
Noname manuscript No.
(will be inserted by the editor)

Strengthening the Sequential Convex MINLP
Technique by Perspective Reformulations

Claudia D’Ambrosio · Antonio
Frangioni · Claudio Gentile

Received: date / Accepted: date

Abstract The Sequential Convex MINLP (SC-MINLP) technique is a solution
method for nonconvex Mixed-Integer NonLinear Problems where the noncon-
vexities are separable. It is based on solving a sequence of convex MINLPs
which trade a better and better relaxation of the nonconvex part of the prob-
lem with the introduction of more and more piecewise-linear nonconvex terms,
and therefore binary variables. The convex MINLPs are obtained by partition-
ing the domain of each separable nonconvex term in the intervals in which it
is convex and those in which it is concave. In the former, the term is left
in its original form, while in the latter it is piecewise-linearized. Since each
interval corresponds to a semi-continuous variable, we propose to modify the
convex terms using the Perspective Reformulation technique to strengthen the
bounds. We show by means of experimental results on different classes of in-
stances that doing so significantly decreases the solution time of the convex
MINLPs, which is the most time consuming part of the approach, and has
therefore the potential to improving the overall effectiveness of SC-MINLP.

Keywords Global Optimization · NonConvex Separable Functions ·
Sequential Convex MINLP Technique · Perspective Reformulation

C. D’Ambrosio
LIX UMR 7161, École Polytechnique
Route de Saclay, 91128 Palaiseau – France
E-mail: dambrosio@lix.polytechnique.fr

A. Frangioni
Dipartimento di Informatica, Università di Pisa
Largo B. Pontecorvo 3, 56127 Pisa – Italy
E-mail: frangio@di.unipi.it

C. Gentile
Istituto di Analisi dei Sistemi ed Informatica “Antonio Ruberti”, C.N.R.
Via dei Taurini 19, 00185 Rome – Italy
E-mail: gentile@iasi.cnr.it

2 Claudia D’Ambrosio et al.

1 Introduction and Motivation

We consider the following Mixed Integer NonLinear Programming (MINLP)

(P)

min
∑

j∈N cjxj

fi(x) +
∑

j∈H(i) gij(xj) ≤ 0 i ∈M
lj ≤ xj ≤ uj j ∈ N
xj ∈ Z j ∈ I

,

where M , N , I ⊆ N and H(i) ⊆ N are finite index sets, fi : Rn → R are
convex multivariate functions, whereas gij : R → R are nonconvex univariate
functions; that is, (P) has separable nonconvexities. This simplified notation
purposely hides many forms of structure that can, and will, be exploited if
present but are not central in our discussion. For instance, H(i) = ∅ is pos-
sible, meaning that the i-th constraint is convex, and fi may well be linear
(affine). Also, the objective function need not be linear, and can have the
same form f(x) +

∑
j∈H gj(xj) as the constraints. Indeed, such a problem

can always be brought in the form of (P) with the well-known reformulation
trick whereby one introduces a new variable ω, redefines the objective func-
tion as “min ω”, and adds the constraint f(x) +

∑
j∈H gj(xj) − ω ≤ 0. As

this example shows, not all variables need necessarily appear in some noncon-
vex term, i.e., ∪i∈MH(i) $ N is possible. Also, while bounds need be finite
(−∞ < lj < uj <∞) for all xj that appear in at least one of the gij , this need
not necessarily be so for those that do not. Finally, integrality constraints do
not play a significant role in our development, i.e., I = ∅ is possible; (P) is
still a NP-hard problem in general.

