
� � � � � � � � � � � 	
 � �
 � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � ! � " # $ � % $! � & ' % � (� � �) * � ! + � �
, � �) � � � ! + - . ! � � � / $! � � � 0 � � � % � ! + �)

1 2 3 4 5 6 7 4 6 8 4 9 7 4 6 7
: 6 ; 3 2 9 6 < = 4 9 7 > 6 ? 4 @ 7 2 < 3 9 6 A 3 B C 4 6 D = 2 E 6 9 F3 > 6 G 6 E 3

A 7 2 E 7 ? 9 3 H 6 3 I J B K L M N K G 6 E 3 B ? 9 3 H O

P Q R S T U V S
W X Y Z [\] \ ^ _ ` Z a b ` c d ` Y Z e f \ c \ Y ^ e g h [\ i j ^ e] e k g ^ e ` Y g c \ l e Z \ [m c \ n ` o Y e a \ Z g a ` Y \` b ^ _ \ h \ a ^ n _ ` e n \ a b ` c ^ _ \ a ` [X ^ e ` Y ` b p g o c g Y o \ g Y q X g [a r ` Y \ ` b ^ _ \ e c] g s ` c Z c g l th g n u a e a ^ _ g ^ ^ _ \ m c \ v X e c \ ^ _ \ a ` [X ^ e ` Y ` b g w \] e Z \ x Y e ^ \ y X g Z c g ^ e n z c ` o c g]] e Y oa X h j c ` h [\] g ^ \ { \ c m e ^ \ c g ^ e ` Y | } \ j c \ a \ Y ^ g Y g n ^ e { \ t a \ ^] \ ^ _ ` Z b ` c ^ _ \ a ` [X ^ e ` Y` b a X n _ j c ` h [\] a ~ ^ _ g ^ \ Y _ g Y n \ a X j ` Y ^ _ \ ` Y \ a e Y ^ _ \ [e ^ \ c g ^ X c \ h m Z e a ^ e Y o X e a _ e Y og] ` Y o h g a \ a l e ^ _ Z e f \ c \ Y ^ j c ` j \ c ^ e \ a g Y Z \ � j [` e ^ e Y o ^ _ \ e c a ^ c X n ^ X c \ e Y ` c Z \ c ^ `c \ Z X n \ ^ _ \ n `] j X ^ g ^ e ` Y g [n ` a ^ ` b ^ _ \ h g a e n a ^ \ j | � X c ^ _ \ c] ` c \ ~ l \ a _ ` l _ ` l ^ _ \g [o ` c e ^ _] n g Y h \ g Z g j ^ \ Z ^ ` ^ _ \ a \ { \ c g [Y \ \ Z a ^ _ g ^ g c e a \ a e Y j c g n ^ e n \ l e ^ _ e Y W X Y tZ [\ g [o ` c e ^ _] a r l \ Z \ a n c e h \ _ ` l e ^ e a j ` a a e h [\ ^ ` g [[` l n ` Y a ^ c g e Y ^ a ` Y ^ _ \ j c e] g [Z e c \ n ^ e ` Y ~ _ ` l a j \ n e g [� h ` � � n ` Y a ^ c g e Y ^ a n g Y h \] ` c \ \ � n e \ Y ^ [m Z \ g [^ l e ^ _ g Y Z _ ` l^ ` g n n `]] ` Z g ^ \ n _ g Y o \ a e Y ^ _ \ Y X] h \ c ` b { g c e g h [\ a ` b ^ _ \ Y ` Y Z e f \ c \ Y ^ e g h [\ b X Y n t^ e ` Y | � e Y g [[m ~ l \ Z \ a n c e h \ ^ _ \ e] j ` c ^ g Y ^ e] j [\] \ Y ^ g ^ e ` Y e a a X \ a ~ g Y Z l \ c \ j ` c ^ a `] \n `] j X ^ g ^ e ` Y g [\ � j \ c e \ Y n \ ^ ` a _ ` l ^ _ g ^ ^ _ \ g [o ` c e ^ _] e a n `] j \ ^ e ^ e { \ l e ^ _ ` ^ _ \ c y zn ` Z \ a l _ \ Y X a \ Z l e ^ _ e Y g W X Y Z [\ n ` Z \ b ` c ^ _ \ a ` [X ^ e ` Y ` b p g o c g Y o \ g Y q X g [a ` b[g c o \ t a n g [\ � � Y ^ \ o \ c � p e Y \ g c z c ` o c g] a |

� � � � � � � � � � � � � � � � � � �� � � � � � � �
� � � � � � � � � � � � � � � � � � d ` Y Z e f \ c \ Y ^ e g h [\ i j ^ e] e k g ^ e ` Y ~ W X Y Z [\ \ ^ _ ` Z a ~ y X g Z c g ^ e nz c ` o c g]] e Y o ~ p \ g a ^ w v X g c \ a

A. Frangioni

1

0. Introduction

Nondifferentiable Optimization (NDO) is concerned with the solution of the generic problem

min{ ϕ(λ) : λ ∈ Λ }

where ϕ() is a nondifferentiable function and Λ ⊆ Rn: in the applications of interest, ϕ() is a proper

convex function and Λ is a polyhedral set (or even the whole Rn). Usually, ϕ() is known to the NDO

algorithm by means of a “black box” solver that, for any given λ̄, computes the value of ϕ(λ̄) and a

subgradient g(λ̄) ∈ Rn, i.e. a vector that satisfies the well-known subgradient inequality

ϕ(λ) ≥ ϕ(λ̄) + g(λ̄)(λ - λ̄) ∀ λ ∈ Λ

NDO problems arises in many practical applications: among the most important ones, we mention the

solution of Lagrangean Duals of large-scale (Integer) Linear Programs, where the computation of ϕ(λ̄)

and g(λ̄) corresponds to the solution of a (possibly hard) Lagrangean Relaxation of some difficult

problem, ϕ() is a polyhedral function and Λ is either the whole Rn or its nonnegative orthant.

Bundle methods [Ki85] [Le89] [SZ92] [CFN95] are a well-known class of NDO algorithms that are

mainly characterised by keeping the first-order information (the subgradients) about the function ϕ()

in a “disaggregated” form, in contrast with aggragated subgradient algorithms. Visiting a (finite)

sequence of points {λi}, the whole set (Bundle) of informations {< λi , ϕ(λi) , g(λi) >} that represents

the “history” of the computations performed so far is used to compute the next trial point - actually a

tentative descent direction d along which λ i+1 is choosen - by solving a Semidefinite Quadratic

Programming subproblem. In principle, one may think to the current Bundle β as a (small) subset of

an overall fixed (large) set of couples (gi, αi), where gi = g(λi) and αi = αi(λ̄) = ϕ(λ̄) - gi(λ̄ - λi) -

ϕ(λi) ≥ 0 is the associated nonnegative linearization error w.r.t. the current point λ̄, so that, when

dealing with unconstrained minimisation of ϕ() (Λ = Rn), the problem

(Πβ) min { v + 1/2⋅|| d ||2 : v ≥ gid - (1/t)αi ∀i ∈ β }

gives a tentative descent direction d within the current “trust region” implicitly defined by the strictly

positive trust region parameter t; alternatively, one can solve its Quadratic Dual

(∆β) min { 1/2⋅|| Gβx ||2 + (1/t)αβx : x ∈ Θ }

where Gβ is the matrix having the vectors gi (i ∈ β) as columns, and Θ = { x : ex = 1, x ≥ 0 } (where

e = [1, 1, ... , 1]T) is the unitary simplex. (∆β) and (Πβ) have several interpretations that cannot be

discussed here (the interested reader can refer to [CFN95]): as a foretaste, we mention that from a

“dual” point of view the gis are αi-subgradients of the current point λ̄, so that (∆β) can be viewed as a

generalisation of minimal partial derivative finding problem in some inner approximation of the

maxi{ αi}-subdifferential of ϕ() in λ̄, while from a “primal” point of view (Πβ) is the minimisation of

a polyhedral upper approximation of ϕ() plus a “stabilising” quadratic term whose “weight”

depends on t.

Both (Πβ) and (∆β) are Semidefinite Quadratic Problems, so they could be solved by standard SQP

Solving Quadratic Problems within Bundle Algorithms

2

codes [GMW81] [Po83] [CLM93], but the need for low solution times make it necessary to develop a

specialized code in order to exploit their valuable structural properties: this is especially true because,

within a Bundle algorithm, a (long) sequence of subproblems have to be solved that only differs for the

addition/deletion of a few gis from β, the modification of the vector α and/or the scalar t, so that a

suitable algorithm can converge in very few steps if enough care is taken in conserving information

between two subsequent calls. Furthermore, when applying Bundle methods to the solution of

Lagrangean Duals, where the subgradients are obtained by solving a (possibly hard) optimization

problem, the Bundle is usually small (p = |β| ≈100) while the vectors gi may be long (n ≈10000), so

that (∆β) has fewer variables and simpler constraints than (Πβ), even though the latter has a much

simpler (separable) objective function: it is therefore not surprising that all the specialized algorithms

proposed in the literature [Ki86] [Mo87] [Ki94] are “dual”, in the sense that they work on (∆β).

