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Abstract
We review a family of algorithms for Lyapunov- and Riccati-type equations
which are all related to each other by the idea of doubling: they construct
the iterate Qk = X2k of another naturally-arising fixed-point iteration (Xh) via
a sort of repeated squaring. The equations we consider are Stein equations
X −A* X A=Q, Lyapunov equations A* X +X A+Q= 0, discrete-time algebraic
Riccati equations X =Q+A* X(I +G X)−1A, continuous-time algebraic Riccati
equations Q+A* X +X A−X G X = 0, palindromic quadratic matrix equations
A+Q Y +A*Y 2 = 0, and nonlinear matrix equations X +A* X−1A=Q. We draw
comparisons among these algorithms, highlight the connections between them
and to other algorithms such as subspace iteration, and discuss open issues in
their theory.

K E Y W O R D S

algebraic Riccati equation, control theory, doubling algorithm, numerical linear algebra

1 INTRODUCTION

Riccati-type matrix equations are a family of matrix equations that appears very frequently in literature and applications,
especially in systems theory. One of the reasons why they are so ubiquitous is that they are equivalent to certain invariant
subspace problems; this equivalence connects them to a larger part of numerical linear algebra, and opens up avenues
for many solution algorithms.

Many books (and even more articles) have been written on these equations; among them, we recall the classical
monography by Lancaster and Rodman [64], a review book edited by Bittanti et al. [23], various treatises which con-
sider them from different points of view such as [1,4,5,20,25,39,58,74], and recently also a book devoted specifically to
doubling [57].

This vast theory can be presented from different angles; in this exposition, we aim to present a selection of topics which
differs from that of the other books and treatises. We focus on introducing doubling algorithms with a direct approach,
explaining in particular that they arise as “doubling variants” of other more basic iterations, and detailing how they are
related to the subspace iteration, to ADI, to cyclic reduction and to Schur complements. We do not treat algorithms and
equations with the greatest generality possible, to reduce technicalities; we try to present the proofs only up to a level of
detail that makes the results plausible and allows the interested reader to fill the gaps.

The basic idea behind doubling algorithms can be explained through the “model problem” of computing wh = M2h v
for a certain matrix M ∈ Cn×n, v ∈ Cn, and h ∈ N. There are two possible ways to approach this computation:

(1) Compute vk+ 1 =Mvk, for k= 0, 1, … , 2h− 1 starting from v0 = v; then the result is wh = v2h .
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(2) Compute Mk+ 1 = (Mk)2, for k= 0, 1, … , h− 1, starting from M0 =M; then the result is wh =Mhv (repeated squaring).

It is easy to verify that Mkv = v2k for each k. Hence k iterations of (2) correspond to 2k iterations of (1). We say that
(2) is a squaring variant, or doubling variant, of (1). Each of the two versions has its own pros and cons, and in different
contexts one or the other may be preferred. If h is moderate and M is large and sparse, one should favor variant (1):
sparse matrix-vector products can be computed efficiently, while the matrices Mk would become dense rather quickly,
and one would need to compute and store all their n2 entries. On the other hand, if M is a dense matrix of nontrivial size
(let us say n≈ 103 or 104) and h is reasonably large, then variant (2) wins: fewer iterations are needed, and the resulting
computations are rich in matrix multiplications and BLAS level-3 operations, hence they can be performed on modern
computers even more efficiently than their flop counts suggest. This problem is an oversimplified version, but it captures
the spirit of doubling algorithms, and explains perfectly in which cases they work best.

Regarding competing methods: we mention briefly in our exposition Newton-type algorithms, ADI, and Krylov-type
algorithms. We do not treat here direct methods, including Schur decomposition-based methods [66,78,91], methods
based on structured QR [26,28,71], on symplectic URV decompositions [15,33], and linear matrix inequalities [25].
Although these competitors may be among the best methods for dense problems, they do not fit the scope of our exposition
and they do not lend themselves to an immediate comparison with the algorithms that we discuss.

The equations that we treat arise mostly from the study of dynamical systems, both in discrete and continuous time.
In our exposition, we chose to start from the discrete-time versions: while continuous-time Riccati equations are simpler
and more common in literature, it is more natural to start from discrete-time problems in this context. Indeed, when we
discuss algorithms for continuous-time problems we shall see that often the first step is a reduction to a discrete-time
problem (possibly implicit).

In the following, we use the notation A≻B (resp. A≽B) to mean that A−B is positive definite (resp. semidefinite)
(Loewner order). We use 𝜌(M) to denote the spectral radius of M, the symbol LHP = {z ∈ C ∶ Re(z) < 0} to denote
the (open) left half-plane, and RHP for the (open) right half-plane. We use the notation Λ(M) to denote the spectrum
of M, that is, the set of its eigenvalues. We use M* to denote the conjugate transpose, and M⊤ to denote the trans-
pose without conjugation, which appears when combining vectorizations and Kronecker products with the identity
vec(MXN) = (N⊤ ⊗ M)vec(X) [ [48], sections 1.3.6-1.3.7].

2 STEIN EQUATIONS

The simplest matrix equation that we consider is the Stein equation (or discrete-time Lyapunov equation).

X − A∗ X A = Q, Q = Q∗ ≽ 0, (1)

for A,X ,Q ∈ Cn×n. This equation often arises in the study of discrete-time constant-coefficient linear systems

xk+1 = A xk. (2)

A classical application of Stein equations is the following. If X solves (1), then by multiplying by x∗k and xk on both sides
one sees that V(x)≔ x*Xx is decreasing over the trajectories of (2), that is, V(xk+ 1)≤V(xk). This fact can be used to prove
stability of the dynamical system (2).

2.1 Solution properties

The Stein equation (1) is linear, and can be rewritten using Kronecker products as

(In2 − A⊤ ⊗ A∗) vec(X) = vec(Q). (3)

If A=UTU* is a Schur factorization of A, then we can factor the system matrix as

In2 − M = In2 − A⊤ ⊗ A∗ = (Ū ⊗ U)(In2 − T⊤ ⊗ T∗)(U⊤ ⊗ U∗), M = A⊤ ⊗ A∗, (4)
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which is a Schur-like factorization where the middle term is lower triangular. One can tell when I −M is invertible by
looking at its diagonal entries: I −M is invertible (and hence (1) is uniquely solvable) if and only if 𝜆i𝜆j ≠ 1 for each pair
of eigenvalues 𝜆i, 𝜆j of A. This holds, in particular, when 𝜌(A) < 1. When the latter condition holds, we can apply the
Neumann inversion formula

(I − M)−1 = I + M + M2 + ⋅ ⋅ ⋅ , (5)

which gives (after de-vectorization) an expression for the unique solution as an infinite series

X =
∞∑

k=0
(A∗)kQ Ak. (6)

It is apparent from (6) that X ≽ 0. A reverse result holds, but with strict inequalities: if (1) holds with X ≻ 0 and Q≻ 0, then
𝜌(A) < 1 [39, Exercise 7.10].

2.2 Algorithms

As discussed in the introduction, we do not describe here direct algorithms of the Bartels-Stewart family [6,37,45,47]
(which, essentially, exploit the decomposition (4) to reduce the cost of solving (3) from (n6) to (n3)) even if they are
often the best performing ones for dense linear (Stein or Lyapunov) equations. Rather, we present here two iterative
algorithms, which we will use to build our way towards algorithms for nonlinear equations.

The Stein equation (1) takes the form of a fixed-point equation; this fact suggests the fixed-point iteration

X0 = 0, Xk+1 = Q + A∗ Xk A, (7)

known as Smith method [90]. It is easy to see that the kth iterate Xk is the partial sum of (6) (and (5)) truncated to k+ 1
terms, thus convergence is monotonic, that is, Q=X0 ≼X1 ≼X2 ≼ ⋅⋅⋅≼X . Moreover, some manipulations give

vec(X − Xk) = (I + M + M2 + ⋅ ⋅ ⋅ ) vec(Q) − (I + M + M2 + … + Mk) vec(Q)
= Mk+1(I + M + M2 + ⋅ ⋅ ⋅ ) vec(Q) = Mk+1 vec(X),

or, devectorizing,

X − Xk = (A∗)k+1 X Ak+1. (8)

This relation (8) implies ||X − Xk|| = (rk) for each r > 𝜌(A)2, so convergence is linear when 𝜌(A) < 1, and it typically
slows down when 𝜌(A) ≈ 1.