The Sequential Convex MINLP (SC-MINLP) technique [3,4] for problems
with this structure is based on the idea that for many univariate functions gij

it is possible to automatically find s(ij)+1 points lj = l1ij < l2ij < . . . < l
s(ij)
ij <

l
s(ij)+1
ij = uj so that gij is either convex or concave when restricted to each sub-

interval Ss
ij = [lsij , l

s+1
ij] for s ∈ {1, . . . , s(ij)}. For an algebraic C2 function this

amounts at computing the second derivative and finding all its roots in [lj , uj];
although this is not always practical (say, the roots may be very large numbers,
or they may be exceedingly hard to compute), it is so for many cases of interest.
Clearly, gij can also be defined piecewise (for a finite set of pieces) in [lj , uj],
and therefore can be nondifferentiable and even noncontinuous in a finite set of
points, provided that it has the above property in each piece separately. In the
following we will assume that this indeed holds. Then, for fixed i and j ∈ H(i),
we denote by Š(ij) = { s : gij is convex in the sub-interval [lsij , l

s+1
ij] }, by

Ŝ(ij) = { s : gij is concave in the sub-interval [lsij , l
s+1
ij] }, and by S(ij) =

Š(ij) ∪ Ŝ(ij).
Once this is done, it is easy to define a convex MINLP problem that pro-

vides a lower bound to (P) by just “keeping the convex parts of gij”, while
replacing gij with its best possible convex relaxation—a linear function—on
the intervals where it is concave. This requires defining extra continuous and

Strengthening the SC-MINLP by Perspective Reformulations 3

binary variables xsij and ysij , subject to the constraints

xj = lj +
∑

s∈S(ij) x
s
ij (1)

(ls+1
ij − lsij)ys+1

ij ≤ xsij ≤ (ls+1
ij − lsij)ysij s ∈ S(ij) (2)

ysij ∈ {0, 1} s ∈ S(ij) (3)

where for simplicity of notation we have introduced the constant y
s(ij)+1
ij = 0.

Then, we replace the term gij(xj) with

gij(l
1
ij) +

∑
s∈Š(ij)

(
gij(l

s
ij + xsij)− gij(lsij)

)
+
∑

s∈Ŝ(ij) α
s
ijx

s
ij (4)

where αs
ij = (gij(l

s+1
ij)− gij(lsij))/(ls+1

ij − lsij). Clearly, (4) together with (1)–
(3) defines a piecewise-convex underestimator of gij . Hence, this defines a
relaxation of (P), say (P). The relaxation is pictorially illustrated in Figure 1,
where the continuous line is the original gij (that is neither differentiable nor
continuous), and the dashed line shows how the—piecewise convex—function
in (P) differs from the original one.

Fig. 1 Example of the piecewise-convex underestimator

It is immediately clear from the picture that solving (P) (actually, solving
any relaxation thereof, like the continuous one) provides a global valid lower
bound on the optimal value of (P). Also, the approach suggests ways to produce
valid global upper bounds that can be effective in practice [3,4]. If the thusly
obtained bounds are not close enough to each other, it is possible to refine the
piecewise-linear part of (P) by appropriately selecting some “concave” sub-
interval s ∈ Ŝ(ij) (for a properly chosen i and j) and further subdividing it in
smaller intervals, obviously improving the approximation of the corresponding
gij . This defines the SC-MINLP approach that, under appropriate assumptions,
is globally convergent. We refrain from providing further details here since
they are largely irrelevant for the development in this work.

Although SC-MINLP can be quite effective, its drawback is that it requires

4 Claudia D’Ambrosio et al.

the solution of a convex MINLP at each iteration. Even if convex MINLP are
usually solved much more efficiently in practice than nonconvex ones, this is
still a daunting task in general. Yet, the convex MINLPs produced by the
SC-MINLP approach have one particularly valuable form of structure, that of
semi continuous variables with nonlinear convex cost, that can be exploited by
appropriate reformulation techniques to significantly improve the lower bounds
obtained by the continuous relaxation, and hence (hopefully) the efficiency of
the overall solution process. This is discussed in the next section.

