50

Chapter 3 Concurrent Objecr{;

r.write(7)
Thread A -+------ G A B S M R Iy
r.write(—3) r.rread(—7)
Thread B ------------ b B ' o eeaae 5

Figure 3.4 Why cach method call should appear to take effect instantaneously. Two threads
concurrently writz —3 and 7 to a shared register r. Later, one thread reads r and returns the
value —7. We expact to find either 7 or —3 in the register, not & mixture of both.

(non-overlapping, one-after-the-other). We say a method call is pending if its call
event has occurred, but not its response event.

For historical reasons, the object version of a read-write memory location
is called a register (see Chapter 4). In Fig. 3.4, two threads concurrently write
—3and 7 to a s1ared register r (as before, “r.read(x)” means that a thread reads
value x from register object r, and similarly for “prwrite(x).”). Later, one thread
reads r and returns the value —7. This behavior is clearly not acceptable. We expect
to find either 7 or —3 in the register, not a mixture of both. This example suggests
the following principle:

Principle 3.3.1 Method calls should appear to happen in a one-at-a-time,
sequential order.

By itself, th's principle is usually too weak to be useful. For example, it
permits reads always to return the object’s initial state, even in sequential
executions.

Here is a slig 1tly stronger condition. An object is quiescent if it has no pending
method calls.

Principle 3.3.2. Method calls separated by a period of quiescence should appear
to take effect ir-their real-time order. -

For exampls, suppose A and B concurrently enqueue x and y in a FIFO
queue. The queue becomes quiescent, and then C' enqueues 2. We may not be
able to predict the relative order of x and y in the queue, but we know they are
ahead of z.

Together, Principles 3.3.1 and 3.3.2 define a correctness property called
quiescent consis‘ency. Informally, it says that any time an object becomes qui-
escent, then thé execution so far is equivalent to some sequential execution of the
completed calls.

As an example of a quiescently consistent object, consider the shared counter
from Chapter 1. A quiescently-consistent shared counter would return numbers,
not necessarily in the order of the getAndIncrement() requests, but always
without duplicating or omitting a number. The execution of a quiescently con-
sistent object is somewhat like a musical-chairs game: at any point, the music
might stop, that is, the state could become quiescent. At that point, each pending

3.4 Sequential Consistency 51

method call must return an index so that all the indexes together meet the
specification of a sequential counter, implying no duplicated or omitted numbers.
In other vords, a quiescently consistent counter is an index distribution mecha-
nism, useful as a “loop counter” in programs that do not care about the order in
which inc 2xes are issued.

3.3.] Remnarks

How murh does quiescent consistency limit concurrency? Specifically, under
what circ.mstances does quiescent consistency require one method call to block
waiting fcr another to complete? Surprisingly, the answer is (essentially), never.
A methoc is total if it is defined for every object state; otherwise it is partial. For
example, =t us consider the following alternative specification for an unbounded
sequentia FIFO queue. One can always enqueuz another item, but one can
dequeue caly from a nonempty queue. In the sequential specification of a FIFO
queue, en 1() is total, since its effects are defined in every queue state, but deq() is
partial, sirce its effects are defined only for nonempty queues.

In any -oncurrent execution, for any pending invocation of a total method,
there exis's a quiescently consistent response. This observation does not mean
that it is easy (or even always possible) to figure out what that response is, but
only that the correctness condition itself does not stand in the way. We say that
quiescent consistency isa nonblocking correctness condition. We malke this notion
more clear in Section 3.6.

A correctness property P is compositional if, whenever each object in the
system satisfies PP, the system as a whole satisfies 7. Compositionality is impor-
tant in latge systems. Any sufficiently complex system must be designed and
implemer:ted in a modular fashion. Components are designed, implemented, and
proved cosrect independently. Each component makes a clear distinction between
its implem entation, which is hidden, and its interface, which precisely character-
izes the garantees it makes to the other components. For example, if a concur-
rent objec”s interface states that it is a sequentially consistent FIFO queue, then
users of the queue need to know nothing about how the queue is implemented.
The resul* of composing individually correct com»onents that rely only on one
anothers’| nterfaces should itself be a correct system. Can we, in fact, compose a
collectior: of independently implemented quiescently consistent objects to con-
struct a qiescently consistent system? The answer is, yes: quiescent consistency
is compositional, so quiescently consistent objects can be composed to construct
more corr plex quiescently consistent objects.

3.4 Sequential Consistency

In Fig. 3.5, asingle thread writes 7 and then —3 to a shared register r. Later, it reads
r and reterns 7. For some applications, this behavior might not be acceptable
because t--2 value the thread read is not the last value it wrote. The order in which

N

52 Chapter 3 Concurrent Objeci:

r.write(7) r.write(—3) r.read(7)

b S S| J |
F \ n et y |m e T o=

Figure 3.5 Why method calls should appear to take effect in program order. This behavior is
not acceptable because the value the thread read is not the last value it wrote.

i g-enq(x) g.deq(y)
g.enq(y) g.deq(x)
------------------- e} - - - - - - p— oo

Figure 3.6 There are two possible sequential orders that can justify this execution. Both
orders are consi.:ent with the method calls’ program order, and either one is enough to
show the executi>n is sequentially consistent.

a single threac ssues method calls is called its program order. (Method calls by
different threac s are unrelated by program order.)