A doubling variant comes from splitting the partial sums into two halves. The truncated sums of (5) to 2k+ 1 terms can
be computed iteratively using the identity

I + M + M2 + ⋅ ⋅ ⋅ + M2k+1−1 = (I + M + M2 + ⋅ ⋅ ⋅ + M2k−1) + M2k
(I + M + M2 + ⋅ ⋅ ⋅ + M2k−1),

without computing all the intermediate sums. Setting vec Qk ≔ (I + M + M2 + ⋅ ⋅ ⋅ + M2k−1) vec Q and Ak ≔ A2k , one gets
the iteration

A0 = A, Ak+1 = A2
k, (9a)

Q0 = Q, Qk+1 = Qk + A∗
k Qk Ak. (9b)

In view of the definitions, we have Qk = X2k ; so this method computes the 2kth iterate of the Smith method directly
with (k) operations, without going through all intermediate ones. Convergence is quadratic: ||X − Qk|| = (r2k ) for each
r > 𝜌(A)2. The method (9) is known as squared Smith. It has been used in the context of parallel and high-performance
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computing [16], and reappeared in recent years, when it has been used for large and sparse equations [12,80,86] in
combination with Krylov methods.

3 LYAPUNOV EQUATIONS

Lyapunov equations

A∗ X + X A + Q = 0, Q = Q∗ ≽ 0 (10)

are the continuous-time counterpart of Stein equations. They arise from the study of continuous-time constant-coefficient
linear systems

d
dt

x(t) = A x(t). (11)

A classical application is the following. If X solves (10), by multiplying on by x(t)* and x(t) on both sides one sees that
V(x)≔ x*Xx is decreasing over the trajectories of (11), that is, d

dt
V(x(t)) ≤ 0. This fact can be used to prove stability of the

dynamical system (11). Today stability is more often proved by computing eigenvalues, but Stein equations (1) and Lya-
punov equations (10) have survived in many other applications in systems and control theory, for instance in model order
reduction [8,50,89], or as the inner step in Newton methods for other equations (see for instance (46) in the following).

3.1 Solution properties

Using Kronecker products, one can rewrite (10) as

(In ⊗ A∗ + A⊤ ⊗ In) vec (X) = −vec(Q), (12)

and a Schur decomposition A=UTU* produces

In ⊗ A∗ + A⊤ ⊗ In = (Ū ⊗ U)(In ⊗ T∗ + T⊤ ⊗ In)(U⊤ ⊗ U∗). (13)

Again, this is a Schur-like factorization, where the middle term is lower triangular. One can tell when In ⊗A* +A⊤ ⊗ In
is invertible by looking at its diagonal entries: that matrix is invertible (and hence (10) is uniquely solvable) if and only
if 𝜆i + 𝜆j ≠ 0 for each pair of eigenvalues 𝜆i, 𝜆j of A. This holds, in particular, if the eigenvalues of A all lie in LHP = {z ∈
C ∶ Re(z) < 0}. When the latter condition holds, an analogue of (6) is

X = ∫
∞

0
exp(A∗t)Q exp(At) dt. (14)

Indeed, this integral converges for every choice of Q if and only if the eigenvalues of A all lie in LHP.
Notice the pleasant symmetry with the Stein case: the (discrete) sum turns into a (continuous) integral; the sta-

bility condition for discrete-time linear time-invariant dynamical systems 𝜌(A) < 1 turns into the one Λ(A) ⊂ LHP for
continuous-time systems. Perhaps a bit less evident is the equivalence between the condition 𝜆i + 𝜆j ≠ 0 (ie, no two eigen-
values of A are mapped into each other by reflection with respect to the imaginary axis) and𝜆i𝜆j ≠ 1 (ie, no two eigenvalues
of A are mapped into each other by circle inversion with respect to the complex unit circle).

Lyapunov equations can be turned into Stein equations and vice versa. Indeed, for a given 𝜏 ∈ C, (10) is equivalent to

(A∗ − 𝜏I) X (A − 𝜏I) − (A∗ + 𝜏I) X (A + 𝜏I) − 2Re(𝜏)Q = 0,

or, if A − 𝜏I is invertible,

X − c(A)∗ X c (A) = 2Re(𝜏)(A∗ − 𝜏I)−1Q (A − 𝜏I)−1, c (A) = (A + 𝜏I)(A − 𝜏I)−1 = (A − 𝜏I)−1(A + 𝜏I). (15)
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If 𝜏 ∈ RHP, then the right-hand side is positive semidefinite and (15) is a Stein equation. The stability properties of c (A)
can be explicitly related to those of A via the following lemma.

Lemma 1 (Properties of Cayley transforms). Let 𝜏 ∈ RHP. Then,

(1) for 𝜆 ∈ C, we have |c(𝜆)| = | 𝜆+𝜏
𝜆−𝜏

| < 1 if and only if 𝜆 ∈ LHP;
(2) for a matrix A ∈ Cn×n, we have 𝜌(c(A)) < 1 if and only if Λ(A) ⊂ LHP.

A geometric argument to visualize (1) is the following. In the complex plane, −𝜏 and 𝜏 are symmetric with respect to
the imaginary axis, with −𝜏 lying to its left. Thus a point 𝜆 ∈ C is closer to −𝜏 than to 𝜏 if and only if it lies in LHP. Part
(2) follows from facts on the behavior of eigenvalues of a matrix under rational functions [64, Proposition 1.7.3], which
we will often use also in the following.

Another important property of the solutions X of Lyapunov and Stein equations is the decay of their singular values in
many practical cases. We defer its discussion to the following section, since a proof follows from the properties of certain
solution algorithms.

3.2 Algorithms

As in the Stein case, one can implement a direct (n3) Bartels-Stewart algorithm [6] by exploiting the decomposition (13):
the two outer factors have Kronecker product structure, and the inner factor is lower triangular, allowing for forward
substitution. An interesting variant allows one to compute the Cholesky factor of X directly from the one of Q [55].

Again, we focus our interest on iterative algorithms. We will assume Λ(A) ⊂ LHP. Then, thanks to Lemma 1, we have
𝜌(c(A)) < 1, so we can apply the Smith method (7) to (15). In addition, we can change the value of 𝜏 at each iteration. The
resulting algorithm is known as ADI iteration [79,92]:

X0 = 0, Xk+1 = Qk + ck(A)∗Xkck(A),
Qk = 2Re(𝜏k)(A∗ − 𝜏kI)−1Q(A − 𝜏kI)−1, ck(A) = (A + 𝜏kI)(A − 𝜏kI)−1 = (A − 𝜏kI)−1(A + 𝜏kI). (16)

The sequence of shifts 𝜏k ∈ RHP can be chosen arbitrarily, with the only condition that 𝜏k ∉ Λ(A). By writing a recurrence
for the error Ek =X −Xk, one sees that

Ek = rk+1(A)∗E0rk+1(A) = rk+1(A)∗Xrk+1(A), rk+1(A) = ck(A) ⋅ ⋅ ⋅ c1(A)c0(A), (17)

a formula which generalizes (8). When A is normal, the problem of assessing the convergence speed of this iteration can
be reduced to a scalar approximation theory problem. Note that

||rk(A)|| = max
𝜆∈Λ(A)

|rk(𝜆)|, ||rk(A)∗|| = ||rk(−A∗)−1|| = 1
min𝜆∈Λ(A)|rk(−𝜆∗)| .

