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Abstract—Large-scale high-resolution energy system mod-
elling is essential to support long-term decarbonization strate-
gies. Open-source frameworks such as PyPSA-Eur and PyPSA-
Earth enable high-resolution techno-economic analyses but
face computational bottlenecks when applied to large-scale
or stochastic systems. Advanced mathematical decomposition
techniques can alleviate these challenges, yet they are rigid to
specific problems and difficult to scale to different applications.
SMS++ is a high-performance, C++-based modelling framework
designed to support flexible, nested decomposition strategies
through a structured block-based approach. However, its use
has so far remained isolated from mainstream energy system
modelling.

This paper presents a novel methodology to couple energy
modelling tools with mathematical decomposition frameworks,
focusing on integrating PyPSA with SMS++, to facilitate the
wide adoption of advanced decompositions into energy appli-
cations. A formal interface is developed by mapping PyPSA
components to SMS++ blocks. A fully reproducible prototype
workflow is then implemented and validated on six case studies,
demonstrating numerical equivalence within tight tolerances.
The successful integration confirms the feasibility of apply-
ing advanced decomposition techniques within a user-friendly
modelling environment. This approach opens new pathways for
scaling energy system models to sector-coupled and uncertainty-
aware applications with enhanced computational efficiency.

Index Terms—PyPSA; SMS++; Mathematical Decomposition;
Mixed-Integer Linear Programming (MILP)

I. INTRODUCTION

A. Motivation

Decarbonizing large-scale energy systems require unprece-
dented investments that need to withstand long lifetime and
be cost-effective to ensure affortable energy for populations to
prosper. To meet this goal, policy makers require appropriate
techno-economic tools to estimate the optimal planning of
their future energy systems that also allow to effectively
capture uncertainties to ensure resilience. However, modeling
large-scale areas is notoriously computationally hard espe-
cially when considering uncertainties, which has led scholars
to develop advanced mathematical decomposition techniques
to break computational requirements down. Mathematical
tools are generally highly tailored to their applications and

complex to use, unlike some energy modeling tools such
as PyPSA, which generally makes them hard to use. For
these reasons, in this study we deemed useful to investi-
gate the possible coupling of energy modelling tools and
advanced mathematical frameworks that allow mathematical
decomposition, with the promise of unlocking unprecedented
computational efficiency for continental energy modelling.

B. Energy System Models

Energy system models are essential analytical tools used
to simulate, analyze, and optimize the interactions among
different components within energy systems, needed to guide
policy making [1]. Typical energy system models range
from detailed engineering tools to broader macroeconomic
frameworks. Integrated assessment models (IAMs), such as
REMIND [2], provide insights into the broader economic
implications and interactions between energy, economy, and
environment. However, to achieve higher representation, such
as PyPSA [3], Calliope [4], TIMES [5] and OSeMOSYS
[6], provide higher technical details suitable for techno-
economic planning and dispatch analyses, supporting capacity
expansion and detailed technical operation.

Various software tools and frameworks are available for
executing energy system models. Some, including TIMES
[5], generally focus on the overall energy mix. Accordingly,
they generally have a lower spatial resolution, e.g. one or few
buses per country, to focus on multi-year planning over long
horizons. Other tools, such as PyPSA [3] or Calliope [4],
support custom high spatial and temporal resolution, facil-
itating combined capacity expansion and dispatch analyses.
The tools facilitate the creation of Linear or Mixed-Integer
Linear Problems that can be solved by state-of-the-art solvers
like Gurobi [7] or HiGHS [8].

Several continental models have been developed using
high-resolution energy tools. For example, Euro-Calliope and
PyPSA-Eur [9] supports the European energy system and
PyPSA-Earth extends the scope to the globe [10], [11], among
others [12]. Nevertheless, these models have large compu-



tational requirements that usually require approximations to
make the numerical problem tractable.

C. Mathematical decomposition in energy

Energy system models are inherently complex due to sev-
eral factors. Technological constraints such as unit commit-
ment introduce non-linearities [13], while spatial resolution
requires power flow constraints [14], and temporal granularity
increases computational size, especially when uncertainty is
included [15]. Solving such non-linear, large-scale problems
often requires specialized solvers. When integer variables are
involved, computational requirements can grow exponentially
with model resolution.

