... ... .......
32 CostModel . . ... ... .. ...
3.3 Heap Organization . . .. .. ... ... ... . .........
3.4 Sequential Organization. . . . . . . ... ... ... ........
3.5 Comparisonof Costs . . . . .. ... ... ... .. ...
3.6 External Sorting . . . . . .. . ... ... ...
37 Summary ... e

Hashing Organizations

4.1 Table Organizations BasedonaKey . . .. ... ... ... ....
4.2 Static Hashing Organization . . . . ... ... ... ... .....
4.3 Dynamic Hashing Organizations . . . . ... ... ... ......
44 Summary ... ... e e e e e
Dynamic Tree-Structure Organizations

5.1 Storing Trees in the Permanent Memory . . . . . . .. .. ... ..
5.2 BArees ... .o e e
5.3 Performance Evaluation. . . . .. ... ... ... .........
54 BVTHrees . . ..o
5.5 Index Organization . . . . .. ... ... ... ... ........

5.6 Summary . ... ..

VII

O N

— O O 3



v CONTENTS © 2015 by Albano et al.
6 Non-Key Attribute Organizations 53
6.1 Non-Key Attribute Search . . . ... ... ... ... ... ... 53

6.2 InvertedIndexes . . . . . . . ... ... ... ... 54

6.3 Bitmapindexes . . . . . . . . ... ... 58

6.4 Multi-attribute Index . . . . . ... ... oL 60

6.5 Summary . ... ... ... 61

7 Multidimensional Data Organizations 63
7.1 Typesof Dataand Queries . . ... ... ... ... ... ..... 63
T2 GHIEES . . v v v i e 66

73 R*—trees™ . . . . .. e 70
74 Summary . ... ..o e e e 74

8 Access Methods Management 77
8.1 The Storage Engine . . . . . ... ... ... ... ......... 77

8.2 Operatorson Databases . . . . . ... ... .. ........... 78

8.3 OperatorsonHeapFiles . . ... ... ... ........... 78

84 OperatorsonlIndexes . . ... ... ... ... ... ........ 79

8.5 Access Method Operators . . . . . . . ... ... .. ........ 79

8.6 Examples of Query ExecutionPlans . . . . . . ... ... ... .. 80

87 Summary . . . . ... e e e 81

9 Transaction and Recovery Management 83
9.1 Transactions . . . . . . . . . .. .. e 83

9.2 TypesofFailures . .. ... ........ .. ... ........ 87
9.3 Database System Model . . . ... ... ... .. 0oL, 88
9.4 DataProtection . . . .. ... ... 89

9.5 Recovery Algorithms . . . . ... ... ... ... ......... 92
9.6 Recovery Manager Operations . . . . . . ... .. ......... 95
9.7 Recovery from System and Media Failures . . . . . ... ... ... 98

9.8 The ARIES Algorithm™* . . . .. ... ... ... ... ...... 100
9.9 Summary . . ... ... 101

10 Concurrency Management 105
10.1 Introduction . . . . . . . . . ... 105
10.2 Histories . . . . . . . oo e 106
10.3 Serializable History . . . . . . . . . ... ... ... . ... ... 108
10.4 Serializability with Locking . . . . . ... ... ... ....... 113
10.5 Serializability without Locking . . . . . . ... .. ... .. .... 117
10.6 Multiple-Granularity Locking* . . . . . . . . ... ... ... ... 118
10.7 Locking for Dynamic Databases * . . . . . .. ... ... ..... 119
10.8 Summary . . . . . ... 120

11 Implementation of Relational Operators 125
11.1 Assumptions and Notation . . . . . .. .. ... ... ....... 125
11.2 Selectivity Factor of Conditions . . . . . ... ... ... ..... 129
11.3 Physical Operators for Relation (R) . . . . ... ... ....... 134
11.4 Physical Operator for Projection (7?) . . ... ........... 135
11.5 Physical Operators for Duplicate Elimination (§) . . . .. ... .. 135
11.6 Physical Operators for Sort (7) . . . . ... ... ... ... .... 137
11.7 Physical Operators for Selection (o) . . . . .. .. ... ...... 137
11.8 Physical Operators for Grouping () . . . . . . . . . oo vt .. 141
11.9 Physical Operators for Join (1) . . . .. ... ... .. ...... 142



© 2015 by Albano eta. CONTENTS Vv

11.10Physical Operators for Set and Multiset Union, Intersection and Dif-

ference. . . . . . ... 151
IT.11Summary . . . . . ... e 152

12 Query Optimization 155
12.1 Introduction . . . . . . . ... 155
12.2 Query AnalysisPhase . . . . . . ... ... ... ... . ... 156
12.3 Query Transformation Phase . . . . . ... ... ... ... .... 156
12.4 Physical Plan Generation Phase . . . . . . ... ... ... ..... 171
12.4.2 Single-Relation Queries . . . . .. ... ... ... .... 174

12.4.3 Multiple-Relation Queries . . . . . ... ... ... .... 175

12.4.4 Other Typesof Queries . . . . . .. ... ... ... .... 180

125 Summary . . . . . ... 191

13 Physical Database Design and Tuning 195
13.1 Physical Database Design . . . . . . ... ... ... ........ 195
13.2 Database Tuning . . . . . . . . .. . ... 205
133 DBMSTuning . . . . . . . . o oo i 212
134 Summary . . . .. . ... 213

A Formulary 217
Bibliography 223

Index 229



Vi

CONTENTS

© 2015 by Albano et al.




PREFACE

The preface to the previous edition of this book in Italian of 2001 starts with “Af-
ter ten years of the publication of the book Databases: structures and algorithms,
the evolution of the technology of databases and the new organization of university
teaching suggest a substantial revision of the material.”

Today, another reason that suggested to review the material, and to write it in En-
glish, has been the internationalisation of the master’s degree programs offered by
the Department of Computer Science, University of Pisa, which have the participa-
tion of students with different backgrounds who have had an introductory course in
databases in different universities.

Consequently, the goal in writing this new shorter edition of the textbook is to
focus on the basic concepts of classical centralized DBMS implementation. Database
systems occupy a central position in our information-based society, and computer
scientist and database application designers should have a good knowledge about
both the theoretical and the engineering concepts that underline these systems to
ensure the desired application performance.

The book starts with an analysis of relational DBMS architecture and then presents
the main structures and algorithms to implement the modules for the management of
permanent memory, the buffer, the storage structures, the access methods, the trans-
actions and recovery, the concurrency, the cost-based query optimization. Finally, an
overview of physical database design and tuning is presented.

An original aspect of the material is that, to illustrate many of the issues in query
optimization, and to allow the students to practise with query optimization problems,
the solutions adopted for the relational system JRS (Java Relational System) will
be used, the result of a project developed in Java at the Department of Computer
Science, University of Pisa, by A. Albano with the collaboration of several students
through their graduation theses, and of R. Orsini. A unique feature of the system is
that it allows experimentation not only with the SQL language to query a database
and to analyze the query plans generated by the cost-based query optimizer, but also
experimentation with graphical editors of both the execution of a logical plan defined
with relational algebra, and the execution of physical plans defined with the physical
operators of the database system.

Organization

The material of the previous edition has been reduced and updated in almost all the
chapters, to make the book more suitable for use by the students of an advanced
database course, who have only had an introductory undergraduate course in databases.
Moreover, it has been decided to make this edition available for free on the web.
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The first chapter presents the architecture of a relational DBMS and the charac-
teristics of the modules that compose it. Chapter 2 presents the characteristics of
the permanent memory and buffer managers. Chapter 3 shows how to store data in
permanent memory using files and presents the simplest data organizations, the heap
and sequential. It also shows an approach to performance evaluation of data orga-
nizations. Chapter 4 describes the data primary organizations, static or dynamic,
based on hashing techniques. Chapter S continues the description of primary dy-
namic organizations using tree structures, and the key secondary organizations with
clustered and unclustered indexes. Chapter 6 describes the non-key secondary orga-
nizations with indexes to support search queries to retrieve small subsets of records,
while Chapter 7 presents the basic idea on multi-dimensional data organizations.
Chapter 8 describes the access methods of the JRS Storage Engine to implement the
physical operators used by the query manager. Chapters 9 and 10 describe transac-
tion recovery and concurrency control management techniques. Chapters 11 and 12
describe the JRS physical operators to implement relational algebra operators, and
then how they are used by the query optimizer to generate a physical query plan
to execute a SQL query. Finally, Chapter 13 describes solutions for the physical
database design and tuning problem.

Sections marked as advanced, using the symbol “*”, may be omitted if so desired,
without a loss of continuity.

Acknowledgments

We would like to thank the following students, who provided useful feedback on draft
versions of the book: P. Barra. G. Galanti, G. Lo Conte, G. Miraglia, L. Morlino and
A. Vannini.
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Chapter 1

DBMS FUNCTIONALITIES AND
ARCHITECTURE

This chapter is an introduction to the structure of a typical centralized DBMS (Data
Base Management System) based on the relational data model. A brief description is
given of the basic functionalities of the main DBMS modules, and of the problems
to be addressed in their implementation, which will be discussed in the following
chapters.

1.1 Overview of a DBMS

The most common use of information technology is to store and retrieve information
represented as data with a predefined structure and fields with different formats, such
as numbers, characters, text, images, graphics, video and audio. The technology used
is mainly that of the databases, now available on any type of computers.

A database (DB) is a collection of homogeneous sets of data, with relationships
defined among them, stored in a permanent memory and used by means of a DBMS,
a piece of software that provides the following key features:

1. A language for the database schema definition, a collection of definitions which
describe the data structure, the restrictions on allowable values of the data (in-
tegrity constraints), and the relationships among data sets. The data structure and
relationships are described in the schema using suitable abstraction mechanisms
that depend on data model adopted by the DBMS.

2. The data structures for the storage and efficient retrieval of large amounts of data
in permanent memory.

3. A language to allow authorized users to store and manipulate data, interactively
or by means of programs, respecting the constraints defined in the schema, or to
rapidly retrieve interesting subsets of the data from a specification of their features.

4. A transactions mechanism to protect data from hardware and software malfunc-
tions and unwanted interference during concurrent access by multiple users.

Databases and DBMSs can be studied from different points of view depending on the
needs of people who must use them. Leaving aside the application’s end-users, who
are not required to know nor understand the underlying DBMS, the other users can
be classified into the following categories:
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— Non-programmer users: they are interested in how to use a DBMS interactively to
store, modify and retrieve data organized in a DB.

— DB Designers: they are interested in how to design a DB and the applications that
use them.

— DB Application developers: they are interested in how to use a DBMS from pro-
grams to develop applications that allow non-specialist users to perform predefined
tasks.

— DB Administrators: they are interested in how to install, run and tune a DB to
ensure desired performance for applications that use the data.

— DBMS Developers: they are interested in how to design and build the DBMS prod-
uct using the fundamental structures and algorithms suitable for realizing its capa-
bilities.

In this book the focus is on how to implement a DBMS, assuming that the reader
already has a working knowledge of databases at least according to the first two
points of view, to the level of depth presented, for example, in [Albano et al., 2005]
or in other texts of a similar nature cited in the bibliography. As a point of reference
we consider the relational DBMS, studied since the seventies and for which solutions
have been proposed that have become the classic reference point for all other types
of database systems.

The knowledge of the structures and algorithms discussed in the following is useful
not only for those who will implement modules with features typical of those pro-
vided by a DBMS, but also for application designers or database administrators. For
example, the knowledge of the principles of query optimization is important both to
improve the performance of applications by formulating SQL queries with a better
chance of being efficiently executed, and to improve database logical and physical
design.

In the following we will present an architecture for relational DBMSs and a brief
description of the functionality of various modules, the implementation of which will
be the subject of later chapters.

1.2 A DBMS Architecture

A simplified model of the architecture of a centralized relational DBMS provides the
following basic components (Figure 1.1):

— The Storage Engine, which includes modules to support the following facilities:

— The Permanent Memory Manager, which manages the page allocation and de-
allocation on disk storage.

— The Buffer Manager, which manages the transfer of data pages between the
permanent memory and the main memory.

— The Storage Structures Manager, which manages the data structures to store
and retrieve data efficiently.

— The Access Methods Manager, which provides the storage engine operators to
create and destroy databases, files, indexes, and the data access methods for
table scan, and index scan.

— The Transaction and Recovery Manager, which ensures that the database’s
consistency is maintained despite transaction and system failures.

— The Concurrency Manager, which ensures that there is no conflict between
concurrent access to the database.
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Figure 1.1: Architecture of a DBMS

— The Relational Engine, which includes modules to support the following facilities:

— The Data Definition Language (DDL) manager, which processes a user’s database
schema definition.

— The Query Manager, which processes a user’s query by transforming it into an
equivalent but more efficient form, thus finding a good strategy for its execu-
tion.

— The Catalog Manager, which manages special data, called metadata, about the
schemas of the existing databases (views, storage structures and indexes), and
security and authorization information that describes each user’s privileges to
access specific database, relations and views, and the owner of each of them.
The catalog is stored as a database which allows the other DBMS modules to
access and manipulate its content.

In real systems the functionalities of these modules are not as clearly separated as the
figure shows, but this diagram helps in understanding the purposes of each of them.

Let us briefly examine the modules that will be considered in the following chap-
ters, by describing the level of abstraction provided and the features that are made
available to other modules.

The Permanent Memory Manager provides a vision of the memory as a set of
databases each consisting of a set of files of physical pages of fixed size. It allows
other levels to use the permanent memory, abstracting from the different ways used
by operating systems to manage files. This module is discussed in Chapter 2.

The performance of a database query depends on the number of pages transferred
from the disk in temporary memory. The execution cost of some queries can be re-
duced using a buffer capable of containing many pages, so that, while executing the
queries, if there are repeated accesses to the same page, the likelihood that the desired
page is already in memory increases. The Buffer Manager is the module that takes
care of properly managing this limited resource, and the transfer of pages between
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temporary and permanent memories, thus offering to the other levels a vision of per-
manent memory as a set of usable pages in the main memory, abstracting from when
they are transferred from the permanent memory to the temporary buffer memory,
and vice versa. Buffer management is discussed in Chapter 2.

The Storage Structures Manager provides the other system levels with a view of the
permanent data organized into collections of records and indexes, abstracting from
the structures used to store them in the permanent memory (heap, index sequential,
hash static or dynamic, tree indexes, etc.). Permanent data organization and indexes
are considered in Chapters 3 through 7.

The Access Methods Manager provides a vision of permanent data organized in
collections of records accessible one after the other in the order in which are stored,
or through indexes, abstracting from their physical organization. The interface of this
level is the one that is used to translate the SQL commands into low-level instructions
(access plans). This module is discussed in Chapter 8.

The Transaction and Recovery Manager provides the other system levels with a vi-
sion of the permanent memory as a set of pages in temporary memory without regard
to failures (interruption of the execution of transactions, interruption of operation of
the system, devices failures) and thus ensuring that the data always reflects the per-
manent effects of all the transactions completed normally. This module is discussed
in Chapter 9.

The Concurrency Manager provides the other system levels with a vision of per-
manent memory as a set pages in memory without regard to concurrent access, thus
ensuring that the concurrent execution of several transactions takes place as if they
were executed one after the other, in some order, by avoiding undesired interference.
This module is discussed in Chapter 10. The set of modules including transaction and
recovery manager, the concurrency manager, the buffer manager, and the permanent
memory manager is also called Storage engine.

The Query Manager provides a vision of permanent data as a set of relational tables
on which a user operates with SQL commands. The tasks of the SQL manager com-
mands are: ensure that only authorized users will use the data, manage the metadata
catalog, and translate queries into optimized access plans. The basic ideas of query
processing and query optimization are discussed in detail in Chapters 11 and 12.

Once the main features of the relational DBMS modules have been presented, Chap-
ter 13 discusses various aspects of database tuning, including the choice of indexes
and methods for tuning the schema, to achieve the desired performance of the appli-
cations that use the data.

Finally, there are other interesting DBMS features that are beyond the scope of this
book: (a) distribution and parallelism, (b) the extension of the relational data model
with object orientation.

1.3 The JRS System

The implementation of the relational DBMS modules will be discussed first in general
and then with respect to the solutions adopted for the system JRS (Java Relational
System), developed in Java at the Department of Computer Science, University of
Pisa, by the author, along with students' and the collaboration of R. Orsini.

The main feature of the system is that it has been designed to support both the
teacher and student to experiment not only with the SQL language to query a database

1. Lorenzo Brandimarte, Leonardo Candela, Giovanna Colucci, Patrizia Dedato, Stefano Fantechi,
Stefano Dinelli, Martina Filippeschi, Simone Marchi, Cinzia Partigliani, Marco Sbaffi and Ciro
Valisena.
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and to analyze the query plans generated by the query optimizer, but also to experi-
ment with graphical editors both the execution of a logical plan defined with relational
algebra, and the execution of physical plans defined with the physical operators of the
database system. The software with a pre-loaded database, and examples of logical
and physical plans, is downloadable for free at this URL:

http://www.di.unipi.it/~albano/JRS/toStart.html

1.4 Summary

1. DBMS is the most widespread technology for managing permanent collections
of structured data. A DBMS is a centralized or distributed system that enables
us (a) to define database schemas, (b) to choose the data structures for storing
and accessing data, (c¢) to store, retrieve and update data, interactively or with
programs, by authorized users and within the constraints defined in the schema.
The data managed by a DBMS is a shared resource, available for concurrent use
and is protected from hardware and software failures.

2. The main modules of a DBMS are the Storage Structures Manager, the Transac-
tion Manager, and the Query Manager.

3. A relational database is organized in terms of relations (or tables) of tuples (or
records) on which appropriate algebraic operators are defined.

4. SQL is the standard language for relational DBMSs to define and use databases.
The efficient execution of SQL queries is one of the fundamental problems re-
solved by the relational DBMSs, determining their diffusion on every type of
computer.

Bibliographic Notes

There are many books that deal with the problem of DBMS implementation at dif-
ferent levels of detail. Among the most interesting ones there are [Ramakrishnan and
Gehrke, 2003], [Silberschatz et al., 2010], [O’Neil and O’Neil, 2000], [Kifer et al.,
2005].

A book dedicated to the implementation of relational database systems is [Garcia-
Molina et al., 1999], while [Gray and Reuter, 1997] gives details about the imple-
mentation of the relational storage engine.
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Chapter 2

PERMANENT MEMORY AND
BUFFER MANAGEMENT

The first problem to be solved in implementing a DBMS is to provide a level of
abstraction of the permanent memory that makes the other modules of the system
independent of its characteristics and of those of the storage system. The desired ab-
straction is achieved with the Permanent Memory Manager and Buffer Manager. The
functionality of these modules is presented after a description of the most significant
characteristics of magnetic disk memories, which are those generally used for each
type of processing system.

2.1 Permanent Memory

The memory managed by a DBMS is usually organized in a two-level hierarchy:
the temporary memory (or main) and the permanent memory (or secondary). The
characteristics of the two memories are:!

1. Main memory

(a) Fast access to data (about 10-100 ns).
(b) Small capacity (some gigabyte).
(c) Volatile (the information stored is lost during power failures and crashes).
(d) Expensive.
2. Permanent memory with magnetic disks
(a) Slow access to data (about 5-10 ms access time for a block).
(b) Large capacity (hundreds of gigabytes).
(c) Non volatile (persistent).
(d) Cheap.
3. Permanent memory with NAND flash memory

(a) Relatively fast access to data (about 100 us to read, 200 us to write and some
ms to erase a block).

(b) Medium capacity (tens of gigabytes).

1. The values used as typical may become unrealistic with the rapid development of the technology.
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(c) Non volatile (persistent).
(d) Relatively expensive.

Although the costs of the three types of memory reduce continuously, their ratio
remains constant, with a temporary memory which costs several tens of times more
than a permanent memory of the same capacity.
The flash memory, with the decrease in the cost and the increase in their capacity, is
destined to establish itself for personal computers as an alternative to magnetic disks.
However, they raise new problems in the implementation of DBMSs due to some
peculiarities of the operations of this type of memory (Figure 2.1).

Access Time

Memory Read Write Erase

Magnetic Disk 12,7 ms 13,7 ms
(2 KB) (2 KB)

NAND Flash  80us  200us  1,5ms
(2KB)  (2KB) (128 KB)

RAM 225ns 22,5ns

Figure 2.1: Characteristics of the three types of memory

The reading and writing of data (with writing that requires twice the time of read-
ing) are faster than those of magnetic disks, but the rewriting of data is problematic
because the data must be deleted first, a slow operation that requires a few ms. To
make matters worse, there is another phenomenon: the erasing of data concerns sev-
eral blocks (64), called a memory unit, which should all be read to be deleted, in
order to rewrite the memory unit. In addition, this type of memory becomes unreli-
able after 100 000 cycles of cancellations/rewrites and their use for DBMS requires
new solutions for the management of changing data structures and for transaction
management. These themes are still the subject of research and for this reason the
topic is outside the scope of this text, and in the following we only consider magnetic
disks as permanent memory.

