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The Unit Commitment (UC) problem in electrical power production requires to optimally operate a set of

power generation units over a short time horizon. Operational constraints of each unit depend on its type

and can be rather complex. For thermal units, typical ones concern minimum and maximum power output,

minimum up- and down-time, start-up and shut-down limits, ramp-up and ramp-down limits, non-linear

objective function. In this work we present the first MINLP formulation that describes the convex hull of

the feasible solutions of the single-unit commitment problem (1UC) comprising all the above constraints,

and convex power generation costs. The new formulation has a polynomial number of both variables and

constraints, and it is based on the efficient Dynamic Programming algorithm proposed in ? together with

the perspective reformulation technique proposed in ?. The proof that the formulation is exact is based on

a new extension of a result previously only available in the polyhedral case which is potentially of interest

in itself. We then analyze the effect of using it to develop tight formulations for the more general (UC).

Since the formulation is rather large, we also propose two new formulations, based on partial aggregations

of variables, with different trade-offs between quality of the bound and cost of the solving the continuous

relaxation. Our results show that navigating these trade-offs may lead to improved performances.

Key words : Unit Commitment problem, Ramp Constraints, MIP Formulations, Dynamic Programming,

Convex Costs
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1. Introduction

The Unit Commitment (UC) problem is a basic problem arising in power industries to coordinate

and manage power generation units. Although it was the typical problem to be solved in old

monopolistic regimes, the need to solve UC problems has not disappeared. On the contrary, both

generation companies and system operators need to routinely solve some UC variant even in the

free market regime (e.g., see ?????), both before and after the price of energy (and other ancillary

services) has been cleared in the relevant market. Due to the huge figures involved in real-world

systems (?), even minor improvements on the quality of the obtained solutions can result in very

significant economical (and, possibly, environmental) savings. Therefore, the efficient solution of

UC problems is still very much relevant in practice. Besides, UC being a complex Mixed-Integer

NonLinear Program (MINLP), its study is relevant from the methodological viewpoints. Indeed,

some theoretical results (e.g., ?) that have been originally motivated by UC have later found many

more applications (??????).

The traditional UC problem requires finding the schedule of each power generation unit in

order to minimize operational costs while satisfying both system-wide constraints and operational

constraints associated with each unit. System-wide constraints usually comprise the satisfaction of

the energy demand, the provision of different types of reserve, and the handling of the transmission

network. Operational constraints depend on the type of generation units. Most power systems are

mainly based on thermal units (comprised nuclear ones) and hydro units, but in recent years the

contribution of renewable energy sources (wind, solar, etc.) has steadily increased. As these are

characterized by uncertainty in the production output, uncertain (robust and/or stochastic) UC

models are more and more necessary (??). Since uncertain variants of optimization problems are

typically considerably more difficult to solve than deterministic ones, efficient solution methods

for these problems are in high demand as much as ever. Moreover, there is a clear trend whereby

production and consumption tend to become more geographically separated than they previously

were (think offshore wind farms and large solar plants in semi-desert areas), which is putting novel
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strain on transmission networks that were not originally planned for these scenarios. All this has a

substantial impact both on costs and security/reliability (??), providing further strong motivation

for the development of new approaches capable of solving complex variants of UC problems in

shorter and shorter computational times.

Traditionally, Lagrangian relaxation was the method of choice to solve UC (e.g., see ???, ?,

§3.3), since it was capable of exploiting the spatial structure of the problem: the most complex

constraints pertain to the behaviour of a single unit, and relatively fewer and simpler ones link

the different units together. However, the advances in the solution of Mixed-Integer (linear and

convex) Programming (MIP) problems that are now widely available in present commercial solver

have made MIP approaches an attractive option. This is even more so as the two approaches can

be fruitfully combined (??). The first MILP formulation for UC was described in ? and used three

sets of binary variables. Later on, formulations using only one set of binary variables (on/off state)

became more popular (??), although different ones continued to be used (?). While a reduced

number of variables may lessen the cost of computing relaxations, this is usually not the crucial

factor; rather, the tightness (quality of the lower bound of the continuous relaxation) of a MIP

formulation is key for the efficient solution of the problem.

As operational constraints of thermal units have a strong combinatorial structure, many efforts

have been made to improve their MIP definition. While there are some different types of units, each

with several different variants, thermal units (comprised nuclear ones) are still the bulk of most

energy systems, and these most often have a common set of operational restrictions. In particular,

constraints on minimum and maximum power output, minimum up- and down-time, and ramp-

up/ramp-down in power are almost invariably imposed. Most units have a nonzero minimum power

production (and, obviously, a maximum one), meaning that the produced power is a typical semi-

continuous variable, which can either be 0 or live in a closed real interval. These are naturally

modeled with the help of the (also natural) binary variables that dictate if the unit is on or off.

Minimum up- and down-time constraints establish a minimum number of consecutive time periods
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that a unit must be on, or off; they are typically imposed to limit technical stress of the thermal

units due to frequent start-up and shut-down operations. Such constraints introduce a strong

combinatorial structure. The first exact description by means of linear inequalities for minimum-up

and -down time constraints has been given in ? with an exponential number of inequalities and a

polynomial time separation algorithm. Afterwards, ? and independently ? developed an extended

linear description with a linear number of constraints. Ramp-up and ramp-down constraints limit

the maximum increase or decrease of the power production between two consecutive time periods.

Moreover, in these same linear inequalities also maximum limits on start-up and shut-down periods

are often imposed. Further complex features of thermal units are related to power production costs.

The cost of producing energy is typically a nonlinear function of the produced energy already

when the unit is in the stable state (“on”). Furthermore, usually start-up costs have to be paid in

the period when the unit is started up, to account for the nontrivial start-up operations. In their

simplest description start-up costs can be considered fixed, but in a more exact description they are

dependent on how long the unit remained off before start-up. This is because, roughly speaking,

the unit must reach a minimum temperature in order to be able to produce power, and the heating

process requires energy that has to be paid for. The cost for reaching the required temperature

depends on the temperature that the unit has when the start-up process begins, which in turn

depends both on environmental factors (assumed known) and on the previous history of the unit,

i.e., how many periods it has been off.

In this work we present the first MIP description of the convex hull of the solutions satisfy-

ing all the standard operational constraints for the thermal units: minimum up- and down-time

constraints, minimum and maximum power output, ramp constraints (including start-up and shut-

down limits), general start-up costs, and nonlinear convex power production costs. Our new for-

mulation is derived by a Dynamic Programming algorithm ? and contains a polynomial number of

variables and constraints. A simpler version of this result, limited to linear power generation costs,

was first presented in ?. Analogous results, using different proof techniques and still limited to
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(piecewise-)linear production costs, where independently proposed in ??. Interestingly, the latter

paper claims that the proposed formulation represents the convex hull for any possible convex

power generation cost, but this is proven to be false (even for simple quadratic separable cost)

in ??. Indeed, nonlinearity of the cost function introduces a further complexity in the convex hull

description, that none of the previous attempts addressed. This complexity can be tamed with the

help of the perspective reformulation technique, that was originally developed in the seminal paper

? precisely in the context of the solution of UC problems. Yet, the technique has rapidly found a

surprisingly large number of other applications where it has been shown to significantly improve

the computational performances of exact and heuristic approaches to MINLP with semicontinuous

variables and/or disjunctive constraints ????????. Perhaps more relevantly for this work, perspec-

tive reformulation techniques lie at the heart of several results, among which recent ones such as ?,

that allow to describe the convex hull of mixed-integer nonlinear regions with different properties.

We contribute to this growing body of knowledge by extending the well-known “Approach no. 4” of

? (used by ? and by others) to the nonlinear case. This allows to prove that a formulation obtained

by “mixing” in a proper way individual sub-models, each of which properly represents the convex

hull of their integer partial solution, yields an exact overall formulation. This is a nontrivial result

potentially of interest in other contexts; for instance, the results in ? provide convex hull descrip-

tions under the condition (among others) that the constraints only involve the binary variables,

and therefore could be used to construct the individual “pieces” of an overall exact formulation

that can then be constructed with the technique developed here.

The structure of the paper is as follows. In Section ?? we recall the main formulation of the UC

problem. In Section ?? we give a survey of the main results concerning polyhedral results for UC

formulations. In Section ?? we present an improved version of the Dynamic Programming algorithm

described in ?. In Section ?? we present the new formulation and we prove that it describes the

convex hull of the solutions of the single-unit commitment problem (1UC). To this aim we define

the 1-sum composition of MINLPs and prove that it preserves exactness of formulations, a not



Bacci et al.: New MINLP Formulations for the Unit Commitment Problems with Ramping Constraints
6 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

unexpected but still new and nontrivial result. In Section ?? we propose two additional simplified

formulations also based on the Dynamic Programming algorithm with a trade-off between tightness

and compactness. In Section ?? we present some preliminary computational experiments aimed

at gauging the practical effectiveness of the new formulations on a data set already used in the

literature. Finally, in Section ?? we sum up the results, and draw some possible lines for future

research on the topic.

2. The Thermal Unit Commitment Problem

In this section we recall the most popular MIP formulation of the thermal Unit Commitment

problem (other kinds of units have entirely different constraints and therefore require specific study,

e.g. ?). This formulation is usually named 3-bin formulation from the number of vectors of binary

variables that are considered and to distinguish it from the 1-bin formulation that contains only

one vector of binary variables.

