
DRAFT C
OPY

The Art of Multiprocessor Programming
Copyright 2007 Elsevier Inc. All rights reserved

Maurice Herlihy Nir Shavit

October 3, 2007

DRAFT C
OPY

2

DRAFT C
OPY

Contents

1 Introduction 13
1.1 Shared Objects and Synchronization 16
1.2 A Fable . 19

1.2.1 Properties of Mutual Exclusion 21
1.2.2 The Moral . 22

1.3 The Producer-Consumer Problem 23
1.4 The Readers/Writers Problem 26
1.5 The Harsh Realities of Parallelization 27
1.6 Missive . 29
1.7 Chapter Notes . 30
1.8 Exercises . 30

Principles 35

2 Mutual Exclusion 37
2.1 Time . 37
2.2 Critical Sections . 38
2.3 Two-Thread Solutions . 41

2.3.1 The LockOne Class . 41
2.3.2 The LockTwo Class . 43
2.3.3 The Peterson Lock . 44

2.4 The Filter Lock . 46
2.5 Fairness . 49
2.6 Lamport’s Bakery Algorithm 49
2.7 Bounded Timestamps . 51
2.8 Lower Bounds on Number of Locations 56
2.9 Chapter Notes . 60
2.10 Exercises . 60

3

DRAFT C
OPY

4 CONTENTS

3 Concurrent Objects 67
3.1 Concurrency and Correctness 67
3.2 Sequential Objects . 71
3.3 Quiescent Consistency . 72

3.3.1 Remarks . 74
3.4 Sequential Consistency . 75

3.4.1 Remarks . 76
3.5 Linearizability . 79

3.5.1 Linearization Points 79
3.5.2 Remarks . 79

3.6 Formal Definitions . 80
3.6.1 Linearizability . 81
3.6.2 Linearizability is Compositional 82
3.6.3 The Non-Blocking Property 83

3.7 Progress Conditions . 84
3.7.1 Dependent Progress Conditions 85

3.8 The Java Memory Model . 86
3.8.1 Locks and Synchronized Blocks 88
3.8.2 Volatile Fields . 88
3.8.3 Final Fields . 89

3.9 Remarks . 90
3.10 Chapter Notes . 91
3.11 Exercises . 91

4 Foundations of Shared Memory 97
4.1 The Space of Registers . 98
4.2 Register Constructions . 104

4.2.1 MRSW Safe Registers 105
4.2.2 A Regular Boolean MRSW Register 105
4.2.3 A regular M -valued MRSW register. 106
4.2.4 An Atomic SRSW Register 109
4.2.5 An Atomic MRSW Register 112
4.2.6 An Atomic MRMW Register 115

4.3 Atomic Snapshots . 117
4.3.1 An Obstruction-free Snapshot 117
4.3.2 A Wait-Free Snapshot 119
4.3.3 Correctness Arguments 119

4.4 Chapter Notes . 121
4.5 Exercises . 122

DRAFT C
OPY

CONTENTS 5

5 The Relative Power of Primitive Synchronization Opera-
tions 133
5.1 Consensus Numbers . 134

5.1.1 States and Valence . 135
5.2 Atomic Registers . 138
5.3 Consensus Protocols . 140
5.4 FIFO Queues . 141
5.5 Multiple Assignment Objects 145
5.6 Read-Modify-Write Operations 148
5.7 Common2 RMW Operations 150
5.8 The compareAndSet() Operation 152
5.9 Chapter Notes . 154
5.10 Exercises . 155

6 Universality of Consensus 163
6.1 Introduction . 163
6.2 Universality . 164
6.3 A Lock-free Universal Construction 165
6.4 A Wait-free Universal Construction 169
6.5 Chapter Notes . 176
6.6 Exercises . 176

Practice 179

7 Spin Locks and Contention 181
7.1 Welcome to the Real World 181
7.2 Test-and-Set Locks . 185
7.3 TAS-Based Spin Locks Revisited 188
7.4 Exponential Backoff . 190
7.5 Queue Locks . 192

7.5.1 Array-Based Locks . 192
7.5.2 The CLH Queue Lock 193
7.5.3 The MCS Queue Lock 197

7.6 A Queue Lock with Timeouts 200
7.7 A Composite Lock . 203

7.7.1 A Fast-Path Composite Lock 210
7.8 Hierarchical Locks . 212

7.8.1 A Hierarchical Backoff Lock 213
7.8.2 A Hierarchical CLH Queue Lock 214

7.9 One Lock To Rule Them All 220

DRAFT C
OPY

6 CONTENTS

7.10 Chapter Notes . 220
7.11 Exercises . 221

8 Monitors and Blocking Synchronization 223
8.1 Introduction . 223
8.2 Monitor Locks and Conditions 224

8.2.1 Conditions . 225
8.2.2 The Lost-Wakeup Problem 228

8.3 Readers-Writers Locks . 231
8.3.1 Simple Readers-Writers Lock 231
8.3.2 Fair Readers-Writers Lock 232

8.4 A Reentrant Lock . 234
8.5 Semaphores . 237
8.6 Chapter Notes . 239
8.7 Exercises . 240

9 Linked Lists: the Role of Locking 245
9.1 Introduction . 245
9.2 List-based Sets . 246
9.3 Concurrent Reasoning . 248
9.4 Coarse-Grained Synchronization 250
9.5 Fine-Grained Synchronization 252
9.6 Optimistic Synchronization 257
9.7 Lazy Synchronization . 261
9.8 A Lock-Free List . 267
9.9 Discussion . 272
9.10 Chapter Notes . 274
9.11 Exercises . 274

10 Concurrent Queues and the ABA Problem 277
10.1 Introduction . 277
10.2 Queues . 279
10.3 A Bounded Partial Queue . 279
10.4 An Unbounded Total Queue 285
10.5 An Unbounded Lock-Free Queue 286
10.6 Memory reclamation and the ABA problem 290

10.6.1 A Näıve Synchronous Queue 294
10.7 Dual Data Structures . 296
10.8 Chapter Notes . 299
10.9 Exercises . 299

DRAFT C
OPY

CONTENTS 7

11 Concurrent Stacks and Elimination 303
11.1 Introduction . 303
11.2 An Unbounded Lock-free Stack 303
11.3 Elimination . 304
11.4 The Elimination Backoff Stack 305

11.4.1 A Lock-free Exchanger 308
11.4.2 The Elimination Array 311

11.5 Chapter Notes . 314
11.6 Exercises . 315

12 Counting, Sorting, and Distributed Coordination 321
12.1 Introduction . 321
12.2 Shared Counting . 321
12.3 Software Combining . 322

12.3.1 Overview . 323
12.3.2 An Extended Example 330
12.3.3 Performance and Robustness 333

12.4 Quiescently-Consistent Pools and Counters 333
12.5 Counting Networks . 334

12.5.1 Networks that count 334
12.5.2 The Bitonic Counting Network 337
12.5.3 Performance and Pipelining 345

12.6 Diffracting Trees . 348
12.7 Parallel Sorting . 353
12.8 Sorting Networks . 354

12.8.1 Designing a Sorting Network 354
12.9 Sample Sorting . 357
12.10Distributed Coordination . 360
12.11Chapter Notes . 361
12.12Exercises . 362

13 Concurrent Hashing and Natural Parallelism 367
13.1 Introduction . 367
13.2 Closed-Address Hash Sets . 368

13.2.1 A Coarse-Grained Hash Set 371
13.2.2 A Striped Hash Set . 373
13.2.3 A Refinable Hash Set 376

13.3 A Lock-free Hash Set . 379
13.3.1 Recursive Split-ordering 379
13.3.2 The BucketListclass 383

DRAFT C
OPY

8 CONTENTS

13.3.3 The LockFreeHashSet<T> class 385
13.4 An Open-Addressed Hash Set 388

13.4.1 Cuckoo Hashing . 389
13.4.2 Concurrent Cuckoo Hashing 390
13.4.3 Striped Concurrent Cuckoo Hashing 395
13.4.4 A Refinable Concurrent Cuckoo Hash Set 395

13.5 Chapter Notes . 396
13.6 Exercises . 396

14 Skiplists and Balanced Search 405
14.1 Introduction . 405
14.2 Sequential Skiplists . 406
14.3 A Lock-Based Concurrent Skiplist 407

14.3.1 A Bird’s Eye View . 407
14.3.2 The Algorithm . 410

14.4 A Lock-Free Concurrent Skiplist 417
14.4.1 A Bird’s Eye View . 417
14.4.2 The Algorithm in Detail 420

14.5 Concurrent Skiplists . 426
14.6 Chapter Notes . 428
14.7 Exercises . 429

15 Priority Queues 433
15.1 Introduction . 433

15.1.1 Concurrent Priority Queues 434
15.2 An Array-Based Bounded Priority Queue 434
15.3 A Tree-Based Bounded Priority Queue 435
15.4 An Unbounded Heap-Based Priority Queue 439

15.4.1 A Sequential Heap . 439
15.4.2 A Concurrent Heap 440

15.5 A Skiplist-Based Unbounded Priority Queue 446
15.6 Chapter Notes . 450
15.7 Exercises . 451

16 Futures, Scheduling, and Work Distribution 455
16.1 Introduction . 455
16.2 Analyzing Parallelism . 460
16.3 Realistic Multiprocessor Scheduling 463
16.4 Work Distribution . 465

16.4.1 Work Stealing . 466

DRAFT C
OPY

CONTENTS 9

16.4.2 Yielding and Multiprogramming 466
16.5 Work-Stealing Dequeues . 467

16.5.1 A Bounded Work-Stealing Dequeue 467
16.5.2 An Unbounded Work-Stealing DEQueue 470
16.5.3 Work Balancing . 471

16.6 Chapter Notes . 472
16.7 Exercises . 473

17 Barriers 493
17.1 Introduction . 493
17.2 Barrier Implementations . 495
17.3 Sense-Reversing Barrier . 496
17.4 Combining Tree Barrier . 497
17.5 Static Tree Barrier . 499
17.6 Termination Detecting Barriers 501
17.7 Chapter Notes . 507
17.8 Exercises . 507

18 Transactional Memory 517
18.1 Introduction . 517

18.1.1 What’s Wrong with Locking? 517
18.1.2 What’s Wrong with compareAndSet()? 518
18.1.3 What’s wrong with Compositionality? 521
18.1.4 What can we do about it? 521

18.2 Transactions and Atomicity 522
18.3 Software Transactional Memory 525

18.3.1 Transactions and Transactional Threads 528
18.3.2 Zombies and Consistency 530
18.3.3 Atomic Objects . 531
18.3.4 Dependent or Independent Progress? 532
18.3.5 Contention Managers 534
18.3.6 Implementing Atomic Objects 537
18.3.7 An Obstruction-Free Atomic Object 538
18.3.8 A Lock-Based Atomic Object 542

18.4 Hardware Transactional Memory 546
18.4.1 Cache Coherence . 546
18.4.2 Transactional Cache Coherence 547
18.4.3 Enhancements . 548

18.5 Chapter Notes . 549
18.6 Exercises . 549

DRAFT C
OPY

10 CONTENTS

A Software Basics 563
A.1 Introduction . 563
A.2 Java . 563

A.2.1 Threads . 563
A.2.2 Monitors . 564
A.2.3 Yielding and Sleeping 570
A.2.4 Thread-Local Objects 570

A.3 C# . 572
A.3.1 Threads . 572
A.3.2 Monitors . 573
A.3.3 Thread-Local Objects 576

A.4 Pthreads . 577
A.4.1 Thread-Local Storage 579

A.5 The Art of Multiprocessor Programming 579
A.6 Chapter Notes . 580

B Hardware Basics 585
B.1 Introduction (and a Puzzle) 585
B.2 Processors and Threads . 588
B.3 Interconnect . 589
B.4 Memory . 590
B.5 Caches . 590

B.5.1 Coherence . 591
B.5.2 Spinning . 593

B.6 Cache-conscious Programming, or the Puzzle Solved 594
B.7 Multi-Core and Multi-Threaded Architectures 595

B.7.1 Relaxed Memory Consistency 596
B.8 Hardware Synchronization instructions 598
B.9 Chapter Notes . 600
B.10 Exercises . 600

DRAFT C
OPY

244 CONTENTS

DRAFT C
OPY

Chapter 9

Linked Lists: the Role of
Locking

9.1 Introduction

In Chapter 7 we saw how to build scalable spin locks that provide mutual
exclusion efficiently even when they are heavily used. You might think that
it is now a simple matter to construct scalable concurrent data structures:
simply take a sequential implementation of the class, add a scalable lock
field, and ensure that each method call acquires and releases that lock. We
call this approach coarse-grained synchronization.