A magnetic disk is composed of a pile of p platters with concentric rings called
tracks used to store data, except two outer surfaces of the first and last platters. Typical
platter diameters are 2,5 inches and 3,5 inches. The rotation speed of the disk pack is
continuous with values between 5000 and 15 000 rotations per minute.

A track is the part of the disk that can be used without moving the read head and it
is divided in sectors of the same size, which are the smallest unit of transfer allowed
by the hardware and cannot be changed. Typical values for a sector size are 512,
1 KB, 2 KB or 4 KB. There are from 500 to 1000 sectors per track and up to 100 K
tracks per surface. The tracks, while being of variable size, have the same capacity
because the sectors have a different storage density.

A track is logically divided in blocks of fixed size, which are unit of data transferred
with each I/O operation. The block size is a multiple of the sector size and typical
values are 2048 and 4096 bytes, but there are systems that use larger values.

The disk driver has an array of disk heads, one per recorded surface. Each head
is fixed on a movable arm that displaces the head horizontally on the entire surface
of a disk. When one head is positioned over a track, the other heads are in identical
positions with respect to their platters.

A cylinder is the set of tracks of the surfaces of the disks that can be used without
moving the heads. Once positioned the heads on the tracks of a cylinder, only one of
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them at a time can be made active for transferring data, but the passage of reading
from one track to another on the same cylinder requires a very short time and can be
considered instantaneous. Instead, the passage from a cylinder to another requires the
mechanical displacement of the heads and is considered the slowest operation on the
disk.

The time to read or write a block, called the access time, has the following compo-
nents:

— The seek time t, is the time needed to position the disk heads over the cylinder
containing the desired block. This time can range between 5 and 20 ms.

— The rotational latency t,, is the time spent waiting for the desired block to appear
under the read/write head. This time depend on the rotation speed of the disk.
Typical values are 3 ms for a rotation speed of 10000 rpm (rotations per minutes).

— The transfer time t, is the time to read or write the data in the block once the head
is positioned.

The access time to transfer a block to the temporary memory is then (¢5 + ¢, + t3),
while the time to transfer k& contiguous blocks is (s + t, + k X tp).

The access time usually dominates the time taken for database operations. To min-
imize this time, it is necessary to locate data records strategically on disk. Records
frequently used together should be stored close together, e.g. depending on their num-
ber, on the same block, the same track, the same cylinder, or adjacent cylinders.

Although many database applications adopt a two levels memory hierarchy, there
are also solutions with one or three levels of memory.

In the first case, the database is managed in main memory (main memory DBMS).
This solution is made possible by the reduction of the cost of main memories, and is
used for applications that require fast access to data.

Three levels of memory are needed for applications that use large amounts of data
(e.g. millions of gigabytes) not storable in the secondary storage and thus require
tertiary storage such as optical disks or tapes, slower than magnetic disk, but with a
much larger capacity.

Finally, a solution often adopted is RAID technology (Redundant Arrays of In-
dependent Disks), which uses the redundancy, for guarding against data loss due to
malfunctions of the disks, and the parallelism, for improving the performances. There
are seven ways to organize data in the disks, known as RAID levels, with different
characteristics in terms of read/write time, data availability and cost [Ramakrishnan
and Gehrke, 2003; Garcia-Molina et al., 1999].

2.2 Permanent Memory Manager

The Permanent Memory Manager takes care of the allocation and de-allocation of
pages within a database, and performs reads and writes of pages to and from the disk.
It provides an abstraction of the permanent memory in terms of a set of databases
each made of a set of files with page-sized blocks of bytes, called physical pages. A
database is a directory containing files for the catalog, relations and indexes.

The physical pages of a file are numbered consecutively starting from zero, and
their number can grow dynamically with the only limitation given by available space
in the permanent memory.

When a physical page is transferred to the main memory it is called a page and,
as we will see, it is represented with a suitable structure. For this reason, sometimes
we use the term page as a synonym for physical page, and it will be clear from the
context whether we refer to a block of bytes or to a more complex structure.
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Each collection of records (table or index) of a database is stored in a logical file
which in turn can be realized as a separate file of the operating system or as a part of
a single file in which the entire database is stored.

2.3 Buffer Manager

The role of the Buffer Manager is to make pages from the permanent memory avail-
able to transactions in the main memory. It is the responsibility of the buffer manager
to allow transactions to get the pages they need, while minimizing disk access oper-
ations, by implementing a page replacement strategy.

As we will see later, the performance of operations on a database depends on the
number of pages transferred to temporary memory. The cost of some operations may
be reduced by using a buffer capable of containing many pages, so that, during the ex-
ecution of the operation, if there are repeated access to the same page, the likelihood
that the desired page is already in the memory increases.

The buffer manager uses the following structures to carry out its tasks (Figure 2.2):

getAndPinPage unpinPage setDirty flushPage

l l J J

Buffer Manager

)
Resident
Pages

PID
Frameld
—

Frame with disk page

\-

k=222 PinCount
/ Dirty
Free frame
Page

Temporary Memory

Permanent Memory

Figure 2.2: The Buffer Manager

1. The buffer pool, an array of frames containing a copy of a permanent memory page
and some bookkeeping information. The buffer pool has a fixed size, therefore,
when there are no free frames, to copy a new page from the permanent memory
an appropriate algorithm is used in order to free a frame.

To manage the buffer pool, in a frame are also stored two variables: the pin count
and dirty. Initially the pin count for every frame is set to 0, and the boolean variable
dirty is false. The pin count stores the number of times that the page currently
in the frame has been requested but not released. Incrementing the pin count is
called pinning the requested page in its frame. The boolean variable dirty indicates
whether the page has been modified since it was brought into the buffer pool from
the permanent memory.

2. A hash resident pages table, called directory, used to know if a permanent memory
page, with a given page identifier PID, is in the buffer pool, and which frame
contains it.
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The buffer manager provides the following primitives to use the pages in the buffer
pool:

1. getAndPinPage(P). If a frame contains the requested page, it increments the pin
count of that frame and returns the page identifier to the requester (note that the
other levels of the system operate directly on a page in the buffer, and not on a
copy of it).

If the requested page is not in the buffer pool, it is brought in as follows:

(a) A free frame (with pin count 0) is chosen according to the buffer manage-
ment’s replacement policy. Several alternative solutions have been studied,
but most systems use some enhancements to the Least Recently Used (LRU)
to tune the replacement strategy via query plan information or the page type
(e.g. the root of a BT —tree).

If the frame chosen for replacement is dirty, the buffer manager flush it, i.e.
write out the page that it contains to the permanent memory.

If there are no free frames an exception is raised.

(b) The requested page is read into the frame chosen for replacement and pinned,
i.e. the pin count is set to 1, and the boolean variable dirty is set to false.
The buffer manager will not read another page into a frame until its pin count
becomes 0, that is, until all requestors of the page have unpinned it.

(c) The resident pages table is updated, to delete the entry for the old page and
insert an entry for the new page, and the page identifier is returned to the
requester.

2. setDirty(P). If the requestor modifies a page, it asks the buffer manager to set the
dirty bit of the frame.

3. unpinPage(P). When the requestor of a page releases the page no longer needed,
it asks the buffer manager to unpin it, so that the frame containing the page can be
reused if the pin count becomes O.

4. flushPage(P). The requestor of a page asks the buffer manager to write the page
to the permanent memory if it is dirty.

As we will see, the decision to unpin or flush a page are taken by the Transaction and
Recovery Manager and not by the requestor of a page.

2.4 Summary

1. The computer memory is organized as a memory hierarchy: primary or main,
secondary and tertiary. The primary memory is volatile and provides fast access
to data. The secondary memory is persistent and consists of slower devices, such
as magnetic disks. The tertiary memory is the slowest class of storage devices
(optical disks and tapes) for large data files.

2. DBMSs typically use magnetic disks because they are inexpensive, reliable and
with a growing capacity. The unit of transfer is a block of bytes of fixed size,
stored in tracks on the surfaces of the platters. The access time to a block depends
on its location on the disk relative to the position of read heads. The access time is
about 10 ms, depending on the time to position the heads (seek time), the time for
the block to pass under the heads (rotational delay), and the time of data transfer
(transfer time).
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3. In a DBMS the Permanent Memory Manager stores data in files and provides an
abstraction of memory as a set of files of data pages.

4. In a DBMS the data page requests are handled by the Buffer Manager, which
transfers the request to the Permanent Memory Manager only if the page is not
already in the buffer pool. The pages in use are pinned and cannot be removed
from the buffer pool. The modified pages are considered dirty and, when they are
not pinned, they are written back to the permanent memory.

Bibliographic Notes

The data storage on permanent memories and the buffer management are discussed
in [Ramakrishnan and Gehrke, 2003; Garcia-Molina et al., 1999; Silberschatz et al.,
2010] and in [Gray and Reuter, 1997], a text with full implementation details on
structures and algorithms to implement DBMS. Interesting papers about buffer man-
agement are [Sacco and Schkolnick, 1986; Chou and Witt, 1985].

Exercises
Exercise 2.1 A disk has the following characteristics:

— bytes per sector (bytes/sector) = 512

— sectors per track (sectors/track) = 50

— tracks per surface (tracks/surface) = 2000

— number of platters = 5

— rotation speed = 5400 rpm (rotation/minutes)
— average seek time = 10 ms

Calculate the following parameters.

1. Tracks capacity (bytes), a surface capacity, total capacity of the disk.
2. Number of disk cylinders.

3. Average rotational latency.

4. Average transfer time of a block of 4096 bytes.

256, 2048 and 51 200 are examples of valid block sizes?

Exercise 2.2 Consider the disk of the previous exercise with blocks of 1024 bytes
to store a file with 100000 records, each of 100 bytes and stored completely in a
block,

Calculate the following parameters.

Number of records per block.

Number of blocks to store the file.

Number of cylinders to store the file per cylinders.

Number of 100 bytes records stored in the disk.

If the pages are stored on the disk by cylinder, with page 1 on block 1 of track
1, which page is stored on block 1 of track 1 of the next disk surface? What will
change if the disk can read/write in parallel by all the array of heads?

6. What is the time to read serially a file with 100 000 records of 100 bytes? What
will change if the disk is able to read/write in parallel from all the array of heads
(with the data stored in the best way)?

M
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7.

Suppose that every reading of a block involves a seek time and a rotational latency
time, what is the time to read the file randomly?

Exercise 2.3 Consider a disk with the following characteristics:

— 29 = 512 bytes/sector

— 1000 sectors/track

— 10000 cylinders

— 5 platters and 10 surfaces

— rotation speed 10000 rpm

— the seek time is of 1 ms per track plus 1 ms per 1000 cylinders skipped.

Calculate the following parameters.

AR S

Total capacity of the disk.

The average seek time.

The average rotational latency.

The transfer time of a block (2'4 = 16 384 bytes).

The average time for accessing 10 continuous blocks in one track on the disk.
Suppose that half of the data on the disk are accessed much more frequently than
another half (hot or cold data), and you are given the choice to place the data on
the disk to reduce the average seek time. Where do you propose to place the hot
data, considering each of the following two cases? (Hint: inner-most tracks, outer-
most tracks, middle tracks, random tracks, etc). State your assumptions and show
your reasoning.

(a) There are same number of sectors in all tracks (the density of inner tracks is
higher than that of the outer tracks).

(b) The densities of all tracks are the same (there are less sectors in the inner
tracks than in the outer tracks).

Exercise 2.4 Give a brief answer to the following questions:

1.
2.
3.

Explain how the read of a page is executed by the buffer manager.
When the buffer manager writes a page to the disk?

What does it mean that a page is pinned in the buffer? Who puts the pins and who
takes them off?
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Chapter 3

HEAP AND SEQUENTIAL
ORGANIZATIONS

This chapter begins the analysis of data structures provided by the Storage Structures
Manager for storing a collection of records in the permanent memory. We will be-
gin with the most simple ones, which do not use any type of auxiliary structures to
facilitate the operations on them: the heap and sequential organizations. Other solu-
tions will be presented in the following Chapters 4 — 7. With a heap organization the
records are not sorted, while with a sequential organization the records are stored in
contiguous pages sorted on a key value. We will also present the cost model, which
will be also used in following chapters, and we will show how to evaluate the per-
formance of these simple organizations. The chapter also presents the fundamental
algorithm for sorting files.

3.1 Storing Collections of Records

In the previous chapter we have presented how the Buffer Manager interacts with the
Permanent Memory Manager to read pages from, and write pages to, the disk.

A database is primarily made of tables of records, each one implemented by the
Storage Structures Manager as a file of pages provided by the Permanent Memory
Manager.

Pages are assumed to be of a fixed size, for example between 1 KB to 4 KB, and
to contain several records. Therefore, above the Storage Structures Manager, every
access is to records, while below this level the unit of access is a page.

The unit of cost for data access is a page access (read or write), and we assume
that the costs of operations in the main memory on the data in a page are negligible
compared with the cost of a page access.

The most important type of file is the heap file, which stores records in no particular
order, and provides a record at a time interface for accessing, inserting and deleting
records.

3.1.1 Record Structure

Each record consists of one or more attributes (or fields) of an elementary type, such
as numbers or character strings, and contains several additional bytes, called record
header, which are not used to store data attributes, but for record management. These
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bytes generally contain information on the length of the record, the number of at-
tributes, whether the record has been deleted, and the name of the file to which it
belongs. We will assume that records are not larger than a page and that the values of
the attributes are stored according to one of the strategies shown in Figure 3.1.

A fixed-length record

Attribute Position Value type Value
Name 1 char(10) Rossi
StudentCode 2 char(6) 456
City 3 char(2) MI
BirthYear 4 int(2) 68

Total number of characters = 20
Attribute values are separated:

a) by position Rossiy 101,456, ,,M168

b) with a separator Rossi@456 @MI@68

¢) with an index* (1,6,9, 11) Rossi456MI68

d) with labels** (6, 1, Rossi)(4, 2, 456)(3, 3, MI)(3, 4, 68)

* The index, placed at the beginning of each record, indicates the beginning of each attribute value.
** Each attribute value starts with a counter that tells how many characters are used to code the position
of the attribute and its value.

Figure 3.1: Representation of attribute values

3.1.2 Page Structure

When a record is stored in the database, it is identified internally by a record identi-
fier or tuple identifier (RID), which is then used in all data structures as a pointer to
the record. The exact nature of a RID can vary from one system to another. An obvi-
ous solution is to take its address (Page number, Beginning of record) (Figure 3.2a).
But this solution is not satisfactory because a record that contains variable-length
attributes of type varchar are themselves variable-length strings within a page; so up-
dates to data records can cause growth and shrinkage of these byte strings and may
thus require the movement of records within a page, or from one page to another.
When this happens all the references to the record in other data structures, most no-
tably for indexing purposes, must be updated.

To avoid this problem, another solution is usually adopted: the RID consists of two
parts (Page number, Slot number), where the slot number is an index into an array
stored at the end of the page, called slot array. containing the full byte address of a
record (Figure 3.2b). All records are stored contiguously, followed by the available
free space.

If an updated record moves within its page, the local address in the array only must
change, while the RID does not change. If an updated record cannot be stored in the
same page because of lack of space, then it will be stored in another page, and the
original record will be replaced by a forwarding pointer (another RID) to the new
location. Again, the original RID remains unaltered. A record is split into smaller
records stored in different pages only if it is larger than a page.

Each page has a page header (HDR) that contains administrative information, such
as the number of free bytes in the page, the reference at the beginning of the free
space, and the reference to the next not empty page of the file.
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HDR|  Record HDR|  Record
Record | Record Record H Record
Free space Free space
[ [
RID RID L [T] Slotaray

(a) (b)

Figure 3.2: Pointers to records

3.1.3 File Pages Management

A collection of records is stored using appropriately the pages of a heap file. To
support data updates, the main problem to be addressed is the management of the free
space of the pages available, which requires to find a solution to problems related to
the following questions:

— Where to store new record?

— How to deal with record updates?

— How to reuse the memory that becomes available after an update or a delete of a
record?

— How to compact small fragments of memory in larger units more likely to be
reused?

When a record is inserted into a collection, assuming that the records have size
smaller than a page, the file manager proceeds as follows:

1. A file page is selected that contains free space for the new record; if the page does
not exist, the file is extended with a new page. Let P be the address of the page
where the record will be stored.

2. A reference to the beginning of the record is stored in the first free location j of
the directory of slots of the page P.

3. The RID (P, j) is assigned to the record.

To implement insertion efficiently, the system uses a table, stored on disk, containing
pairs of (fileName, headerPage), where the header page is the first page of the file,
and the following alternatives are usually considered:

— The heap file pages are organized as two double linked list of pages, those full and
those with free space. The two lists are rooted in the header page and contain all
the pages in the heap file.

When the free space of a page is used, or when a free space is created in a full
page, the page moves from one list to another.

— In the header is stored a directory of pages and each entry contains the pair (page
identifier, the amount of free space on the page). If the directory grows and cannot
be stored in the header page, it is organized as a linked list. The information about
the amount of free space on a page is used to select a page with enough space to
store a record to be inserted.
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Finally, for reasons of efficiency, the free space existing in different pages is not
compacted in one page by moving records. Therefore, it may happen that, due to a
lack of available pages, it is not possible to assign a new free page despite the fact that
the overall free space in different pages is greater than the total capacity of a page.
When this occurs, it is necessary to reorganize the database.

3.2 Cost Model

The most important criteria to evaluate a file organization are the amount of memory
occupied and the cost of the basic operations (record search, insertion, deletion, and
modification). The most important operation is the search, because the first step for
all operations is to check whether a record exists.

We will also estimate the values of the following parameters, assuming for sim-
plicity that a file R has Nyec(R) records, of equal and constant length L, stored in
Npag(R) pages of size Dpag:

1. Memory requirements.
2. Operations cost to

(a) search for a record with a given key value (equality search);

(b) search for records with a key value in a certain range (range search);
(c) insert a new record;

(d) delete a record;

(e) update a record.

Due to the characteristics of the permanent memory, the operations cost will be es-
timated by considering only the operations to read and write a file page, ignoring
the cost of operations in temporary memory, which is assumed to be negligible. In
current computer the typical times of operations in temporary memory are in fact at
least 10 000 times lower than the typical access time to the permanent memory.

For simplicity, the cost of the operations will be expressed in terms of the number
of permanent memory accesses, i.e., the number of pages read or written, rather than
in terms of execution time. This simplification, however, does not affect the compar-
ison of alternative solutions, which is what matters in selecting the best alternative.
Instead, to estimate the cost of operations in terms of execution time, other factors
should be considered, such as the way in which a file is stored in permanent memory,
the buffer management technique, the implementation techniques of the operating
system and the characteristics of the device. When, in some instances, we want to
emphasize the magnitude of the execution time, we will make the simplifying as-
sumption that the time to perform an operation is a simple function of the number of
access operations:

ExecutionTime = NoAccesses x OneAccessAverageTime

where OneAccessAverageTime, which depends on the type of permanent memory and
the size of the file pages, is assumed to be equal to 10 ms.

1. In estimating the cost of insertion and deletion, for simplicity, we will not consider the cost of
updating service information for the management of the file pages.
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3.3 Heap Organization

The simplest way to organize data is to store it in file pages in the insertion order
rather than sorted by a key value. In this way, the pages allocated to data can be
contiguous or can be linked in a list.

The heap organization is the default solution used by DBMSs, and it is adequate
for the following cases:

— When the collection of records is small.

— When key search operations are infrequent, and do not require fast answers, or
when they are facilitated by the presence of appropriate indexes.

3.3.1 Performance Evaluation

Memory Requirements. Unlike more complex organizations that we will see

later, the memory occupied by a heap organization is only that required by the in-
serted records: Npag(R) = Nrec(R) X L;/Dpag.?

Equality Search. Assuming that the distribution of the key values is uniform, the
average search cost is:

{N pag (R)
C, =

5 w if the key exists in the file

s

Npag(R) if the key does not exist in the file

Range Search. The costis Npag(R) accesses because all file pages must be read.
Insert. A record is inserted at the end of the file, and the cost is 2.

Delete and Update. The cost is that of a key search plus the cost of writing back
apage: Cs + 1.

3.4 Sequential Organization

A sequential organization is used for efficient processing of records stored in sequen-
tial order, according to the value of a search-key k for each record. The disadvantage
of this organization is that it is costly to maintain the sequential order when new
records are inserted in full pages. For this reason, commercial DBMSs do not usually
preserve the sequential order in the case of a page overflow, and offer other more
complex organizations, which we will see later, to exploit the benefits of sorted data.

3.4.1 Performance Evaluation

Memory Requirements. If record insertions are not allowed, the organization
requires the same memory as a heap organization. In the case of insertions, additional
memory is required to leave space in the pages at the time of loading data.