In this article, we propose an active-set method for the solution of (∆β), that enhances upon the

specialized approaches proposed so far by distinguishing among bases with different properties and

exploiting their structure in order to reduce the computational cost of the basic operations. The work is

structured as follows: §1 an overview of the method is given, and simple proofs of convergence are

presented, while in §2 the details of the matrix factorisation methods are discussed; in §3 the method is

extended to a more general version of (Πβ) that allows (general) linear constraints on the primal

solution d, while in §4 a method for changing the number of variables of d is presented and in §5 this

is used to develop a specialized algorithm for (Πβ) with box constraints on the primal space. Then, in

§6 the relevant implementative details of our actual C++ code are discussed, and in §7 some

computational comparisons are reported and conclusions are drawn.

1. An overview of the algorithm

Although the basic theory of our algorithm is almost the same as that of the other known specialized

approaches, we present it here in a simple, self-contained form: by Quadratic Duality [Ge69], a feasible

solution x of (∆β) is optimal if and only if

d = - Gβx and v = - dTd - (1/t)αβx

are feasible for (Πβ) and vice-versa, since for any x ∈ Θ (x ≥ 0, ex = 1) and (v, d) as above such that

αβ ≥ Gβd - ve, the Complementary Slackness Conditions x(αβ - Gβd + ve) = 0 hold, so that x are

feasible dual multipliers for (Πβ). Since during the solution of (∆β) t is fixed, for notational

convenience in the following we will drop the parameter t, i.e. unless explicitly specified each αi

should be read as (1/t)αi, and v defined as v = - || d ||2 - αβx: it means viewing t as “embedded” in the

vector α, while our implementation actually handles it explicitly.

We will address the solution of the “dual” problem

(∆β) min { 1/2⋅xTQβx + αβx : x ∈ Θ }

where Qβ = Gβ
TGβ is a positive semidefinite matrix, i.e. the minimisation of the (non-strictly) convex

function fβ(x) = 1/2⋅xQβx + αβx over the unitary simplex; our algorithm follows the well-known active

A. Frangioni

3

set strategy [GMW81], i.e. at each step we attach a restriction of (∆β) in which some of the variables

are fixed to zero:

Definition 1.1: given any subset B ⊆ β (a base), we set

(∆B) min { 1/2⋅xQBx + αBx : x ∈ Θ }

where x ∈ R|B| and QB, αB are appropriate submatrices of Qβ, αβ.

By a little abuse of notation, we will consider bases as sets of indices as well as sets of subgradients

(an element of the base will be generically called item): we will also make some other notational

simplifications by avoiding to distinguish sets Θ with different dimensions and omitting transpose

signs when clarity is not affected.

We deal with a sequence of subproblems { (∆B)} , characterised by their base B (and the corresponding

QB, GB ...) and the current feasible point x = [xB 0] ∈ Θ: at each step, a descent direction w (for fβ() at

x) is found, and B is revised until a solution that is optimal for both (∆B) and the original (∆β) is

reached, as described below. At each iteration, we approach the inequality constrained subproblem (∆B)

by considering its equality constrained relaxation

(RB) min { fB(xB) : exB = 1 }

where x̄B is an optimal solution if and only if the Kuhn-Tucker optimality conditions

ex̄B = 1 and ∃ ρ ∈ R s.t. ρe = QBx̄B + αB

hold, i.e. if at least a solution in the form [x̄B ρ] of the linear system

(KT)




QB -e

eT 0 



xB

ρ =




-αB

1

exists: finding a solution of the (KT) system is the basic step of our algorithm, and it will be shown in

§2 how to (efficiently) construct either the unique [x̄B ρ], if uniqueness holds, or a direction wB such

that wBQB = 0 and ewB = 0 otherwise.

TT Algorithm:
B = {1}; x = [1, 0, ... , 0]; /* initialisation */

while(∃ h ∉ B such that v < ghd - αh) /* main iteration */

B = B ∪ {h}; /* item insertion */

do /* inner iteration */

if (the (KT) system admits unique solution [x̄B ρ])

then if(x̄B ≥ 0) then x = [x̄B 0]; wB = 0;

else wB = x̄B - xB;

 else 〈 find a feasible (descent) direction wB such that wBQB = 0 and ewB = 0 〉;
if (wB ≠ 0) /* x̄B is not optimal for (∆B) */

then η = min{ -wh / xh : wh < 0 , h ∈ B } /* maximum feasible step η > 0 */

xB = xB + ηwB; /* take step η along wB */

forall (h such that xh = 0)

B = B / {h}; /* item(s) deletion */

while(wB ≠ 0); /* end inner iteration */

endwhile /* end main iteration */

Solving Quadratic Problems within Bundle Algorithms

4

If (the unique) x̄B is feasible, i.e. x̄B ≥ 0, then it is optimal for (∆B) too, otherwise, by convexity of fB(),

wB = x̄B - xB is a direction of descent (and ewB = 0): this is not enough, however, since we must also

show that the direction is feasible, i.e. that for a sufficiently small η > 0 we still have xB + ηwB ≥ 0. If

the current inner iteration is not the first of a main iteration, then xB > 0 (all the h such that xh = 0 have

been eliminated at the end of the previous inner iteration) and any wB such that ewB = 0 is feasible,

otherwise we have B = B' ∪ {h}, xB = [xB' xh] = [xB' 0], xB' > 0 is optimal for (∆B') and the h-th primal

constraint is violated, i.e. v < ghd - αh. In this case, by exploiting some basic relations it is possible to

show that wB = [wB' wh] = x̄B - [xB' 0] is feasible, i.e. that wh > 0 (since no other entry can create

problems): for d = - GB' xB' and v = - || d ||2 - αB' xB' (the optimal primal variables of (∆B')), the KT

conditions have an obvious interpretation in terms of the “basic” primal constraints, since they can be

rewritten

- ρe = GB'
Td - αB'

where (left)multiplying both sides for xB'
T and using exB' = 1 one has

- ρ = -dTd - αB' xB' = v

so that finally

v = ghd - αh for each h ∈ B'

i.e. all the primal constraints in B' are satisfied as strict equations and the optimal multiplier ρ
associated with the constraint exB' = 1 is just -v. Then, take any direction w = [w' wh] such that ew = 0

and note that

f(xB + ηw) = f(xB’) + η[w' wh]












QB' QB'h

QB'h
T qhh 



xB'

0 + 



αB'

αh
 +

1
2 η2wTQBw

where QB'h = GB'
Tgh: the first-order term can be rewritten as

η[w' wh]



QB' xB' + αB'

gh
TGB' xB' + αh

and since (from optimality of xB') QB' xB' + αB' = - ve, we obtain

η[wh(αh - ghd) - vew']

that, using the fact that ew = 1 (⇒ ew' = - wh), can be reduced to

ηwh[v + αh - ghd]

that is (strictly) negative if and only if wh is (strictly) positive, since v + αh - ghd < 0; therefore, a

direction w is feasible if and only if it is (strictly) of descent, and we already know that (by convexity

of fB()) wB is a direction of descent. If wBQB = 0 (we call wB an infinite direction) things are even

simpler, since from the previous formulas

f









xB'

0 + η



wB'

wh
 = f(xB’) + η[wB' wh]



αB'

αh

and therefore one among ±wB (depending on the sign of the scalar product) is a direction of descent: if

A. Frangioni

5

xB > 0 there can be no problems, and when xB = [xB' 0] we have just shown that

η[wB' wh]



αB'

αh
 = ηwh[v + αh - ghd]

and therefore that by choosing among the directions ±wB the one with wh > 0 we choose at the same

time the descent one.

It is easy to show that the algorithm finitely terminates: only a finite number of inner iterations can be

performed between two successive main iterations, since at any inner iteration (at least) one item is

eliminated from the base; moreover, it is impossible for a base B to appear twice as the current base at

the beginning of a main iteration, since there the current solution xB is optimal for (∆B) and at least a

strictly decreasing step has been performed since the latest main iteration (a strictly violated constraint

has been inserted in base), but the number of different bases is finite (although exponential) and this

ensures finite termination.

