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Abstract

Bundle methods for Nondifferentiable Optimization are widely recognised as one
of the best choices for the solution of Lagrangean Duals; one of their major draw-
backs is that they require the solution of a Semidefinite Quadratic Programming
subproblem at every iteration. We present an active-set method for the solution
of such problems, that enhances upon the ones in the literature by distinguishing
among bases with different properties and exploiting their structure in order to
reduce the computational cost of the basic step. Furthermore, we show how the
algorithm can be adapted to the several needs that arises in practice within Bun-
dle algorithms; we describe how it is possible to allow constraints on the primal
direction, how special (box) constraints can be more efficiently dealt with and how
to accommodate changes in the number of variables of the nondifferentiable func-
tion. Finally, we describe the important implementation issues, and we report some
computational experience to show that the algorithm is competitive with other QP
codes when used within a Bundle code for the solution of Lagrangean Duals of
large-scale (Integer) Linear Programs.
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0. Introduction

Nondifferentiable Optimization (NDO) is concerned with the solution of the generic problem
min{ ¢(A) :AOA}

whered() is a nondifferentiablefunctionand A O R in the applicationsof interest,¢() is a proper
convex function and\ is a polyhedral sdor eventhe whole R"). Usually, ¢() is knownto the NDO
algorithm by means of ‘@lack box” solverthat,for any given A, computeghe value of ¢(X) anda
subgradieng(X) O R i.e. a vector that satisfies the well-knosubgradient inequality

O) = d(\) + gA)(A - A) OANOA

NDO problems arises in many practical applications: amonmtstimportantones,we mentionthe
solution of Lagrangean Duals of large-scale (Integer) Linear Programs, where the compuqz(ﬁ()n of
and g(X) correspondso the solutionof a (possibly hard) LagrangearRelaxationof somedifficult
problem,d() is a polyhedral function anmilis either the whol&" or its nonnegative orthant.

Bundle methods [Ki85] [Le89] [SZ92] [CFN9%Jre a well-known classof NDO algorithmsthat are
mainly characterisetly keepingthe first-orderinformation (the subgradientsaboutthe function ¢()
in a“disaggregatedform, in contrastwith aggragatedsubgradientalgorithms.Visiting a (finite)
sequence of pointa\{}, the whole set (Bundle) of informations &, (A;) , g(Ai) >} thatrepresents
the “history” of the computations performed so far is used to compute th&iakgbint - actuallya
tentativedescentdirection d along which Aj.1 is choosen- by solving a Semidefinite Quadratic
Programming subproblem. In principle, one ntiaipk to the currentBundle 3 asa (small) subset of
an overallfixed (large)setof couples(g, o), whereg = g(Aj) anda, = o;(A) = d(A) - Gi(A - Aj) -
¢ (Aj) = O is the associatedchonnegativdinearization error w.r.t. the current point X, so that, when
dealing withunconstrained minimisatioof ¢() (A = &X"), the problem

(my) min{ v+ 120 d|f:v=gd- (1t)a; Oi OB }

gives a tentative descent directabwithin the current“trust region” implicitly definedby the strictly
positivetrust region parameter, alternatively, one can solve its Quadratic Dual

(AW min{ 120 Gpx |f + (1h)opx - x O G)}

whereG; is the matrix having the vectags(i U ) as columns, an@ ={x:ex=1,x=0} (where
e=[11,..,1]7 is theunitary simplex.(4,) and(l;) have severalinterpretationsthat cannotbe
discussedhere(the interestedreadercanreferto [CFN95]): as a foretaste,we mentionthat from a
“dual” point of view theg;s area;,-subgradients of the current po}_ntso that4,) canbe viewedas a
generalisationof minimal partial derivative finding problem in some inner approximationof the
max{ a;}-subdifferential of¢() in A, while from a “primal” pointof view (I1;) is the minimisationof

a polyhedral upper approximationof ¢() plus a “stabilising” quadratic term whose “weight”

depends onh

Both (M) and(4;) are SemidefiniteQuadraticProblems so they could be solved by standardSQP
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codes [GMW81] [P083] [CLM93], but the need for low solution times make it necessdeydtopa
specialized code in ordén exploit their valuablestructuralpropertiesthis is especiallytrue because,
within a Bundle algorithm, a (long) sequence of subproblems have to be solved that only differs for
addition/deletiorof a few g;s from [3, the modification of the vector a and/orthe scalart, so that a
suitablealgorithm canconvergein very few stepsif enoughcareis takenin conserving information
betweentwo subsequentalls. Furthermore,when applying Bundle methodsto the solution of
LagrangearDuals, where the subgradientsare obtainedby solving a (possibly hard) optimization
problem, the Bundle is usually smgtl = |3| =100) while the vectorsg, may be long (n =10000),s0
that (A,) hasfewer variablesand simpler constraintsthan (1), eventhoughthe latter hasa much
simpler (separable) objectivenction: it is thereforenot surprisingthat all the specializedalgorithms
proposed in the literature [Ki86] [Mo87] [Ki94] are “dual’, in the sense that they workpn (

In this article, we proposean active-setmethod for the solution of (4,), that enhancesupon the
specializedapproacheproposedso far by distinguishingamongbaseswith different propertiesand
exploiting their structure in order to reduce the computational cost of the basic operationerk ise
structuredasfollows: 81 an overviewof the methodis given, and simple proofs of convergencere
presented, while in 82 the details of the matrix factorisation methods are discussed; in 83 thésmeth
extendedto a more generalversionof (I;) that allows (general) linear constraintson the primal
solutiond, while in 84 a method for changing the number of variablesis presentecandin 85 this
is used to develop a specialized algorittem (I1;) with box constraintson the primalspace.Then,in
86 the relevantimplementativedetails of our actual C++ code are discussed,and in 87 some
computational comparisons are reported and conclusions are drawn.

1. An overview of the algorithm

Although the basic theory @fur algorithmis almostthe sameas that of the other known specialized
approaches, we present it here in a simple, self-contained form: by Quadratic Duality [Ge69], a fea:
solutionx of (4;) is optimal if and only if

= - GyX and =-d’d - (1h)ax

are feasible forl{;) and vice-versa, since for ary10 (x = 0, ex = 1) and(v, d) asabovesuchthat
ag 2 Gyd - ve, the Complementanglacknes€onditionsx(a, - Ged + ve) = 0 hold, so that x are
feasible dual multipliers for (). Since during the solution of (4,) t is fixed, for notational
conveniencean the following we will drop the parametert, i.e. unlessexplicitly specifiedeacha,
should be read as (Jd;, andv defined av = - ||d |f - apX: it means viewing as“embedded”in the
vectora, while our implementation actually handles it explicitly.

