
Chapter 2

Operational Semantics

2.1 A First Look at Operational Semantics

The syntax of a programming language is the set of rules governing the formation of
expressions in the language. The semantics of a programming language is the meaning
of those expressions.

There are several forms of language semantics. Axiomatic semantics is a set of ax-
iomatic truths in a programming language. Denotational semantics involves modeling
programs as static mathematical objects, namely as set-theoretic functions with specific
properties. We, however, will focus on a form of semantics called operational semantics.

An operational semantics is a mathematical model of programming language execu-
tion. It is, in essence, an interpreter defined mathematically. However, an operational
semantics is more precise than an interpreter because it is defined mathematically, and
not based on the meaning of the programming language in which the interpreter is writ-
ten. This might sound sound like a pedantic distinction, but interpreters interpret e.g. a
language’s if statements with the if statement of the language the interpreter is written
in. This is in some sense a circular definition of if. Formally, we can define operational
semantics as follows.

Definition 2.1 (Operational Semantics). An operational semantics for a program-
ming language is a mathematical definition of its computation relation, e) v, where e

is a program in the language.

e) v is mathematically a 2-place relation between expressions of the language, e, and
values of the language, v. Integers and booleans are values. Functions are also values
because they don’t compute to anything. e and v are metavariables, meaning they
denote an arbitrary expression or value, and should not be confused with the (regular)
variables that are part of programs.

An operational semantics for a programming language is a means for understanding in
precise detail the meaning of an expression in the language. It is the formal specification
of the language that is used when writing compilers and interpreters, and it allows us to
rigorously verify things about the language.

4

CHAPTER 2. OPERATIONAL SEMANTICS 5

2.2 BNF grammars and Syntax

Before getting into meaning we need to take a step back and first precisely define language
syntax. This is done with formal grammars. Backus-Naur Form (BNF) is a standard
grammar formalism for defining language syntax. You could well be familiar with BNF
since it is often taught in introductory courses, but if not we provide a brief overview.
All BNF grammars comprise terminals, nonterminals (aka syntactic categories), and
production rules. Terminals are traditionally identified using lower-case letters; non-
terminals are identified using upper-case letters. Production rules describe how non-
terminals are defined. The general form of production rules is:

hnonterminali ::= hform 1i | · · · | hform ni

where each “form” above describes a particular language form – that is, a string of
terminals and non-terminals. A term in the language is a string of terminals which
matches the description of one of these rules (traditionally the first).

For example, consider the language Sheep. Let {S} be the set of nonterminals, {a, b}
be the set of terminals, and the grammar definition be:

S ::= b | Sa

Note that this is a recursive definition. Examples of terms in Sheep are

b, ba, baa, baaa, baaaa, . . .

That is, any string starting with the character b and followed by zero or more a characters
is a term in Sheep. The following are examples that are not terms in SHEEP:

• a: Terms in Sheep must start with a b.

• bbaaa: Sheep does not allow multiple b characters in a term.

• baah: h is not a terminal in Sheep.

• Saaa: S is a non-terminal in Sheep. Terms may not contain non-terminals.

Another way of expressing a grammar is by the use of a syntax diagram. Syntax
diagrams describe the grammar visually rather than in a textual form. For example, the
following is a syntax diagram for the language Sheep:

b

S a

S

The above syntax diagram describes all terms of the Sheep language. To generate
a form of S, one starts at the left side of the diagram and moves until one reaches the
right. The rectangular nodes represent non-terminals while the rounded nodes represent
terminals. Upon reaching a non-terminal node, one must construct a term using that
non-terminal to proceed.

CHAPTER 2. OPERATIONAL SEMANTICS 6

As another example, consider the language Frog. Let {F,G} be the set of nontermi-
nals, {r, i, b, t} be the set of terminals, and the grammar definition be:

F ::= rF | iG
G ::= bG | bF | t

Note that this is a mutually recursive definition. Note also that each production rule
defines a syntactic category. Terms in FROG include:

ibit, ribbit, ribibibbbit . . .

The following terms are not terms in Frog:

• rbt: When a term in Frog starts with r, the following non-terminal is F . The
non-terminal F may only be exapnded into rF or iG, neither of which start with
b. Thus, no string starting with rb is a term in Frog.

• rabbit: a is not a terminal in Frog.

• rrrrrrF : F is a non-terminal in Frog; terms may not contain non-terminals.

• bit: The only forms starting with b appear as part of the definition of G. As F is
the first non-terminal defined, terms in Frog must match F (which does not have
any forms starting with b).

The following syntax diagram describes Frog:

r F

i G

F

b G

b F

t

G

2.2.1 Operational Semantics for Logic Expressions

In order to get a feel for what an operational semantics is and how it is defined, we will
now examine the operational semantics for a very simple language: propositional boolean
logic with no variables. The syntax of this language is as follows. An expression e is
recursively defined to consist of the values True and False, and the expressions e And e,
e Or e, e Implies e, and Not e.1 This syntax is known as the concrete syntax,

1Throughout the book we use syntax very similar to Caml in our toy languages, but with the conven-
tion of capitalizing keywords to avoid potential conflicts with the Caml language.

CHAPTER 2. OPERATIONAL SEMANTICS 7

because it is the syntax that describes the textual representation of an expression in the
language. We can express it in a BNF grammar as follows:

e ::= v | Not e | (e And e) | (e Or e) | (e Implies e) expressions
v ::= True | False values

The following is an equivalent syntax diagram:

v

Not e

e And e

e Or e

e Implies e

e

True

False

v

Note that the syntax above breaks tradition somewhat by using lower-case letters
for non-terminals. Terminals are printed in fixed-width font. The rationale for this is
consistency with the metavariables we will be using in operational semantics below and
will become clear shortly.

We can now discuss the operational semantics of the boolean language. Operational
semantics are written in the form of logic rules, which are written as a series of pre-
conditions above a horizontal line and the conclusion below it. For example, the logic
rule

(Apple Rule)
Red(x) Shiny(x)

Apple(x)

indicates that if a thing is red and shiny, then that thing is an apple. This is, of course, not
true; many red, shiny things exist which are not apples. Nonetheless, it is a valid logical
statement. In our work, we will be defining logical rules pertaining to a programming
language; as a result, we have control over the space in which the rules are constructed.
We need not necessarily concern ourselves with intuitive sense so long as the programming
language has a mathematical foundation.

Operational semantics rules discuss how pieces of code evaluate. For example, let us
consider the And rule. We may define the following rule for And:

(And Rule (Try 1))
True And False) False

CHAPTER 2. OPERATIONAL SEMANTICS 8

This rule indicates that the boolean language code True And False evaluates to
False. The absence of any preconditions above the line means that no conditions must
be met; this operational semantics rule is always true. Rules with nothing above the line
are termed axioms since they have no preconditions and so the conclusion always holds.

As a rule, though, it isn’t very useful. It only evaluates a very specific program.
This rule does not describe how to evaluate the program True And True, for instance.
In order to generalize our rules to describe a full language and not just specific terms
within the language, we must make use of metavariables.

To maintain consistency with the above BNF grammar, we use metavariables starting
with e to represent expressions and metavariables starting with v to represent values.
We are now ready to make an attempt at describing every aspect of the And operator
using the following new rule:

(And Rule (Try 2))
v1 And v2) the logical and of v1 and v2

Using this rule, we can successfully evaluate True And False, True and True, and
so on. Note that we have used a textual description to indicate the value of the expression
v1 And v2; this is permitted, although most rules in more complex languages will not
use such descriptions.

We very quickly encounter limitations in our approach, however. Consider the pro-
gram True And (False And True). If we tried to apply the above rule to that program,
we would have v1 = True and v2 = (False And True). These two values cannot be ap-
plied to logical and as (False and True) is not a boolean value; it is an expression.
Our boolean language rule does not allow for cases in which the operands to And are
expressions. We therefore make another attempt at the rule:

(And Rule (Try 3))
e1) v1 e2) v2

e1 And e2) the logical and of v1 and v2

This rule is almost precisely what we want; in fact, the rule itself is complete. Intu-
itively, this rule says that e1 And e2 evaluates to the logical and of the values represented
by e1 and e2. But consider again the program True And False, which we expect to
evaluate to False. We can see that e1 = True and that e2 = False, but our evaluation
relation does not relate v1 or v2 to any value. This is because, strictly speaking, we do
not know that True) True.

Of course, we would like that to be the case and, since we are in the process of
defining the language, we can make it so. We simply need to declare it in an operational
semantics rule.

(Value Rule)
v) v

CHAPTER 2. OPERATIONAL SEMANTICS 9

The value rule above is an axiom declaring that any value always evaluates to itself.
This satisfies our requirement and allows us to make use of the And rule. Using this
formal logic approach, we can now prove that True And (False And True)) False

as follows:

True) True
False) False True) True

False And True) False
True And (False And True)) False

One may read the above proof tree as an explanation as to why True And (False

And True) evaluates to False. We can choose to read that proof as follows: “True And

(False And True) evaluates to False by the And rule because we know True evaluates
to True, that False And True evaluates to False, and that the logical and of true and
false is false. We know that False And True evaluates to False by the And rule because
True evaluates to True, False evaluates to False, and the logical and of true and false
is false.”

An equivalent and similarly informal format for the above is:

True And (False And True)) False, because by the And rule
True) True, and
(False And True)) False, the latter because

True) True, and
False) False

The important thing to note about all three of these representations is that they are
describing a proof tree. The proof tree consists of nodes which represent the application
of logical rules with preconditions as their children. To complete our boolean language,
we define the) relation using a complete set of operational semantics rules:

(Value Rule)
v) v

(Not Rule)
e) v

Not e) the negation of v

(And Rule)
e1) v1 e2) v2

e1 And e2) the logical and of v1 and v2

The rules for Or and Implies are left as an exercise to the reader (see Exercise 2.4).
These rules form a proof system as is found in mathematical logic. Logical rules

express incontrovertible logical truths. A proof of e) v amounts to constructing a
sequence of rule applications such that, for any given application of a rule, the items
above the line appeared earlier in the sequence and such that the final rule application
is e) v. A proof is structurally a tree, where each node is a rule, and the subtree rules
have conclusions which exactly match what the parent’s assumptions are. For a proof

CHAPTER 2. OPERATIONAL SEMANTICS 10

tree of e) v, the root rule has as its conclusion e) v. Note that all leaves of a proof
tree must be axioms. A tree with a non-axiom leaf is not a proof.