2 Convex MINLP Relaxation Strengthening

To ease the notation, we will consider (P) written as

min cx (5)

f̄i(x) +
∑

j∈H(i)

∑
s∈Š(ij) z

s
ij ≤ 0 i ∈M (6)

zsij ≥ gij(lsij + xsij)− gij(lsij) i ∈M, j ∈ H(i), s ∈ Š(ij) (7)

xj = lj +
∑

s∈S(ij) x
s
ij i ∈M, j ∈ H(i) (8)

(ls+1
ij −l

s
ij)y

s+1
ij ≤ xsij ≤ (ls+1

ij −l
s
ij)y

s
ij i ∈M, j ∈ H(i), s ∈ S(ij) (9)

ysij ∈ {0, 1} i ∈M, j ∈ H(i), s ∈ S(ij) (10)

xj ∈ Z j ∈ I (11)

where f̄i(x) = fi(x) +
∑

j∈H(i) gij(l
1
ij) +

∑
s∈Ŝ(ij) α

s
ijx

s
ij ; clearly, f̄i is convex

since fi was. Furthermore, the gij terms are restricted to the sub-intervals
where they are convex, hence as expected (5)–(11) is a convex MINLP. The
introduction of the extra variables zsij and the corresponding constraints (7)
may look gratuitous at this point, but it both makes the following discussion
easier, and it is what one actually does in practice, in many cases, to imple-
ment the Perspective Reformulation technique [7]. This allows to construct a
reformulation of the problem whose continuous relaxation provides stronger
bounds, which is simply obtained by replacing (7) with

zsij ≥ ysij
[
gij(l

s
ij + xsij/y

s
ij)− gij(lsij)

]
s ∈ Š(ij) , j ∈ H(i) , i ∈M . (12)

We refer to (5)–(6), (12), (8)–(11) as the Perspective Reformulation (PR) of
(P). It is well-known that, if h(x) is a convex function, then its Perspective
Function (PF) yh(x/y) describes its convex envelope when restricted to the
mixed-integer set { (x, y) : 0 ≤ x ≤ uy , y ∈ {0, 1} } corresponding to the
semi-continuous variables definition. Hence, the continuous relaxation of (PR),
the Perspective Relaxation (PR) of (P), provides tighter (usually, significantly
so) lower bounds to the optimal value of (P) than the continuous relaxation of
the standard formulation (5)–(11). Thus, the (PR) is often a better formulation
of (P). Note that Š(ij) and Ŝ(ij) have nonempty intersection if gij is linear
in some sub-interval s. In this case, clearly only one of the two (equivalent)

Strengthening the SC-MINLP by Perspective Reformulations 5

terms would be inserted in (4). Furthermore, (7) and (12) then coincide, as
yh(x/y) = h(x) if h is linear. As this case is easily dealt with, for simplicity
we will avoid to further mention this occurrence.

A nontrivial issue, however, is how (PR) actually is solved. The point is
that the PF in (12), although convex (if ysij ≥ 0), is nondifferentiable at ysij = 0
even if gij is smooth. Therefore, just passing the constraint (12) to a MINLP
solver incurs a substantial risk of numerical instability. Fortunately, a number
of alternative approaches that can be used:

– Perspective Cuts (PC). The right-hand-side in (12) being a convex func-
tion, it can be represented as the supremum of (infinitely many) linear
functions. In particular, in [7] it is shown that for a perspective reformula-
tion constraint

z ≥ yf(x/y) ly ≤ x ≤ ux

the associated perspective cuts are defined as

z ≥ f ′(x̄)x+ [f(x̄)− f ′(x̄)x̄]y for any x̄ ∈ [l, u].

Therefore, (12) can be replaced by the perspective cuts

zsij ≥ g′ij(lsij + x̄sij)x
s
ij + [gij(l

s
ij + x̄sij)− g′ij(lsij + x̄sij)x̄

s
ij]ysij (13)

for all 0 ≤ x̄sij ≤ (ls+1
ij − lsij). The formula (13) assumes gij smooth, but

it can be easily generalized to the nonsmooth case. While this would in
principle require an infinite set of inequalities, it is trivial to dynamically
separate (13) at the solution zs∗ij , xs∗ij , ys∗ij (> 0) of the continuous relaxation,
just like any ordinary valid inequality, by just checking if it is satisfied with
x̄sij = xs∗ij /y

s∗
ij ; if not, the corresponding cut is inserted in the model. This

has been shown to be a quite effective implementation in many cases. A
significant side effect of this choice is that it completely “hides” the original
gij . That is, if—as it happens in our test cases—everything but the gij in
(P) is linear, then (PR) can be solved by using a MILP solver.

