
7. Distributed Hash Tables

Klaus Wehrle, Stefan Götz, Simon Rieche (University of Tübingen)

In the last few years, an increasing number of massively distributed systems
with millions of participants has emerged within very short time frames. Ap-
plications, such as instant messaging, file-sharing, and content distribution
have attracted countless numbers of users. For example, Skype gained more
than 2.5 millions of users within twelve months, and more than 50% of In-
ternet traffic is originated by BitTorrent. These very large and still rapidly
growing systems attest to a new era for the design and deployment of dis-
tributed systems [52]. In particular, they reflect what the major challenges
are today for designing and implementing distributed systems: scalability,
flexibility, and instant deployment.

As already defined in Chapter 2, the Peer-to-Peer paradigm relies on
the design and implementation of distributed systems where each system
has (nearly) the same functionality and responsibility. By definition, these
systems have to coordinate themselves in a distributed manner without cen-
tralized control and without the use of centralized services. Thus, scalability
should be an inherent property of Peer-to-Peer systems. Unfortunately, not
all of them have shown this to be true so far. In this chapter, we will demon-
strate this by discussing the lookup problem – a fundamental challenge for all
kinds of massively distributed and Peer-to-Peer systems.

First, we introduce the problem of managing and retrieving data in dis-
tributed systems, compare three basic approaches for this, and show that
some of them do not scale well, even though they are Peer-to-Peer approaches.
As a result, we introduce the promising concept of the Distributed Hash Ta-
ble (DHT) for designing and deploying highly scalable distributed systems.
In this chapter, we focus only on the basic properties and mechanisms of
Distributed Hash Tables; specifics of certain DHT approaches are presented
in the next chapter.

The remainder of this chapter is organized as follows. After discussing
in Section 7.1 general concepts for distributed management and retrieval of
data in Peer-to-Peer systems, the subsequent sections introduce Distributed
Hash Tables, in particular their fundamentals (Section 7.2), the concept of
content-based routing (Section 7.3), and DHT interfaces (Section 7.4). The
next chapter presents specific algorithms of popular DHT approaches, e.g.,
how to organize the address space, and how routing in a Distributed Hash
Table is performed. In Chapter 9, we discuss aspects of reliability and load-
balancing in Distributed Hash Tables.

R. Steinmetz and K. Wehrle (Eds.): P2P Systems and Applications, LNCS 3485, pp. 79-93, 2005.
 Springer-Verlag Berlin Heidelberg 2005

80 7. Distributed Hash Tables

I want item „D“.
How can I find „D“?D

I have item „D“.
Where to place „D“?

? ??

Internet nodes participating in the distributed system

distributed system

Node A Node B

data item „D“

Fig. 7.1: The lookup problem: Node A wants to store a data item D in the dis-
tributed system. Node B wants to retrieve D without having prior knowl-
edge of D’s current location. How should the distributed system, espe-
cially data placement and retrieval, be organized (in particular, with
regard to scalability and efficiency)?

7.1 Distributed Management and Retrieval of Data

Peer-to-Peer systems and applications raise many interesting research ques-
tions. Because of the completely decentralized character of Peer-to-Peer sys-
tems, the distributed coordination of resources, such as storage, computa-
tional power, human presence, and connectivity becomes a major challenge
(Section 2.1). In most cases, these challenges can be reduced to a single prob-
lem: Where to store, and how to find a certain data item in a distributed
system without any centralized control or coordination? (Figure 7.1) [52]

The lookup problem can be defined as follows: Some node A wants to store
a data item D in the distributed system. D may be some (small) data item,
the location of some bigger content, or coordination data, e.g., the current
status of A, or its current IP address, etc. Then, we assume some node B
wants to retrieve data item D later. The interesting questions are now:

– Where should node A store data item D?
– How do other nodes, e.g., node B, discover the location of D?
– How can the distributed system1 be organized to assure scalability and

efficiency?

The remainder of this section presents three approaches to answer these
questions and discusses the advantages of drawbacks for each.

1 In the context of Peer-to-Peer systems, the distributed system – the collection
of participating nodes pursuing the same purpose – is often called the overlay
network or overlay system.

