
1

I sistemi peer to peer (P2P)
Una Introduzione

What Does Peer-to-Peer Mean?

2

  A generic name for systems in which peers
communicate directly and not through a server

  Characteristics:
  decentralized
  self-organizing
  distributed systems
  all or most communication is symmetric
  typically, large scale systems (up to millions)
  Virtual organization

2

Typical Characteristics –details

3

  Large Scale: lots of nodes (up to millions)
  Dynamicity: frequent joins, leaves, failures
  Little or no infrastructure

  No central server
  Symmetry: all nodes are “peers” – have same role

  Not always true – “all nodes are equal, but some node are equal
more”

  Communication possible between every pair of nodes
(Internet)
  Not always true – NAT, FW

P2P Applications

4

  File sharing (music, movies, …)
  Distributed computing
  VoIP - Skype
  Collaboration

3

P2P Networking

5

Focus on the apps

File Sharing Services

6

  Publish – insert a new file into the network
  Lookup – given a file name X, find the host that stores

the file
  Retrieval – get a copy of the file
  Join – join the network
  Leave – leave the network

4

The main problem - Lookup

7

  Given a data item X, stored at some set of nodes, find it
  The main challenge

  Do it in a reliable, scalable and efficient way
  Despite the dynamicity and frequent changes

Take 1 – Napster (Jan ’99)

8

  Client – Server architecture (not P2P)
  Publish – send the key (file name) to the server
  Lookup – ask the server who has the requested file. The

response contains the address of a node/nodes that hold
the file

  Retrieval – get the file directly from the holder
  Join – send you file list to the server
  Leave – cancel your file list at the server

5

Take 1 – Napster (continued)

9

  Advantages
  Low message overhead
  Minimal overhead on the clients
  100% success rate (if the file is there, it will be found)

  Disadvantages
  Single point of failure
  Not scalable (server is too busy)

10

File Sharing with Napster

www.napster.com
Main Server

File List:
UserC song.mp3

UserD another.mp3
…..

User A

2. User A
searches for
song.mp3

User C
(Song.mp3)

1. Construct Database
•  Users connect to Napster Server
•  Server builds up a list of available
songs and locations

User D
(Another.mp3)

User B
…

3. Server searches
database. Finds song
on User C’s machine

4. Server informs
User A of the location

of song.mp3

5. User A connects to
User C and downloads

song.mp3

6

11

12

ICQ: Instant Messaging

www.icq.com
Main Server
User List:

User A

2.User A
searches
ICQ for
User
B

User B

3. Server informs
User A of the user

B’s location

4. User A connects to User C
interacts and exchanges files

1. Members (user A
and user B) register

their details at the ICQ
web site

7

Naspter

13

  centralized server:
  single logical point of failure
  potential for congestion
  Napster “in control” (freedom is an illusion)

  no security:
  passwords in plain text
  no authentication
  no anonymity

Lets distribute the server

14

  Every node is connected to every node
  No scalable at all

  Every node is connected to a number of peers
  Can communicate directly with immediate neighbors
  Can communicate with other nodes through my direct neighbors
  This is called overlay

8

Overlay Networks

15

  Overlay is a virtual structure imposed over the
physical network (e.g., the Internet)
  over the Internet, there is an (IP level) unicast channel between

every pair of hosts
  an overlay uses a fixed subset of these
  nodes that have the capability to communicate directly with

each other do not use it

  Allows scalable symmetric lookup algorithms

Take 2 - Gnutella (March ’00)

16

  Build a decentralized unstructured overlay
  each node has several neighbors

  Publish – store the file locally
  Lookup – check local database. If X is known return, if not,

ask your neighbors. TTL limited.
  Retrieval – direct communication between 2 nodes
  Join – contact a list of nodes that are likely to be up,

or collect such a list from a website.
  Random, unstructured overlay

  What is the communication pattern?
flooding

9

Resolve Query by Flooding

17

2

3

S 2

3

3

4

5 2

3

4

4

5

6

6

4

X 5

3

5

5 4 4

Time-To-Live (TTL)=5 would have been enough

Take 2 – Gnutella (continued)

18

  Advantages
  Fast lookup
  Low join and leave overhead
  Popular files are replicated many times, so lookup with small TLL

will usually find the file
  Can choose to retrieve from a number of sources

  Disadvantages
  Not 100% success rate, since TTL is limited
  Very high communication overhead

