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Abstract

We consider the capacitated minimum cost flow problem on directed hypergraphs. We define
spanning hypertrees so generalizing the spanning tree of a standard graph, and show that, like in
the standard and in the generalized minimum cost flow problems, a correspondence exists between
bases and spanning hypertrees. Then, we show that, like for the network simplex algorithms for
the standard and for the generalized minimum cost flow problems, most of the computations
performed at each pivot operation have direct hypergraph interpretations.
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1. Introduction

Directed hypergraphs have been introduced quite recently in connection with differ-
ent application areas, such as propositional satisfiability [6,7,11], deductive data bases
and Leontief substitution systems [2,9].

Here, we deal with flows on hypergraphs, or Ayperflows. Flows on hypergraphs can
be considered as generalizations of the so-called generalized flows (for the main
concepts on the flows we refer to [1]). In [7], the uncapacitated minimum cost flow
problem on hypergraphs is considered, and an algorithm is proposed for the particular
case of directed hypergraphs having the ‘‘gainfree’” property. Here, the more general
capacitated minimum cost hyperflow problem is considered, and it is shown that, in
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analogy to what happens for standard minimum cost flow problems, a correspondence
exists between bases and spanning hypertrees, a generalization of spanning trees on
graphs, and that most of the computations performed by simplex like algorithms have
direct and elegant hypergraph interpretations.

In Section 2, the minimum cost hyperflow problem is presented, and the main
hypergraph theoretic concepts such as hyperpaths, hypertrees and spanning hypertrees
are introduced. In the third section, flows and potentials on spanning hypertrees are
defined, and algorithms for their computation are provided. In Section 4, a characteriza-
tion of the basis matrices in terms of spanning hypertrees is presented. Special cases of
this basis characterization are discussed in Section 5. In Section 6, as an exemplification
of the use of the concepts introduced, we present the outline of a specialized simplex
type algorithm for minimum cost hyperflow computations. Finally, in Section 7, the
results of a preliminary experimentation are reported.

2. The hypergraph minimum cost flow problem

A directed hypergraph is a pair % = (V, E), where V = {v,, v,,..., v,) is the set of
nodes, and E={e, e,,...,¢,} is the set of hyperarcs. A hyperarc e is a pair (T,, h,),
where T, C V is the rail of e and h, € V\T, is its head . Particular hyperarcs are the
headless and the tailless hyperarcs, which will be denoted as (7,, ) and (4, 4,),
respectively. The size of 2 is defined as the sum of the cardinalities of its hyperarcs:

size(#)= Y. le,l.

¢, €E

In the following, for the sake of simplicity, we shall call the directed hypergraphs simply
hypergraphs.

Given a hypergraph .7 = (V, E), a positive real multiplier u (e) associated with
each ve T,, Ve € E, and a real demand vector b associated with V, a flow on % is a
function f: E — R which satisfies the following conservation constraints:

Y fle)y— Y w(e)f(e)=b(v), YveV (conservation).
v=t,

veTl,

The flow is feasible if it satisfies the following capacity constraints, where u is an
upper capacity vector associated with E:

0<f(e)<u(e), Ve€E (capacity).

Let c(e) be the cost associated with the hyperarc ¢, Ve € E. Then the hypergraph
minimum cost flow problem is to find a feasible flow on # which minimizes the

" The directed hypergraphs presented here are a particular case of the more general dirccted hypergraphs
introduced in [3].
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function L, c(e)f(e). If A=[Ale)), Ale,),..., Ale,)] is the nXm incidence
matrix of %, where by A(e) we denote the column with elements

-ue) ifverT,
A(e)=< +1 if v=nh,,
0 otherwise,

then the problem can equivalently be stated in the following matrix formulation:

min Y c(e)f(e)?

e€E
Af=b
0<f(e)<u(e), Ve€E.

Note that A has one positive component at most in each column, then it is a
pre-Leontief matrix [12]. The fact that in A the positive component is 1 is not a loss of
generality, since it can always be obtained by scaling the variables.

If 7r(v) denotes the potential which is associated with node », and A(e) is the dual
variable associated with hyperarc ¢, then the dual problem, named the potential
problem on hypergraphs, can be formulated as follows:

max Y, b(v)w(v)— Y Ale)u(e)

vev ¢eE€EE

7(h)~ L m()m(r) —Me)<cle), Veek

veT,
AMe)=0, VegE.

We introduce next some basic hypergraph concepts. Further concepts on directed
hypergraphs can be found in [5].

2.1. Hyperpaths

A directed path P, from s to t in % is a sequence P = (1/l =
S, €15 V35 €senes €y ¥y = 1), where s€T,, h, =1 and v, efn,, }ﬁT
2,...,q.1f s=1, then P, is a directed cycle. When no directed cycle exnsts then ,/Z/ 1s
said to be cycle-free.

A directed hyperpath, 11, from the source set S to the sink ¢ in # is a minimal
cycle-free sub-hypergraph containing both the nodes in § and node ¢, and such that each
node, with the exception of the nodes in S, has exactly one entering hyperarc.

A hyperarc ¢ is said to be a permutation of a hyperarc e if T, U{h}=T,U{h,}.
A hypergraph #' is a permutation of a hypergraph # if its hyperarcs are permutations
of the hyperarcs of #Z.

2 . . - s . .
© Whenever possible, we will not define explicitly a vector as a row or a column vector, and use it in both
senses in the matrix multiplications.
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A hypergraph I1{, is said to be an undirected hyperpath from the source set S to the
sink ¢ if among its permutations one exists which is a directed hyperpath from § to .