Often, coarse-grained synchronization works well, but there are impor-
tant cases where it doesn’t. The problem is that a class that uses a single
lock to mediate all of its method calls is not always scalable, even if the lock
itself is scalable. Coarse-grained synchronization works well when levels of
concurrency are low, but if too many threads try to access the object at the
same time, then the object becomes a sequential bottleneck, forcing threads
to wait in line for access.

This chapter introduces several useful techniques that go beyond coarse-
grained locking to allow multiple threads to access a single object at the
same time.

• Fine-grained synchronization: Instead of using a single lock to syn-
chronize every access to an object, we split the object into independently-
synchronized components, ensuring that method calls interfere only
when trying to access the same component at the same time.

• Optimistic synchronization: Many objects, such as trees or lists, con-

245

DRAFT C
OPY

246 CHAPTER 9. LINKED LISTS: THE ROLE OF LOCKING

sist of multiple components linked together by references. Some meth-
ods search for a particular component (for example, a list or tree node
containing a particular key). One way to reduce the cost of fine-
grained locking is to search without acquiring any locks at all. If the
method finds the sought-after component, it locks that component,
and then checks that the component has not changed in the interval
between when it was inspected and when it was locked. This technique
is worthwhile only if it succeeds more often than not, which is why we
call it optimistic.

• Lazy synchronization: Sometimes it makes sense to postpone hard
work. For example, the task of removing a component from a data
structure can be split into two phases: the component is logically re-
moved simply by setting a tag bit, and later, the component can be
physically removed by unlinking it from the rest of the data structure.

• Non-Blocking Synchronization: Sometimes we can eliminate locks en-
tirely, relying on built-in atomic operations such as compareAndSet()
for synchronization.

Each of these techniques can be applied (with appropriate customization)
to a variety of common data structures. In this chapter we consider how to
use linked lists to implement a set, a collection of items that contains no
duplicate elements.

For our purposes, a Set provides the following three methods:

• The add(x) method adds x to the set, returning true if and only if x
was not already there.

• The remove(x) method removes x from the set, returning true if and
only if x was there.

• The contains(x) returns true if and only if the set contains x.

For each method, we say that a call is successful if it returns true, and
unsuccessful otherwise. It is typical that in applications using sets, there
are significantly more contains() method calls than add() or remove() calls.

9.2 List-based Sets

This chapter presents a range of concurrent set algorithms, all based on the
same basic idea. A set is implemented as a linked list of nodes. As shown

DRAFT C
OPY

9.2. LIST-BASED SETS 247

1 public interface Set<T> {
2 boolean add(T x);
3 boolean remove(T x);
4 boolean contains(T x);
5 }

Figure 9.1: The Set interface: add() adds an item to the set (no effect if that
item is already present), remove() removes it (if present), and contains() returns a
Boolean indicating whether the item is present.

1 private class Node {
2 T item;
3 int key;
4 Node next;
5 }

Figure 9.2: The Node<T> class: this internal class keeps track of the item, the
item’s key, and the next node in the list. Some algorithms require technical changes
to this class.

in Figure 9.2, the Node<T> class has three fields. The item field is the
actual item of interest. The key field is the items’s hash code. Nodes are
sorted in key order, providing an efficient way to detect when an item is
absent. The next field is a reference to the next node in the list. (Some of
the algorithms we consider require technical changes to this class, such as
adding new fields, or changing the types of existing fields.) For simplicity,
we assume that each item’s hash code is unique (relaxing this assumption
is left as an exercise). We associate an item with the same node and key
throughout any given example, which allows us to abuse notation and use
the same symbol to refer to a node, its key, and its item. That is, node a
may have key a and item a, and so on.

The list has two kinds of nodes. In addition to regular nodes that hold
items in the set, we use two sentinel nodes, called head and tail , as the first
and last list elements. Sentinel nodes are never added, removed, or searched
for, and their keys are the minimum and maximum integer values.1 Ignoring
synchronization for the moment, the top part of Figure 9.3 shows a schematic

1All algorithms presented here work for any any ordered set of keys that have maximum
and minimum values and that are well-founded, that is, there are only finitely many keys
smaller than any given key. For simplicity, we assume here that keys are integers.

DRAFT C
OPY

248 CHAPTER 9. LINKED LISTS: THE ROLE OF LOCKING

description how an item is added to the set. Each thread A has two local
variables used to traverse the list: currA is the current node and predA is
its predecessor. To add an item to the set, A sets local variables predA and
currA to head, and moves down the list, comparing currA’s key to the key
of the item being added. If they match, the item is already present in the
set, so the call returns false. If predA precedes currA in the list, then predA’s
key is lower than that of the inserted item, and currA’s key is higher, so the
item is not present in the list. The method creates a new node b to hold the
item, sets b’s nextA field to currA, then sets predA to b. Removing an item
from the set works in a similar way.

9.3 Concurrent Reasoning

Reasoning about concurrent data structures may seem impossibly difficult,
but it is a skill that can be learned. Often the key to understanding a
concurrent data structure is to understand its invariants: properties that
always hold. We can show that a property is invariant by showing that:

1. The property holds when the object is created, and

2. Once the property holds, then no thread can take a step that makes
the property false.

Most interesting invariants hold trivially when the list is created, so it makes
sense to focus on how invariants, once established, are preserved.

Specifically, we can check that each invariant is preserved by each invo-
cation of insert (), remove(), and contains() methods. This approach works
only if we can assume that these methods are the only ones that modify
nodes, a property sometimes called freedom from interference. In the list
algorithms considered here, nodes are internal to the list implementation,
so freedom from interference is guaranteed because users of the list have no
opportunity to modify its internal nodes.

We require freedom from interference even for nodes that have been
removed from the list, since some of our algorithms permit a thread to unlink
a node while it is being traversed by others. Fortunately, we do not attempt
to reuse list nodes that have been removed from the list, relying instead
on a garbage collector to recycle that memory. The algorithms described
here work in languages without garbage collection, but sometimes require
non-trivial modifications beyond the scope of this chapter.

DRAFT C
OPY

9.3. CONCURRENT REASONING 249

When reasoning about concurrent object implementations, it is impor-
tant to understand the distinction between an object’s abstract value (here,
a set of items), and its concrete representation (here, a list of nodes).

Not every list of nodes is a meaningful representation for a set. An algo-
rithm’s representation invariant characterizes which representations make
sense as abstract values. If a and b are nodes, we say that a points to b if a’s
next field is a reference to b. We say that b is reachable if there is a sequence
of nodes, starting at head, and ending at b, where each node in the sequence
points to its successor.

The set algorithms in this chapter require the following invariants (some
require more, as explained later). First, sentinels are neither added nor
removed. Second, nodes are sorted by key, and keys are unique.

a b

remove b

head tail
c

pred curr

a

badd b

head tail

c

pred curr

Figure 9.3: A seqential Set implementation: adding and removing nodes. To
insert a node b, a thread uses two variables: curr is the current node, and pred is
its predecessor. Move down the list comparing the keys for curr and b. If a match
is found, the item is already present, so return false. If curr reaches an node with
a higher key, the item is not present Set b’s next field to curr , and pred’s next field
to b. To delete curr , set pred’s next field to curr ’s next field.

Think of the representation invariant as a contract among the object’s
methods. Each method call preserves the invariant, and relies on the other
methods also to preserve the invariant. In this way, we can reason about
each method in isolation, without having to consider all the possible ways
they might interact.

Given a list satisfying the representation invariant, which set does it
represent? The meaning of such a list is given by an abstraction map carrying
lists that satisfy the representation invariant to sets. Here, the abstraction
map is simple: an item is in the set if and only if it is reachable from head.

DRAFT C
OPY

250 CHAPTER 9. LINKED LISTS: THE ROLE OF LOCKING

What safety and liveness properties do we need? Our safety property
is linearizability. As we saw in Chapter 3, to show that a concurrent data
structure is a linearizable implementation of a sequentially specified object,
it is enough to identify a linearization point, a single atomic step where the
method call “takes effect”. This step can be a read, a write, or a more
complex atomic operation. Looking at any execution history of a list-based
set, it must be the case that if the abstraction map is applied to the rep-
resentation at the linearization points, the resulting sequence of states and
method calls defines a valid sequential set execution. Here, add(a) adds a to
the abstract set, remove(a) removes a from the abstract set, and contains(a)
returns true or false depending on whether a was already in the set.

Different list algorithms make different progress guarantees. Some use
locks, and care is required to ensure they are deadlock and starvation-free.
Some non-blocking list algorithms do not use locks at all, while others restrict
locking to certain methods. Here is a brief summary, from Chapter 3, of the
non-blocking properties we use2:

• A method is wait-free if it guarantees that every call finishes in a finite
number of steps.

• A method is lock-free if it guarantees that some call always finishes in
a finite number of steps.

We are now ready to consider a range of list-based set algorithms. We
start with algorithms that use coarse-grained synchronization, and succes-
sively refine them to reduce granularity of locking. Formal proofs of cor-
rectness lie beyond the scope of this book. Instead, we focus on informal
reasoning useful in everyday problem-solving.

As mentioned, in each of these algorithms, methods scan through the list
using two local variables: curr is the current node and pred is its predecessor.
These variables are thread-local3, so we use predA and currA to denote the
instances used by thread A.

9.4 Coarse-Grained Synchronization

We start with a simple algorithm using coarse-grained synchronization. Fig-
ures 9.4 and 9.5 show the add() and remove() methods for this coarse-grained

2Chapter 3 introduces an even weaker non-blocking property called obstruction-
freedom.

3Appendix A describes how thread-local variables work in Java.