2. Here and hereinafter, when we talk about memory requirements we are only considering the number
of pages to store the records, always lower than the number of pages in the file, where a portion of
the memory is used by service information and the pages may have free space initially left for record
insertions.
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Table 3.1: A comparison of heap and sequential organizations

Type Memory Equality Range Insert Delete
Search Search

Heap Noag(R)  [Npag(R) /2] Npag(R) 2 Cs+1

Sequential  Npag(R)  [lg Npag(R)] Cs—1+ Co+14+ Cs+1

[s7 X Npag(R)]  Npag(R)

Equality Search. The cost of a search by a key value is [ Npag(R)/2], both when
the value exists in the file and when the value does not exist. If the data is stored in
consecutive pages, then a binary search has the cost [1g Npag(R)].

Range Search. A search by the key & in the range (k1 < k < k3), and assuming
keys numerical uniformly distributed in the range (kmin, kmax), the ratio sy = (kg —
k1)/(kmax — kmin), called selectivity factor, is an estimate of the fraction of pages
occupied by the records which will satisfy the condition, and the cost of the operation
is:

Cs = [lg Npag(R)] + [sf X Npag(R)] — 1

where the first term is the cost of the binary search to identify the page containing
k1. The number of pages occupied by the records in the range key is decreased by 1
because the first page has been found with the binary search.

Insert. If the record must be inserted in a page not full, the cost is C + 1. If all the
pages are full, the cost is estimated by assuming that the record must be inserted in
the middle of the file, and all subsequent Npag(R)/2 pages must be read and written
to move their records as result of a single insertion. The cost is C's + Npag(R) + 1.

Delete and Update. The costis Cs + 1, if the update does not change the key on
which data is sorted.

3.5 Comparison of Costs

Table 3.1 compares costs for heap and sequential organizations in consecutive pages,
with C; as the search cost of a key value present in the file.

A heap organization has good performance for insertion operations, but it has bad
performances for range queries and for equality search, in particular for the search of
a key value not in the file.

A sequential organization has good performance for search operations, but it has
bad performance for insertion operations.

As we will see with other organizations, the important thing to remember is that
any solution is better than another under certain conditions and therefore the choice
of the most appropriate depends on how data is used, and on the costs to minimize.
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3.6 External Sorting

A frequent operation in a database system is sorting a collection of records for differ-
ent reasons:

— To load them in a physical organization.
— To delete the duplicates from the result of a query.

— To perform a join operation with the merge-join algorithm, an ORDER BY, a GROUP
BY, etc.

Sorting a file is a different process from sorting a table in the temporary memory,
because the number of record is usually too large to be completely stored in the
memory available. For this reason, the classic algorithms for sorting tables are not
applicable to this problem and an external sorting algorithm is used. The evaluation
of this algorithm is also different from those used for the temporary memory. Instead
of the number of comparisons, only the number I/O operations are considered.

Let Npag(R) be the number of file pages, and B the buffer pages available. The
classical external sorting algorithm, called merge-sort, consists of two phases:

1. The sort phase. B file pages are read into the buffer, sorted, and written to the
disk. This creates n = [Npag(R)/B] sorted subset of records, called runs, stored
in separate auxiliary files, numbered from 1 to n. The runs have all the same
number of pages, B, except the last.

2. The merge phase consists of multiple merge passes. In each merge pass, Z = B—1
runs are merged using the remaining buffer page for output. At the end of a merge
pass, the number of runs becomes n = [n/Z]. A merge pass is repeated until
n > 1.

The final auxiliary file contains the sorted data.

The parameter Z is called the merge order, and Z + 1 buffer pages are needed to
proceed with a Z-Merge.

Example 3.1
Let us show how to sort the file Ay containing 12 pages, with file and buffer
pages capacity of 2 records, B = 3 and 2-merge passes (Figure 3.3):

Data to sort Runs Runs Data sorted
Al 1 2 A 1 2
4o [20] 1 320 i A E
30| 3 1520 6|7
40|5| “|5]6 — 12|15
60| 6 12| [1 7o Te0 17|18
1215 40160 20 | 21
21 (17 As (17|21 As | 7 117 25|26
50 | 45 35| 45 18 [ 21 30|32
35|70 50| 70 26 | 32 35|40
26| 42 M EAED 35 | 42 42| 45
32|55 45 | 50 50 | 55
] 26 | 32 70
7118 42]55 2l =
Create Merge Merge
runs Pass 1 Pass 2

Figure 3.3: External sorting using merge-sort with Z = 2
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— The initial sort phase creates the runs Ay, As, A3 and Ay.

— The first merge pass creates the runs A and Ag by merging Aq, As and As,
Ay.
— The second merge pass creates the sorted data A7 by merging As, Ag.

3.6.1 Performance Evaluation

Suppose that B buffer pages are available. The external sorting cost is evaluated in
term of number of passes, i.e., the number of times that the Npag(R) pages are read
in and written out. The number of passes is the initial one to produce the sorted
runs, plus the number of the merge passes. Therefore, the total cost of the merge-sort
algorithm in terms of number of pages read and written is:

Csort(R) = SortPhaseCost + MergePhaseCost

Csort(R) = 2 X Npag(R) + 2 x Npag(R) x NoMergePasses

If Npag(R) < B x (B — 1), the data can be sorted with a single merge pass, as it will
be assumed in some cases, and so with two passes the cost becomes

Csort(R) = 4 X Npag (R)

In general, the number of passes required in the merge phase is a function of the
number of file pages Npag(R), the number S of initial runs, and the merge order
Z = B — 1. S depends on Npag(R) and the number of buffer pages available to
create the initial runs (S = [Npag(R)/B]). After each merge pass, the maximum
length of the runs increases of a factor Z, and so their number becomes

[8/21,18/2%,158/2°1,....
The algorithm terminates when a single run is generated, that is for the minimum
value of k such that Z% > S, quantity that for a certain value of Npag(R), decreases
with the increase of Z. Therefore the number of passes required in the merge phase
is:

k= log S
Therefore, the total cost of the merge-sort is:

Csort(R) = 2 X Npag(R) + 2 X Npag(R) X [IOgZ S—‘

Csort(R) = 2 X Npag(R) x (1 + [logy, S1)

Table 3.2 shows some values of the number of merge passes, cost and time to sort
a file — expressed in minutes and calculated assuming that the reading or writing a
page costs 10 ms — depending on the number of pages, the size of the buffer and the
merge order. The quantities shown justify the improvements used in DBMS to reduce
the external sorting costs.

For example, a technique has been studied to revise the sort phase in order to in-
crease the length of the runs and thereby reduce the number of number of merge
passes. The initial runs become long on the average 25, with the method replace-
ment sort [Knuth, 1973], and B X e, where e = 2.718. .., with the method natural
selection [Frazer and Wong, 1972].
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Table 3.2: Total costs of the merge-sort

B=3,Z=2 B =257, Z = 256

Merge Time Merge Time
Npag(R) Passes Cost (m) Passes Cost (m)
100 6 1400 0.23 0 200 0.03
1000 9 20000 3.33 1 4000 0.67
10000 12 260000 43.33 1 40000 6.67
100000 16 3400000 566.67 2 600000 100.00
1000000 19 40000000 6666.67 2 6000000 1000.00

Curiosity. A typical DBMS sort 1 M of 100 byte records in 15 minutes.
The best result in 2001 was 3.5 seconds obtained with a SGI system, 12 CPUs,
96 disks and 2 G of RAM. Another criterion sometimes used to evaluate an
external sorting algorithm is how much data it sorts in one minute (minute
sort). Every year the Sort Benchmark Home Page shows the results of the best
solution for different evaluation criteria. In 2009 the data sorted in one minute
were 500 GB and 1353 GB in 2011, a result obtained by TritonSort, with a
system with “52 nodes x (2 Quadcore processors, 24 GB memory, 16 X500 GB
disks), Cisco Nexus 5096 switch.”

3.7 Summary

1. The Storage Structures Manager primarily implements a database table of records
as a heap file of pages, and each page contains one or more records. A record is
identified by a RID, the pair (page identifier, position in the page), and it can have
fixed-length fields (easier to manage) or variable length fields (more complex to
manage, especially in the presence of fields greater than the size of a page).

In the case of updates, there is the problem of managing the free space of pages
available in a file, which requires appropriate solutions to avoid wasting memory
and performance degradation.

2. Data organization is a way to store it in a file, which is evaluated in terms of
memory occupied and number of file pages to read or write to perform operations.

3. The heap and sequential organizations are used when the number of records is
small or the main interest is in minimizing the storage requirement. Otherwise,
other organizations are used, as will be seen in the next chapters.

4. The heap organization is the easiest way to store data in files, but is not suitable
for searching a small number of records.

5. The sequential organization stores the data sorted on the value of a search key and
has better performance than the heap one for search operations, but the insertion
of records in general does not preserve the sorted order.

6. Sorting records on the value of an attribute is the typical operation on a file and
is often used in the operations of other organizations. The merge-sort is the most
widely-used external sorting algorithm and its performance depends on the num-
ber of buffer pages available.
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Table Organizations in INGRES. As with any DBMS, a table R has
initially a heap organization, then, once data has been loaded, it is possible to
reorganize the table as sorted, with the command:

MODIFY R TO HEAPSORT
ON Attr [ASC | DESC]{, Attr [ASC | DESC]}

The command also includes the possibility to leave some free space in the data
pages (FILLFACTOR). Record insertions in the table that produce overflows do
not preserve the sorted order.

Bibliographic Notes

Heap and sequential organizations are presented in every book cited in the biblio-
graphic notes of Chapter 1. External sorting is described in [Knuth, 1973], [Tharp,
1988].

Exercises

Exercise 3.1 Explain what is meant by file reorganization and give an example of
file organization that requires it, specifying which operations motivate it.

Exercise 3.2 Discuss the advantages and disadvantages of records with fixed fields
vs variable fields, and of records with fixed length vs variable length.

Exercise 3.3 Let R(K, A, B, other) a relation with Nyec(R) = 100000, a key K
with integer values in the range (1, 100 000), and the attribute A with integer values
uniformly distributed in the range (1, 1000). The size of a record of R is L, = 100
bytes. Suppose R stored with heap organization, with data unsorted both respect to
K and A, in pages with size Dpag = 1024 bytes.

The cost estimate C' of executing a query is the number of pages read from or
written to the permanent memory to produce the result.

Estimate the cost of the following SQL queries, and consider for each of them the
cases that Attribute is K or A, and assume that there are always records that satisfy
the condition.

1. SELECT *

FROM R

WHERE  Attribute = 50;
2. SELECT *

FROM R

WHERE  Atiribute BETWEEN 50 AND 100;

3. SELECT Attribute
FROM R
WHERE Attribute = 50
ORDER BY Attribute;

4. SELECT *
FROM R
WHERE Attribute BETWEEN 50 AND 100
ORDER BY Attribute;
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5. SELECT Attribute
FROM R
WHERE Attribute BETWEEN 50 AND 100
ORDER BY  Attribute;

6. INSERT INTO R VALUES (...);
7. DELETE

FROM R

WHERE  Attribute = 50;
8. UPDATE R

SET A=75

WHERE K BETWEEN 50 AND 100;

Exercise 3.4 Assuming that a page access requires 10 ms, estimate the execution
time of the SQL queries of the previous exercise in the case of a sequential organiza-
tion with records sorted on the key K values.

Exercise 3.5 Consider a file R with 10000 pages to sort using 3 pages in the buffer,
and to write the sorted file to the disk.

1. How many runs are produced in the first pass?

2. How many 2-way merge phases are needed to sort the file?

3. How much time does it take to sort the file if a page access requires 10 ms?
4. How many buffer page B are needed to sort the file with one merge phase?

Exercise 3.6 Consider a file R with Nyec(R) = 10000 records of 100 bytes stored
in pages with size 1 K. Assume that there are B = 5 buffer pages to sort the file, and
to write the sorted file to the disk.

How many runs are produced in the first pass, and how long will each run be?
How many passes are needed to sort the file completely?
Which is the cost of sorting the file?

What is the number of records Nyec(R) of the largest file that can be sorted in just
two passes?

N
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Chapter 4

HASHING ORGANIZATIONS

After having seen the simple heap and sequential organizations, in this chapter, and
the next, we will consider more complex table organizations based on a key, allowing
the search for a record with a given key value with as few accesses as possible to the
permanent memory. The chapter is dedicated to the study of a procedural method,
also known as hashing, proposed since the early fifties to manage data sets in tem-
porary memory. The next chapter will be dedicated instead to organizations based on
trees.

4.1 Table Organizations Based on a Key

The goal of a table organization based on a key is to allow the retrieval of a record
with a specified key value in as few accesses as possible, 1 being the optimum. To
this end, a mapping from the set of keys to the set of records is defined. The mapping
can be implemented with a primary organization or with a secondary organization,
defined as follows.

Definition 4.1 Primary Organization

A table organization is said to be primary if it determines the way the records
are physically stored, and therefore how the records can be retrieved; other-
wise it is said to be a secondary organization.

In the case of a primary organization the mapping from a key to the record can be
implemented as a function, by means of either a hashing technique or a tree structure.

In the first case a hash function h is used that maps the key value & to the value
h(k). The value h(k) is used as the address of the page in which the record is stored.
In the second case a tree structure is used and the record is stored in a leaf node.

Definition 4.2 Static or Dynamic Primary Organization

A primary organization is static if once created for a known table size, the
performance degrades as the table grows because overflow pages must be
added, and a reorganization must be performed.

A primary organization is dynamic if once created for a known table size, it
gradually evolves as records are added or deleted, thus preserving efficiency
without the need for reorganization.
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In the case of a secondary organization the mapping from a key to the record is im-
plemented with the tabular method, listing all inputs and outputs, commonly known
as an index. A secondary organization helps answer queries but does not affect the
location of the data.

An index in this context has a role similar to that of a book. The pages of a book
are ordered, and to find information about a particular subject, the index in the back
of the book is used. In a similar way, in the case of a set of records, to find a record
with a given key, first the index is probed in order to get the record RID, and then the
record is retrieved by means of the RID.

Definition 4.3 Secondary Organization

An index I on a key K of a set of records R is a sorted table I (K, RID) on
K, with Nigc(I) = Nrec(R). An element of the index is a pair (k;, r;), where
k; is a key value for a record, and 7; is a reference (RID) to the corresponding
record. The records of I are stored with an independent organization.

An index is stored in permanent memory using a primary organization.

In the literature the terminology is not very uniform, and the terms “primary” and
“secondary” are usually used to distinguish two types of indexes: “primary” for in-
dexes on the primary key, i.e. “organizations for primary key”, and “secondary” is
used for indexes on other attributes, i.e. “organizations for secondary key”.

In the rest of the chapter we analyze the static and dynamic solutions for the proce-
dural approach, while the tree based approach and indexes will be considered in the
next chapter.

4.2 Static Hashing Organization

This is the oldest and simplest method for a primary table organization based on
a key. Since here we are only interested in the record keys, we will talk about the
storage and retrieval of keys rather than the storage and retrieval of records with a
given key value. Moreover, we assume that records have the same and fixed size, and
that the key k has a type integer. The N records of a table R are stored in an area,
called primary area, divided into M buckets that may consist of one or several pages.
We will assume that the buckets consist of one page with a capacity of ¢ records, and
so the primary area is a set of M pages numbered from 0 to M — 1.

A record is inserted in a page whose address is obtained by applying a hashing
function H to the record key value (Figure 4.1). The ratio d = N/(M X c) is called
the primary area loading factor.

Records hashed to the same page are stored in order of insertion. When a new
record should be inserted in a page already full, an overflow is said to have occurred,
and a strategy is required to store the record elsewhere.

The design of a static hashing organization requires the specification of the follow-
ing parameters:

— The hashing function.

— The overflow management technique.
— The loading factor.

— The page capacity.
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Figure 4.1: Static hashing organization

The Hashing Function. A good hashing function must randomize the assign-
ment of keys over the entire address space. A universally good hashing function does
not exist; some experimental results on the performances of different hashing func-
tions have shown that the following simple function works just as well as more com-
plicated ones:

H(k) =k mod M

with M a prime number.

The Overflow Management Technique. In addition to a careful choice of the
hashing function, the method used to handle overflows is also very important. The
most common techniques used in permanent memories are open overflow (or open
addressing) and chained overflow (or closed addressing).

Open overflow performs a primary area linear search to find the first available page
to insert the overflow record. When the last page has been searched, the process starts
back at the first one.

Chained overflow inserts the overflow record in another page of a separate overflow
area which is pointed to from the home page. Additional overflow records from the
same page are chained through the overflow area.

The performance of this organization will depend on the number of overflows, and
this will vary according to the loading factor and the page capacity.

The Loading Factor. In general, lower loading factors and higher page capacities
give better performances, but occupy more memory. For a low loading factor (< 0.7)
the retrieval requires just 1 access on average. For high loading factors (> 0.8), open
addressing deteriorates rapidly, while the chained overflow still performs quite well.

The Page Capacity. The pages capacity c is a very important factor for the per-
formance of a hash organization. Suppose we need to store 750 records in 1000 pages
with ¢ = 1, or in 500 pages with ¢ = 2. In both cases, the load factor is d = 0.75 =
75%, but the performances are very different. In fact, in the first case the overflows
are the 29.6%, and in the second case, while the collisions increase because M is
halved, the overflows become the 18.7%, with a reduction of 37%.

Since overflows significantly degrade the performance of hashing organizations in
the permanent memory, we may further increase the size of the pages. For example,
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keeping the load factor d = 0.75 = 75%, but choosing ¢ = 10, the performances
improve because the overflows are reduced to 4%.

4.2.1 Performance Evaluation

A study of the behavior of the a hash organizations taking into account the character-
istics of permanent memories, and in particular the size of the pages, is reported in
[Severance and Duhne, 1976]. From this study follows that for page capacity less than
10, it is preferable to give up hash organizations. Since the page size Dpag is fixed
by the permanent memory manager, their capacity depends on the average length of
the record L,, and therefore this organization is used if L, < Dpag/10.

A static hashing organization has excellent performance as long as there are no over-
flows to manage: a record retrieval requires 1 page access. Overflows quickly degrade
performance and so a reorganization must be performed of the hash structure, creating
a new primary area with more space, choosing a new hashing function, and reloading
the data.

To reduce the cost of data loading, and to improve then performance, the operation
proceeds in two stages: first it stores in an auxiliary file T the pairs (Record with key
k, H(k)), which is sorted on the addresses H (k) generated; then the records in 7" are
stored in the hash structure, by reading and writing each page only once.

The main drawback of a static hashing organization is that it does not support range
queries, i.e. the retrieval of all records with a key value which lies within a range of
values, such as “find all keys greater than k; but less than ky”.

4.3 Dynamic Hashing Organizations

Several dynamic hashing organizations have been proposed to avoid the reorganiza-
tion which is necessary in static hashing organizations. The proposals can be classi-
fied into two categories: those that make use of both a primary area for data pages,
and an auxiliary data structure (a kind of index), whose size changes with the pri-
mary area size, and those in which only the size of the primary area changes dy-
namically. In both cases, the hashing function will automatically change when the
structure changes dimension, in order to allow the retrieval of a key in about one
access.

In the following we present the virtual hashing and the extendible hash as examples
of organizations with auxiliary data structures, as well as the linear hashing as exam-
ple of organization that uses instead only the primary area that is expanded linearly.
Reference to other more elaborate methods are given in the bibliographic notes.

4.3.1 Virtual Hashing

Litwin proposed a new type of hashing called Virtual Hashing that works as follows
[Litwin, 1978]:

1. The data area contains initially M contiguous pages with a capacity of c records.
A page is identified by its address, a number between 0 and M — 1. M can also
be a small number. For example, the author started his experiments with M = 7.

2. A bit vector B is used to indicate with a 1 which page of the data area contains at
least a record.

3. Initially a hashing function Hj is used in order to map each key value k to an
address m = Hy(k), between 0 and M — 1, where the record with the key k
should be stored. If an overflow is generated then
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(a) the data area is doubled, maintaining contiguous the pages;

(b) the hashing function Hj is replaced by the new hashing function H; that
produces page addresses between 0 and 2M — 1;

(c) the hashing function H; is applied to k£ and all the records of the original
overflowing page m to distribute the records between m and a new page m’
in the new half of the table. The records of pages different from m are not
considered because they must not change their pages.

This method requires the use of a hashing functions series Hy, Hi, Hs, ..., Hy; in
general, H, produces a page address between 0 and 2" M — 1.

The index of the hashing function H is the number of times that the data area has
been doubled.

The hashing functions must satisfy the following property for every key value k:

Hja(k) = Hj(k) or
Hi(k) = Hj(k)+2/ x M withj=r,r—1,...,0

In other words, the application of H; to a key k gives H;(k) = m (the new page
address generated is the original one), or m + 27 M (the corresponding page address
in the new half of the doubled data area).