Examples of directed and of undirected hyperpaths are shown in Fig. 1. The
undirected hyperpath, on the right, is a permutation of the directed one, on the left. Both
hyperpaths have §={1, 2} as the source set, and t=6 as the sink. Note that an
undirected hyperpath may have directed cycles.

2.2. Hypertrees

The hypergraph 9 ,=(RUN, E) is a directed hypertree (or simply hypertree)
rooted at R if: (i) it is cycle-free, (il) R NN =@, (iii) each node ¥ € N has exactly one
entering hyperarc and no hyperarc has a node of R as its head.

The set R is called the roor set of 5, while N is the set of non-roor nodes. Any
non-root node v not contained in the tail of any hyperarc of 97, is a leaf of the
hypertree. From the definition it follows that, for any v € N, there is a unique directed
hyperpath [1,, in 5.

An undirected hypertree rooted at R is any permutation of a directed hypertree
rooted at R. In the case of undirected hypertrees, a leaf is a non-root node which
belongs to exactly one hyperarc.

Property 2.1. .Z is a (un)directed hyperpath, II,, from S to t if and only if it is a
(un)directed hypertree having S as the root set and t as the unique leaf.

A directed hypertree 7, can be visited in an iterative way starting from its root set,
and exploring at each step a new hyperarc and a new node by the following procedure.

procedure VISIT(S )
begin
j=0;V =R, E'=F;
while 3 ¢ € £ such that 7, C V' do
begin
E=EN{e) j=j+ 1 e,=e; vy=h;V =V U(h}
end {while}
end {Visit}.
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VISIT(S ) returns an ordering (R, v), v,,...,%,) of the nodes of %, and an
ordering (e, €,,...,¢ q) of the hyperarcs. VISIT is the equivalent for hypertrees of the
top—down visit for standard trees, and the sequence (R, e,, v, e,, Vysee €, Vq) is a
top—down traversal of . Clearly, the sequence (R, e, Vi, €3, Vs €y, Vq) has the
property that, foreach j=1,2,...¢, he} =, and Te/ CRU{v, v,,..., V- J-

In the following, we will represent a directed hypertree by means of one of its
traversals, by writing, with a little abuse of the notation, 5, =
(R, e, v|, ey, Vysoon €4 vq). When specialized to hyperpaths, which are particular
hypertrees, this representation coincides with the one given in [11].

Similarly, an undirected hypertree %, can be represented by a sequence
(R, e, v, ¢, Vyyoen €y vq), where v, € ({he/} U Tej) and ({he,} U Tc,/)\{uj} -
RU{v,, vy,..o,v; ), j=1,2,...,q. If vEN, we shall denote by e, the (unique)
hyperarc incident to » in the unique hyperpath in 5, from R to v.

2.3. Spanning hypertrees

A spanning hypertree of # = (V, E) is an undirected hypertree 5, = (V, E;) such
that E, CFE and (T,U{h,})) LR, Ve € E\E,.

In the above definition, the property (7, U {A,}) € R Ye € E\ E; is to impose a kind
of ““minimality’’ of the root set R; in fact, if a hyperarc e exists such that (7, U {h,}) CR,
we can use it to span one of the nodes of R, and decrease by one the cardinality of the
root set. In the following, the hyperarcs in E; will be called tree hyperarcs, whereas the
ones in Ey = E\ E; will be said external hyperarcs.

Examples of spanning hypertrees are shown in Fig. 2. Note that, for a given
hypergraph with # nodes, it is | R| + | E; | = n, for all spanning hypertrees.

Given a hypergraph .# = (V, E) without isolated nodes, it is possible to construct a
spanning hypertree for it by visiting 2 as described below. Starting with R =@ and
N =@, the procedure SPANNING HYPERTREE adds a hyperarc e to the set of the tree
hyperarcs E, whenever this addition allows the visit of a new node of .Z°, that is
whenever there exists a hyperarc e such that [(7, U {A D\ (RUN)| = 1. When such a
hyperarc does not exist, the procedure selects a hyperarc whose incidence set contains at
least 2 unvisited nodes, and inserts into R all its unvisited nodes but one.

Fig. 2. Left: 7, = ({5, 6}, €10, 4. €4, 2, €3, 1, ¢6, 3), right: T = (1}, €5, 3, ¢5. 4, €2, 2, ¢,. 5, ¢4, 6).
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Procedure SPANNING HYPERTREE(#)
begin
R=§; N:=@; Ep=@; j=0, E=E V=V,
for each e€ E do Q,:=T,U{h};
begin
select ¢ € E’ such that |Q,| =min{|Q,|: e€ E', 0, # #};
select vE Q ;
if |Q,l =1then N:==NU{»}; V':=V"\{»}
else R==RU(Q\{v}); N:==NU{v} V':=V'\Q,
j=jit i e=a vi=v; Ep=E;U{al; E=E\{a}; 0,=Q,\Q, Ve€EE
until V' =0
end {Spanning hypertree).

If the elements of £’ are maintained in a heap, the algorithm can be implemented in
such a way to run in O(max{size(#), n log m}) time.

Proposition 2.1 When applied to a hypergraph # having no isolated node, SPAN-
NING HYPERTREE correctly finds a spanning hypertree for 7.