  Limits scalability
  But people do not care so much about wasting bandwidth

  Uneven load distribution

10

Gnutella

19

  Le query sono trasmesse sulle con. TCP
  Network exploration: PING-PONG
  Query

  DescriptorID, PayloadID, TTL, Hops, Length, Paylod
  Query Forward: pari inoltrono i msg nella rete overlay
  QueryHit : risposta alla query lungo il cammino “inverso” della

 rete overlay
  Hits, Port, IP, Speed, ResultSet, NodeId

20

11

Gnutella

21

Query

QueryHit

Query

Query

QueryHit

Query

Query

QueryH
it

File transfer:
HTTP GET ❒ 

Gnutella: Peer joining

22

1.  Joining peer X must find some other peer in Gnutella
network: use list of candidate peers

2.  X sequentially attempts to make TCP with peers on list until
connection setup with Y

3.  X sends Ping message to Y; Y forwards Ping message.
4.  All peers receiving Ping message respond with Pong message
5.  X receives many Pong messages. It can then setup additional

TCP connections

12

Take 3 - FastTrack, KaZaA, eDonkey

23

  Improve scalability by introducing a hierarchy
  2 tier system

  super-peers: have more resources, more neighbors, know more keys
  clients: regular/slow nodes

  Client can decide if it is a super-peer when connecting
  Super-peers accept connection from clients and establish

connections to other super-peers
  Search goes through super-peers

Take 3 - FastTrack, KaZaA, eDonkey
(continued)

24

  Advantages
  More stable than Gnutella. Higher success rate
  More scalable

  Disadvantages
  Not “pure” P2P
  Still high communication overhead

13

KaZaA

  Strutturazione dei peer
  Peer = group leader o e’

associatto a un group leader.
  Peeer -- Group leader TCP Con..
  TCP cons tra coppie di group

leader.

  Group leader: sono una sorta
di directoly centralizzata per i
peer associati al gruppo.

25

KaZaA: Querying

26

  Each file has a hash and a descriptor
  Client sends keyword query to its group leader
  Group leader responds with matches:

  For each match: metadata, hash, IP address

  If group leader forwards query to other group leaders, they
respond with matches

  Client then selects files for downloading
  HTTP requests using hash as identifier sent to peers holding desired file

14

Bit Torrent

27

  New approach
  Content distribution

  Main Goal:
  Replicate file to large number of clients

  Each file is brocken into chuncks (torrent file details
metadata)
  Size chuncks
  Tracker (server which keeps track of the current acrive clients)

BitTorrent

28

Seed

Seed

1

2

5

3

4

…

…

…

…

…

…

…

…

1

3

15

How BitTorrent works

29

  Downloaders exchange blocks with each other

  Tracker keeps track of connected peers

  Salient features
  Which block to download first?

  Locally rarest block

  Which peers should I upload blocks to?
  Tit-for-tat: peers which give best download rates

Locally rarest block

30

.

.

.

Peer

Peer

Peer

HAVE <12,7,36>

HAVE <12,7,14>

HAVE <14>

14

12,7,14

12,7,36

16

Structured Lookup Overlays

31

  Structured overlay – data stored in a defined place, search
goes on a defined path

  Implement Distributed Hash Table (DHT) abstraction
  Symmetric, no hierarchy
  Decentralized self management
  Many recent academic systems –

  CAN, Chord , D2B, Kademlia, Koorde, Pastry, Tapestry,
Viceroy, OverNet (based on the Kademlia algorithm)

Reminder: Hashing

32

  Data structure supporting the operations:
  void insert(key, item)
  item search(key)

  Implementation uses hash function for mapping keys to
array cells

  Expected search time O(1)
  provided that there are few collisions

17

Distributed Hash Tables (DHTs)

33

  Nodes store table entries
  Key ->IP of the node currently responsible for this key

  lookup(key)
  returns the IP of the node responsible for the key
  key usually numeric (in some range)

  Requirements for an application being able to use DHTs:
  data identified with unique keys
  nodes can (agree to) store keys for each other

  location of object or actual object

34

18

35

36

19

Using the DHT Interface

37

  How do you publish a file?
  How do you find a file?

What Does a DHT Implementation
Need to Do?

38

  Map keys to nodes
  needs to be dynamic as nodes join and leave

  Route a request to the appropriate node
  routing on the overlay

20

Lookup Example

39

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

insert
(K1,V1)

K V (K1,V1)

lookup(K1)

Mapping Keys to Nodes

40

  Keys and nodes are mapped to the same identifier space
  NodeID=hash(node’s IP address)
  KeyID=hash(key). Key is a file name
  m-bit identifier
  Cryptographic hash function (e.g., SHA-1)

  Goal: load balancing, achieved by hashing

  Typical DHT implementation:
  map key to node whose id is “close” to the key

(need distance function).