We will address the solution of the “dual” problem

(A%) min { 12XTQpx +apx 1 x [ o}

whereQ; = GgGB IS a positive semidefinitematrix, i.e. the minimisationof the (non-strictly) convex
functionfy(x) = 1/2xQyx + ax over the unitary simplex; owgorithmfollows the well-known active
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setstrategy [GMW81], i.e. atachstepwe attacha restrictionof (&) in which someof the variables
are fixed to zero:

Definition 1.1: given any subset B 3 (abasg, we set
((AYS) min{ 1/2XQX + 0 X [ @}
wherex 0 R® andQ, o, are appropriate submatrices ¥, aj.

By a little abuse ohotation,we will considerbases as sets ofdicesaswell as sets osubgradients
(an elementof the basewill be genericallycalled item): we will also make some other notational
simplificationsby avoiding to distinguishsets® with different dimensionsand omitting transpose
signs when clarity is not affected.

We deal with a sequence of subprobldifis,)}, characterised by thedase B(and thecorresponding
Qg Gg --.) and thesurrent feasible poirt = [ x; 0 ] 1 ©: at each step, a descent directio(for f,() at
X) is found,and B is reviseduntil a solution thatis optimal for both (4;) and the original (4;) is
reached, as described below. At each iteration, we approacdedolity constrainedubproblem4;)
by considering itequality constrainedelaxation

(Ro) min{ fy(xg) :ex, =1}
wherex, is an optimal solution if and only if the Kuhn-Tucker optimality conditions
ex,=1 and Op O Rs.t.pe=QXy + Oy

hold, i.e. if at least a solution in the form[p ] of the linear system
o o ik =Er
(KT) - CHEH=ET

exists: finding a solution of the (KT) system is the basic step of our algorithnit, &itidbe shownin
§2 how to (efficiently) construct either the unique p ], if uniquenessolds,or a directionw, such
thatw,Qg = 0 andew;, = 0 otherwise.

TT Algorithm:
B={1}; x=[1,0,..,0]; /* initialisation */
while( Oh 0O B such thav <g,d - a;,) /* main iteration */
B=B0 {h}; /* item insertion */
do /* inner iteration */

if(the (KT) system admitsniquesolution [xz p ])
then if(xg = 0) thenx =[xg 0]; wg =0;
elsew, = Xg - Xg;
else find a feasible (descent) directiap such thatvgQg = 0 andew; = 0[]

if(wg20) I* Xg is not optimal for &) */
then n=min{-w,/x,:w,<0,hdB } /* maximum feasible step > 0 */
Xg = Xg + NWg; /* take stem alongwg */
forall ( h such thatx, =0)
B=B/{h}; /* item(s) deletion */
while(wg #0); /* end inner iteration */
endwhile /* end main iteration */
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If (the unique)x, is feasible, i.ex; = 0, thenit is optimal for (A) too, otherwise,by convexity of fy(),

W, = X; - Xg is adirectionof descenfandew, = 0): this is not enough however,sincewe mustalso
show that the direction is feasible, i.e. that for a sufficiently smalD we still havex; + nw, = 0. If

the current inner iteration ot the first of a main iteration, theq > 0 (all the h suchthatx, = 0 have
beeneliminatedat the end of the previousinner iteration)and anyw, suchthat ew, = 0 is feasible,
otherwise we havB =B' U {h}, X; = [Xg X, ] = [ Xz 0], Xz > 0is optimal for {;) andthe h-th primal

constraint is violated, i.&.< g,d - a,. In this case by exploiting somebasicrelationsit is possibleto

showthatw, = [ wy W, ] = X5 - [ X5 0 ] is feasible,i.e. thatw, > 0 (sinceno other entrycan create
problems)for d = - Gy Xz andv = - || d |P - 0 Xg (the optimal primal variablesof (4;)), the KT

conditions have an obvious interpretation in terms of the “basic” primal constsanusthey canbe
rewritten

-pe=GJd-a,

where (leftymultiplying both sides fo, and usingex, = 1 one has
-p=-d'd-agx, =V

so that finally
v =gd-aqa, for eachh U B'

i.e. all the primal constraintsin B' are satisfied as strict equationsand the optimal multiplier p
associated with the constraex, = 1 is just v. Then, take any directiom=[w' w;, ] such thaew= 0
and note that

f(xg +NW) =f(xg) +n[ W w, ] EE?B (C-;):hh %ﬁ-‘- %f%-l_ %HZWTQBW

whereQg, = Gig, the first-order term can be rewritten as

Qoo + Uy
r‘I[WWh] TG X +ah

and since (from optimality of;) Qg X5 + 05 = - Ve, we obtain
n[ w,(a, - g.d) - vew ]

that, using the fact thaiv=1 (J ew =-w,), can be reduced to
nwJ[v+a,-gd]

thatis (strictly) negativeif andonly if w, is (strictly) positive, sincev + a, - g,d < O; therefore,a
directionw is feasible if and only if its (strictly) of descentandwe alreadyknow that (by convexity
of f5()) w; is adirection of descentlf w,Q; = 0 (we call w, an infinite direction) things are even
simpler, since from the previous formulas

f%’% N %&i% =f(xg) + Nl Wy W, ]%ig

and therefore one amongy, (depending on the sign of the scalar product) is a direction of de#cent:
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Xg > 0 there can be no problems, and wikgr [ X, O ] we have just shown that

N[ Wy W, ]@jé =nw[Vv+a,-gd]

and therefore that by choosiaghongthe directions+w, the onewith w, > 0 we chooseat the same
time the descent one.

It is easy to show that the algorithm finitely terminates: @fipite numberof inner iterationscanbe
performedbetweentwo successivenain iterations,sinceat any inner iteration (at least) one item is
eliminated from the base; moreover, it is impossible for aBaseppearwice asthe currentbaseat
the beginning ok main iteration, sincetherethe currentsolutionx; is optimal for (4;) andat leasta
strictly decreasing step has been performed since the latest main iteratiartlyaviolated constraint
has been inserted lrase) but the numberof differentbases idinite (althoughexponentiallandthis
ensures finite termination.

Although the basicstructureof our algorithmis almostthe sameasthat of [Ki86] and [Mo87], our
particular view point makes the statement of the algorithm and the proof of convergenchaater
ones in the above mentioned papers: actually, all those methods differs essentially for themweky in
the KT system is faced, and in the next paragraph we will show how this task is accomplished.