Notice how the above proof tree is expressing how this logic expression could be
computed. Proofs of e) v corresponds closely to how the execution of e produces the
value v as result. The only di↵erence is that “execution” starts with e and produces the
v, whereas a proof tree describes a relation between e and v, not a function from e to v.

Lemma 2.1. The boolean language is deterministic: if e) v and e) v

0, then v = v

0.

Proof. By induction on the height of the proof tree.

Lemma 2.2. The boolean language is normalizing: For all boolean expressions e, there
is some value v where e) v.

Proof. By induction on the size of e.

When a proof e) v can be constructed for some program e, we say that e converges.
When no such proof exists, e diverges. Because the boolean language is normalizing, all
programs in that language are said to converge. Some languages (such as Caml) are not
normalizing; there are syntactically legal programs for which no evaluation proof exists.
An example of a Caml program which is divergent is let rec f x = f x in f 0;;.

2.2.2 Abstract Syntax

Our operational semantics rules have expressed the evaluation relation in terms of con-
crete syntax using metavariables. Operators, such as the infix operator And, have ap-
peared in textual format. This is a good representation for humans to read because it
appeals to our intuition; it is not, however, an ideal computational representation. We
read True And False as “perform a logical and with operands True and False”. We
read True And (False And True) as “perform a logical and with operands False and
True and then perform a logical and with operands True and the result of the last oper-
ation.” If we are to write programs (such as interpreters) to work with our language, we
need a representation which more accurately describes how we think about the program.

The abstract syntax of a language is such a representation. A term in an abstract
syntax is represented as a syntax tree in which each operation to be performed is a
node and each operand to that operation is a child of that node. In order to represent
abstract syntax trees for the boolean language, we might use the following Caml data
type:

type boolexp =

True | False |

Not of boolexp |

And of boolexp * boolexp |

Or of boolexp * boolexp |

Implies of boolexp * boolexp;;

To understand how the abstract and concrete syntax relate, consider the following
examples:

CHAPTER 2. OPERATIONAL SEMANTICS 11

Example 2.1.

Concrete:
True

Abstract:
True

True

Example 2.2.

Concrete:
True And False

Abstract:
And(True, False)

And

True False

Example 2.3.

Concrete:
(True And False) Implies

((Not True) And False)

Abstract:
Implies(And(True,False) ,

And(Not(True),False))

Implies

And

True False

And

Not

True

False

There is a simple and direct relationship between the concrete syntax of a language
and the abstract syntax. As mentioned above, the abstract syntax is a form which more
directly represents the operations being performed whereas the concrete syntax is the
form in which the operations are actually expressed. Part of the process of compiling
or interpreting a program is to translate the concrete syntax term (source file) into an
abstract syntax term (AST) in order to manipulate it. We define a relation JcK = a

to map concrete syntax form c to abstract syntax form a (in this case for the boolean
language):

JTrueK = True

JFalseK = False

JNot eK = Not(e)

Je1 And e2K = And(Je1K, Je2K)
Je1 Or e2K = Or(Je1K, Je2K)

Je1 Implies e2K = Implies(Je1K, Je2K)

For example, this relation indicates the following:

CHAPTER 2. OPERATIONAL SEMANTICS 12

J(True And False) Implies ((Not True) And False)K
= Implies(JTrue And FalseK, J(Not True) And FalseK)

= Implies(And(JTrueK, JFalseK), And(JNot TrueK, JFalseK))

= Implies(And(True, False), And(Not(JTrueK), False))

= Implies(And(True, False), And(Not(True), False))

A particularly astute reader will have noticed that the parentheses in the expressions
handled until now were not explicitly addressed. This is because parentheses and other
parsing meta-operators are not traditionally mentioned in the operational semantics of a
language. Such operators merely have the e↵ect of grouping operations. For example, let
us assume that binary operations in our boolean language are left-associative; thus, the
expressions True Or True And False and (True Or True) And False are equivalent.
Consider the following examples:

Example 2.4.

Concrete:
True Or True And False

Abstract:
And(Or(True,True),False)

And

Or False

True True

True) True True) True
True Or True) True False) False

True Or True And False) False

Example 2.5.

Concrete:
True Or (True And False)

Abstract:
Or(True,And(True,False))

Or

True And

True False

True) True
True) True False) False

True And False) False
True Or (True And False)) True

The expression in example 2.4 will evaluate to False because one must evaluate the Or
operation first and then evaluate the And operation using the result. Example 2.5, on the
other hand, performs the operations in the opposite order. Note that in both examples,
though, the parentheses themselves are no longer overtly present in the abstract syntax.

CHAPTER 2. OPERATIONAL SEMANTICS 13

This is because they are implicitly represented in the structure of the AST; that is, the
AST in example 2.5 would not have the shape that it has if the parentheses were not
present in the concrete syntax of the form.

In short, parentheses merely change how expressions are grouped. In example 2.5, the
only rule we can match to the entire expression is the Or rule; the And rule obviously can’t
match because the left parentheses would be part of e1 while the right parenthesis would
be part of e2 (and expressions with unmatched parentheses make no sense). Similarly but
less obviously, example 2.4 can only match the And rule; the associativity implicitly forces
the Or rule to happen first, giving the And operator that entire expression to evaluate.
This distinction is clearly and correspondingly represented in the ASTs of the examples,
a fact which is key to the applicability of operational semantics.

2.2.3 Operational Semantics and Interpreters

As alluded above, there is a very close relationship between an operational semantics
and an actual interpreter written in Caml. Given an operational semantics defined via
the relation), there is a corresponding (Caml) evaluator function eval.

Definition 2.2 (Faithful Implementation). A (Caml) interpreter function eval faithfully
implements an operational semantics e) v if:
e) v if and only if eval(JeK) returns result JvK.

To demonstrate this relationship, we will demonstrate the creation of an eval function
in Caml. Our first draft of the function will, for sake of simplicity, only consist of the
And rule and the value rule:

let eval exp =

match exp with

| True -> True

| False -> False

| And(exp0 ,exp1) ->

begin

match (exp0 , exp1) with

| (True ,True) -> True

| (_,False) -> False

| (False ,_) -> False

end

At first glance, this function appears to have the behavior we desire. True evaluates to
True, False to False, and True And False to False. This is not, however, a complete
implementation.

To find out why, consider the concrete term True And True And True. As we have
seen before, this translates to the abstract term And(And(True,True),True). When the
eval function receives that value as its parameter, it matches the value to the case And

and defines exp0 and exp1 as And(True,True) and True, respectively. We then enter the
inner match, and this match fails! None of the terms can match the tuple (exp0,exp1)
because exp0 is an entire expression and not just a value, as the match expression is
expecting.

CHAPTER 2. OPERATIONAL SEMANTICS 14

Looking back at our attempts to write the And rule above, we can see why this eval
function is flawed: this version of the function does not consider the operands of And

to be expressions - it expects them to be values. We can see, then, that the And clause
in our function is a faithful implementation of Try 2 of our And rule, a rule which we
rejected precisely because it could not handle nested expressions.

How can we correct this problem? We are trying to write a faithful implementation of
our final And rule, which relies on the evaluation of the And rule’s operands. Thus, in our
implementation, we must evaluate those operands; we make this possible by declaring
our evaluation function to be recursive.

let rec eval exp =

match exp with

| True -> True

| False -> False

| And(exp0 ,exp1) ->

begin

match (eval exp0 , eval exp1) with

| (True ,True) -> True

| (_,False) -> False

| (False ,_) -> False

end

Observe that, in the above code, we have changed very little. We modified the eval
function to be recursive. We also added a call to eval for each of the operands to the
And operation. That call alone is su�cient to fix the problem; the process of evaluating
those arguments represents the e1) v1 and e2) v2 preconditions on the And rule, while
the use of the resultings values in the tuple causes the match to be against v1 and v2

rather than e1 and e2. The above code is a faithful implementation of the value rule and
the And rule.

We can now complete the boolean language interpreter by continuing the eval fuction
in the same form:

let rec eval exp =

match exp with

True -> True

| False -> False

| Not(exp0) -> (match eval exp0 with

True -> False

| False -> True)

| And(exp0 ,exp1) -> (match (eval exp0 , eval exp1) with

(True ,True) -> True

| (_,False) -> False

| (False ,_) -> False)

| Or(exp0 ,exp1) -> (match (eval exp0 , eval exp1) with

(False ,False) -> False

| (_,True) -> True

| (True ,_) -> True)

CHAPTER 2. OPERATIONAL SEMANTICS 15

| Implies(exp0 ,exp1) -> (match (eval exp0 , eval exp1) with

(False ,_) -> True

| (True ,True) -> True

| (True ,False) -> False)

The only di↵erence between the operational semantics and the interpreter is that
the interpreter is a function. We start with the bottom-left expression in a rule, use
the interpreter to recursively produce the value(s) above the line in the rule, and finally
compute and return the value below the line in the rule.

Note that the boolean language interpreter above faithfully implements its opera-
tional semantics: e) v if and only if eval(JeK) returns JvK as result. We will go back
and forth between these two forms throughout the book. The operational semantics
form is used because it is independent of any particular programming language. The
interpreter form is useful because we can interpret real programs for nontrivial numbers
of steps, something that is di�cult to do “on paper” with an operational semantics.

Definition 2.3 (Metacircular Interpreter). A metacircular interpreter is an inter-
preter for (possibly a subset of) a language x that is written in language x.

Metacircular interpreters give you some idea of how a language works, but su↵er
from the non-foundational problems implied in Exercise 2.5. A metacircular interpreter
for Lisp (that is, a Lisp interpreter written in Lisp) is a classic programming language
theory exercise.

2.3 The F[Programming Language

Now that we have seen how to define and understand operational semantics, we will
begin to study our first programming language: F[. F[is a shunk (flattened) pure func-
tional programming language. 2 It has integers, booleans, and higher-order anonymous
functions. In most ways F[is much weaker than Caml: there are no reals, lists, types,
modules, state, or exceptions.

F[is untyped, and in this way is it actually more powerful than Caml. It is possible to
write some programs in F[that produce no runtime errors, but which will not typecheck
in Caml. For instance, our encoding of recursion in Section 2.3.5 is not typeable in Caml.
Type systems are discussed in Chapter 6. Because there are no types, runtime errors
can occur in F[, such as the application (5 3).