7.1 Distributed Management and Retrieval of Data 81

Transmission: D Node B

“Where is D ?”

“A stores D”

Node A

Node B

Server S

“A stores D”

“A stores D”

Fig. 7.2: Central Server: (1) Node A publishes its content on the central server S.
(2) Some node B requests the actual location of a data item D from the
central server S. (3) If existing, S replies with the actual location of D.
(4) The requesting node B transmits the content directly from node A.

7.1.1 Comparison of Strategies for Data Retrieval

This section advocates the use of Distributed Hash Tables by comparing three
basic strategies to store and retrieve data in distributed systems: centralized
servers, flooding search, and distributed indexing.

7.1.2 Central Server

The approach of first generation Peer-to-Peer systems, such as Napster [436],
is to maintain the current locations of data items in a central server. After
joining the Peer-to-Peer system, a participating node submits to the central
server information about the content it stores and/or the services it offers.
Thus, requests are simply directed to the central server that responds to the
requesting node with the current location of the data (Figure 7.2). Thereupon,
the transmission of the located content is organized in a Peer-to-Peer fashion
between the requesting node B and the node storing D.

The server-based approach is common in many application scenarios
and was the major design principle for distributed applications in the past
decades. It has the advantage of retrieving the location of the desired infor-
mation with a search complexity of O(1) – the requester just has to know
the central server. Also, fuzzy and complex queries are possible, since the
server has a global overview of all available content. However, the central
server approach has major drawbacks, which have been become increasingly
evident in recent years. The central server is a critical element within the
whole system concerning scalability and availability. Since all location infor-
mation is stored on a single machine, the complexity in terms of memory
consumption is O(N), with N representing the number of items available in
the distributed system. The server also represents a single point of failure

82 7. Distributed Hash Tables

& Transmission: D Node B
“I have D ?”

“B searches D”

Node A

Node B

“I store D”

Fig. 7.3: Flooding Search: No routing information is maintained in intermediate
nodes. (1) Node A sends a request for item D to its “neighbors” in the
distributed system. They forward the request to further nodes in a recur-
sive manner (flooding/breadth-first search). (2) Node(s) storing D send
an answer to A, and A transmits D directly from the answering node(s).

and attack. If it fails or becomes unavailable for either of these reasons, the
distributed system – as a whole – is no longer useable.

Overall, the central server approach is best for simple and small applica-
tions or systems with a limited number of participants, since the costs for
data retrieval are in the order of O(1) and the amount of network load (in
proximity of the server) and the necessary storage capacity increase by O(N).
But, scalability and availability are vital properties, especially when systems
grow by some orders of magnitude or when system availability is crucial.
Therefore, more scalable and reliable solutions need to be investigated.

7.1.3 Flooding Search

Distributed systems with a central server are very vulnerable since all requests
rely on the server’s availability and consistency. An opposite approach is pur-
sued by the so-called second generation of Peer-to-Peer systems (cf. Chap-
ter 5.3). They keep no explicit information about the location of data items in
other nodes, other than the nodes actually storing the content. This means
that there is no additional information concerning where to find a specific
item in the distributed system. Thus, to retrieve an item D the only chance
is to ask as much participating nodes as necessary, whether or not they
presently have item D, or not. Second generation Peer-to-Peer systems rely
on this principle and broadcast a request for an item D among the nodes
of the distributed system. If a node receives a query, it floods this message
to other nodes until a certain hop count (Time to Live – TTL) is exceeded.
Often, the general assumption is that content is replicated multiple times in
the network, so a query may be answered in a small number of hops.

7.1 Distributed Management and Retrieval of Data 83

C
om

m
un

ic
at

io
n

O
ve

rh
ea

d

Node State

Flooding

Central
Server

O(N)

O(N)O(1)

O(1)

O(log N)

O(log N)

Bottleneck:
•Communication
Overhead

•False negatives
Bottlenecks:
•Memory, CPU, Network
•AvailabilityDistributed

Hash Table

Scalability: O(log N)
No false negatives
Resistant against changes

Failures, Attacks
Short time users

Fig. 7.4: Comparison of complexity in terms of search effort (y-axis) and storage
cost per node (x-axis). Bottlenecks and special characteristics of each
approach are named.