Let I be the set of (indices of) thermal generators, with m= |I|, and T = {1, . . . , n} be the set

of (indices of) time periods in the planning horizon. Given two time periods t′ and t′′, we will

denote by T (t′, t′′) the set of all the time periods between t′ and t′′, extremes included (obviously,

T (t′, t′′) = ∅ if t′ > t′′). For each i ∈ I and t ∈ T , let pit (the power variables) be the power level of

unit i at time period t, and xit (the commitment variables) be the binary variable denoting the

on/off state of unit i at time period t. As previously recalled, “on” state means that the unit can be

modulated, i.e., the power output of the unit can be increased or decreased subject to some technical

constraints. The “off” state does not necessarily mean that the unit is inactive, in that it could be

performing a start-up or shut-down trajectory, or being “banking”, i.e., burning fuel to keep the

temperature of the unit in view of an imminent restart. All these details are largely transparent to

our model: although complex start-up or shut-down trajectories may require some modifications

to be completely accounted for (?), this does not impact the mathematical formulation of the

individual units. The 3-bin formulation has been introduced in ?, and independently in ?. It

starts from an exact formulation of the minimum up- and down-time constraints only, that is
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obtained by considering 3 vectors of binary variables: besides the commitment variables xit, one

introduces start-up variables vit denoting if unit i has been started up at time period t (i.e., xit = 1

and xi,t−1 = 0) and shut-down variables wit denoting if i has been shut-down t (i.e., xit = 0 and

xi,t−1 = 1). Let τ+i and τ−i being the minimum number of consecutive time periods that unit i has

to be in on and off state, respectively, using the above defined variables, the minimum up- and

down-time constraints can be defined by

∑
s∈T (t−τ i++1,t) vis ≤ xit t∈ T (τ+i , n), (1)∑
s∈T (t−τ i−+1,t)wis ≤ 1−xit t∈ T (τ−i , n), (2)

xit −xi,t−1 = vit −wit t∈ T (1, n); (3)

(note how (??) are flow-conservation-type constraints). The first exact description of these con-

ditions were given in ? using only the commitment variables (1-bin formulation), but with an

exponential number of inequalities and a polynomial time separation algorithm.

Further constraints are required to specify the initial conditions of the unit. Let τ 0i denote the

initial state of unit i as follows: at the beginning of the planning horizon, if τ 0i > 0 then unit i has

been in on state for τ 0i time periods, thus one has to impose the condition:

xit = 1 t∈ T (1, τ+i − τ 0i ) . (4)

Of course, this is only required if, besides τ 0i > 0, one also has τ 0i < τ
+
i (otherwise, T (1, τ+i −τ 0i ) = ∅).

Similarly, τ 0i < 0 means that unit i has been in off state for −τ 0i time periods, and one has to

impose the condition (again, this is only significant if −τ 0i < τ−i ):

xit = 0 t∈ T (1, τ−i + τ 0i ) . (5)

With li and ui being the minimum and the maximum power output for unit i∈ I, respectively, the

minimum and maximum power output constraints are simply

lixit ≤ pit ≤ uixit t∈ T. (6)
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Let now ∆+
i and ∆−

i be the ramp-up and ramp-down limits for unit i, respectively, i.e., the

maximum increase/decrease of power output w.r.t. the previous period. The corresponding ramp

constraints would be quite simple to write, were it not for the special treatment required by the

start-up and shut-down periods. It is expedient to introduce two specific values l̄i and ūi, known

as the start-up and shut-down limits for unit i. These are the maximum power value that the unit

can have in a, respectively, start-up and shut-down period, and they can be different from li and

ui; for consistency, it must however be li ≤ l̄i ≤ ui and li ≤ ūi ≤ ui. Then, the ramp constraints can

be formulated as follows (?):

pit − pi,t−1 ≤∆+
i xi,t−1 + l̄ivit t∈ T, (7)

pi,t−1 − pit ≤∆−
i xit + ūiwit t∈ T. (8)

We can also assume that 0≤∆+
i ≤ ui− li and 0≤∆−

i ≤ ui− li, otherwise constraints (??)–(??) are

either redundant or not feasible. Note that for t= 1 the constraints (??)–(??) refer to values pi0

and xi0, which clearly are not variables but parameters to be set according to the initial conditions

(cf. τ 0i above). The objective function usually contains the minimization of the production costs,

that depend on two main contributions: the generation costs and the start-up costs. The generation

costs, for each unit i and time period t, are often expressed by a convex quadratic cost function of

the type

fi(pit) = aip
2
it + bipit , (9)

possibly plus a fixed cost cixit. This is an approximation of the true cost function, that does not

take into account some technical characteristics of the units, such as the so-called “valve points”.

However, the approximation is generally deemed to be accurate enough for practical purposes.

Indeed, in many cases the cost function is further approximated by a piecewise linear (or even

downright linear) function in order to get good feasible solutions in short time (?).
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Nevertheless (??) is convex, pit is a semi-continuous variable generating a nonconvex feasible set.

In other words, the “true” objective function should rather be expressed as

fi(pit, xit) =


aip

2
it + bipit if li ≤ pit ≤ ui and xit = 1

0 if pit = xit = 0

∞ otherwise

. (10)

While (??) is nonconvex, its convex envelope (best possible convex approximation) turns out to be

easily computed (?):

hi(pit, xit) =


ai

p2it
xit

+ bipit if xit > 0 and 0< pit ≤ uixit

0 if pit = xit = 0

∞ otherwise.

(11)

This is called the perspective function of fi; note that hi(pit, xit) = fi(pit) if xit ∈ {0,1}, but

hi(pit, xit)> fi(pit) if 0< xit < 1. Thus, substituting (??) to (??)—a technique known as perspec-

tive reformulation—has the potential to significantly increase the lower bound, as confirmed in

several studies (????????????). Different special methods (?????) have been studied to efficiently

deal with this “very nonlinear” term in the continuous relaxation without increasing too much its

computational cost w.r.t. the case of the “simple” (??).

The start-up costs should in general be expressed as a function si(xi) of the complete state

vector xi, as it depends on the time τ that unit i has been off. In its most accurate formulation,

the start-up cost can be computed by means of two functions. One is a concave cost function

of the type σi(τ) = σi(1 − e−βiτ ) + αi, corresponding to the fact that the cost of starting up the

unit depends on the temperature, which, if the unit is left to cool, drops with an exponential law

towards ambient temperature (e.g., see ???). However, for shorter stops it might be preferable to

spend some fuel just in order to keep the unit at the right temperature, which can be assumed

to have a linear cost γiτ on the number of time periods. For each value of τ , then, the optimal

choice between the two options (usually referred to as “cooling” and “banking”) is just the one
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giving minimum start-up cost. For our purposes, this complex function only need to be known at

the discrete set of values

σiτ = min(σi(1− e−βiτ ) +αi , γiτ ) τ ∈ T (τ−i , τ i) , (12)

where τ i is the time such that σi(τ i) ≈ σi(τ i + 1) ≈ σi + αi, i.e., the unit has reached ambient

temperature and the start-up cost is maximum. Whatever the exact form of the function, the

only relevant property needed for MIP formulations is that the values σiτ are non decreasing with

respect to τ . Using this property, start-up costs can be expressed by means of a single extra new

variable sit and τ i − τ−i + 1 extra constraints (for each unit and time instant), as follows (?):

si(xi) =
∑n

t=1 sit (13)

sit ≥ σiτ (vit −
∑τ

j=2wi,t−j+1) t∈ T , τ ∈ T (τ−i , τ i) . (14)

sit ≥ 0 t∈ T. (15)

Even though the number of extra variables and constraints in (??)–(??) is reasonably limited,

using such a detailed representation of the start-up cost in a MIP model can have a substantial

impact on the performances; this is why, most often the start-up costs are simply approximated

with the fixed maximal cost (σi +αi). In general, since solution time is a crucial issue, the trade-off

between an accurate representation of the physical behavior of generating units and the solution

cost of the corresponding models is nontrivial. In practice, often simplified models are employed in

order to quickly find approximated solutions of good quality. We will refer to the parameters σiτ as

history-dependent start-up costs if τ̄i > τ
−
i , while we will refer to fixed start-up costs when τ̄i = τ−i .

Note that with fixed start-up costs si, the 3-bin formulation can be significantly simplified, as

the start-up cost is then completely captured by adding the simple term

∑
t∈T sivit (16)

to the objective function, with no need of the extra variables sit and the constraints (??).
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While most of the constraints of the standard UC problem concern the behavior of a specific

unit i ∈ I, system-wide constraints that link the decisions of the different units are also present.