DRAFT C
OPY

9.4. COARSE-GRAINED SYNCHRONIZATION 251

1 public class CoarseList<T> {
2 private Node head;
3 private Lock lock = new ReentrantLock();
4 public CoarseList () {
5 head = new Node(Integer.MIN VALUE);
6 head.next = new Node(Integer.MAX VALUE);
7 }
8 public boolean add(T item) {
9 Node pred, curr ;

10 int key = item.hashCode();
11 lock . lock ();
12 try {
13 pred = head;
14 curr = pred.next;
15 while (curr .key < key) {
16 pred = curr;
17 curr = curr.next;
18 }
19 if (key == curr.key) {
20 return false ;
21 } else {
22 Node node = new Node(item);
23 node.next = curr;
24 pred.next = node;
25 return true;
26 }
27 } finally {
28 lock .unlock();
29 }
30 }

Figure 9.4: The CoarseList class: the add() method.

algorithm. (The contains() method works in much the same way, and is left
as an exercise.) The list itself has a single lock which every method call
must acquire. The principal advantage of this algorithm, which should not
be discounted, is that it is obviously correct. All methods act on the list only
while holding the lock, so the execution is essentially sequential. To simplify
matters, we follow the convention (for now) that the linearization point for

DRAFT C
OPY

252 CHAPTER 9. LINKED LISTS: THE ROLE OF LOCKING

31 public boolean remove(T item) {
32 Node pred, curr ;
33 int key = item.hashCode();
34 lock . lock ();
35 try {
36 pred = head;
37 curr = pred.next;
38 while (curr .key < key) {
39 pred = curr;
40 curr = curr.next;
41 }
42 if (key == curr.key) {
43 pred.next = curr.next;
44 return true;
45 } else {
46 return false ;
47 }
48 } finally {
49 lock .unlock ();
50 }
51 }

Figure 9.5: The CoarseList class: the remove() method: all methods acquire a
single lock, which is released on exit by the finally block.

any method call that acquires a lock is the instant the lock is acquired.
The CoarseList class satisfies the same progress condition as its lock: if

the Lock is starvation-free, so is our implementation. If contention is very
low, this algorithm is an excellent way to implement a list. If, however, there
is contention, then even if the lock itself performs well, threads will still be
delayed waiting for one another.

9.5 Fine-Grained Synchronization

We can improve concurrency by locking individual nodes, rather than locking
the list as a whole. Instead of placing a lock on the entire list, let us add
a Lock to each node, along with lock() and unlock() methods. As a thread
traverses the list, it locks each node when it first visits, and sometime later
releases it. Such fine-grained locking permits concurrent threads to traverse

DRAFT C
OPY

9.5. FINE-GRAINED SYNCHRONIZATION 253

1 public boolean add(T item) {
2 int key = item.hashCode();
3 head.lock ();
4 Node pred = head;
5 try {
6 Node curr = pred.next;
7 curr . lock ();
8 try {
9 while (curr .key < key) {

10 pred.unlock ();
11 pred = curr;
12 curr = curr.next;
13 curr . lock ();
14 }
15 if (curr .key == key) {
16 return false ;
17 }
18 Node newNode = new Node(item);
19 newNode.next = curr;
20 pred.next = newNode;
21 return true;
22 } finally {
23 curr .unlock();
24 }
25 } finally {
26 pred.unlock();
27 }
28 }

Figure 9.6: The FineList class: the add() method uses hand-over-hand locking to
traverse the list. The finally blocks release locks before returning.

the list together in a pipelined fashion.
Consider two nodes a and b where a points to b. It is not safe to unlock

a before locking b because another thread could remove b from the list in
the interval between unlocking a and locking b. Instead, a Thread A must
acquire locks in a kind of “hand-over-hand” order: except for the initial
head sentinel node, acquire the lock for currA only while holding the lock
for predA. This locking protocol is sometimes called lock coupling. (No-

DRAFT C
OPY

254 CHAPTER 9. LINKED LISTS: THE ROLE OF LOCKING

29 public boolean remove(T item) {
30 Node pred = null, curr = null;
31 int key = item.hashCode();
32 head.lock ();
33 try {
34 pred = head;
35 curr = pred.next;
36 curr . lock ();
37 try {
38 while (curr .key < key) {
39 pred.unlock();
40 pred = curr;
41 curr = curr.next;
42 curr . lock ();
43 }
44 if (curr .key == key) {
45 pred.next = curr.next;
46 return true;
47 }
48 return false ;
49 } finally {
50 curr .unlock ();
51 }
52 } finally {
53 pred.unlock ();
54 }
55 }

Figure 9.7: The FineList class: the remove() method locks both the node to be
removed and its predecessor before removing that node.

tice that there is no obvious way to implement lock coupling using Java’s
synchronized methods.)

Figure 9.7 shows the FineList algorithm’s remove() method. Just as in
the coarse-grained list, remove() makes currA unreachable by setting predA’s
next field to currA’s successor. To be safe, remove() must lock both predA and
currA. To see why, consider the following scenario, illustrated in Figure 9.5.
Thread A is about to remove node a, the first node in the list, while Thread
B is about to remove node b, where a points to b. Suppose A locks head,

DRAFT C
OPY

9.5. FINE-GRAINED SYNCHRONIZATION 255

a b

remove b

head tail

c

remove a

Figure 9.8: The FineList class: why remove() must acquire two locks. Thread A
is about to remove a, the first node in the list, while Thread B is about to remove
b, where a points to b. Suppose A locks head, and B locks a. Thread A then sets
head.next to b, while B sets a’s next field to c. The net effect is to remove a, but
not b.

and B locks a. A then sets head.next to b, while B sets a.next to c. The
net effect is to remove a, but not b. The problem is that there is no overlap
between the locks held by the two remove() calls.

a b

remove b

head tail

c

remove a

Figure 9.9: The FineList class: Hand-over-hand locking ensures that if concurrent
remove() calls try to remove adjacent nodes, then they acquire conflicting locks.
Thread A is about to remove node a, the first node in the list, while Thread B is
about to remove node b, where a points to b. Because A must lock both head and
A and B must lock both a and b, they are guaranteed to conflict on a, forcing one
call to wait for the other.

To guarantee progress, it is important that all methods acquire locks in
the same order, starting at head and following next references toward the
tail . As Figure 9.10 shows, a deadlock could occur if different method calls
were to acquire locks in different orders. In this example, thread A, trying
to add a, has locked b and is attempting to lock head, while B, trying to
remove b, has locked b and is trying to lock head. Clearly, these method
calls will never finish. Avoiding deadlocks is one of the principal challenges
of programming with locks.

DRAFT C
OPY

256 CHAPTER 9. LINKED LISTS: THE ROLE OF LOCKING

The FineList algorithm maintains the representation invariant: sentinels
are never added or removed, and nodes are sorted by key value without
duplicates. The abstraction map is the same as for the course-grained list:
an item is in the set if and only if its node is reachable.

The linearization point for an add(a) call depends on whether the call
was successful (that is, whether a was already present). A successful call (a
absent) is linearized when the node containing a is locked (either Line 7 or
13).

The same distinctions apply to remove(a) calls. A successful call (a
present) is linearized when the predecessor node is locked (Lines 36 or 42.
A successful call (a absent) is linearized when the node containing the next
higher key is locked (Lines 36 or 42. An unsuccessful call (a present) is
linearized when the node containing a is locked.

Determining linearization points for contains() is left as an exercise.

b c

remove badd a

a

..

head tail

Figure 9.10: The FineList class: a deadlock can occur if, for example, remove()
and add() calls acquire locks in opposite order. Thread A is about to insert a by
locking first b and then head, and Thread B is about to remove node b by locking
first head and then b. Each thread holds the lock the other is waiting to acquire,
so neither makes progress.

The FineList algorithm is starvation-free, but arguing this property is
harder than in the course-grained case. We assume that all individual locks
are starvation-free. Because all methods acquire locks in the same down-
the-list order, deadlock is impossible. If Thread A attempts to lock head,
eventually it succeeds. From that point on, because there are no deadlocks,
eventually all locks held by threads ahead of A in the list will be released,
and A will succeed in locking predA and currA.

DRAFT C
OPY

9.6. OPTIMISTIC SYNCHRONIZATION 257

1 private boolean validate(Node pred, Node curr) {
2 Node node = head;
3 while (node.key <= pred.key) {
4 if (node == pred)
5 return pred.next == curr;
6 node = node.next;
7 }
8 return false ;
9 }

Figure 9.11: The OptimisticList : validation checks that predA points to currA and
is reachable from head.

9.6 Optimistic Synchronization

Although fine-grained locking is an improvement over a single, coarse-grained
lock, it still imposes a potentially long sequence of lock acquisitions and re-
leases. Moreover, threads accessing disjoint parts of the list may still block
one another. For example, a thread removing the second item in the list
blocks all concurrent threads searching for later nodes.

One way to reduce synchronization costs is to take a chance: search with-
out acquiring locks, lock the nodes found, and then confirm that the locked
nodes are correct. If a synchronization conflict caused the wrong nodes to be
locked, then release the locks and start over. Normally, this kind of conflict
is rare, which is why we call this technique optimistic synchronization.

In Figure 9.12, thread A makes an optimistic add(a). It traverses the
list without acquiring any locks (Lines 15 through 17). In fact, it ignores
the locks completely. It stops the traversal when currA’s key is greater than
or equal to a’s. It then locks predA and currA, and calls validate () to check
that predA is reachable and its next field still refers to currA. If validation
succeeds, then A proceeds as before: if currA’s key is greater than a, A adds a
new node with item a between predA and currA, and returns true. Otherwise
it returns false. The remove() and contains() methods (Figures 9.13 and
9.14) operate similarly, traversing the list without locking, then locking the
target nodes and validating they are still in the list. The following story
illustrates the nature of optimistic traversal.

A tourist takes a taxi in a foreign town. The taxi driver
speeds through a red light. The tourist, frightened, asks “What
are you are doing?” The driver answers: “Don’t worry, I am

DRAFT C
OPY

258 CHAPTER 9. LINKED LISTS: THE ROLE OF LOCKING

10 public boolean add(T item) {
11 int key = item.hashCode();
12 while (true) {
13 Node pred = head;
14 Node curr = pred.next;
15 while (curr .key <= key) {
16 pred = curr; curr = curr.next;
17 }
18 pred. lock (); curr . lock ();
19 try {
20 if (validate (pred, curr)) {
21 if (curr .key == key) {
22 return false ;
23 } else {
24 Node node = new Node(item);
25 node.next = curr;
26 pred.next = node;
27 return true;
28 }
29 }
30 } finally {
31 pred.unlock(); curr .unlock();
32 }
33 }
34 }

Figure 9.12: The OptimisticList class: the add() method traverses the list ignoring
locks, acquires locks, and validates before adding the new node.

an expert.” He speeds through more red lights, and the tourist,
on the verge of hysteria, complains again, more urgently. The
driver replies, “Relax, relax, you are in the hands of an expert.”
Suddenly, the light turns green, the driver slams on the brakes,
and the taxi skids to a halt. The tourist, picks himself off the
floor of the taxi and asks “For crying out loud, why stop now that
the light is finally green?” The driver answers “Too dangerous,
could be another expert coming”.