If one knows a region E ⊂LHP that encloses the eigenvalues of A, the optimal choice of rk is the degree-k rational function
that minimizes

sup z∈E|rk(z)|
inf z∈−E∗ |rk(z)| , (18)

that is, a rational function that is “as large as possible” on E and “as small as possible” on −E*. Finding this rational
function is known as Zolotarev approximation problem, and it was solved by its namesake for many choices of E, including
E = [a, b] ⊆ R+: this choice of E corresponds to having a symmetric positive definite A for which a lower and upper
bound on the spectrum are known. It is known that the optimal ratio (18) decays as 𝜌k, where 𝜌 < 1 is a certain value
that depends on E, related to its so-called logarithmic capacity. See the recent review by Beckermann and Townsend [7]
for more details. Optimal choices for the shifts for a normal A were originally studied by Wachspress [43,92]. When A
is nonnormal, a similar bound can be obtained from its eigendecomposition A=VDV−1, but it includes its eigenvalue
condition number 𝜅(V) = ||V ||||V ||−1, and thus it is of worse quality.
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An important case, both in theory and in practice, is when Q has low rank. One usually writes Q=C*C, where C ∈ Cp×n

is a short-fat matrix, motivated by a standard notation in control theory. A decomposition Xk = ZkZ∗
k can be derived

from (16), and reads

Zk =
[ √

2Re(𝜏k−1)(A∗ − 𝜏k−1I)−1C∗, ck−1(A)∗Zk−1

]
=
[√

2Re(𝜏k−1)(A∗ − 𝜏k−1I)−1C∗,
√

2Re(𝜏k−2)(A∗ − 𝜏k−1I)−1(A∗ + 𝜏k−1I)(A∗ − 𝜏k−2I)−1C∗, … ,√
2Re(𝜏0)(A∗ − 𝜏k−1I)−1(A∗ + 𝜏k−1I)(A∗ − 𝜏k−2I)−1(A∗ + 𝜏k−2I) ⋅ ⋅ ⋅ (A∗ − 𝜏0I)−1C∗

]
. (19)

Hence Zk is obtained by concatenating horizontally k terms V 1, V 2, … , V k of size n× p each. Each of them contains a
rational function of A* of increasing degree multiplied by C*. All the factors in parentheses commute: hence that the
factors V j can be computed with the recurrence

Zk =
[

V1 V2 … Vk

]
, V1 =

√
2Re(𝜏k−1)(A∗ − 𝜏k−1I)−1C∗,

Vj+1 =
√

2Re(𝜏k−j−1)√
2Re(𝜏k−j)

(A∗ − 𝜏k−j−1I)−1(A∗ + 𝜏k−jI)Vj

=
√

2Re(𝜏k−j−1)√
2Re(𝜏k−j)

(Vj + (𝜏k−j−1 + 𝜏k−j)(A∗ + 𝜏k−j−1I)−1Vj). (20)

This version of ADI is known as low-rank ADI (LR-ADI) [13]. After k steps, Xk = ZkZ∗
k , but note that in the intermediate

steps j < k the quantity
[
V1 V2 … Vj

] [
V1 V2 … Vj

]∗ differs from Xj in (16). Indeed, in this factorized version
the shifts appear in reversed order, starting from 𝜏k−1 and ending with 𝜏0. Nevertheless, we can use LR-ADI as an iteration
in its own right: since we keep adding columns to Zk at each step, ZkZ∗

k converges monotonically to X . This version
is particularly convenient for problems in which A is large and sparse, because in each step we only need to solve p
linear systems with a shifted matrix A∗ − 𝜏I, and we store in memory only the n× kp matrix Zk. In contrast, iterations
such as (9) are not going to be efficient for problems with a large and sparse A, since powers of sparse matrices become
dense.

The formula (19) displays the relationship between ADI and certain Krylov methods: since the LR-ADI iterates are
constructed by applying rational functions of A* iteratively to C*, the LR-ADI iterate Zk lies in the so-called rational Krylov
subspace [85]

Kq,k+1(A∗,C∗) = span{q(A∗)−1p(A∗)C∗ ∶ p is a polynomial of degree ≤ k}, (21)

constructed with pole polynomial q(z) = (z − 𝜏0)(z − 𝜏1) ⋅ ⋅ ⋅ (z − 𝜏k−1). This suggests a different view: what is impor-
tant is not the form of the ADI iteration, but rather the approximation space Kq, k(A*, C*) to which its iterates belong.
Once one has chosen suitable shifts and computed an orthogonal basis Uk of Kq, k+ 1(A*, C*), (10) can be solved
via Galerkin projection: we seek an iterate Xk of the form Xk = UkYkU∗

k , and compute Y k by solving the projected
equation

0 = U∗
k (A

∗ Xk + Xk A + Q)U = (U∗
k A∗ Uk)Yk + Yk(U∗

k A Uk) + U∗
k Q Uk,

which is a smaller (kp× kp) Lyapunov equation.
While the approximation properties of classical Krylov subspaces are related to polynomial approximation, those of

rational Krylov subspaces are related to approximation with rational functions, as in the Zolotarev problem mentioned
earlier. In many cases, rational approximation has better convergence properties, with an appropriate choice of the shifts.
This happens also for Lyapunov equations: algorithms based on rational Krylov subspaces (21) [41,42] (including ADI
which uses them implicitly) often display better convergence properties than equivalent ones in which Uk is chosen as a
basis of a regular Krylov subspace or of an extended Krylov subspace

Kk1,k2(A
∗,C∗) = span{𝓁(A∗)C∗ ∶ 𝓁 is a Laurent polynomial of degrees (k1, k2)}. (22)
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Computing a basis for a rational Krylov subspace (21) is more expensive than computing one for an extended Krylov
subspace (22): indeed, the former requires solving linear systems with A − 𝜏kI for many values of k, while the latter
uses multiple linear systems with the same matrix A. However, typically, their faster convergence more than compen-
sates for it. Another remarkable feature is the possibility to use an adaptive procedure based on the residual for shift
selection [42].

See also the analysis in Benner et al. [14], which shows that Galerkin projection can improve also on the ADI solution.
An important consequence of the convergence of these algorithms is that they can be used to give bounds on the rank

of the solution X . Since we can find rational functions such that (18) decreases exponentially, the formula (17) shows
that X can be approximated well with Xk, which has rank at most k ⋅ rank(Q) in view of the decomposition (19). This
observation has practical relevance, since in many applications p is very small, and the exponential decay in the singular
values of X is very well visible and helps reducing the computational cost.

3.3 Remarks

There is vast literature already for linear matrix equations, especially when it comes to large and sparse problems. We refer
the reader to the review by Simoncini [89] for more details. The literature typically deals with continuous-time Lyapunov
equations more often than their discrete-time counterpart; however, Cayley transformations (15) can be used to convert
one to the other.

In particular, it follows from our discussion that a step of ADI can be interpreted as transforming the Lyapunov
equation 10 into a Stein equation 1 via a Cayley transform (15) and then applying one step of the Smith iteration (7). Hence
the squared Smith method (9) can be interpreted as a doubling algorithm to construct the ADI iterate X2k in k iterations
only, but with the significant limitation of using only one shift 𝜏 in ADI.

It is known that a wise choice of shifts has a major impact on the convergence speed of these algorithms; see for
example, Güttel [54]. A major challenge for doubling-type algorithms seems incorporating multiple shifts in this frame-
work of repeated squaring. It seems unlikely that one can introduce more than one shift per doubling iteration, but even
doing so would be an improvement, allowing one to leverage the theory of rational approximation that underlies ADI
and Krylov space methods.

4 DISCRETE-TIME RICCATI EQUATIONS

We consider the equation

X = Q + A∗ X(I + GX)−1A G = G∗ ≽ 0, Q = Q∗ ≽ 0, A,G,Q,X ∈ C
n×n, (23)

to be solved for X =X* ≽ 0. This equation is known as discrete-time algebraic Riccati equation (DARE), and arises in various
problems connected to discrete-time control theory [39, chapter 10]. Variants in which G, Q are not necessarily positive
semidefinite also exist [82,94], but we will not deal with them here to keep our presentation simpler. The nonlinear
term can appear in various slightly different forms: for instance, if G=BR−1B* for certain matrices B ∈ Cn×m,R ∈ Cm×m,
R=R* ≻ 0, then one sees with some algebra that

X(I + G X)−1 = (I + X G)−1X = X − X(I + G X)−1G X
= X − X B R−1∕2(I + R−1∕2B∗ X B R−1∕2)−1R−1∕2B∗X
= X − X B(R + B∗ X B)−1B∗ X , (24)

and all these forms can be plugged into (23) to obtain a slightly different (but equivalent) equation. In particular, from the
versions in the last two rows one sees that X(I +GX)−1 is Hermitian, which is not evident at first sight. These identities
become clearer if one considers the special case in which 𝜌(GX) < 1: in this case, one sees that the expressions in (24) are
all different ways to rewrite the sum of the converging series X −X G X +X G X G X −X G X G X G X + ⋅⋅⋅.