Although the basic structure of our algorithm is almost the same as that of [Ki86] and [Mo87], our

particular view point makes the statement of the algorithm and the proof of convergence easier than the

ones in the above mentioned papers: actually, all those methods differs essentially for the way in which

the KT system is faced, and in the next paragraph we will show how this task is accomplished.

2. Solving the KT system

We solve of the (KT) system (or the determine an infinite direction) by essentially keeping a lower

trapezoidal factorisation of the Hessian matrix QB of the current subproblem (∆B): that is, we will

always have a matrix

L̄B = 



LB' 0

VT 0 such that L̄BL̄B

T
 = QB

and LB' is a lower triangular matrix with all nonzero diagonal entries; actually, the submatrix V
T
 will

always have only up to two rows, i.e. L̄B has only three possible configurations

0) B = B' L̄B = LB'

1) B = B' ∪ {h} L̄B = 



LB' 0

lh
T 0

2) B = B' ∪ {h} ∪ { j} L̄B =







LB' 0 0

lh
T 0 0
l j
T 0 0

The rationale is that B' is the subset of B containing linearly independent items gi, while gh (and gj) are

linearly dependent from the items in B': in fact, the (KT) system may have full row rank (hence unique

optimal solution) even if QB is 1-rank deficitary, while if B contains two linearly dependent items then

the (KT) system is underdetermined and a feasible infinite direction wB (such that ewB = 0) can be

found. The basic relations are summarised in the following propositions:

Solving Quadratic Problems within Bundle Algorithms

6

Proposition 2.1: in case (0), the unique solution of KT is

x̄B = QB
-1[ρe - αB] where ρ =

1 + eQB
-1αB

 eQB
-1e

The proof of this proposition is just linear algebra applied to the (KT) system, and is omitted; rather,

defining

z1 = L B'
-1e and z2 = L B'

-1αB

(the unique solutions of the triangular systems LB'z1 = e, LB'z2 = αB'), the above relations can be written

x̄B = (LB

T
)-1[ρz1 - z2] where ρ =

1 + z1z2

z1z1

i.e. x̄B can be obtained at the cost of three backsolves and a few linear operations: actually we can do

much better, and we will show later that we are always able to find x̄B and ρ (or wB) with just one

backsolve on the triangular matrix LB'. We continue with other four propositions, whose validity can be

checked by simple substitution:

Proposition 2.2: in case (1), if lhz1 ≠ 1 then the unique solution of KT is

x̄h =
1 + z1z2 - ρz1z1

1 - lhz1
 x̄B' = (LB'

T
)-1[ρz1 - z2 - x̄hlh]

where ρ =
αh - lhz2

1 - lhz1

Proposition 2.3: in case (1), if lhz1 = 1 then an infinite direction is

wB = [wB' wh] = [v1 -1] where v1 = (LB'

T
)-1lh

Proposition 2.4: in case (2), if l jz1 = 1 then an infinite direction is

wB = [wB' wh wj] = [v2 0 -1] where v2 = (LB'

T
)-1l j

Proposition 2.5: in case (2), if l jz1 ≠ 1 then an infinite direction is

wB = [v -1 µ] where µ =
1 - lhz1

1 - l jz1

and v = v1 - µv2 = (LB'

T
)-1[lh - µl j]

Note that in case (2) we are always able to find an infinite direction wB: this immediately implies that B

won’t ever contain more than 2 linearly dependent items, since at the very moment in which the second

linearly dependent item is inserted in B, a sequence of inner iterations always using infinite directions

starts, and at each iteration at least one item is deleted from B, until full rank of the (KT) system is

restored. Actually, it may even happen that some of the infinite directions used by the algorithm be not

strictly descent (if αBwB = 0), but this cannot happen in the first inner iteration of a main iteration

(since the selected h-th constraint is strictly violated) and hence convergence is not affected.

In our code we calculate the objective function value only at the beginning of each main iteration, where

A. Frangioni

7

QBx̄B = ρe - αB ⇒ x̄BQBx̄B = ρ - x̄BαB ⇒ fB(x̄B) = 1/2⋅x̄BQBx̄B + αBx̄B = 1/2⋅(ρ - x̄BαB)

so that the calculation can be performed in O(m) rather than O(m2) (m = |B|): one might also

cheaply calculate the value of fB() at any inner iteration, since f() is linear when restricted along an

infinite wB (as shown in §1), and if wB = x̄B - xB one has

f(xB + ηwB) = f(xB) + ηwh[v + αh - ghd] + 1/2⋅η2[f(xB) - f(x̄B)]

but this is essentially useless, and it is avoided in our implementation.

Given the lower trapezoidal matrix L̄B and the vectors z1, z2 for a certain base B, we can keep them

updated at low cost whenever an item is either inserted into or deleted from B, therefore the above

propositions show that x̄B or wB can be obtained at each step at the cost of a single backsolve on LB'

(since at the first iteration L̄B = LB' = [1 / Q11] and z1, z2 can be obtained accordingly); the method is

described by the following propositions:

Proposition 2.6: for B = B' ∪ {h} and L̄B = LB nonsingular, then

LB = 



LB' 0

lh
T δ where lh = (L B'

-1)[GB'
T gh] and δ = || gh ||

2 - || lh ||
2

Hence, LB is nonsingular ⇔ δ > 0 ⇔ gh is linearly independent from the items in B'.

This follows from the rules of Cholesky factorisation applied to QB = GB
TGB: for a sketch, note that

|| lh ||
2 = (gh

TGB'LB'
-1T)(L B'

-1GB'
Tgh) = gh

T[GB'(GB'
TGB')

-1GB'
T]gh = [gh

TKB']gh = ḡ
T
gh

where KB' is the projection operator onto the subspace ΓB' spanned by the vectors in B', therefore ḡ is

the projection of gh onto ΓB', so that || lh ||
2 = ḡ

T
gh ≤ || gh ||

2 and equality holds ⇔ gh ∈ ΓB' (i.e. gh is

linearly dependent from the items in B'). Actually, this is exactly one step of the row-wise LLT

factorisation algorithm applied to Qβ, that we are just performing step by step each time we need; to

extend the result to the case where L̄B is lower trapezoidal, consider a p-vector γ and its subvector γB':

Proposition 2.7: if LB'θ = γB', then

LB⋅






θ

γh - lhθ
δ

 = 



LB' 0

lh δ ⋅






θ

γh - lhθ
δ

 =







LB'θ

lhθ + δ 



γh - lhθ

δ
 = 



γB'

γh
 = γB

In other words, if we already know θ = L B'
-1γB', then we can calculate the solution to the “new” system

[θ θh] = L B
-1γB (actually θh only) in O(m') (where m' = | B' |): the importance of this proposition lies

in the fact that all the “relevant” vectors lh, l j, z1 and z2 have the above form (for γ respectively equal to

Qh, Qj, α and e), and therefore can be cheaply updated when inserting a new item in B; moreover, also

the scalar products among such vectors that are used within the algorithm (such as lhz1, z1z2 ...) can be

updated in constant time when the new entries are calculated, saving some O(m) computations.

Using the above relations, we can also shed some light on Propositions 2.2 - 25: for example, the

“critical” scalar product lhz1 of Proposition 2.2 can be rewritten as lh
T[L B'

-1e] = e[L B'
-1lh] = ev1, so that the

condition

Solving Quadratic Problems within Bundle Algorithms

8

 lhz1 = 1 is equivalent to [v1 -1]T[e 1] = 0

i.e. to the feasibility of the (infinite) direction [v1 -1] w.r.t. the constraint exB = 1; similar

interpretations can be derived for all the other cases.

Now, we need a cheap updating procedure for the case B = B' / { h }, where

LB' =







L1 0 0

vT δ 0
Z w L2

GB'
T =







G1

T

gh
T

G2
T

QB' = GB'
TGB' =







G1

TG1 G1
Tgh G1

TG2

gh
TG1 || gh ||

2 gh
TG2

G2
TG1 G2

Tgh G2
TG2

and LB =




L1 0

Z L2
' GB

T =




G1

T

G2
T QB =





G1

TG1 G1
TG2

G2
TG1 G2

TG2

Obviously, the first k - 1 (where k is the position of gh in GB') rows and columns of LB' are not altered

by the operation, and only the submatrix L2
' changes: since L2

'L2
'T = L2L2

T + wwT, all we need for

retrieving L2 (and hence LB) is a rank-one correction of the triangular matrix L2
', that can be

accomplished by a sweep of Givens Rotations.