In this example, we were surprised that operation calls did not take effect in
program order. This example suggests an alternative principle:

Principle 3.4.1! Method calls should appear to take effect in program order.

This principie ensures that purely sequential computations behave the way we
would expect. -

Together, Principles 3.3.1 and 3.4.1 define a correctness property called sequen-
tial consistency, which is widely used in the literature on multiprocessor synchro-
nization.

Sequential consistency requires that method calls act as if they occurred in a
sequential order consistent with program order. That is, in any concurrent exe-
cution, there is a way to order the method calls sequentially so that they (1) are
consistent wit" program order, and (2) meet the object’s sequential specifica-
tion. There msv be more than one order satisfying this condition. In Fig. 3.6,
thread A enquzues x while B enqueues y, and then A dequeues y while B
dequeues x. Th=re are two possible sequential orders that can explain these results:
(1) A enqueues x, B enqueues y, B dequeues X, then' A dequeues y, or (2) B
enqueues y, A “nqueues x, A dequeues y, then B dequeues x. Both these orders
are consistent - ‘ith the method calls’ program order, and either one is enough to

show the exect ‘Yion is sequentially consistent.
I

34.] Rem arﬁs

It is worth noting that sequential consistency and quiescent consistency are in-
comparable: there exist sequentially consistent executions that are not qui-
escently consisient, and vice versa. Quiescent consistency does not necessarily

“w
K 3.4 Sequential Consistency 53

W

preserve f_irogram order, and sequential consistency is unaffected by quiescent
periods.

In most modern multiprocessor architectures, memory reads and writes are
not seque::tially consistent: they can be typically reordered in complex ways. Most
of the tim# no one can tell, because the vast majority of reads—writes are not used
for synchronization. In those specific cases where programmers need sequen-
tial consis*ency, they must ask for it explicitly. The architectures provide special
instructions (usually called memory barriers or fences) that instruct the processor
to propagate updates to and from memory as needed, to ensure that reads and
writes interact correctly. In the end, the architectures do implement sequential
consistency, but only on demand. We discuss further issues related to sequential
consistency and the Java programming language in detail in Section 3.8.

In Fig. 3.7, thread A enqueues x, and later B enqueues y, and finally A
dequeues ». This execution may violate our intuitive notion of how a FIFO queue
should behave: the call enqueuing x finishes before the call dequeuing y starts, so
although is enqueued after x, it is dequeued before, Nevertheless, this execution
is sequenially consistent. Even though the call that enqueues x happens before
the call th- t enqueues y, these calls are unrelated by program order, so sequential
consisten~v is free to reorder them.

One cc 1ld argue whether it is acceptable to reorder method calls whose inter-
vals do nc’ overlap, even if they occur in different threads. For example, we might
be unhap 'y if we deposit our paycheck on Monday, but the bank bounces our rent
check the following Friday because it reordered our depositafter your withdrawal.

Sequertial consistency, like quiescent consistency, is nonblocking: any pending
call to a te'tal method can always be completed.

Is sequential consistency compositional? That is, is the result of composing
multiple s=quentially consistent objects itself sequentially consistent? Here, unfor-
tunately, the answer is no. In Fig. 3.8, two threads, A and B, call enqueue and
dequeue methods for two queue objects, pand g. It is not hard to see that p and ¢
are each sequentially consistent: the sequence of method calls for p is the same as
in the sequentially consistent execution shown in Fig. 3.7, and the behavior of g is
symmetric. Nevertheless, the execution as a whole is not sequentially consistent.

! g.enq(x) q.deq(y)
---------------- } — -
1
i g.enq(y)
--------------------------------- — - - === o=

Figure 3.1 ”riequencial consistency versus real-time order. Thread A enqueues x, and later
thread B e: queues y, and finally A dequeues y. This execution may violate our intuitive notion
of how a *'FO queue should behave because the method call enqueuing x finishes before
the methc.. call dequeuing y starts, so although y is enqueued after x, it is dequeued before.
Neverthelsass, this execution is sequentially consistent.

\

Il

AL

54

Chapter 3 Concurrent Objeciz

Figure 3.8 Sequential consistency is not compositional. Two threads, A and B, call enqueue
and dequeue metiiods on two queue objects, p and q. It is not hard to see that p and q are
each sequentially zonsistent, yet the execution as a whole is not sequentially consistent.

Let us check that there is no correct sequential execution in which these method
calls can be orcered in a way consistent with their program order. Let us assume,
by way of contradiction, that these method calls can be reordered to form a correct
FIFO queue execution, where the order of the method calls is consistent with the
program order. We use the following shorthand: (p.enq(x) A) — (q.deq(x) B)
means that any sequential execution must order A’s enqueue of x at p before B’s
dequeue of x at p, and so on. Because p is FIFO and A dequeues y from p, y must
have been enqueued before x:

(p-enq(y) B) = (p.enq(x) A)
Likewise, o
(g.eng(x) A) = (g.enq(y) B).
But program o-der implies that
(p.ena(x) A) — (g.enq(x) A) and (g.enq(y) B) = (p.enq(y) B).

Together, these orderings form a cycle.