2. Solving the KT system

We solveof the (KT) system(or the determinean infinite direction) by essentiallykeepinga lower
trapezoidalfactorisationof the Hessianmatrix Qg of the currentsubproblem(Ay): that is, we will
always have a matrix

_ 0 _
L, = E}? OE such that L.L,

andL, is a lower triangularmatrix with all nonzerodiagonalentries;actually, the submatrixV" will
always have only up to two rows, ilg, has only three possible configurations

Qs

0) B=B L, =L,
1) B=B'0{h} L, = E?
2) B=B'O{h} O{j} Too

The rationale is thd' is the subset d containindinearly independent itengs, while g, (andg,) are
linearly dependent from the itemsBh in fact, the (KT) system may have full roank (henceunique
optimal solution) even ), is 1-rank deficitary, whiléf B containstwo linearly dependenitemsthen
the (KT) systemis underdeterminednd a feasibleinfinite direction w, (suchthat ew, = 0) canbe
found. The basic relations are summarised in the following propositions:
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Proposition 2.1:in case (0), the unique solution of KT is

_ 1 +eQla
%=Qilpe-a]  where  p=lidie

The proof of this propositiors just linear algebraappliedto the (KT) system,andis omitted; rather,
defining

z =Lle and z,=Lga,
(theuniquesolutions of the triangular systeinsz, = e, L,z, = d;), the above relations can be written

= - 1+
X, = (L) pz - 2,] where  p =le2119-

i.e. x5 can be obtainedt the costof threebacksolvesand a few linear operationsactuallywe cando
much better,andwe will show later that we are always able to find x; and p (or wg) with just one
backsolve on the triangular mattix. We continue with other four propositions, whose validay be
checked by simple substitution:

Proposition 2.2:in case (1), ifl,z, # 1 then the unique solution of KT is

)?h = 1 ?_122| Pah )?B' = (L;)l[ Pz, -7 - )?hlh ]
-4
where p = Oih_-llhzzf
h

Proposition 2.3:in case (1), ifl,z, = 1then aninfinite directionis

Wy = [Wo W, ]=[v, -1] where v, = (Lg)™,

Proposition 2.4:in case (2), ifl;z, = 1then aninfinite directionis

W= [We W, W]=[v, 0 -1] where  v,=(Lg)?,

Proposition 2.5:in case (2), iflz, # 1 then aninfinite directionis
Wy =[v -1 ] where u:i—'_llhé-
i&
and V=V -Qy, = (L;')_l[ |h'p-|j]

Note that in case (2) we are always able to find an infinite diresgois immediatelyimplies that B
won’t ever contain more than 2 linearly dependent items, since at the very moment ithe/sietond
linearly dependent item is insertedBna sequencef inner iterationsalwaysusing infinite directions
starts,and at eachiteration at leastone item is deletedfrom B, until full rank of the (KT) systemis
restored. Actually, it may even happen that some of the infinite directions utieelddgorithm be not
strictly descen(if agw, = 0), but this cannothappenin the first inner iteration of a main iteration
(since the selectddth constraint istrictly violated) and hence convergence is not affected.

In our code we calculate the objective function value only at the beginning of each main iteration, wt
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QB)?B =pe-0g [ )?BQB_B =p- )?BGB 0 fB()?B) = 1/2§BQB)?B + GB)?B =1/2l(p - )?BGB)

so that the calculationcanbe performedin O( m ) ratherthan O( m2 ) (m = |B|): one might also
cheaplycalculatethe value of f() at any inner iteration, sincef() is linear when restrictedalong an
infinite w; (as shown in §1), andwi, = X, - X; one has

f(xg + NWg) =f(xg) + W[ v +a, - g,d ] + 17207 () - f(xg) ]
but this is essentially useless, and it is avoided in our implementation.

Giventhe lower trapezoidamatrix fB andthe vectorsz,, z, for a certainbaseB, we can keepthem
updatedat low costwheneveranitem is either insertedinto or deletedfrom B, thereforethe above
propositionsshowthat x; or w,, canbe obtainedat eachstepat the costof a single backsolveon L
(since at the first iteratioﬁB =L, =[1/Q,, ] andz, z, canbe obtainedaccordingly);the methodis
described by the following propositions:

Proposition 2.6:for B=B' {h} and_LB = Lz nonsingular, then

.0
L=ffs]  where L=adiGial and  5=VIG T

Hencel; is nonsingular= >0 < g, is linearly independent from the items in B'.

This follows from the rules of Cholesky factorisation applie@ie G.G: for a sketch, note that
11y 1P = @GsLaN(L3GIG = 9iGu(GiGe)'Gilg, = [giKs]g, = g0,

whereKy is the projectioroperatoronto the subspacé . spannedy the vectorsin B, thereforeg is

the projection ofy, ontol,, so that |I, |? = 9'g, < || g, |? andequalityholds < g, 0 I (i.e. g, is

linearly dependenfrom the itemsin B'). Actually, this is exactly one step of the row-wise LLT

factorisationalgorithmappliedto Q;, thatwe arejust performingstepby stepeachtime we need;to
extend the result to the case whiegés lower trapezoidal, considepavectory and its subvectog,:

Proposition 2.7:if L0 =y, then

L of B 08, O o g
Lgh -1 :E]ha h - ' = 0+

In other words, if we already knofv= L 2y, thenwe can calculatethe solutionto the “new” system
[66,]= L‘BlyB (actually, only) in O(m") (wherem'=|B'|): the importance ahis propositionlies
in the fact that all the “relevant” vectdysl;, zy andz, have the above form (fgrrespectivelyequalto
Q. Q, a ande), and therefore can be cheaply updated whsertinga newitem in B; moreoveralso
the scalar products among such vectors that are used within the algorithm (§zglzas...) canbe
updated in constant time when the new entries are calculated, saving sorhedgputations.

Using the aboverelations,we canalso shedsomelight on Propositions 2.2 25: for example,the
“critical” scalar product,z, of Proposition 2.2 can be rewrittenls 3e] = e[L11,] =ev, so that the
condition
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lz,=1 is equivalent to [v,-1]e 1]=0
l.e. to the feasibility of the (infinite) direction [ v, -1 ] w.r.t. the constraintex, = 1, similar
interpretations can be derived for all the other cases.

Now, we need a cheap updating procedure for theBad® / { h }, where

g GTIG1 GIgh GTIG2
Lg = T 5 O h GTG 9.G: 9, |F 9,6,
Z wL, ; G;Gl Gggh G;Gz

_ E—l 0 E GT = %;Eg _ G$G1 G¥62

Z L, 5 L8 G,G, G,G,

Obviously, the firsk - 1 (wherek is the position of, in G;) rows andcolumnsof L, arenot altered
by the operation,and only the submatrixL, changessinceL,L,T = L,L] + wwT, all we needfor

retrieving L, (and hencel,) is a rank-one correction of the triangular matrix L,, that can be
accomplished by a sweep®ivens Rotations

Proposition 2.8:there exists a rK orthogonal square matri®s (i.e. G& = G{) such that

00
TByT
ZWL ZOL;

which impliesL ;LT = L,L] + wwT,

Proof: Ggis the producbf m*-k Givensmatrices(wherem' = m + 1); the h-th matrix performsthe
transformation

w |y |0]0 « Y. |V, | O
O |L,, (OO > 0 L, (0] O
Wh X d 0 k +h 0 X d 0
Wh2 vV L, W, L,
K k+h

so that at the end all the entries ofkia column ofL;. (butL,,) are zero, and eliminatirtie k-th row
and column of the resulting matrix we obtain just .