To address this, researchers have developed mathematical
decomposition methods to reformulate problems into equiv-
alent, more tractable subproblems. Benders decomposition
is widely used in two-stage stochastic optimisation [16],
while Stochastic Dual Dynamic Programming is increasingly
applied to multistage formulations [17]. Column and row
generation techniques are also common [18]. Furthermore,
recent dynamic programming-based approaches have enabled
linearization of the unit commitment problem, without loss
of generality [19].

Despite their effectiveness, these decomposition strategies
are often tailored to specific problems and are not easily
transferable. To address this gap, the Structured Modelling
System (SMS++) [20] was developed as a general framework
that supports advanced, nested decomposition techniques.
While SMS++ offers robust performance thanks to its C++
architecture, its usability could be greatly enhanced through
integration with widely used energy system modelling frame-
works, enabling more accessible application of advanced
decomposition methods via user-friendly interfaces.

D. Contributions and organization of the paper

This paper develops an approach for coupling energy
models with the unconventional mathematical decomposition
framework SMS++, to prove the possible simple application
of decomposition techniques to arbitrary energy systems. In
particular, beyond the coupling procedure, we also propose
a prototype implementation, including a case study, to prove
the feasibility of the approach.

The remainder of the paper is organized as follows. Sec-
tion II and Section III provide a description of the framework
PyPSA for Energy System Modelling and the tool SMS++
suitable for advanced decomposition. Then, Section IV de-
scribes the proposed methodology for executing the coupling
of the two models. Section V details the case study adopted to
validate the proposed procedure, whose results are discussed
in Section VI. Finally, conclusions are drawn.

II. THE PYPSA ENERGY FRAMEWORK

A. Description

PyPSA (Python for Power System Analysis) is an open-
source Python framework for simulating and optimizing
energy systems. It supports both power flow and optimal
capacity expansion studies, enabling a wide range of appli-
cations including dispatch optimization, network expansion,
decarbonization strategies, and security-constrained analyses.
Thanks to its modular structure, solver integration, and ease
of customization, PyPSA has become a widely adopted tool
in both academia and industry.

PyPSA models energy systems using abstract components,
including: Buses (network nodes), Lines (network connec-
tions), Generators (e.g., wind, gas, nuclear), Storage Units and
Stores (for hydro, battery and hydrogen storage), and Links
(DC converters or sector-coupled units). These components
offer flexibility for representing complex energy systems with
varying levels of detail.

B. Mathematical model

1) Objective function: PyPSA transforms the description
of the model into a Mixed-Integer Quadratic Problem whose
objective function generally focuses on minimizing the An-
nuity Costs in (1), where CCAP

n,a and COP
n,a,t denote the

investment and operating costs of the asset a in node n
and time step t, respectively. Investment costs are modelled
in linear form as detailed in (2), where Xa denote the
investment variable for component a and ccapa is the per-
unit investment costs. Operating charges are mainly modelled
with the quadratic expression shown in (3), where pn,a,t
denotes the dispatch of the asset a subject to linear (copn,a,t)
and quadratic (cop,qn,a,t) operating charge, cop,sa denotes the
stand-by cost for every time-step the asset is dispatched
using binary variable un,a,t. Shut-down and start-up charges
are also supported by means of variables wn,a,t and vn,a,t
with coefficients cop,su/sdn,a,t . For storages, additional cost terms
proportional to the state of charge en,a,t and the spillage of
hydro units pspilln,a,t.

minAC =
∑

n,a

(
CCAP

n,a +
∑

t wtC
OP
n,a,t

)
(1)

CCAP
n,a = ccapn,aXn,a (2)

COP
n,a,t =copn,a,tpn,a,t + cop,qn,a,tp

2
n,a,t + cop,sn,a,tun,a,t

+ cop,sun,a,t vn,a,t + cop,sdn,a,twn,a,t + cen,a,ten,a,t

+ cen,a,tp
spill
n,a,t

(3)

2) Constraints: PyPSA includes a comprehensive set of
operational constraints for all system components. It supports
bounds on both investment (4) and dispatch (5) variables,
enforces ramp rate limits (6), and optionally allows for
unit commitment modelling (7)–(11). When enabled, unit
commitment includes binary on/off status variables, start-up
(8) and shut-down (9) tracking, and minimum up/down time
constraints (10)–(11).