Proposition 2.8: there exists a m'-k orthogonal square matrix Gs (i.e. Gs
-1 = Gs

T) such that







L1 0 0

vT δ 0
Z w L2

⋅






I k-1 0 0

0
0 Gs

 =







L1 0 0

vT β yT

Z 0 L2
'

which implies L2
'L2

'T = L2L2
T + wwT,

Proof: Gs is the product of m'-k Givens matrices (where m' = m + 1); the h-th matrix performs the

transformation

x

Z

0 0

0

L

d

0 0

v

w
h

k + h

ω
h

yh

x

Z

0 0

0

L

d

0

v

yh

0 0
0 '

'

yhω
h
'

h2

Lh1

h2

Lh1

wh2 w'h2

k + h

k

so that at the end all the entries of the k-th column of LB' (but Lkk) are zero, and eliminating the k-th row

and column of the resulting matrix we obtain just LB. ♦

As the h-th step requires 4(m - k - h) multiplications, the overall cost is O(2(m - k)2); furthermore,

with the same method we can also update the vectors lh, l j, z1 and z2:

Proposition 2.9: for Gs as in Proposition 2.8, θ such that

LB'θ =







L1 0 0

vT δ 0
Z w L2

⋅






θ1

θh

θ2

 =







γ1

γh

γ2

 = γB' and







θ1

θh
'

θ2
'

 =




I k-1 0

0 Gs
T ⋅







θ1

θh

θ2

the vector θ̄ =




θ1

θ2
' solves LB'θ̄ =





L1 0

Z L2
' ⋅





θ1

θ2
' =





γ1

γ2

 = γB.

A. Frangioni

9

In other words, to calculate the new (last m'-k entries of) vector θ̄, we only have to apply the same

Givens transformations of Proposition 2.8 to the old θ: it is also easy to show that

z̄1z̄2 = z1z2 - z1h
' z2h

'

(an analogous result holds for any scalar product of this kind), therefore lhz1, z1z2 ... can be kept

updated in this case also. Some other details have to be taken into account: for instance, in case (1) the

elimination of an item from the base may make gh to “enter the linearly dependent part” of B, i.e.









L1 0 0 0
vT β yT 0
Z 0 L2

' 0
l1 lh

' l2
' 0

 ⇒






L1 0 0

Z L2
' 0

l1 l2
' lh

'

but obviously lh
' is all we need to check if this is the case; similarly, in case (2) gj also may become

independent, or gh may be deleted from B.

Reoptimization is natural within our algorithm: when (∆β) has been solved, the optimal base B with the

relative optimal solution [xB 0], the lower trapezoidal factorisation L̄B of QB and the vectors z1, z2 (with

the relative scalar products) are kept, and they are updated as modifications occurs to the data of the

problem; for instance, in our implementation the calling program is allowed to

- add a single new item gh (a newly obtained subgradient) to β: hence, by skipping the

initialisation phase the algorithm is restarted with the optimality test phase, in which all the

stored data structures are used “as is” to test the optimality of the newly entered item

- delete a single new item gh (an outdated subgradient) from β: if h ∉ B this has no effect on the

problem since xB obviously remains optimal, while if h ∈ B the procedures described in

Propositions 2.8 - 2.9 (actually, the same piece of code) are used to update all the data

structures in such a way that the algorithm can restarted at the beginning of an inner iteration,

just as if gh had been deleted from B in the course of a normal iteration of the algorithm

- change the vector α (i.e. change the current point λ̄): then, the vector z2 can be recalculated with

just one backsolve on the (available) linearly independent matrix LB' (plus the recalculation of

z1z2), and again the algorithm can be simply restarted at the beginning of an inner iteration, since

all the other data structures are still coherent

The main point here is that all the above modifications can be dealt with orthogonally, i.e., provided that

memory of the changes is kept, any sequence of such operations leaves the data structures in a

consistent state, so that in case of a warm start the (data structures of the) previous optimal solution can

be fully exploited. Some minor details may also be noticeable: if the parameter t is explicitly handled,

as in our implementation, changing t does not force the recalculation of z2, if z = L B'
-1α is kept and z2 =

(1/t)z is calculated only when required; furthermore, if α is changed “along” the latest optimal

solution d (as in NDO solvers, where the current point is usually updated as λ̄ := λ̄ + τd), i.e. the new

vector is obtained according to the formula

Solving Quadratic Problems within Bundle Algorithms

10

α' = α - τ[GT
d] + ∆oe

(where ∆o = ϕ(λ̄ + τd) - ϕ(λ̄) is the obtained increase in the nondifferentiable function for a step τ
along d) we have that

αB' = αB + τ[QBxB] + ∆oe = αB + τ[ρe - (1/t)αB] + ∆oe =

=




1 -

τ
t αB + (∆o - τv)e =





1 -

τ
t αB +





∆o -

τ
t∆e e

(where ∆e = tv = -tρ is the expected increase for a step of t along d), so that z2
' = L B

-1α' can be obtained

in linear time from z1 and z2. The basic algorithm that we have just described can be extended in

several ways, as we will show in the next three paragraphs.

3. Handling general primal constraints

When dealing with unconstrained minimisation of ϕ() (Λ ⊆ Rn), it is necessary to impose general

linear constraints on the primal solution d, i.e. to solve the extended problem

(Πβγ) min { v + 1/2⋅|| d ||2 : v ≥ gid - αi i ∈ β , 0 ≥ gid - αi i ∈ γ }

or, equivalently, its dual

(∆βγ) min 







 1/2⋅|| [Gβ Gγ]⋅



x

y ||2 + [αβ αγ]⋅



x

y : x ∈ Θ , y ≥ 0

where (gi, αi) i ∈ γ are (a subset of) the linear inequalities defining Λ, properly “translated” w.r.t. the

current point λ̄, that ensure feasibility of all the points λ̄ + τd with τ ≤ t.

By letting i = be the indicator vector of the set (of subgradients) β, i.e.

ih =


 1 if h ∈ β
 0 if h ∈ γ

the feasible set of (∆βγ) can be written

{ [x y] : i[x y] = 1 , [x y] ≥ 0 }

and the TT algorithm can still be applied, provided that the all-one vector e is replaced in every

expression with iB: in fact, QBx̄B + αB = ρiB and iBx̄B = 1 are the KT conditions for (∆B), so that, letting

z1 = L B'
-1iB, the optimal solution to (RB) in case (0) is

x̄B = QB
-1[ρiB - αB] where still ρ =

1 + z1z2

z1z1

In the same way, Propositions 2.2 - 2.3 hold true if the condition lhz1 ≠ 1 is replaced by lhz1 ≠ ih and

the infinite direction [v1 -1] is replaced by [v1 -ih], and a completely analogous treatment can be

deserved to Propositions 2.4 - 2.5; moreover, the factorisation methods described in §2 are obviously

still valid for the constrained case, since z1 (that solves LB'z1 = iB') has the form required by

Propositions 2.7 and 2.9. However, minor modifications to the algorithm are in fact needed, since it is

necessary that the base B always contains at least one subgradient gi (i ∈ β), but it is easy to see that

A. Frangioni

11

once this is ensured for the initial base, it will automatically hold true thereafter; every detail of the

algorithm naturally extends to the new case, for instance movements “along” d as introduced at the

end of the previous paragraphs now have the α updating formula

α' = α - τ[GT
d] + ∆oi

so that z2
' is obtained in the same way from z1 and z2, changes of the set γ between two subsequent

calls to the (∆βγ)-solver are completely analogous to changes of the set β (up to the point that the two

things can be handled with the same piece of code) and so on.

Actually, these results can be generalised by recognising that (∆βγ) is just a special case of the problem

min { 1/2⋅|| Gx ||2 + αx : cx = 1 , x ≥ 0 }

with c ≥ 0 any vector of nonnegative coefficients: it is easy to show that all the above theory still holds

valid if e is replaced everywhere with c in the formulas; this is not only a theoretical result, since Least-

Square-like problems with this form frequently appear in very different fields (see [FV94] for an

application to fractal compression of images): the TT algorithm can be easily extended to handle these

problems, and, as a matter of fact, the changes to be made are so few and so localised that in our

implementation it is possible to “switch out” all the extra code needed for the task by simply setting a

compile time switch.