As theh-th step requires 460 - k - h ) multiplications,the overall costis O( 2(m - k)? ); furthermore,
with the same method we can also update the vegtbrg, andz;:

k1 O '
0 GIEH"
2

Proposition 2.9:for Ggas in Proposition 2.8) such that

i - §

e
e vectod= Bfboved 5= i O BB B,
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In otherwords,to calculatethe new (last m'-k entriesof) vector 0, we only haveto apply the same
Givens transformations of Proposition 2.8 to thefld is also easy to show that

22, = 22, - 23,2y,
(an analogougresult holds for any scalarproductof this kind), thereforel,z,, z,z, ... can be kept

updated in this case also. Some other details have to be taken into accanstirfioejn case(1) the
elimination of an item from the base may mgkeo “enter the linearly dependent part’®fi.e.

00O

L 00

TByTO |:| E‘le_'og
! 2

o ¥

1 'h "2

but obviouslyl, is all we needto checkif this is the case;similarly, in case(2) g, also may become
independent, ag, may be deleted fror.

Reoptimization is natural within our algorithm: whég)(has been solved, tloptimal baseB with the
relative optimal solutionX; O ], the lower trapezoidal factorisatiagl of Qg and the vectors, z, (with
the relative scalarproducts)are kept, and they are updatedas modificationsoccursto the dataof the
problem; for instance, in our implementation the calling program is allowed to

- add a single new item g, (a newly obtained subgradient)to (3: hence, by skipping the
initialisation phasethe algorithm is restartedwith the optimality test phase,in which all the
stored data structures are used “as is” to test the optimality of the newly entered item

- delete a single new itegy (an outdated subgradient) fr@gnif h O B this has noeffecton the
problemsince x; obviously remainsoptimal, while if h O B the proceduresdescribedin
Propositions 2.8 - 2.9actually, the same piece of code) are usedto updateall the data
structures irsucha way that the algorithm canrestartedat the beginningof aninner iteration,
just as ifg, had been deleted froBiin the course of a normal iteration of the algorithm

- change the vectar (i.e. change the current poi?_()t then, the vectoz, canbe recalculatedvith
just one backsolveon the (available)linearly independenmatrix L. (plus the recalculationof
z,z,), and again the algorithm can be simply restarted at the beginning of an inner iteration, sinc
all the other data structures are still coherent

The main point here is that all the above modifications can be dealt with orthogonally, i.e., provided
memory of the changess kept, any sequenceof such operationsleavesthe data structuresin a
consistent state, so that in case of a warm start the (data structures of the) previous optimal solutio
be fully exploited. Some minor details malgo be noticeableif the parametet is explicitly handled,

as in our implementation, changindoes not force the recalculationzgfif z= Lo is keptandz, =
(1h)z is calculatedonly when required; furthermore,if a is changed“along” the latestoptimal
solutiond (as in NDO solvers, where the current point is usually updated=as + td), i.e. the new
vector is obtained according to the formula
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o' =a-1[G'd +Ae

(WhereA, = ¢(X + 1d) - ¢(X) is the obtainedincreasein the nondifferentiablefunction for a stept
alongd) we have that

Gé =0y +T[QBXB] +A0e: ag +T[pe' (1/t)aB] +Aoe:

ZE'%E}BJ'(AO'TV)GZE_%E}BJrE%_%Ae%

(whereA, = tv = p is theexpected increader a step of alongd), so thatz, = L¥a' canbe obtained
in lineartime from z, and z,. The basic algorithm that we have just describedcan be extendedin
several ways, as we will show in the next three paragraphs.

3. Handling general primal constraints

When dealingwith unconstrainedninimisationof ¢() (A O &7, it is necessaryo imposegeneral
linear constraints on the primal solutidn.e. to solve the extended problem

(Mg, min{ v+12]d|f:v2gd-a,i0B,02gd-a,i Oy}

or, equivalently, its dual

(D) min§1/2[|]|[GBGy][%%|F+[aBay]@%:xD@,yzog

where (3, a,) i Oy are (a subset of) the linesequalitiesdefining A, properly “translated” w.r.t. the
current poinf\, that ensure feasibility of all the poits- td with Tt <t.
By lettingi = be the indicator vector of the set (of subgradigitse.
. gl ith OB
=50 ith Oy
the feasible set ofY, ) can be written
{Ixyl:ilxyl=1,[x y]=0}

andthe TT algorithm can still be applied providedthat the all-one vector e is replacedin every
expression with,: in fact,Qux; + o = pi; andigx; = 1 arethe KT conditionsfor (4), so that, letting
z, = L i, the optimal solution to (Rin case (0) is

Xs = Qi pig - 0] where still p= %ﬁ
171

In the same way, Propositions 2.2 - 2.3 holek if the conditionl,z, # 1 is replacedby |,z, # i, and
the infinite direction[ v, -1 ] isreplacedby [ v, -i, ], and a completelyanalogoustreatmentcan be
deserved to Propositions 2.4 - 2mgoreover the factorisationmethodsdescribedn §2 are obviously
still valid for the constrainedcase,since z, (that solves L,z, = i) has the form required by
Propositions 2.7 and 2.9. However, minor modifications to the algoatkin fact neededsinceit is
necessary that the beBalways contains deastone subgradieng, (i O (), butit is easyto seethat

10
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oncethis is ensuredor theinitial base,it will automaticallyhold true thereafter;every detail of the
algorithm naturally extendsto the new casefor instancemovementsalong” d asintroducedat the
end of the previous paragraphs now havextbpdating formula

o' =a-1[G'd] +A,

so thatz, is obtainedin the sameway from z, andz,, changef the sety betweentwo subsequent
calls to the 4, )-solver are completely analogousdieangef the set3 (up to the point that the two
things can be handled with the same piece of code) and so on.

Actually, these results can be generalised by recognisingMjas(just a special case of the problem

min{ 1/2[|]Gx|F+ax:cx:1,x20}

with ¢ = 0 any vector of nonnegative coefficients: it is easy to show thetesdlbovetheory still holds
valid if eis replaced everywhere within the formulas; this is not only a theoretioagult, since Least-
Square-likeproblemswith this form frequently appearin very different fields (see[FV94] for an
application to fractal compression of images): the TT algorithm caa$iy extendedo handlethese
problems,and,as a matterof fact, the changesto be madeare so few and so localisedthat in our
implementation it is possible to “switch out” all the extra code needed for the tagkhy settinga
compile time switch.