Xn,a ≤ Xn,a ≤ Xn,a (4)

pn,a,tXn,a ≤ pn,a,t ≤ pn,a,tXn,a (5)

− rdn,a,tX̂n,a ≤ pn,a,t − pn,a,t−1 ≤ run,a,tX̂n,a (6)

pn,a,tX̂n,aun,a,t ≤ pn,a,t ≤ pn,a,tX̂n,asn,a,t (7)

vn,a,t ≥ un,a,t − un,a,t−1 (8)
wn,a,t ≥ un,a,t−1 − un,a,t (9)∑t+Tu

t′=t δi,r,t′ ≥ Tu (δi,r,t − δi,r,t−1) (10)∑t+Td

t′=t (1− δi,r,t′) ≥ Td (δi,r,t−1 − δi,r,t) (11)

Finally, the nodal energy balance is regulated in (12) that
account for the dispatch variables for generators pn,a,t, a ∈
Ap, storages (p+/−

n,a,t, a ∈ Ab), and links and lines pa,t, a ∈ Al.
The matrix Kn,a,t is a three-dimensional quantity that de-
scribes whether the link or line l is connected to the node
n. When Kn,a,t = −1, it means that the line or link a
conventionally departs from the bus n and when Kn,a,t = 1
the line arrives at the node. Links support values different



from −1 and 1 to support conversion efficiencies. Finally, the
energy balance for storage is denoted in (13), accounting for
self-discharging ηselfn,a,t, charging and discharging efficiency
(ηi,s,+/−), energy inflow pinflowi,s,t for hydro units and possible
spillage pspilli,s,t .∑

a∈Ap

pn,a,t +
∑
a∈Ab

[
p+n,a,t − p−n,a,t

]
+

∑
a∈Al

Kn,a,tpa,t

=
∑
a∈Ad

dn,a,t
(12)

en,a,t = (1− ηselfn,a,t)ei,s,t−1 + wS
t

(
p+i,s,tηi,s,+ + p−i,s,t/ηi,s,− − pspilli,s,t + pinflowi,s,t

) (13)

III. SMS++ TOOL FOR ADVANCED MATHEMATICAL
DECOMPOSITION

A. Description

The Structured Modelling System (SMS++) [20] is an
open-source, general-purpose C++ framework designed for
formulating and solving complex optimization problems. Un-
like most other existing mathematical optimization frame-
works, SMS++ is focused on preserving the intrinsic math-
ematical structure of optimization problems. This enables a
hierarchical application of advanced solutions, mainly decom-
position techniques such as Lagrangian relaxation, Benders’
decomposition, and Stochastic Dual Dynamic Programming.

B. Nested block structure

A typical SMS++ problem is described by a Block
that can (recursively) contain multiple sub-Blocks, each
describing a part of the problem. Each Block is designed
so that it can be either solved by a specialized Solver
that exploits its specific structure to implement bespoke (and,
hence, efficient) solution techniques, or by general-purpose
solvers that use its “abstract representation” in terms of
variables and (algebraic) constraints. In particular, SMS++ is
interfaced with many current MILP solvers (all subclasses
of the base MILPSolver object) such as HiGHS. Any
number of Solver, be them specialised or general-purpose,
can be attached to a Block to solve it, possibly in parallel
exploiting specific (and unique) SMS++ features that allow
safe concurrent access to the Block data structures.