A well-known example of such an application is Gnutella [249], which is
described in more detail in Section 3.4. Gnutella includes several mechanisms
to avoid request loops, but it is obvious that such a broadcast mechanism
does not scale well. The number of messages and the bandwidth consumed
is extremely high and increases more than linearly with increasing numbers
of participants. In fact, after the central server of Napster was shut down in
July 2001 due to a court decision [438], an enormous number of Napster users
migrated to the Gnutella network within a few days, and under this heavy
network load the system collapsed (Section 3.4).

The advantage of flooding-based systems, such as Gnutella, is that there
is no need for proactive efforts to maintain the network. Also, unsharp queries
can be placed, and the nodes implicitly use proximity due to the expanding
search mechanism. Furthermore, there is are efforts to be made when nodes
join or leave the network.

But still, the complexity of looking up and retrieving a data item is O(N2),
or even higher, and search results are not guaranteed, since the lifetime of
request messages is restricted to a limited number of hops. On the other
hand, storage cost is in the order of O(1) because data is only stored in the
nodes actually providing the data – whereby multiple sources are possible –
and no information for a faster retrieval of data items is kept in intermediate
nodes.

Overall, flooding search is an adequate technique for file-sharing-like pur-
poses and complex queries.

84 7. Distributed Hash Tables

I want D !
H(„D“)=3107

2207

7.31.10.25

peer-to-peer.info

12.5.7.31

95.7.6.10

86.8.10.18

planet-lab.orgberkeley.edu

2906
3485

201116221008
709

611

89.11.20.15

?

Fig. 7.5: Distributed Hash Table: The nodes in the distributed system organize
themselves in a structured overlay and establish a small amount of rout-
ing information for quick and efficient routing to other overlay nodes.
(1) Node A sends a request for item D to an arbitrary node of the DHT.
(2) The request is forwarded according to DHT routing with O(logN)
hops to the target node. (3) The target node sends D to node A.

7.1.4 Distributed Indexing – Distributed Hash Tables

Both central servers and flooding-based searching exibit crucial bottlenecks
that contradict the targeted scalability and efficiency of Peer-to-Peer systems.
Indeed, central servers disqualify themselves with a linear complexity for
storage because they concentrate all references to data and nodes in one single
system. Flooding-based approaches avoid the management of references on
other nodes and, therefore, they require a costly breadth-first search which
leads to scalability problems in terms of the communication overhead.

A better solution for the lookup problem should avoid these drawbacks
and should enable scalability by finding the golden path between both ap-
proaches (Figure 7.4). In this case, scalability is defined as follows: the search
and storage complexity per node should not increase significantly – by means
not more than O(logN), even if the system grows by some orders of magni-
tude.

Distributed Indexing, most often in the form of Distributed Hash Tables,
promises to be a suitable method for this purpose. In the realm of Peer-to-
Peer systems, these approaches are also often called structured Peer-to-Peer
systems because of their structured and proactive procedures. Distributed

7.1 Distributed Management and Retrieval of Data 85

Hash Tables provide a global view of data distributed among many nodes,
independent of the actual location. Thereby, location of data depends on the
current DHT state and not intrinsically on the data.

Overall, Distributed Hash Tables posses the following characteristics:

– In contrast to unstructured Peer-to-Peer systems, each DHT node manages
a small number of references to other nodes. By means these are O(log N)
references, where N depicts the number of nodes in the system.

– By mapping nodes and data items into a common address space, routing
to a node leads to the data items for which a certain node is responsible.

– Queries are routed via a small number of nodes to the target node. Because
of the small set of references each node manages, a data item can be located
by routing via O(log N) hops. The initial node of a lookup request may be
any node of the DHT.

– By distributing the identifiers of nodes and data items nearly equally
throughout the system, the load for retrieving items should be balanced
equally among all nodes.

– Because no node plays a distinct role within the system, the formation of
hot spots or bottlenecks can be avoided. Also, the departure or dedicated
elimination of a node should have no considerable effects on the function-
ality of a DHT. Therefore, Distributed Hash Tables are considered to be
very robust against random failures and attacks.