Note that the required inverses exist under our assumptions, because the eigenvalues of G X coincide with those of
G1/2XG1/2 ≽ 0.
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4.1 Solution properties

For convenience, we assume in the following that A is invertible. The results in this section hold also when it is singular,
but to formulate them properly one must deal with matrix pencils, infinite eigenvalues, and generalized invariant sub-
spaces (or deflating subspaces), a technical difficulty that we would rather avoid here since it does not add much to our
presentation. For a more general pencil-based presentation, see for instance Mehrmann [72].

For each solution X of the DARE (23), it holds that[
A 0
−Q I

][
I
X

]
=

[
I G
0 A∗

][
I
X

]
K, K = (I + G X)−1A. (25)

Equation (25) shows that Im
[

I
X

]
is an invariant subspace of

 =

[
I G
0 A∗

]−1 [
A 0
−Q I

]
, (26)

that is,  maps this subspace into itself. In particular, the n eigenvalues (counted with multiplicity) of K are a subset of
the 2n eigenvalues of  : this can be seen by noticing that the matrix K represents (in a suitable basis) the linear operator

 when restricted to said subspace. Conversely, if one takes a basis matrix
[

U1
U2

]
for an invariant subspace of  , and

if U1 is invertible, then
[

I
U2U−1

1

]
is another basis matrix, the equality (25) holds, and X = U2U−1

1 is a solution of (23).

Hence, (23) typically has multiple solutions, each associated to a different invariant subspace. However, among them
there is a preferred one, which is the one typically sought in applications.

Theorem 1 ([64], Corollary 13.1.2 and Theorem 13.1.3). Assume that Q≽ 0, G≽ 0 and (A, G) is d-stabilizable. Then, (23)
has a (unique) solution X+ such that

(1) X+ = X∗
+ ≽ 0;

(2) X+ ≽X for any other Hermitian solution X ;
(3) 𝜌((I + GX+)−1A) ≤ 1.

If, in addition, (Q, A) is d-detectable, then 𝜌((I + GX+)−1A) < 1.
The hypotheses involve two classical definitions from control theory [39]: d-stabilizable (resp. d-detectable) means

that all Jordan chains of A (resp. A*) that are associated to eigenvalues outside the set {|𝜆| < 1} are contained in the
maximal (block) Krylov subspace span(B,AB,A2B, … ) (resp. span(C∗,A∗C∗, (A∗)2C∗, … )). We do not discuss further
these hypotheses or the theorem, which is not obvious to prove; we refer the reader to Lancaster and Rodman [64] for
details, and we just mention that these hypotheses are typically satisfied in control theory applications. This solution X+
is often called stabilizing (because of property 3) or maximal (because of property 2).

Various properties of the matrix  in (26) follow from the fact that it belongs to a certain class of structured matri-

ces. Let J =
[

0 In
−In 0

]
∈ C2n×2n. A matrix M ∈ C2n×2n is called symplectic if M*JM = J, that is, if it is unitary for the

nonstandard scalar product associated to J. The following properties hold.

Lemma 2.

(1) A matrix in the form (26) is symplectic if and only if G=G*, Q=Q*, and the two blocks called A, A* in (26) are one the
conjugate transpose of the other.

(2) If 𝜆 is an eigenvalue of a symplectic matrix with right eigenvector v, then 𝜆
−1

is an eigenvalue of the same matrix with
left eigenvector v*J.

(3) Under the hypotheses of Theorem 1 (including the d-detectability one in the end), then the 2n eigenvalues of  are
(counting multiplicities) the n eigenvalues 𝜆1, 𝜆2, … , 𝜆n of (I +G X+)−1A inside the unit circle, and the n eigenvalues
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𝜆i
−1

, i= 1, 2, … , n outside the unit circle. In particular,
[

I
X+

]
spans the unique invariant subspace of  of dimension

n all of whose associated eigenvalues lie in the unit circle.

Parts 1 and 2 are easy to verify from the form (26) and the definition of symplectic matrix, respectively. To prove Part
3, plug X+ into (25) and notice that K has n eigenvalues 𝜆1, 𝜆2, … , 𝜆n inside the unit circle; these are also eigenvalues of
 . By Part 2, all other eigenvalues lie outside the unit circle.

4.2 Algorithms

The shape of (23) suggests the iteration

Xk+1 = Q + A∗ Xk(I + G Xk)−1A, X0 = 0. (27)

This iteration can be rewritten in a form analogous to (25):[
A 0
−Q I

][
I

Xk+1

]
=

[
I G
0 A∗

][
I

Xk

]
Kk, Kk = (I + G Xk)−1A. (28)

Equivalently, one can write it as [
U1k

U2k

]
= −1

[
I

Xk

]
,

[
I

Xk+1

]
=

[
U1k

U2k

]
(U1k)−1. (29)

This form highlights a connection with (inverse) subspace iteration (or orthogonal iteration), a classical generalization

of the (inverse) power method to find multiple eigenvalues [93]. Indeed, we start from the 2n×n matrix
[

I
X0

]
=
[

I
0

]
, and

at each step we first multiply it by −1, and then we normalize the result by imposing that the first block is I. In inverse
subspace iteration, we would make the same multiplication, but then we would normalize the result by taking the Q
factor of its QR factorization, instead.

It follows from classical convergence results for the subspace iteration (see eg, Watkins [93, section 5.1]) that
(29) converges to the invariant subspace associated to the n largest eigenvalues (in modulus) of −1, that is, the n smallest

eigenvalues of  . In view of Part 3 of Lemma 2, this subspace is precisely Im
[

I
X+

]
. Note that this unusual normaliza-

tion is not problematic, since at each step of the iteration (and in the limit) the subspace does admit a basis in which the
first n rows form an identity matrix. This argument shows the convergence of (27) to the maximal solution, under the
d-detectability condition mentioned in Theorem 1, which ensures that there are no eigenvalues on the unit circle.

How would one construct a “squaring” variant of this method? Note that that
[

U1k
U2k

]
= −k

[
I
0

]
; hence one can think

of computing −2k by iterated squaring to obtain X2k in k steps. However, this idea would be problematic numerically,
because it amounts to delaying the normalization in subspace iteration until the very last step. The key to solve this issue
is using the LU-like decomposition obtained from (26)

−1 =

[
A 0
−Q I

]−1 [
I G
0 A∗

]
.

We seek an analogous decomposition for the powers of −1, that is,

−2k
=

[
Ak 0
−Qk I

]−1 [
I Gk

0 A∗
k

]
. (30)

The following result shows how to compute this factorization with just one matrix inversion.
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Lemma 3 ([81]). Let M1,M2,N1,N2 ∈ C2n×n. The factorization

[
M1 M2

]−1 [
N1 N2

]
=

[
A11 0
A21 In

]−1 [
In A21

0 A22

]
, A11,A12,A21,A22 ∈ C

n×n (31)

exists if and only if
[
N1 M2

]
is invertible, and in that case its blocks Aij are given by[

A11 A12

A21 A22

]
=
[

N1 M2

]−1 [
M1 N2

]
.

A proof follows from noticing that the factorization (31) is equivalent to the existence of a matrix K ∈ C2n×2n such that

K
[

M1 M2 N1 N2

]
=

[
A11 0 In A12

A21 In 0 A22

]
,

and rearranging block columns in this expression.

One can apply Lemma 3
(

with [M1 M2]= I and [N1 N2] =
[

I Gk
0 A∗

k

] [
Ak 0
−Qk I

]−1 )
to find a factorization of the term

in parentheses in

−2k+1
= −2k−2k

=

[
Ak 0
−Qk I

]−1 ⎛⎜⎜⎝
[

I Gk

0 A∗
k

][
Ak 0
−Qk I

]−1⎞⎟⎟⎠
[

I Gk

0 A∗
k

]
, (32)

and use it to construct a decomposition (30) of −2k+1 starting from that of −2k . The fact that the involved matrices are
symplectic can be used to prove that the relations A11 = A∗

22, A21 = A∗
21, A12 = A∗

12 will hold for the computed coefficients.
We omit the details of this computation; what matters are the resulting formulas

Ak+1 = Ak(I + GkQk)−1Ak, (33a)

Gk+1 = Gk + AkGk(I + QkGk)−1A∗
k, (33b)

Qk+1 = Qk + A∗
k(I + QkGk)−1Qk Ak, (33c)

with A0 =A, Q0 =Q, G0 =G. These formulas are all we need to formulate a “squaring” version of (27): for each k it holds
that

−2k

[
In

0

]
=

[
I

Qk

]
A−1

k ,

hence Qk = X2k , the 2kth iterate of (27). It is not difficult to show by induction that 0≼Q0 ≼Q1 ≼ ⋅⋅⋅≤Qk ≼ ⋅⋅⋅, and we
have already argued above that Qk = X2k → X+. In view of the interpretation as subspace iteration, the convergence speed
of (27) is linear and proportional to the ratio between the absolute values of the (n+ 1)st and nth eigenvalue of  , that is,
between 𝜎 ≔ 𝜌((I + GX+)A) < 1 and its inverse 𝜎−1. The convergence speed of its doubling variant (33) is then quadratic
with the same ratio [57].