In energy system applications, a common structure is
the Unit Commitment [13] block (UCBlock), sketched in
Fig. 1, that coordinates the operational scheduling of multiple
generators, represented by the general class UnitBlocks.
Specific generator types are then implemented as derived
classes; among them, ThermalUnitBlock represents ad-
vanced unit commitment of thermal units, HydroBlock
and HydroSystemBlock represent cascading hydro units
and whole hydro systems with complex future-value-of-water
functions, BatteryUnitBlocks represent batteries and
IntermittentUnitBlocks model intermittent genera-
tions. This allows to develop specific solution approaches
exploiting each unit’s characteristics, such as the sophis-
ticated Dynamic Programming procedure implemented in
DPThermalUnitSolver [21] for ThermalUnitBlock.
Besides generating units, another fundamental component of
energy systems is the interconnection network(s) allowing
energy exchanges. UCBlock caters for this by defining the
general class NetworkBlock, which is then specialised

UCBlock1

InvestmentBlock

BundleSolver

:CDASolver

SDDPBlock

FRealObjective

ThermalUnitBlock scale()

BatteryUnitBlock scale() set_kappa()

IntermittentU.B. scale() set_kappa()

DCNetworkBlock set_kappa()

InvestmentFunction(   )

l ≤    ≤ u lhs ≤ A   ≤ rhs

Fig. 1: A schematic of the energy system investment block
(InvestmentBlock).

according to the features of the energy model by means
of the derived classes such as DCNetworkBlock (DC
and HVDC electrical networks), ACNetworkBlock (AC
electrical networks [14]), and ECNetworkBlock (energy
community [18]).

With UCBlock providing a general and flexible descrip-
tion of energy system operational problems, SMS++ allows to
define general and powerful models for strategic problems—
optimal energy system design and expansion—by means of
InvestmentBlock. This exploits the nested structure of
the capacity expansion problem by having a UCBlock as
sub-Block, and defining a subset of the units and lines that
can be designed, as depicted in Fig. 1.

The solution of the capacity expansion problem requires
algorithms for non-smooth optimization [22], since the ex-
pansion value function is not everywhere differentiable,
for which SMS++ provides the advanced BundleSolver
implementation of bundle-type algorithms [23]. This re-
quires the repeated solution of the inner UCBlock, that
can be obtained either with general-purpose solvers like
HiGHSMILPSolver and GurobiMILPSolver, or by ap-
proaches exploiting the block structure of the (inner) problem.
Chiefly among this is LagrangianDualSolver that im-
plements advanced Lagrangian decomposition (using again
BundleSolver to drive the solution of the Lagrangian
dual), allowing the (parallel) implementation of nested de-
composition approaches. Although not extensively described
in this report, the further module SDDPBlock can be
“slotted in” between InvestmentBlock and UCBlock
to represent the design of energy systems with significant
stochastic components (such as year-long management of
hydro reservoirs), exploiting the dedicated SDDPSolver
implementation of the Stochastic Dual Dyanmic Program-
ming approach to allow even more sophisticated multilevel
decomposition schemes.

C. Mathematical representation

This section describes the representation of selected
SMS++ Blocks, to facilitate the understanding of the
methodology focused in the following paragraphs.

1) ThermalUnitBlock: In SMS++, this Block sup-
ports the most advanced mathematical representation of ther-
mal units, including 7 different formulations of fuel-fired
units with different number of variables and constraints and
therefore various size-to-bound strength ratios (among which
an “exact” DP-based one that does not need, in isolation,



integrality constraints [19]). The nonlinear objective function
is tightly described by dinamically-separated perspective cuts
[24]. For the sake of clarity, we describe the closest formu-
lation with respect to PyPSA, referred to as 3bin.

The objective function, described in (14), is a quadratic
function of the dispatch power pt of the thermal unit, account-
ing for the stand-by cost cop,st and start-up charges cop,sut .

min
∑

t c
op,su
t vt +

∑
t(c

op
t p2t + cop,qt pt + cop,st ut) (14)

This is similar to the model described in Section II, and
similarities extend to the technical constraints, as shown in
(15)–(21). Minimum up- and down-time requirements are
accounted for in (15)–(17). Ramping limits are modeled using
(18) for upward ramp and (19) for downard one. Minimum
and maximum power limits are regulated by (20) and (21).

ut − ut−1 = vt − wt (15)∑
s∈[t−Tu,t]

vs ≤ ut (16)∑
s∈[t−Td,t]

ws ≤ 1− ut (17)

pt+1 − pt ≤ rus
tut + rutvt+1 (18)

pt − pt+1 ≤ rdstut+1 + rutwt+1 (19)
p
t
≤ pt (20)

pt ≤ p̄tut + (ūt − p̄t)wt+1 + (l̄t − p̄t)vt (21)

The PyPSA model for generators and the 3bin formulation of
SMS++ are very close, which facilitates the tools coupling.