3 .5 Lincarizability

We have seen that the principal drawback of sequential consistency is that it is not
compositional. the result of composing sequentially consistent components is not
itself necessaril sequentially consistent. We propose the following way out of this
dilemma. Let v3 replace the requirement that method calls appear to happen in
program order with the following stronger restriction:

Principle 3.5.1. Each method call should appear to take effect instantaneously at
some moment Yetween its invocation and response.

This princip e states that the real-time behavior of method calls must be pre-
served. We call this correctness property linearizability. Every linearizable execu-
tion is sequent ally consistent, but not vice versa.

3.6 Formal Definitions 55

3.5.] Lirearization Points

The usual'way to show that a concurrent object implementation is linearizable is
to identify for each method a linearization point where the method takes effect.
For lock-hased implementations, each method’s critical section can serve as its
linearization point. For implementations that do notuse locking, the linearization
point is typically a single step where the effects of the method call become visible
to other r-ethod calls.

For ex>mple, let us recall the single-enqueuer/single-dequeuer queue of
Fig. 3.3. Tnis implementation has no critical sections, and yet we can identify its
linearization points. Here, the linearization points depend on the execution. If it
returns ar item, the deq() method has a linearization point when the head field
is updateZ (Line 18). If the queue is empty, the deq() method has a lineariza-
tion poin: when it throws Empty Exception (Line 16). The enq() method is
similar.

3.5.2 Remarks

Sequential consistency is a good way to describe standalone systems, such as
hardware memories, where composition is not an issue. Linearizability, by con-
trast, is a good way to describe components of large systems, where components
must be implemented and verified independently. Moreover, the techniques we
use to implement concurrent objects, are all linearizable. Because we are inter-
ested in systems that preserve program order and compose, most (but not all)
data structures considered in this book are linearizable.

How mruch does linearizability limit concurrency? Linearizability, like sequen-
tial consisrency, is nonblocking. Moreover, like quiescent consistency, but unlike
sequentia,, consistency, linearizability is compositional; the result of composing
linearizal e objects is linearizable.

I
3.6 Formal Definitions

We now consider more precise definitions. Here, vre focus on the formal proper-
ties of line 2 rizability, since it is the property most often used in this book. We leave
it as an ex<rcise to provide the same kinds of definiiions for quiescent consistency
and sequeatial consistency.

Informally, we know that a concurrent object is linearizable if each method call
appears t¢ take effect instantaneously at some moment between that method’s
invocatior: and return events. This statement is probably enough for most infor-
mal reasching, but a more precise formulation is needed to take care of some
tricky cas=s (such as method calls that have not returned), and for more rigorous
styles of a‘gument.

o

56

Chapter 3 Concurrent Objecis

L

An executio~ of a concurrent system is modeled by a history, a finite sequence
of method invecation and response events. A subhistory of a history H is a subse-
quence of the events of H. We write a method invocation as (x.m(a*) A), where
x is an object, s a method name, a” a sequence of arguments, and A a thread.
We write a method response as (x : 7(r*) A) where ¢ is either Ok or an exception
name, and r* isa sequence of result values. Sometimes we refer to an event labeled
with thread A as a step of A.

A response ratches an invocation if they have the same object and thread. We
have been using the term “method call” informally, but here is a more formal
definition: a m=thod call in a history H is a pair consisting of an invocation and
the next match'ng response in H. We need to distinguish calls that have returned
from those tha - have not: An invocation is pending in H if no matching response
follows the invocation. An extension of H is a history constructed by append-
ing responses to zero or more pending invocations of H. Sometimes, we ignore
all pending invocations: complete(H) is the subsequence of H consisting of all
matching invocations and responses.

In some histories, method calls do not overlap: A history H is sequential if the
first event of F is an invocation, and each invocation, except possibly the last, is
immediately fo'lowed by a matching response.

Sometimes e focus on a single thread or object: a thread subhistory, H|A (“H
at A”), of a history H is the subsequence of all events in f/ whose thread names
are A. An objest subhistory H |x is similarly defined for an object x. In the end,
all that matters is how each thread views what happened: two histories £/ and
H' are equivaleat if for every thread A, H|A = H'|A. Finally, we need to rule out
histories that miake no sense: A history H is well formed if each thread subhistory
is sequential. 2.1 histories we consider here are well-formed. Notice that thread
subhistories of » well-formed history are always sequential, but object subhistories
need not be.

How can we tell whether an object is really a FIFO queue? We simply assume
that we have scme effective way of recognizing whether any sequential object his-
tory is or is nos‘a legal history for that object’s class. A sequential specification for
an object is jus«a set of sequential histories for the object. A sequential history H
is legal if each ¢oject subhistory is legal for that object.

Recall from “"hapter 2 that a partial order — on a set X is a relation that is
irreflexive and ransitive. That is, it is never true that x — x, and whenever x — y
and y — z, then x — z. Note that it is possible that there are distinct x and y such
that neither x == y nor y — x. A total order < on X is a partial order such that for
all distinct x aitd y in X, either x <y or y <x.

Any partial " rder can be extended to a total order:

Fact 3.6.1. If —‘ is a partial order on X, then there exisis a total order “<” on X
such that if x — p, then x <.