The simplest and most common form of system-wide constraints is that of the demand constraints

∑
i∈I pit = dt t∈ T, (17)

where dt is the (forecasted) total energy demand at time period t. These constraints are valid for

the so called bus network, i.e., the case in which the transmission network has ample capacity to

accommodate energy transfer and therefore the physical location of generators and constraints is

irrelevant. In some (but not all) applications the capacity of the transmission network may become

a limiting factor impacting the production decisions, and more accurate representations of the

network are needed. The simplest ones (DC model) boil down to just a set of linear constraints,

while the most accurate ones (AC model) involve highly nonlinear terms that are much harder to

deal with. This has recently motivated a quite active research stream where formulations (or tight

relaxations) of AC constraints are proposed using Second-Order Cone or SemiDefinite constraints

(e.g., ??? and the references therein). Other system-wide constraints pertain to “reserve” (primary,

secondary, or inertia) that are established to guarantee that the system will remain operational

even if the actual conditions deviate (not too much) from the expected ones. Yet, all these variants

typically do not impact of the formulation of the individual units, and therefore need not be

discussed here in detail.

As the 3-bin formulation is generally accepted as a better starting formulation, we adopt it as a

benchmark for the new formulations that we will propose in the following. In particular, in the rest

of the paper we will refer to the model T summarized in Table 3 in ? as the 3-bin formulation. The

model T by ? is based on the power variables p′it defined according to the equation pit = p′it + lixit

and it is actually the highest performing version of the 3-bin formulation presented in the literature.

We report in the Appendix the entire model T used in the experiments and denoted as 3-bin.
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3. Literature review of polyhedral descriptions

Here we revise the main polyhedral results proposed in the literature for UC. One of the first

papers proposing new valid inequalities for the 3-bin formulation of UC was ?. This paper was

very influential, and several subsequent papers improved most of the results presented there. In

particular, ? presented several types of new constraints based on ramp limits. Then ? proposed

new inequalities based on the study of two distinct polytopes which include the UC polytope: the

ramp-up and ramp-down polytopes (the ramp-up polytope is the special case of 1UC obtained by

relaxing ramp-down and shut-down limits, i.e., ∆−
i = ūi = ∞, the ramp-down polytope is defined

symmetrically); subsequently, ? improved some of these result by considering the full UC polytope.

In ? the special case where only start-up and shut-down limits are imposed were characterized.

On a different line of research, ?? analyzed the start-up costs: the former paper presented the case

where only “cooling” (i.e., no “banking”) is allowed, while the latter gave a complete polyhedral

characterization for the definition of general history-dependent start-up costs. Finally, ? presented

a comprehensive review of the previous results and some new type of inequalities, studied the ways

to combine the different types of inequalities in new models, and presented a large computational

experience. All the above results show that describing the convex hull of (1UC) solutions, when all

the technical constraints are considered, is highly nontrivial. Hence, formulations used in practice

usually have to resort to carefully picking only some of the above ideas.

4. The dynamic programming algorithm

While (1UC) is nontrivial to describe in the variable spaces proposed in the previous sections,

it is actually relatively easy to solve. Indeed, in ? a Dynamic Programming (DP) algorithm was

proposed that can solve (1UC) with all the constraints—minimum up- and down-time, ramp and

generation limits—in O(n3) with the standard quadratic separable cost function (??) (and that can

be generalized to more complex objectives). We now present an improvement of that DP algorithm

and recall the basic ingredients of the approach that are necessary to present the MIP formulation.

In this paragraph, since the unit index i∈ I is fixed we will drop it for notational simplicity. The

DP algorithm is based on defining a state-space graph G= (N,A). The nodes in N are of two types:
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ONt and OFFt for each t ∈ T , plus two special nodes, the source s and the sink d. The arcs in A

are of two types: arcs (OFF h,ONk), denoting that the unit is turned ON at the beginning of time

period h and that the unit remains ON until the end of time period k (indicated as ON arcs); arcs

(ONk,OFF r), denoting that the unit is OFF from time periods k+1 to time period r−1 (indicated

as OFF arcs). The OFF arcs satisfy minimum-down time constraints, that is (ONk,OFF r) ∈ A

if and only if r ≥ k + τ− + 1, and are labeled with the start-up cost, here denoted by c̃kr− , that

depends on the length r − k − 1 of the off period. Note that the most general time-dependent

start-up costs (??) are easily handled within this framework, since the computation is done entirely

offline. The ON arcs satisfy minimum-up time constraints, that is (OFF h,ONk)∈A if and only if

k≥ h+ τ+−1, and are labeled with the cost of the optimal dispatch in the associated period. This

is composed of two parts: fixed cost and variable cost. The first is just c̃hk+ = (k−h+ 1)c since the

unit will be committed in the interval T (h,k). The variable cost, that depends on the pt variables,

is the optimal value of the following Economic Dispatch problem with Ramping Constraints

(EDhk)

min
∑

t∈T (h,k) f(pt)

l≤ pt ≤ u t∈ T (h,k)

ph ≤ l̄

pt+1 ≤ pt + ∆+ t∈ T (h,k− 1)

pt ≤ pt+1 + ∆− t∈ T (h,k− 1)

pk ≤ ū

Since all the relevant binary variables are fixed, (EDhk) is an optimization problem with convex

objective function and linear constraints. Hence, its optimal objective function value zhk = z(EDhk)

can be computed in polynomial time.

Moreover, there are the connections between the source node s and the ON and OFF nodes

defined according to the initial state of the unit. That is, if the unit is committed since τ 0 time

periods, then there is an arc from s to each node ONk such that k+ τ 0 ≥ τ+. If, instead, the unit

is uncommitted since −τ 0 time periods, then there is an arc from s to each node OFFh such that
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h− τ 0 − 1≥ τ−; the latter arcs are labeled with the corresponding start-up cost. The ending node

defines the type of the arcs starting from s. All nodes are then connected to the sink node d: arcs

(ONt, d) are of type OFF , arcs (OFFt, d) are of type ON and their costs is computed for the

period T (t, n) only. The arc (s, d) means that the unit remains with the same status as at the

beginning of the period and it is an ON arc if the unit was ON at time 0, and an OFF arc with

zero cost if the unit was OFF at time 0.

Summing up, the state-space graph G has 2n+ 2 nodes and O(n2) arcs; every s–d path on G

represents a feasible schedule for the unit. Hence, (1UC) is reduced to a shortest path problem on

an acyclic graph with O(n) nodes and O(n2) arcs. Thus, the problem can be solved in O(n2) once all

the data has been computed. We remark that a larger, more complex graph with O(n2) nodes was

proposed in ?, but the one described in this paragraph (that appeared in ?) is clearly preferable.

Yet, in ? it is proved that all O(n2) Economic Dispatch problems with Ramping Constraints can

be solved in O(n3) by means of another Dynamic Programming algorithm, which is therefore the

cost of the overall procedure, as it was with the original graph. The new graph state-space graph

G will be the starting point for developing our MIP formulation in next paragraph.

Some different types of improvements have been obtained with respect to the above algorithm in

different papers. In ? the DP algorithm was improved by computing only the cumulative functions

that are relevant at each time stamp. In ? a similar algorithm was presented that has the advantage

to works also for non-convex piece-wise linear cost functions. Finally, ? introduced an algorithm to

solve 1UC in O(n) time with convex piece-wise linear generation cost and with ramp up and ramp

down limits equal to each other.

5. The convex hull for the thermal single-unit polytope

In this section we introduce a new formulation for (1UC) that is inspired by the DP algorithm

presented in Section ??. This new formulation is composed of two parts:

• the shortest path formulation based on the state-space graph G of the DP algorithm;

• new power variables, their related cost, and the linking constraints with the previous part.
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As in the previous section, the unit index i∈ I is fixed and therefore we drop it.

The shortest path formulation is straightforward: one just introduces the node-arc incidence

matrix of the graph and writes the obvious system of inequalities. Then we can then simply write

this part of the formulation as

Ey= δ , y≥ 0 , (18)

where E is the node-arcs incidence matrix of G, y is the vector of arc flow variables, and δ is

the vector with all zero entries except δs = −1 and δd = 1 for the source node s and the sink

node d, respectively. Hereafter, we denote with AON = {(h,k)|h,k ∈ T, (OFFh,ONk) ∈A} the set

of pairs (h,k) such that (OFFh,ONk) is an ON arc (and symmetrically AOFF = {(k, r)|k, r ∈

T, (ONk,OFFr) ∈ A}). The vector y will be partitioned according to arcs in AON and AOFF as

follows: yhk+ for each (h,k)∈AON and ykr− for each (k, r)∈A−.