2) DCNetworkBlock: The energy balance in SMS++
is regulated by means of NetworkBlocks that support the
modelling of (among others) DC and HVDC networks. The
power flow of DC networks can be modelled in the linear
formulation using equation (22), where B(l,n) is the Power
Transfer Distribution Factor matrix, Sn is the generation at
node n and Dac

n is the demand. The modelling of HVDC
lines is instead different as the power flow of each line can
be controlled independently thanks to the converters located
at their ends. Thus, the power flow of each line Fl can be
controlled simply as in (23), and the energy balance can be
formulated as (24).

Pmn
l ≤

∑
n∈N B(l,n)(Sn −Dac

n ) ≤ Pmx
l l ∈ LAC (22)

Pmn
l ≤ Fl ≤ Pmx

l l ∈ LDC (23)∑
l=(n,n′) Fl −

∑
l=(n′,n) Fl = Sn −Dn n ∈ N (24)

Finally, the objective function of the DCNetworkBlock, if
any, is minimizing the costs incurred in the flow of energy
across the grid. This can be obtained by introducing the
auxiliary variable Vl that represents the absolute value of Fl,
to appear in the objective function (25), and to be added to
the constraints (26).

min
∑

l nclVl (25)

− Vl ≤ Fl ≤ Vl l ∈ LDC (26)

Note that there is a separate NetworkBlock for each of
the time instant in which the time horizon is subdivided.

3) InvestmentBlock: This is the SMS++ component
responsible to model capacity expansion. Its objective func-
tion, shown in (27), accounts for investment costs that are
proportional to the size of each asset Xa and the optimal cost
of the subproblem described by the inner Block for the given
choice of the assets’ dimensioning. Bounds on the capacity

Framework analysis (SMS++ and PyPSA)

Application analysis (PyPSA-Eur)

Interface definition and development

Validation on case studies

Fig. 2: Methodology.

expansion, detailed in (28), are also given (and general linear
constraints on the expansion variables are possible as well).

min
∑

a icaXa + f(Inner Block(X)) (27)

Xa ≤ Xa ≤ Xa (28)

When the inner Block is a Unit Commitment (UCBlock),
then the overall problem automatically inherits all objective
functions of its UnitBlocks and NetworkBlocks, such
as those shown in the previous subsections (14) and (25).

IV. METHODOLOGY

We propose the methodology described in Fig. 2 to
successfully couple energy system models with tools for
advanced mathematical decomposition, having in scope the
application of the tool on PyPSA-Eur/Earth models and
SMS++. The proposed approach is composed by a prelim-
inary framework analysis focused on the selected tools (e.g.
PyPSA and SMS++) and the target model (e.g. PyPSA-
Eur/Earth), then the definition of the interface is executed
and developed. Finally, the validation on selected numerical
case studies is executed.

First, the framework (e.g. PyPSA) of the model (e.g.
PyPSA-Eur) and the mathematical tool (SMS++) are analyzed
with the goal of identifying (a) the abstract components
being represented, (b) their mathematical formulation, (c) the
input parameters and (d) the supported interfaces for input-
output. This enables identifying the boundaries of action and
the options suitable for coupling, namely which components
of a framework are most similar to the other one, which
formulations and approximations are best suited, what pro-
cedure is required to adapt the parameters, and finally how
to operatively execute the coupling, e.g. which specific API
calls to launch, if any.