4. Changing the dimension of primal space

It is important to note that our algorithm works without ever accessing the vectors gi, since the scalar

products qij = gi

T
gj suffices to carry on (efficiently) all the computations: in fact, instead of checking the

primal constraints ghd - v ≤ αh directly, we use d = - GBxB to obtain

ghd = - [gh

T
GB]xB = - QBhxB

Since QBh, xB are m-vectors while gh, d are n-vectors (and in our applications m << n), by exploiting

this relation we save a relevant quantity of work; actually, in our implementation we never explicitly

calculate d, a O(nm) task that can easily be the time consuming operation of the whole algorithm,

while we take care of making the scalar product ghd for each h ∈ β available to the calling program:

this information is readily available at no cost when the algorithm terminates, since if h ∈ B then

ghd = ρih - αh, while if h ∉ B then ghd = - QBhxB has already been computed when checking the h-th

(nonbasic) constraint, and it may be useful to NDO algorithms, since ϕ(d, τ) = minh ∈ β { (ghd)τ + αh }

is an upper approximation of the restriction of ϕ() along the (tentative descent) direction d.

Furthermore, the algorithm is also orthogonal to the sparsity of the vectors gh: in our implementation,

subgradients (and constraints) are only known by means of “symbolic names” (indices), and our TT-

solver is only allowed to call the function

GiTGj(Name_of_i , Name_of_j)

that returns the scalar product gi

T
gj; this function must be supplied by the calling program, so that

knowledge about the structural properties of the subgradients (and constraints) can be exploited

Solving Quadratic Problems within Bundle Algorithms

12

without requiring a specialized code.

Since the TT algorithm has in fact no information on the “real” vectors gh, it is obviously also

possible to change their length between two subsequent calls to the TT-solver, i.e. to add or remove

entries from all the gh (h ∈ β ∪ γ) at the same time: this is important both for the extensions that will

be discussed in §5 and for the fact that NDO solvers for huge problems (n very large) may benefit

from active set (column generation) strategy in which one works with a (hopefully small) subset of the

variables λ, that is dynamically revised.

Insertions and deletions of entries in gh can be naturally viewed as manipulations on the data of the

problem like the ones described §2; as usual, suppose that, after call to the TT-solver, a base B, a

solution [xB 0] and the related Qβ, L̄B, z1, z2 ... (that may no longer be optimal, since other changes

may have already occurred) are kept in a consistent state: if a new entry has to be added, all we need is

the p-vector [g ~]h = new entry of gh, since the Hessian matrix Qβ just have to be updated as

qij
~ = qij + gi

~gj
~ for each i, j

(a relatively cheap O(p2) task), while the update of L̄B, z1, z2 can be performed with a sweep of p

Givens rotations (GS), as

QB

~
 = QB + gB

~ g ~B

T
 = [gB

~ L̄B]⋅




g ~B

T

 L̄B

T

i.e. we only need the rank-one correction of the lower trapezoidal matrix L̄B









gB'
~ LB'

gh
~ lh

T

gj
~ l j

T

0 z1

0 z2

⋅GS ⇒








0 LB'

~

δh l
~

h
T

δj l
~

j
T

σ1 z1
~

σ2 z2
~

Note that the position of the new entry plays absolutely no role, making it possible to insert/delete

entries in any order whatsoever; once gB'
~ has been nullified (still an O(p2) task), the new LB'

~
 (and lh

~
, l j

~
,

z1
~, z2

~) is just what we expect to, and the data we have at hand can be used to “normalise” the data

structures. For instance, if δh > 0 then the corresponding item is inserted into the linearly independent

part of B (B'
~
 = B' ∪ {h}), i.e.

LB'
~ = 



LB'

~
0

l
~

h
T δh

where σ1, σ2 are the new entries of z1
~, z2

~, so that z1
~z2

~ = z1z2 + σ1σ2: similar results holds for the other

scalar products, and if δj > 0.

When an entry (contained in g ~) has to be deleted, we have instead

qij
~ = qij - gi

~gj
~ i.e. Qβ

~
 = Qβ - g

~ g ~
T

that can be taken in the same form as above by considering that

QB

~
 = [igB

~ L
-

B]⋅




i g ~B

T

L
-

B

T

A. Frangioni

13

where i2 = -1: then, almost the same arguments as the above case hold, i.e. by using complex Givens

matrices of the form

1

1

...
...

...

...

where c2 - s2 = 1, we can obtain









0 LB'

~

0 l
~

h

T

0 l
~

j

T

iσ1 z1
~

iσ2 z2
~

In other words, it is easy to show that such matrices keeps the imaginary part on the igB
~ column alone,

thus leaving L̄B made of pure reals, that the newly obtained LB'

~
 (and the relative vectors) is what we

expect, that z1
~z2

~ = z1z2 - σ1σ2 (and the same for the other scalar products) and that δh = δj = 0, i.e. no

“new linear independence” is created; conversely, in this case zeroes along the diagonal of LB'

~
 may be

generated. For ease of exposition, suppose that the current base B contains no linearly dependent items

and that B = [B' h] (i.e. h is the last item in base - note that bases are actually ordered sets, the order

being that of the rows of L̄B): after applying m - 1 (complex) Givens rotations, one may find

LB

~
 =





0 LB'

~
0

iδh l
~

h

T
l
~

hh

where l
~

hh

2
 = δh

2

and no complex Givens matrix nullifying iδh can be found; however, it is also true that

LB

~
 = 



0 LB'

~
0

0 l
~

h

T
0

i.e. by simply “marking” h as linearly dependent a consistent situation is naturally recovered. The

above relation holds true even if B already contains linearly dependent items, even though if h is going

to be the third of them one of the three must be removed from B (this can be done in O(1)):

furthermore, if l
~

hh

2
 = δh

2 for h some in position k < ′m , then with a sweep of ′m - k - 1 Givens

rotations (exactly the same as in Proposition 2.8) and a permutation of B the h-th item can be put in the

last position, and the method applied.

As in §2, we have a set of (cheap) operations that can be performed on the data of the problem, while

keeping the whole set of data structures consistent and ready for a “warm” restart: this will be used in

the next paragraph in order to efficiently cope with box constraints on the primal space.

5. Handling box constraints on the primal space

In many applications, typically when Λ is the nonnegative orthant of R
n
, (most of) the constraints

gd ≤ α on d are just “boxes” l i ≤ di ≤ ui: in this paragraph, we will show how to efficiently handle

lower bounds l i ≤ di on a (sub)set γ of the variables, since the extension to the more general class is

straightforward. Our (dual) method will still use an active-set strategy, in which only a subset χ ⊆ γ of

the dual variables associated to the box constraints is allowed to be nonzero at a given time: since we

won’t deal with the part of the base concerning subgradients, to simplify the notation we drop the

Solving Quadratic Problems within Bundle Algorithms

14

subscript β for columns and we consider the matrix G partitioned as

G = 



Gχ

Gη

(i.e. now subscripts indicates rows), where η = { 1 .. n } / χ; the restricted problems are

(Πχ) min { v + 1/2⋅|| d ||2 : ve ≥ Gd - α , lχ ≤ dχ }

 (∆χ) min








 1/2⋅|| 



Gχ -I

Gη 0
⋅




x

yχ
 ||2 + [α -lχ]⋅





x

yχ
 : x ∈ Θ , yχ ≥ 0

and therefore the “extended” Hessian matrix w.r.t. the “extended base” B
-
 = { 1 .. m } ∪ χ is

QB - = 



Gχ

T
Gη

T

-I 0
⋅




Gχ -I

Gη 0
 =





G

T
G -Gχ

T

-Gχ I
 =





Q -Gχ

T

-Gχ I

For feasible solution of (∆χ) to be optimal, it has to solve the system





Q -Gχ

T

-Gχ I
⋅




x

yχ
 = 



ρe - α

lχ
for some ρ ∈ R

so that one can immediately deduce that

yχ = Gχx + lχ and therefore [GT
G - Gχ

T
Gχ]x = ρe - [α - Gχ

T
lχ]

But since G
T
G - Gχ

T
Gχ = Gη

T
Gη = Qη, the relaxed problem

(Rχ) min








 1/2⋅|| 



Gχ -I

Gη 0
⋅




x

yχ
 ||2 + [α -lχ]⋅





x

yχ
 : x ∈ Θ

(in which the constraints yχ ≥ 0 are disregarded) is equivalent to the unconstrained problem

(∆η) min { 1/2⋅xT
Qηx + α -x : x ∈ Θ }

where α - = α - Gχ
T
lχ and all the entries of the ghs corresponding to active constraints (whose indices are

in χ) have been deleted: therefore, we can solve the box-constrained problem (Πγ) by using the TT

algorithm for the unconstrained case as a “black box” to find a base B and a solution x = [xB 0] such

that [x yχ] solves the (KT) system for (∆χ).