Traversing any dynamically-changing lock-based data structure while ig-
noring locks requires careful thought (there are other expert threads out

DRAFT C
OPY

9.6. OPTIMISTIC SYNCHRONIZATION 259

35 public boolean remove(T item) {
36 int key = item.hashCode();
37 while (true) {
38 Node pred = head;
39 Node curr = pred.next;
40 while (curr .key < key) {
41 pred = curr; curr = curr.next;
42 }
43 pred. lock (); curr . lock ();
44 try {
45 if (validate (pred, curr)) {
46 if (curr .key == key) {
47 pred.next = curr.next;
48 return true;
49 } else {
50 return false ;
51 }
52 }
53 } finally {
54 pred.unlock(); curr .unlock ();
55 }
56 }
57 }

Figure 9.13: The OptimisticList class: the remove() method traverses ignoring
locks, acquires locks, and validates before removing the node.

there). We must make sure to use some form of validation and guarantee
freedom from interference.

As Figure 9.15 shows, validation is necessary because the trail of ref-
erences leading to predA or the reference from predA to currA could have
changed between when they were last read by A and when A acquired the
locks. In particular, a thread could be traversing parts of the list that have
already been removed. For example, the node currA and all nodes between
currA and a (including a) may be removed while A is still traversing currA.
Thread A discovers that currA points to a, and, without validation, “suc-
cessfully” removes a, even though a is no longer in the list. A validate () call
detects that a is no longer in the list, and the caller restarts the method.

Because we are ignoring the locks that protect concurrent modifications,

DRAFT C
OPY

260 CHAPTER 9. LINKED LISTS: THE ROLE OF LOCKING

58 public boolean contains(T item) {
59 int key = item.hashCode();
60 while (true) {
61 Entry pred = this.head; // sentinel node;
62 Entry curr = pred.next;
63 while (curr .key < key) {
64 pred = curr; curr = curr.next;
65 }
66 try {
67 pred. lock (); curr . lock ();
68 if (validate (pred, curr)) {
69 return (curr .key == key);
70 }
71 } finally { // always unlock
72 pred.unlock(); curr .unlock();
73 }
74 }
75 }

Figure 9.14: The OptimisticList class: the contains() method searches, ignoring
locks, then it acquires locks, and validates to determine if the node is in the list.

head tail

predA

currA

a

Figure 9.15: The OptimisticList class: why validation is needed. Thread A is
attempting to remove a node a. While traversing the list, currA and all nodes
between currA and a (including a) might be removed (denoted by a lighter node
color). In such a case, thread A would proceed to the point where currA points to
a, and, without validation, would successfully remove a, even though it is no longer
in the list. Validation is required to determine that a is no longer reachable from
head.

DRAFT C
OPY

9.7. LAZY SYNCHRONIZATION 261

each of the method calls may traverse nodes that have been removed from
the list. Nevertheless, absence of interference implies that once a node has
been unlinked from the list, the value of its next field does not change, so
following a sequence of such links eventually leads back to the list. Absence
of interference, in turn, relies on garbage collection to ensure that no node
is recycled while it is being traversed.

The OptimisticList algorithm is not starvation-free even if all node locks
are individually starvation-free. A thread might be delayed forever if new
nodes are repeatedly added and removed (see Exercise 107). Nevertheless,
we would expect this algorithm to do well in practice, since starvation is
rare.

9.7 Lazy Synchronization

1 private boolean validate(Node pred, Node curr) {
2 return !pred.marked && !curr.marked && pred.next == curr;
3 }

Figure 9.16: The LazyList class: validation checks that neither the pred nor the
curr nodes has been logically deleted, and that pred points to curr .

The OptimisticList implementation works best if the cost of traversing
the list twice without locking is significantly less than the cost of traversing
the list once with locking. One drawback of this particular algorithm is
that contains() acquires locks, which is unattractive since contains() calls
are likely to be much more common than calls to other methods.

The next step is to refine this algorithm so that contains() calls are wait-
free, and add() and remove() methods, while still blocking, traverse the list
only once (in the absence of contention). We add to each node a Boolean
marked field indicating whether that node is in the set. Now, traversals
do not need to lock the target node, and there is no need to validate that
the node is reachable by retraversing the whole list. Instead, the algorithm
maintains the invariant that every unmarked node is reachable. If a travers-
ing thread does not find a node, or finds it marked, then the that item is
not in the set. As a result, contains() needs only one wait-free traversal.
To add an element to the list, add() traverses the list, locks the target’s
predecessor, and inserts the node. The remove() method is lazy, taking two
steps: first, mark the target node, logically removing it, and second, redirect
its predecessor’s next field, physically removing it.

DRAFT C
OPY

262 CHAPTER 9. LINKED LISTS: THE ROLE OF LOCKING

1 public boolean add(T item) {
2 int key = item.hashCode();
3 while (true) {
4 Node pred = head;
5 Node curr = head.next;
6 while (curr .key < key) {
7 pred = curr; curr = curr.next;
8 }
9 pred. lock ();

10 try {
11 curr . lock ();
12 try {
13 if (validate (pred, curr)) {
14 if (curr .key == key) {
15 return false ;
16 } else {
17 Node node = new Node(item);
18 node.next = curr;
19 pred.next = node;
20 return true;
21 }
22 }
23 } finally {
24 curr .unlock();
25 }
26 } finally {
27 pred.unlock();
28 }
29 }
30 }

Figure 9.17: The LazyList class: add() method.

In more detail, all methods traverse the list (possibly traversing logically
and physically removed nodes) ignoring the locks. The add() and remove()
methods lock the predA and currA nodes as before (Figures 9.17 and 9.18),
but validation does not retraverse the entire list (Figure 9.16) to determine
whether a node is in the set. Instead, because a node must be marked
before being physically removed, validation need only check that currA has

DRAFT C
OPY

9.7. LAZY SYNCHRONIZATION 263

1 public boolean remove(T item) {
2 int key = item.hashCode();
3 while (true) {
4 Node pred = head;
5 Node curr = head.next;
6 while (curr .key < key) {
7 pred = curr; curr = curr.next;
8 }
9 pred. lock ();

10 try {
11 curr . lock ();
12 try {
13 if (validate (pred, curr)) {
14 if (curr .key != key) {
15 return false ;
16 } else {
17 curr .marked = true;
18 pred.next = curr.next;
19 return true;
20 }
21 }
22 } finally {
23 curr .unlock ();
24 }
25 } finally {
26 pred.unlock();
27 }
28 }
29 }

Figure 9.18: The LazyList class: the remove() method removes nodes in two steps,
logical and physical.

not been marked. However, as Figure 9.20 shows, for insertion and deletion,
since predA is the one being modified, one must also check that predA itself
is not marked, and that that it points to currA. Logical removals requires
a small change to the abstraction map: an item is in the set if and only
if it is referred to by an unmarked reachable node. Notice that the path
along which the node is reachable may contain marked nodes. The reader

DRAFT C
OPY

264 CHAPTER 9. LINKED LISTS: THE ROLE OF LOCKING

1 public boolean contains(T item) {
2 int key = item.hashCode();
3 Node curr = head;
4 while (curr .key < key)
5 curr = curr.next;
6 return curr .key == key && !curr.marked;
7 }

Figure 9.19: The LazyList class: the contains() method

0

0

head tail

predA

0 010 a

currA

head tail

predA

0 00 a

currA

Figure 9.20: The LazyList class: why validation is needed. In the top part of the
figure, thread A is attempting to remove node a. After it reaches the point where
predA refers to currA, and before it acquires locks on these nodes, the node predA is
logically and physically removed. After A acquires the locks, validation will detect
the problem. In the bottom part of the figure, A is attempting to remove node a.
After it reaches the point where predA equals currA, and before it acquires locks
on these nodes, a new node is added between predA and currA. After A acquires
the locks, even though neither predA or currA are marked, validation detects that
predA is not the same as currA, and A’s call to remove() will be restarted

should check that any unmarked reachable node remains reachable even if
its predecessor is logically or physically deleted. As in the OptimisticList
algorithm, add() and remove() are not starvation-free, because list traversals
may be arbitrarily delayed by ongoing modifications.

The contains() method (Figure 9.19) traverses the list once ignoring locks
and returns true if the node it was searching for is present and unmarked,

DRAFT C
OPY

9.7. LAZY SYNCHRONIZATION 265

and false otherwise. It is thus is wait-free.4 A marked node’s value is
ignored. This method is wait-free. Each time the traversal moves to a new
node, the new node has a larger key than the previous one, even if the node
is logically deleted.

Logical removal require a small change to the abstraction map: an item
is in the set if and only if it is referred to by an unmarked reachable node.
Notice that the path along which the node is reachable may contain marked
nodes. Physical list modifications and traversals occur exactly as in the
OptimisticList class, and the reader should check that any unmarked reach-
able node remains reachable even if its predecessor are logically or physically
deleted.

The linearization points for LazyList add() and unsuccessful remove()
calls are the same as for OptimisticList . A successful remove() call is lin-
earized when the mark is set (Line 17), and a successful contains() call is
linearized when an unmarked matching node is found.

To understand how to linearize an unsuccessful contains(), consider the
scenario depicted in Figure 9.21. In part (a), node a is marked as removed
(its marked field is set) and Thread A is attempting to find the node matching
a’s key. While A is traversing the list, currA and all nodes between currA and
a including a are removed, both logically and physically. Thread A would
still proceed to the point where currA points to a, and would detect that a
is marked and no longer in the abstract set. The call could be linearized at
this point.

Now consider the scenario depicted in part (b). While A is traversing the
removed section of the list leading to a, and before it reaches the removed
node a, another thread adds a new node with a key a to the reachable part of
the list. Linearizing Thread A’s unsuccessful contains() method at the point
it found the marked node a would be wrong, since this point occurs after
the insertion of the new node with key a to the list. We therefore linearize
an unsuccessful contains() method call within its execution interval at the
earlier of the following points: (1) the point where a removed matching
node, or a node with a key greater than the one being searched for, is found,
and (2) the point immediately before a new matching node is added to
the list. Notice that the second is guaranteed to be within the execution
interval because the insertion of the new node with the same key must have
happened after the start of the contains() method, or the contains() method
would have found that item. As can be seen, the linearization point of

4Notice that the list ahead of a given traversing thread cannot grow forever due to
newly inserted keys since key size is finite.

DRAFT C
OPY

266 CHAPTER 9. LINKED LISTS: THE ROLE OF LOCKING

Head Tail

A

currA

a1 1

0 00 b0

pred

Head Tail

currA

a1 1

0 00 b0

0a

(a)

(b)

Figure 9.21: The LazyList class: linearizing an unsuccessful contains() call. Dark
nodes are physically in the list and white nodes are physically removed. In part
(a), while thread A is traversing the list, a concurrent remove() call disconnects the
sublist referred to by curr . Notice that nodes with items a and b are still reachable,
so whether an item is actually in the list depends only on whether it is marked.
A’s call is linearized at the point when it sees that a is marked and is no longer in
the abstract set. Alternatively consider the scenario depicted in part (b). While
A is traversing the list leading to marked node a, another thread adds a new node
with key a. It would be wrong to linearize A’s unsuccessful contains() call to when
it found the marked node a, since this point occurs after the insertion of the new
node with key a to the list.

the unsuccessful contains() is determined by the ordering of events in the
execution, and is not a predetermined point in the method’s code.

One benefit of lazy synchronization is that we can separate unobtrusive
logical steps, such as setting a flag, from disruptive physical changes to the
structure, such as physically removing a node. The example presented here is
simple because we physically remove one node at a time. In general, however,
delayed operations can be batched and performed lazily at a convenient time,
reducing the overall disruptiveness of physical modifications to the structure.