Subsequently, the target final application is analyzed to
identify which components to prioritize and their modelling
data. Indeed, the complete coupling of all features is an
extremely difficult task and focus must be guaranteed on the
specific requirements. Accordingly, we propose to investigate
the reference model to identify (a) how many sectors are
represented, (b) what components and options are most
frequently used and (c) the mesh-ness of the network, with
special focus on the sector-coupled components that allow
the combined coupling of multiple sectors. After this stage,
it is possible to investigate what options to focus on and to
develop specific interfaces.

The last two steps consist in the definition of the actual in-
terface between the two tools and in its validation on selected
case studies. These latter should consider the components of
step 2 and the objective function of the two tools must be
within a given optimization tolerance.

V. CASE STUDY

Given its wide adaptability, policy relevance and project fo-
cus, in this paper we investigate the feasibility of coupling the



Case Type Nodes [#] PyPSA components [#]
Gen. Stor. Unit Store Line Link Load

DT1 Dispatch 1 1 1
DT2 Dispatch 2 1 1 2
DS2 Dispatch 3 1 1 1 1 2

DALL5 Dispatch 5 3* 2 1 3 1 4
DNoHS1 Dispatch 1 3* 1 1
INoHS1 Investment 1 3* 1 1
*: 2 renewable units

TABLE I: Test cases of the methodology.

PyPSA-Eur model with the tool SMS++ for advanced math-
ematical decomposition. Accordingly, we apply the method-
ology discussed in Section IV to the two frameworks under
consideration, namely PyPSA and SMS++, on the PyPSA-
Eur model.

For the sake of brevity, we refer to sections II and III to
describe the results of the investigation aimed to focus the
mathematical framework, input parameters, and input/output
interfaces. This analysis has been extended to all major
SMS++ components, namely BatteryUnitBlock, HydroUnit-
Block, IntermittentUnitBlock, ThermalUnitBlock, SlackUnit-
Block, DCNetworkBlock, UCBlock and InvestmentBlock.

Subsequently, we analyzed the structure of the PyPSA-
Eur model aiming to capture major components to develop
the interface. While the analysis covered the whole sector-
coupled model, for the sake of simplicity in this study we
focused on the power-only version.

The preliminary analysis of the PyPSA-Eur model identi-
fied over 40 different networks and more than 150 different
component types connecting them, sketched in the PyPSA-
Eur-draw-io repository for simplicity [25]. It was found
that the most recurrent PyPSA components are Generators,
Stores, StorageUnits, Links, Buses and Lines, which are in
focus of this study. In particular, in reference to Section II,
the most important techno-economic factors being considered
are the capital costs and marginal costs. For conversion
technologies, efficiencies are also relevant, alongside water
inflows for hydro units.

Given the PyPSA-Eur components, we defined the selected
case studies in Table I to successfully perform the validation,
as defined in the proposed methodology (Fig. 2). The case
studies involve the optimization of microgrids of up to 5
nodes, including a diesel generator, renewable sources (wind
and solar), battery storages, and hydro units with numerical
parameters based on [26]. The proposed set aims to capture
the main objects and validate that the procedure successfully
converts PyPSA models into SMS++ to allow advanced
mathematical decomposition. The case studies are available
open-source in [27].

The results of the analysis and the prototype implementa-
tion are the focus of the following section.

VI. RESULTS

A. Interface definition

According to the methodology outlined in Fig. 2, we
performed a detailed comparison of the PyPSA and SMS++
frameworks, as introduced in Section II and Section III,
respectively. The primary outcome of this comparison is the
coupling matrix presented in Table II, which maps PyPSA
components to their most appropriate counterparts in SMS++.
This mapping provides the foundation for aligning the math-
ematical structures of the two frameworks and enables the

TABLE II: Coupling between SMS++ and PyPSA objects

Physical component PyPSA SMS++
Fuel-fired unit Generator ThermalUnitBlock
Renewable unit Generator IntermittentUnitBlock
Batteries Stores BatteryUnitBlock
Hydro units StorageUnit HydroUnitBlock
Converters Link DCNetworkBlock
Line Line DCNetworkBlock
Bus Bus DCNetworkBlock

Compile SMS++

Build PyPSA model

Optimize PyPSA

Build SMS++ UCBlock

Solve UCBlock

Validate solution

Build SMS++ InvestmentBlock

Solve InvestmentBlock

Validate solution

end

Fig. 3: Prototype flowchart implemented in [27]

definition of model equivalence through the consistent cou-
pling of coefficients.