The iteration (33), which goes under the name of structure-preserving doubling algorithm, has been used to solve
DAREs and related equations by various authors, starting from Chu et al. [35], but it also appears much earlier: for
instance, Anderson [2] gave it an explicit system-theoretical meaning as constructing an equivalent system with the same
DARE solution. The reader may find in the literature slightly different versions of (33), which are equivalent to them
thanks to the identities (24).

More general versions of the factorization (30) and of the iteration (33), which guarantee existence and boundedness
of the iterates under much weaker conditions, have been explored by Mehrmann and Poloni [73]. Kuo et al. [63] studied



11 of 24

the theoretical properties of the factorization (30) for general powers  t, t ∈ R, drawing a parallel with the so-called Toda
flow for the QR algorithm.

The limit of the monotonic sequence 0≼G0 ≼G1 ≼G2 ≼ ⋅⋅⋅ also has a meaning: it is the maximal solution Y+ of the
so-called dual equation

Y = G + A Y (I + QY )−1A∗, (34)

which is obtained swapping Q with G and A with A* in (23). Indeed, SDA for the DARE (34) is obtained by swapping
Q with G and A with A* in (33), but this transformation leaves the formulas unchanged. The dual equation 34 appears
sometimes in applications together with (23). From the point of view of linear algebra, the most interesting feature of

its solution Y+ is that
[
−Y+

I

]
is a basis matrix for the invariant subspace associated to the other eigenvalues of  , those

outside the unit circle. Indeed, (30) gives

2k

[
0
I

]
=

[
−Gk

In

]
A−∗

k ,

so
[
−Y+

I

]
is the limit of subspace iteration applied to  instead of −1, with initial value

[
0
I

]
. In particular, putting all

pieces together, the following Wiener-Hopf factorization holds

 =

[
−Y+ I

I X+

][
((I + Q Y+)−1A∗)−1 0

0 (I + G X+)−1A

][
−Y+ I

I X+

]−1

. (35)

This factorization relates explicitly the solutions X+, Y+ to a block diagonalization of  .
An interesting limit case is the one when only the first part of Theorem 1 holds, (Q, A) is not d-detectable, and the

solution X+ exists but 𝜌((I + G X+)A) = 1. In this case,  has eigenvalues on the unit circle, and it can be proved that all
its Jordan blocks relative to these eigenvalues have even size: one can use a result in Lancaster and Rodman [64, Theorem
12.2.3], after taking a factorization G=B R−1B* with R≻ 0 and using another result in the same book [64, Theorem 12.2.1]
to show that the hypothesis Ψ(𝜂) ≻ 0 holds.

It turns out that in this case the two iterations still converge, although (27) becomes sublinear and (33) becomes linear
with rate 1/2. This is shown by Chiang et al. [32]; the reader can recognize that the key step there is the study of the
subspace iteration in presence of Jordan blocks of even multiplicity.

Note that the case in which the assumptions Q≽ 0, G≽ 0 do not hold is trickier, because there are examples where (23)
does not have a stabilizing solution and  has Jordan blocks of odd size with eigenvalues on the unit circle: an explicit
example is

A =

[
1 3
0 1

]
, G =

[
1 1
1 1

]
, Q =

[
1 0
0 −10

]
, (36)

which produces a matrix  with two simple eigenvalues (Jordan blocks of size 1) 𝜆± ≈ 0.598 ± 0.801i with |𝜆| = 1. Sur-
prisingly, eigenvalues on the unit circle are a generic phenomenon for symplectic matrices, which is preserved under
perturbations: a small perturbation of the matrices in (36) will produce a perturbed ̃ with two simple eigenvalues �̃�±
that satisfy exactly |𝜆| = 1, because otherwise Part 2 of Lemma 2 would be violated.

5 CONTINUOUS-TIME RICCATI EQUATIONS

We consider the equation

Q + A∗ X + X A − X G X = 0, G = G∗ ≽ 0, Q = Q∗ ≽ 0, A,G,Q,X ∈ C
n×n, (37)

to be solved for X =X* ≽ 0. This equation is known as continuous-time algebraic Riccati equation (CARE), and arises
in various problems connected to continuous-time control theory [39, chapter 10]. Despite the very different form,



12 of 24

this equation is a natural analogue of the DARE (23), exactly like Stein and Lyapunov equations are related to
each other.

5.1 Solution properties

For each solution X of the CARE, it holds[
A −G
−Q −A∗

][
I
X

]
=

[
I
X

]
M, M = A − GX . (38)

Hence,
[

I
X

]
is an invariant subspace of

 =

[
A −G
−Q −A∗

]
. (39)

Like in the discrete-time case, this relation implies that the n eigenvalues of M are a subset of those of ; moreover,

we can construct a solution X = U2U−1
1 to (37) from an invariant subspace Im

[
U1
U2

]
, whenever U1 is invertible. Among

all solutions, there is a preferred one.

Theorem 2 ([64], Theorems 7.9.1, 9.1.2, and 9.1.5). Assume that Q≽ 0, G≽ 0, and (A, G) is c-stabilizable. Then, (37) has
a (unique) solution X+ such that

(1) X+ = X∗
+ ≽ 0;

(2) X+ ≽X for any other Hermitian solution X ;
(3) Λ(A − G X+) ⊂ LHP.

If, in addition, (Q, A) is c-detectable, then Λ(A − G X+) ⊂ LHP.
C-stabilizable and c-detectable are defined analogously to their discrete-time counterparts, with the only difference

that the domain {|𝜆| < 1} is replaced by the left half-plane LHP. Again, we do not comment on this theorem, whose proof
is not obvious, and refer the reader to Lancaster and Rodman [64].

Exactly as in the discrete-time case, various interesting properties of the matrix  in (39) follow from the fact that it
belongs to a certain class of structured matrices. A matrix M ∈ C2n×2n is called Hamiltonian if −M*J = JM, that is, if it is
skew-self-adjoint with respect to the nonstandard scalar product induced by J. The following result holds.

Lemma 4.

(1) A matrix in the form (39) is Hamiltonian if and only if G=G*, Q=Q*, and the two matrices called A, A* in (39) are one
the conjugate transpose of the other.

(2) If 𝜆 is an eigenvalue of a Hamiltonian matrix with right eigenvector v, then −𝜆 is an eigenvalue of the same matrix with
left eigenvector v*J.

(3) If the hypotheses of Theorem 2 hold (including the c-detectability one), then the 2n eigenvalues of  are (counting
multiplicities) the n eigenvalues 𝜆1, … , 𝜆n of A−G X+ in the left half-plane, and the n eigenvalues −𝜆i, i= 1, … , n in

the right half-plane. In particular,
[

I
X+

]
spans the unique invariant subspace of  of dimension n all of whose associated

eigenvalues lie in the left half-plane.

Parts 1 and 2 are easy to verify from the block decomposition (39) and the definition of Hamiltonian matrix. To prove
Part 3, plug X+ into (25) and notice that M has n eigenvalues 𝜆1, 𝜆2, … , 𝜆n in the left half-plane; these are also eigenvalues
of  . By Part 2, all other eigenvalues lie in the right half-plane.

The similarities between (38) and (25) suggest that CAREs can be turned into DAREs (and vice versa) by converting
the two associated invariant subspace problems; the ingredient to turn one into the other is the Cayley transform.
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Lemma 5. Let A, G=G*, Q=Q* be given, and take 𝜏 > 0. Set[
Ad Gd

−Qd A∗
d

]
=

[
A − 𝜏I −G

Q A∗ − 𝜏I

]−1 [
A + 𝜏I −G

Q A∗ + 𝜏I

]
= I + 2𝜏

[
A − 𝜏I −G

Q A∗ − 𝜏I

]−1

. (40)

Assume that the inverse exists, and that Ad is invertible. Then, the DARE with coefficients Ad, Gd, Qd has the same solutions
as the CARE with coefficients A, G, Q (and, in particular, the same maximal / stabilizing solution).