Given a hypergraph # having no isolated nodes, with incidence matrix A, let
T g =V, E;) be one of its spanning hypertrees and (R, ¢,, v, ¢,, v5,...,¢,, v,) one
of the traversals of .7,. By reordering the rows and the columns according to the order
induced by the traversal, one can rewrite the matrix A in the following canonical form
(relative to 7,):

=[]

where B isa |R| X | E;|matrix, Cis a | R| X | E, | matrix, U is a | N | X | N | matrix,
and D is a | N| X | E, | matrix (remember that | N | = | E, | by definition of hypertree,
Ey=E\E; and N={v, v,,...,v)). By construction, U is non-singular upper trian-
gular, while each column of D contains one non-zero element at least.

The spanning hypertree .7, which is associated with ©# may not be unique. In fact,
consider any external hyperarc e, and v € N be its incidence node of maximal index in
the order induced by the traversal. If we substitute e, € £, with ¢, we obtain a new
spanning hypertree, & ,(¢), which will be called the spanning hypertree induced by e.
Node v will be referred to as the critical node of T 4(e), and will be denoted by v,.

Any external hyperarc ¢ induces on F, a hypercycle, C(e), which is the union of
the unique hyperpath from R to v in 7, and the unique hyperpath from R to » in
T {e). As an example, the spanning hypertree induced by ¢, on the spanning hypertree
in the left of Fig. 2 is .7 p(ey) = ({5, 6}, e)q, 4, €., 2, €5, 1, ¢y, 3).
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3. Flows and potentials
3.1. Flows on spanning hypertrees

For any | N |-vector d(N) and any | E, |-vector f(X), there exist unique vectors
d(R) and f(T) such that f= (f(T), f(X)) is a (possibly unfeasible) flow which satisfies
the conservation constraints at the nodes, with d=(d(R), d(N)) as the demand
vector. > Both A(T) and d(R) can be determined in O(size(.#)) time by procedure
Flow given next, which visits 7 in a bottom-up fashion, starting from the leaves. Flow
has Z, 5, d(N) and f(X) as input data, while d(R) and f(T) are the outputs.

procedure Flow(7Z, 7, d(N), f{X), d(R), AT))
begin
for each v€R do d(v):=0;
for each e€ E, do
begin
for each ve (T, U {h,)) do d(v):=d(v)— A, (e)f(e)
end { for};
unvisited(v) = # of the hyperarcs of J, incident into v, Vv € V;
Queue = {leaves of T ,};
while Queue # ¢ do
begin
v:= select(Queue),
Queue = Queue\{v};
fle,)=dv)/A (e,
" recall that A,(e,)=1if v=nh, and A(e,)= —p,le,) otherwise -
for each w e (7, U {h D\ {v} do
begin ’ ’
dw) =d(w)— A, (e,)f(e,);
unvisited(w) = unvisited(w) — 1;
if unvisited(w)=1 and w & R then Queue = Queue U {w}
end { for};
end {while};
for each v€R do d(v):= —d(v)
end {Flow}.

*1f « is a n-vector and / is a subset of the set {1,2,..., n}, by a(I) we denote the subvector of «
containing all the components «(/) with i € 1, so that, if J={1,2,..., m\ 1, it is a=(a(1), «(J)), modulo a
reordering of the components. In the following, to avoid unnecessary clumsy notation, we will write AT) and
AX) instead of fE,) and f(£), respectively.
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i A
X

Important particular cases are the following:

(i) AX)=0 and d(N)=u,, where u, is the unit vector with 1 as the component
corresponding to v, and O elsewhere; in this case, ¢, = (AT), 0) is the characteristic
flow of 7, relative to v, and p,= d(R) is the root demand induced by ¢, .

(i) AX)=0 and d(N)#0; in this case it is (A7), 00=X,.,d(v)¢,, and
d(R)=1L,c yd»)p,.

(iii) f(X)=u, and d(N) =0, where u, is the unit vector with 1 as the component
corresponding to the external hyperarc e, and 0 elsewhere; in this case, ¢, = (AT), u,)
is the unit circulation on hypercycle C(e), and 8, = d(R) is the root demand induced
by 4,.

(iv) f(X) # 0 and d(N) = 0; in this case the flow returned by the procedure is called
a circulation, and it is (f(T), AXD =L, fle)y,, and d(R) =¥, f(€)8,.

Examples are provided in Fig. 3: on the left, the characteristic flow ¢s and the
corresponding root demand vector ps are given; on the right, the unit circulation ¢,
and 8,5 are shown. Here, u,(e) =1 for all pairs (v, ¢) except for (6, ¢), for which
poleg) = 2.

Let 7 =(R, e, v\, €5, ¥;,..., ¢, ¥,) be a spanning hypertree of Z, e € Ey be
one of its external hyperarcs, and v be the critical node of & ,(¢). Then, we denote by
¢! the characteristic flow of T p(€) relative to v, and by pf the corresponding root
demand vector. Clearly, these vectors can be computed directly on the hypergraph by
means of a procedure similar to Flow.

Observe that, for k €{1,..., g}, the characteristic flow ¢,, as computed by procedure
Flow satisfies the following relations:
e)=——, e)=0,Vj>k, ¢ (e)=0, VeEE,.
¢VL( A) Avk( ek) d)vk( j) J ! "’L( ) X
Similarly, if e € £, and v, = v, we have that:
bi(e) = MOk bi(e)=0,Vjzk, ¢i(c)=0VEEN]e.

Since both ¢; and ¢, determine a flow unbalance of one unit at v, € N and make
balanced all the other non-root nodes, the flow [¢¢ — ¢, | is a circulation satisfying:

b.(e) =, (e)= o b)), () =0. Ve e E\{e}.