We say thar a method call mq precedes a method call m; in history H
if my finished before m, started: that is, my’s response event occurs before

3.6 Formal Definitions 57

&

m,’s invocation event. This notion is important enough to introduce some
shorthanc notion. Given a history H containing method calls my and m,, we
say that m{ — 5 m, if my precedes m; in H. We leave it as an exercise to show that
—p is a artial order. Notice that if [is sequential, then -y 1s a total order.
Given a h.story H and an object x, such that H|x contains method calls my and
m, we say that mg — my if mg precedes m; in H|x.

3.6.1 Linearizability

The basic idea behind linearizability is that every concurrent history is equiv-
alent, in the following sense, to some sequential history. The basic rule is that
if one method call precedes another, then the earlier call must have taken effect
before the later call. By contrast, if two method calls overlap, then their order is
ambiguous, and we are free to order them in any convenient way.

More f=rmally,

Definition 3.6.1. A history H is linearizable if it has an extension H' and there
is a legal sequential history .S such that

L1 compiste(H') is equivalent to .S, and
L2 if method call mo precedes method call m; in H, then the same is true in ..

We refsr to Sas a linearization of H. (H may have multiple linearizations.)

Informally, extending H to H' captures the idea that some pending invo-
cations may have taken effect, even though their responses have not yet been
returned %o the caller. Fig. 3.9 illustrates the notion: we must complete the pending
enq(x) method call to justify the deq() call that returns x. The second condition
says that :f one method call precedes another in the original history, then that
ordering ~aust be preserved in the linearization.

3.6.1 Compositional Linearizability
I
Linearizability is compositional:

Theorem 4.6.1. H is linearizable if, and only if, for each object x, H|x is
linearizat'e.

g.enq(x)
, g.deq(x)
e —— - - - - - - - -- - ------------ess-e >

Figure 3.9 “The pending eng(x) method call must take effect early to justify the deq() call that
returns x. °

i

1
(

58

Chapter 3 Concurrent Objecf:

Proof: The “only if” part is left as an exercise.

For each objzct x, pick a linearization of H|x. Let R, be the set of responses
appended to H |x to construct that linearization, and let — be the corresponding
linearization oider. Let H' be the history constructed by appending to H each
response in Ry.

We argue by ‘nduction on the number of method calls in . For the base case,
if H' contains cnly one method call, we are done. Otherwise, assume the claim
for every H cortaining fewer than k > 1 method calls. For each object x, consider
the last methoc call in H'|x. One of these calls m must be maximal with respect
to — 4 that s, there is no m’ such that m — y m’. Let G’ be the history defined
by removing m from H'. Because m is maximal, H' is equivalent to G" - m. By the
induction hypcthesis, G’ is linearizable to a sequential history S”, and both H'
and H are linearizable to 5" - m. O

Compositionality is important because it allows concurrent systems to be
designed and cc nstructed in a modular fashion; linearizable objects can be imple-
mented, verifier!, and executed independently. A concurrent system based on a
noncompositicaal correctness property must either rely on a centralized sched-
uler for all objessts, or else satisfy additional constraints placed on objects to ensure
that they follow compatible scheduling protocols.

3.6.3 The Nonblocking Property

Linearizability is a nonblocking property: a pending invocation of a total method
is never required to wait for another pending invocation to complete.

Theorem 3.6.2." Let inv(m) be an invocation of a total method. If {x inv P) is
a pending invatation in a linearizable history H, then there exists a response
(x res P) such'that H - (x res P) is linearizable.

Proof: Let S be any linearization of H. If S includes a response (x res P)
to {xinv P), we are done, since S is also a linearization of H - (xres P).
Otherwise, (x 1v P) does not appear in S either, since linearizations, by defi-
nition, include no pending invocations. Because the method is total, there exists
a response {(x res P) such that

. S'=58 (xinvP) -(xresP)
is legal. S’, hoever, is a linearization of H - (x res P), and hence is also a lin-
earization of £ . m]

This theore implies that linearizability by itself never forces a thread with
a pending invczation of a total method to block. Of course, blocking (or even
deadlock) may accur as artifacts of particular implementations of linearizability,
but it is not inharent to the correctness property itself. This theorem suggests that

3.7 Progress Conditions 59

linearizab lity is an appropriate correctness condition for systems where concur-
rency anc, “eal-time response are important.

The ncnblocking property does not rule out blocking in situations where it
is explicitly intended. For example, it may be sensible for a thread attempting to
dequeue from an empty queue to block, waiting until another thread enqueues
an item. A, queue specification would capture this intention by making the deq()
method’s specification partial, leaving its effect undefined when applied to an
empty queue. The most natural concurrent interpretation of a partial sequential
specification is simply to wait until the object reaches a state in which the method
is defined.

3.7 Progress Conditions

Linearizatility’s nonblocking property states that any pending invocation has a
correct rezponse, but does not talk about how to compute such a response. For
example, 2t us consider the scenario for the lock-based queue shown in Fig. 3.1.
Suppose the queue is initially empty. A halts half-way through enqueuing x, and
B then invokes deq(). The nonblocking property guarantees that B’s call to deq()
has a response: it could either throw an exception or return x. In this implemen-
tation, hcivever, B is unable to acquire the lock, and will be delayed as long as A
is delayed ;

Such an implementation is called blocking, because an unexpected delay by one
thread can prevent others from making progress. Unexpected thread delays are
common in multiprocessors. A cache miss might delay a processor for a hundred
cycles, a page fault for a few million cycles, preemption by the operating system
for hundrads of millions of cycles. These delays depend on the specifics of the
machine and the operating system.