Although very simplistic, F[is still Turing-complete. The concept of Turing-
completeness has been defined in numerous equivalent ways. One such definition is as
follows:

Definition 2.4 (Turing Completeness). A computational model is Turing-complete if
every partial recursive function can be expressed within it.

2Also, any readers familiar with the programming language C] as well as basic music theory should
find this at least a bit humorous.

CHAPTER 2. OPERATIONAL SEMANTICS 16

This definition, of course, requires a definition of partial recursive functions (also
known as computable functions). Without going into an extensive discussion of founda-
tional material, the following somewhat informal definition will su�ce:

Definition 2.5 (Partial Recursive Function). A function is a partial recursive function
if an algorithm exists to calculate it which has the following properties:

• The algorithm must have as its input a finite number of arguments.

• The algorithm must consist of a finite number of steps.

• If the algorithm is given arguments for which the function is defined, it must produce
the correct answer within a finite amount of time.

• If the algorithm is given arguments for which the function is not defined, it must
either produce a clear error or otherwise not terminate. (That is, it must not appear
to have produced an incorrect value for the function if no such value is defined.)

The above definition of a partial recursive function is a mathematical one and thus
does not concern itself with execution-specific details such as storage space or practical
execution time. No constraints are placed against the amount of memory a computer
might need to evaluate the function, the range of the arguments, or that the function
terminate before the heat death of the universe (so long as it would eventually terminate
for all inputs for which the function is defined).

The practical significance of Turing-completeness is this: there is no computation
that could be expressed in another deterministic programming language that cannot be
expressed in F[.3 In fact, F[is even Turing-complete without numbers or booleans. This
language, one with only functions and application, is known as the pure lambda-calculus
and is discussed briefly in Section 2.4.4. No deterministic programming language can
compute more than the partial recursive functions.

2.3.1 F[Syntax

We will take the same approach in defining F[as we did in defining the boolean language
above. We start by describing the grammar of the F[language to define its concrete
syntax; the abstract syntax is deferred until Section 2.3.7. We can define the grammar
of F[using the following BNF:

3This does not guarantee that the F[representation will be pleasant. Programs written in F[to
perform even fairly simplistic computations such as determining if one number is less than another are
excruciating, as we will see shortly.

CHAPTER 2. OPERATIONAL SEMANTICS 17

x ::= (a | b | . . . | z) lower-case letters
(A | B | . . . | Z capital letters
| a | b | . . . | z lower-case letters
| 0 | 1 | . . . | 9 digits
| _ | ’ | · · ·)⇤ other characters

v ::= x variable values
| True | False boolean values
| 0 | 1 | -1 | 2 | -2 | . . . integer values
| Function x ! e function values

e ::= v value expressions
| (e) parenthesized expressions
| e And e | e Or e | Not e boolean expressions
| e + e | e - e | e = e | numerical expression
| e e application expression
| If e Then e Else e conditional expressions
| Let Rec f x = e1 In e2 recursive let expression

Note that in accordance with the above BNF, we will be using metavariables e, v,
and x to represent expressions, values, and variables respectively. Note the last point:
the metavariable x refers to an arbitrary F[variable, not necessarily to the F[variable
x.

Associativity in F[works in a fashion very similar to OCaml. Function application,
for instance, is left associative, meaning that a b c has the same meaning as (a b) c.
As with any language, this associativity is significant in that it a↵ects how source code
is parsed into an AST.

2.3.2 Variable Substitution

The main feature of F[is higher-order functions, which also introduces variables. Recall
that programs are computed by rewriting them:

(Function x -> x + 2)(3 + 2 + 5)) 12

because
3 + 2 + 5) 10

because
3 + 2) 5

and
5 + 5) 10

and
10 + 2) 12

Note how in this example, the argument is substituted for the variable in the body—this
gives us a rewriting interpreter. In other words, F[functions compute by substituting
the actual argument for the for parameter; for example,

(Function x -> x + 1) 2

CHAPTER 2. OPERATIONAL SEMANTICS 18

will compute by substituting 2 for x in the function’s body x+1, i.e. by computing 2+1.
This is not a very e�cient method of computing, but it is a very simple and accurate
description method, and that is what operational semantics is all about – describing
clearly and unabmiguously how programs are to compute.

Bound and Free Occurrences of Variables We need to be careful about how
variable substitution is defined. For instance,

(Function x -> Function x -> x) 3

should not evaluate to Function x -> 3 since the inner x is bound by the inner param-
eter. To correctly formalize this notion, we need to make the following definitions.

Definition 2.6 (Variable Occurrence). A variable use x occurs in e if x appears some-
where in e. Note we refer only to variable uses, not definitions.

Definition 2.7 (Bound Occurrence). Any occurrences of variable x in the expression

Function x -> e

are bound, that is, any free occurrences of x in e are bound occurrences in this expression.
Similarly, in the expression

Let Rec f x = e1 In e2

occurrences of f and x are bound in e1 and occurrences of f are bound in e2. Note that
x is not bound in e2, but only in e1, the body of the function.

Definition 2.8 (Free Occurrence). A variable x occurs free in e if it has an occurrence
in e which is not a bound occurrence.

Let’s look at a few examples of bound versus free variable occurrences.

Example 2.6.

Function x -> x + 1

x is bound in the body of this function.

Example 2.7.

Function x -> Function y -> x + y + z

x and y are bound in the body of this function. z is free.

CHAPTER 2. OPERATIONAL SEMANTICS 19

Example 2.8.

Let z = 5 In Function x -> Function y -> x + y + z

x, y, and z are all bound in the body of this function. x and y are bound by
their respective function declarations, and z is bound by the Let statement. Note
that F[does not contain Let as syntax, but it can be defined as a macro, in Section
2.3.4 below, and from that it is clear that binding rules work similarly for Functions
and Let statements.

Example 2.9.

Function x -> Function x -> x + x

x is bound in the body of this function. Note that both x usages are bound
to the inner variable x.

Definition 2.9 (Closed Expression). An expression e is closed if it contains no free
variable occurrences. All programs we execute are closed (no link-time errors) – non-
closed programs don’t diverge, we can’t even contemplate executing them because they are
not in the domain of the evaluation relation.

Of the examples above, Examples 2.6, 2.8, and 2.9 are closed expressions. Example
2.7 is not a closed expression.

Now that we have an understanding of bound and free variables, we can give a formal
definition of variable substitution.

Definition 2.10 (Variable Substitution). The variable substitution of x for e

0 in e,
denoted e[e0/x], is the expression resulting from the operation of replacing all free occur-
rences of x in e with e

0. For now, we assume that e0 is a closed expression.

Here is an equivalent inductive definition of substitution:

x[v/x] = v

x

0[v/x] = x

0
x 6= x

0

(Function x ! e)[v/x] = (Function x ! e)
(Function x

0 ! e)[v/x] = (Function x

0 ! e[v/x]) x 6= x

0

n[v/x] = n for n 2 Z
True[v/x] = True

False[v/x] = False

(e1 + e2)[v/x] = e1[v/x] + e2[v/x]
(e1 And e2)[v/x] = e1[v/x] And e2[v/x]

...

For example, let us consider a simple application of a function: (Function x -> x +

1) 2. We know that, to evaluate this function, we simply replace all instances of x in
the body with 2. This is written (x + 1)[2/x]. Given the above definition, we can
conclude that the result must be 3.

CHAPTER 2. OPERATIONAL SEMANTICS 20

While this may not seem like an illuminating realization, the fact that this is mathe-
matically discernable gives us a starting point for more complex subsitutions. Consider
the following example.

Example 2.10.

Expression:
(Function x -> Function y -> (x + x + y)) 5

Substitution:
(Function y -> (x + x + y))[5/x]
= (Function y -> (x + x + y)[5/x])
= Function y -> (x[5/x] + x[5/x] + y[5/x])
= Function y -> (5 + 5 + y)

↵-conversion

In Example 2.9, we saw that it is possible for two variables to share the same name. The
variables themselves are, of course, distinct and follow the same rules of scope in F[as
they do in Caml. But reading expressions which make frequent use of the same variable
name for di↵erent variables can be very disorienting. For example, consider the following
expression.

Let Rec f x =

If x = 1 Then

(Function f -> f (x - 1)) (Function x -> x)

Else

f (x - 1)

In f 100

How does this expression evaluate? It is a bit di�cult to tell simply by looking at it
because of the tricky bindings. We can make it much easier to understand by using
di↵erent names. ↵-conversion is the process of replacing a variable definition and all
occurrences bound to it with a variable of a di↵erent name.

Example 2.11.
Function x -> x + 1

becomes
Function z -> z + 1

Example 2.11 shows a simple case in which x is substituted for z. For cases in which
the same variable name is used numerous times, we can use the same approach. Consider
Example 2.12 in which the inner variable x is ↵-converted to z.

Example 2.12.
Function x -> Function x -> x

becomes
Function x -> Function z -> z

Similarly, we could rename the outer variable to z as shown in Example 2.13. Note
that in this case, the occurrence of x is not changed, as it is bound by the inner variable
and not the outer one.

CHAPTER 2. OPERATIONAL SEMANTICS 21

Example 2.13.
Function x -> Function x -> x

becomes
Function z -> Function x -> x

Let’s figure out what variable occurrences are bound to which function in our previous
confusing function and rewrite the function in a clearer way by using ↵-conversion. One
possible result is as follows:

Let Rec f x =

If x = 1 Then

(Function z -> z (x - 1)) (Function y -> y)

Else

f (x - 1)

In f 100

Now it’s much easier to understand what is happening. If the function f is applied
to an integer which is not 1, it merely applies itself again to the argument which is one
less than the one it received. Since we are evaluating f 100, that results in f 99, which
in turn evaluates f 98, and so on. Eventually, f 1 is evaluted.

When f 1 is evaluated, we explore the other branch of the If expression. We know
that x is 1 at this point, so we can see that the evaluated expression is (Function z ->

z 0) (Function y -> y). Using substitution gives us (Function y -> y) 0, which in
turn gives us 0. So we can conclude that the expression above will evaluate to 0.

Observe, however, that we did not formally prove this; so far, we have been treating
substitution and other operations in a cavalier fashion. In order to create a formal proof,
we need a set of operational semantics which dictates how evaluation works in F[. Section
2.3.3 walks through the process of creating an operational semantics for the F[language
and gives us the tools needed to prove what we concluded above.