These formulas (40) follow from constructing  ≔ c() = ( − 𝜏I)−1( + 𝜏I), and then applying Lemma 3 to
construct a factorization

 =

[
I Gd

0 A∗
d

]−1 [
Ad 0
−Qd I

]
.

The matrix  that we have constructed has the same invariant subspaces as  because c(⋅) is an invertible rational
function: indeed, from (38), it follows that


[

I
X

]
= c()

[
I
X

]
=

[
I
X

]
c(M), M = A − G X .

This relation coincides with (25), and shows that a solution X of the CARE is also a solution of the DARE constructed
with (40). Thanks to Lemma (1), M has all its eigenvalues in LHP if and only if c(M) has all its eigenvalues inside the unit
circle, so the stabilizing property of the solution is preserved.

Methods to transform DAREs into CAREs and vice versa based on the Cayley transform appear frequently in the litera-
ture starting from the 1960s; see for instance Mehrmann [72], a paper which explores these transformations and mentions
the presence of many “folklore results” based on the Cayley transforms, relating the properties of the two associated
equations.

Even if we restrict ourselves to the assumption that Ad is invertible when treating the DARE, it is important to remark
that Lemma 5 does not generalize completely to the case when Ad is singular [72, section 6]. By considering the poles of
c() as a function of 𝜏, one sees that Ad is singular if and only if 𝜏 ∈ Λ(). When this happens, even if  “exists” in a
suitable sense as an equivalent matrix pencil, an invariant subspace of  for which 𝜏 ∈ Λ(M) cannot be converted to the
form (25), but only to the subtly weaker form[

Ad 0
−Qd I

][
I
X

]
(M − 𝜏I) =

[
I Gd

0 A∗
d

][
I
X

]
(M + 𝜏I), M = A − G X (41)

with an additional singular matrix M − 𝜏I in the left-hand side. Thus we cannot write the equality (25), which identifies
X as a solution of the DARE: hence the DARE has fewer solutions than the CARE. The stabilizing solution is always
preserved by this transformation, though, because Λ(M) ⊂ LHP cannot contain 𝜏 > 0.

5.2 Algorithms

In view of the relation between DAREs and CAREs that we have just outlined, a natural algorithm is using the formu-
las (40) to convert (37) into an equivalent (23) and solving it using (33). This algorithm has been suggested by Chu et al. [34]
as a doubling algorithm for CAREs. This algorithm inherits all the nice convergence properties of SDA for DAREs; in par-
ticular, among them, the fact that it also works (at reduced linear speed) on problems in which A−GX+ has eigenvalues
on the imaginary axis [32].

While SDA works well in general, a delicate point is the choice of the shift value 𝜏. In principle almost every choice
of 𝜏 works, since  − 𝜏I is singular only for at most 2n values of 𝜏, but in practice choosing the wrong value of 𝜏 may
affect accuracy negatively. Dangers arise not from singularity of  − 𝜏I (which is actually harmless with a matrix pencil
formulation), but from singularity in (40), and also from taking 𝜏 too large or too small by orders of magnitude. A heuristic
approach based on golden section search has been suggested [34].
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In practice, one would prefer to avoid the Cayley transform or at least delay it as much as possible; this observation
leads to another popular algorithm for CAREs. We start from the following observation.

Lemma 6. If  = c() (with a parameter 𝜏 ∈ R), then

2 = c
(1

2
( + 𝜏2−1)

)
. (42)

This identity can be verified directly, using the fact that rational functions of the same matrix  all commute with
each other.

Applying this identity repeatedly, we get 2k = c(k), where

k+1 = 1
2
(k + 𝜏2−1

k ), 0 = . (43)

Hence one can hold off the Cayley transform and just compute the sequencek directly, starting from (39). This constructs
a sequence which represents implicitly 2k .

Constructing the matrices k is numerically much less troublesome than constructing explicitly 2k or its inverse
−2k . Indeed, it is instructive to consider the behavior of these iterations in a basis in which  is diagonal (when it exists).
Let 𝜆 be a generic diagonal entry (ie, an eigenvalue) of . Then,  = c() has the corresponding eigenvalue c(𝜆), and
2k has the eigenvalue c(𝜆)2k . If 𝜆 ∈ LHP, then |c(𝜆)| < 1 (Lemma 1), and hence c(𝜆)2k

→ 0 when k→∞. Similarly, if
𝜆 is in the right half-plane, then |c(𝜆)| > 1 and c(𝜆)2k

→ ∞. Thus 2k (as well as its inverse) has some eigenvalues that
converge to zero, and some that diverge to infinity, as k grows. This is one of the reasons why it is preferable to keep  in
its factored form (30). On the other hand, the eigenvalues of k converge to finite values c−1(0) = −𝜏 and c−1(∞) = 𝜏, so
this computation suggests that the direct computation of k is feasible.

The sign function method [40,46,83] to solve CAREs consists exactly in computing the iteration (43) up to convergence,
obtaining a matrix ∞ = limk→∞k that has numerically n eigenvalues equal to 𝜏 ∈ RHP and n equal to −𝜏 ∈ LHP, and
then computing

Im

[
U1

U2

]
= ker(∞ + 𝜏I), U1,U2 ∈ C

n×n, X+ = U2U−1
1 . (44)

The method takes its name from the fact that the limit matrix ∞ (for 𝜏 = 1) is the so-called matrix sign function of .
We refer the reader to its analysis in Higham [56, chapter 5], in which one clearly sees that one of the main ingredients is
the formula 42 relating the iteration to repeated squaring.

Scaling is an important detail that deserves a discussion. Replacing  with a positive multiple of itself corresponds to
multiplying each term of (37) by a positive quantity; this operation does not change the solutions of the equation, nor the
maximal / stabilizing properties of X+. In SDA, scaling is limited to choosing the parameter of the initial Cayley transform,
but in the sign method we have more freedom: we can take a different 𝜏k at each step of (43). We remark that scaling for
the sign method is usually presented in the literature in a slightly different form: one replaces (43) with

k+1 = 1
2
((𝜏−1

k k) + (𝜏−1
k k)−1). (45)

The two forms are essentially equivalent, as they return iterates k that differ only by a multiplicative factor, which is
then irrelevant in the final step (44). Irrespective of formulation, the main result is that a judicious choice of scaling can
speed up the convergence of (43) or (45). A cheap and effective choice of scaling, determinantal scaling, 𝜏k = (det k)

1
n has

been suggested by Byers [29]. Other related choices of scaling and their performances have been discussed by Higham [
[56], chapter 5] and Kenney and Laub [60]. The general message is that scaling has a great impact in the first steps of
the iteration, when it can greatly improve convergence, but once the residual starts to decrease its effect in the later steps
becomes negligible.

Scaling also has an impact on stability; the stability of the sign iteration as a method to compute invariant subspaces
(and hence ultimately Riccati solutions) has been studied by Bai and Demmel [3] and Byers et al. [30]. The two interesting
messages are that (expectedly) the sign function method suffers when  is ill-conditioned, but that (unexpectedly) the
invariant subspaces extracted from ∞ has better stability properties than ∞ itself. A version of the sign iteration that
uses matrix pencils to reduce the impact of these inversions have been suggested by Benner and Byers [11].
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Another useful computational detail is that one can rewrite the sign function method (43) as

k+1 = 1
2
(k + 𝜏2J−1

k J), k = k J,

which is cheaper because one can take advantage of the fact that the matrices k are Hermitian [29]. Indeed, it is a
general observation that most of the matrix algebra operations needed in doubling-type algorithms can be reduced to
operations on symmetric/Hermitian matrices; see for instance also (40).

5.3 Remarks

The formulation in the sign iteration allows one to introduce some form of per-iteration scaling in the setting of a
doubling-type algorithm. It would be interesting to see if this scaling can be transferred to the SDA setting, and which com-
putational advantage it brings. Note that, in view of (42), scaling the sign iteration is equivalent to changing the parameter
𝜏 in the Cayley transform. So SDA does incorporate a form of scaling, but only at the first iteration, when one chooses 𝜏.