A metsod is wait-free if it guarantees that every call finishes its execution
in a finits number of steps. It is bounded wait-free if there is a bound on the
number ¢ steps a method call can take. This bound may depend on the num-
ber of thr=ads. For example, the Bakery algorithm’s doorway section studied in
Chapter - is bounded wait-free, where the bound is the number of threads.
A wait-fre2 method whose performance does not depend on the number of active
threads is ~alled population-oblivious. We say that an object is wait-free if its meth-
ods are writ-free, and in an object oriented language, we say that a class is wait-
free if all “astances of its objects are wait-free. Being wait-free is an example of a
nonblockig progress condition, meaning that an arbitrary and unexpected delay
by one thrzad (say, the one holding a lock) does not necessarily prevent the others
from mal-ing progress.

The queue shown in Fig. 3.3 is wait-free. For example, in the scenario where A
halts halfsway through enqueuing x, and B then invokes deq(), then B will either
throw EmotyException (if A halted before storing the item in the array) or it
will return x (if A halted afterward). The lock-based queue is not nonblocking

60

Chapter 3 Concurrent Objects

~ L
L
I
because B wiliitake an unbounded number of steps unsuccessfully trying to
acquire the locl.

The wait-free property is attractive because it guarantees that every thread that
takes steps mak s progress. However, wait-free algorithms can be inefficient, and
sometimes we ire willing to settle for a weaker nonblocking property.

A method is Jock-free if it guarantees that infinitely often some method call fin-
ishes in a finite number of steps. Clearly, any wait-free method implementation
is also lock-free, but not vice versa. Lock-free algorithms admit the possibility
that some threads could starve. As a practical matter, there are many situations
in which starvation, while possible, is extremely unlikely, so a fast lock-free algo-
rithm may be rore attractive than a slower wait-free algorithm.

3.1.| Dependent Progress Conditions

The wait-free ¢ 1d lock-free nonblocking progress conditions guarantee that the
computation a: a whole makes progress, independently of how the system sched-
ules threads.

In Chapter & we encountered two progress conditions for blocking imple-
mentations: th= deadlock-free and starvation-free properties. These properties
are dependent -rogress conditions: progress occurs only if the underlying plat-
form (i.e., the operating system) provides certain guarantees. In principle, the
deadlock-free ¢ nd starvation-free properties are useful when the operating sys-
tem guarantees that every thread eventually leaves every critical section. In prac-
tice, these prolrifrties are useful when the operating system guarantees that every
thread eventually leaves every critical section in a timely manner.

Classes whoze methods rely on lock-based synchronization can guarantee, at
best, dependen progress properties. Does this observation mean that lock-based
algorithms shculd be avoided? Not necessarily. If preemption in the middle of a
critical section is sufficiently rare, then dependent blocking progress conditions
are effectively indistinguishable from their nonblocking counterparts. If preemp-
tion is commen enough to cause concern, or if the cost of preemption-based
delay are suffiziently high, then it is sensible to consider nonblocking progress
conditions.

There is alsc a dependent nonblocking progress condition: the obstruction-free
property. We szy that a method call executes in isolation if no other threads take
steps. u

Definition 3.7.". A method is obstruction-free if, from any point after which it
executes in iso ation, it finishes in a finite number of steps.

Like the otlr nonblocking progress conditions, the obstruction-free condi-
tion ensures th't not all threads can be blocked by a sudden delay of one or more
other threads. 4 lock-free algorithm is obstruction-free, but not vice versa.

The obstruction-free algorithm rules out the use of locks but does not guar-
antee progress’when multiple threads execute concurrently. It seems to defy the

i

l

3.8 The Java Memory Model 61

ol

fair apprc?:ch of most operating system schedulers by guaranteeing progress only
when oneihread is unfairly scheduled ahead of the others.

In prac:ice, however, there is no problem. The obstruction-free condition does
not requiré pausing all threads, only those threads that conflict, meaning that they
call the sa-1e shared object’s methods. The simplest way to exploit an obstruction-
free algorithmis to introducea back-off mechanism: a thread that detects a conflict
pauses to ;ive an earlier thread time to finish. Choesing when to back off, and for
how long. is a complicated subject discussed in detail in Chapter 7.

Picking a progress condition for a concurrent object implementation depends
on both the needs of the application and the characteristics of the underlying
platform. The absolute wait-free and lock-free progress properties have good
theoretica! properties, they work on just about any platform, and they provide
real-time guarantees useful to applications such as music, electronic games, and
other interactive applications. The dependent obstruction-free, deadlock-free,
and starvarion-free properties rely on guarantees provided by the underlying plat-
form. Given those guarantees, however, the dependent properties often admit
simpler and more efficient implementations.

3.8 The Java Memory Model

The Java programming language does not guarantee linearizability, or even
sequentia- consistency, when reading or writing fields of shared objects. Why
not? The grincipal reason is that strict adherence to sequential consistency would
outlaw widely used compiler optimizations, such as register allocation, common
subexprescion elimination, and redundant read elimination, all of which work
by reordering memory reads—writes. In a single-threaded computation, such
reorderings are invisible to the optimized program, but in a multithreaded com-
putation, one thread can spy on another and observe out-of-order executions.