We now add variables phkt associated with each ON arc (OFFh,ONk) ∈A and with t ∈ T (h,k)

to compute the power level for each time instant and the related costs. With these we define the

Extended Economic Dispatch (with Ramping Constraints) sub-problem

(EEDhk)

min c̃hk+ y
hk
+ +

∑
t∈T (h,k) f(phkt )

lyhk+ ≤ phkh ≤ l̄yhk+

lyhk+ ≤ phkt ≤ uyhk+ t∈ T (h+ 1, k− 1)

lyhk+ ≤ phkk ≤ ūyhk+

phkt+1 ≤ phkt + yhk+ ∆+ t∈ T (h,k− 1)

phkt ≤ phkt+1 + yhk+ ∆− t∈ T (h,k− 1)


yhk+ ∈ {0,1}

(19)

Basically, this is the Economic Dispatch (EDhk) corresponding to traversing the arc (OFFh,ONk)∈

A. It is easy to describe the convex hull of (EEDhk) due to the fact that, together with the single

variable yhk+ representing the traversal of the arc, it has a “private copy” of all involved continuous
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variables that are semi-continuous and all “governed” by the same yhk+ . Therefore, the already

recalled results about the Perspective Reformulation show that all that is needed for this is to

replace the objective in (EEDhk) with

min c̃hk+ y
hk
+ +

(
h(phk, yhk+ ) =

∑
t∈T (h,k) y

hk
+ f(phkt /y

hk
+ )

)
. (20)

Hence, the following convex NLP

min c̃hk+ y
hk
+ +

∑
t∈T (h,k) z

hk
t

zhkt ≥ yhk+ f(phkt /y
hk
+ ) t∈ T (h,k)

(??) , yhk+ ∈ [0,1]

(21)

is equivalent to (EEDhk), i.e., its constraint set describes the convex hull of the feasible solutions of

(EEDhk). Note that in (??) we have made the objective linear with the well-known reformulation

trick of introducing the auxiliary variables zhkt and moving the nonlinear part of the objective

function into the constraints that define them. This puts the problem in the form required by our

results below.

Separately, (??) has the integrality property, and therefore it would represent the convex hull

of (1UC) were the objective function linear. We will show that the combination of (??) and (??)

preserves the property, i.e., defines the convex hull of (1UC), using the nonlinear analogous of the

well-known “Approach no. 4” of ? (used by ? and by others). To do that, we need the following

characterization of the (closed) convex hull of a Mixed-Integer convex nonlinear set (?, §V.2):

Proposition 1. Consider the closed convex NLP set

C =
{
z ∈Rn : f(z)≤ 0

}
,

where f :Rn →Rm, and its mixed-integer restriction

S =
{
z ∈C : zk ∈Z k ∈K ⊆ {1 , . . . , n}

}
.

For any arbitrary objective function c∈Rn, let

σC(c) = inf { cz : z ∈C } ≥D(c) = supλ≥0

{
L(λ; c) = inf { cz+λf(z)}

}
, (22)
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(the minimization of cz over C, a.k.a. the support function of C, and its Lagrangian Dual, L(λ; c)

being the Lagrangian function). If the condition

∀ c∈Rn σS(c) = inf { cz : z ∈ S }=D(c) (23)

holds, then C = conv(S), where conv denotes the closure of the convex hull.

We remark that, in Proposition ??, σS(c) and D(c) need not be finite-valued; in particular,

σS(c) = −∞ may happen if S is not compact, which is the case in our application (as (??) is

an epigraphical set, and therefore “unbounded from above”). However, σS(c) = −∞ immediately

implies D(c) =−∞ (via σC ≤ σS and weak duality), i.e., L(·; c) =−∞ uniformly. What is needed is

therefore that D(c) = σS(c) when σS(c) is finite. In turn, a necessary (but not sufficient) condition

for this to happen is strong duality in the relaxation, i.e., D(c) = σC(c), which typically requires

some standard constraint qualification to hold.

The required result is now that, for an appropriate definition of composition of MINLP sets, the

description of the convex hull of the composed set can be obtained from the descriptions of the

convex hulls of the composing ones.

Definition 1. For h= 1,2, let Sh ⊂Rnh ×R be two sets; their 1-sum composition is

S1 ⊕S2 = { (x1, x2, y)∈Rn1+n2+1 : (xh, y)∈ Sh h= 1,2} .

For future reference, let us remark that 1-sum composition preserves both convexity and closed-

ness. Indeed, S1⊕S2 is isomorphic to the set (S1×Rn2)∩ (Rn1 × S̃2), where S̃2 = {(y,x2)|(x2, y)∈

S2}, and both Cartesian product and intersection separately preserve both convexity and closed-

ness. Since the result hinges on duality, some mild requirements are necessary on the algebraic

representation of the convex hulls (cf. f in Proposition ??). To keep the result as general as possible,

we will state them in the most abstract way possible:

Assumption 1. For each (closed convex) set C represented by constraint (closed convex) functions

f = [fi ]i=1,...,m :Rn →Rm, assumptions hold such that the KKT conditions of (??)

∃λ∈Rm
+ s.t. 0∈ c+

∑m

i=1 λi∂fi(x) , f(x)≤ 0 , λf(x) = 0 (24)
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(?, Theorem VII.2.1.4) are both necessary and sufficient for global optimality of x, where ∂fi(x)

denotes the standard subdifferential of fi at x (?, Chap. VI).

These are mild conditions in practice. For instance, for convex fi (by far the most common

occurrence) several classical constraint qualifications, like Slater, linearly independence and affinity,

suffice. In general, a convex set can be represented also by nonconvex functions; in ?, for instance,

the Slater condition plus a nondegeneracy one (∇fi(x) ̸= 0 whenever fi(x) = 0 and x∈C) is shown

to suffice as well. Thus, the conditions are typically satisfied by standard MINLP models, such as

our (??) and (??).

Lemma 1. For h= 1,2, let Sh ⊂Rnh ×R be two sets. If: i) the closed (convex) sets

Ch =
{

(xh, y)∈Rnh+1 : y≥ 0 , fh(xh, y)≤ 0
}

(25)

describe the convex hull of Sh, ii) Assumption ?? holds, iii) (xh, y)∈ Sh implies that y ∈ {0,1} and,

iv) there exist points (x̄h,0)∈ Sh and (x̃h,1)∈ Sh, for h= 1,2, then C1 ⊕C2 = conv(S1 ⊕S2).

The proof of Lemma ?? is rather long and technical, therefore we report it in the Appendix.

Note that assumption (iv) corresponds to the “complex” case that requires proof, but the The-

orem clearly holds in general. Indeed, if, say, there are no solutions (x1,0) and (x1,1) then S1 =

C1 = ∅; hence, C1 ⊕C2 = S1 ⊕ S2 = conv(S1 ⊕ S2) = ∅. The same holds if, say, there exist points

(x1,0) and (x2,1) but not (x1,1) and (x2,0). Finally, if, say, there exist points (x1,0) and (x2,0)

but not (x1,1) and (x2,1), then S1 and S2 are convex and therefore the result trivially holds.

We are now ready for the announced result:

Theorem 1. The formulation

min c̃y+
∑

(h,k)∈AON
zhk

(??)

zhk ≥
∑

t∈T (h,k) y
hk
+ f(phkt /y

hk
+ ) (h,k)∈AON ,

(??) (h,k)∈AON ,

(26)
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where c̃ = [[c̃hk+ ](h,k)∈AON
, [c̃kr− ]kr∈AOFF

] is the vector of all arc costs and y =

[[yhk+ ](h,k)∈AON
, [ykr− ](k,r)∈AOFF

], describes the convex hull of the feasible solutions for (1UC).

Proof. Define S0 the set of feasible solutions of the network flow problem (??) associated with

the DP graph G, and Shk the set of feasible solutions of (??). We can build the set of solutions

for the complete problem by iteratively composing the solutions of S0 with the sets Shk, e.g., in

lexicographic order of the pairs (h,k) ∈AON . At each step j ≥ 1 of the process, we are combining

a set Sj−1 and a set Shk (for some fixed pair (h,k)) that only share the single binary variable

yhk+ to obtain the set Sj = Sj−1 ⊕ Shk. It is immediate to prove by induction that the convex

NLP formulation obtained by adding to the inequalities of the system (??) all the inequalities of

(??) for all the pairs (h,k) used describes the convex hull of Sj, and satisfies strong duality for

each objective function. Indeed, at the first iteration we are combining S0 with one Shk; both sets

satisfy the hypotheses of Lemma ?? (having only linear constraints, S0 does not need any strict

feasibility assumption for strong duality to hold), and therefore also the corresponding formulation

satisfies them for S1 = S0 ⊕ Shk. Repeating the process, at each step the corresponding convex

NLP describes conv(Sj) and satisfies strong duality. At the end of the composition process we

have obtained all the constraints in (??), which therefore define a convex NLP formulation for the

convex hull of the overall set of solutions for (1UC). 2

Formulation (??) is the first formulation for (1UC) that describes the convex hull of feasible

solutions considering all the constraints described above and a convex objective function. As pre-

viously mentioned, the formulation presented in ? was claimed to have this property, but the claim

is proven false in ? with a counterexample.

Finally, we present a formulation for the UC problem based on the exact single-unit formulation

can then be summarized as follows:

min
∑

i∈I c̃iyi +
∑

i∈I

∑
hk∈AON

zhki∑
i∈I

∑
hk:t∈T (h,k) p

hk
it = dt t∈ T

zhki ≥
∑

t∈T (h,k) y
hk
i+f

i(phkit /y
hk
i+) (h,k)∈Ai

ON , i∈ I

(??) , (??) i∈ I.

(27)
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In the rest of the paper, we will refer to (??) as the DP formulation. Note that the number of

variables is O(n2) (n being the number of time instants) for the network flow system and O(n) for

each of the O(n2) subproblems (??) associated with each pair (h,k); hence, the total number of

variables in (??) is O(n3).

6. Additional DP based formulations

We now introduce two other formulations based on the ideas developed in Section ?? and that

attain different trade-offs between size and quality of the continuous relaxation lower bound. When

restricted to (1UC), both are less tight than the exact formulation (??) but keep the network

constraints (??). The first one uses, as in the model T by ?, the power variables p′it, while the

second one presents a new type of variables whose cardinality is intermediate between 3-bin and

DP formulations.