The function suggested by Litwin is

H,(k) = k mod (2" x M)

Let k be the key of a record to be retrieved, and r the number of doubling of the data
area. The address of the page that contains the desired record, if it exists, is computed
with the recursive function in Figure 4.2.

function PageSearch(r, k: integer): integer
begin
ifr<0
then write “The key does not exist”;
else if B(H,(k)) =1
then PageSearch = H, (k)
else PageSearch := PageSearch(r — 1, k)
end;

Figure 4.2: Search operation

The use of the vector B, stored in the main memory, allows to establish with a single
access if the record with a specified key is present in a non-empty page.

Example 4.1

Suppose that we insert the key 3820 into the initial hash structure of Figure 4.3a,
with M = 7 and ¢ = 3. Applying the function H, (k) = Hy(3820) we get
m = 5: since B(5) = 1, the new key must be stored in the page with address 5.
This page is full, therefore it is necessary to double the data area. The records in
the page with address 5 are distributed between this page and a new page with
address m’ = 12, by means of the function H;. The vector B is doubled too and
its values are updated, as shown in Figure 4.3b.
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From now on the transformation function H; will be used to access the
hash structure. Let us now assume that we must insert the key 3343, with
H(3343) = 11. The zero bit in the vector B indicates, however, that this page
has not yet been used, and therefore the key transformation H(3343) = 4 is
applied. Being the page 4 full, it is still necessary to use the procedure for the
resolution of the overflow, which in this case does not require a doubling of the
primary area, because the page 11 already exists in the structure. It is sufficient
to set to 1 the bit in the vector B and then transform with H; all the keys of
the original page 4 (7830, 1075, 6647) plus the new one 3343, distributing them
between the pages 4 and 11.

Ho(3820)

0 1 2 3 4 5 l 6

519 6647 | 2385

a) | 112] 3277 1075 | 2665
1176| 848| 723| 6856 7830| 2840 286

L T [+ T+ T+ T 1 ]3]

H,
0 1 2 3 4 5 l 6 7 8 9 10 11 12 13
519 6647 | 2385
b) 112 3277 1075| 2665
1176| 848| 723| 6856| 7830| 2840| 286

[+ T+ [+ T+ T+ 1 J1JofJofJoJoJofi[fol]

Figure 4.3: Virtual Hashing: a) initial structure and b) the structure after the
first overflow from page 5

Memory Requirements. The memory occupied is that required for the data area
and for the binary vector B. The memory is not, however, well used, because of the
frequent doublings of the data area. The disadvantage of this solution lies in the fact
that the loading factor of the data area fluctuates between 0.45 and 0.9 and is on
average 0.67. The advantage of this solution is that each record is retrieved with one
access, if the vector B3 is stored in the main memory.

Observation. This solution, as it has been presented, is of mainly historical inter-
est, having as main limit the doubling of the data with contiguous pages. However,
his exposure is useful for illustrating another solution, the extendible hashing, which
overcomes the limitations of virtual hashing with a different use of the vector B.

4.3.2 Extendible Hashing*

Unlike virtual hashing, Extendible hashing uses a set of data pages, and an auxiliary
data structure B, called directory, an array of pointers to data pages.

Let 7 be a record with key k. The value produced by the hash function H (k) is a
binary value of b-bit, called hash key (a typical value for b is 32), which, however,
is not used to address a fixed set of pages as in virtual hashing. Instead, pages are
allocated on demand as records are inserted in the file, considering only the initial p
bits of b, which are used as an offset into 3. The value of p grows and shrinks with
the number of pages used by data. The number of B entries is always a power of 2,
that is 2P. We call p the directory level. The value of p is stored in B.



©2015by Albanoetal. 4.3 Dynamic Hashing Organizations 33

A B entry is a pointer to a data page containing records with the same first p’ bit of
their hash key, with 0 < p’ < p. We call p’ the data page level, and its value is stored
in the data page. The value of p’ depends on the evolution of the data pages as result
of overflows, as explained below, and it is used to determine membership in a data
page.

Let us assume that initially the hash structure is empty, p = 0, and consists of a
directory with one entry containing a pointer to an empty page of size c (Figure 4.4a).

Directory Data Pages Directory Data Pages Directory Data Pages H(k)

b=0 -0 p=0 p'=0 p=0

] 1 o .

-
°

(a) (b) (c)

Figure 4.4: Extendible Hashing structure: a) initial; b) doubling of directory after
an overflow from page 1, and c) after page 1 split

The first ¢ records inserted are stored in the page. In general, when we attempt to
insert the next record into a full page n (in the example n = 1), there are two possi-
bilities, depending on the value of p'.

1. If p’ = p the operation concerns the data page and the directory B.

(a) B is doubled and its level p takes the value p + 1 (Figure 4.4b). Let w be the
bits of the previous value of p, indexing one of the entries of the previous B.
The entries of the doubled B indexed by both the binary values w0 and w1
each contains a pointer to the same data page that the w entry used to point to.

(b) Since now p’ < p, the next case applies to deal with the data page with the
overflow.

2. If p’ < p the operation concerns the data page only.

(a) The data page n is split in two (n and n’), and their levels p’ take the value
p’ + 1 (Figure 4.4¢).

(b) The records of page n are distributed over n and n’, based on the value of the
first (p’ 4+ 1) high-order bit of their hash keys: records whose key has 0 in the
(p’ + 1)th bit stay in the old page n, and those with 1 go in the new page n’.

(¢) The pointers in the B entries are updated so that those that formerly pointed to
n now point either to n or to n’, depending on their (p’+1)th bit (Figure 4.4c).

In general, if B has several entries with pointers to the same page, then the entries are
contiguous and in number of 29, for some integer ¢q. This means that a page pointed
by 29 contiguous entries contains all and only those records with hash keys with
the same prefix long exactly p’ = p — ¢ bit. For example, Figure 4.5a shows the
B structure after the split of the data page 2 in Figure 4.4c: the entries B(00) and
B(01) point to the same page that contains records with hash keys prefix 0 (p = 1).
Figure 4.5b shows B after the split of page 3.

If after a delete operation, the contents of two pages ‘close’ can be stored in only
one of them, then the two pages are merged, the new data page levels is p’ — 1 and B
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Figure 4.5: Extendible hash structure: a) after an overflow from page 2 and b) after
an overflow from page 3

is updated. Two pages are said to be ‘close’ if they are identified by the same value
p’ and their records differ for the p'th value of their hash key. If the only two pages
‘close’ with (p’ = p) are merged, B is halved. For example, if after a delete operation
in page 4 (Figure 4.5b), the two ‘close’ pages 3 and 4 are merged, and the structure
will become again that shown in Figure 4.5a.

The advantage of this method is that performance does not degrade as the file
grows, and the directory B keeps the space overhead low. The retrieval of a record
involves an additional level of indirection since we must first access I3, but this extra
access has only a minor impact on performance, since most of the directory will be
kept in main memory and thus the number of page accesses is usually only slightly
higher than one.

4.3.3 Linear Hashing

The basic idea of this method is again to increase the number of data pages as soon
as a page overflows; however, the page which is split is not the one that flows over,
but the page pointed by the current pointer p, initialized to the first page (p = 0) and
incremented by 1 each time a page is split [Litwin, 1980]. Overflow management is
necessary because the pages that flow over are not generally split: a page will only be
split when the current pointer reaches its address.

Initially, M pages are allocated and the hash function is Hy(k) = k£ mod M. When
there is an overflow from a page with address m > p, an overflow chain is maintained
for the page m, but a new page is added. The records in page p, and possible overflows
from this page, are distributed between the page p and the new page using the hash
function Hy (k) = k mod 2M, which generates addresses between 0 and (2M — 1).
Figure 4.6 shows an example with M = 7, ¢ = 3, where two overflows from pages 2
and 3 have already occurred, and so pages 0 and 1 have been split. The arrival of key
3820 generates an overflow from page 5 and page 2 is split.

To retrieve a record with key value k, the page address is computed with the following
function:

PageAddress(p: int, k: int): int :=
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Figure 4.6: Expansion steps in linear hashing

if Hy(k) < p then H, (k) else Hy(k)

After M overflows, the memory will be 2M pages. Pointer p is set to 0, function Hy

is replaced by Hy, H; by Ho = k mod 22 M, and the process continues. In general,

after r doublings of the data, the function H, (k) = k mod 2" M will be used.
Linear hashing has performances similar to those of extendible hashing.

Another interesting example of this kind of solution is the Spiral Hashing, proposed
by Martin [Martin, 1979]. The name is derived from considering the memory space
organized as a spiral rather than as a line. Like linear hashing, spiral hashing requires
no index, but it has both a better performance and storage utilization because of the
following interesting properties, in contrast to linear hashing: the hashing function
distributes the records unevenly over the data pages. The load is high at the beginning
of the active address space and tapers off towards the end. Therefore the page that is
split is the one that is most likely to overflow.

4.4 Summary

1. Hashing organizations are those that give the best result when a record must be
retrieved using the record key: a hash function applied to the key provides the
page address that could hold the record with the specified key. The average search
cost is a good approximation of what is obtainable with a perfect transformation,
in particular if use is made of a dynamic organization. Another great advantage of
these techniques is the simplicity of the implementation.

A static organization requires a reorganization when the amount of data increases
in order to avoid performance degradation, whereas this phenomenon is not present
in a dynamic organization, which adapts to the number of records present.

2. The most important parameter in the design of a static hashing organization is the
load factor of the primary area, which influences both the cost of operations and
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the memory requirement. With regard to the overflow management techniques, the
best performance is obtained with the management of the overflow with separate
chaining, which enables a search with an average number of accesses near unity
and a memory occupation only a few percentage points (5 — 10%) more than
strictly necessary.

3. Another feature of hashing organizations is that the average cost of the operations
is generally low, but in the worst case can be considerably higher, and it is not
always possible to estimate the cost precisely. A borderline case is given by the
organization with static overflow handled by open addressing: in the worst case,
the search for a record is equivalent to the cost of a scan of the entire primary area.
Another worst case is when in a dynamic organization, after a page split, all the
records are assigned again to the same page.

4. Hashing organizations do not support range queries, i.e. the retrieval of all records
with a key value which lies within a range of values.

Bibliographic Notes

Static hashing organizations are presented in every book cited in the bibliographic
notes of Chapter 1.

The first proposal of a dynamic hashing organization was made for the temporary
memory [Knott, 1975], and then the approach was extended to the permanent mem-
ory by Litwin [Litwin, 1978, 1980] and Scholl [Scholl, 1981] Mullin [Mullin, 1985].
Larson [Larson, 1982] and Ramamohanarao [Ramamohanarao, 1984] have instead
improved linear hashing.

In [Cesarini and Soda, 1991] an interesting dynamic hashing organizations is pre-
sented by combining a variant of the spiral hashing with a particular management
technique of overflows.

A review of dynamic hashing organizations is presented in [Enbody and Du, 1988].

Exercises

Exercise 4.1 The CREATE TABLE statement of a relational system creates a heap-
organized table by default, but the DBA can use the following command to transform
a heap organization into a hash primary organization:

MODIFY Table TO HASH ON Attribute;

The manual contains the following warning: “Do not modify a table’s structure from
its default heap structure to a keyed (i.e. hash) structure until the table contains most,
if not all, of its data, ..., (otherwise) query processing performance degrade upon
adding extra data”. Explain what determines the performance degradation.

Exercise 4.2 Let R(K, A, B, other) be arelation with an integer primary key K. In
this book it has been shown how the relation is stored with a primary static hashing
organization. Explain how to modify the operations when the static hashing organi-
zation is made using an integer non-key attribute A.

Exercise 4.3 Let R(K, A, B, other) be a relation with Nygc(R) = 100000, L, =
100 bytes, and a key K with integer values in the range (1, 100 000). Assume the
relation stored with a primary static hashing organization using pages with size
Dpag = 1024 bytes and a loading factor d = 0, 80.

Estimate the cost of the following SQL queries, assuming that there are always
records that satisfy the condition.
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1. SELECT =«
FROM R;

2. SELECT «
FROM R
WHERE K

3. SELECT =«
FROM R
WHERE K

4. SELECT *
FROM R
WHERE K BETWEEN 50 AND 100
ORDER BY K;

BETWEEN 50 AND 100;

Exercise 4.4 Let R(K, A, B, other) be a relation with Nyec(R) = 100000, L, =
100 bytes, and a key K with integer values in the range (1, 100 000), and the attribute
A with integer values uniformly distributed in the range (1, 1000) and L4 = 4. As-
sume the relation stored using pages with size Dpag = 1024 bytes, and the following
queries must be executed:

1. Find all R records.
2. Find all R records such that A = 50.
3. Find all R records such that & > 50 and K < 100.

Which of the following organizations is preferable to perform each operation?

1. A serial organization.
2. A static hashing organization.

Exercise 4.5 Let R(K, A, B, other) be a relation with Nyec(R) = 100000, L, =
100 bytes, and a key K with integer values in the range (1, 100000), and Lx =
4. Assume the relation stored using pages with size Dpag = 1024 bytes, and the
following queries must be executed:

Find all R records.

Find all R records such that K = 50.

Find all R records such that K > 50 and K < 100.
Find all R records such that X > 50 and K < 55.
Find all K values.

M

Which of the following organizations is preferable to perform each operation?

1. A sequential organization.
2. A static hashing organization.
3. An unclustered hash index 1.

Exercise 4.6 Consider a linear hashing organization, with M = 3 and each page
holding 2 data entries. The following figure shows how the keys {4, 18, 13, 29, 32}
are stored.
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0
1
2

18
4 13
29 32

Show how the structure changes by inserting then the following keys in the order (9,

22,44, 35).



Chapter 5

DYNAMIC TREE-STRUCTURE
ORGANIZATIONS

In the previous chapter we saw primary organizations with the procedural approach,
highlighting the advantages and disadvantages, in particular, the inability to search
by key ranges, which in many cases precludes the use of the techniques illustrated.
For this reason research has been directed from the beginning of the sixties towards
an alternative approach based on tree structures. The tree structures presented in this
chapter are among the most important ones in computer science because of their
versatility and performance characteristics, and are commonly used by both operating
systems and commercial DBMSs.

5.1 Storing Trees in the Permanent Memory

Balanced binary trees, such as the AVL trees that are used for main memory data
structures, are not well suited for permanent memory. First of all, with a binary tree,
the search for an element of a set may involve a high number of accesses to the
permanent memory. For example, to search through a set with one million elements,
organized with a binary tree, without any attention to the way in which the nodes are
stored in pages of the permanent memory, requires an average of lg 1 000 000 = 20
accesses. The second point is that for large and volatile sets an algorithm to keep a
binary tree balanced can be very costly.

A solution to the first problem can be to store the nodes of a binary tree into the
pages of the permanent memory properly. Figure 5.1 shows an example with pages
that may contain seven nodes. From every page, eight different pages can be accessed,
so that the tree behaves as a multiway search tree.

Figure 5.1: Paged binary tree
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This layout of the tree reduces the search cost. For example, if the page capacity is
of 100 nodes, for the index of the previous example the cost of a search would be at
most log;yo 1000000 = 3 accesses. Two problems are still to be solved: how to keep
the structure balanced in presence of insertions and deletions, and how to keep pages
almost full.

A solution to both problems is a particular perfectly balanced multiway tree struc-
ture, called a B—tree, proposed by Bayer and McCreight in 1972, which ensures, in
an elegant way, a minimum occupancy of each page with a simple balancing opera-
tion. In the following, we first present the properties of the B—tree and then those of
a variant called a B —tree, which is the one that is commonly used.

5.2 B-trees

For simplicity, as with hashing organizations, we will talk about the storage and
retrieval of keys rather than the storage and retrieval of records with a given key
value, and we denote a record entry with key &k as k. Moreover, we assume that
records have the same and fixed size, and that keys are integers.

Definition 5.1 A B-tree of order m (m > 3) is an m-way search tree
that is either empty or of height & > 1 and satisfies the following properties:

1. Each node contains at most m — 1 keys.

2. Each node, except the root, contains at least [m/2] — 1 keys. The root
may contain any number n of keys withn < m — 1.

3. A node is either a leaf node or has j + 1 children, where j is the number
of keys of the node.

4. All leaves appear on same level.
5. Each node has the following structure:

[P0, k1%, p1, kox, pa, . .. kj*, pj]
where:
— The keys are sorted: k1 < ... < k;.

— p; is a pointer to another node of the tree structure, and is undefined
in the leaves.

— Let K(p;) be the set of keys stored in the subtree pointed by p;. For
each non-leaf node, the following properties hold:
- Yy € K(po),y <k
- VyEK(pZ‘),ki <y< ki+1,i: 1,...5—1
- Vy e K(pj),y > k;j

Definition 5.2 Height

The height h of a B—tree is the number of nodes in a path from the root to a
leaf node.

Figure 5.2 shows an example of a B-tree of order 5, with height 3. Note that if
the tree is visited according to the in-order traversal, all the keys will be visited in
ascending order of their values.
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[10x[15¢]20%[25+) [30¢[35+[ | |[40+[45+¢] [ ][50%[55+]60x[65% [68+]71x[745] 78] [81x[85%]90%[95%]

Figure 5.2: Example of a B—tree withm =5

5.2.1 Operations

Search. The search of a key k starts at the root node. If the key is not in the root,
and h > 1, the search continues as follows:

1. If k; < k < k;j41,1 < i < m, then the search continues in the subtree p;.
2. If k,, < k, then the search continues in the subtree p,,.
3. If k£ < k1, then the search continues in the subtree pg.

If the key value is not found in a leaf node, the search is unsuccessful, otherwise the
search costis < h.

Insertion. The insertion of a key k into a B—tree is also quite simple. First, a
search is made for the leaf node which should contain the key k. An unsuccessful
search determines the leaf node (1 where k should be inserted.

If the node ()1 contains less than m — 1 keys, then k is inserted and the operation
terminates. Otherwise, if () is full, it will be split into two nodes, with the first half
of the m keys that remain in the old node ()1, the second half of the keys that go into
a new adjacent node ()2, and the median key, together with the pointer to ()2, that is
inserted into the father node @) of (Q1, repeating the insertion operation in this node.
This splitting and moving up process may continue if necessary up to the root, and if
this must be split, a new root node will be created and this increases the height of the
B-tree by one.

Note that the growth is at the fop of the tree, and this is an intrinsic characteristic
of a B—tree to ensure the important properties that it always have all the leaves at the
same level, and each node different from the root is at least 50% full.

Alternatively, if an adjacent brother node of (); is not full, the insertion can be
performed without splitting 1 by applying a rotation technique, as explained for the
deletion operation.

Example 5.1
Let us show the effect of the insertion of the key 70 in the B—tree represented
in Figure 5.2.

1. The key 70 must be inserted in the node ;.

Q
fl6iro<l 11 I

Q1
[50%[55%|60+[65%] [68+]71+|74x][78+] [81x[85%[90%]95+]

Figure 5.3: Insertion of key 70 — Step 1
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2. The node ()1 is full, and it is split into two nodes ()1 and ()2, and the median
key 71, together with the pointer to ()2, is inserted into the node Q.

Q
[66+[[71<p[79<[[ ]
1 Q2
[50%[55+]60«[65% [68+]70«] [ |[74x[78¢] [ ][81x[85%]90x[95%]

Figure 5.4: Insertion of key 70 — Step 2

Deletion. Key deletion is slightly more complicated. If a key from a non-leaf node
is deleted, it will be replaced by the next following key, which is in a leaf node, and
therefore the effect of a key deletion is always on a leaf. Furthermore, after a deletion
if the leaf node p has less than [m /2] —1 keys, it has to be regrouped with an adjacent
brother node in order to respect the definition of B—tree, using one of the following
techniques: merging or rotation.

The node p is merged with one of its adjacent brother nodes which contains [m/2]—1
keys operating in a way that is exactly the inverse to the process of division.

Merging is illustrated by Figure 5.4. If key 70 is deleted from node )1, it becomes
underfull and it is merged with the brother to the right Q». The key 71 separating the
two nodes in the ancestor () is no longer necessary and it too is added to the single
remaining leaf ()1, so the tree will become that shown in Figure 5.3.

The elimination of 71 from @ can cause a further underflow by requiring the merg-
ing of @ with one of its adjacent brothers. In such a case, the process is applied
recursively and terminates upon encountering a node that does not need be merged
or if the root node is used. If the root node contains a single key, as a result of the
merging, it becomes empty, and is removed. The result is that the B—tree shrinks
from the top. Thus the deletion process reverses the effects of the insertion process.

When the merging of the node p with one of its adjacent brothers is not possible, then
the rotation technique is applied.