– Specific reformulations. Under mild assumptions on gij , it is possible to
write its perspective function so as to eliminate the numerical difficulty cor-
responding to the nonsmoothness. In particular, if gij is representable as a
Second Order Conic Programming problem (hereafter SOCP-representable),
then (“almost always”) so is its PF. For instance, in the quadratic case
gij(xj) = aijx

2
j one could write (12) by means of the simple rotated SOCP

constraint zsijy
s
ij ≥ aij(x

s
ij)

2 (when lij = lsij = 0), which is natively han-
dled by any SOCP solver. Unfortunately, not all functions are SOCP-
representable, so this approach is not completely general.

– Projected reformulations. If there had been no constraints on the binary
variables ysij except those pertaining to the corresponding continuous one
xsij , it would have been possible—subject to mild assumptions on gij—to
construct a Projected PR [8] where the binary variables are eliminated, at
the cost of making each term related to each gij in (12) a two- or four-
piecewise one. This is not possible in this case because the constraints

6 Claudia D’Ambrosio et al.

(9) link both ysij and ys+1
ij with xsij , making component-wise projection

impossible. Projecting more than one variable at a time is conceptually
possible, but it already becomes rather complex with disjoint pairs [2]. The
Approximated Projected PR [5] can still be used in this case; it yields an
intermediate relaxation that provides a stronger bound than the original
continuous relaxation, although possibly weaker than that of the (PR).
The approach can also be improved by using dual information [6] so that
the bound is the same, but only at the root node of the enumeration
tree, while it becomes weaker than that of the true (PR) as branching
proceeds. Furthermore, the advantage of the approach—that of producing
a problem with basically the same shape as the original one—can also be a
disadvantage with general nonlinear terms gij , as it requires use of general
(convex) nonlinear solvers for tackling continuous relaxations. This may
be less efficient than linearizing them as PC does, especially if the rest of
the problem is linear so that an LP solver can be used. Our computational
results will show that, for the applications we tested, this is indeed the
case: linearization is by far the most efficient approach.

The PC approach using (13) is therefore both quite general, not requiring
any assumption on the original terms gij , and particularly well-suited to using
efficient LP technology. This is why we have only tested that one. The results
clearly indicate that, for the applications we tested, this is very likely to be
the most efficient approach.

3 Computational Results

3.1 The instances

We tested our approach on two classes of MINLPs with the required struc-
ture, namely the Nonlinear Continuous Knapsack (NCK) problem and the
Uncapacitated Facility Location (UFL) problem.

NCK is the nonlinear version of the classical (continuous) knapsack problem,
where one is given a set of items N with associated weight and profit functions
and a knapsack with capacity C. The aim is finding the quantities of each
item to be inserted in the knapsack so as to maximize the overall profit while
satisfying the capacity constraint. This arises in many applications, and it can
be easily solved when the profit function is convex [9], but it is NP-hard in
general in the nonconvex case. Our specific instances stem from the problem
of partitioning a given budget among advertisements for different products,
maximizing the overall return [3,4]. The return function is nonconvex because a
small amount of allocation provides only a small return, up to a threshold when
the advertisements are noticed by the consumers and result in substantial sales;
however, as the advertisements quantity grows saturation sets in, yielding a

Strengthening the SC-MINLP by Perspective Reformulations 7

law of diminishing returns. The formulation we used is

(NCK)

max
∑

j∈N pj

pj − cj
1+bj exp(−aj(xj+dj)) ≤ 0 j ∈ N∑

j∈N xj ≤ C , 0 ≤ xj ≤ U j ∈ N

(note that the aforementioned trick has been used to reformulate the nonlinear
objective function as nonlinear constraints). Hence, in this problem the origi-
nal constraints are linear (and very simple), and in each nonconvex constraint
there is only one nonlinear term, whose domain has exactly two sections, a con-
vex one and a concave one. For each value of |N | ∈ {10, 20, 50, 100, 200, 500}
we randomly generated 10 instances, where aj , bj , cj , and dj were uniformly
drawn from the intervals [0.1 , 0.2], [0 , 100], [0 , 100], and [−100 , 0], respec-
tively. As for U and C, they are always fixed to 100 and 100|N |/2, respectively.