A,(e)
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Being ¢, the circulation on hypercycle C(e) with a flow of value 1 on hyperarc e
and a flow of value O on all the other external hyperarcs, the following relations hold:

b.=4,(e)[¢.— | ad 5.=4,(e)[n. —n,] (3.1)

Thus, the circulation , is proportional to the difference between the characteristic
flows of F(e) and of I, relative to v,. That is, ¢, and 8, are the unique circulation
and the unique root demand vector needed to push a flow of value A (e) from the roots
to v,, on F(e), and a flow of value —A, (e) from the roots to v,, on T g

3.2. Potentials on spanning hypertrees

According to the linear programming terminology, we will call reduced cost of
hyperarc e the quantity c(e) + L, <y p,(e)m(v) — m(h,), where c(e) is the cost of e,
and 7 (v) is the potential of node v.

For any | E;|-cost vector ¢(T) and any |R|-vector mw(R), there exist unique
potential vector, 7w(N), and cost vector, c(X), such that the reduced cost of each
hyperarc of the hypergraph is equal to zero. The following procedure, which can be
considered as a dual version of the procedure Flow, finds the vectors w(N) and c(X)
by means of a visit of .9, from the roots to the leaves. The procedure works in
O(size(#)) time.

procedure Potential( #, T 5, (T), w(R), c(X), w(N))
begin
for each e € E, do c(e):=0;
for each v€R do
begin
for each ¢ € E such that ve (7, U {4, }) do c(e) = c(e)— A (e)m(v),
end {for};
unvisited(e) == # of the nodes of N incident to e, Ve € E;
Queue ={e: e € T, and unvisited(e) = 1},
while Quene # @ do
begin
“ select any element of Queue
e = select{ Queue),
Queue = Queue\{e};
let v be the unique unvisited node of N incident to ¢;
* visit node »
m(v) = c(e)/A,(e);
for each ¢” € E\{¢} s.t. vE(T,- U{h,.}) do
begin
cle’)=cle”)—ALe )m(v);
unvisited(e™ ) = unvisited(e” ) — 1.
if unvisited(e”)=1and ¢* & E, then Queue = Quene U {e"}
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end { for)
end {while};
for each ¢ € E, do c(e):= —c(e),
end { Potential}.

A particular important case is the one with ¢(7) =0 and 7(R) = u,; in this case we
denote by y,= c(X) the unique vector of the costs to be assigned to the external
hyperarcs in order to make their reduced cost zero when 7 = (u,,, w(N)) is the potential
vector.

v

3.3. The root matrix

Let 9, =(V, E;) be one of the spanning hypertrees of 7, rooted at R, and
A =[] be the incidence matrix of 2 in canonical form with respect to 7. We call
root matrix of # the | R|X | Ey | matrix A, =(C—BU™'D). Each column of A,
corresponds to one of the external hyperarcs, while each of its rows corresponds to one
of the roots. In the following, we shall denote by A.(#*, ¢) the column of A,
corresponding to hyperarc e, and by A,(v, *) the row of A, corresponding to the root
v. The root matrix is strictly related to the flows and potentials introduced in the
previous sections, as shown next.

Proposition 3.1. For cach e €E,, it is Ag(*, €)= 8,, where §,, as defined in Section
3.1, is the unique demand at the roots needed to have a circulation with flow equal to 1
on hyperarc e and O on all the other external hyperarcs.

e

Proof. The flow f=(f(T), f(X)) and the vector d=(d(R), d(N)) returned by
Flow(#, T, d(N), f{X), d(R), f(T)) satisfy the following relations:

ATYy=U"d(N)—-U"'Df(X) and
d(R)=(C—BU'D)f(X)+BU"d(N). (3.2)

In particular, the vector 8, corresponds to the case (N )= 0and f(X) = u_; then we
have 8, = (C — BU™'D)u,, and the proof is so completed. O

Proposition 3.2. For each vER, it is AR(v, *) =v,, where v,, as defined in Section
3.2, is the vector of the costs on the external hyperarcs which make the reduced costs
equal 1o O when the potential relative to v is fixed at value 1, and the one relative to all
the remaining roots is fixed at value 0 (the costs on the tree hyperarcs are assumed 10
be zero).

Proof. The following relations are satisfied by the vectors ¢ = ((T). ¢(X)) and
7= (m(R), m(N)) returned by Potential(Z, T 4, «(T), w(R). «(X). w(N)):

7(N)=c(T)U ' = w(R)BU™" and
(X)=o(T)YU'D+ w(R)(C—BU™'D). (3.3)
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From the definition of 7,, we have vy, = u,(C — BU™'D). The proof is so completed.
]

From Propositions 3.1 and 3.2 it follows that the root matrix can be computed by
labelling techniques, either via procedure Flow or via procedure Potential.

4. Basis characterization

Let M be the incidence matrix of a sub-hypergraph with »n nodes and » hyperarcs of
a hypergraph #. If M is non singular, then the sub-hypergraph cannot have isolated
nodes, otherwise M should have a zero row, and, as a consequence, it has a spanning
hypertree, say . Since | R| = | Ey |, M can be converted in canonical form with C
and the root matrix M, being square matrices.

We give next a basis characterization in terms of spanning hypertrees, which, in
analogy to what is done in the context of network flows with side constraints [8], is
based on a partition of the basis matrix columns into those corresponding to the
spanning hypertree’s hyperarcs and those corresponding to the external hyperarcs.

Theorem 4.1. M is a basis if and only if either R is empty or My is non singular.