Rotation is illustrated by Figure 5.5a. If key 70 is deleted from ()2, it becomes
underfull and a rotation is performed to borrow the maximum key 65 from the brother
to the left ()1. The key 65 is moved in the ancestor node ) and replace the key 66
which is moved in () as the new smallest key value. The tree will become that shown
in Figure 5.5b.

Data Loading. The initial B-tree structure depends on the order in which the
keys are loaded. For example, the B-tree in Figure 5.2 is the result of loading the
keys in the following order:

10, 15, 30, 27, 35, 40, 45, 37, 20, 50, 55, 46, 71, 66, 74, 85, 90, 79, 78, 95, 25, 81,
68, 60, 65.

If the keys to load are sorted, the result is a B—tree with the leaves filled at 50%,
except the last one, as shown in Figure 5.6 for the keys: 50, 55, 66, 68, 70, 71, 72,73,
79, 81, 85, 90, 95.
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Q
[{66<[[71<[[794[ ]
Q1 Q2
[50%[55+]60x[65% [68+]70«[ [ | [72+[73+74[78+] [81x[85%]90x][95%]
(a)
Q
[65+[[71<[[794[ ]
@1 Q2
[50%[55¢]60«[  |[66+]68+] [ | [72+[73x[74x[78%] [81x[85%]90x][95%]
(b)

Figure 5.5: A rotation example

fle6hl7ieffro<] ]

[50«[55¢] [ J[68«[70«[ [ J[72+[73«[ [ ][81%[85%]90%]954]

Figure 5.6: The resulting B-tree from loading a sorted set of keys

One way to improve memory usage is to load the keys sorted, and to use the rotation
technique: instead of splitting a full node different from the first, the rotation tech-
nique is applied with the brother node to the left until it does not fill completely. For
the keys of the previous example, the tree in Figure 5.7 is obtained.

froffstell [ 1]

[50%[55%66+]68%] [71[72+|73x[79+] [85+[90%[95+] ]

Figure 5.7: The resulting B-tree from loading a sorted set of keys with the rotation
technique

5.3 Performance Evaluation

Let us evaluate the costs of the operations expressed in terms of the number of nodes
to read and write, assuming that the memory buffer can hold /4 + 1 nodes: In this way
the nodes involved in the individual operations are transferred into the buffer only
once.

B-tree Height. As with any tree, the cost of operations depend on the height of
the tree. The following theorem establishes the important relation between /N, m and
the height of a B—tree:
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Theorem 5.1

In a B—tree of order m, with height A and with N > 1 keys, the following
relation holds

N+1

Proof

A B-tree of order m with height h, has the minimum (b jn) or the maximum
(b max) number of nodes when they are filled with the minimum or maximum
number of keys:

bmin = 142+ 2[m/2] +2[m/2]* +--- + 2[m/2]"?
h—1 _
g2t
[m/2] -1
bmax = l+m+m?+- +mh!
_ mh —1
- om-—1

The minimum (/Vyj,) and the maximum (/N nax) number of keys that can
appear in a structure of order m with height h are:

Nmin = root + (min number of keys per node) X (bmin — 1)
= 14+ ([m/2] = 1) x (bmin — 1)
= 2[m/2]"" 1 -1
Nmax = (max number of keys per node) X bmax
= (m—1) X bmax
= mh—-1

Therefore the following relation holds:

2fm/2]" 1 —1<N<ml -1
and passing to logarithms, the thesis follows.
Table 5.1 shows the minimum and maximum height of a B—-tree with the specified

values of IV and m, assuming records of 100 bytes and pointers of 4 bytes. Note as
with large pages the height is low also for large sets of records.
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Table 5.1: Minimum (A mjn) and maximum (h max) height of a B-tree, by the size
of the pages (Dpag)

N

1000 10000 100000 1000000
Dpag m Amin  Pmax Amin  Amax Pmin  Pmax PAmin  Pmax

512 5 4.3 6.7 5.7 8.8 72 108 86 129
1024 10 3.0 4.9 4.0 6.3 5.0 7.7 6.0 9.2
2048 20 2.3 3.7 3.1 4.7 3.8 5.7 4.6 6.7
4096 40 1.9 3.1 2.5 3.8 3.1 4.6 3.7 5.4

Memory Requirements. Let us assume that each node is 70% full on an average.
The number of nodes b of a B—tree of order m to store N keys is

b=(m"—-1)/(m' —1) = N/(m' —1)
where m’ = 0.7m and h = log,,,,(N + 1).

Equality Search. The cost of a searchis 1 < C < h reads.

Range Search. B-trees are very good for equality searches, but not to retrieve
data sequentially or for range searches, because they require multiple tree traversals.
This is the reason why a variation of this tree structure is usually used. Let us consider
the tree in Figure 5.8. To retrieve all records with the keys in increasing order, the tree
is visited in the in-order (symmetric) traversal and so the nodes are visited as follows:
1, 2, 4, to find the deepest node to the left with the minimum key, and then upward
and downward for the sequential search, 2, 5,2,6,1,3,7,3,8, 3,9, 1.

[10«[15¢]20%[25+) [30¢[35«[ | |[40+[45+¢] | ] [50%[55%]60x[65+ [68+]71x[745] 78] [81%[85%]90%[95%]

Figure 5.8: Example of a B—tree withm =5

Insertion. An insertion is made in a leaf node. If the node is not full, the new key
is inserted keeping the node’s keys sorted. The cost is h reads and 1 write.

The worst case is when the node and all its parent must be split. The cost is h reads
and 2h 4 1 writes.

Deletion. The cost of the operation is estimated by considering three cases.

1. If the key is in a leaf, and the merging and rotation operations are not required, the
cost is h reads and 1 write.
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2. If the key is in a node, and the merging and rotation operations are not required,
the cost is h reads and 2 writes.

3. The worst case is when for all the nodes of the path from the root to the node,
except for the first two, the merging operation is required, and for the child of the
root a rotation operation is required. The cost is 2h — 1 reads and h + 1 writes.

5.4 Bt-—trees

A BT —tree is a well known B—tree variant to enhance search performance especially
for range queries. In a BT —tree all the records, denoted as kx, are stored sorted in
the leaf nodes, organized into a doubly linked list. Only the set of the highest keys,
denoted as k, in each leaf node, except the last one, is stored in the non-leaf nodes,
organized as a B-tree (Figure 5.9).

fasll 1T 1T Ti
f2sflssfl 1T Ti fosffzsil 11 Ti
[[10%[15%[20+[25+[1 H[30+[35%] | [ H40«[45+] [ [ J[50%[55%|60%[65+ 4 T 68+]71«| 74x]78+[1 }[81%[85%[90+[95%]|

Figure 5.9: A B'—tree

This organization is also called index-organized file, index sequential file or clustered
indexed file to emphasize that the records are stored in the leaves, like a sequential
organization, and the set of the other nodes of the B*—tree are like a sparse index
with an entry for the highest key of the records in each leaf. In the following, we will
call it index sequential organization.

Note that records are part of the tree structure stored in one file, therefore, to read
all records in sorted order, the tree structure must be used to locate the first data page.
Moreover, since the organization is a primary one, there can be at most one index
sequential organization for a table.

A BT —tree, also called B-tree in some textbooks, is different from a B—tree for
the following reason:

1. A key search requires always the same number of accesses equal to the B —tree
height.

2. A BT —tree is usually shallower than a B—tree with the same data, and so a key
search is faster, because the records are stored in the leaf nodes, and only the keys
are stored in the non-leaf nodes of the tree.

Moreover, since all records are in the leaf nodes, a sequential scan of data or a
range key search are faster.

3. When a leaf node F' is split into F} and F5, a copy of the highest key in F} is
inserted in the father node of F’, while when an internal node [ is split the median
key in I is moved in the father node, as in a B—tree.

4. When a record with the key k; is deleted, the k;* is deleted in the leaf F', and if
k; is used in a father node because it was the highest key in F, it is not necessary
to replace it with the new highest key in F'. Only when the deletion of a record
causes the number of the records in F' to fall below the minimum, it is necessary
to reorganize the tree.

The index sequential organization is one of the oldest types of organizations used
in file and database systems. This organization was called Virtual Storage Access
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Index sequential organization in DBMSs. In INGRES a table R is
stored initially with a heap organization, and then it is possible to select an in-
dex sequential organization, static (ISAM) or dynamic (BTREE), with the com-
mand:

MODIFY R TO (ISAM | BTREE) UNIQUE ON Attr{, Attr};

In Oracle the index sequential organization, called IOT (index organized table),
is used when a table with a primary key is created with the clause ORGANIZED
INDEX:

CREATE TABLE R(Pk Type PRIMARY KEY, ...) ORGANIZED INDEX;

In SQL Server the index sequential organization is used when a CLUSTERED
INDEX is defined on the primary key of a table.

CREATE TABLE R(Pk Type PRIMARY KEY, ...);
CREATE CLUSTERED INDEX Rclust ON R(Pk);

Method (VSAM) when it was adopted for IBM file systems, and is called with dif-
ferent names in commercial DBMSs (see the box).

Static Tree-Structure Organization

A Bt—tree organization can be used to implement a static index structure rather than
a dynamic one. The tree structure is fixed at loading time, and insertions into full leaf
nodes are treated as page overflows of a static hashing organization. This solution is
simple to implement, but has the usual inconveniences of a static organization.

This organization was called Index Sequential Access Method (ISAM), and it was
used initially for IBM file systems, and by some DBMSs such as Ingres.

5.5 Index Organization

To support fast retrieval of records in a table using different keys, two types of indexes
can be used, in accordance with the table organization:

1. If the table is stored with a heap organization, an index is defined for each key,
and the elements of the indexes are pairs (k;, rid;), where k; is a key value for a
record, and rid; is the record identifier.

Some database systems also permit one of the indexes on a relation to be declared
to be clustered. In DB2 this type of index is created with the command
CREATE INDEX Name ON Table(Attributes) CLUSTER (Figure 5.10).
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Index

[2 [2 N AN
LI JEJE JE ]| pataPages ([ [ JL J[ ][]

(a) Clustered index (b) Unclustered index

Figure 5.10: Types of indexes

Definition 5.3 DB2 Clustered Index

A clustered index on a key K of a table is created by first sorting the table on
the values of the index key K. If new records are inserted into the table after
the clustered index is created, the efficiency of the index decreases because
the table records are no longer in the physical order of the index key. In order
to overcome this problem, when a clustered index is created it is possible
to specify that a small fraction of each data page is left empty for future
insertions, and then the clustered index should be recreated from time to
time.

A clustered index is particularly useful for a range key search because it requires
fewer page accesses, as it will be shown in the following section.

Note that the term clustered index is used with different meanings, i.e. index se-
quential primary organization, as in SQL Server, or clustered index secondary
organization, as in DB2.

2. If the table is stored with a dynamic primary organization using the “primary key”,
indexes are defined for the other keys, and the element of the indexes are pairs
(ki, pk;), where k; is a key value for a record, and pk; is the primary key value of
the corresponding record. If the primary organization is static, the elements of the
indexes are pairs (k;, rid;), as in the previous case.

Since an index can be viewed as a table, if it is large, it is stored usually using a
BT —tree primary organization.

5.5.1 Range Search

An index is useful for a range search if the interval is not too large, otherwise it
is better to proceed with a scan of the data pages to find records that satisfy the
condition, as shown by the following analysis.

Unclustered Index. Let R be a table with key K and Nyec(R) records, stored in
Npag(R) pages, and Njgat(ldx) be the number of leaves of an unclustered Bt -tree
index Idx on K

The selectivity factor s¢ of the condition (¢ = v1 < k < v2) is an estimate of the
fraction of records which will satisfy the condition. With numerical keys and uniform
distribution of the values, s¢(v) is estimated as

sp() = —2— 1

B k’max - kmin
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To find a record R using the index, first the RID of the record matching the condition
is retrieved from a leaf of the index, and then the record of R is retrieved with one
access. Let us assume that the cost of an index access is estimated with the number
of leaves to visit [s7(¢)) X Njeai(ldx))], and the number of RID of the records that
satisfy the condition is

Erec = [Sf(w) X Nrec(Rﬂ

Since the records are not sorted on the index key values, the number of pages to read
is Erec, and therefore the search cost using the index is

Cs = [57(1) X Nieat(ldx) [ + [ 57 (1)) X Nrec(R)[ = [57(1)) X (Nieat (Idx) + Nrec ()]

The search of the records with a table scan has the cost Npag(R), therefore the index
is useful if

[57(1)) X (Niea(ldx) + Nrec(R))] < Npag(R)

Example 5.2

Let R be a table with key K and 500 000 records, stored in Npag(R) = 60113
pages. Let us estimate for which value of s7(¢) an unclustered B -tree index
on K, with Njgai(ldx) = 6012, is useful to retrieve the records with the keys
within a certain range:

[s (1) x (6012 + 500000)] < 60113

the inequality holds for sy < 0.12, that is for very selective conditions.

In this case the use of the index has also the advantage of returning the records
sorted according to the key, while to obtain the same result with a table scan the
cost of sorting Eyec records should also be taken into account.

Clustered Index. The records are always retrieved using the index since, al-
though it has been constructed from sorted records, in the case of subsequent in-
sertions it is not certain that the records are still sorted (i.e. the records are almost
sorted). Therefore, the cost of a search is estimated as the sum of the cost of access-
ing the leaves of the index, ignoring the height of the index, and the cost of accessing
the data pages.

When the records are sorted on the values of the key, the clustered index is almost
always convenient. In fact, the number of data pages to visit to find Fyg; records is
estimated as

[ fs(¥) X Npag(R)]

and the overall cost of the search with the use of the index becomes

Cs = [ fs(¥) X (Nieat(ldx) + Npag(RR))]
For the search operation the index is advantageous with respect to a table scan if

[fs(10) X (Nieat(ldx) + Npag(12))] < Npag(R)

With the data of the previous example, the index is advantageous when f,(1)) < 0.9,
that is also with non-selective conditions.



50

CHAPTER 5 Dynamic Tree-Structure Organizations © 2015 by Albano et al.

Indexes with Variable Length Keys

If the keys have string values with a very variable length, and such as to prohibit the
reduction to the case of fixed length equal to the maximum possible, there are several
possible solutions to reduce the space occupied by the keys and then increase the
number of node’s children in the non-leaf nodes of a B*—tree.

The idea is to reduce the key length in the non-leaf nodes by truncating the keys to
the fewest number of characters needed to distinguish them from each other. Example
of solutions are the prefix BT —tree, trie, and the String B-tree. Interested readers
may refer to the bibliographic notes at the end of this chapter for specific proposals.

5.6 Summary

1. The B-tree is a fundamental search tree, perfectly balanced, for storing a set of

records in the permanent memory that must be accessed both sequentially and
directly for range key search. It has been described as ubiquitous because of its
utility.
What does the B stand for? The tree name has never been explained. Certainly, the
B does not stand for binary. The B could stand for balanced, for the Bayer name
of the first author, or for the name Boeing Corporation, for which the authors were
working at the time.

2. The Bt—tree, a variant of the B—tree which stores all the records in the leaves
and constructs a B—tree on the maximum key of each leaf, is the most widely
used structure in relational DBMSs for both the primary organization of tables
(index sequential organization) and index secondary organization.

Bibliographic Notes

Tree organizations for tables of records or indexes are treated in every book cited in
the bibliographic notes of Chapter 1.

Bayer and McCreight present the B—tree in [Bayer and Creight, 1972] and in
[Comer, 1979; Chu and Knott, 1989] is made a review of many variations of this
data structure. A detailed analysis of the performance of B-trees and derivates is
given in [Chu and Knott, 1989; Rosenberg and Snyder, 1981].

The String B-tree has been proposed in [Ferragina and Grossi, 1995, 1999], and
its experimental analysis has been presented in [Ferragina and Grossi, 1996], together
with comparisons with alternative structures.

Exercises

Exercise 5.1 The CREATE TABLE statement of a relational system creates a heap-
organized table by default, but provides the DBA the following command to trans-
form a heap organization into a tree-structure organization:

MODIFY Table TO ISAM ON Attribute;

The manual contains the following warning: “Do not modify a table’s structure from
its default heap structure to a keyed (i.e. ISAM) structure until the table contains
most, if not all, of its data, ..., (otherwise) query processing performance degrade
upon adding extra data”. Explain what determines the performance degradation.

Exercise 5.2 Answer the following questions about index and tree organizations:
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— What is the difference between an index secondary organization and index sequen-
tial organization?

— What is the difference between a clustered index and an unclustered index? If an
index contains data records as ‘data entries’ can it be unclustered?

Exercise 5.3 Show the result of entering the records with keys in the order (1, 2,
3, 4, 5) to an initially empty B*—tree of order m = 3. In case of overflow, split the
node and do not re-distribute keys to neighbors. Is it possible to enter the records with
keys in a different order to have a tree of less height?

Exercise 5.4 Show how the following BT —tree changes after the insertion of the
record with key 25.

jL1of[ 40y

(o] M Hzorfaoi” Hso ]

Exercise 5.5 Consider a DBMS with the following characteristics: a) file pages
with size 2048 bytes, b) pointers of 12 bytes, c) the page header of 56 bytes. A
secondary index is defined on a key of 8 bytes. Compute the maximum number of
records that can be indexed with

1. A three levels B—tree.

2. A three levels BT —tree. For simplicity, assume that the leaf nodes are organized
into a singly linked list.

Exercise 5.6 Consider a secondary index on a primary key of a table with N
records. The index is stored with a Bt —tree of order m. What is the minimum num-
ber of nodes to visit to search a record with a given key value?

Exercise 5.7 Discuss the advantages and disadvantages of a B—tree and a static
hashing primary organizations.

Exercise 5.8 Let R(K, A, B, other) be a relation with Nyec(R) = 100000, L, =
100 bytes, akey K with integer values in the range (1, 100 000) and L = 4. Suppose
R stored with heap organization in pages with size Dpag = 1024 bytes and a loading
factor f, = 0,8, and an index exists on the key K stored as BT —tree,

Estimate the cost of the following SQL queries, assuming that there are always
records that satisfy the WHERE condition.

1. SELECT
FROM

2. SELECT
FROM
WHERE

3. SELECT =«
FROM R
K

I *

A *
[
o
L

BETWEEN 50 AND 100;
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4. SELECT *
FROM R
WHERE K BETWEEN 50 AND 100
ORDERBY K;

Exercise 5.9 Let R(A, B,C, D, E) be a relation with key A, Npag(R) = 10000,
Nrec(R) = 100000 and Dpag = 500 bytes. The values of all attributes are strings
with length 10 bytes. Consider the query

SELECT A'B
FROM R
ORDER BY A;

1. Estimate the query execution cost without indexes.

2. Estimate the query execution cost with a clustered index on A stored as BT —tree
with Njgar = 3500.



Chapter 6

NON-KEY ATTRIBUTE
ORGANIZATIONS

The previous two chapters have described organizations to retrieve records of a table
with a specified key value in as few accesses as possible. Other important organiza-
tions are the ones to retrieve records of a table that satisfy a query which involves non-
key attributes, i.e. attributes that do not uniquely identify a record. Non-key attributes
are also called secondary keys by some authors, but the term is not standard and other
authors use it with a different meaning. In the following, for the sake of brevity, some-
times we will just call them attributes when the context does not create ambiguity. In
this chapter, after a definition of the problem and the type of queries considered, the
main organizations will be presented to speed up the search for records in a table that
satisfy a condition on one or more non-key attributes.

6.1 Non-Key Attribute Search

The records to retrieve are specified with search conditions of the following types:

1. An equality search, which specifies a value v for an attribute A; (A; = v;).

2. A range search, which specifies a range of values for an attribute A; (v; < A; <
v9).

3. A boolean search, which consists of the previous search types combined with the
operators AND, OR and NOT.

These three types of searches do not exhaust all the possibilities, but they are suffi-
cient to show how queries can be very complex and require data organizations differ-
ent from those seen so far to generate the answer quickly. In this chapter, we will only
consider the fundamental solutions for searches of type (1) and (2), or for those of
type (3) with conjunctions of simple conditions. The general case will be considered
in Chapter 11.

With a primary organization, queries on non-key attributes can only be answered
with a scan of the data. With large collections of records and queries satisfied by
small subsets (as a general guideline, less than 15% of the records), if the response
time is an important requirement, this approach is not worthwhile and the cost and
management of an index that makes it possible to speed up the search of the records
that match the query is justified. Figure 6.1 shows an index on the attribute Quantitiy
of Sales, assuming for simplicity that the RIDs are integers.
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Sales Index
RID Date Product City Quantity Quantity RID
1 20090102 Pt Lucca 2 1 5
2 20090102 P2 Carrara 8 2 1
3 20090103 P3 Firenze 5 2 8
4 20090103 Pt Arezzo 10 2 9
5 20090103 P1 Pisa 1 5 3
6 20090103 P4 Pisa 8 5 7
7 20090103 P2 Massa 5 5 10
8 20090104 P2 Massa 2 8 2
9 20090105 P4 Massa 2 8 6
10 20090103 P4 Livorno 5 10 4

Figure 6.1: An index on Quantity

Indexes are non-exclusive. Therefore they can be created for any non-key attributes,
regardless of the primary organization used to store the table records. An index can
be defined also on multiple attributes (multi-attribute or composite index).