6.1. The pt model

Given a unit i, consider the commitment variable xit, the start-up/shut-down variables vit/wit and

the set of variables yhki+ associated with ON arcs (OFFh,ONk) such that t ∈ T (h,k). It is easy to

see that, by definition, these variables are related by the following equations:

xit =
∑

(h,k):t∈T (h,k) y
hk
i+ , vit =

∑
k≥t y

tk
i+ , wit+1 =

∑
h≤t y

ht
i+ . (28)

Consequently, considering that pit = p′it + lixit = p′it + li
∑

(h,k):t∈T (h,k) y
hk
i+ , the ramp-up/ramp-down

constraints assume, respectively, the following form:

p′it − p′it−1 ≤∆+
i

∑
(h,k):t−1∈T (h,k−1) y

hk
i+ + (l̄i − li)

∑
k:k≥t y

tk
i+ i∈ I, t∈ T (2, n) (29)

p′it−1 − p′it ≤∆−
i

∑
(h,k):t−1∈T (h,k−1) y

hk
i+ + (ūi − li)

∑
h:h≤t−1 y

ht−1
i+ i∈ I, t∈ T (2, n) (30)

Note that, in case the unit is on at the beginning of time horizon (τ 0i > 0), the initial ramp-

up/ramp-down conditions have to be set by

p′i1 ≤ (∆+
i + pi0 − li)

∑
k:1≤k y

0k
i+ i∈ I : τ 0i > 0 (31)

− p′i1 ≤ (∆−
i − pi0 + li)

∑
k:1≤k y

0k
i+ i∈ I : τ 0i > 0 (32)
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Then, the minimum and maximum power output constraints can be re-written as follows:

p′it ≤ (ui − li)
∑

(h,k):t∈T (h,k) y
hk
i+ i∈ I, t∈ T (33)

The right-hand side of constraints (??) can be reinforced as follows. Assuming that τ+i ≥ 2, if a unit

i is switched on at time t then
∑

k:k≥t y
tk
i+ = 1 and the power p′it is bounded by l̄i− li. If the unit is

switched off at time t then
∑

h:h≤t y
ht
i+ = 1 and the power p′it does not exceed ūi− li. In case the unit

does not turn on or off but it is committed at time t then
∑

(h,k):h<t<k y
hk
i+ = 1 holds. Consequently,

there exists (h,k) such that h < t < k and yhki+ = 1. Therefore, because of the maximum power

output and the ramp-up/ramp-down constraints, the power p′it is bounded by ψ
′hk
it = min{ui −

li, l̄i − li + ∆+
i (t− h), ūi − li + ∆−

i (k− t)}. Furthermore, if the unit is initially committed (τ 0i > 0)

then
∑

k:1≤k y
0k
i+ = 1 and we have to set ψ

′0k
it = min{ui− li, pi0− li + ∆+

i · t, ūi− li + ∆−
i (k− t)}. Note

that, if τ+i ≥ 2, the variable ytti+ is not defined. Then, if τ+i = 1 and ytti+ = 1, the power p′it is bounded

by the minimum between l̄i − li and ūi − li.

Hence, if τ+i ≥ 2, the right-hand side of constraints (??) can be reinforced as

p′it ≤ (l̄i − li)
∑

k:k≥t y
tk
i+ + (ūi − li)

∑
h:h≤t y

ht
i+ +

∑
(h,k):h<t<k ψ

′hk
it yhki+ i∈ I : τ+i ≥ 2, t∈ T (34)

Otherwise, if τ+i = 1, this can be done as follows, for all i∈ I and t∈ T :

p′it ≤ (l̄i − li)
∑

k:k>t y
tk
i+ + (ūi − li)

∑
h:h<t y

ht
i+ +

∑
(h,k):h<t<k ψ

′hk
it yhki+ + (min{l̄i, ūi}− li)y

tt
i+ (35)

Then, the demand constraints (??) becomes

∑
i∈I(p

′
it + li

∑
(h,k):t∈T (h,k) y

hk
i+) = dt t∈ T (36)

Finally, the objective function is

min
∑
i∈I

c̃iyi +
∑
i∈I

∑
t∈T

(
∑

(h,k):t∈T (h,k)

yhki+)f i((p′it + li
∑

(h,k):t∈T (h,k)

yhki+)/(
∑

(h,k):t∈T (h,k)

yhki+)) . (37)

We will denote as pt-model the following formulation:

min
{

(??) : (??) , (??)–(??)
}

(38)
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6.2. The Start-Up model

To introduce the last formulation, we define a variable phit denoting the unit i is committed at time

t and it has been turned on at time instant h. Differently from the variable phkit , with phit the time

when the unit will be turned off is not specified. The relation between variables pit and phit is

pit =
∑

h:h≤t p
h
it

(39)

In what follows, we present a new formulation based on the DP algorithm and by considering

equation (??). In particular, the ramp-up/ramp-down constraints are the following ones:

phit − phit−1 ≤−liyht−1
i+ + ∆+

i

∑
k:k≥t y

hk
i+ i∈ I,h∈ T (1, n− 1), t∈ T (h+ 1, n) (40)

phit−1 − phit ≤ ūiy
ht−1
i+ + ∆−

i

∑
k:k≥t y

hk
i+ i∈ I,h∈ T (1, n− 1), t∈ T (h+ 1, n) (41)

Again, if τ 0i > 0, the initial ramp-up/ramp-down conditions has to be imposed as

p0i1 ≤ (∆+ + p0)
∑

k:1≤k y
0k
i+ i∈ I : τ 0i > 0 (42)

− p0i1 ≤ (∆− − p0)
∑

k:1≤k y
0k
i+ i∈ I : τ 0i > 0 (43)

Then, the minimum/maximum power output constraints are

li
∑

k:k≥t y
hk
i+ ≤ phit ≤ ui

∑
k:k≥t y

hk
i+ i∈ I,h∈ T (0, n), t∈ T (h,n) (44)

Note that when t= h, we can improve the right hand side of constraints (??) with

phih ≤ l̄i
∑

k:k>h y
hk
i+ + min{l̄i, ūi}yhhi+ i∈ I,h∈ T (45)

On the other hand, when t > h, constraints (??) can be improved by considering that the unit

could be switched off at time t (yhti+ = 1) or not (
∑

k:k>t y
hk
i+ = 1). In the former case the power phit

does not exceed ūi. In the latter case, due to the maximum power output and ramp up/ramp-down

constraints, the power phit is bounded by
∑

k:k>tψ
hk
it y

hk
i+ , with ψhk

it = min{ui, l̄i + ∆+
i (t − h), ūi +

∆−
i (k− t)}. Then, when t > h, the right hand side of constraints (??) can be enforced with

phit ≤ ūiy
ht
i+ +

∑
k:k>tψ

hk
it y

hk
i+ i∈ I,h∈ T (0, n− 1), t∈ T (h+ 1, n) (46)
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In conclusion, we derive the objective function and demand constrains

min
∑
i∈I

c̃iyi +
∑

i∈I

∑
t∈T

∑
h:t≥h(

∑
k:k≥t y

hk
i+)f i(phit/(

∑
k:k≥t y

hk
i+)) (47)

∑
i∈I

∑
h:h≤t p

h
it = dt t∈ T (48)

In the rest of the paper we will denote by SU -model the following

min
{

(??) : (??) , (??) , (??)–(??)
}

(49)

7. Computational tests

In this section we test the computational performances of the new DP formulation presented in

Section ?? and formulations pt and SU introduced in Section ??. The main issue, of course, is

that of the trade-off between the bound improvement and the cost increase due to the larger size.

Indeed, the 3-bin formulation has O(n) variables only and O(n) constraints for each unit, while

the new ones proposed have O(n2) binary variables, at least O(n) continuous variables, and at

least O(n) constraints, for each unit. The new formulations mainly differ on the type of continuous

variables and associated constraints. The DP-model (??) contains O(n3) variables phkit for each unit

i, the pt-model (??) contains O(n) variables p′it for each unit i, and the SU -model (??) represents

an intermediate case and contains O(n2) variables phit for each unit i. Table ?? gives an overview

of the size of each formulation for each unit.

The experiments have been carried out with CPLEX 12.10, setting one thread and a time limit

of 10000 seconds on a PC with 2.2 GHz Intel Xeon Gold 5120 CPUs and 64 GB of RAM, under

a GNU/Linux Ubuntu 20.04.1 LTS operating system. Except for the use of a single thread, any

other setting was left by default. The code of the algoritms used in the computational experiments

can be downloaded at

https://gitlab.com/smspp
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Model Power variables Other variables Constraints

3-bin O(n) O(n) O(n)

DP O(n3) O(n2) O(n3)

pt O(n) O(n2) O(n2)

SU O(n2) O(n2) O(n2)

Table 1 Bounds on the number of variables and constraints for each model and each unit.

We used two sets of instances published at

https://commalab.di.unipi.it/datasets/UC/

considering pure thermal instances ranging from 10 to 54 units and n= 24 time periods. All the

instances consider fixed start-up costs. Note that this choice is in favour of the 3-bin formulation

because history-dependent start-up costs can be added to DP-based formulations without addi-

tional computational cost, whereas they would both increase the size and weaken the bound of the

3-bin one.