2.3.3 Operational Semantics for F[

We are now ready to begin defining operational semantics for F[. For the same reasons
as in our boolean language, we will need a rule which relates values to values in):

(Value Rule)
v) v

We can also define boolean operations for F[in the same way as we did for the boolean
language above. Note, however, that not all values in F[are booleans. Fortunately, our
definition of the rules addresses this for us, as there is (for example) no logical and of
the values 5 and 3. That is, we know that these rule only apply to F[boolean values
because they use operations which are only defined for F[boolean values.

CHAPTER 2. OPERATIONAL SEMANTICS 22

(Not Rule)
e) v

Not e) the negation of v

(And Rule)
e1) v1 e2) v2

e1 And e2) the logical and of v1 and v2

...

We can also define operations over integers in much the same way. For sake of clarity,
we will explicitly restrict these rules such that they operate only on expressions which
evaluate to integers.

(+ Rule)
e1) v1, e2) v2 where v1, v2 2 Z

e1 + e2) the integer sum of v1 and v2

(- Rule)
e1) v1, e2) v2 where v1, v2 2 Z

e1 - e2) the integer di↵erence of v1 and v2

As with the boolean rules, observe that these rules allow the) relation to be ap-
plied recursively: 5 + (4 - 3) can be evaluated using the + rule because 4 - 3 can be
evaluated using the - rule first.

These rules allow us to write F[programs containing boolean expressions or F[pro-
grams containing integer expressions, but we currently have no way to combine the two.
There are two mechanisms we use to mix the two in a program: conditional expressions
and comparison operators. The only comparison operator in F[is the = operator, which
compares the values of integers. We define the = rule as follows.

(= Rule)
e1) v1, e2) v2 where v1, v2 2 Z

e1 = e2) True if v1 and v2 are identical, else False

Note that the = rule is defined only where v1 and v2 are integers. Due to this
constraint, the expression True = True is not evaluatable in F[. This is, of course, a
matter of choice; as a language designer, one may choose to remove that constraint and
allow boolean values to be compared directly. To formalize this, however, a change to
the rules would be required. A faithful implementation of F[using the above = rule is
required to reject the expression True = True.

An intuitive definition of a conditional expression is that it evalutes to the value of
one expression if the boolean is true and the value of the other expression if the boolean
is false. While this is true, the particulars of how this is expressed in the rule are vital.
Let us consider the following flawed attempt at a conditional expression rule:

(Flawed If Rule)
e1) v1 e2) v2 e3) v3

If e1 Then e2 Else e3) v2 if v1 is True, v3 otherwise

CHAPTER 2. OPERATIONAL SEMANTICS 23

It seems that this rule allows us to evaluate many of the conditional expressions we
want to evaluate. But let us consider this expression:

If True Then 0 Else (True + True)

If we attempted to apply the above rule to the previous expression, we would find that
the precondition e3) v3 would not hold; there is no rule which can relate True + True)
v for any v since the + rule only applies to integers. Nonetheless, we want the expression
to evaluate to 0. So how can we achieve this result?

In this case, we have no choice but to write two di↵erent rules with distinct pre-
conditions. We can capture all of the relationships in the previous rule and yet allow
expressions such as the previous to evaluate by using the following two rules:

(If True Rule)
e1) True, e2) v2

If e1 Then e2 Else e3) v2

(If False Rule)
e1) False, e3) v3

If e1 Then e2 Else e3) v3

Again, the key di↵erence between these two rules is that they have di↵erent sets of
preconditions. Note that the If True rule does not evaluate e3, nor does the If False

rule evaluate e2. This allows the untraveled logic paths to contain unevaluatable expres-
sions without necessarily preventing the expression containing them from evaluating.

Application

We are now ready to approach one of the most di�cult F[rules: application. How can
we formalize the evaluation of an expression like (Function x -> x + 1) (5 + 2)?
We saw in Section 2.3.2 that we can evaluate a function application by using variable
substitution. As we have a mathematical definition for the substitution operation, we
can base our function application rule around it.

Suppose we wish to evaluate the above expression. We can view application in two
parts: the function being applied and the argument to the function. We wish to know to
what the expression evaluates; thus, we are trying to establish that e1e2) v for some v.

(Application Rule (Part 1))
?

e1 e2) v

In our boolean operations, we needed to evaluate the arguments before attempting
an operation over them (in order to allow recursive expressions). The same is true of our
application rule; in (Function x -> x + 1) (5 + 2), we must evaluate 5 + 2 before
it can be used as an argument.4 We must do likewise with the function we are applying.

4Actually, some languages would perform substitution before evaluating the expression, but F[and
most traditional languages do not. Discussion of this approach is handled in Section 2.3.6.

CHAPTER 2. OPERATIONAL SEMANTICS 24

(Application Rule (Part 2))
e1) v1 e2) v2 ?

e1 e2) v

We obviously aren’t finished, though, as we still don’t have any preconditions which
allow us to relate v to something. Additionally, we know we will need to use variable
substitution, but we have no metavariables representing F[variables in the above rule.
We can fix this by reconsidering how we evaluate the first argument; we know that the
application rule only works when applying functions. In restricting our rule to applying
functions, we can name some metavariables to describe the function’s contents.

(Application Rule (Part 3))
e1) Function x -> e e2) v2 ?

e1 e2) v

In the above rule, x is the metavariable representing the function’s variable while
e represents the function’s body. Now that we have this information, we can define
function application in terms of variable substitution. When we apply Function x ->

x + 1 to a value such as 7, we wish to replace all instances of x, the function’s variable,
in the function’s body with 7, the provided argument. Formally,

(Application Rule)
e1) Function x -> e e2) v2 e[v2/x]) v

e1 e2) v

F[Recursion

We now have a very complete set of rules for the F[language. We do not, however,
have a rule for Let Rec. As we will see, Let Rec is not actually necessary in basic F[;
it is possible to build recursion out of the rules we already have. Later, however, we will
create variants of F[with type systems in which it will be impossible for that approach
to recursion to work. For that reason as well as our immediate convenience, we will
define the Let Rec rule now.

Again, we start with an iterative approach. We know that we want to be able to eval-
uate the Let Rec expression, so we provide metavariables to represent the components
of the expression itself.

(Recursive Application Rule (Part 1))

?

Let Rec f x = e1 In e2) v

Let us consider what we wish to accomplish. Consider for a moment a recursive
approach to the summation of the numbers between 1 and 5:

CHAPTER 2. OPERATIONAL SEMANTICS 25

Let Rec f x =

If x = 1 Then

1

Else

f (x - 1) + x

In f 5

If we focus on the last line (In f 5), we can see that we want the body of the
recursive function to be applied to the value 5. We can write our rule accordingly by
replacing f with the function’s body. We must make sure to use the same metavariable
to represent the function’s argument in order to allow the new function body’s variable
to be captured. We reach the following rule.

(Recursive Application Rule (Part 2))

e2[(Function x -> e1)/f]) v

Let Rec f x = e1 In e2) v

We can test our new rule by applying it to our recursive summation above.

Function x -> · · ·) Function x -> · · · 5) 5
5 = 1) False

???

f (5-1)) v0 5) 5
f (5-1) + 5) v

If 5 = 1 Then 1 Else f (5-1) + 5) v
(Function x -> If x = 1 Then 1 Else f (x-1) + x) 5)) v

Let Rec f x = If x = 1 Then 1 Else f (x-1) + x In f 5) v

As foreshadowed by its label above, our recursion rule is not yet complete. When we
reach the evaluation of f (5-1), we are at a loss; f is not bound. Without a binding for
f, we have no way of repeating the recursion.

In addition to replacing the invocation of f with function application in e2, we need
to ensure that any occurrences of f in the body of the function itself are bound. To
what do we bind them? We could try to replace them with function applications as
well, but this leads us down a rabbit hole; each function application would require yet
another replacement. We can, however, replace applications of f in e1 with recursive
applications of f by reintroducing the Let Rec syntax. This leads us to the following
application rule:

(Recursive Application Rule (Part 3))

e2[Function x -> e1[(Let Rec f x = e1 In f)/f]/f]) v

Let Rec f x = e1 In e2) v

While this makes a certain measure of sense, it isn’t quite correct. In Section 2.3.2,
we saw that substitution must replace a variable with a value, while the Let Rec term

CHAPTER 2. OPERATIONAL SEMANTICS 26

above is an expression. Fortunately, we have functions as values; thus, we can put the
expression inside of a function and ensure that we call it with the appropriate argument.

(Recursive Application Rule)

e2[Function x -> e1[(Function x -> Let Rec f x = e1 In f x)/f]/f]) v

Let Rec f x = e1 In e2) v

Now, instead of encountering f (5-1) when we evaluate the summation example, we
encounter Let Rec f x = If x = 1 Then 1 Else f (x-1) + x In f (5-1). This al-
lows us to recurse back into the Let Rec rule. Eventually, we may reach a branch which
does not evaluate the Else side of the conditional expression, in which case that Let

Rec is not expanded (allowing us to terminate). Each application of the rule e↵ectively
“unrolls” one level of recursion.

In summary, we have the following operational semantics for F[(excluding some
repetetive rules such as the - rule):

(Value Rule)
v) v

(Not Rule)
e) v

Not e) the negation of v

(And Rule)
e1) v1 e2) v2

e1 And e2) the logical and of v1 and v2

(+ Rule)
e1) v1, e2) v2 where v1, v2 2 Z

e1 + e2) the integer sum of v1 and v2

(= Rule)
e1) v1, e2) v2 where v1, v2 2 Z

e1 = e2) True if v1 and v2 are identical, else False

(If True Rule)
e1) True, e2) v2

If e1 Then e2 Else e3) v2

(If False Rule)
e1) False, e3) v3

If e1 Then e2 Else e3) v3

(Application Rule)
e1) Function x -> e, e2) v2, e[v2/x]) v

e1 e2) v

(Let Rec)

e2[Function x -> e1[(Function x -> Let Rec f x = e1 In f x)/f]/f]) v

Let Rec f x = e1 In e2) v

Let us consider a few examples of proof trees using the F[operational semantics.

CHAPTER 2. OPERATIONAL SEMANTICS 27

Example 2.14.

Expression:
If 3 = 4 Then 5 Else 4 + 2

Proof:
3) 3 4) 4
3 = 4) False

4) 4 2) 2
4 + 2) 6

If 3 = 4 Then 5 Else 4 + 2) 6

Example 2.15.