4. Changing the dimension of primal space

It is important tonote that our algorithmworks without everaccessindhe vectorsg, sincethe scalar
productsy; = ging suffices to carry on (efficiently) all the computations: in fact, instead of checking th
primal constraints)d - v< a,, directly, we usel = - G;x, to obtain

gd = - [g;GB] Xg = - QgiXp
SinceQg,, X; arem-vectorswhile g,, d aren-vectors(andin our applicationsm << n), by exploiting
this relation we savea relevantquantity of work; actually,in our implementationwe never explicitly
calculated, a O( nm) taskthat caneasily be the time consumingoperationof the whole algorithm,
while we takecareof makingthe scalarproductg,d for eachh O 3 availableto the calling program:
this information is readily availableat no cost when the algorithm terminatessinceif h [0 B then
g.d = pi, - a,, while if h I B theng,d = - QgX; hasalreadybeencomputedwhen checkingthe h-th
(nonbasic) constraint, and it may be useful to NDO algorithms, gface) = min,,, { (g,d)t +a, }
IS an upper approximation of the restrictiorpf along the (tentative descent) directtbn
Furthermore, the algorithm is also orthogotwethe sparsityof the vectorsg,: in our implementation,
subgradients (and constraints) are only known by means of “symbolic names” (indices)r &iie
solver is only allowed to call the function

G TG ( Name_of _i , Nane_of _j )

that returnsthe scalarproduct ging; this function must be suppliedby the calling program,so that
knowledgeaboutthe structural propertiesof the subgradientgand constraints)can be exploited
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without requiring a specialized code.

Sincethe TT algorithm hasin fact no information on the “real” vectorsg,, it is obviously also
possibleto changetheir length betweentiwo subsequentallsto the TT-solver,i.e. to add or remove
entries from all the, (h O B O y) at thesametime: this is importantboth for the extensionghat will
be discussedn 85 andfor the fact that NDO solversfor huge problemgn very large) may benefit
from active se{column generationstrategy in which one works with a (hopefully small) subset of the
variables\, that is dynamically revised.

Insertionsand deletionsof entriesin g,, canbe naturally viewed as manipulationson the dataof the
problemlike the onesdescribed82; as usual, supposethat, after call to the TT-solver, a baseB, a
solution[ x; 0 ] andthe relatedQ, fB, z,, z, ... (thatmay no longer be optimal, since otherchanges
may have already occurred) are kept in a consistent state: if a new entry haddedall we needis
thep-vector [ g ], = new entry ofy,, since the Hessian mati@; just have to be updated as

G; =d; + 69 for each, j
(a relatively cheapO( p? ) task),while the updateof EB, z,, z, can be performedwith a sweepof p
Givens rotationsG), as

G=0u+ G016 L JEE

I.e. we only need the rank-one correction of the lower trapezoidal rﬁgtrix

~

b Lg llB'
N N
h 'h h ! h
T T
i s L 1
Z 14
% 2 %

Note that the position of the newentry plays absolutelyno role, making it possibleto insert/delete
entries in any order whatsoever; oggenas been nullified (still an @) task), the new,, (andi, I,

z,, Z,) is just what we expectto, andthe datawe haveat handcanbe usedto “normalise” the data
structures. For instance af > 0 then thecorrespondingtem is insertedinto the linearly independent

part ofB (B'=B' O {h}), i.e.

. 0
- _ B
LB“EEQE

wherea;, g, are the new entries &f, z, so thazz, = z,z, + 0,0,: similar resultsholds forthe other
scalar products, andgf > 0.
When an entry (contained i) has to be deleted, we have instead

~ ~T

aij = qij - ggj i.e. 63 = QB -gg

that can be taken in the same form as above by considering that

G=1ia L IE%E
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wherei? = -1: then,almostthe sameargumentsas the abovecasehold, i.e. by usingcomplexGivens
matrices of the form

wherec® - € = 1, we can obtain

— =4z R

1

Ny Ny T

N

2

In other words, it is easy to show that such matrices keeps the imagameon the ig, columnalone,
thusleaving fB madeof purereals,that the newly obtainedI:B. (and the relative vectors)is what we
expect, tha,z, = 2z, - 0,0, (and the same for thether scalarproducts)andthatd, = & = 0,i.e. no
“new linear independence” is created; conversely, in this case zeroes along the (dihﬁg)rlahy be
generated. For ease of exposition, suppose that the curre® t@s=ins no linearly dependategms
and thatB=[B' h] (i.e.his the last item in base - note that baseseiaally orderedsets,the order
being that of the rows d)_J‘B): after applyingn- 1 (complex) Givens rotations, one may find

~ OLg O

Lg= Eéh IT |~hh where
and no complex Givens matrix nullifying, can be found; however, it is also true that

~ L OE

Lo 0
l.e. by simply “marking” h aslinearly dependent consistentsituationis naturally recovered.The
above relation holds true everBifilready contains linearly dependent items, dlenghif h is going
to be the third of them one of the three must be removedfrom B (this can be donein O(1)):
furthermore if I~hzh = 6,21 for h somein positionk < nv, then with a sweepof m' - k - 1 Givens

rotations (exactly the same as in Proposition 2.8) and a permutaBdhetdfi-th item can be put in the
last position, and the method applied.

As in 82, we have a set of (cheayperationghat can be performedon the dataof the problem,while
keeping the whole set of data structures consistent and ready for a “warm” restart: thisiseitlive
the next paragraph in order to efficiently cope with box constraints on the primal space.

5. Handling box constraints on the primal space

In many applications,typically when A is the nonnegativeorthantof %, (mostof) the constraints
gd< a ond arejust “boxes” |. < d < u;: in this paragraphyve will show how to efficiently handle
lower boundd, < d, on a (sub)sety of the variables sincethe extensionto the more generalclassis
straightforward. Our (dual) method will still use an active-set strategy, in which only a gubsgbf
the dual variables associated to box constraintss allowedto be nonzeroat a given time:sincewe
won't dealwith the part of the baseconcerningsubgradientsio simplify the notationwe drop the
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subscripf3 for columns and we consider the mat&yartitioned as

c =igH

(i.e. now subscripts indicates rows), whgre { 1 ..n } / x; therestrictedproblems are

(m,) min{ v+12]]d|P:vex2Gd-a,l <d, }

(W) min §1/2[|J|§: _(I) @%XE”“[G -IX]@XE:X 0e ,yxzog

and therefore the “extended” Hessian matrix w.r.t. the “extended Base{'1 ..m} O x is

=B T OB e TEES

For feasible solution ofY) to be optimal, it has to solve the system

R SHEEETT  wammon

so that one can immediately deduce that
y,=Gx+l,  and therefore [G'G-GG Ix=pe-[a-Gl]
But sinceG'G - GG, = G,G, = Q,, therelaxedproblem

(R) min EMENE: (I) @@XEHZ +[a 4] @XE: x0O g

(in which the constraintg > 0 are disregarded) is equivalent to tmeonstrainegroblem
(An) min{ 1/2&Tan +ax:x O @}

wherea =qa - G;IX and all the entries of tlggs corresponding to active constraifwhoseindicesare
in X) havebeendeleted:therefore we cansolvethe box-constrainegroblem (1) by usingthe TT

algorithm for the unconstrained case as a “black box” to find aBbasd a solutiox = [ x; 0 ] such
that [x v, ] solves the (KT) system fod().