Proof. Without loss of generality assume M to be in canonical form relative to 7. If
R = then E,= @ too, i.e. the sub-hypergraph associated with M is a hypertree. In this
case M reduces to U, and so it is non singular. Viceversa, if M is a non singular matrix
in upper triangular form, then R = @. Now, assume R # @, and consider the system

Bx(T) + Cx(X)
Ux(T) +Dx(X)

from which we get x(7)= —U"'"Dx(X) and (C—BU 'D)x(X)=M,x(X)=0.
Then M is non singular if and only if x(X) =0 is the unique solution of M, x(X) =0,
that is if and only if M is non singular. O
Note that the rooted spanning trees, which characterize the basis matrices in the case
of standard graphs, are particular spanning hypertrees, where the root set is a singleton.
Like M,, also its inverse, My ', can be interpreted in terms of flows and potentials.
Consider the column of Mj;' corresponding to the root v, and My '(e, v) be its
element in the row corresponding to the external hyperarc e. Since
MM (%, v) = X 8,Mz'(e.v) =u, (4.1)

ek,

Mx = =

>

from Proposition 3.1 it follows that the column My '(*, v) contains the (unique) flow
values to be imposed on the external hyperarcs in order to obtain a circulation with
demand equal to 1 at root v and O elsewhere.
Similarly, being
My (e #)Mp= 2 My'(e, v)y,=u,, (4.2)

VER
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O——>0
@l—@;%,
g

Fig. 4.

from Proposition 3.2 it follows that the row My '(e, *) contains the unique potential
values to be imposed on the roots in order to make zero all the reduced costs when the
cost of e is equal to 1, and it is O for the all the other external hyperarcs (the costs on
the tree hyperarcs are assumed to be zero).

In order to illustrate the properties of M, and of My ', let us consider the hypergraph
in Fig. 4, where p(es) =2 and p,(e) =1 otherwise.

The matrix in canonical form relative to the spanning hypertree 7, =
(1,2}, e,,3, €,, 4, €3, 5, e,, 6) is

el e? €3 e4 es €6
1 -1 +1 0 0 0 0
2 -1 0 0 0 -1 0
3 +1 -1 -1 -1 0 0
4 0 -1 -1 0 0 0
5 0 +1 0 0 +1
6 0 0 0 +1 +1 -2

and its root matrix, (C — BU™'D), is [] :;].
Consider the spanning hypertree induced by e5, 9 z(es), and its critical node, i.e. 6.
The characteristic flows ¢, and ¢¢* and their corresponding root demand vectors are:

b= (+1,0,0, +1,0,0), ¢&=(0,0,0,0, +1,0), po=(—1, —1),
ps>=(0, = 1).

As a consequence, since M(es) = +1, we get

(er-sv=a)=meo([ ][ 22]) - [6)

Similarly, by considering the spanning hypertree induced by ¢;, 7 (e4), and its
critical node, i.e. 6, we get

R KRR RE!
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The same result holds for the circulations; for instance, it is ¢, =
(-1,0,0, —1, 1, 0) and 665=(+1,0).

As far as the rows of the root matrix are concerned, being R = {1, 2} we obtain
y,=(1, =1) and vy, = (0, —2). Let us consider now M;'=[*y" {/§] If we consider
its first column, relative to root 1, from (4.1) we get (+1)8 =(+ 1)[ ]——[ ]. Simi-
larly, by con51der1ng the second column, relative to root 2 it is (—1/2)8 +
(=1/28, =[]

Fma]ly, if we consider the rows of My ', from (4.2) it is:

(+0+ (1/2m= | aa (c1/2m,- ]9

5. Special cases
5.1. Generalized flows

If # is a standard graph, i.e. |7,] <1 Ve € E, then the hypergraph network flow
model becomes the generalized network flow model [1]. In this problem, the basic
solutions are characterized in terms of good augmented trees or forests. An augmented
tree is either a tree or a tree plus an extra arc. If the extra arc exists, then the tree has a
specially designed node r, called its root; otherwise, either a headless or a tailless arc
must exist. The extra arc induces on the tree a cycle, the extra cycle. Let C be the extra
cycle, we denote by C™ and C, respectively, the set of the forward arcs and the set of
the backward arcs of C with respect to a given orientation. The cycle multiplier of C,
w(C), is defined as follows:

n(C) = ﬂ wi(( )/ TT w0
(i, pec* (i. peCc™

If 1 unit of flow is sent along C starting from a node v, then p(C) units of flow
return to this node. If u(C)> 1, C is a gainy cycle, while if u(C) <1, C is a lossy
cycle.

An augmented tree is a good augmented tree if either it is a tree, or the unique cycle
determined by the extra arc (extra cycle) is either “‘lossy’” or “‘gainy’’.

An augmented forest is a collection of node-disjoint augmented trees which span all
the nodes of the graph. The forest is a good augmented forest if each of its components
is a good augmented tree. The following characterization holds:

Theorem 5.1. Let # be a generalized graph with n nodes and n arcs. Then # is a
basis graph if and only if it is a good augmented forest,

A good augmented forest, /7, can be seen as a particular spanning hypertree, where
the set of the external hyperarcs is the set of the extra arcs. Its incidence matrix, M, is
block-diagonal, with one block for each components, and # is a basis graph iff each
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block is non singular. Let & be one of the components of /# which contains an extra
arc, and let r be its root node. Let imbalance(r) be the imbalance at r when the flow
on the extra arc of & is set to value 1. By definition of gainy and of lossy cycle, the
extra cycle of & is either lossy or gainy if and only if imbalance(r) is not zero. By the
characterization of the root matrix provided in Section 3.3, imbalance(r) is the unique
element of the (1 X 1) root matrix of 7, and so imbalance(r) is not zero if and only if
the root matrix of 9 is non singular. Then, Theorem 5.1 can be reformulated as
follows:

Theorem 5.2. Let # be a generalized graph with n nodes and n arcs. Then # is a
basis graph if and only if it is an augmented forest in which each component F has
either root set empty or the associated root matrix is non singular.