The Java memory model satisfies the Fundame:tal Property of relaxed mem-
ory models: if a program’s sequentially consistent executions follow certain rules,
then ever execution of that program in the relaxed model will still be sequen-
tially con:istent. In this section, we describe rules that guarantee that the Java
programs are sequentially consistent. We will not try to cover the complete set of
rules, which is rather large and complex. Instead, we focus on a set of straightfor-
ward rules that should be enough for most purposes.

Fig. 3.0 shows double-checked locking, a once-common programming idiom
that falls ~7ictim to Java’s lack of sequential consistency. Here, the Singleton
class mar.ages a single instance of a Singleton object, accessible through the
getInstance() method. This method creates the instance the first time it is
called. TV's method must be synchronized to ensure that only one instance is
created, even if several threads observe instance to be null create new instances.
Once the -astance has been created, however, no further synchronization should
be necesskry. As an optimization, the code in Fig. 3.10 enters the synchronized

W

62

Chapter 3 Concurrent Objeciz

1 public statit Singleton getInstance() {
2 if (instamee == null) {

3 synchrorized(Singleton.class) {

4 if (injtance == null)

5 instznce = new Singleton();
6 } "
7 I T
8 return insZance;
9

)

Figure 3.10 Doutle-checked locking.

block only whe - it observes an instance to be null. Once it has entered, it double-
checks that ins:ance is still null before creating the instance.

This pattern, once common, is incorrect. At Line 5, the constructor call appears
to take place before the instance field is assigned, but the Java memory model
allows these stens to occur out of order, effectively making a partially initialized
Singleton obj=ct visible to other programs.

In the Java memory model, objects reside in a shared memory and each thread
has a private warking memory that contains cached copies of fields it has read or
written. In the zbsence of explicit synchronization (explained later), a thread that
writes to a field might not propagate that update to memory right away, and a
thread that rea”s a field might not update its working memory if the field’s copy
in memory chenges value. Naturally, a Java virtual machine is free to keep such
cached copies consistent, and in practice they often do, but they are not required
to do so. At this point, we can guarantee only that a thread’s own reads—writes
appear to that thread to happen in order, and that any field value read by a thread
was written to that field (i.e., values do not appear out of thin air).

Certain statements are synchronization events. Usually, the term “synchroniza-
tion” implies scme form of atomicity or mutual exclusion. In Java, however, it also
implies reconciling a thread’s working memory with the shared memory. Some
synchronizatic’ events cause a thread to write cached changes back to shared
memory, maki-g those changes visible to other threads. Other synchronization
events cause th thread to invalidate its cached values, forcing it to reread field
values from mmory, making other threads’ changes visible. Synchronization
events are linea -izable: they are totally ordered, and all threads agree on that order-
ing. We now look at different kinds of synchronization events.

3.8.] Locks aad Synchronized Blocks

A thread can acnieve mutual exclusion either by entering a synchronized block
or method, wtich acquires an implicit lock, or by acquiring an explicit lock
(such as the ReantrantLock from the java.util.concurrent.locks package). Both
approaches ha= the same implications for memory behavior.

If all accesses to a particular field are protected by the same lock, then
reads—writes tc: that field are linearizable. Specifically, when a thread releases a
lock, modified:fields in working memory are written back to shared memory,

3.8 The Java Memory Model 63

i
performing modifications while holding the lock accessible to other threads.
When a thiread acquires the lock, it invalidates its working memory to ensure
fields are *eread from shared memory. Together, these conditions ensure that
reads—wr*es to the fields of any object protected by a single lock are linearizable.

Je

3.8.2 Votatile Fields

Volatile fietds are linearizable. Reading a volatile field is like acquiring a lock: the
working r=emory is invalidated and the volatile field’s current value is reread from
memory. Nriting a volatile field is like releasing a lock: the volatile field is imme-
diately wriiten back to memory.

Althot;h reading and writing a volatile field has the same effect on mem-
ory consiciency as acquiring and releasing a lock, multiple reads—writes are not
atomic. F-r example, if x is a volatile variable, the expression x++ will not nec-
essarily ir “rement x if concurrent threads can modify x. Some form of mutual
exclusion is needed as well. One common usage pattern for volatile variables
occurs wk 2n a field is read by multiple threads, but only written by one.

The jeva.util.concurrentatomic package includes classes that provide
linearizable memory such as AtomicReference<T> or Atomiclnteger. The
compareAndSet () and set() methods act like volatile writes, and get() acts like
a volatile read.

3.8.3 Fin’:;l Fields

Recall tha- a field declared to be final cannot be modified once it has been ini-
tialized. An object’s final fields are initialized in its constructor. If the constructor
follows ceztain simple rules, described in the following paragraphs, then the cor-
rect value of any final fields will be visible to other threads without synchroniza-
tion. For 2xample, in the code shown in Fig. 3.11, a thread that calls reader() is

class\Fina1Fie1dExamp1e {

1

2 fin#! int x; int y;

3 staic FinalFieldExample f;
4 pubi;c FinalFieldExample() {
5 X523

6 y =4

7 } 1}

8 sta’ ‘¢ void writer() {

9 f,= new FinalFieldExample();
10 }

11 static void reader() {

12 if (f != null) {

13 int i = f.x; int J = f.y;
14 }

15 }

16 |}

Figure 3.1l Constructor with final field.
|

y

I
Li
[

64

Chapter 3 Concurrent Objec:

[l

public class EventListener {

final int »;

public EventListener(EventSource eventSource) {
eventSource.registerListener(this); // register with event source ...

public onEvent(Event e) {
... [/l handle the event

1
2
3
4
5)
6
7
8§ I
9

}

Figure 3.12 Incorrect EventListener class.

guaranteed to s2e x equal to 3, because the x field is final. There is no guarantee
that y will be ez ual to 4, because y is not final.