The principal disadvantage of the LazyList algorithm is that add() and
remove() calls are blocking: if one thread is delayed, then others may also

DRAFT C
OPY

9.8. A LOCK-FREE LIST 267

be delayed.

9.8 A Lock-Free List

a b

remove b

head tail

c

remove a

a

b
add b

head tail
c

remove a

Figure 9.22: The LazyList class: why mark and reference fields must be modified
atomically. In the upper part of the figure, Thread A is about to remove a, the first
node in the list, while B is about to add b. Suppose A applies compareAndSet()
to head.next, while B applies compareAndSet() to a.next. The net effect is that a
is correctly deleted but b is not added to the list. In the lower part of the figure,
thread A is about to remove a, the first node in the list, while B is about to remove
b, where a points to b. Suppose A applies compareAndSet() to head.next, while B
applies compareAndSet() to a.next. The net effect is to remove a, but not b.

We have seen that it is sometimes a good idea to mark nodes as logically
removed before physically removing them from the list. We now show how
to extend this idea to eliminate locks altogether, allowing all three methods,
add(), remove(), and contains(), to be non-blocking. (The first two methods
are lock-free and the last wait-free). A näıive approach would be to use
compareAndSet() to change the next fields. Unfortunately, this idea does
not work. The bottom part of Figure 9.22 shows a Thread A attempting to
add node a between nodes predA and currA. It sets a’s next field to currA,
and then calls compareAndSet() to set predA’s next field to a. If B wants
to remove currB from the list, it might call compareAndSet() to set predB’s
next field to currB ’s successor. It not hard to see that if these two threads
try to remove these adjacent nodes concurrently, the list would end up with
b not being removed. A similar situation for a pair of concurrent add() and
remove() methods is depicted in the upper part of Figure 9.22.

DRAFT C
OPY

268 CHAPTER 9. LINKED LISTS: THE ROLE OF LOCKING

Clearly, we need a way to ensure that a node’s fields cannot be updated
after that node has been logically or physically removed from the list. Our
approach is to treat the node’s next and marked fields as a single atomic
unit: any attempt to update the next field when the marked field is true will
fail.

Pragma 9.8.1. An AtomicMarkableReference<T> object, from java.util.concurrent.atomic,
encapsulates both a reference to an object of type T and a Boolean mark.
These fields can be updated atomically, either together or individually. For
example, the compareAndSet() method tests the expected reference and mark
values, and if both tests succeed, replaces them with updated reference and
mark values. As shorthand, the attemptMark() method tests an expected
reference value and if the test succeeds, replaces it with a new mark value.
The get() method has an unusual interface: it returns the object’s reference
value and stores the mark value in a Boolean array argument. Figure 9.23
illustrates the interfaces of these methods.

In C or C++, one could provide this functionality efficiently by “steal-
ing” a bit from a pointer, using bit-wise operators to extract the mark and
the pointer from a single word. In Java, of course, one cannot manipulate
pointers directly, so this functionality must be provided by a library.

1 public boolean compareAndSet(T expectedReference,
2 T newReference,
3 boolean expectedMark,
4 boolean newMark);
5 public boolean attemptMark(T expectedReference,
6 boolean newMark);
7 public T get(boolean[] marked);

Figure 9.23: Some AtomicMarkableReference<T> methods: the compareAndSet()
method tests and updates both the mark and reference fields, while the
attemptMark() method updates the mark if the reference field has the expected
value. The get() method returns the encapsulated reference and stores the mark at
position 0 in the argument array.

As described in detail in Pragma 9.8.1, an AtomicMarkableReference<<>T¿
object encapsulates both a reference to an object of type T and a Boolean
mark. These fields can be atomically updated either together or individually.

We make each node’s next field an AtomicMarkableReference<Node>.
Thread A logically removes currA by setting the mark bit in the node’s next
field, and shares the physical removal with other threads performing add() or

DRAFT C
OPY

9.8. A LOCK-FREE LIST 269

remove(): as each thread traverses the list, it cleans up the list by physically
removing (using compareAndSet()) any marked nodes it encounters. In other
words, threads performing add() and remove() do not traverse marked nodes,
they remove them before continuing. The contains() method remains the
same as in the LazyList algorithm, traversing all nodes whether they are
marked or not, and testing if an item is in the list based on its key and
mark.

It is worth pausing to consider a design decision that differentiates the
LockFreeList algorithm from the LazyList algorithm. Why do threads that
add or remove nodes never traverse marked nodes, and instead physically
remove all marked nodes they encounter? Suppose that Thread A were to
traverse marked nodes without physically removing them, and after logi-
cally removing currA, were to attempt to physically remove it as well. It
could do so by calling compareAndSet() to try to redirect predA’s next field,
simultaneously verifying that predA is not marked and that it that it refers
to currA. The difficulty is that because A is not holding locks on predA

and currA, other threads could insert new nodes or remove predA before the
compareAndSet() call.

Consider a scenario in which another thread marks predA. As illustrated
in Figure 9.22, we cannot safely redirect the next field of a marked node, so
A would have to restart the physical removal by retraversing the list. This
time, however, A would have to physically remove predA before it could
remove currA. Even worse, if there is a sequence of logically removed nodes
leading to predA, A must remove them all, one after the other, before it can
remove currA itself.

This example illustrates why add() and remove() calls do not traverse
marked nodes: when they arrive at the node to be modified, they may be
forced to retraverse the list to remove previous marked nodes. Instead,
we choose to have both add() and remove() physically remove any marked
nodes on the path to their target node. The contains() method, by contrast,
performs no modification, and therefore need not participate in the cleanup
of logically removed nodes, allowing it, as in the LazyList, to traverse both
marked and unmarked nodes.

In presenting our LockFreeList algorithm, we factor out functionality
common to the add() and remove() methods by creating an inner Window
class to help navigation. As shown in Figure 9.24, a Window object is a
structure with pred and curr fields. The Window class’s find() method takes
a head node and a key a, and traverses the list, seeking to set pred to the
node with the largest key less than a, and curr to the node with the least
key greater than or equal to a. As Thread A traverses the list, each time it

DRAFT C
OPY

270 CHAPTER 9. LINKED LISTS: THE ROLE OF LOCKING

1 class Window {
2 public Node pred, curr ;
3 Window(Node myPred, Node myCurr) {
4 pred = myPred; curr = myCurr;
5 }
6 }
7 public Window find(Node head, int key) {
8 Node pred = null, curr = null, succ = null;
9 boolean[] marked = {false};

10 boolean snip;
11 retry : while (true) {
12 pred = head;
13 curr = pred.next.getReference ();
14 while (true) {
15 succ = curr.next.get(marked);
16 while (marked[0]) {
17 snip = pred.next.compareAndSet(curr, succ, false , false);
18 if (! snip) continue retry ;
19 curr = succ;
20 succ = curr.next.get(marked);
21 }
22 if (curr .key >= key)
23 return new Window(pred, curr);
24 pred = curr;
25 curr = succ;
26 }
27 }
28 }

Figure 9.24: The Window class: the find() method returns a structure containing
the nodes on either side of the key. It removes marked nodes when it encounters
them.

advances currA, it checks whether that node is marked (Line 16). If so, it
calls compareAndSet() to attempt to physically remove the node by setting
predA’s next to currA’s next field. This call tests both the field’s reference
and Boolean mark values, and fails if either value has changed. A concurrent
thread could change the mark value by logically removing predA, or it could
change the reference value by physically removing currA. If the call fails, A

DRAFT C
OPY

9.8. A LOCK-FREE LIST 271

restarts the traversal from the head of the list, and otherwise the traversal
continues.

The LockFreeList algorithm uses the same abstraction map as the LazyList
algorithm: an item is in the set if and only if it is in an unmarked reachable
node. The compareAndSet() call at Line 17 of the find() method is an exam-
ple of a benevolent side-effect : it changes the concrete list without changing
the abstract set, because removing a marked node does not change the value
of the abstraction map.

Figure 9.25 shows the LockFreeList classm’s add() method. Suppose
Thread A calls add(a). A uses find () to locate predA and currA. If currA’s
key is equal to a’s, the call returns false. Otherwise, add() initializes a new
node a to hold a, and sets a to refer to currA. It then calls compareAndSet()
(Line 10) to set predA to a. Because the compareAndSet() tests both the
mark and the reference, it succeeds only if predA is unmarked and refers to
currA. If the compareAndSet() is successful, the method returns true, and
otherwise it starts over.

1 public boolean add(T item) {
2 int key = item.hashCode();
3 while (true) {
4 Window window = find(head, key);
5 Node pred = window.pred, curr = window.curr;
6 if (curr .key == key) {
7 return false ;
8 } else {
9 Node node = new Node(item);

10 node.next = new AtomicMarkableReference(curr, false);
11 if (pred.next.compareAndSet(curr, node, false , false)) {
12 return true;
13 }
14 }
15 }
16 }

Figure 9.25: The LockFreeList class: the add() method calls find() to locate predA

and currA. It adds a new node only if predA is unmarked and refers to currA.

Figure 9.26 shows the LockFreeList algorithm’s remove() method. When
A calls remove() to remove item a, it uses find() to locate predA and currA.
If currA’s key fails to match a’s, the call returns false. Otherwise, remove()

DRAFT C
OPY

272 CHAPTER 9. LINKED LISTS: THE ROLE OF LOCKING

17 public boolean remove(T item) {
18 int key = item.hashCode();
19 boolean snip;
20 while (true) {
21 Window window = find(head, key);
22 Node pred = window.pred, curr = window.curr;
23 if (curr .key != key) {
24 return false ;
25 } else {
26 Node succ = curr.next.getReference ();
27 snip = curr.next.attemptMark(succ, true);
28 if (! snip)
29 continue;
30 pred.next.compareAndSet(curr, succ, false , false);
31 return true;
32 }
33 }
34 }

Figure 9.26: The LockFreeList class: the remove() method calls find() to locate
predA and currA, and atomically marks the node for removal.

calls attemptMark() to mark currA as logically removed (Line 27). This call
succeeds only if no other thread has set the mark first. If it succeeds, the
call returns true. A single attempt is made to physically remove the node,
but there is no need to try again because the node will be removed by the
next thread to traverse that region of the list. If the attemptMark() call fails,
remove() starts over.

The LockFreeList algorithm’s contains() method is virtually the same as
that of the LazyList (Figure 9.27). There is one small change: to test if curr
is marked we must apply curr .next.get(marked) and check that marked[0] is
true.

9.9 Discussion

We have seen a progression of list-based lock implementations in which
the granularity and frequency of locking was gradually reduced, eventually
reaching a fully non-blocking list. The final transition from the LazyList to
the LockFreeList exposes some of the design decisions that face concurrent

DRAFT C
OPY

9.9. DISCUSSION 273

35 public boolean contains(T item) {
36 boolean[] marked = false{};
37 int key = item.hashCode();
38 Node curr = head;
39 while (curr .key < key) {
40 curr = curr.next;
41 Node succ = curr.next.get(marked);
42 }
43 return (curr .key == key && !marked[0])
44 }

Figure 9.27: The LockFreeList class: the wait-free contains() method is the al-
most the same as in the LazyList class. There is one small difference: it calls
curr .next.get(marked) to test whether curr is marked.

programmers.
On the one hand, the LockFreeList algorithm guarantees progress in the

face of arbitrary delays. However, there is a price for this strong progress
guarantee:

• The need to support atomic modification of a reference and a Boolean
mark has an added performance cost.5

• As add() and remove() traverse the list, they must engage in concurrent
cleanup of removed nodes, introducing the possibility of contention
among threads, sometimes forcing threads to restart traversals, even
if there was no change near the node each was trying to modify.