In other words, we have an (efficient) subroutine TT(χ) that reports and optimal solution x of (∆χ):

building on this, we can construct a “two-level” solver for the box constrained, where the lower level

(the TT algorithm) takes care of the x variables, while the upper level handles the y variables: it is

immediately clear, just looking at the pseud-code below, that BTT can be viewed as TT applied to (∆γ),

with just a different way of solving the (KT) system and a particular ordering in which constraints and

subgradients are chosen for being inserted to and deleted from the “extended base” B
-
= B ∪ χ; in fact,

convergence can be shown exactly in the same way (there cannot be infinitely many inner iterations,

and every main iteration ensures a strict decrease) and all the data structures relative to a base B of the

subproblem (∆η) have a straightforward interpretation in terms of the base B
-
 of the original problem

(∆γ) - for instance, it is easy to see that

[xT
 yχ

T
] ⋅





Q -Gχ

T

-Gχ I
⋅




x

yχ
 = x

T
Qηx + || l ||2 and [α -lχ] ⋅





x

yχ
 = α -x - || l ||2

and that d = - [lχ Gηx], therefore (by letting v', d' and f'() be relative to (∆η))

A. Frangioni

15

 fB-([xB yχ]) = fB' (xB) v = v' d = [lχ d'] G
T
d = Gη

T
d' - Gχ

T
lχ

BTT Algorithm:
χ = ∅; x = TT(χ); yχ = Gχx + lχ; /* initialisation */

while(∃ i ∈ (γ / χ) such that l i > - Gix) /* main iteration */

χ = χ ∪ { i}; /* item insertion - yi = Gix + l i > 0 */

do /* inner iteration */

x = TT(χ); ȳχ = Gχx + lχ; /* KT solution - use TT as subroutine */

if (∃ i ∈ χ such that li < - Gix) /* ȳi = Gix + l i < 0 */

then wχ = ȳχ - yχ; /* wχ is of descent in the yχ space */

 η = min{ -wi / yi : wi < 0 , i ∈ χ }; /* maximum feasible step η > 0 */

 yχ = yχ + ηwχ; /* take step η along wχ */

else yχ = ȳχ; wχ = 0; /* ȳχ is optimal for (∆χ) */

forall (i such that yi = 0)

χ = χ / { i}; /* item(s) deletion */

while(wχ ≠ 0); /* end inner iteration */

endwhile /* end main iteration */

This “hierarchic” view of the method greatly simplifies the design and the implementation of the

algorithm, but due to our sophisticated reoptimization strategies discussed in §2 and §4 performances

are even better than those of the “monolithic” approaches known in the literature: obviously, the above

algorithm immediately extends to ui ≥ di constraints (where yi = - ui - Gix) and to general boxes

l i ≤ di ≤ ui, since the two constraints di ≤ ui and l i ≤ di cannot be in the active set χ at the same time.

A point still needs clarifications: the (expensive) matrix-vector product Gχ
T
lχ is not calculated from

scratch at every iteration, since e.g. when χ' = χ ∪ { i} one has

α- ' = α + Gχ'

T
lχ' = α - [Gχ

T g ~] ⋅




lχ

l i
 = α- - l i g

~

where g ~ = Gi is the i-th row of G; however, this is not enough, since the vector z2 = L B'
-1α - also have to

be updated without resorting to an expensive backsolve on LB'. In fact, in the above case we have

z2
~ = L

~
B'
-1α- ' = L

~
B'
-1α- - l i[L

~
B'
-1 g ~]

but the method discussed in §4 finds L
~

B'
-1α- instead; however, it is easy to recover the “perturbation”

vector L
~

B'
-1 g ~, since the basic relation of the method is the existence of an orthogonal (m + 1)×(m + 1)

matrix GS such that

[g ~ LB']GS = [0 LB'

~] ⇒ [g ~ LB'] = [0 LB'

~]GS
T

and therefore, by letting [υ0 υ
T
] = [1 0

T
]GS (this vector can be found in linear time) one has

L
~

B'υ = [0 LB'

~]⋅



υ0

υ = [0 LB'

~](GS
T)⋅



1

0 = [g ~ LB']⋅



1

0 = g ~

i.e. υ = L
~

B'
-1 g ~ and z2

~ can be obtained in linear time from L
~

B'
-1α -. Since the case χ' = χ / { i} is analogous,

with α - ' = α + l i g
~ and [υ0 υT

] = [-i 0
T
]GS, we have illustrated all the basic elements that are

necessary to efficiently use TT as a subroutine for solving box constrained problems: a number of

further details can be easily derived from all the above theory, for instance how to keep the scalar

Solving Quadratic Problems within Bundle Algorithms

16

product updated (z1z2
~ = z1z2 ± υ0σ1l i for σ1 defined in §4), how to update lχ when moving “along” d

of a step τ (lχ := lχ⋅(1 - τ/t)) or that all the above results holds true for the generalised problem of §3

with constraint cx = 1, hence we now describe the major implementation issues of our actual C++

implementation of the [B]TT algorithm.

6. Implementative details

The [B]TT algorithm has been developed in the context of an experimental module for

Nondifferentiable Optimization [CFN95], conceived to be mainly used for solving Lagrangean Duals

of large-scale (Integer) Linear Problems: the code is written in C++, using its powerful inheritance and

polymorphism capabilities in that the whole TT algorithm is embedded in one single object, class

MinQuad, with an abstract interface containing the (only) methods allowing the NDO algorithm to

modify and view the data structures (β, Qβ, αβ, t ...) and to perform the actual calculations.

The BTT algorithm is contained in the derived class BMinQuad, inheriting from the base class

most of its interface and code: in this way, modularity and efficiency are maximised at the same time,

since the highly efficient TT algorithm can be used when no box constraints are required, while only

minor modifications in the NDO solver are required in order to use the more general BTT algorithm;

this also makes code maintenance easier, and allow for improvements in the TT code to be

automatically exploited by BTT - actually, as long as the interface remains the same one might also

replace TT with an entirely different algorithm, and we intend to exploit this possibility in the future.

Also, the code is an excellent base for developing NDO solvers, since it handles (uniformly for the TT

and BTT case) most of the data structures and tasks that an NDO solver must manage: for example,

(gi, αi) is added [removed] from β by simply calling AddSubGradient(i, αi) [ResetBundle(i)]

and “movements” in the space of Λ are captured by simple calls such as ChangeAlfa(α) or

MoveAlongD(∆o, τ) so that handling of the α vector can be entirely demanded to the class;

furthermore, the calling codes have full and easy control on the variables of the “primal” problem (Π)

(with functions such as Add[Remove]Variable(i)) and on the set γ of box constraints, that can

be easily changed.

After that the a problem has been solved, the NDO solver can query some relevant informations that

are calculated during the algorithm: examples are the vector GTd and three numbers l1 ≥ 0, l2 and

l3 ≥ 0 that describe the optimal solutions values of (∆β) and (Πβ) as a function of t in a neighbourhood

of the current value, i.e.

|| Gx(t) ||2 = || d(t) ||2 = l1 + (1/t) 2l3

αx(t) = l2 - (1/t)l3

v(t) = - l1 - (1/t)l2

The above values can be obtained at essentially no cost, since it is easy to verify that

A. Frangioni

17

Case (0) Case (1)

l1
1 / || z1 ||

2 0

l2
z1z2 / || z1 ||

2 ρ = (αh - lhz2) / (1 - lhz1)

l3
[|| z1 ||

2|| z2 ||
2 - (z1z2)

2] / || z1 ||
2 || ρz1 - z2 ||

2 + || lχ ||
2

and all the data necessary to the calculations is either already calculated during the algorithm, or can be

kept updated in O(1) per iteration: if needed, the NDO solver can query other (a bit more costly)

sensitivity analysis informations, such as the “stability interval” tm ≤ t ≤ tM in which the currently

optimal base B* remains optimal (hence the above estimates on || d(t) ||2, αx(t) and v(t) are exact) and

two vectors x1, x2 such that, within [tm, tM], x(t) = x1 + (1/t)x2.

An important issue in any numerical algorithm is its resistance to ill-conditioned instances and to

cumulation of rounding errors: in our code, the main problem is represented by some “ y = 0” tests,

that are crucial to determine the behaviour of the algorithm, i.e. the choice between cases (0), (1) and

(2) and between “normal” and “infinite” steps. We addressed the problem by using the two dynamic

tolerances adjustment methods: the “static” one consists in scaling the “dynamic” relative tolerance

εR by implementing the tests as |y| < εR⋅µ(LB')⋅m⋅δ (where µ() is the conditioning number and δ is

related to the “size” of the numbers used in the calculation); in turn, erroneous conditions rising in

different parts of the algorithm are interpreted as “increase εR” or “decrease εR” requests, and a

custom exception mechanism is used to dynamically adjust εR in order to face “bad” instances

without a need for hand-tuning of the parameters. From-scratch recalculation of the main data

structures (LB', z1 ...), that must always be implemented in any numerical code, is also performed as a

part of the “exceptions” handling mechanism.