The first dataset, denoted as DS1, was generated by means of the UCIG generator available at

http://groups.di.unipi.it/optimize/Data/UC/ucig.tgz

The generator produces a generating set with “small”, “medium” and “large” thermal units in

realistic proportions; the characteristics of each unit are then randomly generated within a set

of realistic parameters, depending on the type of the unit. Since the generator does not produce

ramping data, we have generated at random for each unit i two real values ru, rd ∈ [ 2 , 3 ] such

that ∆+
i = ru(ui − li) and ∆−

i = rd(ui − li). In this way, we produced realistic conditions where a

unit could reach the maximum power in two/three time intervals without excessive thermal stress.

We generated five instances with 10, five with 20 and five with 50 thermal units and n= 24 time

periods.
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The second dataset, denoted here as DS2, includes two instances each with 54 thermal units and

n = 24 time periods. More precisely, these two instances correspond to the well-known instance

IEEE 118-Bus Test System and they differ in the values of the start-up costs, only. Starting from

each instance of each dataset with n = 24, an instance with n = 36 was created by setting the

same demand values for the first 24 time periods and randomly generating the demands dt for each

t ∈ [ 25 , 36 ] such that dt differs from the demand dt−24 by a maximum of five percent. Similarly,

an instance n= 48 was generated from each one with n= 36 by maintaining the demands for the

first 36 time periods and randomly generating dt for t ∈ [ 37 , 48 ] from dt−24 with an error of five

percent. Finally, only for the instances of the dataset DS2, an instance with n= 72 was generated

from each one with n= 48 by maintaining the demands for the first 48 time periods and randomly

generating dt for t∈ [ 49 , 72 ] from dt−24 with an error of five percent.

We considered in total 45 instances in DS1 and 8 in DS2 and we present the average of the

results thus obtained.

In Table ?? and Table ?? we compare the running times in seconds to solve the continuous

relaxation (timelp) of the new formulations presented in this paper and the standard 3-bin one, with

the corresponding gap in percentage (gaplp%) w.r.t. the best integer solution ever found among all

formulations. Note that the gap is the one of the “pure” formulation, i.e., before any cut added

by CPLEX. The results of dataset DS1 in Table ?? show that DP-model always provides the best

gaps and the 3-bin worst ones. However, the running time of the DP-model is orders of magnitude

larger, up to the point that for larger sizes it cannot be computed within the time limit of 10000

seconds for at least one instance (cells with symbol “−”). On the other hand, the pt-model and

SU -model provide better gaps than the 3-bin one within reasonable computing times.

The same happens on dataset DS2 (Table ??) although these instances are more difficult for the

formulation DP that does not provide any results for n grater than 24. When available, the best

gaps are given by the DP formulation, otherwise by SU (that does not give results for n= 72) and

pt. The worst gaps are also in this dataset those of 3-bin.
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We have also tested solving the UC problem at integer optimality, with gap 0.01% (Table ?? for

dataset DS1 and Table ?? for dataset DS2) and with gap 0.1% (Table ?? for dataset DS1). In the

tables, for each model, column time(opt) reports the average computing time in seconds and the

number of instances, over five in DS1 and over two in DS2, solved to optimality (in parentheses)

within the time limit. Columns nodes and gap% denote the average number of nodes explored and

the average final gap, respectively.

Overall, the results in Table ?? show that the pt-model is competitive. The 3-bin one is faster

on smaller number of units, instances, but the pt-model most often than not solves more instances,

or is faster, or yields a better final gap. As pt-model wins over the 3-bin model for different cases

(n = 24 and |I| = 50, n = 36 and |I| = 20, n = 48 and |I| = 50), it can be safely stated that the

pt-model has at least very close performances to the 3-bin one.

Obviously, by setting a lower gap (Table ??) more instances are solved. This makes 3-bin more

competitive, as it dominates the pt-model for all n= 24; but even the pt-model then always solves

all instances in less than half a minute. As the size grows the picture gets more complex: the pt-

model is competitive (6% worse in CPU time) on 36-50 instances and it solves one instance more

on the most difficult 48-50, although suffering a surprising setback on 48-20 ones.

The results in Table ?? show that overall the pt formulation has better results than 3-bin. In

fact, for n= 24 and n= 36 both formulations solve all the instances, but the pt has much lower

computing times. For n= 48, where no instance is resolved, the pt formulation provides better gaps

than those of 3-bin. Only for n= 72 the 3-bin is better than the pt giving lower gaps. The DP and

SU models, on the other hand, are decidedly less performing than the 3-bin and pt formulations.

All in all, these results show that the DP-based formulations, and in particular the pt-model,

are promising for the computational solution of large, hard UC instances. This is true in particular

due to the fact that they lend themselves very well to the Stabilised Structured Dantzig-Wolfe

technique ?, that has the potential of significantly reducing the size of the continuous relaxations

solved by incrementally generating them piecemeal. Inserting this process in a full-fledged Branch-

and-Cut approach without losing all the knowledge and machinery already integrated in present
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MIP solvers is not at all straightforward. However, we believe it has a significant potential to yield

more effective solution approaches to UC. This issue will be investigated in a future paper.

3-bin DP pt SU

n units timelp gaplp% timelp gaplp% timelp gaplp% timelp gaplp%

24

10 0.10 1.01 18.77 0.67 0.20 0.78 3.25 0.78

20 0.29 0.82 69.68 0.51 0.59 0.52 9.92 0.51

50 1.31 0.32 310.69 0.08 2.41 0.08 25.02 0.08

36

10 0.22 0.96 224.00 0.69 0.66 0.78 15.89 0.77

20 0.66 0.69 910.95 0.44 2.27 0.45 40.90 0.44

50 3.55 0.29 5108.07 0.11 10.75 0.12 131.68 0.11

48

10 0.33 0.98 1667.43 0.74 1.77 0.81 48.81 0.80

20 1.13 0.67 − − 5.64 0.44 130.55 0.45

50 5.97 0.29 − − 30.51 0.11 449.66 0.15

Table 2 Root node gaps of the DP , pt, SU and 3-bin formulations on dataset DS1

3-bin DP pt SU

n units timelp gaplp% timelp gaplp% timelp gaplp% timelp gaplp%

24 54 3.40 0.22 3659.58 0.10 6.64 0.12 50.06 0.11

36 54 3.74 0.45 − − 25.67 0.14 537.14 0.12

48 54 6.33 0.44 − − 62.91 0.14 1873.59 0.13

72 54 8.12 0.49 − − 212.23 0.15 − −

Table 3 Root node gaps of the DP , pt, SU and 3-bin formulations on dataset DS2
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3-bin DP pt SU

n units time(opt) nodes gap% time(opt) nodes gap% time(opt) nodes gap% time(opt) nodes gap%

24

10 2(5) 23 0.01 653(5) 610 0.01 5(5) 46 0.01 99(5) 437 0.01

20 107(5) 535 0.01 8082(2) 1789 0.06 377(5) 932 0.01 2754(4) 1885 0.01

50 7678(2) 1959 0.02 9699(1) 655 0.07 5089(3) 1585 0.02 8078(1) 1777 0.05

36

10 17(5) 181 0.01 10000(0) 785 0.48 98(5) 537 0.01 4995(4) 2643 0.04

20 8997(1) 2362 0.03 10000(0) 68 − 8044(1) 1912 0.06 10000(0) 1630 0.22

50 10000(0) 1204 0.05 10000(0) 2 − 10000(0) 1096 0.07 10000(0) 719 0.28

48

10 987(5) 894 0.01 10000(0) 8 − 5072(3) 2334 0.04 10000(0) 1364 0.73

20 10000(0) 1297 0.10 10000(0) 0 − 10000(0) 1302 0.14 10000(0) 840 0.43

50 10000(0) 800 0.11 10000(0) 0 − 10000(0) 905 0.08 10000(0) 307 0.43

Table 4 Computational results with gap 10−4 on dataset DS1

3-bin DP pt SU

n units time(opt) nodes gap% time(opt) nodes gap% time(opt) nodes gap% time(opt) nodes gap%

24

10 1(5) 8 0.07 636(5) 501 0.07 3(5) 24 0.08 87(5) 296 0.10

20 1(5) 0 0.09 6699(4) 1320 0.10 45(5) 118 0.09 921(5) 823 0.10

50 10(5) 6 0.07 5710(3) 295 0.10 29(5) 26 0.08 3092(4) 674 0.10

36

10 5(5) 18 0.08 10000(0) 821 0.45 47(5) 152 0.09 4144(4) 1999 0.11

20 400(5) 198 0.08 10000(0) 74 − 2964(5) 750 0.09 10001(0) 1632 0.24

50 2457(4) 422 0.09 10000(0) 2 − 2617(4) 418 0.09 8461(1) 616 0.19

48

10 170(5) 225 0.07 10000(0) 7 − 1535(5) 1116 0.10 10000(0) 1363 0.74

20 6003(3) 679 0.13 10000(0) 0 − 10000(0) 1087 0.14 10000(0) 825 0.40

50 4253(2) 305 0.12 10000(0) 0 − 7023(3) 662 0.12 10000(0) 306 0.41

Table 5 Computational results with gap 10−3 on dataset DS1
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3-bin DP pt SU

n units time(opt) nodes gap% time(opt) nodes gap% time(opt) nodes gap% time(opt) nodes gap%