Expression:
(Function x -> If 3 = x Then 5 Else x + 2) 4

Proof:

Function x -> · · ·) Function x -> · · · 4) 4

by Example 2.14

If 3 = 4 Then 5 Else 4 + 2) 6
(Function x -> If 3 = x Then 5 Else x + 2) 4) 6

Example 2.16.

Expression:
(Function f -> Function x -> f(f x))(Function y -> y - 1) 4

Proof:
Due to the size of the proof, it is broken into multiple parts. We use v) F as an abbreviation

for v) v (when v is lengthy) for brevity.

Part 1:
Function f -> Function x -> f(f x)) F Function y -> y - 1) F (Function x -> (Function y -> y - 1) ((Function y -> y - 1) x))) F

(Function f -> Function x -> f(f x))(Function y -> y - 1)) (Function x -> (Function y -> y - 1) ((Function y -> y - 1) x))

Part 2:

(by part 1) 4) 4

Function y -> y - 1) F
Function y -> y - 1) F 4) 4

4) 4 1) 1
4 - 1) 3

((Function y -> y - 1) 4)) 3
3) 3 1) 1
3 - 1) 2

(Function y -> y - 1) ((Function y -> y - 1) 4)) 2

(Function f -> Function x -> f(f(x)))(Function y -> y - 1) 4) 2

Interact with F[. Tracing through recursive evaluations is di�cult, and there-
fore the reader should invest some time in exploring the semantics of Let Rec.

A good way to do this is by using the F[interpreter. Try evaluating the expression we
looked at above:

Let Rec f x =

If x = 1 Then 1 Else x + f (x - 1)

In f 3;;

==> 6

Another interesting experiment is to evaluate a recursive function without applying
it. Notice that the result is equivalent to a single application of the Let Rec rule. This
is a good way to see how the “unwrapping” actually takes place:

CHAPTER 2. OPERATIONAL SEMANTICS 28

Let Rec f x =

If x = 1 Then 1 Else x + f (x - 1)

In f;;

==> Function x ->

If x = 1 Then

1

Else

x + (Let Rec f x =

If x = 1 Then

1

Else

x + (f) (x - 1)

In

f) (x - 1)

As we mentioned before, one of the main benefits of defining an operational semantics
for a language is that we can rigorously verify claims about that language. Now that we
have defined the operational semantics for F[, we can prove a few things about it.

Lemma 2.3. F[is deterministic.

Proof. By inspection of the rules, at most one rule can apply at any time.

Lemma 2.4. F[is not normalizing.

Proof. To show that a language is not normalizing, we simply show that there is some e

such that there is no v with e) v. Let e be (Function x -> x x)(Function x -> x

x). e ; v for any v. Thus, F[is not normalizing.

The expression in this proof is a very interesting one which we will examine in more
detail in Section 2.3.5. It does not evaluate to a value because each step in its evaluation
produces itself as a precondition. This is roughly analogous to trying to prove proposition
A by using A as a given.

In this case, the expression does not evaluate because it never runs out of work to do.
This is not the only kind of non-normalizing expression which appears in F[; another
kind consists of those expressions for which no evaluation rule applies. For example, (4
3) is a simpler expression that is non-normalizing. No rule exists to evaluate (e1 e2)
when e1 is not a function expression.

Both of these cases look like divergence as far as the operational semantics are con-
cerned. In the case of an interpreter, however, these two kinds of expressions behave
di↵erently. The expression which never runs out of work to do typically causes an in-
terpreter to loop infinitely (as most interpreters are not clever enough to realize that
they will never finish). The expressions which attempt application to non-functions, on
the other hand, cause an interpreter to provide a clear error in the form of an excep-
tion. This is because the error here is easily detectable; the interpreter, in attempting
to evaluate these expressions, can quickly discover that none of its available rules apply
to the expression and respond by raising an exception to that e↵ect. Nonetheless, both
are theoretically equivalent.

CHAPTER 2. OPERATIONAL SEMANTICS 29

2.3.4 The Expressiveness of F[

F[doesn’t have many features, but it is possible to do much more than it may seem.
As we said before, F[is Turing complete, which means, among other things, that any
Caml operation may be encoded in F[. We can informally represent encodings in our
interpreter as macros using Caml let statements. A macro is equivalent to a statement
like “let F be Function x -> . . . ”

Logical Combinators First, there are the classic logical combinators, simple func-
tions for recombining data.

combI = Function x -> x

combK = Function x -> Function y -> x

combS = Function x -> Function y -> Function z -> (x z) (y z)

combD = Function x -> x x

Tuples Tuples and lists are encodable from just functions, and so they are not needed
as primitives in a language. Of course for an e�cient implementation you would want
them to be primitives; thus doing this encoding is simply an exercise to better understand
the nature of functions and tuples. We will define a 2-tuple (pairing) constructor; From a
pair you can get a n-tuple by building it from pairs. For example, (1, (2, (3, 4))) represents
the 4-tuple (1, 2, 3, 4).

First, we need to define a pair constructor, pr. A first (i.e., slightly buggy) approxi-
mation of the constructor is as follows.

pr (e1, e2)
def
= Function x -> x e1 e2

We use the notation a

def
= b to indicate that a is an abbreviation for b. For example, we

might have a problem in which the incrementer function is commonly used; it would make

sense, then, to define incx
def
= Function x -> x + 1. Note that such abbreviations do

not change the underlying meaning of the expression; it is simply for convenience. The
same concept applies to macro definitions in programming languages. By creating a new
macro, one is not changing the math behind the programming language; one is merely
defining a more terse means of expressing a concept.

Based on the previous definition of pr, we can define the following macros for pro-
jection:

left (e)
def
= e (Function x -> Function y -> x)

right (e)
def
= e (Function x -> Function y -> y)

Now let’s take a look at what’s happening. pr takes a left expression, e1, and a right
expression, e2, and packages them into a function that applies its argument x to e1 and

CHAPTER 2. OPERATIONAL SEMANTICS 30

e2. Because functions are values, the result won’t be evaluated any further, and e1 and
e2 will be packed away in the body of the function until it is applied. Thus pr succeeds
in “storing” e1 and e2.

All we need now is a way to get them out. For that, look at how the projection
operations left and right are defined. They’re both very similar, so let’s concentrate
only on the projection of the left element. left takes one of our pairs, which is encoded
as a function, and applies it to a curried function that returns its first, or leftmost,
element. Recall that the pair itself is just a function that applies its argument to e1 and
e2. So when the curried left function that was passed in is applied to e1 and e2, the
result is e1, which is exactly what we want. right is similar, except that the curried
function returns its second, or rightmost, argument.

Before we go any further, there is a technical problem involving our encoding of pr.
Suppose e1 or e2 contain a free occurrence of x when pr is applied. Because pr is defined
as Function x -> x e1 e2, any free occurrence x contained in e1 or e2 will become
bound by x after pr is applied. This is known as variable capture. To deal with capture
here, we need to change our definition of pr to the following.

pr (e1, e2)
def
= (Function e1 -> Function e2 -> Function x -> x e1 e2) e1 e2

This way, instead of textually substituting for e1 and e2 directly, we pass them in as
functions. This allows the interpreter evaluate e1 and e2 to values before passing them
in, and also ensures that e1 and e2 are closed expressions. This eliminates the capture
problem, because any occurrence of x is either bound by a function declaration inside e1

or e2, or was bound outside the entire pr expression, in which case it must have already
been replaced with a value at the time that the pr subexpression is evaluated. Variable
capture is an annoying problem that we will see again in Section 2.4.

Now that we have polished our definitions, let’s look at an example of how to use
these encodings. First, let’s create create the pair p as (4, 5).

p

def
= pr (4, 5)) Function x -> x 4 5

Now, let’s project the left element of p.

left p ⌘ (Function x -> x 4 5) (Function x -> Function y -> x)

We use the notation a ⌘ b to indicate the expansion of a specific macro instance. In this
case, left p expands to what we see above, which then becomes

(Function x -> Function y -> x) 4 5) 4.

CHAPTER 2. OPERATIONAL SEMANTICS 31

0

False 1 False 2 False 3 True 0

head
right

left

Figure 2.1: Lists Implemented Via Pairs

This encoding works, and has all the expressiveness of real tuples. There are, nonethe-
less, a few problems with it. First of all, consider

left (Function x -> 0)) 0.

We really want the interpreter to produce a run-time error here, because a function is
not a pair.

Similarly, suppose we wrote the program right(pr(3, pr(4, 5))). One would
expect this expression to evaluate to pr(4, 5), but remember that pairs are not values in
our language, but simply encodings, or macros. So in fact, the result of the computation
is Function x -> x 4 5. We can only guess that this is intended to be a pair. In this
respect, the encoding is flawed, and we will, in Chapter 3, introduce “real” n-tuples into
an extension of F[to alleviate these kinds of problems.

Lists Lists can also be implemented via pairs. In fact, pairs of pairs are technically
needed because we need a flag to mark the end of list. The list [1; 2; 3] is rep-
resented by pr (pr(false,1), pr (pr(false,2), pr (pr(false,3), emptylist)))

where emptylist
def
= pr(pr(true,0),0). The true/false flag is used to mark the end of

the list: only the empty list is flagged true. The implementation is as follows.

cons (x, y)
def
= pr(pr(Bool false, x), y)

emptylist
def
= pr(pr(Bool true, Int 0),Int 0)

head x
def
= right(left x)

tail x
def
= right x

isempty l
def
= (left (left l))

length
def
= Let Rec len x =

If isempty(x) Then 0 Else 1 + len (tail x) In len

In addition to tuples and lists, there are several other concepts from Caml that we
can encode in F[. We review a few of these encodings below. For brevity and readability,
we will switch back to the concrete syntax.

CHAPTER 2. OPERATIONAL SEMANTICS 32

Functions with Multiple Arguments Functions with multiple arguments are done
with currying just as in Caml. For example

Function x -> Function y -> x + y

The Let Operation Let is quite simple to define in F[.

(Let x = e In e

0)
def
= (Function x -> e

0) e

For example,

(Let x = 3 + 2 In x + x) ⌘ (Function x -> x + x) (3 + 2)) 10.