An apparently minor detail of our implementation is that it is parametric about the precision required:

in particular, different formats (from char to double) can be specified for entries of the

subgradients, for storing their scalar products (the matrix Q) and also for the main data structures (LB',

z1 ...). This is useful since often the subgradients have only small integer entries, so that the scalar

products may be computed with faster integer operations, and with small problems it is often possible

to use single precision arithmetic (confirming the robustness of our approach): this cannot be done

without care, since the conversion between different formats is not costless, however by only choosing

the right data types performances can be improved of 30% in time and of almost 50% in memory.

Other important implementative details can only be sketched here: for instance, calculation of some

data (Qβ, d) may or may not be performed “lazily”, at least three different memory allocation

strategies for matrix Qβ (with different price/performance ratios) exists, it might be sometimes

worthwhile to recalculate the scalar products like z1z2 from scratch at every iteration to enhance

numerical stability, different “pricing” strategies for selecting the entering variable might be used: for

any of these characteristics, our code offers different choices, that can be easily selected (with compile

time switches) to tailor the code to the particular class of instances to be solved.

Solving Quadratic Problems within Bundle Algorithms

18

7. Computational results and comparisons

Barring the “classical” QP algorithm in [Mi77], that solves a related but different problem, only the

two specialized algorithms for the unconstrained version of (∆β) [Ki86], [Mo87] have been proposed

in the past: our TT algorithm bears resemblance to both, but greatly enhances upon them in terms of

cost per single iteration; in [Ki89], an algorithm for a slightly more general problem than the one

solved by BTT (allowing more than one independent “bundle”) is described, but, using n×n matrices,

it is admittedly not well-suited for the class of instances of interest here.

During the revision of this article, our attention was drawn upon the recent [Ki94], that solves the same

generalised problem as [Ki89] with much better performances: it can be easily seen that any of the

basic operations (inserting/deleting items or constraints in base, finding the descent direction ...) in this

last algorithm has a correspondent in BTT with almost the same cost, but for a number of important

details in which our algorithm improves on it.

For example, we calculate f(x) and “downdate” the triangular factor after a constraint insertion much

faster, we don’t need to perform row additions and subtractions when the “basic” variable xh changes

because we don’t use “projection” (the other method actually eliminates the constraint ex = 1 by

replacing Q with Q
~

 = G
~TG

~
, where G

~
 = [g1-gh .. gm-gh] for some h), and if more than one step of the

TT algorithm is performed at each inner iteration of BTT, we save time by avoiding to recalculate d

(that is an “heavy” task). Furthermore, the two-level nature of BTT also helps, since the same

operation may have a different impact in the two cases: for instance, while in TT it is convenient to

keep the base as small as possible, in BTT it may be wasteful to delete an item without need, so that

implementing different strategies for each level can result in performance improvements.

Our implementations of the TT and BTT algorithms have already been used within several different

codes, such as a custom implementations of Bundle algorithms for “nonexact” [EGM95] or “exact”

[CGN95] Lagrangean decompositions, a general Bundle algorithm for unconstrained optimization of

polyhedral functions [CFN95] (that has in turn been used to approach several different problems, as

[MP95]) and a specialized Bundle code for Multicommodity Min Cost Flow Problems [FG96]: in the

following, we will compare our code and two generic QP codes when used as (∆β)-solvers within the

NDO solvers described in [CFN95] (for unconstrained problems) and [FG96] (for constrained

ones).

Anticipating a bit the conclusions, our code has shown to be blatantly faster than the two benchmark

QP solvers: we want to stress the fact that this result has some clear reasons, that will be illustrated in

the following, and it is limited to the specific application of interest - in no way we are claiming that our

code is any better than the others outside this framework, nor we are denying the value of the different

technologies used therein, like Interior Point methods.

The first competitor is the well-known QL code described in [Po83]: despite its age, it is known to be

an efficient public domain QP solver, and in fact it has already been used as (∆β)-solver within the

Bundle code described in [SZ92] - actually, the version we tested was exactly the one used in that code,

that had been somehow specialized for the task by the authors and J. Outrata, translated to C with the

A. Frangioni

19

f2c converter by R. Freling and further adapted to C++ by ourselves. Being a “primal” code, and

being not able to reoptimize from previous calls, it was expected to be slower than our code: however,

such a comparison give a measure of the need for specialized QP solver that originated our research.

The second competitor code is a beta release of the Interior Point QP solver that will be included in the

next release of Cplex‡ , one of the best commercial LP solver on the market: this code is based on the

“modern” IP technology [CLM93] (opposed to the “old” active-set method of BTT), and it is a

commercial code, hence it is supported by sophisticated sparse linear algebra routines and state-of-the-

art coding. Since it is well-known that IP methods tend to behave better on large problems with sparse

Hessians such as (Πβ) (that has in fact a separable quadratic objective function), we wanted to see if

such a “primal” approach could be competitive with our “dual” approach to (∆β).

In our experiments, we paid great attention in making the tests fair: for example, the cost of data

structures initialisations and problem scaling was not counted, so that the way in which problems were

stored had no influence on the test (even though in our code we pay something for having an “easy”

interface with the above NDO solver), we used double precision arithmetic (but our code might as well

work in single precision) and fixed a set of “compile time” choices for all the problems (rather than

using its flexibility to be faster on specific sub-classes of instances). The main disadvantage of the two

competitor codes is that they are not able to reoptimize efficiently, or even to exploit “external”

information such as a good starting point, so that when possible we tried to provide this information in

an indirect way: for instance, we don’t ask CQP to solve the “full” dual formulation (∆γ), but rather an

easier restricted problem similar to (Rχ) w.r.t. the optimal set χ (that has been previously determined

by BTT).

The first comparison involved the solution of Lagrangean Duals (LD), related to finding lower bounds

for the Quadratic Semi-Assignment Problem [MP95], with a general unconstrained Bundle-based

NDO solver [CFN95]: in each (LD), n = |gi| was fixed between 10 and 1600, while m (the number of

gis) varied between 1 (at the very beginning) and up to 250; to estimate the efficiency of a (∆β)-solver,

we have focused our analysis on the “total running time” of the QP codes, i.e. the sum of the running

times of all the (∆β)s (up to 1800) needed to solve a single (LD).

For technical reasons, we tested CQP and QL against TT on two different (but analogous) sets of

problems: the results are illustrated in the following tables and charts, where for ease of visualisation

we aggregated the (LD) problems in groups with similar “total size”, i.e. the product n×(average value

of m)×(number of (∆β)s solved) that has shown to have the largest correlation with the running times,

hence is presumably a good measure of the size (and difficulty) of a (LD) problem for our purposes.

Here, N is the number of (LD)s in any group, the figures are averaged within the group, QPP and

QPD stand for CQP solving respectively the primal and the dual formulation of the problem, times are

in seconds on an HP9000-712/80 workstation with 64 Mb of RAM, the BTT and QL codes have been

compiled with the HP C++ compiler (under HP-UX 9.05) invoking normal optimisations (-O), while

CQP was available only as executable.

‡ Cplex is a registered trademark of Cplex Inc.

Solving Quadratic Problems within Bundle Algorithms

20

N n m (avg) Calls TT time QL time

6 12 15 128 .02 .16

12 15 17 175 .03 .36

17 70 30 289 .16 2.58

25 75 43 502 .62 9.89

20 94 50 701 1.38 27.59

19 153 88 1296 12.72 277.80

16 284 89 1531 9.50 295.29

11 686 108 1842 10.72 721.98

4 1506 111 1885 10.12 751.90

Table 1: comparison between TT and QL codes

N n m (avg) Calls TT time QPD timeQPP time

6 12 14 129 0.03 1.04 2.01

8 62 26 197 0.10 5.03 20.60

9 68 55 766 1.75 76.96 478.97

6 152 83 1269 8.91 346.91 2388.25

8 275 87 1327 11.60 590.91 2167.44

7 679 112 1821 10.37 2424.26 5022.14

6 1385 111 1874 10.00 2729.15 7607.03

Table 2: comparison between TT and CQP solving Primal and Dual problems

The results are better visualised in the following charts, and clearly show that our code is by far

superior to both QL and CQP, especially when dealing with large problems (note that the scale in

charts 1 and 3 is logarithmic): we remark again that this is not necessarily true in general, but only

within the particular class of problems that we are taking into account, and considering as measure the

total running time over a whole execution of the NDO solver.