24 54 103(2) 670 0.01 7483(2) 930 0.01% 51(2) 118 0.01 744(2) 470 0.01

36 54 8620(2) 7542 0.01 10000(0) 0 - 646(2) 880 0.01 10000(0) 1678 0.11

48 54 10000(0) 2736 0.08 10000(0) 0 - 10000(0) 3043 0.02 10000(0) 336 0.23

72 54 10000(0) 2966 0.08 10000(0) 0 - 10000(0) 1290 0.16 10000(0) 0 −

Table 6 Computational results with gap 10−4 on dataset DS2

8. Conclusions

We have presented the first exact formulation for the (1UC) problem with convex cost function and

all the main operational constraints proposed in the literature. The formulation is based on the

combination of the flow formulation of the DP approach, which “has the integrality property for

the constraints”, and of the perspective reformulation for the objective, which “has the integrality

property for the objective”. We believe that this combined approach is interesting in its own right,

and it could have other applications. In fact, the proof technique we have used is fairly general,

as it applies to any MINLPs that can be obtained via 1-sum composition by fragments with the

integrality property, and it is a significant contribution in itself.

While the proposed (1UC) DP-based formulation indeed produces the strongest lower bounds

when used as the basis of a (UC) formulation, its large size makes it not practical. We have therefore

proposed and analyzed two alternative formulations, based on partial variable aggregation, that

offer different trade-offs between size and potential bound quality. The experimental results show

that in particular the pt formulation is competitive with the best previously known one.

We believe that the new formulations presented in this paper show promise, and warrant further

investigation in at least two directions. The first is to help in the definition of heuristic algorithms

that exploit the much smaller gap and use the better continuous solution to quickly produce

feasible solutions with the quality required by practical applications (say, a gap smaller than
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0.5%). The second is the fact that, like with all “large” formulations, the number of variables and

constraints that are actually required to characterize at the optimal solution is a small fraction of

the total number. Thus, generation of variables and constraints, such as the Stabilised Structured

Dantzig-Wolfe Decomposition (?), could very considerably speed-up the overall performances of

the algorithm, thereby overcoming the disadvantage related to the larger size of the proposed

formulations and making them even more competitive with the 3-bin one.

Appendix A: Proof of Lemma ??

Arbitrarily choose (c1, c2, d)∈Rn1+n2+1 and consider the problem

L= inf{ c1x1 + c2x2 + dy : (xh, y)∈ Sh h= 1,2} , (50)

its relaxation

Π = inf{ c1x1 + c2x2 + dy : (xh, y)∈Ch h= 1,2} , (51)

(since Sh ⊆Ch), and the Lagrangian Dual of (??)

∆ = supµ≥0 , λ1≥0 , λ2≥0 {L(µ,λ1, λ2)} ,

where

L(µ,λ1, λ2) = infx1 , x2 , y≥0 { c1x1 + c2x2 + (d−µ)y+λ1f1(x1, y) +λ2f2(x2, y)} (52)

is the Lagrangian function. Note in particular the term “−µy” in (??) coming from the explicit

dualisation of the single constraint y≥ 0, which is independently present in the definition of Sh/Ch

for both h= 1,2 (cf. (??)) but that clearly need not be replicated twice when the combined problems

(??) is solved. It is apparent that (∆ ≤)Π ≤ L: we want to prove that L = ∆(= Π) which, via

Proposition ??, yields the desired result. This proof follows similar steps as the proof by ? for

composition of stable set polyhedra by clique-cutsets.

As already remarked, the case L= −∞ is possible, but not challenging: by weak duality ∆ = −∞
as well and the result is established. Hence, we can focus on the case where Π ≥ ∆>−∞. Since

the feasible region in (??), i.e., C1 ⊕C2, is closed and the objective is linear, the problem admits

an optimal solution (x1, x2, y); due to Assumption ??, such an optimal solution is characterised by

the KKT conditions (??) 0
0
0

∈

 c1c2
d

+µ

 0
0

−1

+

m1∑
i=1

λ1
i∂f

1
i (x1, x2, y) +

m2∑
i=1

λ2
i∂f

2
i (x1, x2, y) (53a)

µy= 0 (53b)

λ1f1(x1, y) = 0 (53c)

λ2f2(x2, y) = 0 (53d)
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together with primal feasibility—(x1, x2, y) ∈ C1 ⊕C2—and dual feasibility—µ≥ 0, λ1 ≥ 0, λ2 ≥

0—are both necessary and sufficient for optimality of (x1, x2, y) and (µ,λ1, λ2). We remark that an

immediate consequence of (??) holding, and in particular of the complementary slackness conditions

(??)–(??), is that the objective value of the primal and of the dual solution coincide, and therefore

Π = c1x1 + c2x2 + dy= ∆ .

For h= 1,2, but also for fixed values y ∈ {0,1}, we now define the quantities

Lh
y = inf{ chxh + dy : (xh, y)∈Ch } .

Note that, by assumption (iv), Lh
y is defined; moreover, Lh

y > −∞. Indeed, assume this was not

the case for, say, h= 1 and y = 0, and denote with C1
0 the projection on the x1 sub-space of the

slice of C1 where y is fixed to 0 (note that C1
0 is convex, since both slicing and projection preserve

convexity). Hence, L1
0 =−∞ would mean that there exists a direction v ∈ rec(C1

0 ) such that c1v < 0.

But this would mean that [v , 0 , 0 ] ∈ rec(C1 ⊕C2), and the scalar product with the objective is

c1v < 0, which contradicts Π>−∞. We can then define L0 = L1
0 +L2

0, which is the optimal value

of the restriction of (??) corresponding to choosing y= 0, and, similarly, L1 =L1
1 +L2

1−d, which is

the optimal value of rather choosing y= 1 (note the “−d” term, due to a “+d” term being present

twice in both L1
1 and L2

1 separately). It is then plain to see that L= min{L0 , L1 } is the optimal

value of (??). We aim at constructing primal and dual optimal solutions for (??) (which, therefore,

satisfy (??)) whose objective value is precisely L.

To do that, again for h= 1,2 we define the auxiliary problems

σh = inf{ chxh + (d+Lh
0 −Lh

1)y : (xh, y)∈ Sh } (54)

σ̄h = inf{ chxh + (d+Lh
0 −Lh

1)y : (xh, y)∈Ch } (55)

(where note that, unlike previously, y is a variable). By the assumption that Ch is the convex

hull of Sh, σ̄h = σh: we can deal with (??) and (??) interchangeably. Similarly to before, it is also

plain to see that σh (= σ̄h)>−∞. Indeed, assume this was not the case for, say, h= 1; it would

mean that there exists a direction [v , w ] ∈ rec(C1) such that c1v + dw < 0. But y is bounded in

S1 (hence in C1) by assumption, which means that any direction in the recession cone must have

null w (the component corresponding to y). This would mean again that [v , 0 , 0 ] ∈ rec(C1⊕C2),

and the scalar product with the objective is c1v < 0, which contradicts Π>−∞.

We now need to introduce some notation to facilitate the subsequent discussion. First of all, each

of the constraint functions f1, f2 and f3(x1, x2, y) =−y—that of the single constraint y≥ 0—only
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depend on a subset of the variables: yet, in discussing the KKT conditions we have to consider them

as functions of all the three sets of variables. We will however use shorthands, such as writing, say,

f1(x1, y) instead of f1(x1, x2, y) since x2 are irrelevant. Similarly, the subdifferentials in principle

have to be considered as subsets of Rn1+n2+1; yet, for, say, f1(x1, y) we will equivalently consider an

element of ∂f1(x1, y) as a vector [v1,w]∈Rn1+1 or as the corresponding vector [v1,0,w]∈Rn1+n2+1.

The fundamental observation here is that the crucial property is of the form “0∈ ∂f1(x1, y)”, which

is equivalently satisfied in both cases since the components of the subgradients corresponding to

variables that are not involved in the definition of the function are necessarily null.

Since the assumptions of the Lemma have to hold for each set separately (besides for C1⊕C2), each

optimal solution (xh, y) ∈ Ch of (??) is a KKT point; that is, there exist Lagrangian multipliers

µh ≥ 0 and λh ≥ 0 such that[
0
0

]
∈
[

ch

d+Lh
0 −Lh

1

]
+µh

[
0

−1

]
+

mh∑
i=1

λh
i ∂f

h
i (xh, y) (56a)

µhy= 0 (56b)

λhfh(xh, y) = 0 (56c)

The crucial, albeit trivial to verify, observation is that σ̄h = σh = Lh
0 for both h = 1,2: indeed,

the objective value of (??) is Lh
0 for both y = 0 and y = 1. Therefore, the problems (??) admit

optimal solutions (them not being unbounded below) having either y = 0 or y = 1. Hence, we

have at our disposal optimal primal solutions (x̄h
y , y) and dual solutions (µ̄h

y , λ̄
h
y)—which necessarily

satisfy (??)—for each h= 1,2 and y ∈ {0 , 1}. Let us immediately remark that, due to (??), µ̄h
1 = 0

(irrespectively of h); thus, we will denote µ̄h
0 as µ̄h. With the help of these solutions we can construct

the sought-for primal and dual solutions, (x̂1, x̂2, ŷ) and (µ̂, λ̂1, λ̂2) that satisfy (??). To do that,

we have to distinguish two cases.