Being Theorem 5.2 a special case of Theorem 4.1, the basis characterization for
generalized flows is a special case of the basis characterization for hypergraph flows
provided in Section 4.

5.2. The gainfree Leontief substitution problem

When u(e)= +« Ve E, the minimum cost hyperflow problem is known as the
Leontief flow problem; if, in addition, the nonnegativity of the demand vector b is
imposed, then it is called a Leontief substitution flow problem. These problems have
been studied in [7] under the hypothesis that for each directed cycle
(vy, €, Vs, €5,.. ., €y Vyi| = v,) itis

4
[Tw.(e) <1 (gainfree property).

i=1
The following theorem characterizes the gainfree Leontief substitution flows in terms

of their support hypergraphs, i.e. the hypergraphs induced by the hyperarcs ¢ € E for
which f(e) > 0.

Theorem 3.3 (Jeroslow et al. [7]). If a Leontief substitution flow problem is gainfree,
then the support hypergraph of every basic feasible solution has no directed cycle.

A new characterization of gainfree Leontief substitution flow problems, which is
based on hypertrees, is provided below.

Lemma 5.1. Let # be a hypergraph with n nodes and n hyperarcs, and M be its
incidence matrix. % is a directed hypertree T, with R =9 if and only if JZ has no
directed cycles and M has exactly one positive element in each row and in cach column.
|

Proof. [t follows easily from the definition of directed hypertree. O
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Theorem 5.4. If a Leontief substitution flow problem is gainfree, then the support
hypergraph of every basic feasible solution is a directed hypertree with root set empty.

Proof. Let f be a basic feasible flow, #;=(V;, E;) its support hypergraph, M, the
correspondent incidence matrix and b, the subvector of b relative to the nodes of V,;
denote by f, the subvector of the positive components of f. Note that M, is a
submatrix of the basis matrix M corresponding to f, and that M, f, = b,> 0.

Being f,> 0 and M,f, > 0, each row of M; has at least one positive element, which
implies IVfI < | Efl since each column has one positive element at most. The columns
of M, are linearly independent because the columns of M correspondent to the
hyperarcs in Ef are l.i., belonging to a basis matrix, and their elements in the rows
corresponding to nodes not in V, are zero. Then rank(Mf)= IEf[, which implies
IV, | > | E/|, and hence | V| = | E;|. Thus, M, is a square pre-Leontief matrix with
exacly one positive element in each row and in each column. By Theorem 5.3 77, has
no directed cycles; then, by Lemma 5.1, /#; is a directed hypertree with root set
empty. O

6. A hypergraph network simplex algorithm

Here we describe a specialization of the primal simplex algorithm to hypergraphs,
which makes use of the basis characterization and of the procedures presented in
Sections 3 and 4. This algorithm is intended only as an exemplification of how the
results presented so far can be used to devise algorithms based on labelling techniques
for the hypergraph flow problem, similarly to what is done for network flow problems.

6.1. Solving linear systems

In the simplex method applied to the flow problem on hypergraphs, linear systems of
type Mf=b and mM=¢, where M is a nXn basis and b= (b(R), b(N)) and
¢ = (&(T), e( X)) are n-vectors, need to be solved.

The first system can be interpreted as the problem of finding on the sub-hypergraph
whose incidence matrix is M a flow f satisfying a given demand vector b. We show
that the solution to the system Mf= b can be obtained as the sum of a flow and of a
circulation.

Theorem 6.1. Let # be a basis hypergraph with incidence matrix M, &, be a
spanning hypertree for Z, A be the vector Mz (B(R)— X, o wb(V)p,), and f be the
unique solution to the linear system Mf=b; then:

Z_b(V)¢L,+ Z Ale)y, if R+0,

venN ¢EEy

Y b(v)o, otherwise.

veEN
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Proof. When R # @}, by simple manipulations one gets:
AT)=—-U"'Df(X) + U "b(N),
F(X)=(C-BU'D) (B(R) —BU""B(N)) = My '(b(R) — BU'B(N)).

From (3.2), by recalling the definitions of characteristic flow and of circulation, one
gets f=(AT), AXN=L,c WP, + L, g, A(e)y,, where A = My "(b(R) —
¥, e vb(v)p,). The case in which R = is trivial. O

From Theorem 6.1 it follows that, given My', the linear system Mf=b can be
solved directly on the hypergraph; in fact the following algorithm, which uses procedure
Flow as a subroutine, allows one to solve the system in O(max{| R | 2 size(#)) time.
Only the case R # @ is considered; in fact, when R =@, f can be easily computed by
procedure Flow alone, since no external hyperarc exists.

procedure Primal(.%, Ty, Mz', b, f)
begin
Flow(#, T, b(N), 0, d(R), AT));
S(X) = Mg (b(R) — d(R));
Flow(#, Ty, bB(N), f(X), B(R), A(T))
end { Primal}.

Primal first finds the flow which satisfies the flow requirements at the non-roots and
the relative root demand vector d(R) (first call to Flow). Then it computes the
circulation which yields a flow vector f(X)= Mz (b(R)—d(R)) on the external
hyperarcs, and adds this circulation to the previously computed flow (second call to
Flow). Therefore, to calculate the flow f= M"Z, only the knowledge of ME' 1s
needed; U™ is in fact implicitly computed by means of the visit of 5, done in the
procedure Flow.