In particular, parameters in the PyPSA objective and
operational constraints ((1)–(3)) are put in correspondence
with their best match in SMS++ equations ((14), (26), and
(28)). Notably, for specific blocks such as HydroUnitBlock
and IntermittentUnitBlock, marginal cost support was orig-
inally absent in SMS++ and has been added to ensure
compatibility with the PyPSA formulation. It is also worth
noting that converter assets in SMS++ can currently be
represented using HVDC lines, although efficiency losses
are not yet supported in this representation. For modelling
capacity expansion problems, the use of InvestmentBlocks, as
illustrated in Fig. 1, is appropriate. Conversely, for dispatch-
only analyses, UCBlocks alone are sufficient to represent the
problem structure.

B. Prototype implementation

Accordingly, we developed the workflow depicted in Fig. 3,
which is available in the open-source GitHub repository
SMSpp builder [27] and implemented using GitHub Actions
to ensure full open reproducibility. The procedure begins by
compiling the necessary SMS++ tools, followed by gener-
ating the corresponding PyPSA models for each test case
listed in Table I. Subsequently, the models are translated into
SMS++ representations: UCBlock for dispatch analyses and
InvestmentBlock for capacity expansion.

The entire workflow is orchestrated using the Snakemake
tool, which facilitates the decomposition of the process into
modular subtasks, each corresponding to a block in Fig. 3.
The key conversion scripts from PyPSA to SMS++ are written
in Python, contributing to the accessibility and transparency
of the interface. This prototype demonstrates the successful
integration of advanced mathematical decomposition tech-
niques from SMS++ into the PyPSA modelling framework.
The validation procedure compares the objective function val-
ues computed by SMS++ with those obtained from PyPSA,
confirming the correctness of the conversion process.

C. Validation

Finally, the implemented procedure was tested on the
selected case studies, with results summarized in Table III.



TABLE III: Validation results

Case PyPSA [C] SMS++ [C] Difference [C] Difference [%]
DT1 40669.01 40669.01 2 · 10−4 < 10−4

DT2 82717.38 82717.38 4 · 10−4 < 10−4

DS2 82717.38 82717.38 4 · 10−4 < 10−4

DALL5 0.0 0.0 < 10−5 −1.21
DNoHS1 0.0 0.0 - 0.0
INoHS1 27808.70 27808.80 0.099 3.6 · 10−4

All test cases were successfully validated, exhibiting absolute
and relative differences well within the prescribed tolerances
of C0.01 and 10−4%, respectively. These outcomes confirm
both the validity of the proposed coupling methodology and
the practical feasibility of interfacing PyPSA and SMS++.
This integration enables the application of advanced decom-
position techniques within the user-friendly PyPSA frame-
work.

VII. CONCLUSIONS

This paper presents a novel methodology for coupling
energy modelling frameworks, specifically integrating the
advanced mathematical decomposition techniques provided
by SMS++ into the well-accessible PyPSA energy modelling
tool. In addition to detailing the theoretical framework, a
prototype implementation has been developed and validated
in six case studies, covering both dispatch optimization
and capacity investment analyses. The successful validation
confirms the robustness of the proposed coupling approach
and demonstrates the practical feasibility of the developed
interface. Moreover, an in-depth theoretical comparison of
the detailed mathematical structures of both tools was crucial
in determining an effective strategy for their integration.

While the current study establishes the foundational fea-
sibility of coupling SMS++ with PyPSA, future research
should perform comprehensive analyses involving large-
scale, sector-coupled energy systems. Further exploration
of SMS++’s advanced capabilities, particularly in stochastic
optimization contexts, would also significantly enrich the cou-
pling methodology. Such advancements promise to signifi-
cantly enhance the application of sophisticated decomposition
methods, thereby improving the accuracy and reliability of
future energy system analyses.
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