In UFL we are given a set of customers, denoted with T , and set of facilities
denoted with K. Each facility can satisfy a fraction of demand of each cus-
tomer, but the shipment costs are univariate nonconvex functions. Apart from
that, the mathematical model is linear (and quite classical):

(UFL)

min
∑

k∈K Ckyk +
∑

t∈T
∑

k∈K skt

akt(sin(bktwkt) + cktwkt)
2 − skt ≤ 0 t ∈ T , k ∈ K∑

k∈K wkt = 1 t ∈ T
0 ≤ wkt ≤ yk t ∈ T , k ∈ K
yk ∈ {0, 1} k ∈ K

where Ck is uniformly drawn in [1, 100], akt can take the values in {−15,−25},
bkt in [2, 13], and ckt in [1, 13]. Hence, (UFL) has |K|·|T | nonconvex constraints,
again actually representing the nonlinear objective function, as well as bi-
nary variables. For each combination (|K|, |T |) ∈ { (6, 12) , (12, 24) , (24, 48) }
we generated 3 instances of increasing difficulty from the viewpoint of the
nonlinear functions gkt(wkt), that have 1, 2, or 3 convex sections (and 1
to 2 concave ones). The results of the most difficult instance generated for
(|K|, |T |) = (24, 48) are not reported because it was exceedingly difficult to
solve for all the methods we tested.

We refer the interested reader to [4] for more details on these applications.

3.2 Solvers and computational environment

We tested our approach, based on separation of Perspective Cuts (PC) im-
plemented within a Cplex [11] cut callback, against 4 alternatives: a standard
outer approximations (STD) for the nonlinear functions, and the packages
Bonmin 1.8.6 [1], Minotaur 0.2.1 [12], and Scip 4.0.0 [10]. All options
solve the model (5)–(11). Perspective Cuts are applied on constraints (12)
and substitute (7). PC and STD are implemented using the same algorithmic
framework, i.e., passing the linearized model to Cplex and using its callbacks

8 Claudia D’Ambrosio et al.

(both the “lazy constraints” and the “user cuts” ones) to separate either PC
or the standard gradient-based linearizations. Thus, how often and on which
points separation is performed is completely controlled by Cplex. For Bonmin
we tested three different algorithmic options (bonmin.algorithm): B-BB, B-OA
and B-Hyb, corresponding to a Branch&Bound using a nonlinear solver, an
outer-approximation approach using linear cuts (much similar in spirit to
STD), and a hybrid approach. Both B-OA, and B-Hyb use an inner MILP solver
(bonmin.milp solver), for which we have tested two options: the default CBC
2.9.9, and Cplex 12.7.0 (these denoted as B-OA-C and B-Hy-C, respectively).
For Minotaur we tested different algorithmic options: BNB, QG, and QPD with
either default nlp engine or using Ipopt 3.12.8 (denoted as BNB-I, QG-I,
and QPD-I). Scip has been tested with default parameters, having set Cplex

12.7.0 as the inner MILP solver and the assumeconvex option set to true.
For all solvers we set a time limit of 10000 seconds and a required relative gap
of 1e-4. All the solvers have been compiled with g++ 4.9.2 and ran, single-
threaded, on a computer sporting a 16-core Intel Xeon E312xx (Sandy Bridge)
processor at 2.3Ghz, with 32Gb of RAM, under Debian GNU/Linux 8.8.

3.3 Results for NCK

In Table 1 we report results obtained with different algorithms for Bonmin and
Minotaur. For each option we report the (average) time in seconds and the gap
reached within the time limit if some instance did not terminate (otherwise
we report “-”). If all the instances hit the time limit we just report “tl”. Since
B-OA-C solved all instances within the allotted time, we do not report the gap.