In otherwords,we havean (efficient) subroutineTT(x) that reportsand optimal solution x of (A)):

building on this, we can constructtavo-level” solverfor the box constrainedywherethe lower level

(the TT algorithm)takescareof the x variables, whilethe upper level handlesthe y variables:it is

immediately clear, just looking at the pseud-code below, that BTT caeveedas TT appliedto (4),

with just a different way of solving the (KT) system and a particular orderimdnich constraintsand
subgradients are chosen for being inserted to and deleted from the “extenddEREEY; in fact,

convergence&an be shownexactlyin the sameway (therecannotbe infinitely manyinner iterations,
and every main iteration ensures a strict decrease) and all ttetrdataregelativeto a baseB of the
subproblem(An) havea straightforwardinterpretationin termsof the baseB of the original problem
(4) - for instance, it is easy to see that

[ X' y;][@gx_?;@%@:xbnx+ INIf and [a -IX][@(XE:GX- Il B

and thad = - [ |, G x ], therefore (by letting’, d' andf'() be relative to4"))
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fa([Xg ¥, 1) =fo(Xg) V=V d=[l d] Gd=Gd -GJ
BTT Algorithm:
X=0;x=TTX); ¥y =Gx +1; /* initialisation */
while( Oi O (y/x ) such that, > - Gx ) /* main iteration */
x=x0{i} [* item insertion -y, = Gx + ;>0 */
do /* inner iteration */
x =TTX); )_/X =GX +1y; /* KT solution - use TT as subroutine *
if( i O X such that, < - Gx ) Ky =Gx+l,<0*
thenw, =y, -y, I* w, is of descent in thg space */
n=min{-w/y:w<0,ilx} /* maximum feasible stepg > 0 */
Yy = Yy FNW,; /* take stem alongw, */
elsey, =y,;w, =0; I*y, is optimal for Q) */
forall (i such that;, =0)
X =x/{i}; [* item(s) deletion */
while(w, # 0 ); /* end inner iteration */
endwhile /* end main iteration */

This “hierarchic” view of the methodgreatly simplifies the designand the implementationof the
algorithm, but due to our sophisticated reoptimizativategiediscussedn 82 and 84 performances
are even better than those of the “monolithic” approaches known in the literature: obviously, the ak
algorithm immediatelyextendsto u, > d. constraints(wherey, = - u. - Gx) andto generalboxes

| <d <u, since the two constraints< u, andl, < d cannot be in the active seat the same time.

A point still needsclarifications: the (expensive)matrix-vectorproductGIIX is not calculatedfrom
scratch at every iteration, since e.g. wikenx [ {i} one has

@=a+Gl.=a-[ G g‘]n%%ézd-lig‘

whereg = G, is thei-th row of G; however, this is not enough, sinite vectorz, = L d also haveto
be updated without resorting to an expensive backsollg.dn fact, in the above case we have

Z,=Cda =26 -1[ (2§ ]
but the method discussed§4d finds I:‘Bl.d instead;however,it is easyto recoverthe “perturbation”
vector L~'Bl. g, since the basic relation of the method is the existenceatlamgonal(m + 1)x(m + 1)
matrix G such that

[GLelGs=[oL,] O [§Lg]=[0Ly]GE

and therefore, by lettingu, UT] =[1 o' ]G (this vector can be found in linear time) one has
Coo =[0G, e [0 (GDEE-[ gL, 18 &

i.e.u = L~'Bl.§ andz, can be obtained in linear time frdﬁjal.o'(. Since the casg =x / {i} is analogous,
with d' = o + |.g and[ v, v ] =1 - 0' ]G, we haveillustrated all the basic elementsthat are
necessaryo efficiently useTT asa subroutinefor solving box constrainedproblems:a numberof

further detailscan be easily derived from all the abovetheory, for instancehow to keepthe scalar
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product updatedz(z, = z,z, + v,0,|; for o, defined in§4), how to updatel, whenmoving “along” d
of a stepx (I, := |, [(L - /t)) or thatall the aboveresultsholdstrue for the generalisegroblemof §3
with constraintcx = 1, hencewe now describethe major implementationissuesof our actualC++
implementation of the [B]TT algorithm.

6. Implementative details

The [B]TT algorithm has been developedin the context of an experimental module for
Nondifferentiable Optimization [CFN95], conceivemlbe mainly used forsolving LagrangearDuals
of large-scale (Integer) Linear Problems: the code is written in C++, using its powerful inheritance
polymorphismcapabilitiesin thatthe whole TT algorithmis embeddedn one single object cl ass
M nQuad, with an abstracinterfacecontainingthe (only) methodsallowing the NDO algorithm to
modify and view the data structurgls Q;, a,, t ...) and to perform the actual calculations.

The BTT algorithmis containedn the derivedcl ass BM nQuad, inheriting from the base class
most of its interface and code:tims way, modularity and efficiency are maximisedat the sametime,
since the highly efficienT T algorithm canbe usedwhenno boxconstraintsare required,while only
minor modifications in the NDO solver arequiredin orderto usethe moregeneralBTT algorithm;
this also makes code maintenanceeasier, and allow for improvementsin the TT code to be
automaticallyexploitedby BTT - actually,aslong asthe interfaceremainsthe sameone might also
replace TT with an entirely different algorithm, and we intend to exploit this possibility in the future.
Also, the code is an excellent base for developing NDO solvers, since it hamdiesnly for the TT
and BTT casejnostof the datastructuresandtasksthatan NDO solvermustmanagefor example,
(9, a,) is added [removed] frofa by simply callingAddSubGr adi ent (i, a,) [Reset Bundl e(i) ]
and “movements” in the spaceof A are capturedby simple calls such asChangeAl f a(a) or
MoveAl ongD( A, 1) so that handling of the a vector can be entirely demandedo the class;
furthermore, the calling codes have full and easy control on the variables'pfithal” problem(IT)
(with functions such addd[ Renove] Var i abl e(i) ) andon the sety of box constraintsthat can
be easily changed.

After thatthe a problemhasbeensolved,the NDO solver canquery somerelevantinformationsthat
are calculatedduring the algorithm: examplesare the vector GTd and three numbersl, = 0, I, and
|, = 0 that describe the optimal solutions values\f &nd (1,) as afunction of t in a neighbourhood
of the current value, i.e.