On the other hand, the lazy lock-based list does not guarantee progress
in the face of arbitrary delays: its add() and remove() methods are blocking.
However, unlike the lock-free algorithm, it does not require each node to
include an atomically markable reference. It also does not require traversals
to clean up logically removed nodes; they progress down the list, ignoring
marked nodes.

Which approach is preferable depends on the application. In the end,
the balance of factors such as the potential for arbitrary thread delays, the
relative frequency of calls to the add() and remove() methods, the overhead
of implementing an atomically markable reference, and so on, determine the
choice of whether to lock, and if so at what granularity.

5In the Java Concurrency Package, for example, this cost is reduced somewhat by using
a reference to an intermediate dummy node to signify that the marked bit is set.

DRAFT C
OPY

274 CHAPTER 9. LINKED LISTS: THE ROLE OF LOCKING

9.10 Chapter Notes

Lock coupling was invented by Rudolf Bayer and Mario Schkolnick [17]. The
first designs of lock-free linked-list algorithms are due to John Valois [142].
The Lock-free list implementation shown here is a variation on the lists of
Maged Michael [112], who based his work on earlier linked-list algorithms by
Tim Harris [50]. Michael’s algorithm is the one used in the Java Concurrency
Package. The OptimisticList algorithm was invented for this chapter, and
the lazy algorithm is due to Heller et al. [52].

9.11 Exercises

Exercise 103. Describe how to modify each of the linked list algorithms if
object hash codes are not guaranteed to be unique. 9.5
Exercise 104. Explain why the fine-grained locking algorithm is not subject
to deadlock.
Exercise 105. Explain why the fine-grained list’s add() method is lineariz-
able.
Exercise 106. Explain why the optimistic and lazy locking algorithms are
not subject to deadlock.
Exercise 107. Show a scenario in the optimistic algorithm where a thread
is forever attempting to delete an node. Hint : since we assume that all the
individual node locks are starvation-free, the livelock is not on any individual
lock, and a bad execution must repeatedly add and remove nodes from the
list.
Exercise 108. Provide the code for the contains() method missing from the
fine-grained algorithm. Explain why your implementation is correct.
Exercise 109. Is the optimistic list implementation still correct if we switch
the order in which add() locks the pred and curr entries?
Exercise 110. Show that in the optimistic list algorithm, if predA is not null ,
then tail is reachable from predA, even if predA itself is not reachable.
Exercise 111. Show that in the optimistic algorithm, the add() method needs
to lock only pred.
Exercise 112. In the optimistic algorithm, the contains() method locks two
entries before deciding whether a key is present. Suppose, instead, it locks
no entries, returning true if it observes the value, and false otherwise.

Either explain why this alternative is linearizable, or give a counterex-
ample showing it is not.

DRAFT C
OPY

9.11. EXERCISES 275

Exercise 113. Would the lazy algorithm still work if we marked a node as
removed simply by setting its next field to null? Why or why not? What
about the lock-free algorithm?

Exercise 114. In the lazy algorithm, can predA ever be unreachable? Justify
your answer.

Exercise 115. Your new employee claims that the lazy list’s validation method
(Figure 9.16) can be simplified by dropping the check that pred.next is equal
to curr . After all, the code always sets pred to the old value of curr , and
before pred.next can be changed, the new value of curr must be marked,
causing the validation to fail. Explain the error in this reasoning.

Exercise 116. Can you modify the lazy algorithm’s remove() so it locks only
one node?

Exercise 117. In the lock-free algorithm, argue the benefits and drawbacks
of having the contains() method help in the cleanup of logically removed
entries.

Exercise 118. In the lock-free algorithm, if an add() method call fails because
pred does not point to curr , but pred is not marked, do we need to traverse
the list again from head in order to attempt to complete the call.

Exercise 119. Would the contains() method of the lazy and lock-free algo-
rithms still be correct if logically removed entries were not guaranteed to be
sorted?

Exercise 120. The add() method of the lock-free algorithm never finds a
marked node with the same key. Can one modify the algorithm so that it
will simply insert its new added object into the existing marked node with
same key if such an node exists in the list, thus saving the need to insert a
new node?

Exercise 121. Explain why it cannot happen in the LockFreeList algorithm
that a node with item x will be logically but not yet physically removed by
some thread, then the same item x will be added into the list by another
thread, and finally a contains() call by a third thread will traverse the list,
finding the logically removed node, and returning false, even though the
linearization order of the remove() and add() implies that x is in the set.

DRAFT C
OPY

Appendix

559

DRAFT C
OPY

Bibliography

[1] Sarita V. Adve and Kourosh Gharachorloo. Shared memory consis-
tency models: A tutorial. Computer, 29(12):66–76, 1996.

[2] Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt,
and Nir Shavit. Atomic snapshots of shared memory. Journal of the
ACM (JACM), 40(4):873–890, 1993.

[3] Yehuda Afek, Dalia Dauber, and Dan Touitou. Wait-free made fast. In
STOC ’95: Proceedings of the twenty-seventh annual ACM symposium
on Theory of computing, pages 538–547, New York, NY, USA, 1995.
ACM Press.

[4] Yehuda Afek, Gideon Stupp, and Dan Touitou. Long-lived and adap-
tive atomic snapshot and immediate snapshot (extended abstract).
In Symposium on Principles of Distributed Computing, pages 71–80,
2000.

[5] Yehuda Afek, Eytan Weisberger, and Hanan Weisman. A completeness
theorem for a class of synchronization objects. In PODC ’93: Proceed-
ings of the twelfth annual ACM symposium on Principles of distributed
computing, pages 159–170, New York, NY, USA, 1993. ACM Press.

[6] A. Agarwal and M. Cherian. Adaptive backoff synchronization tech-
niques. In Proceedings of the 16th International Symposium on Com-
puter Architecture, pages 396–406, May 1989.

[7] Ole Agesen, David Detlefs, Alex Garthwaite, Ross Knippel, Y. S. Ra-
makrishna, and Derek White. An efficient meta-lock for implementing
ubiquitous synchronization. ACM SIGPLAN Notices, 34(10):207–222,
1999.

[8] M. Ajtai, J. Komlós, and E. Szemerédi. An O(n log n) sorting network.
Combinatorica, 3:1–19, 1983.

603

DRAFT C
OPY

604 BIBLIOGRAPHY

[9] G.M. Amdahl. Validity of the single-processor approach to achieving
large scale computing capabilities. In AFIPS Conference Proceedings,
pages 483–485, Atlantic City, NJ, April 1967. AFIPS Press, Reston,
VA.

[10] James H. Anderson. Composite registers. Distributed Computing,
6(3):141–154, 1993.

[11] James H. Anderson and Mark Moir. Universal constructions for multi-
object operations. In PODC ’95: Proceedings of the fourteenth annual
ACM symposium on Principles of distributed computing, pages 184–
193, New York, NY, USA, 1995. ACM Press.

[12] Thomas E. Anderson. The performance of spin lock alternatives for
shared-money multiprocessors. IEEE Transactions on Parallel and
Distributed Systems, 1(1):6–16, 1990.

[13] Nimar S. Arora, Robert D. Blumofe, and C. Greg Plaxton. Thread
scheduling for multiprogrammed multiprocessors. In Proceedings of
the tenth annual ACM symposium on Parallel algorithms and archi-
tectures, pages 119–129. ACM Press, 1998.

[14] James Aspnes, Maurice Herlihy, and Nir Shavit. Counting networks.
Journal of the ACM, 41(5):1020–1048, 1994.

[15] David F. Bacon, Ravi B. Konuru, Chet Murthy, and Mauricio J. Ser-
rano. Thin locks: Featherweight synchronization for java. In SIG-
PLAN Conference on Programming Language Design and Implemen-
tation, pages 258–268, 1998.

[16] K. Batcher. Sorting networks and their applications. In Proceedings
of AFIPS Joint Computer Conference, pages 338–334, 1968.

[17] R. Bayer and M. Schkolnick. Concurrency of operations on b-trees.
Acta Informatica, 9:1–21, 1977.

[18] Robert D. Blumofe and Charles E. Leiserson. Scheduling mul-
tithreaded computations by work stealing. Journal of the ACM
(JACM), 46(5):720–748, 1999.

[19] Hans-J. Boehm. Threads cannot be implemented as a library. In PLDI
’05: Proceedings of the 2005 ACM SIGPLAN conference on Program-
ming language design and implementation, pages 261–268, New York,
NY, USA, 2005. ACM Press.

DRAFT C
OPY

BIBLIOGRAPHY 605

[20] Elizabeth Borowsky and Eli Gafni. Immediate atomic snapshots and
fast renaming. In PODC ’93: Proceedings of the twelfth annual ACM
symposium on Principles of distributed computing, pages 41–51, New
York, NY, USA, 1993. ACM Press.

[21] James E. Burns and Nancy A. Lynch. Bounds on shared memory
for mutual exclusion. Information and Computation, 107(2):171–184,
December 1993.

[22] James E. Burns and Gary L. Peterson. Constructing multi-reader
atomic values from non-atomic values. In PODC ’87: Proceedings of
the sixth annual ACM Symposium on Principles of distributed com-
puting, pages 222–231, New York, NY, USA, 1987. ACM Press.

[23] Costas Busch and Marios Mavronicolas. A combinatorial treatment of
balancing networks. J. ACM, 43(5):794–839, 1996.

[24] Tushar Deepak Chandra, Prasad Jayanti, and King Tan. A polylog
time wait-free construction for closed objects. In PODC ’98: Proceed-
ings of the seventeenth annual ACM symposium on Principles of dis-
tributed computing, pages 287–296, New York, NY, USA, 1998. ACM
Press.

[25] Graham Chapman, John Cleese, Terry Gilliam, Eric Idle, Terry Jones,
and Michael Palin. Monty phyton and the holy grail, 1975.

[26] David Chase and Yossi Lev. Dynamic circular work-stealing deque. In
SPAA ’05: Proceedings of the seventeenth annual ACM symposium on
Parallelism in algorithms and architectures, pages 21–28, New York,
NY, USA, 2005. ACM Press.

[27] Alonzo Church. A note on the entscheidungsproblem. Journal of
Symbolic Logic, 1936.

[28] Intel Corporation. Pentium Processor User’s Manual. Intel Books,
1993. ISB: 1555121934.

[29] T. Craig. Building FIFO and priority-queueing spin locks from atomic
swap. Technical Report TR 93-02-02, University of Washington, De-
partment of Computer Science, February 1993.

[30] Dave Dice and Nir Shavit. Transactional locking ii. In 20th Interna-
tional Symposium on Distributed Computing, September 2006.

DRAFT C
OPY

606 BIBLIOGRAPHY

[31] David Dice. Implementing fast java monitors with relaxed-locks. In
Java Virtual Machine Research and Technology Symposium, pages 79–
90, 2001.