An excessive number of indexes can be harmful to the overall performance. The
attributes to be indexed must be selected carefully, and this problem has been exten-
sively studied by a number of researchers.

A typical implementation of an index is the inverted index organization described
in the next section.

6.2 Inverted Indexes

Definition 6.1

An inverted index I on a non-key attribute K of a table R is a sorted collec-
tion of entries of the form (k;, n, p1,po, ..., pn), where each value k; of K
is followed by the number of records n containing that value and the sorted
RID list of these records (rid-list).

Figure 6.2 shows an inverted index on the attribute Quantitiy of Sales.

Sales

RID  Date Product City Quantity

1 20000102 P1 Lucca 2 Inverted index :
2 20090102 P2 Carrara 8 Quantity n  RID list
3 20090103 P3 Firenze 5 1 1 5

4 20090103 P1 Arezzo 10 > 3 1.89
5 20090103 Pt Pisa 1 5 3 3’7’10
6 20090103 P4 Pisa 8 8 o 2’ 6’
7 20090103 P2 Massa 5 10 1 4’

8 20090104 P2 Massa 2

9 20090105 P4 Massa 2

10 20090103 P4 Livorno 5

Figure 6.2: An inverted index on Quantity

Although an inverted index requires elements of variable length and, in the case of
record updates, a management of the sorted rid-lists, it has a wide use for the follow-
ing reasons:

— The data file is accessed only to find the records that match the query.

— The result of queries such as “how many records have the index key that satisfy
a condition?”, or “search the index key values of a set of records that satisfy a
condition?”, can be found using the index only.
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— It allows complete independence of the index organization from the strategy used
for data storage. Therefore, the data must not be reorganized at any addition or
deletion of an inverted index.

6.2.1 Performance Evaluation

The performance is evaluated in terms of:

— The amount of extra memory needed, not counting the memory needed to store the
data file.

— Cost of the search for records with specified values for the indexed attributes, and
of the update operations.

The costs will be expressed as a function of the following parameters stored in the
database system catalog:

Nrec(R)  the number of records of R.
Npag(R) the number of pages occupied by R.

Lg the number of bytes to represent the value of Nygc(R).
Ni(R)  the number of indexes on R.
Ly the average number of bytes to represent a key value of the index I.

Nyey(I)  the number of distinct keys in the index 1.
Nieaf(I)  the number of leaf nodes in the index I.
Lgrip the number of bytes to represent the RID of a record.

Memory Requirements. For simplicity, let us assume that the organization of
the indexes, which contain elements of variable length, does not require more mem-
ory than strictly necessary.

M = Index memory

Ni(R)
= Y Niey(Ii)(Ly, + Lr) + Ni(R) x Nieo(R) x Lpip
i=1

Q

N](R) X NreC(R) X LRID

The memory required by an inverted index is therefore mainly due to the RIDs stored
in the index.

Equality Search. The operation cost can be estimated easily under the following
simplifying assumptions:

— The values of an attribute are uniformly distributed across its active domain, and
the attributes are considered independent.

— The records are uniformly distributed in the pages of R.
— An index is stored in a BT—tree with the sorted rid-lists in the leaf nodes.

The operation cost is:

Cs=Cr+Chp

where (7 is the cost of accessing the index pages to find the RIDs of the records that
satisfy the condition, while C'p is the cost of accessing the data pages containing the
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records. The cost C7 is usually approximated to the cost of accessing the leaf nodes,
ignoring the cost of the visit of the path from the root to a leaf node:

]Vleaf(I )
Cr = [sr(¥) X Nieat({ :[
Let us consider two cases for C'p, depending on whether the data is sorted or not on

the index key.

If the index is unclustered, it is necessary to have an estimate of the number of
records Fie satisfying the query condition. For a simple condition (A; = v;), Eyec is
equal to the average length of a rid-list estimated as:

The following formula is used to estimate C'p:

Cp = [®(Erec, Npag(R))]

where the function ®(k, n) is an estimate of the number of pages, in a file of n pages,
that contain at least one of the k records to be retrieved using a sorted rid-list.

An approximate evaluation of the function ®(k, n), usually used in the literature,
has been proposed by Cardenas, by assuming pages to have infinite capacity [Carde-

nas, 1975]:
1 k
T

The formula is justified by the following considerations:

1/n is the probability that a page contains one of the k records.

(1-1/n) is the probability that a page does not contain one of the k
records.

(1—1/n)k is the probability that a page does not contain any of the &
records.

(1 —(1—1/n)*) is the probability that a page contains at least one of the k
records.

n(1 — (1 —1/n)*) is an estimate of the number of pages that contain at least
one of the k records.

A page that contains more than one of the k records to retrieve is read only once
because the rid-list is sorted, so n(1 — (1 — 1/n)") is also an estimate of the number
page accesses.

The function is approximately linear in £ when k < n, while it is close to n for k
large and, therefore, ®(k,n) < min(k, n), so the number of pages accesses is always
less than n. The shape of the function ®, for a fixed n = 100, is shown in Figure 6.3.

The Cardenas’ formula has the advantage of a low evaluation cost but appreciably
underestimates the cost of @ in the case of pages with ¢ < 10, and has been revised
by several researchers. For ¢ > 10, the error involved in the Cardenas’ approximation
is practically negligible.

The data access cost C'p in the case of a clustered index, assuming to retrieve the
records using a sorted rid-list, is estimated as:

1

n= kaeym

X Npag(R)w
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100 -~~~
— O(k,n)

— min(k,n)

100 200 300 400
Figure 6.3: Shape of the function ®

Range Search. Let us assume that to retrieve the records that satisfy the condition
v1 < A; < v, an equality search operation is performed for each A; value in the
range. The cost is:

Cs=Cr+Chp

The cost of accessing the index is due to the visit of the leaves that contain the rid-
lists, and it is estimated as:

Cr= [Sf(@b) X Nigat(1)]

where s¢(¢) = (v2 — v1)/(max(A;) — min(A;)) is the selectivity factor of the
condition v; < A4; < vs.
The number of data page accesses Cp is estimated as:

Cp = NolndexKeyValues x NoPageAccessesForRidList

where NolndexKeyValues = [s7(1)) x Nyey(I)], while NoPageAccessesForRidList
depends on the fact that data are sorted or not on the index key.
If the index is unclustered

Cp = [57(1) X Niey(I)] x [®([Nrec(R)/Niey(I)], Npag(R))]

where [ Nrec(R)/Niey(I)] is the average length of the rid-lists.
If the index is clustered

Cp = [57(¥) X Niey(I)] X ’V X Npag(R)-‘ = [s7(3) X Npag(R)]

1
Nkey(l)

Multi-attribute Search. Let us assume that an index exists on each each attribute
used in k£ simple conditions of a conjunction. The cost of accessing the index to find
the rid-list of the records that satisfy the conjunctive condition is estimated as

k

Cr = > Tss(5) x Niear(I;)]

J=1

where s7(A; = v;) = 1/Nyey(I;).
The number of records Eiec that satisfy the conjunctive condition is estimated as:

k
FErec = | Nrec(R) H Sf(T/)j)
j=1

and therefore the number of page accesses is
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When to create an index An index allows the DBMS to locate a small

subset of records in a table more quickly and thereby speeds up response to

user queries, but requires memory and increases the cost of updating the at-

tributes on which it is defined. The general problem of choosing the indexes

for a database is complex and the reader may refer to the bibliographic notes

for specific proposals. In the simplest case the choice of indexes can be made

by keeping in mind the following guidelines that are usually found in the man-

uals of commercial systems:

— Define indexes on attributes with Nyey high and frequently used to retrieve
less than 15% of the records.

— Define indexes on foreign keys to facilitate the implementation of join op-
erations.

— Define more than four indexes for a relation only if the updating operations
are rare.

In commercial systems an index is automatically created to enforce a primary
key constraint.

Cp = [®(Erec, Npag(R)) |

Insertion and Deletion. The N;(R) indexes on a table R must be updated when-
ever a record is either inserted into or deleted from R. The operation requires N (R)
reads and writes of the inverted indexes to update the rid-lists.

6.3 Bitmap indexes

A bitmap is an alternative method of representing a rid-list of an index. Each index
element has a bit vector instead of a rid-list.

Definition 6.2

A bitmap index I on a non-key attribute K of a table 2, with N records, is a
sorted collection of entries of the form (k;, B), where each values k; of K is
followed by a sequence of N bits, where the jth bit is set to 1 if the record
jth has the value k; for the attribute /. All other bits of the bitmap B are set
to 0.

Figure 6.4 shows the bitmap index for the example of Figure 6.2.

Using bitmaps might seem a huge waste of space, however bitmaps are easily com-
pressed, so this is not a major issue. With efficient hardware support for bitmap op-
erations (AND, OR, XOR, NOT), a bitmap index is better suited to answer queries
such as “how many sales of product P1 have been made in Pisa”, since the answer is
found by counting the 1’s of one bit-wise AND of two bitmaps.
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Sales Bitmap index
RID ... Quantity 1 2 5 8 10
1 2 0O 1 0 0 O
2 8 0O 0 0 1 0
3 5 0 01 0 O
4 10 0O 0 0 0 1
5 1 1 0 0 0 O
6 8 0 0 0 1 0
7 5 0O 0 1t 0 O
8 2 0O 1 0 0 O
9 2 0O 1 0 0 O
10 5 0O 0 1 0 O

Figure 6.4: A bitmap index on Quantity

Example 6.1

It is interesting to compare the memory occupied by an inverted index and a
bitmap index defined on the same attribute, stored with B¥—tree, considering
only the memory for the leaves, supposed completely full.

The number of leaves of an inverted index is:

Nieat = (Vkey X Lk + Nrec X LriD)/Dpag ~ (Nrec X LRiD)/Dpag

The number of leaves of a bitmap index is:

Nieat = (Nkey X L + Nkey X Nrec/S)/Dpag ~ Nkey X Nrec/(Dpag x 8)

where Dpag is the leaves page size in bytes, Ly is a value attribute size in bytes
and Lgp is the RID size in bytes.

For the approximations made, the number of leaves of a BT —tree index does
not depend on Ngey, while the number of leaves of a bitmap index increases
linearly with Ney .

N leaf
100 |
80 |
Bitmap index
60 |
40 |
Inverted index
20
1 1 1 1 1 N key
20 40 60 80 100
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Index creation in DB2 and Oracle. The following command creates an
inverted or bitmap index on a relation R, stored with a heap organization:

CREATE [ UNIQUE | BITMAP ] INDEX Name ON R
(Attr [ASC | DESC] {, Attr [ASC | DESC]})

The command also provides the possibility of specifying that the values of
the index attributes are unique, that a free space must be left in the index
nodes (PCTFREE), that the nodes have a certain minimum percentage of fill-
ing (MINPCUSED), that the leaves of the index are linked by a bidirectional list
(ALLOW REVERSE SCANS in DB2 only), and finally that in the index must
be stored the values of both the key attribute and those of other attributes
(INCLUDE, in DB2 only), to allow the optimizer to generate more query plans
that use indexes only, as we will see later.

An index can be specified as clustered (e.g., CLUSTER in DB2).The records of
the table on which the index is defined are sorted only at index creation time,
but not after overflows from data pages. The command REORGANIZE is used
to reorganize the clustered index.

The two values are equal for Ny = 8 X Lgip (for Lrip = 4 bytes, Nxgy = 32),
for lower values the B —tree index takes more memory, while for higher values
a bitmap index takes more memory.

An interesting aspect is that although the binary vectors are generally very
long, and with very selective attributes (high values of Nj.,)) become scat-
tered, i.e. a large number of bits will be zero, they can be easily stored in a
compressed form to reduce the memory requirements. For example, the Oracle
system, which uses such techniques, suggests using them if Ny, < Npec/2.

The bitmap indexes are used when the data is never updated, as happens with databases
decision support databases (Data Warehouse), because when data change, the op-
erations of modifying the index become complex, particularly when they are com-
pressed.

6.4 Multi-attribute Index

Let us see how to use inverted indexes to speed up the search of records that satisfy
a conjunction of equality or range conditions on a subset of k attributes Ay, Ao, ...,
Ay. A more general solutions will be presented in the next chapter.

A query with a condition that uses all the £ attributes is called exact match query,
otherwise is called partial match query.

Let R(A1, Ag, A3) be a relation with Nyec(R) records. The attributes Ay, Ao, As
have ni, ny and ng distinct values.

Three inverted indexes on each attribute have (11 +ng+ng3) elements, and the total
number of RIDs is 3 X Nrec(R). To find an exact match query result three rid-lists have
to be intersected.

An alternative solution to speed up the search consists in building a multi-attribute
(composite) index on Ay, Ag, Az, with (n; X ny X ng) elements, one for each com-
bination of the values of the attributes A;, with the rid-lists of the records that have
those three values in the three attributes. The total number of RIDs is now Nygc(R).
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This solution is sufficient to find the rid-lists of records that satisfy an exact match
query.

For a partial match query, this type of index cannot be always used, as in the case
of a condition that uses one attribute different from A1, or both the attributes Ay, As.
If, instead, the query uses only the first two attributes A;, As, the index can be used
by making the union of n3 disjoint lists, associated with consecutive elements of the
index, which becomes (n3 x ng) if the query uses only A;.

To ensure the property that for all queries that use any combination of the three
attributes Ay, Ag, As it is sufficient to merge the rid-lists of consecutive elements,
then indexes are needed for the three combinations

(A1A2A3), (A2A3A,), (A3A1 As)

Similarly, for four attributes A, Ao, A3, A4 the indexes are needed for the following
six combinations

(A1A2A3A4), (A2A3AL A ), (A3AsA1As), (AsA1A2A3), (A2 AsA1 Ag), (A3 A1 A As)

In general, for n attributes and ¢ = [n/2], to ensure that for any combination of
1 attributes, with 1 < 7 < n, an index exists to execute the query, their number is

( " ) [Knuth, 1973].

6.5 Summary

1. An index is the standard data structure used by all DBMSs to speed up the search
for records in a table that satisfy a condition on one or more non-key attributes.

2. An index can be added or removed without any effects on the organization of the
relations.

3. An index can be implemented as an inverted or bitmap index.

Bibliographic Notes

Index organizations are presented in every book cited in the bibliographic notes of
Chapter 1.

Algorithms to choose indexes for a relational database have been proposed by many
authors. For an introduction to the problem see [Albano, 1992] and for specific pro-
posals see [Finkelstein et al., 1988; Chaudhuri and Narasayya, 1997].

Exercises

Exercise 6.1 To speed up the search for records in a table with an equality predicate
on a non-key attribute A, and selectivity factor f;, is preferable:

1. A sequential organization on a key attribute.
2. A static hash organization on a key attribute.
3. An inverted index on A.

Briefly justify the answer and give an estimate of query execution cost in all three
cases.
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Exercise 6.2 Consider a relation R with Nyec records stored in Npag of a heap file,
and an inverted index on the attribute A with Nyey integer values in the range Amin
and Amax. Show two different execution plans to evaluate a non-key range query with
condition k1 < A < ko, and their estimated cost. Explain in which case one is better
than the other.

Exercise 6.3 Consider the relation R(A, B, C, D, E) with the key A, and each at-
tribute a string 10 characters long. Assume that Nyqq(R) = 10000, Nyec = 100000
and Dpag = 500. Consider the following query:

SELECT A
FROM R
ORDERBY A

,B

a. Estimate the cost of a plan without the use of indexes.

b. Estimate the cost of a plan with the use of a clustered index on B stored with a
BT —tree with Njgar = 2500.

c. Estimate the cost of a plan with the use of a clustered index on A stored with a
BT —tree with Njgar = 2500.

d. Estimate the cost of a plan with the use of a clustered index on A, B stored with a
BT —tree with Njgar = 5000.

Exercise 6.4 Which of the following SQL queries execution takes less advantage
from the presence of a multi-attribute index on R with A as the first attribute and B
as the second attribute?

SELECT « FROM R WHERE A = 10;
SELECT * FROM R WHERE B = 20;
SELECT « FROM R WHERE A < B;
SELECT « FROM R WHERE A < C;
SELECT « FROM R WHERE C < 100 AND A = 10.

A

Exercise 6.5 Discuss the advantages and disadvantages of bitmap indexes.

Exercise 6.6 Consider a relation R with an unclustred index on the numerical non-
key attribute B. Explain whether to find all records with B > 50 is always less costly
to use the index.



Chapter 7

MULTIDIMENSIONAL DATA
ORGANIZATIONS

Multidimensional or spatial data is used to represent geometric objects and their po-
sition in a multidimensional space. Examples of systems that use this type of data are:
Geographical Information Systems (GIS), Computer Aided Design and Manufactur-
ing Systems (CAD/CAM) and Multimedia Database Systems. The organizations seen
in the previous chapters are not suitable for efficient handling of these types of data.
This chapter first describes typical kinds of multidimensional data commonly used in
practice, and then presents organization techniques supporting efficient evaluation of
basic queries.

7.1 Types of Data and Queries

Let us consider multidimensional data representing points or regions in a k-dimensional
space.

The data that represents points is encountered both in applications that deal with
geographic data objects and in applications where the information to be managed
can be interpreted as spatial points for the purpose of a search. For example, the
k attributes of the records of a relation can be interpreted as coordinates of a k-
dimensional space and a table of Nye¢ record as Nygc spatial points.

Example 7.1

Consider a set of 8 records with two attributes A; and Ay of type integer, which
represent the latitude and longitude of cities, whose name will be used to denote
the corresponding record. It is assumed that the A; and Ay values are normal-
ized in the range 0 to 100 (Figure 7.1).
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City A A,
C1 10 20
Cc2 80 30
C3 40 40
C4 10 85
C5 20 85
C6 40 80
Cc7 20 55
C8 20 65

Figure 7.1: Data on cities locations

A two-dimensional representation of these points, as shown in Figure 7.2, allows
a simple geometric interpretation of exact match queries.

Az

100
° o
c4 cs °
75 c6
°
c8
°
50 c7
°
c3
°
25 c2
°
ci
Ay
25 50 75 100

Figure 7.2: Multidimensional representation of data on cities

The problems that will be considered are (a) how to partition the space in regions
that contain records that can be stored in a page, (b) how to quickly find the region
containing the points in a specified rectangular area. Another interesting query is
that to find nearest neighbors, e.g. to find a point nearest to a given one, and specific
solutions have been developed. This topic is outside the scope of this book. Interested
readers may refer to the bibliographic notes at the end of this chapter for specific
proposals.

Let us see with an example how we can proceed to divide the data space into non-
overlapping partitions of variable size. The information on the partitions (points
present in them and their location) is then usually managed with trees of different
kinds in order to facilitate search operations.

Example 7.2

Suppose that pages have a capacity 2 and we want to load the data on cities.
After the insertion of “C1” and “C2”, the insertion of “C3” requires distribut-
ing the data into two pages. To proceed let us divide the data space into non-
overlapping partitions according to the first coordinate by choosing a value of
separation d for A;: points with coordinate A; < d are inserted into a page,
those with a higher value are inserted into another one. The separator d can be
half the range size (subdivision guided by the size of the range) or the median
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value of the coordinates of the points present in the region (subdivision guided
by the values of the attribute). Suppose we choose the first policy (Figure 7.3a).

When there is a new overflow from a page during data loading, we proceed
with another split of the partition, but changing the reference coordinate, with
the logic that the splitting dimension alternates, since there are only two dimen-
sions. In general with n dimensions, the splitting dimension cycles. Therefore,
after a partition splits along axis A; then the next one will be along the axis
Ai41,and when ¢ = k, A;4+1 becomes A; again. Figure 7.3b shows the situation
after the insertion of “C4”. Then “C5” is inserted, but when “C6” is inserted, a
new split is made along Ay (Figure 7.3¢). Then “C7” is inserted, and a new split
is made along A, and finally once “C8” is inserted we obtain the situation in
Figure 7.3d.

Later we will see examples of tree structures to manage the information on the
division of the data space into non-overlapping partitions.

(@)

(b)

Az Az
100 100
o o o o
Ca C5 ° C4 C5 [ ]
75 cé 75 [+
cs e cs e
cre cre
50 50
[ J [ ]
c3 c3
[ ] [ ]
25 c2 25 c2
[ ] [ ]
c1 c1
Ay Ay
25 50 75 100 25 50 75 100
N © N @
100 100
o o o o
ca cs5 ° ca cs5 .
75 c6 75 c6
cs e cse
c7e c7re
50 50
[ ] [ ]
c3 c3
[ J [ J
25 c2 25 c2
[ ] [ ]
c1 c1
Ay As
25 50 75 100 25 50 75 100

Figure 7.3: Division of the data space into non-overlapping partitions

Let us show with an example why multi-attribute indexes do not support queries on
multidimensional data very well.