Consider now the system wM = ¢. Let 7, and ¢, be the potential vector and the cost
vector on the external hyperarcs returned by Potential when 7w(R)= 0, and let 7, be
the potential vector returned by Potential when ¢(T) =0 and m(R) = (e(X) — ¢ )My .

Theorem 6.2. Let % be a basis hypergraph with incidence matrix M and 5 be a
spanning hypertree for 5%. The unique solution to the linear system wM = ¢ Is:

mo+m, If R#§,

T= .
) otherwise.

Proof. By simple algebra, assuming R # @ (otherwise the proof would be trivial), and
remembering formula (3.3), one has

7(N)=&T)U™' —aw(R)BU™',

m(R) = (2(X) = &(T)U'D)My " = (e(X) =~ co) Mg s
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hence
m=(0,T)YU ")+ (e(X) —c)Mz"(I, -BU Y =m,+ 7. O
Thus, as for the primal case, also the system 7rM =T can be solved directly on the
hypergraph. In fact, given My', the following algorithm solves it in

O(max{| R|?, size(#)}) time. When R+ @, 7 is yielded directly by the procedure
Potential.

procedure Dual(#, T,, M;', ¢, )
begin
Potential(#, Ty, T), 0, c,, m(N));
m(R) = (c(X) — c) )Mz ";
Potential(#, T4, AT), w(R), &(X), w(N))
end {Dual}.

6.2. Initial spanning hypertree

An initial feasible basis can be obtained by introducing, for each supply node
v(b(v) < 0), the artificial hyperarc (v, @), and for each demand or transshipment node
v (b(v) > 0), the artificial hyperarc (§§, »). Artificial hyperarcs are assigned a suffi-
ciently large cost C and infinite capacity. The set of the artificial hyperarcs induces a
primal-feasible basis spanning hypertree with root set empty. The corresponding primal
and dual solutions can be computed directly by procedures Flow and Potential, since
the root matrix is empty. As it will be shown, the inverse of the root matrix can be
updated directly on the hypergraph at each pivot operation, so that no explicit inversion
operations are needed. At termination, unless the problem is unfeasible, no artificial
hyperarc carries flow.

6.3. Optimality testing and basis change

Let M be the current feasible basis, # ° the corresponding hypergraph and ., one
of its spanning hypertrees. Given the inverse of the root matrix, My ', it is easy to
compute the primal basic solution f=M~'5" and the corresponding dual vector
m=c*M"™"', where b~ is the demand vector induced on the nodes by the flows on the
non-basic hyperarcs, while ¢ is the cost vector relative to the basic hyperarcs. In fact,
Primal and Dual can be used.

The optimality conditions are, as usual, based on the reduced costs: the out of basis
hyperarcs must have reduced costs > 0 if their flow is zero, and reduced costs <0 if
their flow is at the upper bound. If these conditions are satisfied, M is optimal and the
algorithm terminates. Otherwise, the algorithm selects a hyperarc ¢ out of basis which
violates the optimality conditions (the entering hyperarc), and forces it into the basis.

Now, we show how the leaving hyperarc can be determined. Consider the case in
which f(¢')=0. Let f be the unique flow vector on the basic hyperarcs which, together
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with a unit flow on ¢, satisfies the flow conservation constraints at all the nodes, i.e. f
is the solution to the system M f= —A(", €'), which can be determined by means of
procedure Primal. The hyperarcs whose corresponding components in f are different
from zero, together with &', constitute a hypercycle. The basis change is obtained by
pushing the maximum allowed flow on such hypercycle; the leaving hyperarc is one of
the bottleneck hyperarcs. In practice we compute the vector s with components

u(e) if e=¢,

S( (u(e) —f(e))/f(e) if e€#*, e#¢, fle)>0,
fle)/—f(e) if ee#”, e+e, f(e) <0,
0 otherwise.

Then, ¢ = argmin{s(e): e€(#Z " with f(e)+ 0}uU{¢)} is the hyperarc which
leaves the basis. Clearly, if ¢* = ¢, then the basis remains unchanged and the effect of

the pivot operation is that the flow on ¢’ goes from value zero to the value u(e'). The
flow f' with

fle) +s(e”) if e=¢,
fi(e)= f(e)+f(e)s(e“") if ee®#”,
fle) otherwise,

is the new basic flow. Similar formulae can be found when f(¢') = u(e').
6.4. How to update the spanning hypertree and My !

To analyze the basis change, different cases must be considered. To simplify the
presentation, in the following we shall assume the nodes ordered according to the row
order of matrix M, as described in Section 2.

(1) If e* is external, then two cases are possible: either (T, U {h,}) € R (case 1.a),
in which case ¢ enters as an external hyperarc, or (7, U {h,}) € R (case 1.b), in which
case ¢ enters as a tree hyperarc. In the former case the root set does not change
(R = R), while in the latter case one of the nodes in (7, U {h,}) is dropped from the
root set R, so decreasing by one the cardinality of the root set and the size of the root
matrix (R’ CR).

(2) If ¢~ is a tree hyperarc and an external hyperarc € exists which can replace ¢” in
the hypertree (case 2.a), i.e. the critical node of F,(e), say v, is such that ¢,=e¢"
(according to the definitions given in Section 2), then we can exchange ¢” and € (i.e. ¢
becomes a tree hyperarc and ¢’ becomes external), and easily reduce to the previous
case.