[32] Edsger W. Dijkstra. The structure of the THE multiprogramming
system. Communications of the ACM, 11(5):341–346, 1968.

[33] Danny Dolev and Nir Shavit. Bounded concurrent time-stamping.
SIAM Journal of Computing, 26(2):418–455, 1997.

[34] Martin Dowd, Yehoshua Perl, Larry Rudolph, and Michael Saks. The
periodic balanced sorting network. J. ACM, 36(4):738–757, 1989.

[35] Arthur Conan Doyle. A Study in Scarlet and the Sign of Four. Berkley
Publishing Group, 1994. ISBN 0425102408.

[36] Cynthia Dwork and Orli Waarts. Simple and efficient bounded con-
current timestamping and the traceable use abstraction. Journal of
the ACM (JACM), 46(5):633–666, 1999.

[37] C. Ellis. Concurrency in linear hashing. ACM Transactions on
Database Systems (TODS), 12(2):195–217, 1987.

[38] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impos-
sibility of distributed consensus with one faulty process. Journal of
the ACM (JACM), 32(2):374–382, 1985.

[39] C. Flood, D. Detlefs, N. Shavit, and C. Zhang. Parallel garbage col-
lection for shared memory multiprocessors. In Proc. of the Java TM
Virtual Machine Research and Technology Symposium, 2001.

[40] K. Fraser. Practical Lock-Freedom. Ph.D. dissertation, Kings College,
University of Cambridge, Cambridge, England, September 2003.

[41] B. Gamsa, O. Kreiger, E.W. Parsons, and M. Stumm. Performance
issues for multiprocessor operating systems. Technical report, Com-
puter Systems Research Institute, University of Toronto, 1995.

[42] Hui Gao, Jan Friso Groote, and Wim H. Hesselink. Lock-free dynamic
hash tables with open addressing. Distributed Computing, 18(1):21–42,
2005.

DRAFT C
OPY

BIBLIOGRAPHY 607

[43] James R. Goodman, Mary K. Vernon, and Philip J. Woest. Efficient
synchronization primitives for large-scale cache-coherent multiproces-
sors. In Proceedings of the third international conference on Architec-
tural support for programming languages and operating systems, pages
64–75. ACM Press, 1989.

[44] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Lan-
guage Specification,. Prentice Hall PTR, third edition edition, 2005.
ISBN 0321246780.

[45] A. Gottlieb, R. Grishman, C.P. Kruskal, K.P. McAuliffe, L. Rudolph,
and M. Snir. The NYU ultracomputer - designing an MIMD par-
allel computer. IEEE Transactions on Computers, C-32(2):175–189,
February 1984.

[46] Michael Greenwald. Two-handed emulation: How to build non-
blocking implementations of complex data-structures using dcas. In
21st ACM Symposium on Principles of Distributed Computing, pages
260–269, July 2002.

[47] S. Haldar and K. Vidyasankar. Constructing 1-writer multireader mul-
tivalued atomic variables from regular variables. J. ACM, 42(1):186–
203, 1995.

[48] Sibsankar Haldar and Paul Vitányi. Bounded concurrent timestamp
systems using vector clocks. Journal of the ACM (JACM), 49(1):101–
126, 2002.

[49] Per Brinch Hansen. Structured multi-programming. Communications
of the ACM, 15(7):574–578, 1972.

[50] Tim Harris. A pragmatic implementation of non-blocking linked-lists.
In Proceedings of 15th International Symposium on Distributed Com-
puting (DISC 2001), Lisbon, Portugal, volume 2180 of Lecture Notes
in Computer Science, pages 300—314. Springer Verlag, October 2001.

[51] Tim Harris, Simon Marlowe, Simon Peyton-Jones, and Maurice Her-
lihy. Composable memory transactions. In Principles and Practice of
Parallel Programming (PPOPP), 2005.

[52] Steven Heller, Maurice Herlihy, Victor Luchangco, Mark Moir, Nir
Shavit, and William N Scherer III. Lazy concurrent list-based set
algorithm. In 9th International Conf. of Principles of Distributed Sys-
tems (OPODIS 2005), December 2005.

DRAFT C
OPY

608 BIBLIOGRAPHY

[53] Danny Hendler and Nir Shavit. Non-blocking steal-half work queues.
In Proceedings of the twenty-first annual symposium on Principles of
distributed computing, pages 280–289. ACM Press, 2002.

[54] Danny Hendler, Nir Shavit, and Lena Yerushalmi. A scalable lock-
free stack algorithm. In SPAA ’04: Proceedings of the sixteenth annual
ACM symposium on Parallelism in algorithms and architectures, pages
206–215, New York, NY, USA, 2004. ACM Press.

[55] J.L. Hennessy and D.A. Patterson. Computer Architecture: An Quan-
titative Approach. Morgan Kaufmann Publishers, 1995.

[56] D. Hensgen, R. Finkel, and U. Manber. Two algorithms for barrier syn-
chronization. International Journal of Parallel Programming, 17(1):1–
17, 0885-7458 1988.

[57] M. Herlihy. A methodology for implementing highly concurrent data
objects. ACM Transactions on Programming Languages and Systems,
15(5):745–770, November 1993.

[58] M. Herlihy, V. Luchangco, and M. Moir. Obstruction-free synchroniza-
tion: Double-ended queues as an example. In Proceedings of the 23rd
International Conference on Distributed Computing Systems, pages
522–529. IEEE, 2003.

[59] Maurice Herlihy. Wait-free synchronization. ACM Transactions
on Programming Languages and Systems (TOPLAS), 13(1):124–149,
1991.

[60] Maurice Herlihy, Yossi Lev, and Nir Shavit. A lock-free concurrent
skiplist with wait-free search, 2007.

[61] Maurice Herlihy, Beng-Hong Lim, and Nir Shavit. Scalable concurrent
counting. ACM Transactions on Computer Systems, 13(4):343–364,
1995.

[62] Maurice Herlihy, Victor Luchangco, Mark Moir, and William N.
Scherer, III. Software transactional memory for dynamic-sized data
structures. In Proceedings of the twenty-second annual symposium on
Principles of distributed computing, pages 92–101. ACM Press, 2003.

[63] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: ar-
chitectural support for lock-free data structures. In Proceedings of the

DRAFT C
OPY

BIBLIOGRAPHY 609

20th annual international symposium on Computer architecture, pages
289–300. ACM Press, 1993.

[64] Maurice Herlihy, Nir Shavit, and Moran Tzafrir. Concurrent cuckoo
hashing. Technical report, Brown University, 2007.

[65] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: a cor-
rectness condition for concurrent objects. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), 12(3):463–492, 1990.

[66] C. A. R. Hoare. ”partition: Algorithm 63,” ”quicksort: Algorithm 64,”
and ”find: Algorithm 65.”. Communications of the ACM, 4(7):321–
322, 1961.

[67] C. A. R. Hoare. Monitors: an operating system structuring concept.
Commun. ACM, 17(10):549–557, 1974.

[68] C. A. R. Hoare. Monitors: an operating system structuring concept.
Communications of the ACM, 17(10):549–557, 1974.

[69] M. Hsu and W. Yang. Concurrent operations in extendible hashing.
In Symposium on very large data bases, pages 241–247, 1986.

[70] J. Huang and Y. Chow. Cc-radix: A cache conscious sorting based on
radix sort. In Proc. of the 7th Computer Software and Applications
Conference, page 627631, 1983.

[71] J.S. Huang and Y.C. Chow. Parallel sorting and data partitioning
by sampling. In Proceedings of the IEEE Computer Society’s Seventh
International Computer Software and Applications Conference, pages
627–631, 1983.

[72] Galen C. Hunt, Maged M. Michael, Srinivasan Parthasarathy, and
Michael L. Scott. An efficient algorithm for concurrent priority queue
heaps. Inf. Process. Lett., 60(3):151–157, 1996.

[73] A. Israeli and L. Rappaport. Disjoint-access-parallel implementations
of strong shared memory primitives. In Proceedings of the 13th Annual
ACM Symposium on Principles of Distributed Computing, pages 151–
160, August 14–17 1994. Los Angeles, CA.

[74] Amos Israeli and Ming Li. Bounded time stamps. Distributed Com-
puting, 6(5):205–209, 1993.

DRAFT C
OPY

610 BIBLIOGRAPHY

[75] Amos Israeli and Ming Li. Bounded time-stamps. Distrib. Comput.,
6(4):205–209, 1993.

[76] Amos Israeli and Amnon Shaham. Optimal multi-writer multi-reader
atomic register. In Symposium on Principles of Distributed Comput-
ing, pages 71–82, 1992.

[77] Mohammed Gouda James Anderson, Ambuj Singh. The elusive atomic
register. Technical Report TR 86.29, University of Texas at Austin,
1986.

[78] Prasad Jayanti. Robust wait-free hierarchies. J. ACM, 44(4):592–614,
1997.

[79] Prasad Jayanti. A lower bound on the local time complexity of univer-
sal constructions. In PODC ’98: Proceedings of the seventeenth annual
ACM symposium on Principles of distributed computing, pages 183–
192, New York, NY, USA, 1998. ACM Press.

[80] Prasad Jayanti and Sam Toueg. Some results on the impossibility,
universality, and decidability of consensus. In WDAG ’92: Proceedings
of the 6th International Workshop on Distributed Algorithms, pages
69–84, London, UK, 1992. Springer-Verlag.

[81] Lefteris M. Kirousis, Paul G. Spirakis, and Philippas Tsigas. Read-
ing many variables in one atomic operation: Solutions with linear or
sublinear complexity. In Workshop on Distributed Algorithms, pages
229–241, 1991.

[82] M. R. Klugerman. Small-depth counting networks and related topics.
Technical Report MIT/LCS/TR-643, MIT Laboratory for Computer
Science, 1994.

[83] Michael Klugerman and C. Greg Plaxton. Small-depth counting net-
works. In STOC ’92: Proceedings of the twenty-fourth annual ACM
symposium on Theory of computing, pages 417–428, New York, NY,
USA, 1992. ACM Press.

[84] D. Knuth. The Art of Computer Programming: Fundamental Algo-
rithms, Volume 3. Addison-Wesley, 1973.

[85] Clyde P. Kruskal, Larry Rudolph, and Marc Snir. Efficient synchro-
nization of multiprocessors with shared memory. ACM Transactions

DRAFT C
OPY

BIBLIOGRAPHY 611

on Programming Languages and Systems (TOPLAS), 10(4):579–601,
1988.

[86] V. Kumar. Concurrent operations on extendible hashing and its per-
formance. Communications of the ACM, 33(6):681–694, 1990.

[87] L. Lamport. Specifying concurrent program modules. ACM Transac-
tions on Programming Languages and Systems, 5(2):190–222, 1983.

[88] Leslie Lamport. A new solution of dijkstra’s concurrent programming
problem. Communications of the ACM, 17(5):543–545, 1974.

[89] Leslie Lamport. A new solution of dijkstra’s concurrent programming
problem. Commun. ACM, 17(8):453–455, 1974.

[90] Leslie Lamport. Time, clocks, and the ordering of events. Communi-
cations of the ACM, 21(7):558–565, July 1978.

[91] Leslie Lamport. How to make a multiprocessor computer that cor-
rectly executes multiprocess programs. IEEE Transactions on Com-
puters, C-28(9):690, September 1979.