Sequencing Notice that F[has no sequencing (;) operation. Because F[is a pure
functional language, writing e; e

0 is really just equivalent to writing e

0, since e will
never get used. Hence, sequencing really only has meaning in languages with side-e↵ects.
Nonetheless, sequencing is definable in the following manner.

e; e

0 def= (Function n -> e

0) e,

where n is chosen so as not to be free in e

0. This will first execute e, throw away the
value, and then execute e

0, returning its result as the final result of e; e

0.

Freezing and Thawing We can stop and re-start computation at will by freezing and
thawing.

Freeze e

def
= Function n -> e

Thaw e

def
= e 0

We need to make sure that n is a fresh variable so that it is not free in e. Note that
the 0 in the application could be any value. Freeze e freezes e, keeping it from being
computed. Thaw e starts up a frozen computation. As an example,

Let x = Freeze (2 + 3) In (Thaw x) + (Thaw x)

CHAPTER 2. OPERATIONAL SEMANTICS 33

This expression has same value as the equivalent expression without the freeze and thaw,
but the 2 + 3 is evaluated twice. Again, in a pure functional language the only di↵erence
is that freezing and thawing is less e�cient. In a language with side-e↵ects, if the frozen
expression causes a side-e↵ect, then the freeze/thaw version of the function may produce
results di↵erent from those of the original function, since the frozen side-e↵ects will be
applied as many times as they are thawed.

2.3.5 Russell’s Paradox and Encoding Recursion

F[has a built-in Let Rec operation to aid in writing recursive functions, but its actually
not needed because recursion is definable in F[. The encoding is a non-obvious one,
and so before we introduce it, we present some background information. As we will see,
the encoding of recursion is closely related to a famous set-theoretical paradox due to
Russell.

Let us begin by posing the following question. How can programs compute forever
in F[without recursion? The answer to this question comes in the form of a seemingly
simple expression:

(Function x -> x x)(Function x -> x x)

Recall from Lemma 2.2, that a corollary to the existence of this expression is that
F[is not normalizing. This computation is odd in some sense. (x x) is a function
being applied to itself. There is a logical paradox at the heart of this non-normalizing
computation, namely Russell’s Paradox.

Russell’s Paradox

In Frege’s set theory (circa 1900), sets were written as predicates P (x). We can view
predicates as single-argument functions which return a boolean value: true if the argu-
ment is in the set represented by the predicate and false if it is not. Testing membership
in a set is done via application of the predicate. For example, consider the predicate

Function x -> (x = 2 Or x = 3 Or x = 5)

This predicate represents the integer set {2, 3, 5} since it will return True for any of the
elements in that set and False for all other arguments. If we were to extend F[to
include a native integer less-than operator, the predicate

Function x -> x < 2

would represent an infinitely-sized set containing all integer values less than 2 (as F[still
has no notion of real numbers). In general, given a predicate P representing a set S,

CHAPTER 2. OPERATIONAL SEMANTICS 34

e 2 S i↵ P e) True

Russell discovered a paradox in Frege’s set theory, and it can be expressed in the
following way.

Definition 2.11 (Russell’s Paradox). Let P be the set of all sets that do not contain
themselves as members. Is P a member of P?

Asking whether or not a set is a member of itself seems like strange question, but
in fact there are many sets that are members of themselves. The infinitely receding
set {{{{. . .}}}} has itself as a member. The set of things that are not apples is also a
member of itself (clearly, a set of non-apples is not an apple). These kinds of sets arise
only in “non-well-founded” set theory.

To explore the nature of Russell’s Paradox, let us try to answer the question it poses:
Does P contain itself as a member? Suppose the answer is yes, and P does contain itself
as a member. If that were the case then P should not be in P , which is the set of all
sets that do not contain themselves as members. Suppose, then, that the answer is no,
and that P does not contain itself as a member. Then P should have been included in
P , since it doesn’t contain itself. In other words, P is a member of P if and only if it
isn’t. Hence Russell’s Paradox is indeed a paradox.

This can also be illustrated by using F[functions as predicates. Specifically, we will
write a predicate for P above. We must define P to accept an argument (which we know
to be a set - a predicate in our model) and determine if it contains itself (pass it to
itself as an argument). Thus, our representation of P is Function x -> Not(x x). We
merely apply P to itself to get our answer.

Definition 2.12 (Computational Russell’s Paradox). Let

P

def
= Function x -> Not(x x).

What is the result of P P? Namely, what is

(Function x -> Not(x x)) (Function x -> Not(x x))?

If this F[program were evaluated, it would run forever. We can informally detect
the pattern just by looking at a few passes of an evaluation proof:

...

Not (Not ((Function x -> Not (x x))(Function x -> Not (x x))))
Not ((Function x -> Not (x x)) (Function x -> Not (x x)))

(Function x -> Not (x x)) (Function x -> Not (x x))

CHAPTER 2. OPERATIONAL SEMANTICS 35

We know that Not (Not (e)) evaluates to the same value as e. 5 We can see that
we’re going in circles. Again, this statement tells us that P P) True if and only if
P P) False.

This is not how Russell viewed his paradox, but it has the same core structure; it
is simply rephrased in terms of computation, and not set theory. The computational
realization of the paradox is that the predicate doesn’t compute to true or false, so its
not a sensible logical statement. Russell’s discovery of this paradox in Frege’s set theory
shook the foundations of mathematics. To solve this problem, Russell developed his
ramified theory of types, which is the ancestor of types in programming languages. The
program

(function x -> not(x x)) (function x -> not(x x))

is not typeable in Caml for the same reason the corresponding predicate is not typeable
in Russell’s ramified theory of types. Try typing the above code into the Caml top-level
and see what happens.

More information on Russell’s Paradox may be found in [15].

Encoding Recursion by Passing Self

In the logical view, passing a function to itself as argument is a bad thing. From a
programming view, however, it can be an extremely powerful tool: passing a function to
itself allows recursive functions to be defined without the use of Let Rec. We now show
how we can modify the paradoxical combinator to do useful work. First, lets start with
the original Mr. Bad:

(Function x -> Not (x x)) (Function x -> Not (x x))

The first step to making Mr. Bad do some good is rather than making an unbounded
number of Nots, Not (Not (Not(...))), lets make an unbounded number of some
predefined function F:

(Function x -> F (x x)) (Function x -> F (x x))

Well, that makes unbounded F (F (F(...))) but it never terminates so they
don’t do us any good. The next step is to freeze the computation at certain points to
directly stop it from continuing; recall from our freeze macro above all we need to do is
wrap some expression in a Function -> ... to freeze it:

makeFroFs
def
=

(Function x -> F (Function -> x x)) (Function x -> F (Function -> x x))

5In this case, anyway, but not in general. General assertions about the equivalence of expressions
are hard to prove. In Section 2.4, we will explore a formal means of determining if two expressions are
equivalent.

CHAPTER 2. OPERATIONAL SEMANTICS 36

Now, we have postponed the infinite execution; supposing F were say

Function froF -> True

the above would compute to

F (Function -> makeFroFs)

and since the F we defined throws away its argument this computation would in turn
terminate with value True.

This particular example terminated too well, it threw away all the copies of F we
painstakingly made. The way we can get recursion is to make an F which sometimes uses
its argument Function -> makeFroFs to make recursive calls by thawing it. Con-
sider the following revised F, aiming to ultimately be a function that sums the integers
{0, 1, . . . , n} for argument n:

F
def
= Function froFs -> Function n ->

If n = 0 Then 0 Else n + froFs 0 (n - 1)

If makeFroFs were to use this F, it would again compute to F (Function ->

makeFroFs), but the argument Function -> makeFroFs is not thrown out by this
new F. Consider the computation of makeFroFs 5, by the above it is equivalent to com-
puting

(F (Function -> makeFroFs)) 5

and so for the above definition of F we see parameter froFs will be instantiated with
Function -> makeFroFs, and parameter n with 5. Because 5 = 0 is False we then
compute the else clause which after the above instantiation is

5 + (Function -> makeFroFs) 0 (5-1)

And, to compute the right-hand side of the addition, first the 0 dummy argument is
applied to un-freeze makeFroFs, so we are now setting to compute makeFroFs (5-1).
Look above – this is nearly the exact spot we started at except the argument is one
smaller! So, makeFroFs is now a recursive summation function and this example will
ultimately compute to 15. We have succeeded in repurposing the paradoxical combinator
to write recursive functions.

There are a few minor clean-up steps we can perform on the above. First, since the F
we care about are curried functions of two arguments (we need the additional argument
e.g. n for the recursive call at a di↵erent value), we can make a revised freezer Function
n -> F n which doesn’t need to use 0 as the thawer but can “pun” and use the argument
itself to do the thawing. So, we can redo the above definitions as

makeFs
def
= (Function x -> F’ (Function n -> (x x) n))

(Function x -> F’ (Function n -> (x x) n))

CHAPTER 2. OPERATIONAL SEMANTICS 37

F’
def
= Function fs -> Function n ->

If n = 0 Then 0 Else n + fs (n - 1)

– we can remove the 0 argument from the recursive call here since the n-1 argument is
doing the unfreezing work via our pun.

One last refactoring we can do to clean this up is to make a generic recursive-function-
maker, by pulling out the F’ in makeFs above as an explicit parameter f. This gives
us

Y
def
= Function f ->

(Function x -> f (Function n -> (x x) n))

(Function x -> f (Function n -> (x x) n))

and we can apply to some concrete F, e.g. Y F’, to create our recursive summing
function. We call the above expression Y because this recursive function creator was
discovered by logicians many years ago and given that name.

Another route to Y via direct self-passing

Since the construction of Y is complex we now present another path to its construction.
This approach is more based on how object-oriented languages such as C++ implement
messaging to self: every time an object method is invoked, (a pointer to) the object itself
is passed as an additional parameter.

We demonstrate this approach by again writing a summate function. This time we
follow the C++ idea and write the function to accept two arguments: arg, which is the
number to which we will sum, and this, which is the copy of the function we require to
be passed in so that recursion may occur. We will name our function summate0 to reflect
the fact that it is not quite the summate we want. It can be defined as

summate0
def
= Function this -> Function arg ->

If arg = 0 Then 0 Else arg + this this (arg - 1)

Note the use of this this (arg - 1). The first use of this names the function to be
applied; the second use of this is one of the arguments to that function. The argument
this allows the recursive call to invoke the function again, thus allowing us to recurse
as much as we need.