If no such hyperarc exists (case 2.b), let 7 be the non-root node of maximal index in
(T, U{h,-}). Two cases are possible: either 7 is the node of maximal index in
(T, U {h,}) as well, in which case ¢ replaces ¢ as a tree hyperarc (case 2.b.1), or the
above property is not true (case 2.b.2); in the latter case the new root set is given by
R =R U{¥), and ¢ enters as an external hyperarc unless (7, U {h,}) CR; in this last
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case one of the nodes of (7, U {h,}) can be dropped, and the cardinality of R does not
change.

The above cases are illustrated for the hypergraph in Fig. 3, where J;=
(1,2}, e,,3, €5, 4, €5, 5, ¢,,6), R={1,2} and Ey = (es, eg}.

Case 1: e" = e5 (e” € Ey).

Case 1.a: (T, U{h,})  R. See Fig. 5: R' =R ={1,2}, Ex= {es, eg)\le} U e} =
{eg. €.

Case 1.b: (T,U{h,)CR. See Fig. 6: R =R\{1}={2}, Exy=E\le5}= {eg),
=2}, ¢, 1, ¢,3, ¢,, 4 e3.5, ¢, 6).

Case 2: e” €Ty,

Case 2.a: e” = ey in this case, independently of ¢', e, € Ey can replace e; as a tree
hyperarc, so obtaining Ej ={e;, ;) and T, =(1,2}, ¢, 3, e;, 4, ey, 6, ¢, 5); we
can then apply the transformations in Case 1.

Case 2.b: e¢* = ¢, (v=4).

Case 2b.i: ¢ = ({1, 3}, 4. See Fig. 7 Ey,=E;={es, ¢}, Tz =
(1,2}, e,,3, €, 4, ¢, 5, e, 6).
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Case 20.2: ¢ =({1, 4}, 6) (T, U{h,}) £ R). See Fig. 8: Exy=E,U{e}, R =R
U4}, 9,=0{1,2,4}, ¢,3, ¢,5, ¢, 6)
¢=(1,2) (T,U{h,DCR). See Fig. 91 Ex=E,, R =R\{2Ju{4)={1,4}, ;=
{1, 4}, €,2, e, 3, €5, 5, e, 6).

Now, let us consider the updating of My'. Let My '(e, v) be the element of M5! in
the row corresponding to the external hyperarc e and in the column corresponding to the
root v. Let 4, be the unique circulation which induces a demand 1 at » and a demand 0
at all the other root nodes, and which has value O on all the hyperarcs not belonging to
the basis hypergraph % *. Due to the characterization of My ' given in Section 4 it is
i, (e) =My (e, v), Ve € E,. Clearly, for all v € R, the new vector ¥, with

d(e”) . .
i t,(e) f(f)f(e), cEX",
we) =y i) e (6.1)
fer)’ ’
0, otherwise,

is a circulation which induces at the root nodes the same demand as ¢, and has a value
different from zero only on the hyperarcs belonging to the new basis. That allows us to
update the columns of the inverse of the new root matrix, My ], in the case in which it
is R'CR: in fact, for each external hyperarc e, M,’{](e, v)=4,(¢). In the case in
which a new root, say v, enters the root set, in order to apply the updating formula (6.1),
the vector ¢, needs to be computed. Since, with the notations previously introduced, it
is Yo, = M~ 'u,, it is possible to perform such a computation by means of the procedure
Primal.
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7. Experimental results

A prototype hypergraph simplex algorithm based on the ideas described in this paper
has been implemented in C language. A detailed description of the implementation
choices (starting feasible basis, pricing rule, reoptimization techniques, etc.), together
with the results of a wide experimentation, can be found in [4].

Here we present some results of the experimentation, which has been performed on a
workstation HP 9000 /710, using random hypergraphs with (0, + 1) incidence matrices.
In order to assess the effectiveness of our approach, a comparison with a state-of the art
LP code, the primal version of CPLEX (Version 3.0), has been done. The results
obtained, as reported in Figs. 10, 11 and 12, are promising, and, although still
preliminary, suggest that our approach becomes increasingly effective as the size and the
density of the instances increase, and that the solution time is a rather slow increasing
function of the size. In particular, when the number r of the nodes and the maximum
cardinality & of the tail sets are fixed, our implementation becomes faster than CPLEX

n =400, k = 20

s Hy Simple X
2500.00

CPLEX Primal

2000.00

1500.00

ec.

9 1000.00

500.00

3500.00
3000.00
2500.00
2000.00
1500.00
1000.00

Sec.

500.00 B »
A
0.00 +—+t +—t L +—t A
o o © © 9 © 9O 9 © 9 9O o 9 9 O
S &6 8 & & & & &6 & & © & © & o
& ® ¥ 4 © & © ¥ & O ©® © ¥ « O
- 8 ® ¥ ¥ O © ~ ® ® o O = «
< = F
m



216 R. Cambini et al. / Mathematical Programming 78 (1997) 195-217

n = 400, k = 100
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as the number of the arcs grows. In the figures, the running times are in seconds, and
each one is the average CPU time over 5 runs in which only the seed of the hypergraph
generator has been changed.

Remarks. As suggested by an anonymous referee, it is important to observe that the
minimum cost hyperflow problem includes all the bounded linear programming prob-
lems. In fact, if A denotes the constraint matrix, it is sufficient to replace each column
A(*, j) with a column A*(*, j), having the positive coefficients of A(*, j), with a
column A~ (=, j), having its negative coefficients, and with a constraint equating the
two corresponding variables. Then, substitution for the variable corresponding to
AT (*, j) by the slack in its upper bound constraint produces a direct hypergraph format.
This observation was already present in [3], with reference to a particular application.
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