[1Gx(t) IF = [ld(t) If =1, + (14) 2,
ax(t) =1, - (1)1,

v(t) = -1, - (101,

The above values can be obtained at essentially no cost, since it is easy to verify that
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Case (0) Case (1)
I, 1/ ]|z, If 0
, 22,1 ||z, | p=y-12)/(1-,z)
l, [z fllZIf - @2)° 1/ 1|z If lpz, -z, |F + Il If

and all the data necessary to the calculations is either already calculated during the atgocéhioe
kept updatedin O(1) per iteration: if neededthe NDO solver can query other (a bit more costly)
sensitivity analysisinformations,such aghe “stability interval” t, < t < t,, in which the currently
optimal basd3* remains optimal (hence the above estimatesdft) ||F, ax(t) andv(t) areexact)and
two vectorsx,, X, such that, withintf, t, ], x(t) =x, + (1t)x..

An importantissuein any numericalalgorithmis its resistanceo ill-conditioned instances ando
cumulation of rounding erroré our code,the main problemis representethy some*y = 0" tests,
that are cruciato determinethe behaviouof the algorithm,i.e. the choicebetweencaseg0), (1) and
(2) and between “normal” and “infinite” steps. We addressed the problem by using the two dynau
tolerances adjustment methods: th&atic” oneconsistsin scalingthe “dynamic” relativetolerance
€; by implementingthe testsas ly| < g;[H(Lg)Md (where () is the conditioningnumber and® is
relatedto the “size” of the numbersusedin the calculation);in turn, erroneousconditionsrising in
different partsof the algorithm are interpretedas “increasee;” or “decreasety” requestsanda
customexception mechanisns usedto dynamically adjust €; in order to face “bad” instances
without a needfor hand-tuningof the parametersFrom-scratchrecalculationof the main data
structuresl(g, z, ...), thatmustalwaysbe implementedn any numericalcode,is alsoperformedas a
part of the “exceptions” handling mechanism.

An apparently minor detail of oumplementatioris thatit is parametricaboutthe precisionrequired:
in particular, different formats (from char to doubl e) can be specified for entries of the
subgradients, for storing their scalar products (the m@yrand also fothe main datastructuresLg,
z, ...). Thisis usefulsince ofterthe subgradienthiave only small integer entries,so that the scalar
products may be computed with faster integer operationsygimgmall problemsit is often possible
to usesingle precisionarithmetic(confirming the robustnes®f our approach):this cannotbe done
without care, since the conversion between different formats is not costiesserby only choosing
the right data types performances can be improved of 30% in time and of almost 50% in memory.
Otherimportantimplementativedetailscanonly be sketchedhere:for instance,calculationof some
data (Qs, d) may or may not be performed“lazily”, at least three different memory allocation
strategiesfor matrix Q, (with different price/performanceratios) exists, it might be sometimes
worthwhile to recalculatethe scalar productslike z,z, from scratchat every iteration to enhance
numerical stability, different “pricing” strategies for selecting the entarangblemight be used:for
any of these characteristics, our code offers different choicegathbe easily selectedwith compile
time switches) to tailor the code to the particular class of instances to be solved.
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7. Computational results and comparisons

Barring the “classical’QP algorithmin [Mi77], that solvesa relatedbut different problem,only the
two specialized algorithms fahe unconstrainedrersionof (4;) [Ki86], [Mo87] havebeenproposed
in the past: oulf T algorithm bearsresemblancéo both, but greatly enhancesiponthemin termsof
costper single iteration; in [Ki89], an algorithm for a slightly more generalproblemthan the one
solved by BTT (allowing more than one independent “bundle”) is deschiogdising nxn matrices,
it is admittedly not well-suited for the class of instances of interest here.

During the revision of this article, our attention was drawn upon the recent [Ki94], thattbelgase
generalisegroblemas [Ki89] with muchbetterperformancesit canbe easily seenthat any of the
basic operations (inserting/deleting items or constraints in base, finding the descent directitnis...) in
last algorithmhasa correspondenin BTT with almostthe samecost, but for a numberof important
details in which our algorithm improves on it.

For example, we calculat&) and“downdate” the triangularfactor after a constraintinsertionmuch
faster, we don’t need to perform row additions and subtractions whépabie” variablex, changes
becausave don’t use“projection” (the other methodactually eliminatesthe constraintex = 1 by
replacingQ with (5 = G'G, whereG = [ 9,9, .. 9,-9, ] for someh), andif morethanonestepof the
TT algorithmis performedat eachinner iterationof BTT, we savetime by avoiding to recalculated
(thatis an “heavy” task). Furthermore,the two-level nature of BTT also helps, since the same
operationmay havea differentimpactin the two casesfor instancewhile in TT it is convenientto
keep the basassmall aspossible,in BTT it may be wastefulto deletean item without need,so that
implementing different strategies for each level can result in performance improvements.

Our implementation®f the TT andBTT algorithmshavealreadybeenusedwithin severaldifferent
codes, such as a custom implementations of Bundle algorithms for “nonf&x@eéf95] or “exact”

[CGN95] Lagrangeandlecompositionsa generalBundle algorithmfor unconstraineaptimizationof

polyhedral function§CFN95] (that hasin turn beenusedto approachseveraldifferent problems,as
[MP95]) and a specialized Bundle code for Multicommodity Min Cost Flow ProbE@®86]: in the

following, we will compare oucodeandtwo genericQP codeswhenused agAg)-solverswithin the

NDO solversdescribedin [CFN95] (for unconstrainedproblems)and [FG96] (for constrained
ones).

Anticipating a bitthe conclusionspur codehasshownto be blatantly fasterthanthe two benchmark

QP solvers: we want to stress the fact thatrégsilt hassomeclearreasonsthatwill be illustratedin

the following, and it is limited to the specific application of interest - in no way we are claiming that o
code is any better than the others outside this framework, nor we are dideyatye of the different
technologies used therein, like Interior Point methods.

The first competitor is the well-known QL code described in [Pad3piteits age,it is known to be
an efficient public domainQP solver,andin factit has alreadybeenused agAg)-solver within the
Bundle code described in [SZ92] - actually, the version we tested was exactly the one used in that
that had been somehow specialized for the tagkhéguthorsand J. Outrata,translatedo C with the
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f2c converterby R. Freling andfurther adaptedo C++ by ourselvesBeing a “primal” code,and
being not able to reoptimize from previous callsyais expectedo be slowerthanour code:however,
such a comparison give a measure of the need for specialized QP solver that originated our reseal
The second competitor code is a beta release of the Interior Point QP solver that will be indineled
next release of Cpléx one of the best commercial LP soleerthe market:this codeis basedon the
“modern” IP technology|CLM93] (opposedto the “old” active-setmethodof BTT), andit is a
commercial code, hence it is supported by sophisticated sparse linear algebra aodtstate-of-the-

art coding. Since it is well-known that IP methods tend to behave batlarge problemswith sparse
Hessianssuch as({,) (thathasin fact a separablejuadraticobjectivefunction), we wantedto seeif

such a “primal” approach could be competitive with our “dual” approachyjo (

In our experimentswe paid greatattentionin making the testsfair: for example,the cost of data
structures initialisations and problem scaling was not counted, so that the wiaigh problemswere
stored had no influence on the test (even though icadewe pay somethingfor havingan“easy”
interface with the above NDO solver), we used double precision arithmetic (but our code might as
work in single precision) and fixealsetof “compile time” choicesfor all the problems(ratherthan
using its flexibility to be faster on specific sub-classes of instances). The main disadvathadeof
competitorcodesis that they are not able to reoptimizeefficiently, or evento exploit “external”
information such as a good starting point, so that when possible we tried to phividéormationin
an indirect way: for instance, we don’t ask CQP to solve the “full” dual formulakiprbt rather an
easier restrictegroblemsimilar to (R,) w.r.t. the optimal setx (thathasbeenpreviouslydetermined
by BTT).