00.01

00.10

01.00

10.00

100.00

1000.00

1 2 1 5 7 0 7 5 9 4 1 5 3 2 8 4 6 8 6 1 5 0 6

TT

QL

Chart 1: TT and QL running times

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

1
2

1
5

7
0

7
5

9
4

1
5

3

2
8

4

6
8

6

1
5

0
6

Chart 2: ratio between TT and QL running times

A. Frangioni

21

0.0

0 .1

1 .0

10.0

100.0

1000.0

10000.0

1 2 6 2 6 8 1 5 2 2 7 5 6 7 9 1 3 8 5

TT

QPD

QPP

Chart 3: TT and CQP running times

.000

.005

.010

.015

.020

.025

.030

.035

.040

1 2 6 2 6 8 1 5 2 2 7 5 6 7 9 1 3 8 5

TT / QPD

TT / QPP

Chart 4: ratio between TT and CQP running times

The second comparison involved the solution of Multicommodity Min Cost Flow (MMCF) problems

with a specialized (constrained) NDO solver [FG96]: in each problem, n (= number of edges in the

graph) was fixed between 200 up to 700, while m varied between 1 and about 50; we remark that those

problems are in some sense “easier” that the previous ones, since the overall NDO algorithm always

terminated in less than 50 iterations (against up to 1000), so that the average value of m was much

smaller, even though often more than one new item has been inserted at each iteration. Furthermore,

from 94 to 99% of nonnegativity constraints were always “active”, and the average number of TT

calls per BTT call were always smaller than 3 (and often almost 1 on small problems), so that the TT

algorithm was never called more than 150 times (against up to 1800) during the solution of any single

problem: hence, this data set is representative of a somewhat different class of problems, in which

reoptimization is possibly less important than the ability of rapidly solving small-sized instances.

Due to limitations of the version of QL we had at hand, we only tested CQP in this setting: the results

are reported in the following table and charts, and clearly confirm superiority of BTT, that is always

more than 25 times faster than its competitor; note that for this class of problems QPP generally

outperforms QPD, even though, extrapolating from the results we got, the largest instances we tried

seem to represent the point in which the latter might become competitive with the former.

N n m (avg) Calls BTT time QPD time QPP time

7 257 2 4 .011 3.91 0.33

6 371 4 7 .013 5.46 0.96

10 487 5 10 .021 5.49 1.94

6 439 7 15 .040 7.80 2.98

5 366 9 22 .048 12.44 5.09

9 375 14 38 .149 20.39 16.09

Table 3: comparison between BTT and CQP solving Primal and Dual problems

Solving Quadratic Problems within Bundle Algorithms

22

0.0

0 .1

1 .0

10.0

100.0

2 5 7 3 7 1 4 8 7 4 3 9 3 6 6 3 7 5

BTT

QPD

QPP

Chart 5: BTT and CQP running times

.000

.005

.010

.015

.020

.025

.030

.035

.040

2 5 7 3 7 1 4 8 7 4 3 9 3 6 6 3 7 5

BTT / QPD

BTT / QPP

Chart 6: ratio between BTT and CQP running times

To conclude, a final remark might be worthwhile: in [FG96] it is shown how an Bundle-based

approach to Multicommodity flow problems can be competitive with (and often better to) other

methods; the algorithm described therein used our BTT code as (∆β)-solver, and, despite its efficiency,

a significative fraction of the total solution time of a MMCF problem has to be imputed to the solution

of the (∆β) subproblem. Clearly, the use of any other of the above algorithms would have dramatically

changed such a positive result, and this a good example of how a specialized QP can be crucial to

make Bundle algorithms attractive. In fact, Bundle methods have been since long widely recognised

among experts as a very important class of NDO algorithms, but despite their theoretical and practical

superiority w.r.t. simpler-to-program algorithms (such as subgradient methods), their success have

been so far limited by both the cost of solving the quadratic (∆B) subproblems and the extra

programming complexity they require, part of which is represented by the need of a suitable QP

solver. Our personal experience shows that the BTT algorithm greatly reduces the overhead to be paid

for the solution of (∆β), and our C++ implementation offers a simple an clear interface that greatly

simplifies the task of developing a Bundle algorithm: we hope that this code will help researchers and

practitioners interested in Nondifferentiable Optimization methods to move towards this interesting

and powerful class of algorithms.

Acknowledgements

The author wish to acknowledge Prof. C. Lemaréchal for his precious advices, Prof. K.C. Kiwiel for

pointing out his newest work, , Prof. K. Schittkowski and R. Freling for the FORTRAN and C version

of the QL code respectively, and Prof. I. Lustig for his help with the beta release of Cplex QP solver.

References

[CFN95] P. CARRARESI, A. FRANGIONI and M. NONATO “Applying Bundle Methods to Optimization of
Polyhedral Functions: An Applications-Oriented Development” Technical Report TR 17/95,
Dipartimento di Informatica, Università di Pisa, 1995

[CGN95] P. CARRARESI, L. GIRARDI and M. NONATO “Network Models, Lagrangean Relaxations and
Subgradient Bundle Approach in Crew Scheduling Problems” in Computer Aided Scheduling of

A. Frangioni

23

Public Transport (J. Paixao ed.), Lecture Notes in Economical and Mathematical Systems, Springer-
Verlag, 1995

[CLM93] T.J CARPENTER, I.J. LUSTIG, J.M. MULVEY and D.F. SHANNO, “Higher-order Predictor-Corrector
Interior Point Methods with Application to Quadratic Objectives”, SIAM J. on Optimization, 3(4),
p. 696-725, 1993

[EGM95] L. EQUI, G. GALLO , S. MARZIALE and A. WEINTRAUB “A Combined Transportation and Scheduling
Problem” Technical Report TR 5/95, Dipartimento di Informatica, Università di Pisa, 1995

[FG96] A. FRANGIONI, G. GALLO “ A Bundle type Dual-ascent Approach to Linear MultiCommodity Min
Cost Flow Problems” Technical Report TR 1/96, Dipartimento di Informatica, Università di Pisa, 1996

[FV94] B. FORTE, E.R. VRSCAY “Solving the Inverse Problem for Function/Image Approximation Using
Iterated Function Systems - II. Algorithm and Computations” Fractals, 2(3) p. 335-346, 1994

[Ge69] A.M. GEOFFRION “Duality in Nonlinear Programming: a Simplified Applications-Oriented
Development” in Perspective on Optimization: a collection of expository articles (A.M. Geoffrion ed.),
Addison-Welsey, 1972

[GMW81] P. E. GILL , W. MURRAY and M. H. WRIGHT “Practical Optimization” Academic Press, 1981

[Ki85] K.C. K IWIEL “Methods of Descent for Nondifferentiable Optimization ” Lecture Notes in
Mathematics, vol. 1133, Springer-Verlag, 1985

[Ki86] K.C. K IWIEL “ A Method for Solving Certain Quadratic Programming Problems Arising in
Nonsmooth Optimization” IMA J. Numer. Anal. 6, p. 137-152, 1986

[Ki89] K.C. KIWIEL “A Dual Method for Certain Positive Semidefinite Quadratic Programming Problems”
SIAM J. Sci. Statist. Comput. 10, p. 175-186, 1989

[Ki94] K.C. KIWIEL “A Cholesky Dual Method for Proximal Piecewise Linear Programming” Numer. Mat.
68, p. 325-340, 1994

[Le89] C. LEMARÉCHAL “Nondifferentiable Optimization” in Handbooks in Opns. Res. and Mgmt. Sci., vol.
1 : Optimization (G.L. Nehmauser, A.H.G. Rinnoy Kan and M.J. Todd eds.), North-Holland, 1989

[Mi77] R. MIFFLIN “A Feasible Descent Algorithm for Linearly Constrained Least Squares Problems” in
Nonsmooth Optimization, vol. 3 of IIASA Proceedings Series (C. Lemaréchal, R. Mifflin eds.), Pergamon
Press

[MP95] F. MALUCELLI , D. PRETOLANI “Lower Bounds for the Quadratic Semi-Assignment Problem” EJOR
83(2), 1995

[Mo87] M. F. MONACO “ An Algorithm for the Minimisation of a Convex Quadratic Function over a
Simplex” Internal Report 56, Dipartimento di Sistemi, Università della Calabria, 1987

[Po83] M. POWELL “ZQPCVX: A FORTRAN Subroutine for Convex Quadratic Programming” Report
DAMTP 1983/NA17, University of Cambridge, 1983

[SZ92] H. SCHRAMM, J. ZOWE “ A Version of the Bundle Idea for Minimising a Nonsmooth Function:
Conceptual Idea, Convergence Analysis, Numerical Results” SIAM J. Optimization, 2(1), p. 121-152,
1992