In general, it is unclear if scaling after the first iteration produces major gains in convergence speed. It would be
appealing to try and study this kind of scaling with the tools of polynomial and rational approximation, like it has been
done in more details for nondoubling algorithms, with the aim of deriving optimal choices for the parameters 𝜏 and 𝜎k.

There is another classical iterative algorithm to solve algebraic Riccati equations (both in discrete and continuous
time), and it is Newton’s method. For the simpler case of CAREs, Newton’s method [61] consists in determining Xk+ 1 by
solving at each step the Lyapunov equation

(A − G Xk)∗(Xk+1 − Xk) + (Xk+1 − Xk)(A − G Xk) = −(Q + A∗ Xk + Xk A − XkG Xk) (46)

or the equivalent one

(A − G Xk)∗ Xk+1 + Xk+1(A − G Xk) = −Q − Xk G Xk.

A line search procedure, which improves convergence speed in practice, has been introduced by Benner and Byers [10].
The method can be used, in particular, for large and sparse equations in conjunction with low-rank ADI [13].

The reader may wonder if there is an explicit relation between doubling algorithms and Newton-type algorithms,
considering especially that both exhibit quadratic convergence (which, moreover, in both cases degrades to linear with
rate 1/2 if A−GX+ has purely imaginary eigenvalues [51]). The answer, unfortunately, seems to be no. An argument that
suggests that the two iterations are genuinely different is that the iterates produced by Newton’s method approach X+
from above [61] (ie, X1 ≽X2 ≽ ⋅⋅⋅≽Xk ≽Xk+ 1 ≽ ⋅⋅⋅≽X+), not from below like the iterates Qk of SDA in (33c).

Some more recent algorithms for large and sparse CAREs essentially merge the Newton step (46) and the ADI itera-
tion (20) into a single iteration [9,68,88]. It is again unclear whether there is an explicit relation between these two families
of methods.

An interesting question is what is the “nondoubling” analogue of the sign method and of SDA. One can convert the
CARE to discrete-time using (40) and formulate (27), but to the best of our knowledge this method does not have a more
appealing presentation in terms of a simple iterative method for (37), like it has in all the other discrete-time examples.

Another “philosophical” observation is that the sign function method does not avoid a Cayley-type transformation;
it merely pushes it back to the very last step (44), where the subexpression  + 𝜏I appears; this operation takes the role
of a discretizing transformation that maps the eigenvalue −𝜏 into a value inside a given circle and the eigenvalue 𝜏 into
one outside. A discretizing transformation of some sort seems inevitable in this family of algorithms, although delaying
it until the very last step seems beneficial for accuracy, because at that point we have complete control of the location of
eigenvalues.

6 UNILATERAL EQUATIONS AND NMES

We end our discussion of the family of Riccati-type equations with a pair of oft-neglected cousins, and present them with
an application that shows clearly the relationship between them. Consider the matrix Laurent polynomial

P(z) = Az−1 + Q + A∗z, Q = Q∗ ≻ 0, A,Q ∈ C
n×n. (47)
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The problem of spectral factorization (of quadratic matrix polynomials) consists in determining a factorization

P(z) = (zY∗ − I)X(z−1Y − I), X = X∗ ≻ 0, X ,Y ∈ C
n×n, (48)

such that 𝜌(Y ) ≤ 1. In particular, the left factor is invertible for |z| < 1, and the right factor is invertible for |z|>1.
Equating coefficients in (47) and (48) gives −XY =A, Q=X +Y *XY . We can eliminate one among X and Y from this

system of two equations, getting two equations with a single unknown each

0 = A + Q Y + A∗Y 2, (49)

Q = X + A∗ X−1A. (50)

The first one (49) is called unilateral quadratic matrix equation [19], while the second one (50) is known with the (rather
undescriptive) name of nonlinear matrix equation (NME) [52,53,57].

While (49) looks more appealing at first, as it reveals direct ties with the palindromic quadratic eigenvalue
problem [52,53,69], it is in fact (50) that reveals more structure: for instance, (50) has Hermitian solutions (see below),
while the structure in the solutions of (49) is much less apparent.

6.1 Solution properties

It follows from (48) that P(𝜆) ≽ 0 for each 𝜆 that belongs to the unit circle (hence 𝜆−1 = 𝜆), so this is a necessary condition
for the solvability of this problem. It can be proved that it is sufficient, too, and that a maximal / stabilizing solution
exists.

Theorem 3 ([44], Theorem 2.2). Assume that P(z) is regular and P(𝜆) ≽ 0 for each 𝜆 on the unit circle. Then, (50) has a
(unique) solution X+ such that

(1) X+ = X∗
+ ≻ 0;

(2) X+ ≽X for any other Hermitian solution X ;
(3) 𝜌(Y ) = 𝜌(−X−1

+ A) ≤ 1

If, in addition, P(𝜆) ≻ 0 for each 𝜆 on the unit circle, then 𝜌(−X−1
+ A) < 1.

Once again, we can rewrite (50) as an invariant subspace problem.[
A 0
−Q I

][
I
X

]
=

[
0 −I

A∗ 0

][
I
X

]
Y , Y = −X−1A. (51)

We assume again that A is invertible to avoid technicalities with matrix pencils. The matrix

 =

[
0 −I

A∗ 0

]−1 [
A 0
−Q I

]
(52)

is symplectic, and so is the slightly more general form[
G −I
A∗ 0

]−1 [
A 0
−Q I

]
. (53)

Lemma 7.

(1) A matrix in the form (53) is symplectic if and only if G=G*, Q=Q*, and the two blocks called A, A* in (26) are one the
conjugate transpose of the other.
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(2) If 𝜆 is an eigenvalue of a symplectic matrix with right eigenvector v, then 𝜆
−1

is an eigenvalue of the same matrix with
left eigenvector v*J.

(3) If the hypotheses of Theorem 3 hold (including the strict positivity one in the end), then the 2n eigenvalues of  are
(counting multiplicities) the n eigenvalues 𝜆1, 𝜆2, … , 𝜆n of −X−1

+ A inside the unit circle, and the n eigenvalues 𝜆i
−1

,
i= 1, 2, … , n outside the unit circle.

The symplectic structure behind this equation is the same one as the DARE, and indeed Part 2 of this lemma is identical
to Part 2 of Lemma 2. Indeed, Engwerda et al. [44, section 7] note that (50) can be reduced to a DARE, although it is one
that does not fall inside our framework since it has G≼ 0.

6.2 Algorithms

The formulation (50) suggests immediately the iterative algorithm

Xk+1 = Q − A∗ X−1
k A. (54)

Clearly we cannot start this iteration from 0, so we take X1 =Q instead. An interesting interpretation of this algorithm
is as iterated Schur complements of block Toeplitz tridiagonal matrices. The Schur complement of the (1, 1) block of the
tridiagonal matrix

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Xk A∗

A Q A∗

A Q ⋱

⋱ ⋱ A∗

A Q

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

h blocks

,

is

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Xk+1 A∗

A Q A∗

A Q ⋱

⋱ ⋱ A∗

A Q

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

h−1 blocks

.

Hence the whole iteration can be interpreted as constructing successive Schur complements of the tridiagonal matrix

m ≔

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Q A∗

A Q A∗

A Q ⋱

⋱ ⋱ A∗

A Q

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

m blocks

. (55)
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It can be seen that m is positive semidefinite, under the assumptions of Theorem 3: a quick sketch of a proof is as follows.
The matrix m is a submatrix of

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Q A∗ A
A Q A∗

A Q ⋱

⋱ ⋱ A∗

A∗ A Q

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= (Φ⊗ I)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

P(1)
P(𝜁)

P(𝜁2)
⋱

P(𝜁−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(Φ⊗ I)−1,

which the equation shows to be similar (using the Fourier matrix Φ and properties of Fourier transforms) to a block
diagonal matrix that contains P(z) from (47) evaluated in the roots of unity 1, 𝜁 , 𝜁2, … , 𝜁−1.

Hence, in particular, all the Xk are positive semidefinite. One can further show that Q=X0 ≽X1 ≽X2 ≽ ⋅⋅⋅≽Xk ≽ ⋅⋅⋅.
The sequence Xk is monotonic and bounded from below, hence it converges, and one can show that its limit is
X+ [44, section 4] (to do this, verify the property in Point (2) of Theorem 3 by proving that Xk ≽X at each step of the
iteration).