– A distributed index provides a definitive answer about results. If a data
item is stored in the system, the DHT guarantees that the data is found.

7.1.5 Comparison of Lookup Concepts

The following table compares again the main characteristics of the presented
approaches in terms of complexity, vulnerability and query ability. Accord-
ing to their complexity in terms of communication overhead, per node state
maintenance, and their resilience, Distributed Hash Tables show the best per-
formance unless complex queries are not vital. For fuzzy or complex query
patterns, unstructured Peer-to-Peer systems are still the best option.

System Per Node Communication Fuzzy Robust-
State Overhead Queries ness

Central Server O(N) O(1) � ×
Flooding Search O(1) ≥ O(N2) � �
Distributed Hash Table O(log N) O(log N) × �

Table 7.1: Comparison of central server, flooding search, and distributed indexing.

86 7. Distributed Hash Tables

7.2 Fundamentals of Distributed Hash Tables

This section introduces the fundamentals of Distributed Hash Tables, such
as data management, principles of routing, and maintenance mechanisms.
Chapter 8 provides a detailed explanation of several selected Distributed
Hash Table approaches.

7.2.1 Distributed Management of Data

A Distributed Hash Table manages data by distributing it across a number
of nodes and implementing a routing scheme which allows one to efficiently
look up the node on which a specific data item is located. In contrast to
flooding-based searches in unstructured systems, each node in a DHT be-
comes responsible for a particular range of data items. Also, each node stores
a partial view of the whole distributed system which effectively distributes
the routing information. Based on this information, the routing procedure
typically traverses several nodes, getting closer to the destination with each
hop, until the destination node is reached.

Thus, Distributed Hash Tables follow a proactive strategy for data re-
trieval by structuring the search space and providing a deterministic routing
scheme. In comparison, the routing information in unstructured systems is
not related to the location of specific data items but only reflects connec-
tions between nodes. This reactive strategy results in queries being flooded
on demand throughout the network because routing cannot be directed to-
wards the lookup target. With a centralized system, the lookup strategy is
implicit: routing a query (above the IP level) is unnecessary since the lookup
procedure itself is confined to a single system.

7.2.2 Addressing in Distributed Hash Tables

Distributed Hash Tables introduce new address spaces into which data is
mapped. Address spaces typically consist of large integer values, e.g., the
range from 0 to 2160−1. Distributed Hash Tables achieve distributed indexing
by assigning a contiguous portion of the address space to each participating
node (Figure 7.6). Given a value from the address space, the main operation
provided by a DHT system is the lookup function, i.e., to determine the node
responsible for this value.

Distributed Hash Table approaches differ mainly in how they internally
manage and partition their address space. In most cases, these schemes lend
themselves to geometric interpretations of address spaces. As a simple ex-
ample, all mathematical operations on the address space could be performed
modulo its number of elements, yielding a ring-like topology.

7.2 Fundamentals of Distributed Hash Tables 87

H(Node Y)=3485

3485 -
610

1622 -
2010

611 -
709

2011 -
2206

2207-
2905

(3485 -
610)

2906 -
3484

1008 -
1621

Y

X

2m-1 0

Often, the address
space is viewed as
a circle.

Data item “D”:
H(“D”)=3107 H(Node X)=2906

Fig. 7.6: A linear address space with integer values ranging from 0 to 65,535. The
address space is partitioned among eight peers.

In a DHT system, each data item is assigned an identifier ID, a unique
value from the address space. This value can be chosen freely by the applica-
tion, but it is often derived from the data itself via a collision-resistant hash
function, such as SHA-1 [207]. For example, the ID of a file could be the
result of hashing the file name or the complete binary file. Thus, the DHT
would store the file at the node responsible for the portion of the address
space which contains the identifier.

The application interfaces of Distributed Hash Tables abstract from these
details and provide simple but generic operations. Based on the lookup func-
tion, most DHTs also implement a storage interface similar to a hash table.
Thus, the put function accepts an identifier and arbitrary data (e.g., the hash
value of a file and the file contents) to store the data (on the node responsible
for the ID). This identifier and the data is often referred to as (key,value)-
tuple. Symmetrically, the get function retrieves the data associated with a
specified identifier.