We can now sum the integers {0, 1, . . . , 7} with the expression

summate0 summate0 7

CHAPTER 2. OPERATIONAL SEMANTICS 38

summate0 always expects its first argument this to be itself. It can then use one copy
for the recursive call (the first this) and pass the other copy on for future duplication.
So summate0 summate0 “primes the pump”, so to speak, by giving the process an initial
extra copy of itself.

Better yet, recall that currying allows us to obtain the inner function without applying
it. In essence, a function with multiple arguments could be partially evaluated, with some
arguments fixed and others waiting for input. We can use this to our advantage to define
the summate function we want:

summate
def
= summate0 summate0

This allows us to hide the self-passing from the individual using our summate function,
which cleans things up considerably. We can summarize the entire process as follows
using the Let macro we described before:

summate
def
= Let summ = Function this -> Function arg ->

If arg = 0 Then 0 Else arg + this this (arg - 1)

In Function arg -> summ summ arg

We now have a model for defining recursive functions without the use of the Let

Rec operator. This means that untyped languages with no built-in recursion can still
be Turing-complete. While this is an accomplishment, we can do even better; we can
abstract the idea of self-passing almost entirely out of the body of the function itself.

The Y -Combinator The Y -combinator is a further abstraction of self-passing. The
idea is that the Y -combinator does the self-application with an abstract body of code
that is passed in as an argument. We first define a function called almostY, and then
revise that definition to arrive at the real Y -combinator.

almostY
def
= Function body ->

Function arg -> body body arg

using almostY, we can define summate as follows.

summate
def
= almostY (Function this -> Function arg ->

If arg = 0 Then 0 Else arg + this this (arg - 1))

The true Y -combinator actually goes one step further and allows us to write recursive
calls in the more natural style of just “this (arg - 1)”, avoiding the extra this pa-
rameter. To do this, we assume that the body argument is already in this simple form.
We then define a new form, wrapper, which replaces this with (this this) in body:

CHAPTER 2. OPERATIONAL SEMANTICS 39

Definition 2.13 (Y -Combinator).

combY
def
= Function body ->

Let wrapper = Function this -> Function arg -> body (this this) arg

In Function arg -> wrapper wrapper arg

Recalling Let is a macro, this is the same Y as was defined in the previous subsection.
The transformation steps performed in these examples are also good examples of

the power of higher-order functional programming: “code surgery” is performed on
body to produce wrapper by simply using function abstraction and application. The
Y -combinator can then be used to define summate as

summate
def
= combY (Function this -> Function arg ->

If arg = 0 Then 0 Else arg + this (arg - 1))

2.3.6 Call-By-Name Parameter Passing

In call-by-name parameter passing, the argument to the function is not evaluated
at function call time, but rather is only evaluated if it is used. This style of parameter
passing is largely of historical interest now; Algol uses it but no modern languages are call-
by-name by default (The Digital Mars D language does allow parameters to be treated
as call-by-name via use of the lazy qualifier). The reason is that it is much harder to
write e�cient compilers if call-by-name parameter passing is used. Nonetheless, it is
worth taking a brief look at call-by-name parameter passing.

Let us define the operational semantics for call-by-name.

(Call-By-Name Application)
e1) Function x -> e, e[e2/x]) v

e1 e2) v

Freezing and thawing, defined in Section 2.3.4, is a way to get call-by-name behavior
in a call-by-value language. Consider, then, the computation of

(Function x -> Thaw x + Thaw x) (Freeze (3 - 2))

(3 - 2) is not evaluated until we are inside the body of the function where it is thawed,
and it is then evaluated two separate times. This is precisely the behavior of call-by-
name parameter passing, so Freeze and Thaw can encode it by this means. The fact that
(3 - 2) is executed twice shows the main weakness of call by name, namely repeated
evaluation of the function argument.

Lazy or call-by-need evaluation is a version of call-by-name that caches evaluated
function arguments the first time they are evaluated so it doesn’t have to re-evaluate them
in subsequent uses. Haskell [14, 7] is a pure functional language with lazy evaluation.

CHAPTER 2. OPERATIONAL SEMANTICS 40

2.3.7 F[Abstract Syntax

The previous sections thoroughly describe the operational semantics of F[in terms of
its concrete syntax. Recall from our boolean language, however, that an interpreter
operates over a representation of a program which is more conducive to programmatic
manipulation; this representation is termed its abstract syntax. To define the abstract
syntax of F[for a Caml interpreter, we need to define a variant type that captures the
expressiveness of F[. The variant types we will use are as follows.

type ident = Ident of string

type expr =

Var of ident | Function of ident * expr | Appl of expr * expr |

LetRec of ident * ident * expr * expr |

Plus of expr * expr | Minus of expr * expr | Equal of expr * expr |

And of expr * expr| Or of expr * expr | Not of expr |

If of expr * expr * expr | Int of int | Bool of bool

type fbtype = TInt | TBool | TArrow of fbtype * fbtype | TVar of string;;

One important point here is the existence of the ident type. Notice where ident is
used in the expr type: as variable identifiers, and as function parameters for Function
and Let Rec. The ident type attaches additional semantic information to a string,
indicating that the string specifically represents an identifier.

Note, though, that ident is used in two di↵erent ways: to signify the declaration of
a variable (such as in Function (Ident "x",...)) and to signify the use of a variable
(such as in Var(Ident "x")). Observe that the use of a variable is an expression and so
can appear in the AST anywhere that any expression can appear. The declaration of a
variable, on the other hand, is not an expression; variables are only declared in functions.
In this way, we are able to use the Caml type system to help us keep the properties of
the AST nodes straight.

For example, consider the following AST:

Plus

Ident

"x"

Int

5

At first glance, it might appear that this AST represents the F[expression x +

5. However, the AST above cannot actually exist using the variants we defined above.
The Plus variation accepts two expressions upon construction and Ident is not a variant;
thus, the equivalent Caml code Plus(Ident "x",Int 5) would not even typecheck. The
F[expression x + 5 is represented instead by the AST

CHAPTER 2. OPERATIONAL SEMANTICS 41

Plus

Var

Ident

"x"

Int

5

which is represented by the Caml code Plus(Var(Ident "x"),Int 5).
Being able to convert from abstract to concrete syntax and vice versa is an important

skill for one to develop, but it takes some time to become proficient at this conversion.
Let us look as some examples F[in pursuit of refining this skill.

Example 2.17.

Concrete:
1 + 2

Abstract:
Plus(Int 1,Int 2)

Plus

Int Int

1 2

Example 2.18.

Concrete:
True Or False

Abstract:
Or(Bool true,Bool false)

Or

Bool Bool

true false

Example 2.19.

Concrete:
If Not(1 = 2) Then 3 Else 4

Abstract:
If(Not(Equal(Int 1, Int 2)),

Int 3, Int 4)

If

Not

Equal

Int Int

1 2

Int

3

Int

4

CHAPTER 2. OPERATIONAL SEMANTICS 42

Example 2.20.

Concrete:
(Function x -> x + 1) 5

Abstract:
Appl(

Function(

Ident "x",

Plus(Var(Ident "x"),

Int 1)),

Int 5)

Appl

Function

Ident

"x"

Plus

Var

Ident

"x"

Int

1

Int

5

Example 2.21.

Concrete:
(Function x -> Function y ->

x + y) 4 5

Abstract:
Appl(

Appl(

Function(

Ident "x",

Function(

Ident "y",

Plus(

Var(Ident "x"),

Var(Ident "y")

))),

Int 4),

Int 5)

Appl

Appl

Function

Ident

"x" Function

Ident

"y"

Plus

Var

Ident

"x"

Var

Ident

"y"

Int

4

Int

5

CHAPTER 2. OPERATIONAL SEMANTICS 43

Example 2.22.

Concrete:
Let Rec fib x =

If x = 1 Or x = 2 Then 1 Else fib (x - 1) + fib (x - 2)

In fib 6

Abstract:
Letrec(Ident "fib", Ident "x", If(Or(Equal(Var(Ident "x"), Int 1),

Equal(Var(Ident "x"), Int 2)), Int 1, Plus(Appl(Var(Ident "fib"),

Minus(Var(Ident "x"), Int 1)), Appl(Var(Ident "fib"), Minus(Var(Ident

"x"), Int 2)))), Appl(Var(Ident "fib"), Int 6))

Letrec

Ident

"fib"

Ident

"x"

If

Or

Equal

Var

Ident

"x"

Int

1

Equal

Var

Ident

"x"

Int

2

Int

1 Plus

Appl

Var

Ident

"fib"

Minus

Var

Ident

"x"

Int

1

Appl

Var

Ident

"fib"

Minus

Var

Ident

"x"

Int

2

Appl

Ident

"fib"

Int

6

Notice how lengthy even simple expressions can become when represented in the
abstract syntax. Review the above examples carefully, and try some additional examples
of your own. It is important to be able to comfortably switch between abstract and
concrete syntax when writing compilers and interpreters.

CHAPTER 2. OPERATIONAL SEMANTICS 44

2.4 Operational Equivalence

One of the most basic operations defined over a space of mathematical objects is the
equivalence relation (⇠=). We have, using operational semantics, defined programs as
mathematical entities. As a result, equivalence makes sense for programs too.

First, we are compelled to consider what we mean intuitively by “equivalent” pro-
grams. Two things which are equivalent are interchangable; thus, two equivalent pro-
grams must do the same thing. It is not necessary that they do so in exactly the same
way however. For example, we can easily see that the programs (1 + 1 + 1 - 1) and
(2) are equivalent, but the prior requires more computation to evaluate.

Because two equivalent programs can be substituted for each other but may have
di↵erent execution-time properties, we can use operational equivalence when optimizing
compilers and other such tools. Operational equivalence provides a rigorous and reliable
foundation for such work; we do not need to worry about an optimization changing the
behavior of an application because we can prove mathematically that such a change is
impossible. Operational equivalence also defines the process of refactoring, a process by
which developers can change the structure of a program for maintainability or enhance-
ment without changing the program’s behavior.

Defining an equivalence relation for programs is actually not as straightforward as
one might expect. The initial idea is to define the relation such that two programs are
equivalent if they always lead to the same results when used. As we will see, however, this
definition is not su�cient, and we will need to do some work to arrive at a satisfactory
definition.

Let us begin by looking at a few sample equivalences to get a feel for what they
are. ⌘-conversion (or eta-conversion) is one example of an interesting equivalence. It is
defined as follows.