Example 7.3
Let us consider a multi-attribute index on the data in Figure 7.2 and how the
points are stored in the leaf nodes of a BT—tree with capacity 2 (Figure 7.4).
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The dotted lines indicate the linear order in which points are stored in a B —tree
and the boxes how points are stored in a multidimensional index.
Let us compare the behavior of the two solutions using the following queries:

1. Ay < 25: the BT—tree index performs very well. As we will see, the multi-
dimensional index handles such a query quite well too.

2. Ay < 25: the BT—tree index is of no use, while the multidimensional index
handles this query just as well as the previous query.

3. A1 < 25 N\ Ay < 25: both solutions perform well.

4. Nearest neighbor queries: the multidimensional index is ideal for this kind of
queries while BT —tree is not because it linearizes the 2-dimensional space
by sorting entries first by A; and then by As, and therefore in a page there
is no nearest neighbor points, as happens in the partitions of the multidimen-
sional index.

Az Az

A1l

RID

100

100

5

10 20 ...
10 85 ... 501 11 N
20 55 ... i ‘e, .
20 65 ... H - '\

40 40 ... o .
40 80
80 30

Al Al

Figure 7.4: Clustering of a multi-attribute index entries in a BT —tree vs. mul-
tidimensional index

Starting from the seventies, many organizations for multidimensional data have been
proposed, most of them to deal with point data or rectangles. The attention to the
points data management is due to the fact that this kind of data is the basic one to deal
with. The rectangles instead are important because they are often used to approximate
other geometric shapes such as polygons and irregular shapes.

In the following we present two examples of organizations for multidimensional
data: G—trees for point data and R*—tree for rectangle data.

7.2 G-trees

G—trees combine the ideas of data space partitioning and of B*—trees in an original
way: data space is divided into non-overlapping partitions of variable size identified
by an appropriate code, then a total ordering is defined for partition codes, and they
are stored in a BT —tree [Kumar, 1994]. In the following, for simplicity, we consider
only the two-dimensional case, and it is assumed that data pages may contain 2 points.

A partition code is a binary string constructed as follows (partition tree, Fig-
ure 7.5b):

— The initial region is identified by the empty string.

— With the first split along X -axis, the two partitions produced are identified with the
strings “0” and “1”. The points with 0 < x < 50 belong to the partition “0” and
those with 50 < z < 100 belong to the partition “1” (splitting by interval size).
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— When a partition of the previous step is split along the Y -axis, the new partition
codes become “00” an “01”, an so on.

— In general, when a partition R with the code S is split, the subpartition with values
less than the half interval has the code S“0” and that with values greater has the

code 5“1”.
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Figure 7.5: An example of partition coding and of a G—tree

Let us see some important properties of the partition coding:

— If a partition R has the code .S, the code of the partition from which R has been
created with one split is .S without the last bit.

— The length of the code of a partition R is the number of split made to get R from
the initial space.

— Let RegionOf (.S) be a function that maps the code S of a partition R in the coor-
dinates of the lower left and upper right vertices of the partition. For example, Re-
gionOf (“00”) = {(0,0), (50,50)} and RegionOf (“0117) = {(25, 50), (50, 100)}.

— A total ordering for the partition codes is defined as follows: S < Sg if Sj is a
prefix of So, or the first most significant bit of .Sy is less than the correspondent
one of Sy, or S7 and Sy have the same first n bits, and the (n + 1)-th bit of S is
less than the correspondent one of S5.

The sorted partition codes are stored in a BT —tree, called G—tree (Figure 7.5d). In
each element (S, p) of a leaf node (represented in the figure as Sx), S is a partition
code without subpartitions, with data stored in the page p. In each non-leaf node of
the form

(PO: Slvplv SQ)p2a DRI Sm)pm)

the usual relations among the elements of a node in a BT —tree hold, where the keys
are the codes S;.
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Let us see how to proceed for point or range search. In order to facilitate the inter-
pretation of the use that will be made of the binary string of a partition code, and of
the operations on G—tree, it is useful to associate integer encodings to the partition as
follows.

Let M be the maximum number of splits made. Each partition code less than M
bits long is padded with trailing zeros and translated into decimal (Figure 7.5c). The
decimal form of the partition codes are shown in the partition tree and in the G—tree. It
is important to note that (a) the integer encoding of partitions, as well as the partition
tree, are not part of the G-tree, and (b) they must change if the value of M changes
because of insertion or deletion of points that change the G—tree structure.

Point Search. Let M be the maximum length of the partition numbers in the G—
tree. The search of a point P with coordinates (x,y) proceeds as follows:

1. The partition tree is searched for the code Sp of the partition that contains P, if it
is present.

2. The G-tree is searched for the partition code Sp to check if P is in the associated
page.

Example 7.4

Let us search the point P = (30, 60) in the G—tree of Figure 7.5d with M = 4.
From the partition tree it is found that it could be in the region Sp = 011, i.e.

the region 6, that is in the leaf F5 of the G—tree.

Spatial Range Search. A spatial range search looks for the points P; with co-
ordinates (z;,y;) such that x1 < z; < x9 and y; < y; < o, e.g. that are in the
query region R = {(x1,v1), (x2,y2))}, identified by the coordinates of vertices in
the lower left and upper right (Figure 7.5a). The query result is found as follows:

1. The G—tree is searched for the leaf node F}, of the partition containing the lower
left vertex (1, 1) of R.

2. The G—tree is searched for the leaf node F}, of the partition containing the upper
right vertex (x2, y2) of R.

3. For each leaf from F}, to F}, (in the BT —tree the leaf nodes are sorted) the elements
S are searched such that Rg = RegionOf (.S) overlaps with the query region R. If
Rg is fully contained in R, then all points in the associated page satisfy the query,
otherwise each point in it must be examined and checked.

Example 7.5
Let us search the points in the region

R = {(35,20), (45,60)}

Using the integer encoding of partitions and the partition tree, the result is that
the lower left vertex (30,20) is in the partition 0 and the upper right vertex
(40, 60) is in the partition 6. In the G—tree the partitions 0, 4, 5 and 6 are exam-
ined in order to check if they overlap with R.
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For example, partition 0 with the code “00” corresponds to the region

Rs = {(0,0), (50,50)}

that overlaps with R. Therefore the associated page is retrieved to check which
of its points are in the query result. Partitions 4 and 5 do not overlap with R,
while partition 6 overlaps and the points in the associated page must be exam-
ined.

Point Insertion. Let M be the maximum length of the partition codes in the G-
tree. The insertion of a point P with coordinates (z, y) proceeds as follows:

1. The G—tree is searched for the leaf node F' of the partition R p that should contain
it. Let Sp be the code of Rp.

2. If Rp is not full, insert P, otherwise Rp is split in Rp, and Rp,, with codes
Sp, = Sp“0” and Sp, = Sp“1”. If the new strings have a length greater than M,
M takes the value M + 1, and the integer encoding of the partitions in Figure 7.6¢c
are changed.

3. The points in Rp and P are distributed in Rp, and Rp, (the encoding of each
point is calculated as described in Step 1 of the point search algorithm and, if it
ends with “0”, the point is inserted in Rp,, otherwise in Rp,).

4. The element (Sp, pr,) in the leaf I is replaced by (Sp,, PRp,) and (Sp,, PRp,)-
If there is an overflow, the operation proceeds as in Bt —trees.

For example, the insertion of the point P; = (70, 65) is in the partition 8 with code
“1” and the associated page has space to contain it. Instead, the insertion of the point
P, = (8,65) is in the partition 4 with code “0100”, which has no space to contain
it and a split is required and the result is shown in Figure 7.6, with the new integer
encoding of the partitions.

Point Deletion. The deletion of a point P proceeds as follows:

1. Let F' be the leaf node with the partition Rp containing P, Sp the partition code
of Rp, and S’ the partition code of R’ obtained from Rp with a split and therefore
different from Sp for the last bit only. S’ in the G—tree only if it has not yet been
split.

2. P is deleted from Rp and then two cases are considered:

(a) R’ has been split: if the partition Rp becomes empty, then Sp is deleted from
the G—tree, otherwise the operation terminates.

(b) R’ has not been split: if the two partition cannot be merged because the num-
ber of their points is greater than the page capacity, the operation terminates.
Otherwise the two partition are merged, Sp and S’ are deleted from the tree,
and a new binary string S”, obtained by removing the last bits from Sp, is
inserted.

For example, if the points P} and P; are deleted from the G—tree in Figure 7.6, we
return to the situation of Figure 7.5.
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Figure 7.6: Point insertion in a partition to split

7.3 R*—trees*

A R*—tree, a variant of the R—tree, is a dynamic tree structure perfectly balanced as a
BT —tree, for the retrieval of multidimensional data according to its spatial position.

For simplicity, we will consider the two-dimensional case only, and the data con-
sists of rectangles described by the coordinates of the bottom left and the top right
vertices. For objects of different shapes, the rectangle is the minimum one that con-
tains them.

Terminal nodes of a R*—tree contain elements of the form (R;, O;), where R; is
the rectangular data and O; is a reference to the data nodes. The nonterminal nodes
contain elements of type (R;, p;), where p; is a reference to the root of a subtree, and
R; is the minimum bounding rectangle containing all rectangles associated with the
child nodes. For simplicity, in what follows we denote O; as *, and we will call data
region a rectangular data, and region a minimum bounding rectangle.

Let M be the maximum number of items that can be stored in a node and m
the minimum number of items allowed in a node, the practice suggests to put m =
0,4M. A R*-tree satisfies the following properties:

— The root node has at least two children unless it is the only node in the tree.
— Each node has a number of elements between m and M unless it is the root node.
— All leaf nodes are at the same level.
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Example 7.6
Let us consider the rectangles in Figure 7.7a. The rectangles with the edges in
bold are data regions, while the others are regions.
Figure 7.7b shows a R*—tree with M =3 and m = 2 for the data of Figure 7.7a.
Note that the regions R22 and R23 contain the data region R6, but R23 is the
only parent region of R6 (Figure 7.7a). The choice of the parent region will be
discussed later.

| R2 |

| Rl R21 :

R R3 | |
N Ry
| re] | R |
| | Re | |
e L
| R |

(@)
| R21 [ R22 [R23 ||
\ R1, \ R2,+ \ R3,% \ \ R4,% \ R8,* \ \ \ R5, \ R6, \ R7,+ \

(b)

Figure 7.7: An example of R*-tree

There are some substantial differences between the R*—trees and B —trees:

— The elements of the nodes of a BT —tree are sorted, while on those of a R*—tree
there is no sort order.

— The regions associated with different elements of the same level may overlap in
a R*—tree, unlike the intervals associated with the elements of a BT —tree that do
not overlap.

We will see later how these differences have an impact on the way we operate on a
R*—tree.

The main operation on R*—trees, is to find all data regions that overlap to a given
rectangular region R.

Search Overlapping Data Regions. The search of the data regions overlap-
ping with R proceeds as follows. The root is visited in order to look for the elements
(R;, p;) with R; that overlaps with R. For each element (R;, p;) found, the search
proceeds in a similar way in the subtrees rooted at p;. When a leaf node is reached,
the data regions I?; in the search result are those with R?; that overlaps with R.
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Example 7.7
Let R be the rectangular region with dotted border in Figure 7.8.

During the search of overlapping data regions, in the root is found that R21
and R23 overlap R. Among the descendants of R21, R3 overlaps I, while among
the descendants of R23 both R5 and R7 overlap R. Therefore the search result is
R3, R5, and R7.
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Figure 7.8: An example of search for overlapping data regions

The operations that change the tree, such as insertions and deletions of objects, are
more complex and for a detailed description of them see the bibliographic notes.

Insertion. Let S be a new data region to insert in the tree. The operation is similar
to inserting a key in a BT —tree since S is stored into a leaf node, and if there is an
overflow, the node will be split into two nodes. In the worst case the division can
propagate to the parent node up to the root. But there is a fundamental difference
between the operations in the two types of trees.

In Bt —trees there is a single node in which to insert a new element, because the
values of the keys in the nodes at the same level partition the domain of the key. In
the case of R*— trees, since the regions in different internal nodes at the same level
may overlap, the new data region .S may overlaps with more of them, and so it could
be inserted in more leaf nodes with a different parent node.

The choice of the region in an internal node can be made according to the degree of
overlap with S. For example, one can choose the one that needs the smallest increase
in the area to contain S. After having selected the leaf node N where to insert 5, if
an overflow does not occur, the region is recalculated and its value propagates in the
parent node. Otherwise, two cases are considered:

1. Forced Reinsert. If this is the first overflow from a leaf node, it is not split; instead
p of the (M + 1) entries are removed from the node and reinserted in the tree. Ex-
periments suggest that p should be about 30% of the maximal number of entries
per node, among those with the center at a greater distance from the center of the
region. This way of proceeding can avoid splitting the node, because the data re-
gions are placed in other nodes, and constitutes a form of dynamic reorganization
of the tree.
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2. Node Splitting. After the first overflow, the (M + 1) elements are divided between
two nodes, and two new elements are inserted in the parent node, and the process
goes on to propagate the effects. The problem that arises is how to divide the ele-
ments of a node because different criteria can be used. In R*—trees, the subdivision
that produces regions with minimum total perimeter is selected.

Example 7.8

Let us consider the Figure 7.7a, and assume to insert the data region S (Fig-
ure 7.9a). The process starts with the root node of the R*—tree in Figure 7.9c.
Let the region R21 be selected for the insertion.

Following the associated pointer, the leaf node to the left is considered, and
since this node does not have enough space to contain S an overflow occurs.
Being the first, we proceed with the reinsertion of R1. The region R21 is updated
(not shown in the figure) and the reinsertion takes place in the same leaf node,
causing another overflow and then a subdivision. Suppose that we get {R1, S}
and {R2, R3}.

Let R24 and R25 be the regions containing (R1, S) and (R2, R3) (Figure 7.9b).
Consequently, two new elements have to be inserted into the root node to replace
R21 (Figure 7.9¢).

Since in the root node there is not enough space to contain four elements, there
is an overflow. In the root the reinsertion it is not applied, but a subdivision is
made. The result is that the old root node is replaced by two new nodes, one
containing (R24, R25) and the other (R22, R23). Let R26 be the region containing
(R24, R25) and R27 be the region containing (R22, R23). A new root is added
with elements R26 and R27 (Figure 7.9d).
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Figure 7.9: Example of a rectangle insertion
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Deletion. To delete a data region from a R*—tree, if the leaf node does not become
underfull, it is checked whether the region to which it belongs can be reduced in size.
If so, the adjustment is propagated upwards. Otherwise, instead of proceeding as in
BT —trees, it is preferred to remove the tree node, update the parent nodes and reinsert
all its elements.

7.4 Summary

1. Multidimensional data is used to represent geometric objects such as points, seg-
ments, rectangles, polygons, and their position in a multidimensional space. They
require appropriate storage structures to allow searches for points, intervals, for the
nearest neighbor and partial match queries. Many solutions have been proposed
and in this chapter we discussed only two of them: G—trees and R*—trees.

2. Multidimensional data is encountered in relational DBMSs, for a multi-attribute
search by interpreting the tuples of a relation as points in a space with attributes
that correspond to the dimensions, and in systems for text or image retrieval de-
scribed by a set of features.

3. Structures for multidimensional data are usually based on the idea of recursively
partitioning the space into regions of decreasing size that contain at most the
amount of data stored in a page. To facilitate search operations, information on
the regions are organized using various types of trees, where the nodes represent
regions and their children a partition of the region into smaller ones.

4. G-trees are an example of balanced trees to represent points of a k-dimensional
space. They combine the ideas of data space partitioning and of BT —trees: the data
space is partitioned into regions of varying dimensions identified by an appropriate
code on which there is a total ordering and the set of codes is organized as a B+ —
tree.

5. The R*-trees are the most popular structure used by commercial DBMS exten-
sions dedicated to multidimensional data.

Bibliographic Notes

Numerous solutions have been proposed to treat multidimensional data. For an exten-
sive review, which includes other structures not considered in this chapter, see [Gaede
and Giinther, 1998] and the book [Samet, 1990].

The G—tree is presented in [Kumar, 1994], the R—tree was proposet in [Guttman,
1984] and R*—tree in [Beckmann et al., 1990]. For a survey of all these structures see
also [Yu and Meng, 1998].

Other interesting solutions for multidimensional data are the grid file [Nievergelt
et al., 1984] and U B— tree [Ramsak et al., 2000].

Exercises
Exercise 7.1 Answer the following questions briefly:

— Explain the difference between a multi-attribute index stored in a B+ —tree and a
multidimensional organization.

— Describe some examples of spatial queries.
— Describe some examples of nearest neighbor queries.
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Exercise 7.2 Show the G-tree in Figure 7.5 after inserting the point (30, 30).
Exercise 7.3 Show the G-tree in Figure 7.5 after the deletion of the point (80, 30).

Exercise 7.4 Consider the R—tree shown in Figure 7.9d, and answer the following
questions.

1. Give an example of search of a data region that requires a visit of both the R26 and
R27 subtrees.

2. Give an example of a data region contained in both R26 and R27, and is inserted
into R27.
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Chapter 8

ACCESS METHODS
MANAGEMENT

Once the managers of the permanent memory, buffer and storage structures have been
implemented, with the Access Methods Manager there is a first version of a relational
Storage Engine, although it lacks transactions and concurrency. The Access Methods
Manager provides to the Relational Engine the operators used by its modules to
execute the commands for the definition and use of databases.

8.1 The Storage Engine

As a programming language transforms a computer into an abstract machine whose
characteristics and functionalities are mainly determined by those of the program-
ming language, so will a language to define and use databases transforms a computer,
and in particular its file management system, into an abstract database machine,
called the database management system, whose characteristics and functionalities
will depend mainly on those of the adopted data model.

An abstract database machine is normally divided into two parts: an abstract ma-
chine for the logical data model, called the Relational Engine, and an abstract ma-
chine for the physical data model, called the Storage Engine.

The Relational Engine includes modules to support the execution of SQL com-
mands, by interacting with the Storage Engine, which includes modules to execute
the operations on data stored in the permanent memory.

Normally the DBMS storage engine is not accessible to the user, who will interact
with the relational engine. An example of a system in which this structure is clearly
shown is System R, a relational DBMS prototype developed at the IBM scientific
center in San Jose, from which DB2 was then produced. This system has a relational
engine called a Relational Data System (RDS) and a storage engine called a Rela-
tional Storage System (RSS).

While the interface of the relational engine depends on the data model features,
the interface of the storage engine depends on the data structures used in permanent
memory. Although in principle it is possible to isolate a set of data structures to define
a storage engine suitable to the functionality of a engine for any of the data models, in
systems in use this does not occur because each of them adopt solutions for a specific
data model.

To give a better idea of the interface of a storage engine, we will consider the case
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of the relational system JRS, which stores relations in heap files and provides B+—
tree indexes to facilitate data retrieval. The operators on data exported by the storage
engine are procedural and can be grouped into the following categories:

— Operators to create databases.
— Operators to start and to end a transaction:

— beginTransaction: null — Transld
to specify the beginning of a transaction. The operator returns the system gen-
erated transaction identifier.

— commit: Transld — null
to specify the successful termination of a transaction.

— abort: Transld — null
to specify the unsuccessful termination of a transaction with the request to
abort it.

— Operators on heap files and indexes.

— Operators about access methods available for each relation. Access methods are
ways of retrieving records from a table and consist of either a heap file scan or a
direct access using their RID obtained by an index scan with a search condition.

These operators are used by the relational engine to implement the system function-
ality. For example, the query optimizer translates a SQL query into a physical query
plan, in which each node is the algorithm that uses the storage engine operators to
evaluate the corresponding relational algebra operator.

Transactions and physical query plans will be discussed in forthcoming chapters.

8.2 Operators on Databases

The JRS storage engine stores a database, files and indexes, in a folder with the
following operators:

— createDB: Path x BdName x Transld — null
creates a database in the path specified.

— createHeapFile: Path x BdName X heapFileName x Transld — null
creates a heap file in the database in the path specified.

— createlndex: Path x BdName X IndexName X heapFileName X Attribute x
Ord x Unique x Transld — null
creates an index on a relation attribute, a key if Unique = true. The index is sorted by
default ascending, if Ord is not specified as desc. An index can be built on multiple
attributes, and several indexes can be defined on a relation.