The first is L = L0 ≤ L1, i.e., y = 0 is optimal in (??); here we take (x̂1, x̂2, ŷ) = (x̄1
0, x̄

2
0,0) and

(λ̂1, λ̂2) = (λ̄1
0, λ̄

2
0) (the value of µ̂ will be disclosed shortly). Now, (??)–(??) immediately follow

from (??) for h= 1,2, while (??) trivially holds since y = 0; thus, it remains to examine (??). For

that, we combine (??) for h= 1,2 to obtain 0
0
0

∈

 c1

c2

(d+L1
0 −L1

1) + (d+L2
0 −L2

1)

+ (µ̄1 + µ̄2)

 0
0

−1

+

m1∑
i=1

λ̄1
0,i∂f

1
i (x̄1

0,0) +

m2∑
i=1

λ̄2
0,i∂f

2
i (x̄2

0,0)

We have of course exploited the previously recalled property where the “0 ∈ ∂ . . .” condition still

holds when extended to the irrelevant variables, and the fact that 0 ∈ P1 and 0 ∈ P2 implies 0 ∈
P1 +P2 by definition of Minkowsky sum. Now, since L0 =L1

0 +L2
0 and L1 =L1

1 +L2
1 − d, one has

(d+L1
0 −L1

1) + (d+L2
0 −L2

1) = d− (L1 −L0) ,
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which allows to rewrite the equation above as 0
0
0

∈

 c1c2
d

+ (L1 −L0 + µ̄1 + µ̄2)

 0
0

−1

+

m1∑
i=1

λ̄1
0,i∂f

1
i (x̄1

0,0) +

m2∑
i=1

λ̄2
0,i∂f

2
i (x̄2

0,0) .

Therefore, µ̂=L1−L0 + µ̄1 + µ̄2 ≥ 0 (since µ̄h ≥ 0 for h= 1,2 and L0 ≤L1) completes the definition

of a dual solution satisfying (??). Hence,

∆ = Π = c1x̂1 + c2x̂2 =L1
0 +L2

0 =L0 =L

as desired.

For the case where, instead, L=L1 <L0, we must introduce the other problem(s)

σ= inf{ (L−L0)y : (x1, y)∈ S1 }= inf{ (L−L0)y : (x1, y)∈C1 } (57)

(the equivalence between the two being obvious). Since by definition L − L0 < 0, each optimal

solution of (??) must have y = 1, which in turn implies σ = L−L0 >−∞. Again, the hypotheses

ensure that the (leftmost) problem in (??) has some optimal solution (x̃1, ỹ) = (x̃1,1), which is a

KKT point; therefore, it admits Lagrangian multipliers λ̃ (µ̃= 0 for obvious reasons) such that[
0
0

]
∈
[

0
L−L0

]
+

m1∑
i=1

λ̃i∂f
1
i (x̃1,1) (58a)

λ̃f1(x̃1,1) = 0. (58b)

Now, (??) is satisfied for any optimal solution (x̃1,1) of (??). But the coefficients of the objective

function corresponding to x1 in (??) are null; this means that any feasible solution (x1,1) ∈C1 is

optimal for (??). We are therefore free to choose x̃1 = x̄1
1 (the optimal solution of (??) for h= 1 and

y = 1). We want to show that (µ̂, λ̂1, λ̂2) = (0, λ̄1
1 + λ̃, λ̄2

1) satisfies (??) with (x̂1, x̂2, ŷ) = (x̄1
1, x̄

2
1,1).

Indeed, as in the previous case, (??) immediately follows from (??) for h= 2 and y= 1, while (??)

follows from the combination of (??) for h = y = 1 and (??) ((??) is trivial). We then have to

combine (??) for h= 1,2 and y= 1 with (??) to yield 0
0
0

∈

 c1

c2

(d+L1
0 −L1

1) + (d+L2
0 −L2

1) + (L−L0)

+

m1∑
i=1

(λ̄1
1,i + λ̃i)∂f

1
i (x̂1,1) +

m2∑
i=1

λ̄2
1,i∂f

2
i (x̂2,1)

We now use again L0 =L1
0 +L2

0 and L1 =L1
1 +L2

1 − d, together with L=L1, to get

(d+L1
0 −L1

1) + (d+L2
0 −L2

1) + (L−L0) = d+ (L0 −L1) + (L−L0) = d

to get that, again, (??) holds, and therefore the whole of (??) does, for the chosen (µ̂, λ̂1, λ̂2) and

(x̂1, x̂2, ŷ). For the objective function value, let us remark that σ̄h =Lh
0 for h= 1,2 and (??) give

cx̄h
1 + (d+Lh

0 −Lh
1) =Lh

0 =⇒ cx̂h = cx̄h
1 =Lh

1 − d ,
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whence

∆ = Π = c1x̂1 + c2x̂2 + d=L1
1 +L2

1 − d=L1 =L

in this case as well, finishing the proof. 2

Appendix B: Model T

Here we report a full description of the model T summarized in Table 3 in ?. This model corresponds

to the 3-bin that we have used as benchmark for our experiments. The formulation described in

the following uses our notation but the constraints are numbered exactly as in referenced article.

Note that power variables pit are substituted by variables p′it = pit − lixit. For any further details,

refer to ?.

xit −xi,t−1 = vit −wit i∈ I, t(2, n) (2)

xit = 1 i∈ I, t∈ T (1, τ+i − τ 0i ), if τ 0i > 0 (3a)

xit = 0 i∈ I, t∈ T (1, τ−i + τ 0i ), if τ 0i < 0 (3v)∑
s∈T (t−τ+i +1,t) vis ≤ xit i∈ I, t∈ T (τ+i , n) (4)∑
s∈T (t−τ−i +1,t)wis ≤ 1−xit i∈ I, t∈ T (τ−i , n) (5)

pit = p′it + lixit i∈ I, t∈ T (15)

p′it ≤ (ui − li)xit − (ui − l̄i)vit − (ui − ūi)wi,t+1 i∈ I, τ+i > 1, t∈ T (20)

p′it ≤ (ui − li)xit − (ui − l̄i)vit i∈ I, τ+i = 1, l̄i = ūi, t∈ T (21a)

p′it ≤ (ui − li)xit − (ui − ūi)wi,t+1 i∈ I, τ+i = 1, l̄i = ūi, t∈ T (21b)

p′it ≤ (ui − li)xit − (ui − l̄i)vit − [l̄i − ūi]
+wi,t+1 i∈ I, τ+i > 1, l̄i ̸= ūit∈ T (23a)

p′it ≤ (ui − li)xit − [ūi − l̄i]
+vit − (ui − ūi)wi,t+1 i∈ I, τ+i > 1, l̄i ̸= ūi, t∈ T (23b)

p′it ≤ (ui − li)xit −
∑min{τ+−1,TRU}

s=1 (ui − l̄i − s∆+
i )vit−s i∈ I, τ+ − 2<TRU , t∈ T (40)

p′it − p′i,t−1 ≤ (l̄i − li −∆+
i )vit + ∆+

i xit i∈ I, t∈ (2, n) (35)

p′i,t−1 − p′it ≤ (ūi − li −∆−
i )wit + ∆−

i xi,t−1 i∈ I, t∈ (2, n) (36)∑
i∈I(p

′
it + lixit) = dt t∈ T (65)

In (40), TRU
i = ⌊ui−ūi

∆+
i

⌋. Furthermore, for all i∈ I, t∈ T we have

p′it ≤ (ui − li)xit −
∑min{τ+−2,TRU}

s=1 (ui − l̄i − s∆+
i )vit−s − (ui − ūi)wi,t+1

(38)

The model also considers constraints (41). We have noticed that the definition of KSU
i (t) used for

deifnining these constraints contains a typo. Consequently, we have corrected as follows.
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Given TRD
i = ⌊ui−l̄i

∆−
i

⌋, KSD
i (t) = min{TRD

i , τ+i − 1, n− t− 1} and KSU
i (t) = min{TRU

i , τ+i − 2 −

[KSD
i (t)]+, t− 1}, where [·]+ := max{·,0}, for all i∈ I, t∈ T such that KSD

i (t)> 0 we have

p′it ≤ (ui − li)xit −
∑KSU

i (t)

s=1 (ui − l̄i − s∆+
i )vit−s −

∑KSD
i (t)

s=1 (ui − ūi − s∆−
i )wi,t+1+s (41)

Finally, because of the use of variables p′it instead of pit, the convex envelope (??) of the objective

function (??) can be written as

hi(p
′
it, xit) =

{
ai

p′2it
xit

+ (2aili + bi)pit + (l2i + lib)xit if xit > 0

0 if xit = 0
(59)

and consequently the objective function is

min
∑

i∈I

∑
t∈T (??) +

∑
i∈I

∑
t∈T cixit +

∑
i∈I(??) (60)
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