Bonmin Minotaur

size B-BB B-OA B-Hyb B-OA-C BNB-I QG-I QPD-I

time gap time gap time gap time gap time gap time gap time
10 1.06 - 0.25 - 0.59 - 0.27 0.22 - 0.11 - 0.09 -
20 2.99 - 0.34 - 2.12 - 0.32 0.53 - 0.22 - 0.16 -
50 13.8 - 0.65 - 8.05 - 0.62 2.97 - 1.07 - 0.63 -

100 78.9 - 9.16 - 7936 1.00 1.07 13.0 - 4.25 - 3.44 -
200 1000 - 5035 0.62 4019 0.88 2.24 88.5 - 37.8 - 28.6 -
500 tl 0.12 8035 0.62 9027 1.49 8.41 8621 0.07 7080 0.15 7692 0.16

Table 1 NCK: Bonmin and Minotaur options comparison

Clearly, B-OA-C is by far the best option. We also tested other possible
options (B-QG, B-Ecp, and B-Hy-C), but some of the instances were not cor-
rectly solved: either they self-aborted, or they needed to be aborted because
the execution time was much larger than 10000 seconds. Therefore we do not
report the corresponding results. For Minotaur we experienced issues with
the default nlp engine, as some instances were declared as correctly solved,
but in fact the reported solution had a gap � 1e-4. Therefore we decided
to report only the results obtained with nlp engine=ipopt; anyway, Ipopt
appeared also to be the more efficient option, in particular with the largest
instances. In this case there is no clear dominance, with QPD-I being better

Strengthening the SC-MINLP by Perspective Reformulations 9

for the smaller instances and QG-I for the largest ones. This is why in the
summary Table 2, where we compare the best options for each of the five algo-
rithmic schemes, PC, STD, Scip, Bonmin, and Minotaur, for the latter we report
the results with QPD-I n up to 200, and those with QG-I for n = 500. For PC

and STD the column “cuts” reports the number of user cuts added by Cplex.
Whenever not all the instances are solved within the time limit, we report
both the (average) inherent gap (column “gap”), i.e., the gap between the up-
per and lower bounds produced by the solver, as well as the best gap (column
“bgap”), i.e., the gap between the best bound produced by the relaxation in
the solver and the best known feasible solution, although not necessarily the
latter is actually produced by the solver.

size PC STD Bonmin MINOTAUR SCIP

time cuts time cuts time time gap bgap time
10 0.014 96 0.015 102 0.267 0.09 - - 0.07
20 0.021 155 0.019 195 0.324 0.16 - - 0.10
50 0.048 431 0.085 678 0.617 0.63 - - 0.21

100 0.072 947 0.183 1182 1.067 3.44 - - 0.66
200 0.105 1780 0.565 2461 2.237 28.6 - - 131.2
500 0.380 4681 3.593 7821 8.406 7080 0.15 0.05 181.4

Table 2 NCK: comparison among the different algorithms

Table 2 clearly shows that PC is the best option. It performs quite close to
STD, actually slightly losing out for n = 20, but as size grows the performances
gap widens, reaching an order of magnitude for n = 500. Not surprisingly, the
Outer Linearization algorithm in Bonmin (B-OA-C) is not far from STD, as
they share the same basic approach; the difference is likely to be primarily
attributable to the smaller overhead of an ad-hoc implementation w.r.t. a
general-purpose MINLP solver. This is particularly true since the problem has
an overall quite simple structure. However, improving the formulation with
PR techniques clearly has a positive impact.

3.4 Results for UFL

The objective function in our UFL instances has trigonometric terms that
SCIP 4.0 did not support, and therefore we do not report results for this
solver. The results of the initial tuning for Bonmin and Minotaur are reported
in Table 3, where a gap of ∞ means that no feasible solution was found. For
B-OA and B-Hyb we used Cplex as MILP solver; not only this was (as expected)
more efficient, but also the solver actually failed in at least one instance when
using CBC instead. We tested other Bonmin options, B-Ecp and B-QG, but these
failed on some of the instances as well. We also remark that B-BB had to be
tested without setting bonmin.allowable fraction gap=1e-4, because when
the option was set the solver did not terminate on instance 6x12x2, did not
find any feasible solution for instance 24x48x2, and was also slightly worse on
the other instances.

