Software Validation and Verification
Third Exercise Sheet — Regular Properties

Exercise 1

Consider the following transition system TS

and the regular safety property

“always if a is valid and b A —=c was valid somewhere before,

'Dsa e - H H "
f then neither a nor b holds thereafter at least until ¢ holds

As an example, it holds:

{b}0{a, b}{a, b, c} € pref(Psate)

{a, b}{a, b}0{b, c} € pref(Psate)
{b}{a, c}{a}{a, b, c} € BadPref(Psate)

{b}{a, c}{a, c}{a} € BadPref(Psate)

a) Define an NFA A such that £(A) = MinBadPref(Psase).

b) Decide whether TS = Psase using the TS ® A construction.
Provide a counterexample if TS p£& Piate.

Exercise 2

a) Give the language for the following three NBA:

e
Aaa

b) Give an NBA for:

e "initially a occurs, and at some point b occurs" with © = {a, b, c}.

e "if a occurs somewhere, then afterwards (b occurs infinitely often iff ¢ occurs infinitely often).

Exercise 3

a) Provide NBA A; and A, for the languages given by the expressions (AC + B)*BY and (B*AC)Y.

b) Apply the product construction to obtain an GNBA G and an NBA A with L,(A) = L,(A1) N L,(A2).
Hint: Do not apply simplifications in these steps

c) Justify, why £,(G) = () where G denotes the GNBA accepting the intersection.

Exercise 4

Formally prove that there is no DBA A over the alphabet ¥ = {a, b} that accepts the language

L:=L,((a+ b)".a%).

Exercise 5

Let the w—regular LT properties P; and P, over the set of atomic propositions AP = {a, b} be given by

P, :="if a holds infinitely often, then b holds finitely often”
P> :="a holds infinitely often and b holds infinitely often”

The model is given by the transition system TS as follows:

{a. b}

N
N

{b}
Algorithmically check whether TS |= P and TS | P>. For this, proceed as follows.

a) Derive suitable NBA Ap,, Ap,, where suitable means “appropriate for part b)-d)".
Hint: For P; you can find an automaton with 3 states and for P, 4 states suffice. Derive the automata

directly.
b) Outline the reachable fragments of the product transition systems TS ® Ap, and TS ® Ap,.

c) Decide whether TS = P; by checking an appropriate persistence property via nested depth-first search on
TS® Ap,. Document all changes to the contents of U, V, 7 and £ (the state sets and stacks of the nested
depth-first search, see lecture). If the property is violated, provide a counterexample based on the execution
of the algorithm.

d) Decide whether TS |= P, by checking an appropriate persistence property via SCC analysis on TS® Ap,. If
the property is violated, provide a counterexample based on your analysis.