If a construsior is synchronized incorrectly, however, then final fields may be
observed to ck-nge value. The rule is simple: the this reference must not be
released from t e constructor before the constructor returns.

Fig. 3.12 shc ws an example of an incorrect constructor in an event-driven sys-
tem. Here, an ZventListener class registers itself with an EventSource class,
making a referg.1ce to the listener object accessible to other threads. This code may
appear safe, sir.-e registration is the last step in the constructor, but it is incorrect,
because if anot™ier thread calls the event listener’s onEvent() method before the
constructor fin:shes, then the onEvent () method is not guaranteed to see a correct
value for x.

In summary, reads—writes to fields are linearizable if either the field is volatile,
or the field is protected by a unique lock which is acquired by all readers and
writers.

3.9 Rermrarks

What progress -ondition is right for one’s application? Obviously, it depends on
the needs of t&'s application and the nature of the system it is intended to run
on. However, tHis is actually a “trick question” since different methods, even ones
applied to the “ame object, can have different progress conditions. A frequently
called time-cri':cal method such as a table lookup in a firewall program, should
be wait-free, w'tile an infrequent call to update a table entry can be implemented
using mutual 2«clusion. As we will see, it is quite natural to write applications
whose methoc" differ in their progress guarantees.

Which corr+“:tness condition is right for one’s application? Well, it depends on
the needs of tk* application. A lightly loaded printer server that uses a queue to
hold, say print}obs, might be satisfied with a quiescently-consistent queue, since
the order in which documents are printed is of little importance. A banking server
should execute sustomer requests in program order (transfer 100 from savings to

3.10 Chapter Notes 65

checking,.yrite a check for $50), so it should use a sequentially consistent queue.
A stock-ty ding server is required to be fair, so orders from different customers
must be e-ecuted in the order they arrive, so it wouid require a linearizable queue.

The foliowing joke circulated in Italy in the 1920s. According to Mussolini, the
ideal citizzn is intelligent, honest, and Fascist. Unfortunately, no one is perfect,
which exglains why everyone you meet is either intelligent and Fascist but not
honest, hcnest and Fascist but not intelligent, or honest and intelligent but not
Fascist.

As programmers, it would be ideal to have linearizable hardware, linearizable
data structures, and good performance. Unfortunately, technology is imperfect,
and for the time being, hardware that performs well is not even sequentially con-
sistent. As the joke goes, that leaves open the possibility that data structures might
still be linearizable while performing well. Nevertheless, there are many challenges
to make this vision work, and the remainder of this book is a road map showing
how to atiain this goal.

3. i 0 Chapter Notes

The noticn of quiescent consistency was introduced implicitly by James Aspnes,
Maurice derlihy, and Nir Shavit [16] and more explicitly by Nir Shavit and
Asaph Zenach [143]. Leslie Lamport [91] introduced the notion of sequential
consistenc,, while Christos Papadimitriou [124] formulated the canonical formal
characterization of serializability. William Weihl [149] was the first to point out
the impostance of compositionality (which he called locality). Maurice Herlihy
and Jeanr2tte Wing [69] introduced the notion of linearizability in 1990. Leslie
Lamport {94, 95] introduced the notion of an atomiic register in 1986.

To the best of our knowledge, the notion of wait-freedom firstappeared implic-
itly in Leslie Lamport’s Bakery algorithm [89]. Lock-freedom has had several his-
torical meanings and only in recent years has it converged to its current definition.
Obstructicn-freedom was introduced by Maurice Herlihy, Victor Luchangco, and
Mark Mcir [61]. The notion of dependent progress was introduced by Maurice
Herlihy and Nir Shavit [63] .

Programming languages such as C or C++ were not defined with concurrency
in mind, 7 they do not define a memory model. The actual behavior of a concur-
rent C or ++ program is the result of a complex combination of the underlying
hardware. the compiler, and concurrency library. See Hans Boehm [21] foramore
detailed ¢iscussion of these issues. The Java memory model proposed here is the
second memory model proposed for Java. Jeremy Manson, Bill Pugh, and Sarita
Adve [112] give a more complete description of the current Java memory.

The 2hread queue is considered folklore, yet as far as we are aware, it first
appeared! n print in a paper by Leslie Lamport [9z].

1

66

Chapter 3 Concurrent Object:

I

3..' i Exercises

hl
Exercise 21. Ex:lain why quiescent consistency is compositional.
L

Exercise 22. Cchisider a memory object that encompasses two register compo-
nents. We knovs that if both registers are quiescently consistent, then so is the
memory. Does the converse hold? If the memory is quiescently consistent, are the
individual regiz-ers quiescently consistent? Outline a proof, or give a counterex-
ample.

Exercise 23. Give an example of an execution that is quiescently consistent but
not sequentially consistent, and another that is sequentially consistent but not
quiescently corsistent.