Function x -> e

⇠=
Function z -> (Function x -> e) z, for z not free in e

⌘-conversion is similar to the proxy pattern in object oriented programming[12]. A closely
related law for our freeze/thaw syntax is

Thaw (Freeze e) ⇠= e

In both examples, one of the expressions may be replaced by the other without ill e↵ects
(besides perhaps changing execution time), so we say they are equivalent. To write
formal proofs, however, we will need to develop a more rigorous definition of equivalence.

2.4.1 Defining Operational Equivalence

Let’s begin by informally strengthening our definition of operational equivalence. We
define equivalence in a manner dating all the way back to Leibniz[19]:

CHAPTER 2. OPERATIONAL SEMANTICS 45

Definition 2.14 (Operational Equivalence (Informal)). Two programs expressions are
equivalent if and only if one can be replaced with the other at any place, and no external
change in behavior will be noticed.

We wish to study equivalence for possibly open programs, because there are good equiva-
lences such as x + 1 - 1 ⇠= x+0. We define “at any place” by the notion of a program
context, which is, informally, a F[program with some holes (•) in it. Using this infor-
mal definition, testing if e1 ⇠= e2 would be roughly equivalent to performing the following
steps (for all possible programs and all possible holes, of course).

1. Select any program context (that is, program containing a hole).

2. Place e1 in the • position and run the program.

3. Do the same for e2.

4. If the observable result is di↵erent, e1 is not equivalent to e2.

5. Repeat steps 1-4 for every possible context. If none of these infinitely many contexts
produces di↵erent results, then e1 is equivalent to e2.

Now let us elaborate on the notion of a program context. Take an F[program with
some “holes” (•) punched in it: replace some subterms of any expression with •. Then
“hole-filling” in this program context C, written C[e], means replacing • with e in C.
Hole filling is like substitution, but without the concerns of bound or free variables. It
is direct replacement with no conditions.

Let us look at an example of contexts and hole-filling using ⌘-conversion as we defined
above. Let

C

def
= (Function z -> Function x -> •) z

Now, filling the hole with x + 2 is simply written

((Function z -> Function x -> •) z)[x + 2] =
(Function z -> Function x -> x + 2) z

Finally, we are ready to rigorously define operational equivalence.

Definition 2.15 (Operational Equivalence). e

⇠= e

0 if and only if for all contexts C,
C[e]) v for some v if and only if C[e0]) v

0 for some v

0.

Another way to phrase this definition is that two expressions are equivalent if in
any possible context, C, one terminates if the other does. We call this operational
equivalence because it is based on the interpreter for the language, or rather it is based
on the operational semantics. The most interesting, and perhaps nonintuitive, part of
this definition is that nothing is said about the relationship between v and v

0. In fact,

CHAPTER 2. OPERATIONAL SEMANTICS 46

they may be di↵erent in theory. However, intuition tells us that v and v

0 must be very
similar, since equivalence holds for any possible context.

The only problem with this definition of equivalence is its “incestuous” nature—there
is no absolute standard of equivalence removed from the language. Domain theory is
a mathematical discipline which defines an algebra of programs in terms of existing
mathematical objects (complete and continuous partial orders). We are not going to
discuss domain theory here, mainly because it does not generalize well to programming
languages with side e↵ects. [17] explores the relationship between operational semantics
and domain theory.

2.4.2 Properties of Operational Equivalence

In this section, we present some general equivalence principles for F[.

Definition 2.16 (Reflexivity).

e

⇠= e

Definition 2.17 (Symmetry).

e

⇠= e

0 if e0 ⇠= e

Definition 2.18 (Transitivity).

e

⇠= e

00 if e ⇠= e

0 and e

0 ⇠= e

00

Definition 2.19 (Congruence).

C[e] ⇠= C[e0] if e ⇠= e

0

Definition 2.20 (�-Equivalence).

((Function x -> e) v) ⇠= (e[v/x])

provided v is closed (if v had free variables they could be captured when v is placed deep
inside e).

Definition 2.21 (⌘-Equivalence).

(Function x -> e) ⇠= ((Function z -> Function x -> e) z)

Definition 2.22 (↵-Equivalence).

(Function x -> e) ⇠= ((Function y -> e){y/x})

Definition 2.23.

(n + n

0) ⇠= the sum of n and n

0

Similar rules hold for -, And, Or, Not, and =.

CHAPTER 2. OPERATIONAL SEMANTICS 47

Definition 2.24.

(If True Then e Else e

0) ⇠= e

A similar rule holds for If False. . .

Definition 2.25.

If e) v then e

⇠= v

Equivalence transformations on programs can be used to justify results of computa-
tions instead of directly computing with the interpreter; it is often easier. An important
component of compiler optimization is applying transformations, such as the ones above,
that preserve equivalence.

2.4.3 Examples of Operational Equivalence

To solidify the concept of operational equivalence (one which reliably boggles newcomers
to programming language theory), we provide a number of examples of equivalent and
non-equivalent expressions. We start with a very simple example of two expressions
which are not equivalent.

Lemma 2.5. 2 � 3

Proof. By example. Let C
def
= If •= 2 Then 0 Else (0 0). C[2]) 0 while C[3] ; v

for any v. Thus, by definition, 2 � 3.

Note that, in the above proof, we used the expression (0 0). This expression cannot
evaluate; the application rule applies only to functions. As a result, this expression makes
an excellent tool for intentionally making code get stuck when building a proof about
operational equivalence. Other similar get-stuck expressions exist, such as True + True,
Not 5, and the ever-popular (Function x -> x x)(Function x -> x x).

It should be clear that we can use the approach in Lemma 2.5 to prove that any
two integers which are not equal are not operationally equivalent. But can we make a
statement about a non-value expression?

Lemma 2.6. x � x + 1 - 1.

At first glance, this inequivalence may seem counterintuitive. But the proof is fairly
simple:

Proof. By example. Let C
def
= (Function x -> •) True. Then C[x]) True. C[x + 1 - 1] ⌘

(Function x -> x + 1 - 1) True, which cannot evaluate because no rule allows us to
evaluate True + 1. Thus, by definition, x � x + 1 - 1.

Similar proofs could be used to prove inequivalences such as Not(Not(e)) � e. The
key here is that some of the rules in F[distinguish between integer values and boolean
values. As a result, equivalences cannot hold if one side makes assumptions about the
type of value to which it will evaluate and the other side does not.

CHAPTER 2. OPERATIONAL SEMANTICS 48

We have proven inequivalences; can we prove an equivalence? It turns out that some
equivalences can be proven but that this process is much more involved. Thus far, our
proofs of inequivalence have relied on the fact that they merely need to demonstrate an
example context in which the expressions produce di↵erent results. A proof of equiv-
alence, however, must demonstrate that no such example exists among infinitely many
contexts. For example, consider the following:

Lemma 2.7. If e ; v for any v, e

0 ; v

0 for any v

0, and both e and e

0 are closed
expressions, then e

⇠= e

0. For example, (0 0) ⇠= (Function x -> x x)(Function x ->

x x).

First, we need a definition:

Definition 2.26 (Touch). An expression is said to touch one of its subexpressions if
the evaluation of the expression causes the evaluation of that subexpression.

That is, If True Then 0 Else 1 touches the subexpression 0 because it is evaluated
when the whole expression is evaluated. 1 is not touched because the evaluation of the
expression never causes 1 to be evaluated.

We can now prove Lemma 2.7.

Proof. By contradiction. Without loss of generalization, suppose that there is some
context C for which C[e]) v while C[e0] ; v

0 for any v

0.
Because e is a closed expression, C 0[e] ; v for all v and all contexts C 0 which touch

e. Because C[e]) v, we know that C does not touch the hole.
Because C does not touch the hole, how the hole evaluates cannot a↵ect the evaluation

of C; that is, C[e⇤]) v

⇤ for some v

⇤ must be true for all e⇤ or for no e

⇤.
Because C[e]) v, C[e⇤]) v

⇤ for some v⇤ for all e⇤. But C[e0] ; v

0 for any v

0. Thus,
by contradiction, C does not exist. Thus, by definition, e ⇠= e

0.

The above proof is much longer and more complex than any of the proofs of in-
equivalence that we have encountered and it isn’t even very robust. It could benefit, for
example, from a proof that a closed expression cannot be changed by a replacement rule
(which is taken for granted above). Furthermore, the above proof doesn’t even prove a
very useful fact! Of far more interest would be proving the operational equivalence of
two expressions when one of them is executed in a more desirable manner than the other
(faster, fewer resources, etc.) in order to motivate compiler optimizations.

Lemma 2.7 is, however, e↵ective in demonstrating the complexities involved in prov-
ing operational equivalence. It is surprisingly di�cult to prove that an equivalence holds;
even proving 1 + 1 ⇠= 2 is quite challenging. See [17] for more information on this topic.

2.4.4 The �-Calculus

We briefly consider the �-calculus. In Section 2.3, we saw how to encode tuples, lists,
Let statements, freezing and thawing, and even recursion in F[. The encoding approach
is very powerful, and also gives us a way to understand complex languages based on
our understanding of simpler ones. Even numbers, booleans, and if-then-else statements
are encodable, although we will skip these topics. Thus, all that is needed is functions

CHAPTER 2. OPERATIONAL SEMANTICS 49

and application to make a Turing-complete programming language. This language is
known as the pure � calculus, because functions are usually written as �x.e instead
of Function x -> e.

Execution in � calculus is extremely straightforward and concise. The main points
are as follows.

• Even programs with free variables can execute (or reduce in �-calculus terminol-
ogy).

• Reduction can happen anywhere, e.g. inside a function body that hasn’t been
called yet.

• (�x.e)e0) e[e0/x] is the only reduction rule, called �-reduction. (It has a special
side-condition that it must be capture-free, i.e. no free variables in e

0 become bound
in the result. Capture is one of the complications of allowing reduction anywhere.)

This form of computation is conceptually very interesting, but is more distant from
how actual computer languages execute and so we do not put a strong focus on it here.

Exercises

Exercise 2.1. How would you change the Sheep language to allow the terms bah, baah, · · ·
without excluding any terms which are already allowed?

Exercise 2.2. Is the term it in the Frog language? Why or why not?

Exercise 2.3. Is it possible to construct a term in Frog without using the terminal t?
If so, give an example. If not, why not?

Exercise 2.4. Complete the definition of the operational semantics for the boolean
language described in section 2.2.1 by writing the rules for Or and Implies.

Exercise 2.5. Why not just use interpreters and forget about the operational semantics
approach?