In this case there is even less clear dominance among the options, with

10 Claudia D’Ambrosio et al.

Bonmin Minotaur

instance B-BB B-OA-C B-Hy-C BNB QPD QG-I

time gap time gap time gap time gap time gap time gap
6x12x1 176 - 1.76 - 1.37 - 538 - 24.8 - 4.66 -
6x12x2 tl 1.16 7.25 - 5.64 - tl 29.17 tl 51.08 65.5 -
6x12x3 tl 657.6 tl ∞ tl ∞ tl ∞ tl 315.5 tl 260.3
12x24x1 1592 - 9.68 - 7.14 - tl 8.07 tl 66.57 57.4 -
12x24x2 tl 18.77 93.8 - 57.9 - tl ∞ tl ∞ tl 17.40
12x24x3 tl ∞ tl ∞ tl ∞ tl ∞ tl ∞ tl 271.6
24x48x1 tl 84.70 116 - 132 - tl ∞ tl ∞ 2844 -
24x48x2 tl 73.44 tl ∞ tl ∞ tl ∞ tl ∞ tl 31.49

Table 3 UFL: Comparison among Bonmin and Minotaur options

the B-BB option being often much slower, but at least succeeding in finding
feasible solutions in cases where the other approaches find none. The results
for Minotaur are limited to the algorithmic options BNB, QPD, and QG-I, as all
the other options we tested could not solve some of the instances (we had to
abort the run after many hours). At least, in this case QG-I clearly emerges
as the best option.

Finally, Table 4 reports comparison of the four algorithmic schemes; for
Bonmin, the best option was hand-picked on an instance-per-instance basis.
Note that in some cases the “best gap” is larger than the “gap”, because
the lower bound found by the method was even negative. Similarly to the
NCK case, the two ad-hoc linearization approaches clearly outperformed the
use of general-purpose solvers. An analogous trend, even more pronounced,
also shows up when comparing PC with STD. The latter can be more efficient
on smaller or “easier” instances; note that the “complexity” of the objective
function (number of convex pieces) grows when going from “x1” to “x2” to
“x3” instances. For the most complex instances PC always significantly outper-
formed STD, either in terms of running time or of final gap (or both). A close
examination of the solver logs showed that PC—as expected—always produced
significantly better lower bounds; often (although not always) this also trans-
lated in significantly better upper bounds. Occasionally STD produced better
upper bounds, but in these cases the difference was much less relevant; any-
way, any advantage in the upper bound was largely negated by the worse lower
bound. The cuts generated by PC were also much more effective in terms of
time, in the sense that much fewer of them were needed to solve a single relax-
ation. That it, PC usually required significantly fewer separation passes than
STD, and hence less LP solutions. For instances that hit the time limit, this
allowed PC to explore more nodes, and hence usually find also better solutions.

instance PC STD Bonmin Minotaur

time gap bgap cuts time gap bgap cuts time gap bgap time gap bgap
6x12x1 0.35 - - 1673 0.26 - - 1531 1.37 - - 4.66 - -
6x12x2 0.45 - - 1842 0.42 - - 1796 5.64 - - 65.6 - -
6x12x3 7921 - - 33417 tl 54.3 52.4 180561 tl 657 796 tl 260 615
12x24x1 3.36 - - 9565 2.55 - - 8971 7.14 - - 57.4 - -
12x24x2 46.1 - - 19653 27.3 - - 17384 57.9 - - tl 17.4 10.5
12x24x3 tl 23.9 23.9 127380 tl 121 134 284557 tl ∞ 1524 tl 272 1447
24x48x1 261 - - 81372 316 - - 102160 116 - - 2844 - -
24x48x2 tl 5.93 5.67 164809 tl 9.66 9.66 409177 tl 73.4 26.4 tl 31.5 24.6