Exercise 24. For each of the histories shown in Figs. 3.13 and 3.14, are they quies-
cently consisterit? Sequentially consistent? Linearizable? Justify your answer.

Exercise 25. If we drop condition L2 from the linearizability definition, is the
resulting property the same as sequential consistency? Explain.

r.read(1)
A e Jo— e o s mnnmmn oo e -
H r.write(1) r.read(2)
B e i : --n m— - - e o >
r.write(2)
G et T hEEREETEEEEEEEE >
Figure 3.13 First history for Exercise 24.
- r.oread(1)
§ sremesssmue fr— < - s ~
r.write(1) r.read(1)
L — {--m--- : e nn -
r.write(2)
C e D R L e R e b -

Figure 3.14 Seccnd history for Exercise 24.

3.11 Exercises 67

Exercise 26. Prove the “only if” part of Theorem 3.6.1

Exercise 27, The AtomicInteger class (in the java.util.concurrentatomic
package) is a container for an integer value. One of its methods is

boo]ean.compareAndSet(int expect, int update).

This mathod compares the object’s current value to expect. If the values are
equal, then it atomically replaces the object’s value with update and returns true.
Otherwise. it leaves the object’s value unchanged, and returns false. This class also
provides

int get.)

which returns the object’s actual value.

Consicer the FIFO queue implementation shown in Fig. 3.15. It stores its items
in an arre ; items, which, for simplicity, we will 2ssume has unbounded size. It
has two AtomicInteger fields: tail is the index of the next slot from which to
remove an item, and head is the index of the next slot in which to place an item.
Give an example showing that this implementation is not linearizable.

Exercise 28. Consider theclassshown in Fig. 3.16. According to whatyou have been
told abous the Java memory model, will the reader method ever divide by zero?

1 class IQueue<T> {

2 Atomiclnteger head = new AtomicInteger(0);

3 AtomicInteger tail = new AtomicInteger(0);

4 T[] items = (T[]) new Object[Integer.MAX_VALUE];
5 pubiic void enq(T x) {
6

7

8

irt slot;
de {
««lot = tail.get();

9 } while (! tail.compareAndSet(slot, slot+l));
10 items[slot] = x;
11 iLr
12 public T deq() throws EmptyException {
13 T 3aTue;
14 irt slot;
15 de’ {
16 510t = head.get();
17 value = items[slot];
18 if (value == null)
19 ~ throw new EmptyException();
20 } while (! head.compareAndSet(slot, slot+l));
21 return value;
22 b
23) i

Figure 3.15 1Queue implementation.

68

Chapter 3 Concurrent Objea‘;rT

1 class VolatileExample {
2 int x = C;

3 volatile boolean v = false;
4 public void writer() {
5 x = 42;

6 v = trug;

7 }

8 public veid reader() {
9 if (v == true) {
10 int y = 100/x;
11)
12 }

13}

Figure 3.16 Volasile field example from Exercise 28.

Exercise 29. Is ‘he following property equivalent to saying that object x is
wait-free?

For every infinite history H of x, every thread that takes an infinite number of
steps in H completes an infinite number of method calls.

Exercise 30. Is the following property equivalent to saying that object x is
lock-free?

For every infinite history H of x, an infinite number of method calls are
completed.

Exercise 31. Consider the following rather unusual implementation of a method
m. In every history, the ih time a thread calls m, the call returns after 2/ steps. Is
this method wait-free, bounded wait-free, or neither?

Exercise 32. This exercise examines a queue implementation (Fig. 3.17) whose
enq() method does not have a linearization point.

The queue :tores its items in an items array, which for simplicity we will
assume is unbtunded. The tail field is an AtomicInteger, initially zero. The
enq() method :eserves a slot by incrementing tail, and then stores the item at
that location. INote that these two steps are not atomic: there is an interval after
tail has been incremented but before the item has been stored in the array.

The deq() method reads the value of tail, and then traverses the array in
ascending order from slot zero to the tail. For each slot, it swaps null with the
current conter:s, returning the first non-null item it finds. If all slots are null, the
procedure is re;tarted.

Give an exzample execution showing that the linearization point for enq()
cannot occur a* Line 15,

Hint: give an execution where two engq() calls are not linearized in the order
they execute Line 15.

G ~No ol B W=

3.11 Exercises 69

publiz- class HWQueue<T> {
Atorii cReference<T>[] items;
AtomiclInteger tail;
staﬁjc final int CAPACITY = 1024;

pubic HWQueue() {
items =(AtomicReference<T>[])Array.newInstance(AtomicReference.class,
. CAPACITY);
for (int i = 0; i < items.length; i++) {
items[i] = new AtomicReference<T>(null);
!
tail = new AtomicInteger(0);
}
pub”ic void eng(T x) {
int i = tail.getAndIncrement();
items[i].set(x);
}
public T deq() {
while (true) {
nt range = tail.get();
“or (int i = 0; i < range; i++) {
T value = items[i].getAndSet(null);
if (value !'= null) {
return value;

Figure 3.7 Herlihy/Wing queue.

Give arother example execution showing that the linearization point for enq()

cannot occur at Line 16.

Since these are the only two memory accesses in eng(), we must conclude that

enq() has no single linearization point. Does this mean enq() is not linearizable?

Exercise 3z, Prove that sequential consistency is nonblocking.