With this generic interface and the simple addressing scheme, Distributed
Hash Tables can be used for a wide variety of applications. Applications are
free to associate arbitrary semantics with identifiers, e.g., hashes of search
keywords, database indexes, geographic coordinates, hierarchical directory-
like binary names, etc. Thus, such diverse applications as distributed file
systems, distributed databases, and routing systems have been developed on
top of DHTs (see Chapters 11 and 12) [526, 367, 574, 373].

Most DHT systems attempt to spread the load of routing messages and
of storing data on the participating nodes evenly (Chapter 9) [513, 450].
However, there are at least three reasons why some nodes in the system may
experience higher loads than others: a node manages a very large portion of
the address space, a node is responsible for a portion of the address space with
a very large number of data items, or a node manages data items which are
particularly popular. Under these circumstances, additional load-balancing
mechanisms can help to spread the load more evenly over all nodes. For

88 7. Distributed Hash Tables

Logical view of the
Distributed Hash Table

Mapping on the
real topology

2207

2906
3485

201116221008
709

611

Fig. 7.7: Overall and underlay view of a Distributed Hash Table.

example, a node may transfer responsibility for a part of its address space to
other nodes, or several nodes may manage the same portion of address space.
Chapter 9 discusses load-balancing schemes in more detail.

7.2.3 Routing

Routing is a core functionality of Distributed Hash Tables. Based on a routing
procedure, messages with their destination IDs are delivered to the DHT node
which manages the destination ID. Thus, it is the routing algorithms of DHTs
which solve the lookup problem.

Existing DHT systems implement a large variety of approaches to routing.
However, the fundamental principle is to provide each node with a limited
view of the whole system by storing on it a bounded number of links to
other nodes. When a node receives a message for a destination ID it is not
responsible for itself, it forwards the message to one of these other nodes.
This process is repeated recursively until the destination node is found.

The choice of the next-hop node is determined by the routing algorithm
and the routing metric. A typical metric is that of numeric closeness: mes-
sages are always forwarded to the node managing the identifiers numerically
closest to the destination ID of the message. Ideally, such a scheme reliably
routes a message to its destination in a small number of hops. Obviously, it is
challenging to design routing algorithms and metrics such that node failures
and incorrect routing information have limited or little impact on routing
correctness and system stability.

7.3 DHT Mechanisms 89

D
D

134.2.11.68

2207

29063485

201116221008709

611

HSHA-1(„D“)=3107

D

(a) Direct Storage

2207

29063485

201116221008709

611

HSHA-1(„D“)=3107

Item D: 134.2.11.68D

134.2.11.68

(b) Indirect Storage

Fig. 7.8: Two methods of storing data in Distributed Hash Tables.

7.2.4 Data Storage

There are two possibilities for storing data in a Distributed Hash Table.
In a Distributed Hash Table which uses direct storage, the data is copied
upon insertion to the node responsible for it (Figure 7.8(a)). The advantage
is that the data is located directly in the Peer-to-Peer system and the node
which inserted it can subsequently leave the DHT without the data becoming
unavailable. The disadvantage is the overhead in terms of storage and network
bandwidth. Since nodes may fail, the data must be replicated to several nodes
to increase its availability. Additionally, for large data, a huge amount of
storage is necessary on every node.

The other possibility is to store references to the data. The inserting node
only places a pointer to the data into the Distributed Hash Table. The data
itself remains on this node, leading to reduced load in the DHT (Figure
7.8(a)). However, the data is only available as long as the node is available.

In both cases, the node using the Distributed Hash Table for lookup pur-
poses does not have to be part of the Distributed Hash Table in order to use
its services. This allows to realize a DHT service as third-party infrastructure
service, such as the OpenDHT Project [511].

7.3 DHT Mechanisms

Storage and retrieval of distributed data is the main purpose of Distributed
Hash Tables. In this section, common mechanisms for the management of
data and nodes in Distributed Hash Tables are discussed. These tasks address
the insertion and retrieval of data and the arrival, departure, and failure of
nodes.