A database, an index or a heap file are deleted with the operators:

— dropDB: Path x BdName x Transld — null
— dropIndex: Path x BdName X IndexName X Transld — null
— dropHeapFile: Path x BdName x heapFileName x Transld — null

8.3 Operators on Heap Files

A database table is stored in a heap file on which there are operators to insert, delete,
retrieve or update records with a specified RID, or to get the number of pages used
and the number of the records.
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— HF _insertRecord: Record — RID

— HF deleteRecord: RID — null

— HF _getRecord: RID — Record

— HF _updateRecord: RID x FieldNum x NewField — null

— HF _getNPage: null — int
HF _getNRec: null — int

A table is a set of records where each record contains the same number of fields and
can have a variable-length. As we will see later, a heap file supports a scan operation
to step through all the records in the file one at a time.

8.4 Operators on Indexes

An index is a set of records of type Entry organized as Bt—tree. An Entry has two
attributes Value and RID. The Value is the search key and the RID is the identifier of the
record with the search key value.

The operators available on indexes are those to insert or delete elements, or to get
data about the Bt—tree used to store them, such as the number of leaves, minimum
and maximum search key Value.

— LinsertEntry: Value X RID — null
— I deleteEntry: Value X RID — null
— I_getNkey: null — int

1_getNleaf: null — int
— [_getMin: null — Value

I_getMax: null — Value

An index provides a way to efficiently retrieve all records that satisfy a condition on
the search key, through operators that we will see later.

8.5 Access Method Operators

The Access Methods Manager provides the operators to transfer data between perma-
nent memory and main memory in order to answer a query on a database. Permanent
data are organized as collections of records, stored in heap files, and indexes are
optional auxiliary data structures associated with a collection of records. An index
consists of a collection of records of the form (key value, RID), where key value is a
value for the search key of the index, and RID is the identifier of a record in the rela-
tion being indexed. Any number of indexes can be defined on a relation, and a search
key can be multi-attribute. The operators provided by the Access Methods Manager
are used to implement the operators of physical query plans generated by the query
optimizer.

Records of a heap file or of an index are accessed by scans. A heap file scan oper-
ator simply reads each record one after the other, while an index scan provides a way
to efficiently retrieve the RID of a heap file records with a search by key values in a
given range.

The records of a heap file can be retrieved by a serial scan or directly using their
RID obtained by an index scan with a search condition.

A heap file or index scan operation is implemented as an iterator, also called cur-
sor, which is an object with methods that allow a consumer of the operation to get the
result one record at a time. The iterator is created with the function open, and has the
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methods (a) isDone, to know if there are records to returns, (b) getCurrent, to return a
record, (c) next, to find the next record, and (d) close to end the operations.
When a heap file iterator is created, it is possible to specify the RID of the first
record to return. Instead, when an index iterator is created a key range is specified.
Once an iterator C' is opened, a scan is made with the following type of program:

while not C.isDone() {
Value := C.getCurrent();
.C;..n’ext()

1

Heap File Scan Operators.

HF'S open: HeapFile — ScanHeapFile
HFS _open: HeapFile X RID — ScanHeapFile

The ScanHeapFile iterator methods are:

— HFS_isDone: null — boolean
— HFS_next: null — null

— HFS_getCurrent: null — RID
— HFS_reset: null — null

— HFS _close: null — null

Index Scan Operators.
IS_open: Index x FirstValue x LastValue — Scanindex

The ScaniIndex iterator methods are::

— IS_isDone: null — boolean
— IS_next: null — null

— IS _getCurrent: null — Entry
— IS_reset: null — null

— IS_close: null — null

8.6 Examples of Query Execution Plans

Let us see some examples of programs that use access methods of the storage engine
to execute simple SQL queries. The programs show the nature of possible query exe-
cution plans that might be generated by the query optimizer of the relational engine.
However, as we will see in Chapters 11 and 12, the query optimizer does not trans-
late a SQL query in a query execution plan of this type, but in a physical plan, an
algorithm to execute a query given as a tree of physical operators. These operators
use those of the access methods to implement a particular algorithm to execute, or to
contribute to the execution, of a relational algebra operator.

Example 8.1
Let us consider the relation Students with attributes Name, StudentNo, Address
and City, and the query:
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SELECT Name
FROM Students
WHERE City = 'Pisa’;

Assuming the relation is stored in a file with the same name, the structure of a
possible program to execute the query is:

HeapFile Students = HF open(”path”, “bd"”, "’ Students”, transld);
ScanHeapFile iteratorHF = HFS_open(Students);
while ( !iteratorHF.HFS_isDone() ) {
Rid rid = iteratorHF.HFS_getCurrent();
Record theRecord = Students.HF_getRecord(rid);
if ( theRecord.getField(4).("Pisa”) )
System.out.printin(theRecord.getField(1));
iteratorHF.HFS_next();

}
Students.HF _close();
iteratorHF.HFS _close();

Example 8.2
Assuming that on Students there is an index IdxCity on the attribute City. A more
efficient program to retrieve the Pisa students’ name is:

HeapFile Students = HF open(”path”, “"bd", "’ Students”, transld);
Index indexCity = l_open(”path”, "bd”, "IdxCity”, transld);
Scanlndex iteratorindex = IS_open(indexCity, Pisa”, "’ Pisa”);
while ( !iteratorindex.IS_isDone() ) {
Rid rid = iteratorIndex.IS_getCurrent().getRid();
Record theRecord = Students.HF_getRecord(rid);
System.out.printin(theRecord.getField(1));
iteratorindex.IS_next();

interatorindex.IS_close();
Students.HF _close();
indexCity.l_close();

8.7 Summary

1. A DBMS Storage Engine provides a set of operators used by the Query Manager
to generate a query execution plan. The main abstractions provided are: creation
of databases, heap files, indexes, and to start and to end transactions.

2. The operators available on heap files are those to retrieve records using their RID.

3. The operators available on indexes are those to retrieve their elements using a
search key value.

4. An access method is a way for retrieving records from a table and consists of
either a file scan (i.e. a complete retrieval of all records) or an index scan with
a matching selection condition. An access method is implemented as an iterator,
which is an object with methods that allow a consumer of the operation to get the
result one record at a time.
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Chapter 9

TRANSACTION AND
RECOVERY MANAGEMENT

One of the most important features of a DBMS are the techniques provided for the
solution of the recovery and concurrency problems, to allow the users to assume that
each of their applications is executed both as if there were no failures, and that there
were no interferences with other applications running concurrently. The solutions
of these problems are based on the abstraction mechanism called fransaction. The
correct implementation of transactions requires some of the most sophisticated algo-
rithms and data structures of a DBMS. In this chapter we will focus on transactions
as a mechanism to protect data from failures, while in the next one we will examine
the aspects of transactions concerning the concurrency control to avoid interference.

9.1 Transactions

A database is a model of some aspect of the world to serve an explicit purpose in
providing information about that aspect of the world being modeled. In general, there
are rules defined in the database schema, called static integrity constraints, that must
be satisfied by all database states, and others, called dynamic integrity constraints
that restrict allowable state transitions.

Definition 9.1 Consistent State

A consistent state of the database is a state in which all integrity constraints
are satisfied.

When an event occurs in the real world that changes the modeled reality state, to en-
sure that the database state changes in a corresponding way, a mechanism to properly
group operations on the database into atomic units of work, called transactions is
necessary.

We assume that a transaction is correct, that is, it causes the database to change
from one consistent state to another consistent state when performed alone. The
DBMS must guarantee that this property holds even if there is a system failure and
when the transaction is performed concurrently with other transactions, by avoiding
interferences that affect their correctness.

The following example shows why the transactions mechanism is necessary to
protect a database from failures.
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Example 9.1

Consider an application program to manage flight reservations for an airline
company. To reserve a flight from the city C to C's with a connecting flight at
(s, two different reservations must be made: one for the flight from C; to Cy,
and another for the flight from C'; to C's. Let us assume that one of the integrity
constraints is that the sum of the available and reserved seats on a flight does
not exceed the number of seats on the flight. Therefore, the following actions
should be undertaken:

1. Decrease by one the available seats on the flight from C; to Cs.
2. Increase by one the reserved seats on the flight from C; to Cs.
3. Decrease by one the available seats on the flight from Cs to Cs.
4. Increase by one the reserved seats on the flight from C to C's.

In the time interval between steps 2 and 3, although the database is in a consis-
tent state, if the application is interrupted due to some kind of failure, the state of
the database would be incorrect, since such a state would not be in accordance
with the user’s intentions. In fact the application should reserve both flights, or
none of them, to model a correct situation.

Let us present the concept of transaction both from the programmer’s point of view
and from the system’s point of view.

9.1.1 Transactions from the Programmer’s Point of View

A DBMS provides a programming abstraction called a transaction, which groups
together a set of instructions that read and write data. In this context the term trans-
action is used instead for the execution of a user program. Different executions of the
same program produce different transactions.

Definition 9.2 A transaction is a sequence of operations on the database
and on temporary data, with the following properties:

Atomicity Only transactions terminated normally (committed transac-
tions) change the database; if a transaction execution is inter-
rupted because of a failure (aborted transaction), the state of
the database must remain unchanged as if no operation of the
interrupted transaction had occurred.

Isolation ~ When a transaction is executed concurrently with others, the
final effect must be the same as if it was executed alone.

Durability The effects of committed transactions on the database survive
system and media failures, i.e. commitment is an irrevocable
act.

The acronym ACID is frequently used to refer to the following four properties of trans-
actions: Aromicity, Consistency, Isolation, and Durability. Among these properties,
atomicity, durability and isolation are provided by a DBMS. Consistency cannot be
ensured by the system when the integrity constraints are not declared in the schema.
However, assuming that each transaction program maintains the consistency of the
database, the concurrent execution of the transactions by a DBMS also maintain con-
sistency due to the isolation property.
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The isolation property is sometime called the serializability property: when a trans-
action is executed concurrently with others, the final effect must be the same as a
serial execution of committed transactions, i.e. the DBMS behaves as if it executes
the transactions one at a time.

The DBMS module that guarantees the properties of atomicity and durability, in
order to protect the database from different kinds of failures, is called the Transaction
and Recovery Manager. The isolation property, on the other hand, is guaranteed by
the Concurrency Manager, which will be discussed in the next chapter.

When studying transactions, we abstract from the specific language in which they
are written. The same considerations apply when a programming language with database
operators is used, as well as when a transaction is a set of SQL statements terminated
by a COMMIT or ROLLBACK command.

Example 9.2
Suppose we have a database with two relations

CheckingAccounts(Number, Balance)
SavingAccounts(Number, Balance)

Figure 9.1 shows a program to transfer a money amount from a saving account
to a checking account. The ROLLBACK command signals to the DBMS that the
transaction must be undone, while the COMMIT command signals to the DBMS
to finalize the changes.

9.1.2 Transactions from the DBMS’s Point of View

Although a transaction performs many operations on the data retrieved by the database,
a DBMS only “sees” the read and write operations on its data. A write operation up-

dates a page in the buffer, but does not cause an immediate transfer of the page to

the permanent memory, as we will show later. For this reason, if for some kind of

failure the content of the buffer is lost, the updates might not have been written to

the database. To correct this situation, the DBMS will have to take special preventive

measures.

Definition 9.3

A transaction for the DBMS is a sequence of read and write operations which
start and end with the following transaction operations:

— beginTransaction, signals the beginning of the transaction;

— commit, signals the successful termination of the transaction, and re-
quires the system to make its updates durable;

— abort, signals the abnormal termination of the transaction, and requires
the system to undo its updates.

The transaction operations are not necessarily part of the user’s code: beginTransac-
tion and commit could be issued automatically at the beginning and the end of the
program, while abort could be automatically generated by the concurrency manager.
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program MoneyTransfer;
var
exec sql begin declare section
xAmount, Amount, xBalance: integer;
Number, FromAccount, ToAccount: array [1..6] of char;
exec sql end declare section

begin
exec sql connect “Userld” identified by “Password”;
{Input data is read}
writeln("Write Amount, Withdrawals Account, Deposit Account’);
read(Amount, FromAccount, ToAccount);
exec sql
select Balance into :xBalance
from SavingAccounts
where Number= :FromAccount;
if xBalance < Amount
then
begin
writeIn(’Insufficient Balance’); rollback;
end
else
begin
exec sql
update SavingAccounts
set Balance = :xBalance — :Amount
where Number = :FromAccount;
exec sql
update CheckingAccounts
set Balance = :xBalance + :Amount
where Number = :ToAccount;
end;
if sglcode = 0 then commit else rollback
end;
end {program}.

Figure 9.1: An example of transaction
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The execution of the commit operation does not guarantee the successful termination
of the transaction, because it is possible that the transaction updates cannot be written
to the permanent memory, and therefore it will be aborted, as we will see in the
following. Figure 9.2 shows the different states of a transaction execution.

read
write « PARTIALLY
> COMMITTED
T FAILED ABORTED
begin transaction

Figure 9.2: State transition diagram for transaction execution

Definition 9.4 Transaction State

— A transaction enters into the active state immediately after it starts exe-
cution, where it stays while it is executing.

— A transaction moves to the partially committed state when it ends.

— A transaction moves to the committed state if it has been processed suc-
cessfully and all its updates on the database have been made durable.

— A transaction moves to the failed state if it cannot be committed or it has
been interrupted after a transaction failure while in the active state.

— A transaction moves to the aborted state if it has been interrupted and all
its updates on the database have been undone.

A transaction is said to have terminated if it has either committed or aborted.

9.2 Types of Failures

A centralized database can become inconsistent because of the following types of
failures: transaction failure, system failure or media failure. We assume that the oc-
currence of a failure is always detected, and this causes:

— the immediate interruption of a transaction or of the whole system, depending on
the type of failure;

— the execution of specific recovery procedures to ensure that the database only con-
tains the updates produced by committed transactions.

Definition 9.5 Transaction Failure

A transaction failure is an interruption of a transaction which does not dam-
age the content of either the buffer or the permanent memory.

A transaction can be interrupted (i.e., it can fail) because (a) the program has been
coded in such a way that if certain conditions are detected then an abort must be is-
sued, (b) the DBMS detects a violation by the transaction of some integrity constraint
or access right, or (c) the concurrency manager decided to abort the transaction since
it was involved in a deadlock.
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Definition 9.6 System Failure

A system failure is an interruption (crash) of the system (either the DBMS
or the OS) in which the content of the buffer is lost, but the content of the
permanent memory remains intact.

When a system crash occurs, the DBMS is restarted, automatically or by an operator.

Definition 9.7 Media Failure

A media failure (distaster or catastrophe), is an interruption of the DBMS
in which the content of the permanent memory is corrupted or lost.

When a media failure occurs, the recovery manager uses a backup to restore the
database.

9.3 Database System Model

A view of the components of a centralized DBMS, already presented in general terms,
is shown again in Figure 9.3 with an emphasis on some aspects specific to transaction
management.

DBMS
saL RELATIONAL ENGINE

COMMANDS

< STORAGE ENGINE
ACCESS METHODS

DATABASE MANAGER
—
f—ou-—] CONCURRENCY |_ [ STORAGE STRUCTURES TRANSACTION

LOG MANAGER MANAGER AND
~———— RECOVERY
BUFFER
~— MANAGER MANAGER
DB BACKUP
PERM?A";\IE\:‘LTGI\EASMORY

PERMANENT

MEMORY

Figure 9.3: Model of a DBMS

To guarantee the atomicity and durability properties of transactions, the permanent
memory consists of three main components: the database, and a set of auxiliary data
(Log and DB Backup) used by the recovery procedure in the case of failures. The
database, log and backup are usually stored on distinct physical devices. Moreover,
since the log files pages are managed with a different algorithm from that used for
the database pages, the systems use different buffers for these two types of pages.

To simplify the description of the system, we will suppose that transactions update
pages, and not records, which are usually smaller than pages, as it happen in real
situations.

The Transaction and Recovery Manager performs the following tasks: (a) the ex-
ecution of a read, write, commit and abort operation on behalf of transactions; (b)
the management of the log; (c) the execution of a restart command after a system
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failure, that guarantees that the database only contains the updates of the successfully
terminated transactions.

In the next sections the data structures and algorithms used by the recovery man-
ager will be discussed. To simplify the presentation we assume that:

1. The database is just a set of pages.
2. Each update operation affects a single page.

3. The operation of transferring a page from the buffer to the permanent memory is
an atomic operation.

4. If different transactions are concurrently in execution, they read and write dif-
ferent pages. We will discuss in the next chapter the case of conflicts between
transactions accessing the same pages.

Next section presents data protection, then Section 9.5 presents classes of recovery
algorithms, Section 9.6 presents the recovery manager operators to deal with trans-
action and system failures, and Section 9.7 presents the recovery manager algorithms
for system and media failures.

9.4 Data Protection

We have already discussed how the database can be in an incorrect state due to a
transaction, system or media failure. The different techniques that are used in these
situations share the common principle of redundancy: to protect a database the DBMS
maintains some redundant information during normal execution of transactions so
that in the case of a failure it can reconstruct the most recent database state before the
occurrence of the failure.

Definition 9.8 Recovery

The recovery is the process that restores the database to the consistent state
that existed before the failure.

We now discuss the main additional information that make possible the recovery of a
database.

Database Backup. DBMSs provide facilities for periodically making a backup
copy of the database (database dump) onto some form of tertiary storage.

Log. During the normal use, the history of the operations performed on the database
from the last backup is stored in the log.
For each transaction 7;, the following information is written to the log:

— When the transaction starts, the record (begin, T;).
— When the transaction commits, the record (commit, T}).
— When the transaction aborts, the record (abort, T;).

— When the transaction modifies the page P; the record (W, T;, P;, BI, AI), where
BI is the old value of the page (before image) and Al is the new version of the
page (after image)'.

1. In real systems the records written to the log are more compact than the new or old version of the
page.
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Operation Data Information in the log

beginTransaction (begin, 1)

r[A] A =50 No record written to the log

w[A] A=20 (W,1,A,50,20) — Old and new
value of A are written to the log

r[B] B =50 No record written to the log

w|[B] B =80 (W, 1, B, 50, 80)

commit (commit, 1)

Figure 9.4: The operations of a transaction and the corresponding records in the log

Each log record is identified through the so called LSN (Log Sequence Number), that
is assigned in a strictly increasing order. A LSN could be, for instance, a serial number
of the position of the first character of the record in the file.

Figure 9.4 shows a simple example of the information written to the log by the
operations of a transaction, assuming for simplicity that A and B are pages containing
just an integer value.

The exact content of the log depends on the algorithms of the transaction manager,
which we will discuss later. For instance, in some cases it is not necessary to write
both the before and the after image of a modified page.

In general a log is stored in a file buffered for efficiency reasons. The log has pages
on its own which are only written to the permanent memory when they become full
in the buffer, and not when a single record is written to the page. For this reason,
the transaction manager sometime forces the writing of a log page to the permanent
memory, to prevent data loss in the case of system failure. For simplicity, we assume
for now that the log is not buffered and each record is immediately written to the
permanent memory.

Undo and Redo Algorithms. A database update changes a page in the buffer,
and only after some time the page may be written back to the permanent memory.
Recovery algorithms differ in the time when the system transfers the pages updated
by a transaction to the permanent memory.

We say that a recovery algorithm requires an undo if an update of some uncom-
mitted transaction is stored in the database. Should a transaction or a system failure
occur, the recovery algorithm must undo the updates by copying the before-image of
the page from the log to the database (Figure 9.5a).

We say that a recovery algorithm requires redo if a transaction is committed before
all of its updates are stored in the database. Should a system failure occur after the
transaction commits but before the updates are stored in the database, the recovery
algorithm must redo the updates by copying the after-image of the page from the log
to the database (Figure 9.5b).

A failure can happen also during the execution of a recovery procedure, and this
requires the restart of the procedure. This means that for such procedures the idem-
potency property must hold. That is, even if the operation is executed multiple times
the effect is the same as if it is executed once. For the assumption that the entire page
is replaced, this property is automatically fulfilled.

Checkpoint. To reduce the work performed by a recovery procedure in the case
of system failure, another information is written to the log, the so called checkpoint
(CKP) event.
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Figure 9.5: Undo and Redo algorithms

In the literature different methods of performing and recording checkpoints have been
discussed. Here we show the two methods most commonly used.

The first one is based on the hypothesis that a checkpoint should mark a state
in which the log is completely aligned with a correct state of the database (commit-
consistent checkpoint). In this case, after either a constant period of time, or a constant
number of records written to the log, the system performs the following steps.

Definition 9.9 Commit-consistent checkpoint

When the checkpoint procedure starts, the following actions are performed:

1. The activation of new transactions is suspended.
2. The systems waits for the completion of all active transactions.

3. All pages present in the buffer which have been modified are written to
the permanent memory and the relevant records are written to the log
(flush operation).

4. The CKP record is written to the log.
A pointer to the CKP record is stored in a special file, called restart file.
6. The system allows the activation of new transactions.

bt

In the third step, the transferring of the modified pages to the permanent memory is
forced so that all the transactions terminated before the checkpoint have their updates
made durable in the database, and must not be redo in the case of system failures.

This strategy is simple to i