Table 4 UFL: Comparison among different algorithms

Strengthening the SC-MINLP by Perspective Reformulations 11

4 Conclusions and Perspectives

This work proposes a conceptually simple modification of the Sequential Con-
vex MINLP (SC-MINLP) approach whereby, after the first relaxation step aimed
at removing nonconvex terms, a second reformulation step occurs where the
representation of the convex terms is tightened using the Perspective Reformu-
lation technique. This is especially attractive for problems where it is anyway
convenient to linearize the convex terms (e.g., because apart from them the
problem is linear), since then the implementation differs only slightly from that
of a standard Outer Approximation (OA) one: the cuts to be separated are
only slightly different, but the bound they provide are significantly better. Pre-
liminary computational results show that this approach typically outperforms
the standard OA algorithm, even if implemented ad-hoc, and even more so
general-purpose OA implementations as well as many other different available
options for solving the convex MINLPs. For easier and/or smaller instances
the standard OA may be preferable, but using the PR seems to be the best op-
tion as the size and the complexity increases. Since the implementation effort
within an existing OA solver is minimal, this approach is worth considering
for implementations of SC-MINLP. The results are clearly partial, in the sense
that the approach has not yet been tested in a “live” SC-MINLP. Yet, the idea
appears promising, because the PC generated with one specific instantiation
of (P) can be reused when solving the next one, with some binary variables
added. It is also possible that (PR) could be strengthened even further by
considering the convex hull of a larger set of variables together. These could
be fruitful directions for future research.

Acknowledgements The second and the third authors are partially supported by the
project MIUR-PRIN 2015B5F27W. This paper has received funding from the European
Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-
Curie grant agreement n. 764759.

References

1. Bonami, P., Lee, J.: Bonmin users’ manual. Tech. rep. (June 2006)
2. Castro, J., Frangioni, A., C. Gentile: Perspective reformulations of the CTA problem

with l2 distances. Operations Research 62(4), 891–909 (2014)
3. D’Ambrosio, C., Lee, J., Wächter, A.: A global-optimization algorithm for mixed-integer

nonlinear programs having separable non-convexity. In: Algorithms—ESA 2009, LNCS,
vol. 5757, pp. 107–118. Springer, Berlin (2009)

4. D’Ambrosio, C., Lee, J., Wächter, A.: An algorithmic framework for MINLP with sepa-
rable non-convexity. In: J. Lee, S. Leyffer (eds.) Mixed Integer Nonlinear Programming,
The IMA Volumes in Mathematics and its Applications, vol. 154, pp. 315–347. Springer
New York (2012)

5. Frangioni, A., Furini, F., Gentile, C.: Approximated perspective relaxations: a
project&lift approach. Computational Optimization and Applications 63(3), 705–735
(2016)

6. Frangioni, A., Furini, F., Gentile, C.: Improving the Approximated Projected Perspec-
tive Reformulation by Dual Information. Operations Research Letters 45, 519–524
(2017)

7. Frangioni, A., Gentile, C.: Perspective cuts for a class of convex 0-1 mixed integer
programs. Mathematical Programming 106(2), 225–236 (2006)

12 Claudia D’Ambrosio et al.

8. Frangioni, A., Gentile, C., Grande, E., Pacifici, A.: Projected perspective reformulations
with applications in design problems. Operations Research 59(5), 1225–1232 (2011)

9. Frangioni, A., Gorgone, E.: A library for continuous convex separable quadratic knap-
sack problems. European Journal of Operational Research 229(1), 37–40 (2013)

10. Gleixner, A., Eifler, L., Gally, T., Gamrath, G., Gemander, P., Gottwald, R.L., Hendel,
G., Hojny, C., Koch, T., Miltenberger, M., Müller, B., Pfetsch, M.E., Puchert, C.,
Rehfeldt, D., Schlösser, F., Serrano, F., Shinano, Y., Viernickel, J.M., Vigerske, S.,
Weninger, D., Witt, J.T., Witzig, J.: The SCIP optimization suite 5.0. Tech. Rep.
17-61, ZIB, Takustr.7, 14195 Berlin (2017)

11. IBM: ILOG CPLEX 12.7 User’s Manual. IBM (2016)
12. Mahajan, A., Leyffer, S., Linderoth, J., Luedtke, J., Munson, T.: Minotaur: A mixed-

integer nonlinear optimization toolkit. Optimization Online 6275 (2017)