90 7. Distributed Hash Tables

7.3.1 Overview

To store or access data in a Distributed Hash Table, a node first needs to join
it. The arrival of new nodes leads to changes in the DHT infrastructure, to
which the routing information and distribution of data needs to be adapted.
At this stage, the new node can insert data items into the Distributed Hash
Table and retrieve data from it. In case a node fails or leaves the system, the
DHT needs to detect and adapt to this situation.

7.3.2 Node Arrival

It takes four steps for a node to join a Distributed Hash Table. First, the
new node has to get in contact with the Distributed Hash Table. Hence, with
some bootstrap method it gets to know some arbitrary node of the DHT. This
node is used as an entry point to the DHT until the new node is an equivalent
member of the DHT. Then, the new node needs to be assigned a partition
in the logical address space. Depending on the DHT implementation, a node
may choose arbitrary or specific partitions on its own or it determines one
based on the current state of the system. Third, the routing information in
the system needs to be updated to reflect the presence of the new node.
Fourth, the new node retrieves all (key, value) pairs under its responsibility
from the node that stored them previously.

7.3.3 Node Failure

Node failures must be assumed to occur frequently in distributed systems
consisting of many unreliable and often poorly connected desktop machines.
Thus, all non-local operations in a Distributed Hash Table need to resist
failures of other nodes. This reflects the self-organizing design of DHT algo-
rithms. They have to be designed to always fulfill their purpose and deal with
all likely events and disruptions that may happen.

For example, routing and lookup procedures are typically designed to use
alternative routes towards the destination when a failed node is encountered
on the default route. This is an example of reactive recovery, i.e., a fault is
handled during a regular DHT operation. Many Distributed Hash Tables also
feature proactive recovery mechanisms, e.g., to maintain their routing infor-
mation. Consequently, they periodically probe other nodes to check whether
these nodes are still operational. If they are not, the corresponding routing
entry is replaced with a working node.

Furthermore, node failures lead to a re-partitioning of the DHT’s ad-
dress space. This may in turn require (key, value)-pairs to be moved be-
tween nodes and additional maintenance operations such as adaptation to

7.4 DHT Interfaces 91

Put(Key,Value) Get(Key)

Value

Distributed Application

Node 1 Node NNode 2Node 3

Distributed Hash Table
(CAN, Chord, Pastry, Tapestry, …)

Fig. 7.9: Interface of a Distributed Hash Table. With a simple put-/textsfget-
interface, the DHT simply abstracts from the distribution of data among
nodes.

new load-balancing requirements. When a node fails, the application data
that it stored is lost unless the Distributed Hash Table uses replication to
keep multiple copies on different nodes. Some Distributed Hash Tables fol-
low the simpler soft-state approach which does not guarantee persistence of
data. Data items are pruned from the Distributed Hash Table unless the
application refreshes them periodically. Therefore, a node failure leads to a
temporary loss of application data until the data is refreshed.

7.3.4 Node Departure

In principle, nodes which voluntarily leave a Distributed Hash Table could
be treated the same as failed nodes. However, DHT implementations often
require departing nodes to notify the system before leaving. This allows other
nodes to copy application data from the leaving node and to immediately up-
date their routing information leading to improved routing efficiency. When
triggered explicitly, replication and load-balancing mechanisms can also work
more efficiently and reliably.

7.4 DHT Interfaces

There are two angles from which the functionality of Distributed Hash Tables
can be viewed: they can be interpreted as routing systems or as storage
systems. The first interpretation focuses on the delivery of packets to nodes
in a DHT based on a destination ID. In the second, a Distributed Hash Table
appears as a storage system similar to a hash table. These notions are reflected
in the interface that a Distributed Hash Table provides to applications.

92 7. Distributed Hash Tables

7.4.1 Routing Interface

Routing in a Distributed Hash Table is performed in the logical address space
which is partitioned among the participating nodes. Any identifier from the
address space can serve as a destination address for a message. Thus, the
functionality provided by the DHT is to forward a message for an ID to the
node which is responsible for this identifier.