The first comparison involved the solution of Lagrangean Duals (LD), relateatlbog lower bounds
for the QuadraticSemi-AssignmenProblem[MP95], with a generalunconstrainedBundle-based
NDO solver [CFN95]: in each (LDh = |g| was fixed between 1énd 1600, while m (the numberof
gss) varied between 1 (at the very beginning) and @b to estimatethe efficiency of a (4y)-solver,
we have focused our analysis on the “total running time” of the QP codes, i.e. té th@munning
times of all the&;)s (up to 1800) needed to solve a single (LD).

For technicalreasonsyve testedCQP and QL againstTT on two different (but analogous)ets of
problems: the resultareillustratedin the following tablesand charts,wherefor easeof visualisation
we aggregated the (LD) problems in groups with similar “total size”, i.e. the pnoclacteragevalue
of m)x(number of {)s solved) that has showa havethe largestcorrelationwith the runningtimes,
hence is presumably a good measure of the(armdifficulty) of a (LD) problemfor our purposes.
Here,N is the numberof (LD)s in any group,the figures are averagedwithin the group, QPP and
QPD stand for CQP solving respectively the primal and the dual formulation @fablem,times are
in seconds on an HP9000-712/80 workstation with 64 Mb of RAM, the BTT and QL leavdisseen
compiled with the HP C++ compiler (under HP-®05) invoking normal optimisations(- O), while
CQP was available only as executable.

* Cplex is a registered trademark of Cplex Inc.
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N n| m(avg) Call§ TTtimg QL timg

6| 12 14 128 .0p 16
121 15 11 17% .0B .36
17, 70 30 289 16 2.98
25 75 43 502 .6p 9.99
200 94 50 701 1.38 27.49
19 153 88 1296 12.12 277.B0
16 284 89 153[ 9.50 295.p9
11] 686 108 184p 10.Y2 721.p8
4{ 1504 111 188p 10.12 7510

Table 1: comparison between TT and QL codes

nm (avg Callg TT timgQPD timeQPPtim(Iz
17 14 12p 0.08 1.04 2.91
64 26 19y 0.1p 5.03 20.p0
64 5% 76p 1.7p 76.96 478p7
152 88 1260 8.91 346.p1 2388]25
7 0
1 7

273 87 132 11.4 590.91 2167}44
67¢ 11 182 10.3 2424126 5023.14
6] 138% 11) 1874 10.00 2729{15 76094.03

Table 2: comparison between TT and CQP solving Primal and Dual problems

~N|lo|lo o |olo]lZ

The resultsare bettervisualisedin the following charts,and clearly show that our code is by far
superiorto both QL and CQP, especiallywhen dealing with large problems(note that the scalein
charts1 and3 is logarithmic): we remarkagainthat this is not necessarilytrue in general,but only
within the particular class of problems that we are takingantmunt,and consideringas measurehe
total running time over a whole execution of the NDO solver.
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Chart 1: TT and QL running times Chart 2: ratio between TT and QL running times
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Chart 3: TT and CQP running times Chart 4: ratio between TT and CQP running times

The second comparison involved the solution of Multicommddity Cost Flow (MMCF) problems
with a specializedconstrainedNDO solver[FG96]: in eachproblem,n (= numberof edgesin the
graph) was fixed between 200 up to 700, winlearied between 1 and about 50; kgenarkthat those
problems are in some sense “easier” thattte®iousones,sincethe overallNDO algorithmalways
terminatedn lessthan 50 iterations(againstup to 1000),so that the averagevalue of m was much
smaller,eventhoughoften morethanone new item hasbeeninsertedat eachiteration. Furthermore,
from 94 to 99% of nonnegativityconstraintawvere always“active”, andthe average numberof TT
calls per BTT call were always smaller tiaugand often almost1 onsmall problems),so thatthe TT
algorithm was never called more than 150 times (against up to 1800) theswgutionof any single
problem:hencethis datasetis representativef a somewhatdifferent classof problems,in which
reoptimization is possibly less important than the ability of rapidly solving small-sized instances.
Due to limitations of the version of QL we had at hand, we tagiedCQP in this setting:the results
arereportedin the following table and charts,and clearly confirm superiorityof BTT, thatis always
more than 25 times faster than its competitor; note that for this classof problemsQPP generally
outperformsQPD, eventhough,extrapolatingirom the resultswe got, the largestinstanceswe tried
seem to represent the point in which the latter might become competitive with the former.

N n m(avg) Callg BTT timg QPD time QPP tim(le
057 2 4 o1 3d 0.33
371 4 71 o8B 546 046
1q 487 5 10  .0dt 549 1.94
g 43¢ 15 o4 7.d0 2 48
g 366 9 2b 048 1244 5.49
d 374 14 3B 140 2039  16po

Table 3: comparison between BTT and CQP solving Primal and Dual problems
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Chart 5: BTT and CQP running times Chart 6: ratio between BTT and CQP running times

To conclude,a final remark might be worthwhile: in [FG96] it is shown how an Bundle-based
approachto Multicommodity flow problemscan be competitive with (and often better to) other
methods; the algorithm described therein used our BTT cofdg)esolver,and, despiteits efficiency,
a significative fraction of the total solution time of a MMCF problem has to be imputed solution
of the @3;) subproblem. Clearly, the use of any otb&the abovealgorithmswould havedramatically
changedsucha positive result,and this a good exampleof how a specializedQP can be crucial to
makeBundle algorithmsattractive.In fact, Bundle methodshavebeensince long widely recognised
among experts as a very important class of NDO algoritbhotgjespitetheir theoreticaland practical
superiority w.r.t. simpler-to-programalgorithms(such assubgradienimethods),their successhave
beenso far limited by both the cost of solving the quadratic (A;) subproblemsand the extra
programmingcomplexity they require, part of which is representedy the needof a suitable QP
solver. Our personal experience shows that the BTT algorithm greatly rékdecesrheado be paid
for the solutionof (4,), andour C++ implementatioroffers a simple an clear interfacethat greatly
simplifies the task of developing a Bundle algorithm:hepethat this codewill help researcherand
practitionersinterestedin NondifferentiableOptimization methodsto move towardsthis interesting
and powerful class of algorithms.
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