A doubling variant of (54) can be constructed starting from this Schur complement interpretation. The Schur
complement of the submatrix formed by the odd-numbered blocks (1, 3, 5, … , 2m− 1) of

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Uk A∗
k

Ak Uk A∗
k

Ak ⋱ ⋱

⋱ Uk A∗
k

Ak Qk

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

2m blocks

,

is

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Uk+1 A∗
k+1

Ak+1 Uk+1 A∗
k+1

Ak+1 ⋱ ⋱

⋱ Uk+1 A∗
k+1

Ak+1 Qk+1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

m blocks

,

with

Ak+1 = −Ak U−1
k Ak, (56a)

Qk+1 = Qk − A∗
k U−1

k Ak, (56b)

Uk+1 = Uk − A∗
k U−1

k Ak − Ak U−1
k A∗

k. (56c)

We can construct the Schur complement of the first 2k − 1 blocks of 2k in two different ways: either we make 2k − 1
iterations of (54), resulting in X2k , or we make k iterations of (56), starting from A0 =A, Q0 =U0 =Q, resulting in Qk. This
shows that Qk = X2k .

This peculiar way to take Schur complements of Toeplitz tridiagonal matrices was introduced by Buzbee et al. [27]
to solve certain differential equations, and then later applied to matrix equations similar to (49) and (50) by Bini
et al. [17,18,75]. The iteration (56) is known as cyclic reduction.
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One can derive the same iteration from repeated squaring, in the same way as we obtained SDA as a modified subspace
iteration [67]. We seek formulas to update a factorization of the kind

−2k
=

[
Ak 0
−Qk I

]−1 [
Gk −I
A∗

k 0

]
.

To do this, we write (analogously to (32))

−2k+1
= −2k−2k

=

[
Ak 0
−Qk I

]−1 ⎛⎜⎜⎝
[

Gk −I
A∗

k 0

][
Ak 0
−Qk I

]−1⎞⎟⎟⎠
[

Gk −I
A∗

k 0

]

and use Lemma 3 (with [M1 M2]= I2n) to find a factorization in the form (31) of the term in parentheses, which then
combines with the outer terms to produce the sought decomposition. The resulting formulas are

Ak+1 = −Ak(Qk − Gk)−1Ak, (57a)

Qk+1 = Qk − A∗
k(Qk − Gk)−1Ak, (57b)

Gk+1 = Gk + Ak(Qk − Gk)−1A∗
k, (57c)

and one sees that they coincide with (56), after setting Uk =Qk −Gk. With an argument analogous to the one in Section 4,
one sees that

−2k

[
0
−I

]
=

[
I

Qk

]
,

thus
[

I
Qk

]
converges to a basis of the invariant subspace associated to the eigenvalues of  inside the unit circle.

This formulation (57) is known as SDA-II [36,67].

6.3 Remarks

Even though we have mentioned spectral factorization only here, it can be formulated for more complicated matrix func-
tions also in the context of DAREs and CAREs; in fact, it is a classical topic, and another facet of the multiple connections
between matrix equations and control theory [4,5,87].

The interpretation as Schur complement is a powerful trick, which reveals a greater picture in this family of methods.
It may possibly be used to understand more about the stability of these methods, since Schur complementation and
Gaussian elimination on symmetric positive definite matrices is a well understood topic from the numerical point of view.

Many authors have studied variants of (50). Typically, one replaces the nonlinear term with various functions of the
form A*f (X)A, or adds more nonlinear terms. In the modified versions, it is often possible to prove convergence of the
fixed-point algorithm with arguments of monotonicity, and prove the existence of a solution under some assumptions.
However, after any nontrivial modification the connection with invariant subspaces is lost. This fact, coupled with lack
of applications, makes these variants much less interesting than the original equation, in the eyes of the author.

7 NONSYMMETRIC VARIANTS IN APPLIED PROBABILITY

Many of the equations treated here have nonsymmetric variants which appear naturally in queuing theory, a subfield of
applied probability. In the analysis of quasi-birth-death models [21,65], one encounters equations of the form

0 = A + Q Y + B Y 2, A,B,Q,Y ∈ R
n×n, (58)
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where A, B≥ 0 (we use the notation M ≥N to denote that a matrix M is entrywise larger than N, that is, Mij ≥Nij for all
i, j), and the matrix −Q is an M-matrix, that is, Qij ≥ 0 for i≠ j and Λ(Q) ⊂ LHP. These equations have a solution Y ≥ 0
which has a natural probabilistic interpretation. The solution X to X =Q−BX−1A and the solution of the associated dual
equation 0=Z2A+ZQ+B also appear naturally and have a related probabilistic meaning [65, chapter 6, 21, section 5.6].

Similarly, the equation

Q + B X + X A − X G X = 0, Q, X ∈ R
m×n, A ∈ R

n×n, B ∈ R
m×m, G ∈ R

n×m. (59)

appears in the study of so-called fluid queues, or stochastic flow models [38,59,84]. The matrices A, B are M-matrices, while
G,−Q≥ 0. One can formulate nonsymmetric analogues of basic matrix iterations and doubling algorithms. Unfortunately,
the theory does not translate perfectly to this setting, due to the sign differences between the two cases: in the symmetric
equations G, Q≽ 0, while in the nonsymmetric case G,−Q≥ 0. Due to this asymmetry, the signs in the two cases do not
match, and one needs to formulate different arguments. For instance, in the symmetric case one proves that the inverses
that appear in (33) exist because Gk ≽ 0, Qk ≽ 0; while in its nonsymmetric analogue Gk,−Qk ≥ 0, and one proves that
I +GkQk and I +QkGk are M-matrices to show that those inverses exist.

Equation (23) does not appear to have an immediate analogue in queuing theory, but this fact seems just an accident,
since some of the results that involve (59) could have been formulated with an equivalent equation resembling more (23)
than (37) instead. There is a distinction between discrete-time and continuous-time models also in applied probability,
but in many cases it does not affect directly the shape of the equations; for instance (58) takes the same form for discrete-
and continuous-time QBDs. The role of discretizing transformations such as Cayley transforms in this context has been
studied by Bini et al. [22].

For reasons of space, we cannot give here a complete treatment of these nonsymmetric variants. Huang, Li and
Lin [57] in their book enter into more detail about the doubling algorithms for these equations, but a great part of the
theory (including existence results and probabilistic interpretations for the iterates of various numerical methods) is
unfortunately available only in the queuing theory literature, strictly entangled with its applications.

An interesting remark is that the M-matrix structure allows one to construct stability proofs more easily. Conditioning
and stability results for these equations have been studied by some authors [31,76,96-98], relying heavily on the sign and
M-matrix structure. The forward stability proof in Nguyen and Poloni [76] is, to date, one of the very few complete stability
proofs for a doubling-type algorithm.

8 CONCLUSIONS

In this paper, we presented from a consistent point of view doubling algorithms for symmetric Riccati-type equations,
relating them to the basic iterations of which they are a “squaring” variant. We have included various algorithms
that belong to the same family but have appeared independently, such as the sign iteration and cyclic reduction. We
have outlined relations between doubling algorithms, the subspace iteration, ADI-type, and Krylov subspace methods,
and Schur complementation of tridiagonal block Toeplitz matrices. This theory, in turn, forms only a small portion
of the far larger topic of numerical algorithms for Riccati-type equations and control theory. This field of research
is an incredibly vast one, spanning at least six decades of literature and various communities between engineering
and mathematics, so we have surely omitted or forgotten many relevant contributions; we apologize with the missing
authors.

We hope that the reader can benefit from our paper by both gaining theoretical insight, and having available some
numerical algorithms for these equations. Indeed, with respect to many competitors, doubling-based algorithms have the
advantage that they reduce to the simple coupled matrix iterations (33) or (56), which are easy to code and fast to run in
many computational environments.

Another interesting remark that was suggested by a referee is that some recent lines of research consider this family
of matrix equations under different types of data sparsity than low-rank: for instance, Palitta and Simoncini [77] consider
banded data, and Kressner et al. [62] and Massei et al. [70] consider semi-separable (low-rank off-diagonal blocks) and
hierarchically semiseparable structures. Much earlier, Grasedyck et al. [49] considered using hierarchical matrices to
solve Riccati equations. All these structures are (at least up to a degree) preserved by the operations involved in doubling
methods [24,95]. These novel techniques may open up new lines of research for doubling-type algorithms.
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