An interface with two primitives suffices to build distributed applications
on this foundation. The send primitive accepts a destination ID and a message
and delivers the message from an arbitrary node in the system to the node
which manages the destination ID. The receive primitive passes incoming
messages and their destination identifiers to the application on the receiving
node.

All other details of DHT management, such as node arrival and departure
or repair mechanisms, are implemented by the Distributed Hash Table itself
and are not exposed to the application. This generic, stateless interface imple-
ments little functionality but leaves a lot of flexibility to the application de-
sign. In particular, the storage and retrieval of data including load-balancing
strategies can be implemented on top of the routing interface.

7.4.2 Storage Interface

As a storage system, a Distributed Hash Table implements an interface for
persistently storing and reliably retrieving data in a distributed manner. On
each node, the application interface provides the two main primitives of a
hash table. The put primitive takes a (key, value) pair and stores it on the
node responsible for the identifier key. Similarly, the get primitive accepts an
identifier and returns the value associated with the specified identifier.

The implementation of this interface adds to a Distributed Hash Table
another level of complexity beyond correct and efficient routing. The storage
layer needs to deal with routing failures, prevent data loss from node failure
through replication, achieve load-balancing, provide accounting and admis-
sion control, etc. DHT implementations use different solutions to address
these problems as described in Chapter 8.

7.4.3 Client Interface

Given the above interfaces, a node can only utilize its primitives after joining
a Distributed Hash Table. However, a distributed system can also be struc-
tured such that the nodes participating in the DHT make available the DHT
services to other, non-participating hosts. In such an environment, these hosts
act as clients of the DHT nodes. This setup can be desirable where, for ex-
ample, the Distributed Hash Table is run as an infrastructure service on a
dedicated set of nodes for increased reliability. The interface between clients

7.5 Conclusions 93

and DHT nodes is also well-suited to realize access control and accounting
for services available on the Distributed Hash Table. Note that this interface
can itself be implemented as an application on top of the DHT routing or
storage layer.

7.5 Conclusions

Distributed Hash Tables provide an efficient layer of abstraction for routing
and managing data in distributed systems. By spreading routing information
and data across multiple nodes, the scalability issues of centralized systems
are avoided while data retrieval is significantly more efficient than in unstruc-
tured Peer-to-Peer networks. Also, the generic interface of Distributed Hash
Tables supports a wide spectrum of applications and uses.

DHT implementations, such as those discussed in Chapter 8, focus on
different conceptual and functional aspects. This is reflected in their different
properties, such as scalability, routing latency, fault tolerance, and adaptabil-
ity. Since the design of a Distributed Hash Table has to meet several, often
conflicting, goals, each system exhibits its own strengths and weaknesses in
different application scenarios.

Among these design challenges are:

– Routing efficiency: The latency of routing and lookup operations is in-
fluenced by the topology of the address space, the routing algorithm, the
number of references to other nodes, the awareness of the IP-level topology,
etc.

– Management overhead: The costs of maintaining the Distributed Hash Ta-
ble under no load depend on such factors as the number of entries in routing
tables, the number of links to other nodes, and the protocols for detecting
failures.

– Dynamics: A large number of nodes joining and leaving a Distributed Hash
Table – often referred to as “churn” – concurrently puts particular stress
on the overall stability of the system, reducing routing efficiency, incurring
additional management traffic, or even resulting in partitioned or defective
systems.

Distributed Hash Tables also face fundamental challenges related to the
principle of distributed indexing. For example, it is not clear how Distributed
Hash Tables can operate reliably in an untrusted environment with Byzantine
faults, i.e., when participating nodes are non-cooperative or malicious and
damage the system. Furthermore, data retrieval in Distributed Hash Tables is
based on numeric identifiers. Thus, query metrics based on tokens of strings or
any other arbitrary data as well as fuzzy searches are very difficult to achieve
efficiently. Among others, it is these challenges that will drive research in the
area of Distributed Hash Tables in the future.

	7.1 Distributed Management and Retrieval of Data
	7.2 Fundamentals of Distributed Hash Tables
	7.3 DHT Mechanisms
	7.4 DHT Interfaces
	7.5 Conclusions