[92] Leslie Lamport. Invited address: Solved problems, unsolved problems
and non-problems in concurrency. In Proceedings of the Third Annual
Acm Symposium on Principles of Distributed Computing, pages 1–11,
1984.

[93] Leslie Lamport. The mutual exclusion problem: part ia theory of
interprocess communication. Journal of the ACM (JACM), 33(2):313–
326, 1986.

[94] Leslie Lamport. The mutual exclusion problem: part ii statement and
solutions. Journal of the ACM (JACM), 33(2):327–348, 1986.

[95] Butler Lampson and David Redell. Experience with processes and
monitors in mesa. Communications of the ACM, 2(23):105–117, 1980.

[96] James R. Larus and Ravi Rajwar. Transactional Memory. Morgan
and Claypool, 2006.

[97] D. Lea. Concurrent hash map in JSR166 concurrency utilities.
http://gee.cs.oswego.edu/dl/concurrency-interest/index.html.

[98] Doug Lea, 2007.

DRAFT C
OPY

612 BIBLIOGRAPHY

[99] Douglas Lea. Java community process, jsr 166, concurrency utilities.
http://www.jcp.org/en/jsr/, 2003.

[100] Shin-Jae Lee, Minsoo Jeon, Dongseung Kim, and Andrew Sohn. Parti-
tioned parallel radix sort. J. Parallel Distrib. Comput., 62(4):656–668,
2002.

[101] C. Leiserson and H. Prokop. A minicourse on multithreaded program-
ming, 1998.

[102] Y. Lev, M. Herlihy, V. Luchangco, and N. Shavit. A provably correct
scalable skiplist (brief announcement). In Proc. of the 10th Inter-
national Conference On Principles Of Distributed Systems (OPODIS
2006), 2006.

[103] Ming Li, John Tromp, and Paul M. B. Vitányi. How to share concur-
rent wait-free variables. J. ACM, 43(4):723–746, 1996.

[104] Wai-Kau Lo and Vassos Hadzilacos. All of us are smarter than any
of us: wait-free hierarchies are not robust. In STOC ’97: Proceedings
of the twenty-ninth annual ACM symposium on Theory of computing,
pages 579–588, New York, NY, USA, 1997. ACM Press.

[105] I. Lotan and N. Shavit. Skiplist-based concurrent priority queues.
In Proc. of the 14th International Parallel and Distributed Processing
Symposium (IPDPS), pages 263–268, 2000.

[106] Victor Luchangco, Daniel Nussbaum, and Nir Shavit. A hierarchical
clh queue lock. In Euro-Par, pages 801–810, 2006.

[107] P. Magnussen, A. Landin, and E. Hagersten. Queue locks on cache
coherent multiprocessors. In Proceedings of the 8th International Sym-
posium on Parallel Processing (IPPS), pages 165–171. IEEE Computer
Society, April 1994.

[108] Jeremy Manson, William Pugh, and Sarita V. Adve. The java mem-
ory model. In POPL ’05: Proceedings of the 32nd ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages
378–391, New York, NY, USA, 2005. ACM Press.

[109] Paul E. McKenney. Selecting locking primitives for parallel program-
ming. Commun. ACM, 39(10):75–82, 1996.

DRAFT C
OPY

BIBLIOGRAPHY 613

[110] John Mellor-Crummey and Michael Scott. Algorithms for scalable syn-
chronization on shared-memory multiprocessors. ACM Transactions
on Computer Systems, 9(1):21–65, 1991.

[111] John M. Mellor-Crummey and Michael L. Scott. Algorithms for scal-
able synchronization on shared-memory multiprocessors. ACM Trans-
actions on Computer Systems (TOCS), 9(1):21–65, 1991.

[112] Maged M. Michael. High performance dynamic lock-free hash tables
and list-based sets. In Proceedings of the fourteenth annual ACM sym-
posium on Parallel algorithms and architectures, pages 73–82. ACM
Press, 2002.

[113] Maged M. Michael and Michael L. Scott. Simple, fast, and practical
non-blocking and blocking concurrent queue algorithms. In Proceed-
ings of the fifteenth annual ACM symposium on Principles of distri-
buted computing, pages 267–275. ACM Press, 1996.

[114] Jaydev Misra. Axioms for memory access in asynchronous hardware
systems. ACM Transactions on Programming Languages and Systems
(TOPLAS), 8(1):142–153, 1986.

[115] Mark Moir. Practical implementations of non-blocking synchroniza-
tion primitives. In PODC ’97: Proceedings of the sixteenth annual
ACM symposium on Principles of distributed computing, pages 219–
228, New York, NY, USA, 1997. ACM Press.

[116] Mark Moir. Laziness pays! using lazy synchronization mechanisms
to improve non-blocking constructions. In PODC ’00: Proceedings of
the nineteenth annual ACM symposium on Principles of distributed
computing, pages 61–70, New York, NY, USA, 2000. ACM Press.

[117] Mark Moir, Daniel Nussbaum, Ori Shalev, and Nir Shavit. Using elim-
ination to implement scalable and lock-free fifo queues. In SPAA ’05:
Proceedings of the seventeenth annual ACM symposium on Parallelism
in algorithms and architectures, pages 253–262, New York, NY, USA,
2005. ACM Press.

[118] Richard Newman-Wolfe. A protocol for wait-free, atomic, multi-reader
shared variables. In PODC ’87: Proceedings of the sixth annual ACM
Symposium on Principles of distributed computing, pages 232–248,
New York, NY, USA, 1987. ACM Press.

DRAFT C
OPY

614 BIBLIOGRAPHY

[119] Isaac Newton, I. Bernard Cohen (Translator), and Anne Whitman
(Translator). The Principia : Mathematical Principles of Natural Phi-
losophy. University of California Press, 1999.

[120] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. J. Al-
gorithms, 51(2):122–144, 2004.

[121] Christos H. Papadimitriou. The serializability of concurrent database
updates. Journal of the ACM (JACM), 26(4):631–653, 1979.

[122] Gary Peterson. Myths about the mutual exclusion problem. Informa-
tion Processing Letters, 12(3):115–116, June 1981.

[123] Gary L. Peterson. Concurrent reading while writing. ACM Trans.
Program. Lang. Syst., 5(1):46–55, 1983.

[124] S. A. Plotkin. Sticky bits and universality of consensus. In PODC
’89: Proceedings of the eighth annual ACM Symposium on Principles
of distributed computing, pages 159–175, New York, NY, USA, 1989.
ACM Press.

[125] W. Pugh. Concurrent maintenance of skip lists. Technical Report CS-
TR-2222.1, Institute for Advanced Computer Studies, Department of
Computer Science, University of Maryland, 1989.

[126] W. Pugh. Skip lists: a probabilistic alternative to balanced trees.
ACM Transactions on Database Systems, 33(6):668–676, 1990.

[127] Chris Purcell and Tim Harris. Non-blocking hashtables with open
addressing. In DISC, pages 108–121, 2005.

[128] Zoran Radović and Erik Hagersten. Hierarchical Backoff Locks for
Nonuniform Communication Architectures. In Ninth International
Symposium on High Performance Computer Architecture, pages 241–
252, Anaheim, California, USA, February 2003.

[129] John H. Reif and Leslie G. Valiant. A logarithmic time sort for linear
size networks. J. ACM, 34(1):60–76, 1987.

[130] L. Rudolph, M. Slivkin-Allalouf, and E. Upfal. A simple load balanc-
ing scheme for task allocation in parallel machines. In In Proceedings
of the 3rd Annual ACM Symposium on Parallel Algorithms and Ar-
chitectures, pages 237–245. ACM Press, July 1991.

DRAFT C
OPY

BIBLIOGRAPHY 615

[131] Michael Saks, Nir Shavit, and Heather Woll. Optimal time randomized
consensus — making resilient algorithms fast in practice. In SODA ’91:
Proceedings of the second annual ACM-SIAM symposium on Discrete
algorithms, pages 351–362, Philadelphia, PA, USA, 1991. Society for
Industrial and Applied Mathematics.

[132] Michael L. Scott. Non-blocking timeout in scalable queue-based spin
locks. In PODC ’02: Proceedings of the twenty-first annual symposium
on Principles of distributed computing, pages 31–40, New York, NY,
USA, 2002. ACM Press.

[133] Michael L. Scott and William N. Scherer. Scalable queue-based spin
locks with timeout. ACM SIGPLAN Notices, 36(7):44–52, 2001.

[134] Maurice Sendak. Where the Wild Things Are. Publisher: Harper-
Collins, 1988. ISBN: 0060254920.

[135] Ori Shalev and Nir Shavit. Split-ordered lists: lock-free extensible
hash tables. In Proceedings of the twenty-second annual symposium
on Principles of distributed computing, pages 102–111. ACM Press,
2003.

[136] Nir Shavit and Dan Touitou. Software transactional memory. In Pro-
ceedings of the fourteenth annual ACM symposium on Principles of
distributed computing, pages 204–213. ACM Press, 1995.

[137] Nir Shavit and Asaph Zemach. Diffracting trees. ACM Trans. Comput.
Syst., 14(4):385–428, 1996.

[138] Eric Shenk. The consensus hierarchy is not robust. In PODC ’97:
Proceedings of the sixteenth annual ACM symposium on Principles of
distributed computing, page 279, New York, NY, USA, 1997. ACM
Press.

[139] Ambuj K. Singh, James H. Anderson, and Mohamed G. Gouda. The
elusive atomic register. J. ACM, 41(2):311–339, 1994.

[140] R. K. Treiber. Systems programming: Coping with parallelism. Tech-
nical Report RJ 5118, IBM Almaden Research Center, April 1986.

[141] Alan Turing. On computable numbers, with an application to the
entscheidungsproblem. Proc. Lond. Math. Soc, 1937.

DRAFT C
OPY

616 BIBLIOGRAPHY

[142] John D. Valois. Lock-free linked lists using compare-and-swap. In
Proceedings of the fourteenth annual ACM symposium on Principles
of distributed computing, pages 214–222. ACM Press, 1995.

[143] Paul Vitányi and Baruch Awerbuch. Atomic shared register access
by asynchronous hardware. In In 27th Annual Symposium on Foun-
dations of Computer Science, pages 233–243, Los Angeles, Ca., USA,
October 1986. IEEE Computer Society Press.

[144] W. E. Weihl. Local atomicity properties: modular concurrency con-
trol for abstract data types. ACM Transactions on Programming Lan-
guages and Systems (TOPLAS), 11(2):249–282, 1989.

[145] III William N. Scherer, Doug Lea, and Michael L. Scott. Scalable
synchronous queues. In PPoPP ’06: Proceedings of the eleventh ACM
SIGPLAN symposium on Principles and practice of parallel program-
ming, pages 147–156, New York, NY, USA, 2006. ACM Press.

[146] III William N. Scherer and Michael L. Scott. Advanced contention
management for dynamic software transactional memory. In PODC
’05: Proceedings of the twenty-fourth annual ACM symposium on
Principles of distributed computing, pages 240–248, New York, NY,
USA, 2005. ACM Press.

[147] P. Yew, N. Tzeng, and D. Lawrie. Distributing hot-spot addressing
in large-scale multiprocessors. IEEE Transactions on Computers, C-
36(4):388–395, April 1987.