21

Routing Issues

41

  Each node must be able to forward each lookup query to
a node closer to the destination

  Maintain routing tables adaptively
  each node knows some other nodes
  must adapt to changes (joins, leaves, failures)
  Goals

  Efficient - use as few nodes as possible on the routing path
  …

Handling Join/Leave

42

  When a node joins it needs to assume responsibility for
some keys
  In order for future lookups to succeed
  ask the application to move these keys to it
  how many keys will need to be moved?

  When a nodes fails or leaves, its keys have to be moved
to others
  what else is needed in order to implement this?

22

P2P System Interface

43

  Lookup
  Join
  Move keys

Chord
Stoica, Morris, Karger, Kaashoek, and Balakrishnan

2001

23

Chord Logical Structure

  m-bit ID space (2m IDs), usually m=160.
  Think of nodes as organized in a logical ring according to their

IDs.

45

N1
N8

N10

N14

N21

N30
N38

N42

N48

N51
N56

Assigning Keys to Nodes

  KeyID k is assigned to first node whose NodeID >= k
(clockwise from k)
  Denoted: successor(k)

46

N1
N8

N10

N14

N21

N30
N38

N42

N48

N51
N56

K54

24

Simple Routing Solutions

47

  Each node knows only its successor
  routing around the circle
  O(N) routing
  O(1) memory

  Each node knows all other nodes
  O(1) routing
  O(N) memory

Routing around the circle

48

N32

N90

N105

N60

N10

N120

K80

“Where is key 80?”

“N90 has K80”

25

Routing around the circle - code

49

Lookup(my-id, key-id)
 q = my_successor
 if my-id < key-id < q
 return my_successor // done
 else
 call Lookup(id) on q // next hop

  Correctness depends only on successors

Chord Fingers

  Each node has “fingers” to nodes ½ way around the ID
space from it, ¼ the way…

  finger[i] at p contains successor(p+2i-1)
  successor is finger[1]

50

N0
N8

N10

N14

N21

N30
N38

N42

N48

N51
N56

26

Example: Chord Fingers

51

N0
N10

N21

N30

N47

finger[1..4]

N72

N82

N90

N114

finger[5]

finger[6]

fin
ge

r[
7]

log N distinct fingers

Chord Data Structures

52

  At Each Node
  Finger table
  First finger is successor
  Predecessor

27

Forwarding Queries

53

  Query for key k is forwarded to finger with highest ID
not exceeding k

K54 Lookup(K54)
N0

N8
N10

N14

N21

N30
N38

N42

N48

N51
N56

54

Lookup(my-id, key-id)
 look in local finger table for
 highest node q s.t. my-id < q < key-id
 if q exists
 call Lookup(id) on node q // next hop
 else
 return my_successor // done

Chord Routing – the code

28

Routing Time - O(log(N)) steps

55

  maximum m steps
  Assuming uniform node distribution around the circle, the

number of nodes in the search space is halved at each
step:

  expected number of steps: log N

Joining Chord

56

  Goals?
  Steps:

  Find your successor
  Initialize finger table and predecessor
  Notify other nodes that need to change their finger table and

predecessor pointer
  O(log2n)

  Learn the keys that you are responsible for; notify others that
you assume control over them

29

Join Algorithm: Take II

57

  Observation: for correctness, successors suffice
  fingers only needed for performance

  Upon join, update successor only
  Periodically,

  check that successors and predecessors are consistent
  fix fingers

Failure Handling

  Periodically fixing fingers
  List of r successors instead of one successor
  Periodically probing predecessors

58

30

Moving Keys upon Join/Leave

59

  Left up to the application
  When a node joins, it becomes responsible for some keys

previously assigned to its successor
  local change
  how many keys should move, on average?

  And what happens when a node leaves?
  List of r successors instead of one successor
  Replicate keys:

  Store every key in r successors, instead of only one

  Or do key maintenance periodically

Summary: DHT Advantages

60

  Peer-to-peer: no centralized control or infrastructure
  Scalability: O(log N) routing, routing tables, join time
  Load-balancing
  Overlay robustness

31

DHT Disadvantages

61

  No control where data is stored
  Complex queries are not possible

Resources

62

  http://en.wikipedia.org/wiki/Peer-to-peer

